
Purchase this book NEW and receive FREE!

The Student Resource Disk for Java
• Borland® JBuilder™ 7 Personal
• Sun Java™ 2 SDK Standard Edition
• Sun Java™ 2 SDK Standard Edition Documentation
• Program Files

J O N E S A N D B A R T L E T T C O M P U T E R S C I E N C E

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers
Canada
2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International
Barb House, Barb Mews
London W6 7PA
UK

Copyright © 2003 by Jones and Bartlett Publishers, Inc.

Cover image © Peter J. Robinson/Photolibrary/PictureQuest

Text photo credits follow the index, which constitutes a continuation of the copyright page.
Unless otherwise acknowledged, all photographs are the property of Jones and Bartlett
Publishers.

Library of Congress Cataloging-in-Publication Data

Dale, Nell B.
Programming and problem solving with Java / Nell Dale, Chip Weems, Mark Headington.

p. cm.
Includes index.
ISBN 0-7637-0490-3
1. Java (Computer program language) I. Weems, Chip. II. Headington, Mark R. III.

Title.

QA76.73.J38D346 2003
005.13’3--dc21

2002043476

All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form, electronic or mechanical, including photocopying, recording, or
any information storage or retrieval system, without written permission from the copyright
owner.

Production Credits
Chief Executive Officer: Clayton Jones
Chief Operating Officer: Don W. Jones, Jr.
Executive V.P. and Publisher: Robert W. Holland, Jr.
V.P., Design and Production: Anne Spencer
V.P., Manufacturing and Inventory Control: Therese Bräuer
V.P., Sales and Marketing: William Kane
Editor-in-Chief, College: J. Michael Stranz
Production Manager: Amy Rose
Senior Marketing Manager: Nathan Schultz
Associate Production Editor: Karen C. Ferreira
Associate Editor: Theresa DiDonato
Production Assistant: Jenny McIsaac
Cover Design: Kristin Ohlin
Composition: Northeast Compositors
Illustrations and Technical Art: Smolinski Studios
Copyediting: Jill Hobbs
Proofreading: Trillium Project Management
Text Design: Anne Spencer
Printing and Binding: Courier Kendallville
Cover Printing: Lehigh Press

This book was typeset in QuarkXPress 4.1 on a Macintosh G4. The font
families used were Caecilia, Myria, and Letter Gothic. The first printing
was printed on 45# Utopia GW Matte.

Printed in the United States of America
07 06 05 04 03 10 9 8 7 6 5 4 3 2 1

This book is dedicated to you, and to all of our other students for
whom it was begun and without whom it would never have
been completed.

To quote Mephistopheles, one of the chief devils, and tempter of
Faust,

…My friend, I shall be pedagogic,
And say you ought to start with Logic…
…Days will be spent to let you know
That what you once did at one blow,
Like eating and drinking so easy and free,
Can only be done with One, Two, Three.
Yet the web of thought has no such creases
And is more like a weaver’s masterpieces;
One step, a thousand threads arise,
Hither and thither shoots each shuttle,
The threads flow on, unseen and subtle,
Each blow effects a thousand ties.
The philosopher comes with analysis
And proves it had to be like this;
The first was so, the second so,
And hence the third and fourth was so,
And were not the first and second here,
Then the third and fourth could never appear.
That is what all the students believe,
But they have never learned to weave.

J. W. von Goethe, Faust, Walter Kaufman trans., New York, Anchor/Doubleday: 1963.

As you study this book, do not let the logic of algorithms
bind your imagination, but rather make it your tool for weaving
masterpieces of thought.

v

Contents
Preface xv

Chapter 1 Introduction to Object-Oriented Programming 2

1.1 Overview of Object-Oriented Programming 4
What Is Programming? 4
How Do We Write a Program? 5

1.2 How Is Java Code Converted into a Form That a
Computer Can Use? 10

1.3 How Does Interpreting Code Differ from Executing It? 14

1.4 How Is Compilation Related to Interpretation and
Execution? 14

1.5 What Kinds of Instructions Can Be Written in a
Programming Language? 15
Object-Oriented Programming Languages 18

1.6 What’s Inside the Computer? 20

1.7 Problem-Solving Techniques 22
Ask Questions 23
Look for Things That Are Familiar 24
Solve by Analogy 25
Means-Ends Analysis 25
Divide and Conquer 26
The Building-Block Approach 27
Merging Solutions 27
Mental Blocks: The Fear of Starting 28
Object-Oriented Problem Solving 29
Case Study: Party Planning 30
Summary 33
Quick Check 34
Exam Preparation Exercises 36
Programming Warm-Up Exercises 37
Programming Problems 38
Case Study Follow-Up 38

Chapter 2 Java Syntax and Semantics, Classes, and Objects 40

2.1 The Elements of Java Programs 42
Syntax and Semantics 42
Syntax Templates 42
Naming Program Elements: Identifiers 46
Built-in Types in Java 47
Classes and Objects 50
Defining Terms: Declarations 54

vi | Contents

Field Declarations 54
Assignment and Expressions 59
Beyond Minimalism: Adding Comments to Code 64
Output 64
Input 67
Interactive Input and Output 70

2.2 Application Construction 70
Blocks 73

2.3 Application Entry, Correction, and Execution 75
Entering Application Code 75
Compiling and Running an Application 77
Finishing Up 77

2.4 Classes and Methods 78
User Classes 78
Methods 79
Case Study: Display a Name in Multiple Formats 83

2.5 Testing and Debugging 86
Summary 87
Quick Check 88
Exam Preparation Exercises 90
Programming Warm-Up Exercises 94
Programming Problems 95
Case Study Follow-Up 97

Chapter 3 Arithmetic Expressions 98

3.1 Overview of Java Data Types 100

3.2 Numeric Data Types 103
Integral Types 103
Floating-Point Types 105

3.3 Declarations for Numeric Types 106
Named Constant Declarations 106
Variable Declarations 107

3.4 Simple Arithmetic Expressions 108
Arithmetic Operators 108
Increment and Decrement Operators 112

3.5 Compound Arithmetic Expressions 114
Precedence Rules 114
Type Conversion and Type Casting 115

3.6 Additional Mathematical Methods 120

3.7 Value-Returning Class Methods 122

3.8 Additional String Operations 126

Contents | vii

The length Method 126
The indexOf Method 126
The substring Method 128
Converting Strings to Numeric Values 130
Noninteractive Input/Output 131

3.9 Applications with Multiple Class Files 131
Case Study: Small Company Payroll 135

3.10 Testing and Debugging 140
Summary 141
Quick Check 141
Exam Preparation Exercises 143
Programming Warm-Up Exercises 146
Programming Problems 150
Case Study Follow-Up 151

Chapter 4 Selection and Encapsulation 152

4.1 Flow of Control 154
Selection 154

4.2 Conditions and Logical Expressions 154
The boolean Data Type 155
Logical Expressions 155
Precedence of Operators 165
Relational Operators with Floating-Point Types 167

4.3 The if Statement 167
The if-else Form 168
Blocks (Compound Statements) 169
The if Form 170

4.4 Nested if Statements 173
The Dangling else 176

4.5 Encapsulation 177

4.6 Abstraction 179
Data and Control Abstraction 179
Case Study: Warning Notices 184

4.7 Testing and Debugging 190
Testing Strategies 190
The Test Plan 193
Tests Performed Automatically During Compilation and

Execution 194
Summary 197
Quick Check 197
Exam Preparation Exercises 199
Programming Warm-Up Exercises 204

viii | Contents

Programming Problems 206
Case Study Follow-Up 209

Chapter 5 File Objects and Looping Statements 210

5.1 File Input and Output 212
Files 212
Using Files 213
An Example Application Using Files 219

5.2 Looping 220
The while Statement 221
Phases of Loop Execution 223
Loops Using the while Statement 223
Count-Controlled Loops 223
Event-Controlled Loops 225
Looping Subtasks 229
How to Design Loops 233
Designing the Flow of Control 233
Designing the Process Within the Loop 235
The Loop Exit 236
Nested Loops 236
General Pattern 237
Designing Nested Loops 240

5.3 Mutable and Immutable Objects 242
A Parameter-Passing Analogy 244
Case Study: Average Income By Gender 246

5.4 Testing and Debugging 252
Loop-Testing Strategy 252
Test Plans Involving Loops 252
Summary 255
Quick Check 257
Exam Preparation Exercises 258
Programming Warm-Up Exercises 262
Programming Problems 264
Case Study Follow-Up 266

Chapter 6 Object-Oriented Software Design and Implementation 268

6.1 Software Design Strategies 270

6.2 Objects and Classes Revisited 271

6.3 Object-Oriented Design 274
Object-Oriented Problem Solving 275
Software Engineering 276

6.4 The CRC Card Design Process 277
Identifying the Initial Classes Through Brainstorming 277

Contents | ix

Filtering 278
Determining Responsibilities 280
Inheritance 285

6.5 Functional Decomposition 285
Writing Modules 287

6.6 Object-Oriented Implementation 289
Class Interface Design 289
Internal Data Representation 291
Responsibilities as Methods 292

6.7 Packages 294
Package Syntax 294
Packages with Multiple Compilation Units 296
Package Example 297

6.8 Ethics and Responsibilities in the
Computing Profession 301
Software Piracy 301
Privacy of Data 302
Use of Computer Resources 302
Case Study: Address Book 304

6.9 Testing and Debugging 314
Summary 315
Quick Check 316
Exam Preparation Exercises 317
Programming Warm-Up Exercises 319
Programming Problems 320
Case Study Follow-Up 323

Chapter 7 Inheritance, Polymorphism, and Scope 324

7.1 Inheritance 326
An Analogy 326

7.2 Inheritance and the Object-Oriented Design Process 328

7.3 How to Read a Class Hierarchy 333
Overriding 336
Hiding 336
Polymorphism 337

7.4 Derived Class Syntax 337

7.5 Scope of Access 339
Internal Scope 340
External Scope 342

7.6 Implementing a Derived Class 346
Constructors in Derived Classes 347

x | Contents

Overloading and Method Signatures 347
Accessing Overridden and Hidden Methods and Fields 349
A Concrete Example 349

7.7 Copy Constructors 352

7.8 Output and Input of Objects 354
Case Study: Extending the Address Book 359

7.9 Testing and Debugging 365
Summary 366
Quick Check 367
Exam Preparation Exercises 368
Programming Warm-Up Exercises 370
Programming Problem 372
Case Study Follow-Up 373

Chapter 8 Event-Driven Input and Output 374

8.1 Frames 376
Import Classes and Declare Fields 376
Instantiate Frame Objects and Specify

Some of Their Properties 377
Add Output to the Content Pane 380
Make the Frame Visible on the Screen 380

8.2 Formatting Output 382
Using GridLayout for Tabular Output 382
Alignment of Text Within Jlabels 384

8.3 Event Handling 385
Creating a Button 385
Creating and Registering a Button Event Listener 387
An Event-Handling Example 390
Event Loops 393

8.4 Entering Data Using Fields in a Frame 394

8.5 Creating a Data Entry Field 396

8.6 Using a Field 397

8.7 Reading Data in an Event Handler 398
Case Study: Totaling Rainfall Amounts 402

8.8 Handling Multiple Button Events 409
Case Study: A Simple Calculator 412

8.9 Testing and Debugging 420
Summary 421
Quick Check 421
Exam Preparation Exercises 422

Contents | xi

Programming Warm-Up Exercises 424
Programming Problems 426
Case Study Follow-Up 426

Chapter 9 Exceptions and Additional Control Structures 430

9.1 Exception-Handling Mechanism 432
The try-catch-finally Statement 432
Generating an Exception with throw 435
Exception Classes 437

9.2 Additional Control Statements 438
The switch Statement 438
The do Statement 442
The for Statement 445
Guidelines for Choosing a Looping Statement 448

9.3 Additional Java Operators 448
Assignment Operators and Assignment Expressions 448
Increment and Decrement Operators 450
Bitwise Operators 451
The ?: Operator 456
Operator Precedence 456
Case Study: Monthly Rainfall Averages 459

9.4 Testing and Debugging 466
Summary 467
Quick Check 468
Exam Preparation Exercises 470
Programming Warm-Up Exercises 472
Programming Problems 474
Case Study Follow-Up 477

Chapter 10 One-Dimensional Arrays 478

10.1 Atomic Data Types 480

10.2 Composite Data Types 481

10.3 One-Dimensional Arrays 483
Declaring an Array 486
Creating an Array 486
Declaring and Creating an Array with an Initializer List 488
Accessing Individual Components 488
Out-of-Bounds Array Indexes 490
Aggregate Array Operations 491

10.4 Examples of Declaring and Processing Arrays 493

xii | Contents

Occupancy Rates 493
Sales Figures 494
Character Counts 495

10.5 Arrays of Objects 497
Arrays of Strings 497
Arrays of User-Defined Objects 500

10.6 Arrays and Methods 500

10.7 Special Kinds of Array Processing 501
Partial (or Sub) Array Processing 501
Indexes with Semantic Content 501
Case Study: Grading True/False Tests 502

10.8 Testing and Debugging 510
Summary 513
Quick Check 513
Exam Preparation Exercises 514
Programming Warm-Up Exercises 517
Programming Problems 518
Case Study Follow-Up 521

Chapter 11 Array-Based Lists 522

11.1 Lists 524

11.2 List Class 525
Brainstorming the List Class 525
CRC Card 526
Refining the Responsibilities 526
Internal Data Representation 531
Responsibility Algorithms for Class List 531
Test Plan 536

11.3 Sorting the List Items 539
Responsibility Algorithms for Class ListWithSort 539
Class ListWithSort 541

11.4 Sorted List 543
Brainstorming the Sorted List 543
Responsibility Algorithms for Class SortedList 545
Test Plan 548

11.5 The List Class Hierarchy and Abstract Classes 548

11.6 Searching 550
Sequential Search 550
Binary Search 552

11.7 Generic Lists 559
Comparable Interface 559

Contents | xiii

Polymorphism 561
Case Study: Merging Address Books 562

11.8 Testing and Debugging 571
Summary 572
Quick Check 573
Exam Preparation Exercises 574
Programming Warm-Up Exercises 575
Programming Problems 577
Case Study Follow-Up 578

Chapter 12 Multidimensional Arrays and Numeric Computation 580

12.1 Two-Dimensional Arrays 582
Array Declaration and Instantiation 582
Accessing Individual Components 583
Using Initializer Lists 584

12.2 Processing Two-Dimensional Arrays 586
Sum the Rows 587
Sum to Columns 588
Initialize the Array 589
Two-Dimensional Arrays and Methods 590

12.3 Multidimensional Arrays 591

12.4 Vector Class 592

12.5 Floating-Point Numbers 592
Representation of Floating-Point Numbers 592
Arithmetic with Floating-Point Numbers 595
Implementation of Floating-Point Numbers

in the Computer 596

12.6 Decimal Format Type 602
Case Study: Matrix Manipulation 605

12.7 Testing and Debugging 619
Summary 621
Quick Check 621
Exam Preparation Exercises 623
Programming Warm-Up Exercises 628
Programming Problems 630
Case Study Follow-Up 633

Chapter 13 Recursion 634

13.1 What Is Recursion? 636
Power Function Definition 636

xiv | Contents

Power Function Implementation 637

13.2 More Examples with Simple Variables 638
Calculating the Factorial Function 638
Converting Decimal Integers to Binary Numbers 641
Towers of Hanoi 644

13.3 Recursive Algorithms with Structured Variables 648
Printing the Values in an Array 648
Binary Search 651

13.4 Recursion or Iteration? 651

13.5 Testing and Debugging 652
Summary 653
Quick Check 653
Exam Preparation Exercises 654
Programming Warm-Up Exercises 655

Chapter 14 Applets 658

14.1 What Is an Applet? 660

14.2 How Do You Write an Applet? 661
Factorial 661
Calculator 664

14.3 How Do You Run an Applet? 667
Web Browsers 667
HTML 668
Factorial 669
Calculator 670
Case Study: Searching Experiments 671

14.4 Testing and Debugging 676
Summary 677
Quick Check 677
Exam Preparation Exercises 677
Programming Warm-Up Exercises 678
Programming Problems 679
Case Study Follow-Up 680

Appendixes 682

Glossary 698

Answers 706

Index 744

xv

Preface

Programming and Problem Solving with Java™ represents a significant transition in the devel-
opment of the Dale series, with much that is new. Here we briefly summarize the features
of this new text.

The most obvious new feature is the beautiful full-color design, which allows us to use
colored code displays that follow conventions similar to the editors found in integrated de-
velopment environments. The code coloring conventions also make syntax stand out from
the text more effectively. For the first time, we are able to show realistic full-color screen im-
ages of program output. Color is used extensively to enhance the clarity and improve over-
all readability of illustrations, feature boxes, and other elements of the text. We’re very
excited to add this new dimension to our pedagogical toolkit.

This book has been developed from the ground up to be a Java text. It is not a “Java trans-
lation” of our previous texts. We have, however, retained our familiar easy-to-read style and
clear approach to introducing new topics. Each chapter has the same overall organization as
in our previous books, with a full problem-solving case study, testing and debugging hints,
summary, and five types of exercises. Also, some topics, such as problem solving, are inde-
pendent of the programming language and thus contain familiar discussions.

An exciting new feature in each chapter is the division of the learning goals into knowl-
edge goals and skill goals. Each chapter thus addresses specific concepts that students
should understand as distinct from skills that they should develop. For example, in the chap-
ter that covers inheritance, students are expected to understand the concept of a class hi-
erarchy, and to be able to implement a derived class.

In every regard, this new book is object-oriented in its presentation of the fundamental
concepts of computing. From the very first chapter we use object-oriented terminology to de-

xvi | Preface

scribe the software development process. Classes are covered extensively in Chapter 2,
where we first encounter Java syntax. Over the course of the next several chapters, students
learn to build separately compiled classes representing realistic objects and to add to their
sophistication gradually. In Chapter 6, we present the CRC card technique for object-ori-
ented design, and in Chapter 7 we formalize the earlier coverage of classes and introduce in-
heritance.

Unlike our other Java text, Introduction to Java™ and Software Design, here we save the in-
troduction of graphical user interface components for Chapter 8.These are used only spar-
ingly in the remaining chapters, so that instructors who do not wish to focus on GUI and event
programming do not have to do so. We use a modest subset of the Swing library compo-
nents that is appropriate to a course at this level. Event driven I/O is the dominant model not
only in Java, but in the modern world of programming in general. Students come to our
classes with prior familiarity of event-driven interfaces and expect to learn how to write
programs containing them. In this book, we have thus strived to strike a balance between cov-
ering the more complex style of I/O with which students are familiar, and the more traditional
console I/O that is simpler to use for early applications.

The text uses real Java I/O classes rather than ones we supply. It would have made our
job much easier to supply a streamlined set of I/O classes to simplify Java I/O.We have seen
many books that introduce either C or Pascal-like command-line I/O classes or simplified win-
dowing classes that automatically handle events. However, our view is that using such libraries
produces students who still do not know how to write real Java programs at the end of the
course, leaving them to learn the Java I/O library on their own, without help or guidance.
Instead, we have carefully chosen a subset of the console I/O and Swing packages that is within
their grasp, and that covers all of the essential concepts necessary for them to explore ad-
ditional features of the library on their own.

All of the programs have been tested with Metrowerks CodeWarrior® or the Apple OSX
version of the Sun SDK.The program code is included on the Student Resource Disk for Java,
which accompanies your new book.

Chapter Coverage
Chapter 1 begins with basic definitions, computer concepts, software life cycle, compilation ver-
sus interpretation, problem solving techniques including object-oriented problem solving,
and a problem-solving case study resulting in an object-oriented algorithm.We introduce ob-
jects from the very beginning, defining them in this first chapter, and consistently using ob-
ject-oriented terminology throughout the book.

In Chapter 2, we examine the char type, the String class, and concatenation expressions.
We also examine the process of declaring a reference variable, instantiating an object, as-
signing its address to the variable, and using the object. These are difficult but essential
concepts for beginners to grasp. Chapter 2 further covers sequential control flow, simple
output to System.out, and string input via System.in.This gets students off to a quick start with
a simple working program and past the mechanics of program entry and execution.

Because the input operation is a value-returning method and the output operation is a
void method, we take the opportunity in the second major portion of Chapter 2 to explain

Preface | xvii

these concepts.We close the chapter with a discussion of class and method construction, in-
cluding writing a very simple value-returning method. The case study results in a Java ap-
plication that contains a class for a name object, including several simple methods.

In Chapter 3, we turn to the numeric types and expression syntax. We cover type conver-
sions, precedence rules, and the use of numeric types with String objects.We also reinforce
the distinction between the reference and primitive types in this chapter. We then see how
to develop an application with separately compiled classes, using the default anonymous
package.The case study then develops an employee object that imports a revised version of
the name class developed in Chapter 2. The result is a fairly sophisticated application that
appears simple and requires noticeably less work as a result of reuse.

With Chapter 4,we introduce the first variation in control flow, branching.The if-else state-
ment is introduced first as the general case and the if statement is then a special instance
of it. The Boolean type and expressions are covered extensively in preparation for branch-
ing. The concepts of encapsulation and abstraction are then introduced and motivate an
example in which the name class from the preceding two chapters is made more broadly ap-
plicable. It is then used in the case study, as part of developing a student record class that is
then used in a grade-notices application.This layered development of the name class, together
with its use in yet another context, helps to drive home the importance of object-oriented
design.The chapter closes with a discussion of testing strategies and formal test plans.

Chapter 5 brings us to file I/O and loops. As in our other texts, we introduce all of the ba-
sic loop algorithms with one loop construct, the while loop. We prefer to focus on how loops
are used in algorithms, while introducing only the minimum syntax necessary to illustrate
the concepts: count-controlled, event controlled, and various loop processes together with
a loop design methodology. In that way, students don’t develop the misperception that the
different forms of control structures are bound to the different syntactic structures in a lan-
guage.This approach also avoids the situation that we commonly see in which students are
focused on their confusion over choosing among different looping statements when they are
really still unsure of the underlying algorithmic mechanism that they wish to express.
Chapter 9 compares and contrasts the remaining looping structures with the while loop,
once students have gained enough experience to be confident in their understanding of
how loops work. Chapter 5 also includes a discussion of mutable and immutable objects, and
this is then reinforced in the case study where we build a gender class that is mutable and
use it in an application.

Chapter 6 takes a break from the introduction of significant amounts of new syntax and
focuses on object-oriented design using the CRC-card technique, which is one of the simpler
representations recognized by UML.The students learn how to brainstorm initial classes, fil-
ter the initial list, then develop the responsibilities and collaborations for these and other
classes that they discover through a series of scenarios. During this process, we give the stu-
dents an initial taste of the concept of inheritance.The only new Java syntax that we intro-
duce in Chapter 6 is the named package.The chapter also explores ethical issues in computing
before closing with a case study that builds two new classes, and reuses the name class in
order to construct an application that does the initial data entry for an address book.

Chapter 7 is, in a sense, the core of the text. In this chapter, we bring together all of the dis-
cussion of classes and objects in the context of an object hierarchy with inheritance and poly-

xviii | Preface

morphism. Students learn how to read the documentation for a class hierarchy and how to
determine the inherited members of a class.They also see how the classes are related through
Java’s scope rules.The students are thus brought to the point of being armed with essentially
all of Java’s object-oriented tools with the exception of abstract classes and interfaces.

With Chapter 8,we take a break from our steady uphill climb through the landscape of ob-
ject-oriented programming, and look at a topic that many students find fascinating and fun:
graphical user interfaces. The GUI also provides excellent examples of using objects from a
library.We use just a few Swing components to construct all of the GUI interfaces in the text.
A JFrame provides the basic output window, JLabel is used for output, and JTextField is used
for input. GUI programming requires handling of events, and here we also keep things sim-
ple, using the window’s default exit-on-close handler to terminate execution, and a JButton
to signal when input is ready.These constructs enable us to build typical user interfaces while
we focus on the algorithmic issues of event loops. Chapter 8 develops two case-study appli-
cations that reinforce the object-oriented design approaches in Chapters 6 and 7.

Chapter 9 is the “ice cream and cake” section of the book, covering the additional control
structures that make the coding of certain algorithms easier. In addition to the Switch, do, and
for statements, Chapter 9 introduces the concept of exception handling.We show students
how to use a try-catch statement to catch exceptions. Because we’ve already covered in-
heritance, it is a simple matter to define new exception classes that can be thrown between
sections of user code. Students are then able to write code that is robust in the face of errors
that cannot be handled directly with testing and branching.

Chapters 10, 11, and 12 are devoted to composite data structures. In Chapter 10, the basic
concept of a composite structure is introduced and illustrated with the Java array. In Chapter
11, we show how an array can be used to implement a general-purpose list class. Our prior
class designs have been in the context of specific applications, and this provides experience
in developing an object-oriented design that does not have a predefined client. Then in
Chapter 12, we extend the discussion of arrays to multiple dimensions, and through a case
study we show how they can be used to represent mathematical matrices. Given this nu-
merically motivated case study, it is also natural to review the limitations of floating-point
numbers as they are represented in the computer.

Chapter 13 provides a quick tour of the concept of recursion and some example algo-
rithms. As in our previous texts, this chapter is designed so that it can be assigned for read-
ing along with earlier chapters. The first half of the chapter can be covered after Chapter 5,
The second half of the chapter can be read after Chapter 10, as it applies recursion to arrays.

The book closes with Chapter 14, devoted to the implementation of Java applets.We specif-
ically chose to use only applications in the first part of the text because of their more gen-
eral applicability, their ability to use console I/O, and to avoid various issues with portability
across browsers in different environments. We recognize, however, that many students are
interested in web programming, and are curious to learn how to write applets. Chapter 14
thus serves this interest.

Preface | xix

Chapter Features

Goals

Each chapter begins with a list of learning objectives for the student, divided into knowledge
goals and skill goals.These goals are reinforced and tested in the end-of-chapter exercises.

Timeline

An illustrated timeline on computer history develops throughout the course of the book, on
the opening pages of each chapter. This timeline highlights important moments in computer
history and identifies key players in the development of computer technology.

Problem-Solving Case Studies

A full development of a problem from its statement to a working Java application is devel-
oped in each case study. In chapters beginning with 6, the CRC Card design strategy is em-
ployed to develop object-oriented designs that are then translated into code.Test plans and
sample test data are also presented for many of these case studies.

Testing and Debugging

These sections consider the implications of the chapter material with regard to testing of ap-
plications or classes.They conclude with a list of testing and debugging hints.

Quick Checks

These questions test the student’s recall of major points associated with the chapter goals.
Upon reading each question, students should immediately know the answer, which they
can verify by glancing at the answer at the end of the section. The page number on which
the concept is discussed appears at the end of each question so that students can review the
material in the event of an incorrect response.

Exam Preparation Exercises

To help students prepare for tests, the Exam Preparation questions usually have objective an-
swers.They are designed to be answerable with a few minutes of work. Answers to selected
questions are given in the back of the book, and the remaining questions are answered in
the Instructor’s Guide.

Programming Warm-Up Exercises

These questions provide students with experience in writing Java code fragments. Students
can practice the syntactic constructs in each chapter without the burden of writing a com-
plete program.

Programming Problems

These exercises require students to design solutions and write complete Java applications.

xx | Preface

Case Study Follow-Up Exercises

Much of modern programming practice involves reading and modifying existing code.These
exercises provide students with an opportunity to strengthen this critical skill by answer-
ing questions about the case study code, or making changes to it.

Supplements

Online Instructor’s ToolKit

Also available to adopters on request from the publisher is a powerful teaching tool entitled
“Instructor’s ToolKit.”These downloadable files contain an electronic version of the Instructor’s
Guide, a Brownstone Diploma computerized test bank, PowerPoint lecture presentations,
and the complete programs from the text. To download your copy visit http://computer-
science.jbpub.com/ppsjava.

Programs

The programs contain the source code for all of the complete Java applications and stand-
alone classes that are found within the textbook.They are included in the Student Resource
Disk for Java and are available as a free download for instructors and students from the pub-
lisher’s web site: http://computerscience.jbpub.com/ppsjava. The programs from all of the
Case Studies, plus several programs that appear in the chapter bodies, are included. Fragments
or snippets of code are not included, nor are the solutions to the chapter-ending “Programming
Problems.”These application files can be viewed or edited using any standard text editor, but
in order to compile and run the applications, a Java compiler must be used.

Student Resource Disk for Java

The Student Resource Disk for Java contains Borland® JBuilder™ 7 Personal, the Sun Java™

2 SDK Standard edition v. 1.4.1, the Sun Java™ SDK Standard Edition Documentation, and pro-
gram files for the Java applications and stand-alone classes in your textbook. This CD also
contains the program files for A Laboratory Course for Programming with Java. Your copy of the
Student Resource Disk for Java is included free of charge with the purchase of your new text-
book.

Student Lecture Companion: A Note-Taking Guide ISBN : 076372372X

Designed from the PowerPoint presentation developed for this text, the Student Lecture
Companion is an invaluable tool for learning.The notebook is designed to encourage students
to focus their energies on listening to the lecture as they fill in additional details.The skele-
tal outline concept helps students organize their notes and readily recognize the important
concepts in each chapter.

Preface | xxi

A Laboratory Course for Programming with Java™ ISBN : 0763724637

Written by Nell Dale, this lab manual follows the organization of the text.The lab manual is
designed to allow the instructor maximum flexibility and may be used in both open and
closed laboratory settings. Each chapter contains three types of activities: Prelab, Inlab, and
Postlab. Each lesson is broken into exercises that thoroughly demonstrate the concept cov-
ered in the chapter.The applications, application shells (partial applications), and data files
are available online, and also on the Student Resource Disk for Java that accompanies your
textbook.

Acknowledgements

We would like to thank the many individuals who have helped us in the preparation of this
text.We are indebted to the members of the faculties of the Computer Science Departments
at the University of Texas at Austin, The University of Massachusetts at Amherst, and the
University of Wisconsin – Lacrosse.

We extend special thanks to Jeff Brumfield for developing the syntax template meta-
language and allowing us to use it in this text.

For their many helpful suggestions, we thank the lecturers, teaching assistants, con-
sultants, and student proctors who run the courses for which this book was written, and the
students themselves.

We are grateful to the following people who took the time to review the manuscript at
various stages in its development: Rama Chakrapani, Tennessee Technological University;
Ilyas Cicekli, University of Central Florida; Jose Cordova, University of Louisiana at Monroe;
Mike Litman, Western Illinois University; and Rathika Rajaravivarma, Central Connecticut
State University.

We also thank Mike and Sigrid Wile, along with the many people at Jones and Bartlett
who contributed so much, especially J. Michael Stranz, Amy Rose, Theresa DiDonato, and
Anne Spencer.

Anyone who has ever written a book – or is related to someone who has – can appreci-
ate the amount of time involved in such a project.To our families – all the Dale clan and the
extended Dale Family (too numerous to name); to Lisa, Charlie, and Abby; to Anne, Brady, and
Kari – Thanks for your tremendous support and indulgence.

N.D.
C.W.
M.H.

Knowledge Goals
• To understand what a computer program is

• To know the three phases of the software life cycle

• To understand what an algorithm is

• To learn what a high-level programming language is

• To understand the difference between machine code and Bytecode

• To understand the compilation, execution, and interpretation processes

• To learn what the major components of a computer are and how they work
together

• To understand the concept of an object in the context of computer
problem solving

Skill Goals
To be able to:

• List the basic stages involved in writing a computer application

• Distinguish between hardware and software

• List the ways of structuring code in a Java application

• Name several problem-solving techniques

• Choose a problem-solving technique to apply

• Identify the objects in a problem statement

Introduction to
Object-Oriented
Programming

3000 BC
The precursor to
today’s wire-and-
bead abacus was
invented in
Babylonia

1612-1614
John Napier
conceives “Napier’s
Bones,” ivory rods
that serve as an
early calculator

1622
The slide rule is
invented by the
great mathema-
tician William
Oughtred

1642-1643
Blaise Pascal
invents one of the
first mechanical
calculators, the
Pascalene

1801
Punch-card-
controlled
Jacquard’s Loom is
invented. Uses
binary automation

1820
The first mass-
produced calculator,
the Thomas
Arithmometer, is
introduced to the
world

1
C H A P T E R

1822
Charles Babbage
formulates his
design for the
Difference Engine

1842-1843
Augusta Ada Byron
earns her
designation as the
first computer
programmer with
her notes on the
Analytical Engine

1844
Samuel F.B. Morse
successfully
transmits a
telegraph message
across a wire from
Washington to
Baltimore

1854
George Boole’s
famous paper “An
Investigation of the
Laws of Thought” is
published

1858
The first
transatlantic
telegraphic
communication
takes place

1868
Christopher Sholes
creates the
QWERTY keyboard
for the early
typewriter

com·put·er \kɘm-pyo�o��tɘr\ n. often attrib (1646): one that computes;

specif: a programmable electronic device that can store, retrieve, and
process data1

What a brief definition for something that has, in just a few decades,
changed the way of life in industrialized societies! Computers touch all
areas of our lives: paying bills, driving cars, using the telephone, shopping.
In fact, it might be easier to list those areas of our lives in which we do
not use computers. You are probably most familiar with computers
through the use of games, word processors,Web browsers, and other ap-
plications. Be forewarned: This book covers more than just using com-
puters.This text teaches you how to program them.

1By permission. From Merriam-Webster’s Collegiate Dictionary, tenth edition © 1994
by Merriam-Webster Inc.

By permission of Johnny Hart and Creators Syndicate, Inc.

4 | Introduction to Object-Oriented Programming

1.1 Overview of Object-Oriented Programming

Learning to program a computer is a matter of training yourself to solve problems in a very
detailed and organized manner.You are already experienced in solving problems intuitively,
but now you must develop the skill of writing a problem solution in terms of objects and ac-
tions that are appropriate for a computer. In this chapter we begin developing this skill by
answering some of the most commonly asked questions about programming and comput-
ers, and we then look at some formal techniques for solving problems.

What Is Programming?

Much of human behavior and thought is characterized by logical sequences of actions involv-
ing objects. Since infancy, you have been learning how to act, how to do things. And you have
learned to expect certain behaviors from everything you encounter in the world around you.

A lot of what you do every day you do automatically. Fortunately, you do not need to con-
sciously think of every step involved in a process as simple as turning a page by hand:

1. Lift hand.

2. Move hand to right side of book.

3. Grasp top-right corner of page.

4. Move hand from right to left until page is positioned so that you can read what is
on the other side.

5. Release page.

Think how many neurons must fire and how many muscles must respond, all in a cer-
tain order or sequence, to move your arm and hand.Yet you move them unconsciously.

Much of what you now do quite naturally you once had to learn.Watch how a baby con-
centrates on putting one foot before the other while learning to walk. Then watch a group

of three-year-olds playing tag. How far they have come!
On a broader scale, mathematics never could have been developed without log-

ical sequences of steps for manipulating symbols to solve problems and prove
theorems. Mass production never would have worked without operations taking
place on component parts in a certain order. Our entire civilization is based on the
order of actions, the logical arrangement of things, and their interactions.

We create order, both consciously and unconsciously, through a process called
programming.This book is concerned with the programming of one particular tool—
the computer.

Notice that the key word in the definition of a computer is data. Computers ma-
nipulate data.When you write a program (a plan) for a computer, you specify the properties
of the data and the operations that can be applied to it.The combination of the data and op-

Programming Developing in-
structions for carrying out a task
involving a set of objects

Computer A programmable
device that can store, retrieve,
and process data

1 . 1 O v e r v i e w o f O b j e c t - O r i e n t e d P r o g r a m m i n g | 5

erations serves to represent objects.The objects we represent can be either phys-
ical objects from the real world, such as products in an inventory, or abstract
objects, such as mathematical constructs. Our computer representations of ob-
jects are then programmed to interact as necessary to solve a problem. Data is
information in a form that the computer can use—for example, numbers and
letters. Information is any knowledge that can be communicated, including ab-
stract ideas and concepts such as “the Earth is round.”

Data come in many different forms: letters, words, integer numbers, real
numbers, dates, times, coordinates on a map, and so on. In the absence of oper-
ations that manipulate the data, however, these forms are essentially meaning-
less. For example, the number 7.5 has no meaning out of context. In the context
of an operation that computes it from a measurement of a person’s head, how-
ever, it becomes a hat size. The combination of data with related operations, in
the form of an object, makes it possible to represent information in the computer.
Virtually any kind of information can be represented as an object.

Just as a concert program lists the pieces to be performed in the order that the
players will perform them, a computer program lists the objects needed to solve a
problem and orchestrates their interactions.From now on,when we use the words
programming and program, we mean computer programming and computer program.

The computer allows us to perform tasks more efficiently, quickly, and ac-
curately than we could by hand—if we could do them by hand at all. For this powerful ma-
chine to be a useful tool, however, it must first be programmed. That is, we must specify
what we want done and how. We do so through programming.

How Do We Write a Program?

A computer is not intelligent. It cannot
analyze a problem and come up with a
solution. A human (the programmer)
must analyze the problem, develop the
objects and instructions for solving the
problem, and then have the computer
carry out the instructions. What’s the
advantage of using a computer if it can’t
solve problems? Once we have written a
solution for the computer, the computer
can repeat the solution very quickly and
consistently, again and again. In this
way, the computer frees people from
repetitive and boring tasks.

To write a program for a computer
to follow, we must go through a two-
phase process: problem solving and im-
plementation (see Figure 1.1).

PROBLEM-SOLVING PHASE IMPLEMENTATION PHASE

Concrete solution
(program)

TestVerify

General solution
(algorithm)

Analysis
and specification

MAINTENANCE PHASE

Figure 1.1 Programming Process

Data Information in a form
that a computer can use

Information Any knowledge
that can be communicated

Object A collection of data
values and associated
operations

Computer programming The
process of specifying objects
and the ways in which those
objects interact to solve a prob-
lem

Computer program
Instructions defining a set of
objects and orchestrating their
interactions to solve a problem

6 | Introduction to Object-Oriented Programming

2Java supports two types of programs, applications and applets. An applet is a restricted form of applica-
tion that can be executed by a Web browser. We do not use applets in most of this book, but Chapter 14
explains how applications and applets differ and shows how to convert an application into an applet.

Problem-Solving Phase

1. Analysis and specification. Understand (define) the problem and identify what the
solution must do.

2. General solution (algorithm). Specify the objects and their interactions that solve
the problem.

3. Verify. Follow the steps exactly to see if the solution really does solve the problem.

Implementation Phase

1. Concrete solution (program).Translate the object specifications and algorithms (the
general solution) into a programming language.

2. Test. Have the computer carry out the program and then check the results. If you
find errors, analyze the program and the general solution to determine the
source of the errors, and then make corrections.

Once a program has been written, it enters a third phase: maintenance.

Maintenance Phase

1. Use. Use the program.

2. Maintain. Modify the program to meet changing requirements or to correct any
errors that show up in using it.

The programmer begins the programming process by analyzing the problem,
identifying the objects that collaborate to solve the problem, and developing a
specification for each kind of object, called a class.The objects work together to cre-
ate an application that solves the original problem. Understanding and analyzing
a problem take up much more time than Figure 1.1 implies. These tasks form the
heart of the programming process.

A program is an algorithm that is written for a computer. When we define
classes of objects and orchestrate their interactions to solve a problem, we are
writing an algorithm. We generally refer to Java programs as applications.2

More generally, an algorithm is a verbal or written description of a logical set
of actions involving objects. We use algorithms every day. Recipes, knitting in-

structions, and driving directions are all examples of algorithms that are not programs.
When you start your car, for example, you follow a step-by-step set of actions involving

various objects.The algorithm might look something like this:

Objects: Key, Transmission, Gas Pedal, Engine, Phone

1. Insert the key.

2. Make sure the transmission is in Park (or Neutral).

Class A description of the rep-
resentation of a specific kind of
object, in terms of data and op-
erational behaviors

Algorithm Instructions for
solving a problem in a finite
amount of time using a finite
amount of data

1 . 1 O v e r v i e w o f O b j e c t - O r i e n t e d P r o g r a m m i n g | 7

3. Depress the gas pedal.

4. Turn the key to the start position.

5. If the engine starts within six seconds, release the key to the ignition position.

6. If the engine doesn’t start within six seconds, release the key and gas pedal, wait
ten seconds, and repeat Steps 3 through 6, but not more than five times.

7. If the car doesn’t start, phone the garage.

Without the phrase “but not more than five times” in Step 6, you could be stuck trying
to start the car forever. Why? Because if something is wrong with the car, repeating Steps 3
through 6 over and over will not start it. This kind of never-ending situation is called an in-
finite loop. If we leave the phrase “but not more than five times” out of Step 6, the procedure
doesn’t fit our definition of an algorithm. An algorithm must terminate in a finite amount
of time for all possible conditions.

Suppose a programmer needs an algorithm to determine an employee’s weekly wages.
The algorithm reflects what would be done by hand:

Objects: Employee Record, Personnel Database, Employee ID, Time Card, Pay Rate,
Hours Worked, Regular Wages, Overtime Wages, Total Wages

1. Get the Employee Record from the Personnel Database, using the Employee ID
from the Time Card.

2. Get the Pay Rate from the Employee Record.

3. Get the Hours Worked during the week from the Time Card.

4. If the number of Hours Worked is less than or equal to 40, multiply by the Pay
Rate to calculate the Regular Wages.

5. If the number of Hours Worked is greater than 40, multiply 40 by the Pay Rate to
calculate the Regular Wages, and then multiply the Hours Worked minus 40 by
1 1⁄2 times the Pay Rate to calculate the Overtime Wages.

6. Add the Regular Wages to the Overtime Wages (if any) to determine the Total
Wages for the week.

The steps the computer follows are often the same steps you would use to do the calcula-
tions by hand.

After developing a general solution, the programmer tests the algorithm by
“walking through” each step mentally or manually with paper and pencil. If the
algorithm doesn’t work, the programmer repeats the problem-solving process, an-
alyzing the problem again and coming up with another algorithm. Often the sec-
ond algorithm is simply a variation of the first.When the programmer is satisfied
with the algorithm, he or she translates it into a programming language. This book
focuses on the Java programming language.

A programming language is a simplified form of English (with math sym-
bols) that adheres to a strict set of grammatical rules. English is far too complicated a lan-
guage for today’s computers to follow. Programming languages, because they have a limited
vocabulary and grammar, are much simpler.

Programming language A
set of rules, symbols, and special
words used to construct a com-
puter program

8 | Introduction to Object-Oriented Programming

Although a programming language is simple in form, it is not always easy to use.Try giving
someone directions to the nearest airport using a vocabulary limited to no more than 25
words, and you begin to see the problem. Programming forces you to write very simple, ex-
act instructions.

Translating an algorithm into a programming language is called coding the
algorithm. Code is the product of translating an algorithm into a programming
language.The term code can refer to a complete program or to any portion of a pro-
gram.A program is tested by running (executing) it on the computer. If the program
fails to produce the desired results, the programmer must debug it—that is,
determine what is wrong and then modify the program, or even revise the algo-
rithm, to fix it.The process of coding and testing the algorithm takes place during
the implementation phase.

There is no single way to implement an algorithm. For example, an algorithm can be
translated into more than one programming language. Each translation produces a differ-
ent implementation (see Figure 1.2a). Even when two people translate an algorithm into the

same programming language, they often come up with different
implementations (see Figure 1.2b). Why? Because every
programming language allows the programmer some flexibility in
terms of how an algorithm is translated. Given this flexibility,
people adopt their own styles in writing programs, just as they do
in writing short stories or essays. Once you have some program-
ming experience, you will develop a style of your own.Throughout
this book, we offer tips on good programming style.

Some people try to speed up the programming process by
going directly from the problem definition to coding (see Figure
1.3). Taking such a shortcut is very tempting and, at first glance,
seems to save a lot of time. However, for many reasons that will
become obvious as you read this book, this kind of shortcut actu-
ally consumes more time and requires more effort. Developing a
general solution before you write Java code will help you manage
the problem, keep your thoughts straight, and avoid mistakes. If
you don’t take the time at the beginning to think out and polish
your algorithm, you’ll spend a lot of extra time debugging and
revising your code. So think first and code later! The sooner you
start coding, the longer it takes to write an application that works.

Once a Java application has been put into use, it often becomes
necessary to modify it later. Modification may involve fixing an

error that is discovered during use of the application or chang-
ing the code in response to changes in the user’s requirements.
Each time the code is modified, the programmer should repeat

the problem-solving and implementation phases for those aspects of the application that
change.

This phase of the programming process, known as maintenance, actually accounts for

Code Instructions for a com-
puter that are written in a pro-
gramming language

Algorithm

a. Algorithm translated into different languages

b. Algorithm translated by different people

Nell's Java Code

Nell's C++ Code

Nell's Ada Code

Algorithm

Nell's Java Code

Chip's Java Code

Mark's Java Code

Figure 1.2 Differences in Implementation

Binary Representation of Data

In a computer, data are represented electronically by pulses of electricity. Electric circuits, in
their simplest form, are either on or off. A circuit that is on is typically represented by the num-
ber 1; a circuit that is off is represented by the number 0. Any kind of data can be represented by
combinations of enough 1s and 0s. We simply have to choose which combination represents
each piece of data we are using. For example, we could arbitrarily choose the pattern 1101000110
to represent the name “Java.”

Data represented by 1s and 0s are in binary form.The binary, or base–2, number system uses
only 1s and 0s to represent numbers. (The decimal, or base–10, number system uses the digits 0
through 9.) The word bit (short for binary digit) refers to a single 1 or 0.Thus the pattern
1101000110 has 10 bits. A binary number with 10 bits can represent 210 (1,024) different patterns.
A byte is a group of 8 bits; it can represent 28 (256) patterns. Inside the computer, each character
(such as the letter A, the letter g, or a question mark) is usually represented by either one or two
bytes.3 Groups of 16, 32, and 64 bits are generally referred to as words (the terms short word and
long word are sometimes used to refer to 16-bit and 64-bit groups, respectively).

The process of assigning bit patterns to pieces of data is called coding—the same name we
give to the process of translating an algorithm into a programming language.The names are the
same because the first computers recognized only one language—which was binary in form.
Thus, in the early days of computers, programming meant translating both data and algorithms
into patterns of 1s and 0s.

1 . 1 O v e r v i e w o f O b j e c t - O r i e n t e d P r o g r a m m i n g | 9

the majority of the effort expended on most applications. For
example, an application that is implemented in a few months
may need to be maintained over a period of many years. For
this reason, it is a cost-effective investment of time to carefully
develop the initial problem solution and algorithm implemen-
tation. Together, the problem-solving, implementation, and
maintenance phases constitute the application’s life cycle.

In addition to solving the problem, implementing the algo-
rithm, and maintaining the code, documentation is an important
part of the programming process. Documentation includes writ-
ten explanations of the problem at hand and the organization
of the solution, comments embedded within the code itself,
and user manuals that describe how to use the program.
Many different people are likely to work on an application
over its lifetime. Each of those individuals must be able to read and understand
the code.

Problem

Shortcut?

Problem-Solving Phase

Algorithm

Implementation Phase

Code

Figure 1.3 Programming Shortcut?

Documentation The written
text and comments that make
an application easier for others
to understand, use, and modify

3Most programming languages use the American Standard Code for Information Interchange (ASCII) to
represent the English alphabet and other symbols. Each ASCII character is stored in a single byte. Java
recognizes both ASCII and a newer standard called Unicode, which includes the alphabets of many
other languages. A single Unicode character takes up two bytes in the computer’s memory.

10 | Introduction to Object-Oriented Programming

1.2 How Is Java Code Converted into a Form That a Computer Can Use?

In the computer, all data, whatever their form, are stored and used in binary codes, consist-
ing of strings of 1s and 0s. Instructions and data are stored together in the computer’s mem-
ory using these binary codes. If you looked at the binary codes representing instructions
and data in memory, you could not tell the difference between them; they are distinguished
only by the manner in which the computer uses them. This fact enables the computer to
process its own instructions as a form of data.

When computers were first developed, the only programming language avail-
able was the primitive instruction set built into each machine—the machine language

(also known as machine code).
Even though most computers perform the same kinds of operations, their

designers choose different sets of binary codes for each instruction.As a result, the
machine code for one family of computers is not the same as that for another
family of computers.

When programmers used machine language for programming, they had to
enter the binary codes for the various instructions, a tedious process that was
prone to error. Moreover, their programs were difficult to read and modify. In time,
assembly languages were developed to make the programmer’s job easier.

Binary coding schemes are still used inside the computer to represent both the instructions
that it follows and the data that it uses. For example, 16 bits can represent the decimal integers
from 0 to 216 � 1 (65,535). More complicated coding schemes are necessary to represent negative
numbers, real numbers, and numbers in scientific notation. Characters also can be represented
by bit combinations. In one coding scheme, 01001101 represents M and 01101101 represents m
(look closely—the third bit from the left is the only difference).

The patterns of bits that represent data vary from one family of computers to another. Even
on the same computer, different programming languages may use different binary representa-
tions for the same data. A single programming language may even use the same pattern of bits
to represent different things in different contexts. (People do this, too: The four letters that form
the word tack have different meanings depending on whether you are talking about upholstery,
sailing, sewing, paint, or horseback riding.) The point is that patterns of bits by themselves are
meaningless. Rather, it is the way in which the patterns are used that gives them their meaning.
That’s why we combine data with operations to form meaningful objects.

Fortunately, we no longer have to work with binary coding schemes.Today, the process of
coding is usually just a matter of writing down the data in letters, numbers, and symbols.The
computer automatically converts these letters, numbers, and symbols into binary form. Still, as
you work with computers, you will continually run into numbers that are related to powers of
2—numbers like 256, 32,768, and 65,536.They are reminders that the binary number system is
lurking somewhere nearby.

Machine language The lan-
guage, made up of binary-
coded instructions, that is used
directly by the computer

Assembly language A low-
level programming language in
which a mnemonic represents
each machine language instruc-
tion for a particular computer

1 . 2 H o w I s J a v a C o d e C o n v e r t e d ? | 11

Instructions in an assembly language are in an easy-to-remember form called
a mnemonic (pronounced “ni-’män-ik”). Typical instructions for addition and sub-
traction might look like this:

Assembly Language Machine Language

ADD 100101

SUB 010011

Although humans find it easier to work with assembly language, the computer
cannot directly execute the instructions. Because a computer can process its own
instructions as a form of data, it is possible to write a program to translate as-
sembly language instructions into machine code. Such a program is called an
assembler.

Assembly language represents a step in the right direction, but it still forces
programmers to think in terms of individual machine instructions. Eventually,
computer scientists developed high-level programming languages. These lan-
guages are easier to use than assembly languages or machine code because they are closer
to English and other natural languages (see Figure 1.4 on page 12).

A program called a compiler translates algorithms written in certain high-level languages
(Java, C++,Visual Basic, and Ada, for example) into machine language. If you write an appli-
cation in a high-level language, you can run it on any computer that has the appropriate com-
piler.This portability is possible because most high-level languages are standardized, which
means that an official description of the language exists.

Assembler A program that
translates an assembly
language program into
machine code

Compiler A program that
translates code written in a
high-level language into
machine code

Source code Instructions
written in a high-level program-
ming language

Object code A machine lan-
guage version of a source code

The text of an algorithm written in a high-level language is called source code. To the
compiler, source code is just input data—letters and numbers. It translates the source code
into a machine language form called object code (see Figure 1.5 on page 13).

FOXTROT © 2000 Bill Amend. Reprinted with Permission of UNIVERSAL PRESS SYNDICATE. All Rights Reserved.

12 | Introduction to Object-Oriented Programming

As noted earlier, standardized high-level languages allow you to write portable (or machine-
independent) code. As Figure 1.5 emphasizes, the same C++ application can be run on differ-

ent machines, whereas a program written in assembly language or machine
language is not portable from one computer to another. Because each computer
family has its own machine language, a machine language program written for
computer A may not run on computer B.

Java takes a somewhat different approach to achieve even greater portability.
Java source code is translated into a standard machine language called Bytecode.

Human thought

Natural language
(English, French, German, etc.)

High-level language
(C++, FORTRAN, Java, etc.)

Machine code
(computer)

Figure 1.4 Levels of Abstraction

Bytecode A standard
machine language into which
Java source code is compiled

1 . 2 H o w I s J a v a C o d e C o n v e r t e d i n t o a F o r m T h a t a C o m p u t e r C a n U s e ? | 13

SOURCE CODE
(C++)

COMPUTER
EXECUTES
TRANSLATOR
CODE
(COMPILER)

OBJECT
CODE
(MACHINE
LANGUAGE
VERSION OF
SOURCE CODE)

COMPUTER
EXECUTES
OBJECT CODE

Windows PC
C++ compiler

UNIX
workstation

C++ compiler
C++ Code

Macintosh
C++ compiler

Windows PC
machine
language

UNIX
workstation

machine
language

Macintosh
machine
language

Windows PC
computer

UNIX
workstation
computer

Macintosh
computer

Figure 1.5 High-Level Programming Languages Allow Applications to Be Compiled on Different Systems

No computers actually use Bytecode as their machine language. Instead, for a computer
to run Bytecode, it must have another program called the Java Virtual Machine (JVM) that
serves as a language interpreter for the Bytecode (we will explain the meaning of the term
“virtual machine” shortly). Just as an interpreter of human languages listens to words spo-
ken in one language and then speaks a translation of them in a language that another per-
son understands, so the JVM reads the Bytecode instructions and translates them into
machine language operations that the particular computer executes. Interpretation takes
place as the Bytecode is running, one instruction at a time. This process is not the same as
compilation, which is a separate step that translates all of the source code instructions in a
program prior to execution. Figure 1.6 shows how the Java translation process achieves
greater portability.

As Figure 1.6 illustrates, the compiled Java code can run on any computer that has the
JVM program available to interpret for it, which means that the Java application does not have
to be compiled for each type of computer.This level of portability has grown in importance
as computers across the globe are connected by the World Wide Web (also called the Web: a
part of the Internet). For example, a programmer can write a Java application and make its
Bytecode available to the public via the Web without having to recompile it for the many dif-
ferent types of computers that may be used to run it.

14 | Introduction to Object-Oriented Programming

Java compiler Java BytecodeJava program

Windows PC
running JVM

UNIX workstation
running JVM

Macintosh
running JVM

Figure 1.6 A Java Compiler Produces Bytecode that Can Be Run on Any Machine with the JVM

1.3 How Does Interpreting Code Differ from Executing It?

Direct execution of code differs significantly from interpretation of code.A computer can directly
execute a program that is compiled into machine language. The JVM, for example, is a ma-

chine language program that is directly executed. The computer cannot directly
execute Bytecode, however. Instead, it must execute the JVM to interpret each
Bytecode instruction so as to run the compiled Java source code.The JVM does not
produce machine code, like a compiler, but rather it reads each Bytecode instruc-
tion and gives the computer a corresponding series of operations to perform.
Because each Bytecode instruction must first be interpreted, the computer can-
not run Bytecode as quickly as it can execute machine language. Slower execution
is the price we pay for increased portability.

1.4 How Is Compilation Related to Interpretation and
Execution?

It is important to understand that compilation and execution are two distinct
processes. During compilation, the computer runs the compiler. During execution, the object
code is loaded into the computer’s memory unit, replacing the compiler.The computer then
directly executes the object code, doing whatever it is instructed to do (see Figure 1.7).

We can use the JVM as an example of the process shown in Figure 1.7.The JVM is written
in a high-level programming language such as C++ and then compiled into machine language.
This machine language is loaded into the computer’s memory, and the JVM is executed. Its
input consists of Java Bytecode. Its results are the series of actions that would take place if the
computer could directly execute Bytecode. Figure 1.8 on page 16 illustrates this process.

In looking at Figure 1.8, it is important to understand that the output from the compil-
ers can be saved for future use. Once the JVM and the Java application have been compiled,
they can be used repeatedly without being recompiled.You never need to compile the JVM,
in fact, because that step has already been done for you. Figure 1.8 shows its compilation sim-

Direct execution The process
by which a computer performs
the actions specified in a
machine language program

Interpretation The
translation, while a program is
running, of nonmachine-
language instructions (such as
Bytecode) into executable oper-
ations

1 . 5 W h a t K i n d s o f I n s t r u c t i o n s C a n B e W r i t t e n i n a P r o g r a m m i n g L a n g u a g e ? | 15

Source
code

Code listing,
possibly with

error messages

Machine language
version of

source code
(object code)

Input
data

Results

Computer executes
machine language

version of
source code

Computer executes
compiler code

COMPILATION

EXECUTION

Loading

Figure 1.7 Compilation/Execution

ply to illustrate the difference between the traditional compile–execute steps and the com-
pile–interpret steps used with Java.

Viewed from a different perspective, the JVM makes the computer look like
a different computer, one that has Bytecode as its machine language. The com-
puter itself hasn’t changed—it remains the same collection of electronic cir-
cuits—but the JVM makes it appear to be a different machine.When a program is
used to make one computer act like another computer, we call it a virtual machine.
For convenience, we may refer to the computer as “executing a Java application,”
but keep in mind this is just shorthand for saying that “the computer is execut-
ing the JVM running a Java application.”

1.5 What Kinds of Instructions Can Be Written in a Programming
Language?

The instructions in a programming language reflect the operations a computer can perform:

� A computer can transfer data from one place to another.

� A computer can input data from an input device (a keyboard or mouse, for exam-
ple) and output data to an output device (a screen, for example).

Virtual machine A program
that makes one computer act
like another

16 | Introduction to Object-Oriented Programming

� A computer can store data into and retrieve data from its memory and secondary
storage (parts of a computer that we discuss in the next section).

� A computer can compare data values for equality or inequality and make
decisions based on the result.

� A computer can perform arithmetic operations (addition and subtraction, for ex-
ample) very quickly.

� A computer can branch to a different section of the instructions.

In addition, a programming language contains instructions, called declarations, which
we use to specify the data and operations in classes. Programming languages require that
we use certain control structures to organize the instructions that specify the behaviors of
objects. Instructions that describe behavior can be organized in four ways in most pro-
gramming languages: sequentially, conditionally, repetitively, and with subprograms. Java
adds a fifth way: asynchronously (see Figure 1.9).

� A sequence is a series of operations that are executed one after another.

� Selection, the conditional control structure, executes different operations depend-
ing on certain conditions.

Source code
in Java

Computer executes
Java compiler program

Computer executes
C++ compiler program

JVM source
code in C++

Machine language
version of JVM

Bytecode version of
Java code

Loading

Compilation

Execution

Computer executes
machine language
version of JVM to
interpret Bytecode

Computer appears
to execute

Bytecode version
of Java code

Figure 1.8 Compilation and Execution of JVM Combined with Compilation and Interpretation of Bytecode

1 . 5 W h a t K i n d s o f I n s t r u c t i o n s C a n B e W r i t t e n i n a P r o g r a m m i n g L a n g u a g e ? | 17

Figure 1.9 Basic Control Structures of Programming Languages

. . .

. . .

. . .

SEQUENCE

SELECTION (also called branch orh decision)n)
IF condition THEN statement1 ELSE statement2

LOOP (also called repetition orn iteration)n)

SUBPROGRAM (also called procedure, function, method, or subroutine

ASYNCHRONOUS

Statement Statement Statement

Condition

Statement2

Statement1
TrueTrue

se
False

Condition

Statement1

False

SUBPROGRAM1

EVENT

ue

SUBPROGRAM1
a meaningful collection
of any of the above

EVENTHANDLER
a subprogram executed
when an event occurs

18 | Introduction to Object-Oriented Programming

4Java actually allows us to write more general asynchronous programs using a construct called a thread.
Threaded programs are beyond the scope this text. We restrict our use of asynchronous structures to
handling events.

� The repetitive control structure, the loop, repeats operations while certain
conditions are met.

� The subprogram allows us to organize our code into units that correspond to spe-
cific object behaviors; Java calls these units methods.

� Asynchronous control lets us write code that handles events, such as the user
clicking a button on the screen with the mouse.

Each of these ways of structuring operations controls the order in which the computer ex-
ecutes the operations, which is why they are called control structures.

Suppose you’re driving a car. Going down a straight stretch of road is like following a se-
quence of instructions. When you come to a fork in the road, you must decide which way to
go and then take one or the other branch of the fork.The computer does something similar
when it encounters a selection control structure (sometimes called a branch or decision) in a
program. Sometimes you have to go around the block several times to find a place to park.
The computer does the same sort of thing when it encounters a loop.

A subprogram is a named sequence of instructions written as a separate unit. When
the computer executes an instruction that refers to the name of the subprogram, the code
for the subprogram executes. When the subprogram finishes, execution resumes at the in-
struction that originally referred to the subprogram. Suppose, for example, that every day you
go to work at an office. The directions for getting from home to work form a method called
“Go to the office.” It makes sense, then, for someone to give you directions to a meeting by
saying, “Go to the office, then go four blocks west”—without listing all the steps needed to
get to the office.

Responding to asynchronous events is like working as a pizza delivery person.You wait
around the dispatch station with all of the other delivery people. The dispatcher calls your
name and gives you some pizzas and a delivery address. You deliver the pizzas and return
to the dispatch station. At the same time, other delivery people may be out driving.4 The
term asynchronous means “not at the same time.” In this context, it refers to the fact that the
user can, for example, click the mouse on the screen at any time while the application is run-
ning.The mouse click does not have to happen at some particular time corresponding to cer-
tain instructions within the code.

Object-Oriented Programming Languages

Early programming languages focused their attention on the operations and control struc-
tures of programming. These procedural languages paid little explicit attention to the rela-
tionships between the operations and the data.At that time, a typical computer program used

1 . 5 W h a t K i n d s o f I n s t r u c t i o n s C a n B e W r i t t e n i n a P r o g r a m m i n g L a n g u a g e ? | 19

only simple data types such as integers and real numbers, which have obvious
sets of operations defined by mathematics.Those operations were built directly
into early programming languages. Each kind of data in the computer was said
to have a specific data type. For example, if we say that two data items are of type
int (a name that Java uses for integer numbers), we know how they are represented
in memory and that we can apply arithmetic operations to them.

As people gained experience with the programming process, they realized that
in solving complex problems, it is helpful to define new types of data, such as dates
and times, which aren’t a standard part of a programming language. Each new type
of data typically has an associated set of operations, such as determining the
number of days between two dates.

Procedural languages thus evolved to include the feature of extensibility: the
capability to define new data types. However, they continued to treat the data
and operations as separate parts of the program.A programmer could define a data
type to represent the data values making up the time of day and then write a
subprogram to compute the number of minutes between two times, but could not explicitly
indicate that the two were related.

Modern programming languages such as Java allow us to collect data and its associated
operations into objects. For this reason, they are called object-oriented programming lan-
guages.The advantage of an object is that it makes the relationships between the data and
operations explicit. Each object is a complete, self-contained unit that can be reused again
in other applications.This reusability enables us to write a significant portion of our code us-
ing existing objects, thereby saving a considerable amount of time and effort.

Most modern programming languages, Java included, retain vestiges of their procedural
ancestors in the form of a small set of primitive data types.These usually include integer and
real numbers, characters, and a type representing the values true and false. Java also defines
the object as one of its primitive data types. In Java, all objects are said to be of the same data
type—the type that lets us represent any object.We distinguish among different kinds of ob-
jects by referring to the classes that define them. For example, we may refer to an object of
the class String. Sometimes we may refer to objects as being of different types, which is
common terminology in the computer industry. In such a case, we really mean objects of dif-
ferent classes, as there is strictly just one type of object in Java.

As noted earlier, a class is a description of an object. When we need an object in an ap-
plication, we must create one from such a description. Java provides an operation to let us
do so, and we say that the operation instantiates the class.That is, we write an instruction in
Java that provides us with an instance of the object described by the specified class.

One characteristic of an object-oriented programming language is the presence of a
large library of classes. Within the library, classes are usually collected into groups called
packages.

In this book we present only a small subset of the many classes that are available in the
Java library. It is easy to become overwhelmed by the sheer size of Java’s library, but many of
those thousands of objects are highly specialized and unnecessary for learning the essen-

Data type The specification in
a programming language of
how information is represented
in the computer as data and the
set of operations that can be
applied to it

Instantiate To create an ob-
ject based on the description
supplied by a class.

Package A collection of
related classes

20 | Introduction to Object-Oriented Programming

5The memory unit is also referred to as RAM, an acronym for random access memory (because we can
access any location at random).

tial concepts of programming.
In the next few chapters,we consider how to write simple code that instantiates just a few

of the classes in Java’s library.We first learn how to write a specific form of class, called an ap-
plication.Then we write some simple classes of our own. Once we gain some experience with
these essentials, in Chapter 6 we see how to organize a solution to a complex problem in a man-
ner that takes full advantage of the features of classes and objects. In Chapter 7, we explore
the aspects of the Java language that enable us to extend existing classes with new features.

1.6 What’s Inside the Computer?

You can learn how to use a programming language, write applications, and run (execute) these
applications without knowing much about computers. If you know something about the
parts of a computer, however, you can better understand the effect of each instruction in a
programming language.

Most computers have six basic components: the memory unit, the arithmetic/logic unit,
the control unit, input devices, output devices, and auxiliary storage devices. Figure 1.10

shows a stylized diagram of the basic components of a computer.
The memory unit is an ordered sequence of storage cells, each capable of hold-

ing a piece of data. Each memory cell has a distinct address to which we refer to
store data into it or retrieve data from it. These storage cells are called memory
cells, or memory locations.5 The memory unit holds data (input data or the product
of computation) and instructions (programs), as shown in Figure 1.11.

Figure 1.10 Basic Components of a Computer

Input
device

Output
device

Auxiliary
storage
device

Memory unit

Arithmetic/logic unit

Control unit

Central processing unit

Memory unit Internal data
storage in a computer

1 . 6 W h a t ’ s I n s i d e t h e C o m p u t e r ? | 21

The part of the computer that fol-
lows instructions is called the central

processing unit (CPU).The CPU usually has
two components.The arithmetic/logic unit

(ALU) performs arithmetic operations
(addition, subtraction, multiplication,
and division) and logical operations
(comparing two values).The control unit

manages the actions of the other com-
ponents so that program instructions
execute in the correct order.

To use computers, we must have
some way of getting data into and out of
them. Input/output (I/O) devices accept
data to be processed (input) and present data that have been processed (output).
A keyboard is a common input device, as is a mouse, a “pointing” device. A video
display is a common output device, as are printers and liquid crystal display (LCD)
screens.

For the most part, computers simply move and combine data in memory.
The many types of computers differ primarily in terms of the size of their mem-
ory, the speed with which data can be recalled, the efficiency with which data can
be moved or combined, and limitations on I/O devices.

When a program is executing, the computer proceeds through a series of
steps, making up the fetch-execute cycle:

1. The control unit retrieves (fetches) the next coded instruction from
memory.

2. The instruction is translated into control signals.

3. The control signals tell the appropriate unit (arithmetic/logic unit,
memory, I/O device) to perform (execute) the instruction.

4. The sequence is repeated beginning from Step 1.

Computers can support a wide variety of peripheral devices.An auxiliary storage

device, or secondary storage device, holds coded data for the computer until we ac-
tually want to use the data. Instead of inputting data every time, we can input it
once and have the computer store it onto an auxiliary storage device. Whenever
we need to use the data, we simply tell the computer to transfer the data from the
auxiliary storage device to its memory. An auxiliary storage device therefore
serves as both an input device and an output device.

Typical auxiliary storage devices include disk drives and magnetic tape drives.
A disk drive is like a cross between a compact disc player and a tape recorder. It uses
a thin disk made out of magnetic material. A read/write head (similar to the

Central processing unit (CPU)
The part of the computer that
executes the instructions (ob-
ject code) stored in memory;
made up of the arithmetic/logic
unit and the control unit

Arithmetic/logic unit (ALU)
The component of the central
processing unit that performs
arithmetic and logical
operations

Control unit The component
of the central processing unit
that controls the actions of the
other components so that
instructions (the object code)
execute in the correct
sequence

Input/output (I/O) devices
The parts of the computer that
accept data to be processed (in-
put) and present the results of
that processing (output)

Peripheral device An input,
output, or auxiliary storage de-
vice attached to a computer

Auxiliary storage device A
device that stores data in
encoded form outside the com-
puter’s main memory

Your data

Your program

MEMORY

Figure 1.11 Memory

22 | Introduction to Object-Oriented Programming

record/playback head in a tape recorder) travels across the spinning disk, retriev-
ing or recording data. A CD-ROM or DVD-ROM drive uses a laser to read informa-
tion stored optically on a plastic disk. Some forms of CDs and DVDs can also be
used to store (write) data.A magnetic tape drive is like a tape recorder and is most of-
ten used to back up (make a copy of) the data on a disk in case the disk becomes dam-
aged.

Together, all of these physical components are known as hardware. The pro-
grams that allow the hardware to operate are called software. Hardware usually is
fixed in design; in contrast, software is easily changed. In fact, the ease with which
software can be manipulated is what makes the computer such a versatile, pow-
erful tool.

In addition to the software that we write or purchase, some programs in the
computer are designed to simplify the user/computer interface, making it easier for
humans to use the machine.The interface between the user and the computer con-
sists of a set of I/O devices—for example, the keyboard, mouse, and screen—that
allows the user to communicate with the computer. We work with the keyboard,
mouse, and screen on our side of the interface boundary; wires attached to the key-
board and the screen carry the electronic pulses that the computer manipulates
on its side of the interface boundary. At the boundary itself is a mechanism that
translates information for the two sides.

When we communicate directly with the computer through an interface, we
use an interactive system. Interactive systems allow direct entry of source code and
data and provide immediate feedback to the user. In contrast, batch systems require
that all data be entered before an application runs and provide feedback only af-
ter an application has been executed. In this book we focus largely on interactive

systems, although in Chapter 5 we discuss file-oriented applications, which share certain sim-
ilarities with batch systems.

The set of programs that simplifies the user/computer interface and improves the effi-
ciency of processing is called system software. It includes the JVM and the Java compiler as
well as the operating system and the editor (see Figure 1.12). The operating system manages
all of the computer’s resources. It can input programs, call the compiler, execute object code,
and carry out any other system commands.The editor is an interactive program used to cre-
ate and modify source programs or data.

1.7 Problem-Solving Techniques

We solve problems every day, often while remaining unaware of the process we are going
through. In a learning environment, we usually are given most of the information we need:
a clear statement of the problem, the necessary input, and the required output. In real life,
of course, the process is not always so simple.We often have to define the problem ourselves
and then decide what information we have to work with and what the results should be.

After we understand and analyze a problem, we must come up with a potential solution—
an algorithm. Earlier, we defined an algorithm as a step-by-step procedure for solving a prob-
lem in a finite amount of time with a finite amount of data.Although we work with algorithms

Hardware The physical com-
ponents of a computer

Software Computer
programs; the set of all
programs available on a com-
puter

Interface A connecting link at
a shared boundary that allows
independent systems to meet
and act on or communicate
with each other

Interactive system A system
that supports direct communi-
cation between the user and
the computer

Operating system A set of
programs that manages all of
the computer’s resources

Editor An interactive program
used to create and modify
source programs or data

1 . 7 P r o b l e m - S o l v i n g T e c h n i q u e s | 23

INPUT

OUTPUT

Program entry
Data entry

Reports, lists

COMPUTER

System software: operating system,
compiler, editor

Figure 1.12 User/Computer Interface

all the time, most of our experience with them comes in the context of following them. We
follow a recipe, play a game, assemble a toy, or take medicine. In the problem-solving phase
of computer programming, however, we actually design algorithms.This means we must be
conscious of the strategies we use to solve problems so that we can apply them to pro-
gramming problems effectively.

Ask Questions

If you are given a task orally, you ask questions—When? Why? Where?—until you under-
stand exactly what you have to do. If your instructions are written, you might put question
marks in the margin, underline a word or a sentence, or indicate in some other way that the
task is not clear. Your questions may be answered by a later paragraph, or you might have

24 | Introduction to Object-Oriented Programming

to discuss them with the person who assigned you the task.
Here are some of the questions you might ask in the context of programming:

� What do I have to work with—that is, what objects does the problem require?

� What do the objects look like?

� What tasks do the objects perform on their data?

� How much input is there?

� How do I know when I have input the last value?

� What should my output look like?

� How do the objects work together to solve the problem?

� What special error conditions might come up?

Look for Things That Are Familiar

Never reinvent the wheel. If a solution already exists, use it. If you’ve solved the same or a
similar problem before, just repeat your solution. In fact, people are good at recognizing sim-
ilar situations. We don’t have to learn how to go to the store to buy milk, then to buy eggs,
and then to buy candy. We know that “going to the store” is always the same; only what we
buy differs on each trip.

In programming, certain problems occur again and again in different guises.A good pro-
grammer immediately recognizes a subtask that he or she has solved before and plugs in the
solution. For example, finding the daily high and low temperatures is really the same prob-
lem as finding the highest and lowest grades on a test.You want the largest and smallest val-
ues in a set of numbers (see Figure 1.13).

Use the same
method to
find these
values in

 both cases.

Highest = 95
Lowest = 18

Highest = 98
Lowest = 12

List of Temperatures List of Test Scores

42
18
27
95
55
72
33
78
86
61
58
91

27
14
55
98
72
66
45
12
39
70
68

Figure 1.13 Look for Things that Are Familiar

1 . 7 P r o b l e m - S o l v i n g T e c h n i q u e s | 25

We also apply this strategy by using classes from the Java library.When we recognize an
object that we’ve seen before, we reuse it in the new problem. Even if an existing class isn’t
quite what we need, it can serve as the starting point for a new class. In Chapter 7, we see
how we can implement this problem-solving strategy in Java by using a mechanism called
inheritance, which allows us to define a new object that adds to the capabilities of an exist-
ing object.

Solve by Analogy

Often a problem may remind you of one you have seen before. You may find solving the
problem at hand easier if you remember how you solved the other problem. In other words,
you can draw an analogy between the two problems. For example, a solution to a perspec-
tive projection problem from an art class might help you figure out how to compute the dis-
tance to a landmark when you are on a cross-country hike. As you work your way through
the new problem, you may come across things that are different than they were in the old
problem, but usually you can deal with these minor details one at a time.

Analogy is really just a broader application of the strategy of looking for things that are
familiar.When you are trying to find an algorithm for solving a problem, don’t limit yourself
to computer-oriented solutions. Step back and try to get a larger view of the problem. Don’t
worry if your analogy doesn’t match perfectly—the only reason for starting with an analogy
is that it gives you a place to start (see Figure 1.14). The best programmers are people who
have broad experience solving all kinds of problems.

Means-Ends Analysis

Often the beginning state and the ending state are given; the problem requires you to define
a set of interactions between objects that takes you from one state to the other. Suppose you
want to go from Boston, Massachusetts, to Austin,Texas.You know the beginning state (you
are in Boston) and the ending state (you want to be in Austin).The problem is how to get from
one place to the other.

A library catalog system can give insight into how to organize a parts inventory.

Figure 1.14 Analogy

26 | Introduction to Object-Oriented Programming

In this example, you have lots of options.You can take a plane, walk, hitchhike, ride a bike,
or whatever. The method you choose depends on your circumstances. If you’re in a hurry,
you’ll probably decide to fly.

Once you’ve identified the essential objects and their capabilities (airplane; fly between
cities), you have to work out the details. It may help to establish intermediate goals that are eas-
ier to meet than the overall goal. Suppose a really cheap, direct flight to Austin goes out of
Newark, New Jersey.You might decide to divide the trip into legs: Boston to Newark, and then
Newark to Austin.Your intermediate goal is to get from Boston to Newark. Now you merely have
to examine the means of meeting that intermediate goal (see Figure 1.15). Is there an object (air-
plane) that has the necessary capabilities (fly between Boston and Newark)?

The overall strategy of means-ends analysis is to define the ends and then to analyze your
means of achieving them.The process translates easily to computer programming.That is,
you begin by writing down what the input is and what the output should be.Then you con-
sider the available objects and the actions they can perform and choose a sequence of those
actions that can transform the input into the desired results. If no appropriate object is avail-
able, then you may have to create a new one.

Divide and Conquer

We often break up large problems into smaller units that are easier to handle. Cleaning the
whole house may seem overwhelming; cleaning each room, one at a time, seems much
more manageable. The same principle applies to programming. We break up a large prob-
lem into smaller pieces that we can solve individually (see Figure 1.16). A problem is di-
vided into its component objects, and for each class of objects we define a set of capabilities.

Means: Fly, walk, hitchhike, bike,
 drive, sail, bus

Means to Intermediate Goal: Commuter flight,
 walk, hitchhike, bike, drive, sail, bus

Revised Means: Fly to Chicago and then to Austin;
 fly to Newark and then to Austin: fly to Atlanta
 and then to Austin

Start: Boston
Goal: Austin

Start: Boston
Goal: Austin

Start: Boston
Intermediate Goal: Newark
Goal: Austin

Solution: Take commuter flight to Newark and then catch cheap flight to Austin

Figure 1.15 Means-Ends Analysis

1 . 7 P r o b l e m - S o l v i n g T e c h n i q u e s | 27

The Building-Block Approach

Another way of attacking a large problem
is to see if any solutions for smaller pieces
of the problem exist. It may be possible to
combine these solutions to solve most of
the big problem.This strategy is just a com-
bination of the look-for-familiar-things and
divide-and-conquer approaches. You look
at the big problem and see that it can be di-
vided into smaller problems for which so-
lutions already exist. Solving the big
problem is just a matter of putting the ex-
isting solutions together, like mortaring to-
gether blocks to form a wall (see Figure 1.17).

With an object-oriented programming
language, the building blocks are classes.
We often solve a problem by looking in the
class library to see which solutions have been developed previously; we then write a small
amount of additional code to put the pieces together.As we will see later, this problem-solv-
ing technique forms the basis for the methodology called object-based design.

Merging Solutions

Another way to combine existing solutions is to merge them on a step-by-step basis. For ex-
ample, to compute the average of a list of values, we must both sum and count the values.
If we already have separate solutions for summing values and for counting the number of

Shipping
System

Existing
Software

Existing
Software

New Program

Receiving
System

Parts
shipped

New code to mortar blocks together

Inventory System

Parts
received

Parts on
order

Parts sold,
not shipped

Accounts
Payable
System

Accounts
Receivable

System

Figure 1.17 Building-Block Approach

Easy
subproblem

Easy
subproblem

Hard problem

Hard
subproblem

Easy
subproblem

Easy
subproblem

Figure 1.16 Divide and Conquer

28 | Introduction to Object-Oriented Programming

values, we can combine them. If we first do the summing and then do the counting, how-
ever, we have to read the list twice. We can save steps by merging these two solutions: read
a value and then add it to the running total and add 1 to our count before going on to the next
value.When you’re writing a method for a class, and existing methods can be used but par-
tially duplicate each other’s actions, think about merging the steps they perform instead of
simply calling them one after the other.

Mental Blocks:The Fear of Starting

Writers are all too familiar with the experience of staring at a blank page, not knowing where
to begin. Programmers often have the same difficulty when they first tackle a big problem.
They look at the problem and it seems overwhelming (see Figure 1.18).

Figure 1.18 Mental Block.

1 . 7 P r o b l e m - S o l v i n g T e c h n i q u e s | 29

Remember that you always have a place to begin when trying to solve any problem:Write
it down on paper in your own words so that you understand it. Once you paraphrase the
problem, you can focus on each of the subparts individually instead of trying to tackle the en-
tire problem at once.This process gives you a clearer picture of the overall problem. It helps
you see pieces of the problem that look familiar or that are analogous to other problems you
have solved in the past. It also pinpoints areas where something is unclear, where you need
more information.

As you write down a problem, you tend to group things together into small, under-
standable chunks of data and operations, which may be natural candidates for objects.Your
description of the problem may collect all of the information about data and results into one
place for easy reference. Then you can see the beginning and ending states necessary for
means-ends analysis.

Most mental blocks are caused by not really understanding the problem. Writing down
the problem in your own words is a good way to focus on the subparts of the problem, one
at a time, and to understand what is required for a solution.

Object-Oriented Problem Solving

The initial step in solving many problems is to identify the obvious objects in the problem
description. If you are given a recipe, for example, the first thing you do is to identify the in-
gredients. Some may already be in your cupboard or refrigerator. For others, you may have to
go shopping. Object-oriented problem solving involves much the same process. You look at
a problem statement and make a list of the objects in it.Some of those objects are already avail-
able in the Java library, just waiting to be used. Other objects you may have to write yourself.

Remember that the computer can do only certain things.Your primary concern, then, is
making the computer coordinate the actions of objects to produce the desired effects. If you
keep in mind the objects, operations, and data types available in Java, you won’t design an
algorithm that is difficult or impossible to code.

In this book, we introduce you to these object classes and operations in a gradual man-
ner. In each chapter, we add to our knowledge of Java and programming techniques so that
we can tackle a growing range of problems. At first the problems may seem trivial because
we have so much to learn before we can write even a simple program. Soon, however, we
encounter problems that require thoughtful use of these problem-solving techniques. In
Chapter 6, we introduce an object-oriented design technique that helps us to organize our
problem solving for even larger programs.

Coming up with an algorithm for solving a particular problem is not always a cut-and-
dried process. Just the opposite, in fact—it is usually a trial-and-error process requiring
several attempts and refinements.We test each attempt to see if it really solves the problem.
If it does, that’s great. If it doesn’t, we try again. You typically use a combination of the
techniques we’ve described to solve any nontrivial problem.

CASE STUDY
30

PARTY PLANNING

Problem: You and some friends want to have a party on Saturday night, and you need to
plan and prepare for it.

Discussion: You’re familiar with the problem from having attended many parties.
Parties can be fun or they can turn into disasters.You know that it takes a great deal of
preparation to throw a party that everyone enjoys. Let’s start with some means-ends
analysis.The starting state is that you want to have a party, and the goal state is that
your party ends with everyone having had a good time.Your means are you and your
friends—you need to examine their capabilities more closely.

One of your friends, Sally, has a car. Another, James, has a stereo and a large music
collection.You have an apartment with a big living room. All of you know people who
you want to invite, and you all have ideas about what makes a great party.You collabo-
rate with your friends to develop a guest list. From your experience with parties that
have gone well (looking for things that are familiar), you and your friends identify the
major steps in the process: invite people, get food, choose music and set up the stereo,
clean the apartment and move furniture, welcome guests, have snacks available and
some background music playing while people arrive, dance for most of the evening,
wind down with some party games, and say goodbye to guests as they leave.

Now it’s time to divide and conquer all of this work. Sally can help James deliver the
stereo and can get the food. James can set up the stereo and select the music.You can
clean the apartment and move the furniture (with everyone’s help). Each of you can call
and invite some of the people, keeping a count of the ones who can come. Sally can
then get those counts from you and James, and figure out how much food to buy. On
the evening of the party, you can answer the doorbell, James can run the stereo and
help lead the games, and Sally can take care of the food. After the party, everyone can
help clean up, and Sally can help James take the stereo back to his apartment.

Here is a list of the “objects” we’ve identified and their responsibilities:

You

Call guests and keep a count of the ones who can come.
Clean apartment.
Move furniture.
Answer doorbell.
Say goodbye to leaving guests.
Clean up apartment and move furniture back.

CASE STUDY 31

Each of these responsibilities requires further expansion. For example, in making up
the food list, Sally needs to take into account any food allergies among the guests. It
takes James several steps to set up the stereo, and he has to develop a play-list of the
music so that people won’t have to wait between dances while he chooses the next
song. Calling the guests involves keeping track of who answered the phone and who
needs another call.This algorithm is just a top-level solution. Developing a complete
solution would require you to work out and write down all of the details. Computers re-
quire such complete solutions. Fortunately, for a problem like party planning, you can
count on your friends to work out the details themselves. (If you were planning a flight
of the space shuttle, where any misstep could have serious consequences, you’d work
out every step that everyone needs to do. Such life-critical tasks are often programmed
with the same precision that a computer requires.)

Because the number of potential guests to call is limited, you decide that it would be
easier to merge this part of the solution into a single responsibility that you handle.
Often, when we first write down a problem solution, we notice things that we want to
change. Our solutions are not written in stone—we can modify them as necessary.
However, it is helpful in programming to settle on a solution and avoid making unnec-
essary changes once we begin coding.

Our collection of objects needs to be coordinated in carrying out their responsibili-
ties. We don’t just perform these steps in random fashion. In programming, such a

James

Call guests and keep a count of the ones who can come.
Select music and gather it together.
Deliver and set up stereo.
Run stereo.
Help lead games.
Clean up apartment and move furniture back.
Return stereo and put away music.

Sally

Call guests and keep a count of the ones who can come.
Get counts from you and James and sum them.
Make a shopping list and buy food.
Help James deliver the stereo.
Take care of food at party.
Clean up apartment and move furniture back.
Help James return the stereo.

CASE STUDY
32

coordinating plan is called a driver. In our driver, we write a series of steps that refers to
each object and its responsibility as necessary. For example:

As we will see, Java uses a similar mechanism (known as a method call) for naming an
object and one of its responsibilities in order to get the object to carry out an action.
Many of the statements we write in our Java programs are of this sort. Over the next
few chapters you will gain a great deal of experience with writing and calling methods.

We’ve illustrated the use of problem solving in a noncomputer context to show that
these techniques are very general. Even if your career takes you in a direction that
doesn’t require computer programming, the organizational and problem-solving skills
that you learn in this course can be applied in many different situations. By learning to
program a computer, which requires very precise instructions, you can hone your prob-
lem-solving skills to a much higher degree.

You: Call guests and keep a count of the ones who can come.
Sally: Use count to write shopping list and buy food.
James: Select music.
James: Deliver stereo (collaborate with Sally for delivery).
You: Clean apartment.
You: Move furniture (collaborate with Sally and James on moving heavy pieces).
You: Welcome guests.
Sally: Take care of food.
James: Run stereo.
James: Help lead games.
You: Say goodbye to guests.
You: Clean apartment and move furniture back (collaborate with Sally and James).
James: Return stereo (collaborate with Sally).

1 . 8 T e s t i n g a n d D e b u g g i n g | 33

1.8 Testing and Debugging

Even the best-laid plans sometimes go awry. Along the way, we will offer tips on what to do when things
don’t work as expected. We will also offer advice on how to avoid problems (programming bugs) in the
first place.

Testing and Debugging Hints

1. Be sure to understand the problem before you start trying to solve it.

2. Note anything that is unclear and ask questions to clarify the problem.

3. Rewrite the problem statement in your own words.

4. Identify the objects required and their capabilities.

5. Use the problem-solving techniques discussed in this chapter to help develop your solution.

6. Keep in mind the actions that a computer can perform when developing solutions for it.

Summary

We think nothing of turning on a television and sitting down to watch it.Television is
simply a complex communication tool that we use easily.Today computers are
becoming as common as televisions—that is, just a normal part of our lives. Like tele-
visions, computers are based on complex principles but are designed for easy use.

Computers are dumb; they must be told what to do. A true computer error is
extremely rare (and usually crops up because of a component malfunction or an elec-
trical fault). Because we tell the computer what to do, most errors in computer-gener-
ated output are really human errors.

Computer programming is the process of developing a problem solution for a com-
puter to execute. It encompasses a problem-solving phase as well as an implementa-
tion phase. After analyzing a problem, we develop and test a general solution (an
algorithm).This general solution becomes a concrete solution—a program—when we
write it in a high-level programming language. A program coordinates the interactions
of a collection of objects that collaborate to solve the problem. Objects are an assem-
blage of data and operations that can be applied to those data.They are often

34

designed to represent real objects in the problem and are described by a class.The in-
structions that make up the program (the source code) are either compiled into
machine code (the language used by the computer) or Bytecode (the language used by
the Java Virtual Machine). After correcting any errors or “bugs” that show up during
testing, the program is ready to use.

Once we begin to use the program, it enters the maintenance phase. Maintenance
involves correcting any errors discovered by users and changing the program to reflect
changes in the users’ requirements.

Data and instructions are represented as binary numbers (numbers consisting of
just 1s and 0s) in electronic computers.The process of converting data and
instructions into a form usable by the computer is called coding.

A programming language reflects the range of operations that a computer can per-
form. In this book, you will learn to write application programs in the high-level
programming language called Java.The basic control structures in the Java
programming language—sequence, selection, loop, subprogram, and asynchronous
control—are based on the fundamental operations of the computer. Java provides the
ability to collect data and operations into self-contained units called objects, as speci-
fied by classes, which other applications can then reuse.

Computers are composed of six basic parts: the memory unit, the arithmetic/logic
unit, the control unit, input devices, output devices, and auxiliary storage devices.The
arithmetic/logic unit and control unit together form the central processing unit.The
physical parts of the computer constitute hardware.The programs that are executed
by the computer are called software. System software is a set of programs designed to
simplify the user/computer interface. It includes the compiler, the operating system,
the JVM, and the editor.

The most important phase of any programming project is the development of the
initial solution to the problem.We use problem-solving techniques such as analogy,
means-ends analysis, divide and conquer, building blocks, and merging solutions to
help us organize our efforts in this phase. Object-oriented problem solving focuses on
the objects in the problem statement, trying to save effort by reusing existing classes of
objects.

The computer is widely used today in science, engineering, business, government,
medicine, production of consumer goods, and the arts. Learning to program in Java
can help you use this powerful tool more effectively. In addition, the problem-solving
skills that you develop through programming can be applied in many noncomputer
contexts.

Quick Check

Quick Check exercises are intended to help you decide whether you’ve met the goals
set forth at the beginning of each chapter. If you understand the material in the chap-
ter, the answer to each question should be fairly obvious. After reading a question,

35

check your response against the answers listed at the end of the Quick Check. If you
don’t know an answer or don’t understand the answer that’s provided, turn to the
page(s) listed at the end of the question to review the material.

1. What is a computer program? (p. 5)

2. What are the three phases in a program’s life cycle? (pp. 5–9)

3. Is an algorithm the same as a program? (p. 6)

4. What are the advantages of using a high-level programming language?
(pp. 10–11)

5. What is the difference between machine code and Bytecode? (pp. 12–13)

6. What part does the Java Virtual Machine play in the compilation and interpreta-
tion process? (pp. 14–15)

7. What are the six basic components of a computer? (pp. 20–22)

8. What is meant by the term object, in the context of programming? (pp. 5, 18–20)

9. What should you do before you begin to code a problem solution in Java?
(pp. 22–24, 28–29)

10. Name the five basic ways of structuring statements in Java. (pp. 15–18)

11. What is the difference between hardware and software? (p. 22)

12. Name the problem-solving technique in which we break the problem into more
manageable chunks. (pp. 24–28)

13. Which problem-solving technique would be a natural choice in planning a hike
between two campgrounds? (pp. 24–28)

14. In the following problem statement, what are the objects: “Compute the area of
a circle, given its radius.” (pp. 5, 18–20, 29)

Answers

1. A computer program is a list of instructions performed by a computer. 2.The three phases of a program’s life
cycle are problem solving, implementation, and maintenance. 3. No. A program is an algorithm written in a
programming language. All programs are algorithms, but not all algorithms are programs. 4. A high-level pro-
gramming language is easier to use than an assembly language or a machine language. Also, programs written
in a high-level language can be run on many different computers. 5. Machine code is the native binary
language that is directly executed by any particular computer. Bytecode is a standard portable machine
language that is executed by the Java Virtual Machine, but it is not directly executed by the computer. 6. It
translates the Bytecode instructions into operations that are executed by the computer. 7.The basic
components of a computer are the memory unit, arithmetic/logic unit, control unit, input devices, output de-
vices, and auxiliary storage devices. 8. A collection of data and associated operations that can be applied to the
data. 9. Understand the problem and develop an algorithmic solution to the problem. 10. Sequence, selection,
loop, subprogram, and asynchronous. 11. Hardware is the physical components of the computer; software is
the collection of programs that run on the computer. 12. Divide and conquer. 13. Means-ends analysis. 14. Area,
circle, and radius are the obvious objects.

36

Exam Preparation Exercises

1. Explain why the following series of steps is not an algorithm, then rewrite the
series so that it is.

Shampooing

1. Rinse.

2. Lather.

3. Repeat.

2. Describe the input and output files used by a compiler.

3. In the following recipe for chocolate pound cake, identify the steps that are
branches (selection) and loops, and the steps that make references to
subalgorithms outside the algorithm.

Preheat the oven to 350 degrees
Line the bottom of a 9-inch tube pan with wax paper
Sift 2 3⁄4 c flour, 3⁄4 t cream of tartar, 1⁄2 t baking soda, 11⁄2 t salt, and 13⁄4 c

sugar into a large bowl
Add 1 c shortening to the bowl
If using butter, margarine, or lard, then
add 2/3 c milk to the bowl,

else
(for other shortenings) add 1 c minus 2 T of milk to the bowl

Add 1 t vanilla to the mixture in the bowl
If mixing with a spoon, then
see the instructions in the introduction to the chapter on cakes

else
(for electric mixers) beat the contents of the bowl for 2 minutes at medium

speed, scraping the bowl and beaters as needed
Add 3 eggs plus 1 extra egg yolk to the bowl
Melt 3 squares of unsweetened chocolate and add it to the mixture in the bowl
Beat the mixture for 1 minute at medium speed
Pour the batter into the tube pan
Put the pan into the oven and bake for 1 hour 10 minutes
Perform the test for doneness described in the introduction to the chapter on

cakes
Repeat the test once each minute until the cake is done
Remove the pan from the oven and allow the cake to cool for 2 hours
Follow the instructions for removing the cake from the pan, given in the

introduction to the chapter on cakes
Sprinkle powdered sugar over the cracks on top of the cake just before serving

37

4. Put a check next to each of the following items that is a peripheral device.

______ a. Disk drive

______ b. Arithmetic/logic unit

______ c. Magnetic tape drive

______ d. Printer

______ e. CD-ROM drive

______ f. Memory

______ g. Auxiliary storage device

______ h. Control unit

______ i. LCD display

______ j. Mouse

5. Next to each of the following items, indicate whether it is hardware (H) or
software (S).

______ a. Disk drive

______ b. Memory

______ c. Compiler

______ d. Arithmetic/logic unit

______ e. Editor

______ f. Operating system

______ g. Object program

______ h. Java Virtual Machine

______ i. Central processing unit

6. Distinguish between information and data.

7. You are planning a trip. Which problem-solving strategy would you use?

8. You are designing a house. Which problem-solving strategy would you use?

9. You are lost on a hike. Which problem-solving strategies would you use?

10. Identify the obvious objects in the recipe in Exercise 3.

Programming Warm-Up Exercises

1. Look up a recipe for angel food cake in a cookbook. Identify the obvious objects
in the recipe.Then identify which portions of this algorithm consist of a
sequence of instructions, where branches occur, where loops occur, and where
subprograms are called.

2. Find a set of instructions for operating an appliance that requires you to set the
date and time, such as a VCR, microwave oven, clock radio, or a computer.

38

Identify the obvious objects in the instructions.Then identify which portions of
this algorithm consist of a sequence of instructions, where branches occur,
where loops occur, and where subprograms are called.

3. Music notation works much like a programming language. Identify the symbols
and notation in music that indicate a unit of music in a sequence of such units,
that indicate repetition of a section of music, that indicate a choice between
endings of a song, and that indicate a separate section to be played or sung at a
given point. If you aren’t familiar with musical notation, you’ll need to do some
research in books on basic musicianship.

4. Browse through the next several chapters of this book and identify Java
statements that are used for branching and looping. (Hint: Look in the table of
contents.)

Programming Problems

1. Write an algorithm for driving from where you live to the nearest airport that
has regularly scheduled flights. Restrict yourself to a vocabulary of 20 words plus
numbers and place names.You must select the appropriate set of words for this
task.The purpose of this exercise is to give you practice in writing simple, exact
instructions with a small vocabulary, just as a computer programming language
requires you to do.

2. Write an algorithm for making a peanut butter and jelly sandwich, using a
vocabulary of just 20 words (you choose the words). Assume that all ingredients
are available in the cabinet or refrigerator and that the necessary tools are in a
drawer under the kitchen counter.The instructions must be very simple and ex-
act because the person making the sandwich has no knowledge of food prepara-
tion and takes every word literally.

3. Write an algorithm for doing your laundry, using a vocabulary of just 20 words
(you choose the words). Assume that you have the detergent, bleach, fabric
softener, and any other objects needed to do the laundry, and that the starting
state is you standing before a washing machine with your laundry and these ob-
jects.The ending state is a set of clean, neatly folded laundry items (no starch in
the socks, please).

Case Study Follow-Up

1. Expand the instructions for Sally’s responsibility to make the shopping list. It
may help to imagine that you are writing the instructions for someone else to
follow.

2. You have another friend who plays guitar and sings. How might you change the
plan for the party and reassign the responsibilities?

39

3. This occasion marks the first time you’ve ever given a party, and you’re unsure
of your plans. How could you check them out before the party to confirm that
you’ve covered everything that needs to be done?

Knowledge Goals
• To understand the difference between syntax and semantics
• To see why it is important to use meaningful identifiers in Java
• To understand the distinction between built-in types and objects
• To appreciate the difference between a class in the abstract sense and a class

as a Java construct
• To see the difference between objects in general and their use in Java
• To recognize how the char type and String objects are related and differ
• To understand the difference between a named constant and a variable
• To know how assignment of an object differs from assignment of a

standard type
• To understand what happens when a method is invoked
• To understand how a Java application is composed of a class with one or

more methods
• To appreciate the differences between void and value-returning methods

Skill Goals
To be able to:

• Read and understand the formal syntax rules governing Java programs
• Create and recognize legal Java identifiers
• Declare fields of type char and String
• Assign values to variables
• Construct string expressions
• Declare a class
• Write a method declaration and invocation
• Invoke a method
• Use a constructor to instantiate an object
• Use comments to clarify your programs
• Write simple input and output statements using the System class
• Determine what is displayed by a given code segment

Java Syntax and
Semantics, Classes,
and Objects

1876
Alexander Graham
Bell invents the
telephone, and
obtains one of the
most valuable
patents in history

1882
William S.
Burroughs leaves
his job at a bank to
pursue the
invention of an
accurate and
efficient adding
machine

1889
Herman Hollerith
patents his
Tabulating
Machine, which is
used to expedite the
processing of census
data in 1890

1895
Italian inventor
Guglielmo Marconi
sends and receives
his first radio
signal,
demonstrating the
feasibility of
wireless
communication

1901
The keypunch,
which cuts holes or
notches in a punch
card, emerges in the
form it remains for
the next 50 years

1904
John A. Fleming
builds on Thomas
Edison’s work, and
invents the diode
vacuum tube, which
converts AC signals
to DC signals

C H A P T E R

1906
The National
Electrical Signaling
Company’s radio
station in
Massachusetts
hosts the first
broadcasted radio
program of speech
and music on
Christmas Eve

1911
The Calculating,
Tabulating, and
Recording Company
(CTR) is established

1915
Physicist Manson
Benedicks discovers
that AC can be
converted to DC
using the
germanium crystal,
providing the basis
for microchips

1919
W.H. Eccles and F.
W. Jordan invent the
electronic trigger
circuit, or today’s
flip-flop switching
circuit

1920-1921
Playwright Karl
Capek introduces
the word “robot” in
his work “Rossum’s
Universal Robots”

1924
The Calculating,
Tabulating, and
Recording Company
is renamed by T.J.
Watson to
International
Business Machines,
or IBM

to problems using a programming lan-
guage. In this chapter, we look at some of the rules and symbols that
make up the Java programming language. We also review the steps re-
quired to create an application and make it work on a computer.

Programmers develop solutions 2

42 | Java Syntax and Semantics, Classes, and Objects

2.1 The Elements of Java Programs

In this section we examine in turn each of the components that are needed to write a pro-
gram that can perform simple actions, including input and output. In Section 2.2 we see how
to assemble these components into a complete program.

Syntax and Semantics

A programming language is a set of rules, symbols, and special words used to construct a pro-
gram. Rules apply to both syntax (grammar) and semantics (meaning).

Syntax is a formal set of rules that defines exactly which combinations of let-
ters, numbers, and symbols can be used in a programming language. The syntax
of a programming language leaves no room for ambiguity because the computer
can’t think; it doesn’t “know what we mean.” To avoid ambiguity, syntax rules
themselves must be written in a very simple, precise, formal language called a
metalanguage.

Learning to read a metalanguage is like learning to read the playbook for a
sport. Once you understand the notation, you can learn the plays that give a team
its competitive edge. It’s true that many people learn a sport simply by watching
others play, but what they learn is usually just enough to allow them to take part
in casual games.You could learn Java by following the examples in this book, but
a serious programmer, like a serious athlete, must take the time to read and un-
derstand the rules and to recognize how they are applied.

Syntax rules are the blueprints we use to“build”instructions in a program.They
allow us to take the elements of a programming language—the basic building blocks

of the language—and assemble them into constructs,or syntactically correct structures.If our code
violates any of the rules of the language—by misspelling a crucial word or leaving out an im-
portant comma,for instance—the program is said to have syntax errors and cannot compile cor-
rectly until we fix them.

Syntax Templates

The following Theoretical Foundations feature describes notations (called metalanguages)
that have long been used to define the syntax of programming languages. In this book we
write the syntax rules for Java using a metalanguage called a syntax template. A syntax tem-
plate is a generic example of the Java construct being defined. Graphic conventions show
which portions are optional and which can be repeated. A color word or symbol is written
in the Java construct just as it is in the template.A black word can be replaced by another tem-
plate. A square bracket indicates a set of items from which you can choose.

Syntax The formal rules gov-
erning how valid instructions are
written in a programming
language

Semantics The set of rules that
determines the meaning of in-
structions written in a program-
ming language

Metalanguage A language
that is used to write the syntax
rules for another language

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 43

Metalanguages
Metalanguage is the word language with the prefix meta, which means “beyond” or “more compre-
hensive.” In other words, a metalanguage is a language that goes beyond a normal language by
allowing us to speak precisely about that language. It is a language for talking about languages.

One of the oldest computer-oriented metalanguages is the Backus-Naur Form (BNF), which is
named for John Backus and Peter Naur, who developed it in 1960. BNF syntax definitions are
written out using letters, numbers, and special symbols. For example, an identifier (a name for
something) in Java must be at least one letter, underscore, or dollar sign, which may or may not
be followed by additional letters, underscores, dollar signs, or digits.The BNF definition of an
identifier in Java is

<identifier> ::= <letter> | <letter> <letter-digit-sequence>

< letter-digit-sequence > ::= <letter-or-digit> | <letter-or-digit>< letter-digit-sequence >

<letter-or-digit> ::= <letter> | <digit>

<letter> ::= _ | $ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

where the symbol ::= is read “is defined as,” the symbol | means “or,” and the symbols < and > are
used to enclose words called nonterminal symbols (symbols that still need to be defined).
Everything else is called a terminal symbol.

The first line of the definition reads as follows: “An identifier is defined as a letter or a letter
followed by a letter-digit-sequence.”This line contains nonterminal symbols that must be
defined. In the second line, the nonterminal symbol <letter-digit-sequence> is defined as a <let-
ter-or-digit> or as a <letter-or-digit> followed by another <letter-digit-sequence>.The self-refer-
ence in the definition is a roundabout way of saying that a <letter-digit-sequence> can be a
series of one or more letters or digits. In the third line, a <letter-or-digit> is defined as either a
<letter> or a <digit>. In the fourth and last lines, we finally encounter terminal symbols that de-
fine <letter> to be an underscore, dollar sign, or any of the uppercase or lowercase letters and
<digit> as any one of the numeric characters 0 through 9.

BNF is an extremely simple language, but that simplicity leads to syntax definitions that can
be long and difficult to read. An alternative metalanguage, the syntax diagram, is easier to follow.
It uses arrows to indicate how symbols can be combined.The following syntax diagrams define
an identifier in Java:

44 | Java Syntax and Semantics, Classes, and Objects

To read the diagrams, start at the left and follow the arrows. When you come to a branch,
take any one of the branch paths. A lowercase word is a nonterminal symbol.

The first diagram shows that an identifier can consist of a letter and, optionally, any number
of letters or digits.The nonterminal symbols letter and digit are then defined to be any one of the
alphabetic or numeric characters. Here, we have eliminated the BNF nonterminal symbols <let-
ter-digit-sequence> and <letter-or-digit> by using arrows in the first syntax diagram to allow a
sequence of consecutive letters or digits.

Syntax diagrams are easier to interpret than BNF definitions, but they still can be difficult to
read. In this book, we introduce another metalanguage, called a syntax template. Syntax
templates show at a glance the form of a Java construct.

One final note: Metalanguages show only how to write instructions that the compiler can
translate.They do not define what those instructions can do (their semantics). Formal languages
for defining the semantics of a programming language exist, but they are beyond the scope of
this text.Throughout this book, we will describe the semantics of Java in English.

identifier
letter

letter

digit

letter

digit

_ $ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j

0 1 2 3 4 5 6 7 8 9

k l m n o p q r s t u v w x y z

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 45

Let’s look at an example. This template defines a Java identifier, which is Java’s way of
naming something in a program:

The shading indicates the optional part of the definition.The three dots (. . .) mean that
the preceding symbol or shaded block can be repeated.Thus an identifier in Java is a letter,
an underscore, or dollar sign that may be optionally followed by one or more letters, digits,
underscores, or dollar signs.

Remember that a word not in color can be replaced with another template. Consider the
templates for a letter and a digit:

In these templates, the brackets again indicate lists of items from which you can choose
any one. Thus a letter can be any one of the uppercase or lowercase letters, and a digit can
be any of the numeric characters 0 through 9.

Letter

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

Digit

0
1
2
3
4
5
6
7
8
9

Letter

_
$

. . ._
$

Letter
Digit

46 | Java Syntax and Semantics, Classes, and Objects

Now let’s look at the syntax template for a Java application:

A Java application may optionally begin with a series of import declarations.As we noted
in Chapter 1, an object-oriented language such as Java provides a very large library of ready-

made objects that are available for us to use in our programs. Java’s library con-
tains so many, in fact, that they must be organized into smaller groups called
packages. Import declarations are statements that tell the Java compiler which li-
brary packages our program uses.We will look at how to write import declarations
shortly, but first let’s continue our examination of this syntax template.

The next line may optionally begin with a series of class modifiers, which are
then followed by the word class, and an identifier.This line is called the heading of
the class.An application in Java is a collection of elements that are grouped together
into a class.The heading gives the class a name (the identifier) and may optionally
specify some general properties of the class (the class modifiers). You’ve already
seen what an identifier is, and we define class modifiers later in this chapter.

The heading is followed by an open brace, a series of class declarations, and
a closing brace.These three elements make up the body of the class.The braces in-
dicate where the body begins and ends, and the class declarations contain all of

the statements that tell the computer what to do. The simplest Java program we can write
would look like this:

class DoNothing
{
}

As its name implies, this program does absolutely nothing. It is simply an empty shell of an
application. Our job as programmers is to add useful instructions to this shell.

When you finish this chapter, you should know enough about the syntax and semantics
of statements in Java to be able to write simple applications. But before we can talk about writ-
ing statements, we must understand how names are defined in Java and become familiar with
some of the elements of Java code.

Naming Program Elements: Identifiers

As we noted in our discussion of metalanguages, we use an identifier in Java to name some-
thing. For example, an identifier could be the name of a class, a subprogram (called a method

Import-Declaration; . . .

Class-Modifier . . .

Class-Declaration . . .
{

class Identifier

}

Package A named collection
of object classes in Java that can
be imported by a program

Class A definition for an object
or an application in Java

Identifier A name associated
with a package, class, method, or
field and used to refer to that
element

Method A subprogram in Java

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 47

in Java), or a place in the computer’s memory that holds data (called a field in Java). Identifiers
are made up of letters (A–Z, a–z), digits (0–9), the underscore character (_), and the dollar
sign ($), but each must begin with a letter, underscore, or dollar sign:

Identifiers beginning with an underscore have special meaning in some Java sys-
tems, so it is best to begin an identifier with a letter. Similarly, the dollar sign has
special meaning in some Java systems and should not be used in identifiers that
you write. We have included it in the syntax template so that you can recognize
its use if you encounter it in Java code that someone else has written.

Here are some examples of valid identifiers:

sum_of_squares J9 box_22A GetData Bin3D4 count Count

Note that the last two identifiers (count and Count) are considered completely dif-
ferent names by the Java compiler.That is, the uppercase and lowercase forms of a letter are
two distinct characters to the computer. Here are some examples of invalid identifiers and
the reasons why they are invalid:

Invalid Identifier Explanation

40Hours Identifiers cannot begin with a digit

Get Data Blanks are not allowed in identifiers

box–22 The hyphen (–) is a math symbol (minus) in Java

empty_? Special symbols such as ? are not allowed

int The word int is predefined in the Java language

The last identifier in the table, int, is an example of a reserved word. Reserved words have
specific uses in Java; you cannot use them as programmer-defined identifiers. Appendix A
lists all of the reserved words in Java. In the code in this book, they are colored red.

Now that we’ve seen how to write identifiers, let’s look at some of the things that Java
allows us to name.

Built-in Types in Java

A computer program operates on data. In Java, each piece of data must be of a specific data
type. The data type determines how the data is represented in the computer and the kinds

Letter

_
$

. . ._
$

Letter
Digit

Field A named place in mem-
ory that holds a data object

Reserved word A word that
has special meaning in Java; it
cannot be used as a
programmer-defined identifier

48 | Java Syntax and Semantics, Classes, and Objects

of processing the computer can perform on it. Recall from Chapter 1 that all ob-
jects are of the same type, but differ in their class. Java includes types other than
Object, each of which has its own name.

Because some types of data are used very frequently, Java provides them for
us. These are called standard (or built-in) types. You are already familiar with most
of them from everyday life: integer numbers, real numbers, and characters. In
Chapter 3, we examine the integer types int and long, and the real types float
and double. By the end of Chapter 4, you’ll be equally familiar with one more type,
boolean.

In this chapter we look first at the built-in type char and then later at the class String that
Java provides for us to manipulate character data.

The charData Type The built-in type char describes data consisting of one alphanumeric char-
acter—a letter, a digit, or a special symbol. Java uses a particular character set, or set of al-
phanumeric characters that it can represent. Java’s character set, which is called Unicode,
includes characters for many written languages. In this book, we use a subset of Unicode that
corresponds to an older character set called the American Standard Code for Information
Interchange (ASCII). ASCII consists of the alphabet for the English language, plus numbers
and symbols.

Here are some example values of type char:

‘A’ ‘a’ ‘8’ ‘2’ ‘+’ ‘-’ ‘$’ ‘?’ ‘*’ ‘ ’

Using Meaningful, Readable Identifiers
The names we use to refer to things in our code are totally meaningless to the computer.The
computer behaves in the same way whether we call a value 3.14159265, pi, or cake, as long as
we always call it the same thing. Of course, it is much easier for a person to figure out how your
code works if the names you choose for elements actually tell something about them. When
ever you make up a name for something in your code, try to pick one that is meaningful to a
human reader.

Java is a case-sensitive language, which means that it sees uppercase letters as different from
lowercase letters.The identifiers

PRINTTOPPORTION printtopportion pRiNtToPpOrTiOn PrintTopPortion

are four distinct names and are not interchangeable in any way. As you can see, the last of
these forms is the easiest to read. In this book, we use combinations of uppercase letters, low-
ercase letters, and underscores in identifiers. Many Java programmers use different capitaliza-
tions of identifiers as a way to indicate what they represent. Later in this chapter, we show you
the conventions that we, and many other Java programmers, use.

Standard (built-in) type A
data type that is automatically
available for use in every Java
program

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 49

Notice that each character is enclosed in single quotes (apostrophes). The Java compiler
needs the quotes to be able to differentiate between the character data and other Java ele-
ments. For example, the quotes around the characters ‘A‘ and ‘+‘ distinguish them from the
identifier A and the addition sign. Notice also that the blank, ‘ ‘, is a valid character.

How do we write the single quote itself as a character? If we write ‘‘‘, Java complains
that we have made a syntax error. The second quote indicates the end of the (empty) char-
acter value, and the third quote starts a new character value.To deal with this problem, Java
provides a special escape sequence that allows us to write a single quote as a character. That

Data Storage
Where does our code get the data it needs to operate? Data is stored in the computer’s memory.
Recall that memory is divided into a large number of separate locations or cells, each of which
can hold a piece of data. Each memory location has a unique address we refer to when we store
or retrieve data. We can visualize memory as a set of post office boxes, with the box numbers
serving as the addresses used to designate particular locations.

Of course, the actual address of each location in memory is a binary number in a machine
language code. In Java, we use identifiers to name memory locations; the compiler and the JVM
then translate those identifiers into binary form for us.This translation represents one of the
advantages provided by a high-level programming language: It frees us from having to keep
track of the numeric addresses of the memory locations in which our data and instructions are
stored.

100 101 102 103 104 105 106 107 108 109

110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129

130 131 132 133 134 135 136 137 138 139

140 141 142 143 144 145 146 147 148 149

50 | Java Syntax and Semantics, Classes, and Objects

is, Java treats the sequence of two characters \’ as a single character representing the quote.
When we want to write the quote as a character in Java, we thus write

‘\''

Notice that we use the backward slash, or backslash (\), as the escape character rather than
the regular, forward slash (/). As we will see in Chapter 3, Java uses the regular slash as a di-
vision sign, so it is important to recognize that the two slashes are different. A moment’s
thought reveals that this scheme introduces a new problem: How do we write the backslash
as a character? The answer is that Java provides a second escape sequence, \\, that allows
us to write a backslash.Thus we write the char value of backslash in Java as follows:

‘\\’

Be careful that you don’t confuse this sequence with the // sequence, which begins a com-
ment in Java (we look at comments a little later in this chapter).

Java provides operations that allow us to compare data values of type char.The Unicode
character set has a collating sequence, a predefined ordering of all the characters. In Unicode,
‘A‘ compares as less than ‘B‘, ‘B‘ as less than ‘C‘, and so forth. Also, ‘1‘ compares as less
than ‘2‘, ‘2‘ as less than ‘3‘, and so on.

The type char is one of Java’s primitive types.The String class, which allows us to work
with collections of characters, such as words and sentences, is one of the Object types in Java.
We’ve discussed classes and objects in the abstract sense as part of the problem-solving
process. Now we must further explore what classes and objects are in Java before we move
on to strings.

Classes and Objects

In Chapter 1, we identified two phases of programming: the problem-solving phase and the
implementation phase. Often the same vocabulary is used in different ways in the two phases.

In the problem-solving phase, for example, an object is an entity or some thing that
makes sense in the context of the problem at hand. A group of objects with similar proper-
ties and behaviors is described by an object class, or class for short. Object-oriented problem
solving involves isolating the objects that make up the problem. Objects interact with one
another by sending messages.

In the implementation phase, a class is a Java construct that allows the programmer to
describe an object. A class contains fields (data values) and methods (subprograms) that
define the behavior of the object.Think of a class in the general sense as a pattern for what
an object looks like and how it behaves, and a Java class as the construct that allows you to
simulate the object in code. If a class is a description of an object, how do we get an object
that fits the description? We use an operator called new, which takes the class name and re-

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 51

turns an object of the class type. The object that is returned is an instance of the class. The
act of creating an object from a class is called instantiation.

The following definitions provide new meanings for the terms object and class in addi-
tion to how we defined them in Chapter 1:

Class (general sense) A description of the behavior of a group of objects with similar
properties and behaviors

class (Java construct) A pattern for an object

Object (general sense) An entity or thing that is relevant in the context of a problem

Object (Java) An instance of a class

Instantiation Creating an object, which is an instance of a class

Method A subprogram that defines one aspect of the behavior of a class

Here is the syntax diagram for a class:

Our class declaration template looks identical to the template for a Java application be-
cause a Java application is just a class that has a method called main. We look specifically at
construction of an application later in this chapter. Here we are interested in those aspects
of defining a class that apply to all Java classes.

private

public

Class-Modifiers

Import-Declaration; . . .

Class-Modifiers . . .

Class-Declaration . . .

Class

{

class Identifier

}

52 | Java Syntax and Semantics, Classes, and Objects

When we first showed the syntax template for a Java application, we mentioned that the
application can optionally include an import declaration. Import declarations can start any
class declaration. Here is the syntax diagram for such a declaration:

As the template shows, an import declaration begins with the keyword import, the name
of a package, and a dot (period). Following the period, we can either write the name of a
class in the package or type an asterisk (*). The declaration ends with a semicolon. If we
want to use exactly one class in a particular package, then we can simply give its name
(Class-name) in the import declaration. More often, however, we want to use multiple classes
in a package, and the asterisk is a shorthand notation to the compiler that says, “Import
whatever classes from this package that this class uses.”

Why would we ever want to use the first form, when the asterisk has the same effect and
is easier to type? The first form documents the specific class that we intend to use, and it
causes the compiler to warn us if we mistakenly attempt to use another class from the pack-

age. In this book, we typically use the asterisk instead of the Class-Name, but we
document the class(es) we are importing by including a comment.

The next line, the class heading, begins with zero or more class modifiers,
which are Java reserved words. The syntax diagram includes two of Java’s modi-
fiers that are relevant here: public and private.They are called access modifiers be-
cause they specify whether elements outside of the class can use the class.What’s
outside of the class? Any of the packages that we list in import declarations. Also,
every application class actually resides within a package called java that is part of
the JVM.Thus, if we declare an identifier to be public, we allow the JVM and all im-

ported packages to make use of it. Because we want the JVM to be able to execute our ap-
plication class, we specify that its name be public.

The heading is followed by the body of the class: an open brace, a series of class decla-
rations, and a closing brace.The braces indicate where the body begins and ends, and the class
declarations contain all of the statements that tell the computer what to do. Here’s an ex-
ample of a Java class:

private class Example
{
char someLetter = ‘A’;
System.out.println(“someLetter is “ + someLetter);

}

Import-Declaration

import Package-name. ;

Class-Name

*

Access modifiers Reserved
words in Java that specify where
a class, method, or field may be
accessed; two examples are
public and private

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 53

Don’t worry if you don’t understand everything shown here.This code includes some elements
of Java that we have not yet explained. By the end of the chapter, it should all be clear to you.

The String Class Whereas a value of type char is limited to a single character, a string (in the
general sense) is a sequence of characters, such as a word, name, or sentence, enclosed in
double quotes. In Java, a string is an object, an instance of the String class. For example, the
following are strings in Java:

“Introduction to “ “Programming and Problem Solving” “ with Java “ “.”

A string must be typed entirely on one line. For example, the string

“This string is invalid because it
is typed on more than one line.”

is not valid because it is split across two lines before the closing double quote. In this situa-
tion, the Java compiler will issue an error message at the first line.The message may say some-
thing like QUOTE EXPECTED, depending on the particular compiler.

The quotes are not considered to be part of the string but are simply there to distin-
guish the string from other parts of a Java class. For example, ”amount” (in double quotes) is
the character string made up of the letters a, m, o, u, n, and t in that order. On the other hand,
amount (without the quotes) is an identifier, perhaps the name of a place in memory. The
symbols ”12345” represent a string made up of the characters 1, 2, 3, 4, and 5 in that order. If
we write 12345 without the quotes, it is an integer quantity that can be used in calculations.

A string containing no characters is called the empty string.We write the empty string us-
ing two double quotes with nothing (not even spaces) between them:

“”

The empty string is not equivalent to a string of spaces; rather, it is a special string that con-
tains no characters.

To write a double quote within a string, we use another escape sequence, \”. Here is a
string containing both quotation marks and the escape sequence for a backslash:

“She said, \”Don’t forget that \\ is not the same as the / character.\””

The value of this string is

She said, “Don’t forget that \ is not the same as the / character.”

Notice that within a string we do not have to use the escape sequence \’ to represent a sin-
gle quote. Similarly, we can write the double quote as a value of type char (’”’) without us-
ing an escape sequence. In contrast, we have to use \\ to write a backslash as a char value
or within a string.

54 | Java Syntax and Semantics, Classes, and Objects

Java provides operations for joining strings, comparing strings, copying portions of
strings, changing the case of letters in strings, converting numbers to strings, and convert-
ing strings to numbers.We will look at some of these operations later in this chapter and cover
the remaining operations in subsequent chapters.

Defining Terms: Declarations

How do we tell the computer what an identifier represents? We use a declaration, a statement
that associates a name (an identifier) with a description of an element in a Java
program (just as a dictionary definition associates a name with a description of the
thing being named). In a declaration, we name both the identifier and what it rep-
resents.

When we declare an identifier, the compiler picks a location in memory to be
associated with it. We don’t have to know the actual address of the memory lo-
cation because the computer automatically keeps track of it for us.

To see how this process works, suppose that when we mail a letter, we have
to put only a person’s name on it and the post office will look up the address. Of

course, everybody in the world would need a different name with such a system; otherwise,
the post office wouldn’t be able to figure out whose address was whose.The same is true in
Java. Each identifier can represent just one thing (except under special circumstances, which
we talk about later). Every identifier you use in your code must be different from all others.

Field Declarations

Classes are made up of methods and fields. We’ve seen that methods are the operations
that are associated with the data in an object. Fields are the components of a class that rep-
resent the data. Data in a class can be of any type, including the primitive types or objects.
It’s important to grasp the significance of being able to have objects within objects, as it al-
lows us to gradually build up objects of great complexity.

We use identifiers to refer to fields. In Java you must declare every identifier before it is
used.The compiler can then verify that the use of the identifier is consistent with its decla-
ration. If you declare an identifier to be a field that can hold a char value and later try to
store a number into the field, for example, the compiler will detect this inconsistency and
issue an error message.

A field can be either a constant or a variable. In other words, a field identifier can be the
name of a memory location whose contents are not allowed to change or it can be the name
of a memory location whose contents can change. There are different forms of declaration
statements for variables and constants in Java. First we look at variables, then consider con-
stants, and finally look at fields in general. Declarations for methods and classes are covered
later in the chapter.

Variables Data is stored in memory. While an application is executing, different values may
be stored in the same memory location at different times. This kind of memory location is

Declaration A statement that
associates an identifier with a
field, a method, a class, or a pack-
age so that the programmer can
refer to that item by name

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 55

1Many early programming languages, some of which are still in use today, allow a value of any type to
be stored in a variable.This weak typing was inherited from assembly language programming and has
been a source of many programming errors. Modern languages check that variables contain proper val-
ues, thereby helping us to avoid such errors.

called a variable, and its contents are the variable value. The symbolic name that
we associate with a memory location is the variable name or variable identifier. In
practice, we often refer to the variable name more briefly as the variable.

Declaring a variable means specifying both its name and its data type or class.
This specification tells the compiler to associate a name with a memory location
and informs it that the values to be stored in that location are of a specific type
or class (for example, char or String). The following statement declares myChar to
be a variable of type char:

char myChar;

Notice that the declaration does not specify what value is stored in myChar. Rather,
it specifies that the name myChar can hold
a value of type char. At this point, myChar
has been reserved as a place in memory
but it contains no data. Soon, we will see
how to actually put a value into a variable.
(See Figure 2.1.)

Java is a strongly typed language, which
means that a variable can contain a value
only of the type or class specified in its
declaration.1 Because of the above decla-
ration, the variable myChar can contain only
a char value. If the Java compiler comes
across an instruction that tries to store a
value of the wrong type, it gives an error
message, usually something like “Cannot
assign String to char.”

Here’s the syntax template for a variable declaration:

Modifiers Type-Name Identifier , Identifier . . . ;

Variable-Declaration

Variable A location in mem-
ory, referenced by an identifier,
that contains a data value that
can be changed

Strongly typed A property of
a programming language in
which the language allows vari-
ables to contain only values of
the specified type or class

Variable Identifier
memory location 1101010011
myChar

Variab ?

Figure 2.1 Variable

56 | Java Syntax and Semantics, Classes, and Objects

Here, Modifiers are like the modifiers for the class declarations (public and private), and
Type-Name is the name of a type or class such as char or String. We will introduce addi-
tional modifiers as we need them in later chapters. Note that the modifiers are optional—
we can write a declaration without using any of them. Notice also that a declaration always
ends with a semicolon.

From the syntax template, you can see that we can declare several variables in one
statement:

char letter, middleInitial, ch;

Here, all three variables are declared to be char variables. Our preference, though, is to de-
clare each variable with a separate statement:

char letter;
char middleInitial;
char ch;

Declaring each variable with a separate statement allows you to attach comments to the
right of each declaration. For example:

String firstName; // A person’s first name
String lastName; // A person’s last name
String title; // A person’s title, such as Dr.
char middleInitial; // A person’s middle initial
char myChar; // A place to store one letter

These declarations tell the compiler to reserve memory space for three String variables—
firstName, lastName, and title—and two char variables—middleInitial and myChar. The com-
ments explain to someone reading the program what each variable represents.

We saw earlier that the syntax template for a class contains a set of class declarations,
and that some of those declarations can be variables. For example, the following class has two
variable declarations and shows how we might use a privatemodifier as part of a declaration:

public class Sample // The start of a public class called Sample
{
private char myChar; // A private char type variable declared in class Sample

String myString; // A String object variable declared in class Sample
} // The end of class Sample

Now that we’ve seen how to declare variables in Java, let’s look at how to declare constants.

Constants All single characters (enclosed in single quotes) and strings (enclosed in double
quotes) are constants.

‘A’ ‘@’ “Howdy boys” “Please enter an employee number:”

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 57

In Java, as in mathematics, a constant is something whose value never
changes. When we use the actual value of a constant in a program, we are using
a literal value (or literal).

An alternative to the literal constant is the named constant (or symbolic con-

stant), which is introduced in a declaration statement. A named constant is just
another way of representing a literal value. Instead of using the literal value di-
rectly our code, we give the literal value a name in a declaration statement, then
use that name in the code. For example, we can write an instruction that prints
the title of this book using the literal string ”Introduction to Programming and Problem
Solving with Java”. Or we can declare a named constant called BOOK_TITLE that
equals the same string and then use the constant name in the instruction. That
is, we can use either

“Introduction to Programming and Problem Solving with Java ”

or

BOOK_TITLE

in the instruction.
Using the literal value of a constant may seem easier than giving it a name and then re-

ferring to it by that name. In fact, named constants make a program easier to read, because
they make the meaning of literal constants clearer. Also, named constants make it easier to
change a program later on.

The syntax template for a constant declaration is similar to the template for a variable
declaration:

The only difference is that we must include the modifier final, a reserved word, and follow
the identifier with an equals sign (=) and the value to be stored in the constant.The finalmod-
ifier tells the Java compiler that this value is the last and only value that this field should have.

The following are examples of constant declarations:

final String STARS = “********”;
final char BLANK = ‘ ‘;
final String BOOK_TITLE =

“Introduction to Programming and Problem Solving with Java”;
final String MESSAGE = “Error condition”;

Modifiers final Type-Name Identifier = Literal-Value ;

Constant-Declaration

Literal value Any constant
value written in Java

Named constant (symbolic
constant) A location in mem-
ory, referenced by an identifier,
that contains a data value that
cannot be changed

58 | Java Syntax and Semantics, Classes, and Objects

As shown in the preceding code, many Java programmers capitalize the entire identifier of
a named constant and separate the English words with an underscore.The idea is to help the
reader quickly distinguish between variable names and constant names when they appear
in the middle of code. In one case, we split the declaration across two lines, placing the string
literal on the line following the definition of the identifier.This kind of break works in Java,
but remember that we cannot split the string literal itself across two lines.

It’s a good idea to add comments to constant declarations as well as variable declarations.
For example:

final String STARS = “********”; // Row of stars to use as a separator
final char BLANK = ‘ ‘; // A single blank

Fields The similar appearance of variable and constant declarations in Java is no coinci-
dence. Java doesn’t actually distinguish between the declarations of named constants and
variables because both are considered just different kinds of fields. A named constant is
merely a field that is given an initial value, together with the modifier final, which says that
the value can never change. If we extend the template for a variable declaration to include
the syntax necessary to give the variable an initial value and add the keyword final to the
list of modifiers, then we have a generic template for a field declaration in Java:

The following declarations are legal:

final String WORD1 = “Introduction to “;
String word3 = “Programming and Problem Solving “;

final String WORD5 = “with Java”;

private

public

final

Modifiers

Modifiers Type-Name Identifier = Literal-Value

Field-Declaration

, Identifier = Literal-Value ;

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 59

They store “Introduction to “ as the value for constant WORD1. The string “Programming and
Problem Solving “ is stored in the variable word3, and we store “with Java” in the constant WORD5.

Assignment and Expressions

Up to this point, we’ve looked at ways of declaring fields in a class. As part of the declara-
tion, we can give an initial value to a field. Now we turn our attention to ways of acting, or
performing operations, on values in fields.

Capitalization of Identifiers
Programmers often use capitalization to provide a quick, visual clue as to what an identifier
represents. Different programmers adopt different conventions for using uppercase letters and
lowercase letters. Some use only lowercase letters, separating the English words in an identifier
with the underscore character:

pay_rate emp_num pay_file

The convention used by many Java programmers and the one we use in this book is the follow-
ing:

• Variables and methods begin with a lowercase letter and capitalize each successive English

word.

lengthInYards middleInitial hours

• Class names begin with an uppercase letter but are capitalized the same as variable names

thereafter.

PayRollFrame Sample MyDataType String

Capitalizing the first letter allows a person reading the code to tell at a glance that an identi-

fier represents a class name rather than a variable or method. Java’s reserved words use all

lowercase letters, so the type char is lowercase. String is a class, so it begins with a capital let-

ter.

• Identifiers representing named constants are all uppercase with underscores used to separate

the English words.

BOOK_TITLE OVERTIME MAX_LENGTH

These conventions are simply that—conventions. Java does not require this particular style
of capitalizing identifiers.You may wish to write your identifiers in a different fashion. But
whatever method you use, it is essential that you maintain a consistent style throughout your
code. A person reading your code will be confused or misled if you use a random style of capi-
talization.

60 | Java Syntax and Semantics, Classes, and Objects

Assignment We can set or change the value of a variable through an assignment statement. For
example,

lastName = “Lincoln”;

assigns the string value ”Lincoln” to the variable lastName (that is, it stores the sequence of
characters “Lincoln” into the memory associated with the variable named lastName).

Here’s the syntax template for an assignment statement:

The semantics (meaning) of the assignment operator (=) are “is set equal to” or
“gets”; the variable is set equal to the value of the expression. Any previous value in
the variable is destroyed and replaced by the value of the expression. If you look
back at the syntax for a field declaration, you can see that it uses the same syn-
tax to assign an initial value to a field.

Only one variable can appear on the left side of an assignment statement. An
assignment statement is not like a math equation (x + y = z + 4). Instead, the ex-
pression (what is on the right side of the assignment operator) is evaluated, and the
resulting value is stored into the single variable on the left side of the assignment
operator.A variable keeps its assigned value until another statement stores a new
value into it.

Because you are accustomed to reading from left to right, the way that the as-
signment operator moves a value from right to left may at first seem awkward. Just
remember to read the = as “is set equal to” or “gets”—then the process seems more
natural.

The value assigned to a variable must be of the same type as the variable. Given the
declarations

String firstName;
String middleName;
String lastName;
String title;
char middleInitial;
char letter;

the following assignment statements are valid:

firstName = “Abraham”; // String literal assigned to string variable
middleName = firstName; // String variable assigned to string variable
middleName = “”; // String literal assigned to string variable

Variable = Expression ;

Assignment-Statement

Assignment statement A
statement that stores the value
of an expression into a variable

Expression An arrangement
of identifiers, literals, and opera-
tors that can be evaluated to
compute a value of a given type

Evaluate To compute a new
value by performing a specified
set of operations on given val-
ues

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 61

lastName = “Lincoln”; // String literal assigned to string variable
title = “President”; // String literal assigned to string variable
middleInitial = ‘ ‘; // char literal assigned to char variable
myChar = ‘B’; // char literal assigned to char variable

The following assignments are not valid:

Invalid Assignment Statement Explanation

middleInitial = “A.”; middleInitial is of type char; ”A.” is a string

myChar = firstName; myChar is of type char; firstName is of type String

myChar = “ “; myChar is of type char; ” “ is a one-character literal string

firstName = Thomas; Thomas is an undeclared identifier

”Edison” = lastName; Only a variable can appear to the left of =

lastName = ; The expression to the right of = is missing

Figure 2.2 shows the variable myChar with the letter B stored in it.

String Expressions Although we can’t perform
arithmetic on strings, Java provides the
String class with a special string operation,
called concatenation, that uses the + opera-
tor. Concatenating (joining) two strings
yields a new string containing the characters
from both strings. For example, given the
statements

String bookTitle;
String phrase1;
String phrase2;

phrase1 = “Introduction to Programming and Problem Solving “;
phrase2 = “with Java”;

we could write

bookTitle = phrase1 + phrase2;

which results in bookTitle being set equal to the character string

“Introduction to Programming and Problem Solving with Java”

The order of the strings in the expression determines how they appear in the resulting
string. If, for example, we write

bookTitle = phrase2 + phrase1;

Variable B

Value

myChar
(memory location 1101010011)

Variable identifier

char

Data type

Figure 2.2 Variable with Value

62 | Java Syntax and Semantics, Classes, and Objects

then bookTitle is set equal to the string

“with JavaIntroduction to Programming and Problem Solving ”

Concatenation works with named String constants and literal strings as well as String
variables. For example, suppose we have declared the following constants:

final String WORD1 = “Introduction”;
final String WORD3 = “Programming”;
final String WORD5 = “with Java”;

Then we could write the following statement to assign the title of this book to the variable
bookTitle:

bookTitle = WORD1 + “ to “ + WORD3 + “ and Problem Solving “ + WORD5;

As a result, bookTitle is assigned the following string:

“Introduction to Programming and Problem Solving with Java”

The preceding example demonstrates how we can combine identifiers and literal strings
in a concatenation expression. Of course, if we simply want to assign the complete string to
bookTitle, we can do so directly:

bookTitle = “Introduction to Programming and Problem Solving with Java”;

Occasionally, however, we need to assign a string literal that is too long to fit on one
line.Then a concatenation expression is necessary, as in the following statement:

longSentence = “The Red-Wing Blackbird hovered precariously in the gusty “ +
“breeze as he tried to display his brilliant red and “ +
“yellow epaulets to his rival suitor. “;

Sometimes we may encounter a situation in which we want to add some characters to
an existing string value. Suppose that bookTitle already contains ”Introduction to Programming”
and that we wish to complete the title. We could use a statement of the form

bookTitle = bookTitle + “ and Problem Solving with Java”;

This statement retrieves the value of bookTitle from memory, concatenates the string “ and
Problem Solving with Java” to form a new string, and then assigns the new string back to
bookTitle.The new string replaces the old value of bookTitle (which is destroyed).

Concatenation works only with values of the class String. If we try to concatenate a
value of one of Java’s built-in types with a string, Java will automatically convert the value
into an equivalent string and perform the concatenation. For example, the code segment

String result;
result = “The square of 12 is “ + 144;

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 63

assigns the string “The square of 12 is 144” to the variable result. Java converts the integer
literal 144 into the string “144” before performing the concatenation.

Initializer Expressions Now that we have defined expressions, we can generalize the field dec-
laration syntax to allow for the use of an expression in initializing the field.

The following declarations are, therefore, legal:

final String WORD1 = “Introduction”;
final String WORD3 = “Java “ + WORD1;
final String WORD5 = “Design “ + WORD3;

They store “Design Java Introduction” as the value of the constant WORD5.

Modifiers Type-Name Identifier = Expression

Field-Declaration

, Identifier = Expression ;

Assignment of Primitive Types Versus Objects
After reading the preceding discussion of assignment statements and expressions, you may
wonder what really happens inside the computer when assignment occurs. For Java’s primitive
types that represent simple data values such as characters and numbers, the answer is
straightforward: The value on the right side of the equals sign is stored in the memory location
corresponding to the identifier on the left-hand side.

But what about objects such as strings? Surely they can’t fit into a single memory location?
The answer is no, they can’t. So how does assignment work in that case?

Assignment of objects is done indirectly. A variable of the object data type contains a value
that is the memory address where the actual object is stored. When Java needs to operate on an
object, it uses the value stored in the variable to find the object in memory.This process takes
place automatically, so we don’t have to worry about it. With respect to assignment, however, it
means that assigning one object variable to another works just the same as assigning one inte-
ger variable to another.The value contained in one variable is copied from its memory location
into the location associated with the other variable. For an object, this value is an address in
memory.

In later chapters we will return to this topic and note that it has some additional
consequences. In the meantime, we will avoid situations where this issue might cause
problems.

64 | Java Syntax and Semantics, Classes, and Objects

Beyond Minimalism: Adding Comments to Code

All you need to create a working application is the correct combination of declarations and
executable statements.The compiler ignores comments, but this kind of documentation is
of enormous help to anyone who must read the code. Comments can appear anywhere in
your code except in the middle of an identifier, a reserved word, or a literal constant.

Java comments come in two forms. The first is any sequence of characters enclosed by
the /* */ pair.The compiler ignores anything within the pair. Here’s an example:

String idNumber; /* Identification number of the aircraft */

One special note about using this form of comment: When the first character of the
comment is an asterisk, the comment has a special meaning that indicates it should be
used by an automatic documentation generation program called javadoc. For the time being,
as we do not discuss javadoc in this text, we recommend that you avoid comments that
start with /**.

The second, and more common, form begins with two slashes (//) and extends to the end
of that line of the program:

String idNumber; // Identification number of the aircraft

The compiler ignores anything after the two slashes to the end of the line.
Writing fully commented code is good programming style.A comment should appear at

the beginning of an application or class to explain what it does:

// This application computes the weight and balance of a Beechcraft
// Starship–1 airplane, given the amount of fuel, number of
// passengers, and weight of luggage in fore and aft storage.
// It assumes that there are two pilots and a standard complement
// of equipment, and that passengers weigh 170 pounds each.

Another good place for comments is in field declarations, where comments can explain
how each identifier is used. In addition, they should introduce each major step in a long
code segment and should explain anything that is unusual or difficult to read (for example,
a lengthy formula).

You should keep your comments concise and arrange them in the code so that they are
easy to see and it is clear what they document. If comments are too long or crowd the state-
ments, they make the code more difficult to read—just the opposite of what you intended!
In this text we use color to make the comments stand out from the rest of the Java code in
our examples.

Output

Have you ever asked someone,“Do you know what time it is?”, only to have the person smile
smugly and say, “Yes, I do”? This situation is like the one that currently exists between you

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 65

and the computer. You now know enough Java syntax to tell the computer to assign values
to variables and to concatenate strings, but the computer won’t give you the results until you
tell it to display them.

Early computers used printers to display their output. Older programming languages had
output statements, such as print or write, that would type the contents of a variable or a con-
stant on the printer. As technology advanced, printers were replaced by display screens, but
output still appeared on the screen as if it was being typed by a printer, line by line. In the
1970s, computer scientists at the Xerox Palo Alto Research Center developed a new approach
to output in which a program could display separate panels on the screen and print or draw
on each panel independently.The panels, which were called windows, opened a new era in
the design of user interfaces for computer programs.

Today, virtually every computer operating system supports a graphical user interface (GUI)
based on windows. Such interfaces make it much easier for people to use programs, but
they require more work on the part of the programmer than did the old-fashioned printer-
style output. Because Java was developed after the GUI became the standard mechanism for
interactive input and output, it includes built-in features that support the programming of
a user interface. Even so, the programming of such a user interface can still be rather com-
plicated, so we defer coverage of this topic until after we’ve explored more of the basics of
programming. If you are curious about what is involved in GUI programming, you may peek
ahead to Chapter 8.

Here we introduce a very simple way of writing messages on the screen that is similar
to the technique used in older languages.To do so, we use a method call statement.

Calling Methods Methods (the operators associated with objects in the abstract
sense) are implemented as subprograms that are called upon to perform some pre-
defined set of actions.A call to a method is another form of executable statement
in Java.We write the call statement simply by specifying the name of the method,
followed by a list of arguments enclosed in parentheses.The call causes control of
the computer to jump to the instructions in the method, which may use the val-
ues given to it as arguments. When the method has completed its task, control
of the computer returns to the statement following the call.

Here is the syntax template for a call statement:

As you examine the template, note that the arguments in a call are optional, but the
parentheses are required. We often write call statements of the following form:

methodName();

Method-Name (Argument , Argument . . .) ;

Call

Call A statement that causes a
method to be executed; in Java
we call a method by writing its
name, followed by a list of argu-
ments enclosed in parentheses

Argument An expression used
for communicating values to a
method

66 | Java Syntax and Semantics, Classes, and Objects

A synonym for the term call is invoke. Saying that a method is invoked is another way of
saying that it is called.

print and printlnMethods Java provides an object that represents an output device—by de-
fault, the screen. We can send messages to this object, asking it to print something on the
screen.The name of the object is System.out and the messages that we can send (the meth-
ods that we can apply) are print and println. For example,

System.out.print(“Susy” + “ “ + “Sunshine”);

prints

Susy Sunshine

in a window on the screen. There are several things to notice about this statement. The
method is invoked (the message sent) by placing the method name next to the object name
with a dot in between.The “something” to be printed is a string expression that serves as an
argument to the method. Notice that the string appears within the parentheses.What do you
think the next code fragment prints?

System.out.print(“Susy”);
System.out.print(“ “);
System.out.print(“Sunshine”);

If you said that the two code fragments print the same thing, you would be correct. Successive
messages sent via the print method print the strings next to each other on the same line. If
you want to go to the next line after the string is printed, you use the println method. For ex-
ample, the code fragment

System.out.println(“Susy”);
System.out.println(“ “);
System.out.println(“Sunshine”);

prints

Susy

Sunshine

Note that the println method does not go to the next line until after the string is printed.The
second line contains two blanks—it is not the empty string. We can print variables as well
as literals. For example,

String myName = “Susy Sunshine”;
System.out.println(myName);

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 67

prints exactly the same thing on the screen as the statement

System.out.print(“Susy Sunshine”);

There is a difference, however. If the latter statement (which uses the print method) is fol-
lowed by another message to System.out, the next string would begin on the same line. If the
former code (which uses the println method) is followed by another message to System.out,
the next string would begin on the next line.

Input

An application needs data on which to operate. So far, we have written all of the data values
into the code itself, in literal and named constants. If this technique was the only way we
could enter data, we would have to rewrite our code each time we wanted to apply it to a dif-
ferent set of values. In this section we look at ways of entering data into an application while
it is running.

One of the biggest advantages associated with computers is that an application can be
used with many different sets of data. To do so, the data must be kept separate from the
code until the code executes. Then method calls in the code can copy values from the data
set into variables in the application. After storing these values in the variables, the code can
perform calculations with
them (see Figure 2.3).

The process of placing
values from an outside data
set into variables in an appli-
cation is called input.The data
for the application can come
from an input device or from a
file on an auxiliary storage de-
vice. We will look at file input
in detail in Chapter 5; here we
consider only the standard in-
put window, represented by
the object System.in.

Unfortunately, Java doesn’t
make it quite as simple to in-
put data from System.in as it
does to output data to
System.out. System.in is a very
primitive object that is de-
signed to serve as the basis for
building more sophisticated
objects.With System.in, we can

Data as
constants

Figure 2.3 Separating the Data from Code

68 | Java Syntax and Semantics, Classes, and Objects

Class InputStreamReader
(returns Unicode characters)

Object InputStream System.in
(returns bytes)

Class BufferedReader
(returns a string value)

Figure 2.4 Layering of Classes for Java Input

input a single byte or a series of bytes (recall from Chapter 1 that a byte is eight binary bits).
To be useful to us, this data must be converted to a string.

This problem sounds like a good opportunity to apply means-ends analysis. We look
through the Java library documentation and find a class called BufferedReader that provides
a method called readLine, which returns a string that it gets from an object of the class Reader.
However, System.in is an object of the class InputStream.We’re part of the way to our solution;
now we just have to find a way to convert the input from an InputStream object so that it acts
like a Reader object. Further searching in the library reveals a class called InputStreamReader
that does precisely this.

Why do we need to take these steps? What do these conversions actually accomplish?
System.in returns raw binary bytes of data. An InputStreamReader converts these bytes to the
Unicode character set that Java uses. Because we don’t want our input to be in the form of
individual characters, we use a BufferedReader to convert the characters into a String value.
Figure 2.4 illustrates this layering of classes.

In Figure 2.4, System.in is an object of the class InputStream—an instance of this class.What
we need is an object of the class InputStreamReader.That is, we need to instantiate an object
of the class InputStreamReader. Earlier we said that we use the new operator to instantiate ob-
jects. To do so, we write the reserved word new, followed by the name of a class, followed by
an argument list. For example:

InputStreamReader inStream; // A variable of class InputStreamReader
inStream = new InputStreamReader(System.in);

The code following new looks very much like a method call. In fact, it is a call to a special
kind of method called a constructor. Every class has at least one constructor method.The pur-
pose of a constructor is to prepare a new object for use. The new operator creates an empty
object of the given class and then calls the constructor, which can fill in fields of the object
or take any other steps needed to make the object usable. For example, the preceding code
first creates an object of the class InputStreamReader that is prepared to use System.in as its
input source.The new object is then assigned to the variable inStream. Constructors are called
only via the new operator; we cannot write them as normal method calls.

2.1 T h e E l e m e n t s o f J a v a P r o g r a m s | 69

Constructors have a special feature that requires some further explanation. The call to
the constructor method isn’t preceded by an object name or a class name as in the case for
System.out.print, for example. If you stop to consider that the constructor creates an object
before it is assigned to a field, you realize that it can’t be associated with a particular object
name.We don’t have to precede the constructor name with the class name because its name
already tells Java to which class it belongs.

The capitalization of a constructor doesn’t follow our usual rule of starting each method
name with a lowercase letter. By convention, all class names in the Java library begin with
an uppercase letter, and the constructor name must be spelled exactly the same as the name
of the class that contains it.

The BufferedReader class has a constructor that takes an InputStreamReader object as an
argument and prepares a BufferedReader object that uses the InputStreamReader object as its
input source.Thus we can write

BufferedReader in; // A variable of class BufferedReader
in = new BufferedReader(inStream);

We now have an object, assigned to the variable in, which is a BufferedReader that takes its
input from inStream, which in turn takes its input from System.in.

We can shorten this process by nesting the constructor calls as follows:

in = new BufferedReader(new InputStreamReader(System.in));

This one statement has the same effect as writing

InputStreamReader inStream; // A variable of class InputStreamReader
inStream = new InputStreamReader(System.in);
in = new BufferedReader(inStream);

It also avoids the need to declare a separate variable to hold the InputStreamReader
object.The inner new operator still creates the object, but it is not assigned to a vari-
able and, therefore,has no name.Objects that lack a name are said to be anonymous.

readLine The class BufferedReader gives us another useful method, called readLine. Its name
is descriptive of its function: The computer “reads” what we type into it on one line and re-
turns the characters we type as a string. Here is an example of using readLine:

String oneLineOfTyping; // A variable of class String
oneLineOfTyping = in.readLine();

Notice that a call to readLine is quite different from a call to println.We call println as a
separate statement:

System.out.println(“A line of text to output.”);

Anonymous object An object
that is instantiated but not as-
signed to an identifier and,
therefore, lacks a name

70 | Java Syntax and Semantics, Classes, and Objects

In contrast, readLine is called from within an expression. Java supports two kinds of
methods: value-returning methods and void methods.They are distinguished by how they
are called.readLine, a value-returning method, is called within an expression.When
it returns, a value that it has computed takes its place in the expression and can be
used for assignment or further computation. println, a void method, doesn’t re-
turn a value.We call it as a separate statement and, when it has finished, execution
picks up with the statement that follows it.

Interactive Input and Output

When an application inputs and outputs values that a human user supplies and
reads, it performs interactive input/output. To make the application more user-
friendly, the programmer has to consider additional information that the user

needs beyond the raw input and output. For example, the user must be prompted to enter
values; otherwise, he or she won’t know when or where to type the input. When the appli-
cation outputs its results, it must label them so that they are meaningful. Labeling output
also helps the user to distinguish among different values displayed by the application.

The following code segment inputs the three parts of a name, using System.out.print to
display a prompting message for each input value:

System.out.print(“Enter first name: “); // Prompt for first name
first = in.readLine(); // Get first name
System.out.print(“Enter last name: “); // Prompt for last name
last = in.readLine(); // Get last name
System.out.print(“Enter middle initial: “); // Prompt for middle initial
middle = in.readLine(); // Get middle initial

The next code segment outputs the name with System.out.println, using a label to in-
dicate what is displayed:

System.out.println(“You entered the name: “ +
first + “ “ + middle + “. “ + last);

When an application outputs data that has just been entered, it confirms to the user that the
data was typed correctly or indicates that an error occurred. This kind of input–output se-
quence is known as echo printing.

2.2 Application Construction

So far in this chapter, we have looked at the basic elements of Java code: identifiers, decla-
rations, variables, constants, expressions, assignment statements, method calls, input, out-
put, and comments. Now let’s see how to collect these elements into an application. A Java
application is a class containing class declarations: fields and methods. For the class to be a
Java application, one of the methods must be named main. Execution of the Java application
begins in the main method.

Value-returning method A
method that is called from
within an expression and
returns a value that can be used
in the expression

Void method A method that is
called as a separate statement;
when it returns, processing con-
tinues with the next statement

2.2 A p p l i c a t i o n C o n s t r u c t i o n | 71

We have already shown the template for a field declaration, so let’s look at the declara-
tion of a method. A method declaration consists of the method heading and its body, which
is delimited by left and right braces.The following syntax template represents the declara-
tion of a void method (the kind that main must be). We examine the declaration of value-re-
turning methods later in this chapter.

Here’s an example of an application with just one method, the main method. Note that
the programmer selects the name for the application class; we chose PrintName. Because an
application is a class, we begin the name with an uppercase P.

//**
// PrintName application
// This application inputs a name and prints it in two different formats
//**
import java.io.*; // Package for stream readers
public class PrintName
{
public static void main(String[] args) throws IOException
{
String first; // Person’s first name
String last; // Person’s last name
String middle; // Person’s middle initial
String firstLast; // Name in first-last format
String lastFirst; // Name in last-first format
BufferedReader in; // Input stream for strings

in = new BufferedReader(new InputStreamReader(System.in));
System.out.print(“Enter first name: “); // Prompt for first name
first = in.readLine(); // Get first name
System.out.print(“Enter last name: “); // Prompt for last name
last = in.readLine(); // Get last name
System.out.print(“Enter middle initial: “); // Prompt for middle initial
middle = in.readLine(); // Get middle initial
firstLast = first + “ “ + last; // Generate first format
System.out.println(“Name in first-last format is “ + firstLast);
lastFirst = last + “, “ + first + “, “; // Generate second format
System.out.println(“Name in last-first-initial format is “ +

lastFirst + middle + “.”);
}

}

Modifiers void Identifier (Parameter List)

Statement . . .

Method-Declaration

{

}

72 | Java Syntax and Semantics, Classes, and Objects

The application begins with a comment that explains what it does. Next comes an im-
port declaration that tells the compiler we will use input and output classes (for example,
BufferedReader) from the java.io package.

The import declaration is followed by the class heading, which begins with the modifier
public. Recall that we use public to make the class accessible to the JVM. If you look a little
farther down in the application, you see that the heading of the main method also begins with
public. The JVM must also be able to find main to start execution there. In later chapters, we
will encounter situations where we want to limit access to a field, method, or class. We do
so by using the modifier private. If we used the private modifier with main, then the method
would be invisible to the JVM and it wouldn’t know where to start.

The class heading is followed by an open brace that begins the body of the class.The class
contains the method declaration for the main method.The first line of the method is its head-
ing.There are several points to emphasize regarding the method heading.Let’s take another look.

public static void main(String[] args) throws IOException

We’ve already said that the public modifier is needed to make main visible to the JVM.The
keyword static is another modifier that we will wait to explain more fully.The keyword void
identifies main as a void method rather than a value-returning method. Of course, main is
just the name of the method. Between the parentheses are the method’s parameters.
Parameters are declarations of special variables to which arguments are passed when the
method is called.That is, the values we place in the argument list of a method call are copied
to the parameter variables in the method.

The parameter to main is an array of strings called args. (We explain arrays in Chapter 10.)
If we omitted the brackets following String, then the parameter would just be a string called
args. Adding the brackets tells Java that multiple strings may be passed to main. Who would
call main, and what values would they pass to it? When PrintName is run as an application, the
operating system calls it. Some operating systems (such as Unix) allow the user to enter ar-
gument values that are passed to the application when it begins execution. In that case, the
application finds those values stored in the array of strings called args. We do not use such
arguments in this book, but Java still requires us to supply this specific parameter in the
heading of main. For now, you can just memorize this part of the heading and use it in your
applications.

At the end of the heading is a throws clause. In many Java methods, when an unusual sit-
uation arises that cannot be handled within the method, the application indi-
cates the situation to the caller by throwing an exception. In Chapter 9, we will
explore how to throw exceptions and see how to use a catch statement to respond
to an exception. For example, if readLine finds too many characters on one line to
store into a string, it throws an IOException. Java requires that whenever a method
can throw an exception, we must either catch it or explicitly throw it to the next
level. For this reason, main must explicitly indicate, using a throws clause, that it is
using a method that can throw an IOException.Then, if such an exception occurs,
the exception is passed up to the JVM and eventually the operating system out-
puts a message saying that the application terminated with an unusual condition.

Exception An unusual condi-
tion that is indicated by a
method using a throw
statement; the method’s caller
must either catch the exception
or explicitly throw it to the next
level

2.2 A p p l i c a t i o n C o n s t r u c t i o n | 73

The body of the method contains declarations of five String variables (first, last, mid-
dle, firstLast, and lastFirst), a BufferedReader variable (in), and a list of executable statements.
The compiler translates these executable statements into Bytecode instructions. During the
execution phase, these instructions are executed.

Note that neither the public nor the private modifier precedes the fields declared within
main. Fields declared inside the body of a method are local to that method, which means that
they are accessible only within the method. Thus there is no need to explicitly specify that
they are private, and they cannot be made public. In fact, the only modifier allowed in a lo-
cal declaration is final.

Notice how we use spacing in the PrintName application to make it easy for someone
else to read. We use blank lines to separate statements into related groups, and we indent
the entire body of the class and the main method.The compiler doesn’t require us to format
the code this way; we do so only to make it more readable. We will have more to say in sub-
sequent chapters about formatting code.

Here is what the program displays on the screen when it executes:

Blocks

The body of a method is an example of a block.The syntax template for a block is as follows:

A block is just a sequence of zero or more statements enclosed (delimited) by a {} pair.
Now we can redefine a method declaration as a heading followed by a block:

Method-Declaration

Heading
Block

Statement . . .

Block

{

}

74 | Java Syntax and Semantics, Classes, and Objects

In later chapters, we will define the syntax of a heading in greater detail. In the case of the
main method, Heading is simply

public static void main(String[] args)

and may include a throws clause, such as

throws IOException

if the body contains exception-throwing method calls.
Here is the syntax template for a statement, limited to the Java statements discussed in

this chapter:

A statement can be empty (the null statement).The null statement is just a semicolon (;) and
looks like this:

;

It does absolutely nothing at execution time; execution just proceeds to the next statement.
It is rarely used.

As the syntax template shows, a statement also can be a field declaration, an executable
statement, or even a block. In the latter case, we see that we can use an entire block wher-
ever a single statement is allowed. In later chapters, when we introduce the syntax for
branching and looping structures, this fact will prove very important.

We use blocks often, especially as parts of other statements. Leaving out a {} pair can dra-
matically change the meaning as well as the execution of an application.That explains why
we always indent the statements inside a block—the indentation makes a block easy to spot
in a long, complicated section of code.

Notice that the syntax templates for the block and the statement do not mention semi-
colons.Yet the PrintName application contains many semicolons. If you look back at the tem-
plates for a field declaration, assignment statement, and method call, you can see that a
semicolon is required at the end of each kind of statement.The syntax template for a block,
however, shows no semicolon after the right brace.The rule for using semicolons in Java, then,
is quite simple: Terminate each statement except a block with a semicolon.

Statement

Null-Statement
Local-Field-Declaration
Assignment-Statement
Method-Call
Block

2.3 A p p l i c a t i o n E n t r y , C o r r e c t i o n , a n d E x e c u t i o n | 75

One more thing about blocks and statements: According to the syntax template for a
statement, a field declaration is officially considered to be a statement.A declaration, there-
fore, can appear wherever an executable statement can. In a block, we can mix declarations
and executable statements if desired, but the declaration of any item must come before the
item is used.

{
char ch; // Declaration
ch = ‘A’;
System.out.println(ch);
String str; // Declaration
str = “Hello”;
System.out.println(str);

}

In this book, we group the declarations together because we think it is easier to read and,
therefore, better style.

{
// Declarations
char ch;
String str;
// Executable statements
ch = ‘A’;
System.out.println(ch);
str = “Hello”;
System.out.println(str);

}

2.3 Application Entry, Correction, and Execution

Once you have an application written down on paper, you must enter it into the computer
on the keyboard. In this section, we examine the code entry process in general. You should
consult the manual for your particular computer to learn any computer-specific details.

Entering Application Code

The first step in entering code is to get the computer’s attention.With a personal computer,
this usually means turning it on. Workstations connected to a network are usually left run-
ning all the time.You must log on to such a machine to get its attention, which involves en-
tering a user name and a password.The password system protects information that you’ve
stored in the computer from being tampered with or destroyed by someone else.

Once the computer is ready to accept your commands, you tell it that you want to en-
ter code by running the editor. The editor is an application that allows you to create and

76 | Java Syntax and Semantics, Classes, and Objects

modify code by entering information into an area of the computer’s secondary
storage called a file.

A file in a computer system is like a file folder in a filing cabinet—a collection
of data that has a name associated with it. You usually choose the name for the
file when you create it with the editor. From that point on, you refer to the file by
the name you’ve given it. The Java compiler requires that files containing Java
code have the suffix .java.

So many different types of editors exist, each with different features, that we
can’t begin to describe them all here. We can, however, describe some of their general char-
acteristics.

The basic unit of information in an editor is a display screen full of characters. The ed-
itor lets you change anything that you see on the screen.

When you create a new file, the editor clears the screen to show you that the file is
empty.You then enter your program, using the mouse and keyboard to go back and make cor-
rections as necessary. Figure 2.5 shows an example of an editor’s display screen.

Figure 2.5 Display Screen for an Editor

File A named area in second-
ary storage that is used to hold a
collection of data; the collection
of data itself

2.3 A p p l i c a t i o n E n t r y , C o r r e c t i o n , a n d E x e c u t i o n | 77

Compiling and Running an Application

Once your application is stored in a file, you compile it by issuing a command to run the Java
compiler.The compiler translates the application and then stores the Bytecode version into
a new file. Sometimes, the compiler may display a
window with messages indicating errors in the ap-
plication. Some systems let you click on an error
message to automatically position the cursor in
the editor window at the point where the error was
detected.

If the compiler finds errors in your application
(syntax errors), you must determine their cause, re-
turn to the editor and fix them, and then run the
compiler again. Once your application compiles
without errors, you can run (execute) it.

Some systems automatically run an application
when it compiles successfully. On other systems,
you must issue a separate command to run the ap-
plication. Whatever series of commands your sys-
tem uses, the result is the same: Your application is
loaded into memory and executed by the JVM.

Even though an application runs, it still may
have errors in its design. After all, the computer
does exactly what you tell it to do, even if that’s
not what you intended. If your application doesn’t
do what it should (a logic error), you must revise the
algorithm, and then go to the editor and fix the
code. Finally, you compile and run the code again.
This debugging process is repeated until the application works as planned (see Figure 2.6).

Finishing Up

On a workstation, once you finish working on your code, you have to log off by typing the
appropriate command. This practice frees up the workstation so that someone else can
use it. It also prevents someone from walking up after you leave and tampering with
your files.

On a personal computer, when you’re done working, you save your files and quit the ed-
itor.Turning off the power wipes out what’s in the computer’s short-term memory, but your
files remain stored safely on disk. It is a wise precaution to periodically make a copy of your
code files on a removable diskette. When a disk in a computer suffers a hardware failure, it
is impossible to retrieve your files. Having a backup copy on a diskette enables you to restore
your files to the disk once it is repaired.

Be sure to read the manual for your particular system and editor before you enter your
first application. Don’t panic if you have trouble at first—almost everyone does.The process

Enter program

Compile program

Compiler errors?

Run program

Execution errors?

Success!

Figure out errors,
get back into editor,
and fix errors in
program.

Go back to algorithm
and fix design. Get back
into editor and fix errors
in program.

Yes

Yes

No

Figure 2.6 The Debugging Process

78 | Java Syntax and Semantics, Classes, and Objects

becomes much easier with practice. That’s why it’s a good idea to practice first with an ap-
plication such as PrintName, where mistakes don’t matter—unlike in homework programming
assignments!

2.4 Classes and Methods

We’ve now seen how to write an application class that has just the required method, main.
This kind of coding resembles the process of coding programs that were written in older
languages that lacked support for object-oriented programming. Of course, as problem com-
plexity grows, the number of declarations and executable statements also grows. Eventually,
applications may become so immense that it is nearly impossible to maintain them.To avoid
this complexity, we can break the problem up into classes that are small enough to be eas-
ily understood and that we can test and debug independently. In this section we see how to
declare classes other than an application class, and methods other than main.

User Classes

All of the syntax that we’ve seen for declaring application classes applies for declaring non-
application classes as well. The only differences are that the latter classes do not contain a
main method, and for now we won’t use the public modifier. Java permits an application to
have just one public class. In a later chapter we will see how to create our own packages, like
java.io; with such packages, we can bundle together a collection of public classes. Within a
single application, however, the only class that can be public is the one that contains main.

As an example, let’s consider creating a class called Name that provides the responsibili-
ties needed by the PrintName application.Then we can simplify main, gaining some experience
with object-oriented programming style along the way. What would we like Name to do? It
would be nice to have it get a name from the user, store the name internally, and provide
methods that return the name in the different formats.

From our prior experience (looking for things that are familiar), we know that the class
needs fields to hold the parts of the name. Here’s what we now know we need:

class Name
{
String first; // Person’s first name
String last; // Person’s last name
String middle; // Person’s middle initial

}

The class should have a method for each of its responsibilities. In this case, we need a
method to get a name from the user, another to return the name in the first format, and a
third to return the name in the second format. It looks as though we’re ready to take a closer
look at writing methods.

2.4 C l a s s e s a n d M e t h o d s | 79

Methods

We’ve already seen that a method consists of a method heading plus a block that can con-
tain declarations and executable statements. Between the parentheses in a method head-
ing are the method’s parameters. We will examine the syntax of parameters in more detail
in a later chapter. For now, simply recognize that a parameter is made up of two parts: a
data type or class name, and an identifier (just like a field declaration).

Whereas field declarations end with a semicolon, parameters are listed between the
parentheses with commas separating them. For now, we can think of the parameters as a spe-
cial kind of local field within the method.When a method is called, the arguments from the
method call are copied into the method’s parameters.

Here’s an example of a method heading, showing a list of three parameters.

void prepareName(String arg1, String arg1, char arg3)

A call to such a method would contain three arguments: two strings and a character, in that
order. For example:

prepareName(“Herrmann”, “Herman”, ‘G’)

The arguments are copied into the parameter variables one-for-one, in the order listed, as
shown here:

Method Call or Invocation Let’s take a closer look at how we call a method and what happens when
we do so.We’ve already used the print and println methods to display strings on the screen.
Using object-oriented terminology, we sent messages to System.out. Technically, we called
the methods. A method call may or may not have to be appended to an object or class iden-
tifier with a dot in between. (We will explain these different forms of a call statement shortly.)
The arguments to print and println were the strings to be displayed; the method names
were appended to the object identifier System.out.

A call causes control of the computer to jump to the instructions in the method,
which may make use of the argument values that are copied into its parameters. When
the method completes its task, control of the computer returns to the statement follow-
ing the call.

void prepareName(String arg1, String arg1, char arg3)

 prepareName(“Herrmann”, “Herman”, ‘G’)

Here is the syntax template for a call statement:

In Java, methods come in four flavors: instance methods, class methods, helper meth-
ods, and constructors. Instance methods are associated with individual objects. Class (static)
methods, like main, are associated with classes. Helper, or auxiliary, methods are subprograms
within a class that help other methods in the class. Constructors, as discussed earlier, are
used with the new operator to prepare an object for use.

Instance Methods When we create an object of a given class, it usually has several fields associ-
ated with it. Each object of the class has its own set of these fields, called instance fields.
Because we can have more than one object of a given class,we must designate to which object
the method will be applied, so that the method can access the fields of that particular object.
Stated in object-oriented terms, we must designate to which object the message is being sent.
The object name is appended in front of the method name with a dot in between. In the call

System.out.println(“Good morning.”);

System.out is the name of the object to which the println method is applied.
Most of our methods are instance methods. Their headings are written without any

special modifiers. For example:

public void updateLastName(String lastName)

The use of public here indicates that we can use the method outside of its class. Because the
class is declared within an application class, “outside” means that it can be accessed by main.
It is not public beyond the application class, so it is not visible to the JVM.

Class Methods When we declare a method with the static modifier, it belongs to the class
rather than to objects of that class. Hence it is called a class method. Here’s an example of a

class method heading:

public static void setNameFormat(String format)

What does it mean for a method to belong to a class? Such a method is inde-
pendent of all objects instantiated from the class. It does not have access to the
fields of the objects, but rather has access only to those fields that are likewise
declared with the static modifier. Such fields are called class fields. Instance
methods have access to both instance fields (fields declared without the static
modifier) and class fields.

Object-Name . Method-Name (argument , argument. . .) ;

Call

80 | Java Syntax and Semantics, Classes, and Objects

Class method A method that
belongs to a class rather than its
object instances; identified as
such with the static modifier

Class field A field that belongs
to a class rather than its object
instances; identified as such with
the static modifier

2.4 C l a s s e s a n d M e t h o d s | 81

To call a class method, we append its name to the class identifier instead of an object
identifier. We can use a class method to specify properties that are common to all objects.
For example, in a Date class, where we can format a date for output in multiple ways, we might
have a method that specifies the format to use for all date objects:

Date.setDefaultFormat(Date.MONTH_DAY_YEAR);

You may have noticed that the argument in this call is a constant that is also appended to
the class name. This argument exemplifies the use of a class field. The Date class provides
us with constants representing the different date formats that we can use as arguments to
its methods.

Helper Methods Helper methods are declared privately within a class.They are used in complex
classes to help organize the code or to provide operations that are used only internally to the class.
Thus helper methods are called from within other methods of the class.A call to a helper method
is not appended to an object or class identifier because it is clear which class it is in,and it is not
associated with any specific object.We won’t use helper methods until much later in this book.

Constructors We use essentially the same syntax for a constructor as for any other method,
but with two special differences: (1) the method name is identical to the class name and (2)
there is no void keyword. Constructors are almost always declared as public; a private con-
structor would be nearly useless because it could be called only from within the class. Here
is an example constructor heading for a class called Name:

public Name(String firstName, String lastName, String middleInit)

Value-Returning Methods All of the method headings we’ve examined so far have been for void
methods or constructors. Java also supports value-returning methods. Let’s see how they dif-
fer from void methods.

Value-returning methods are called from within expressions and can be instance meth-
ods, class methods, or helper methods. Constructors are neither void methods nor value-re-
turning methods; they are a special case that is separate from the other kinds of methods.

The same rules apply for writing a method call, whether it is void or value-returning.The
only difference relates to where the call appears (in an expression or as a separate statement).
For an instance method, we append the method name to the object name with a dot in be-
tween. For a class method, we append the method name to the class name with a dot sep-
arating them. We call a helper method simply by using its name. Here are example calls:

nameString = myName.firstLast(); // Instance call; myName in an object
formatString = Name.getFormat(); // Class call; Name is the class name
initialchar = getInitial(middle); // Helper call; used inside of Name class only

82 | Java Syntax and Semantics, Classes, and Objects

As you might guess, the heading for a value-returning method omits the reserved word
void. In its place we write the name of a class or a primitive type. Here is an example of a head-
ing for a value-returning instance method called firstLast that takes no parameters and re-
turns a string. Notice that the absence of the static modifier makes it be an instance method.

public String firstLast() // Public method; returns a string; has no parameters

There is one other difference between value-returning and void methods that appears
in the method body. We must indicate the value to be returned through the use of a return
statement.The syntax of the return statement is simple:

Let’s look at a complete value-returning method by finishing the definition of the instance
method firstLast. The following code assumes that the fields first, last, and middle are
string variables declared as instance fields in the enclosing Name class:

public String firstLast() // Returns name in first-last format
{
return first + “ “ + last;

}

Is that it? Yes, matters really are that simple. In fact, many value-returning methods are
equally as simple.They are often used as a way to provide a shorthand notation for a formula.
One characteristic of the object-oriented programming style is that we use many short meth-
ods as a means of building up a level of abstraction that simplifies the coding of larger prob-
lems. If we hide all of the details within classes and their methods, then the final solution
can be coded in a way that is simple and easy to understand, and thus easy to debug and
maintain. We call this kind of hiding encapsulation, and we discuss the underlying concepts
further in Chapter 4.

Now that we’ve seen how to write methods and classes, let’s go through the process of
building an object-oriented version of PrintName. We’ll do so in the context of a case study.

return expression ;

Return-Statement

CASE STUDY 83

DISPLAY A NAME IN MULTIPLE FORMATS

Problem: You are beginning to work on a problem that needs to output names in several
formats.To start, you decide to write a short Java application that inputs a single name
and displays it in a variety of formats, so you can be certain that all of your string
expressions are correct.

Input: The name in three parts, as input via System.in:
First
Last
Middle Initial

Output: The input name in two formats:
First Last
Last, First, Middle Initial.

Discussion: You could easily just type the name in the two formats as string literals in
the code, but the purpose of this exercise is to develop and test the string expressions
you need for the larger problem. We also know that a Name is an object in that problem,
so we should develop such an object from the beginning.

Because you plan to use the same expressions in the full application, you decide that
this preliminary application should implement a Name class that provides a constructor
to input the name as well as value-returning methods that provide the name in the two
formats.Then you can reuse the class in the full application, which will keep this appli-
cation very simple.

A name consists of three parts: first name, last name, and middle initial.These parts
become the fields in the class. Here is the algorithmic solution:

As we noted in our earlier discussion, three methods are associated with this class: a
constructor and two value-returning methods. Let’s look first at the constructor. We
know that it must be called Name. Its job is to input the name from System.in.To do so, it
must first instantiate a BufferedReader, then prompt for input of each of the three parts
and read each part via the BufferedReader.

Define Fields

String first
String last
String middle

CASE STUDY
84

Our two value-returning methods use straightforward string expressions that are
identical to those in the original problem.

We are now ready to write the code for the class. What about the application? Our
application is really just meant to test the class. Software engineers refer to such a test
application as a driver.

It’s hard to believe that the main method has been reduced to just four steps, but that’s
the beauty of object-oriented programming.

Now we’re ready to write the whole application. We also include comments as
necessary.

//**
// NameDriver application
// This application inputs a name and prints it in
// two different formats
//**
import java.io.*; // Package for stream readers
public class NameDriver
{
static class Name
{
String first; // Person’s first name

Name Driver

Define a Name testName
Instantiate a Name object and assign it to testName
Print First Last Format
Print Last First Middle Format

Last First Middle Format

return last + “, “ + first + ”, “ + middle + “.”

First Last Format

return first + “ “ + last

Name Constructor

Define a BufferedReader in
Instantiate a BufferedReader using an InputStreamReader using System.in, and

assign it to in
Prompt for first name on System.out
Get first name from in
Prompt for last name on System.out
Get last name from in
Prompt for middle initial on System.out
Get middle initial from in

CASE STUDY 85

String last; // Person’s last name
String middle; // Person’s middle initial

public Name() throws IOException // Gets a name from System.in
{
BufferedReader in; // Input stream for strings
// Instantiate in using System.in
in = new BufferedReader(new InputStreamReader(System.in));
System.out.print(“Enter first name: “); // Prompt for first name
first = in.readLine(); // Get first name
System.out.print(“Enter last name: “); // Prompt for last name
last = in.readLine(); // Get last name
System.out.print(“Enter middle initial: “); // Prompt for middle initial
middle = in.readLine(); // Get middle initial

}

public String firstLastFormat () // Returns name in first-last format
{
return first + “ “ + last;

}

public String lastFirstMiddleFormat() // Returns name as last, first, m.
{
return last + “, “ + first + “, “ + middle + “.”;

}
} // End of Name Class

// Driver for testing Name class
public static void main(String[] args) throws IOException
{
Name testName; // Declare a name
testName = new Name(); // Instantiate a name
System.out.println(“Name in first-last format is “ +

testName.firstLastFormat()); // First format
System.out.println(“Name in last-first-initial format is “ +

testName.lastFirstMiddleFormat()); // Second format
}

}

The output from the program follows:

CASE STUDY
86

This application does exactly what the original version did, yet it is longer. In some
ways it seems like a waste to make this extra effort.The advantage, however, is that
now we have a Name class that we can use in other applications. We also have the ability
to instantiate multiple names just by adding declarations and constructor calls to the
application.To add another format, we could simply write another method as part of
the class and add another statement to the driver.The object-oriented version is much
easier to reuse, to maintain, and to extend.The original version had fewer lines of code,
but was monolithic in its construction, and thus solved one specific problem.The
object-oriented version is divided into useful pieces that can be applied to solve many
different problems. We’ve done a little more work now, but have potentially saved much
more work in the future.

2.5 Testing and Debugging

Testing and Debugging Hints

1. You must declare every identifier that isn’t a Java reserved word. If you use a name that hasn’t
been declared, you will receive an error message.

2. If you try to declare an identifier that is the same as a reserved word in Java, you will receive an
error message from the compiler. See Appendix A for a list of reserved words.

3. Java is a case-sensitive language, so two identifiers that are capitalized differently are treated as
different identifiers.The word main and all Java reserved words use only lowercase letters.

4. Check for mismatched quotes in char and String literals. Each char literal begins and ends with
an apostrophe (single quote). Each String literal begins and ends with a double quote.

5. Use only the apostrophe (') to enclose char literals. Most keyboards include a reverse apostrophe
(') that is easily confused with the apostrophe. If you use the reverse apostrophe, the compiler
will issue an error message.

6. To use a double quote within a literal string, use the two symbols \” in a row. If you use just a
double quote, it ends the string, and the compiler then sees the remainder of the string as an er-
ror. Similarly, to write a single quote in a char literal, use the two symbols \’ without any space
between them (that is, '\'' is the char literal for a single quote).

7. In an assignment statement, make sure that the identifier to the left of = is a variable and not a
named constant.

8. In assigning a value to a String variable, the expression to the right of = must be a String expres-
sion or a literal string.

9. In a concatenation expression, at least one of the two operands of + must be of the class String.

2.5 T e s t i n g a n d D e b u g g i n g | 87

10. Make sure your statements end with semicolons (except blocks, which do not have a semicolon
after the right brace).

11. On most Java systems, the file name that holds the program must be the same as the name of
the class, but with the extension .java. For example, the program NameDriver is stored in a file
called NameDriver.java. Using another name will produce an error message from the compiler.

12. Be careful when using the /* */ pair to delimit comments. If you forget the */, then everything
that follows until the end of the next /* */ comment (or the end of your program) will be treated
as a comment. Also, remember to avoid starting comments of this form with two asterisks (/**)
because comments of that form are used by the javadoc program.

13. Confirm that every open brace ({) in your program is matched by a close brace (}) in the appropriate
place. Braces determine the beginning and end of blocks in Java, and their placement affects the
structure of the program. Similarly, it is always wise to confirm that parentheses are used in
matched pairs in your program.

14. Instantiate instances of every class variable by using new.

15. When instantiating an object in an argument list, include the new operator before the class name.

16. Objects to which methods are being applied must have the method name appended to the object
name with a dot in between.

17. Be clear about which methods are class methods and which are instance methods. When you
call a class method, its name is appended to the name of the class. When you call an instance
method, its name is appended to an object identifier.

18. Make sure that the application class and main are public, and that any user classes are not public.

19. Include the throws clause in the heading of any method that uses readLine.

Summary

The syntax (grammar) of the Java language is defined by a metalanguage. In this book,
we use a form of metalanguage called syntax templates. We describe the semantics
(meaning) of Java statements in English.

Identifiers are used in Java to name things. Some identifiers, called reserved words,
have predefined meanings in the language; others are created by the programmer.
The identifiers you invent are restricted to those not reserved by the Java language.
(Reserved words are listed in Appendix A.)

Identifiers are associated with memory locations through declarations. A
declaration may give a name to a location whose value does not change (a constant)

88

or to a location whose value can change (a variable). Every constant and variable has
an associated data type or class. Java provides many predefined data types and
classes. In this chapter, we examined the char type and the String class. A class
contains fields and methods that describe the behavior of an object. An object is an
instance of the class that describes it.

You use the assignment operator to change the value of a variable by assigning the
value of an expression to it. At execution time, the expression is evaluated and the re-
sult is stored into the variable. With the String class, the plus sign (+) is an operator
that concatenates two strings. A string expression can concatenate any number of
strings to form a new String value.

Simple output to the screen is accomplished by using the System.out object that is
provided in Java.Two methods are defined on this object: print and println.
System.out.print("A string") prints whatever is between the parentheses on the
screen. println behaves in exactly the same way as print, except that println goes to
the next line after it finishes the printing. Simple input is not so simple in Java,
however; it requires that we filter the input from System.in first through an
InputStreamReader and then a BufferedReader, which enables us to input a line of typing
as a string value. (We defer the use of a graphical user interface until Chapter 8.)

A Java application is a public class containing one or more class declarations, which
are fields and methods. One of the methods must be named main. Execution of an
application class always begins with the main method. User classes may also be
included in the application class, but cannot be public.

A class begins with import declarations and a heading, then a block containing class
declarations of fields and methods. Methods are declared with a heading and a block.
Four types of methods exist: instance methods, class methods, helper methods, and con-
structors. Each type of method is called with its name and an argument list, but preceded
by an object name, a class name, nothing, or new, respectively. A constructor is called
when an object is instantiated via the new operator, and its name is the same as the name
of the class.

Quick Check

1. What is syntax? (p. 42)

2. Why do we write meaningful identifiers in our code? (p. 48)

3. What is stored in a variable that is of a primitive type? (p. 63)

4. How does a class in Java differ from a class in the abstract sense? (pp. 50–51)

5. How do objects in the general sense differ from objects in Java? (pp. 50–51)

6. Is char an object or a primitive type? (pp. 48–50)

7. What distinguishes a named constant from a variable field? (pp. 57–58)

8. When an object is assigned to a variable, what is actually stored there? (p. 63)

89

9. What happens when a void method is called? (pp. 65–66)

10. What are the essential components of a Java application? (pp. 70–75)

11. What distinguishes the heading of a void method from a value-returning
method syntactically? (pp. 81–82)

12. Use the following syntax template to decide whether your last name is a valid
Java identifier. (pp. 46–47)

13. Write a Java constant declaration that gives the name ZED to the value'Z'.
(pp. 57–58)

14. Declare a char variable named letter and a String variable named street.
(pp. 54–56)

15. Assign the value "Elm" to the String variable street. (pp. 59–63)

16. Add the value " Street" to the value in street. (pp. 59–63)

17. What are the heading and body of a class? (pp. 70–75)

18. What are the heading and body of a void method? (pp. 78–79)

19. Write an output statement that displays the title of this book (Introduction to
Programming and Problem Solving with Java) on System.out. (pp. 64–67)

20. Write a call to a constructor for the class Name. (pp. 68–69)

21. The following code is incorrect. Rewrite it, using correct comment syntax.
(p. 64)

String address; / Employee's street address,

/ including apartment

22. What does the following code segment output on the screen? (pp. 64–67)

String str;

str = "Abraham";

System.out.println("The answer is " + str + "Lincoln");

Letter

_
$

. . ._
$

Letter
Digit

90

Answers

1. Syntax is the set of rules that defines valid constructs in a programming language. 2. Meaningful identifiers
make the code easier to debug and maintain. 3. The actual value of the primitive type is stored in the variable.
4. A class in Java defines an object that can be instantiated. In the abstract sense, a class describes an object in
a problem. 5. Objects in Java represent objects in the general sense through code that simulates their behavior.
6. It is a primitive type. 7. The use of the reserved word final. 8. The memory address where the object’s data is
stored. 9. The argument values are copied into the parameter variables of the method and the method is exe-
cuted. When it returns, execution resumes with the next statement. 10. A public class containing a method
named main. 11. The use of the reserved word void instead of a class name or type name. 12. Unless your last
name is hyphenated, it probably is a valid Java identifier. 13.final char ZED = 'Z';
14. char letter;

String street;
15. street = "Elm"; 16. street = street + " Street"; 17. A class heading consists of modifiers, the reserved
word class, and a name.The body is a block. 18. A method heading consists of modifiers, the reserved word
void, a name, and a parameter list.The body is a block.
19. System.out.print("Introduction to Programming and Problem Solving with Java");
20. new Name()
21. String address; // Employee's street address,

// including apartment

or

String address; /* Employee's street address,
including apartment */

22. The answer is Abraham Lincoln

Exam Preparation Exercises

1. Mark the following identifiers either valid or invalid.

Valid Invalid

a. item#1 ______ ______

b. data ______ ______

c. y ______ ______

d. 3Set ______ ______

e. PAY_DAY ______ ______

f. bin–2 ______ ______

g. num5 ______ ______

h. Sq Ft ______ ______

91

2. Given these four syntax templates:

mark the following “Dwits” as either valid or invalid.

Valid Invalid

a. XYZ ______ ______

b. 123 ______ ______

c. X1 ______ ______

d. 23Y ______ ______

e. XY12 ______ ______

f. Y2Y ______ ______

g. ZY2 ______ ______

h. XY23X1 ______ ______

3. Match each of the following terms with the correct definition (1 through 15)
given below.There is only one correct definition for each term.

_____ a. program _____ g. variable

_____ b. algorithm _____ h. constant

_____ c. compiler _____ i. memory

_____ d. identifier _____ j. syntax

_____ e. compilation phase _____ k. semantics

_____ f. execution phase _____ l. block

(1) A symbolic name made up of letters, digits, underscores, and dollar signs,
but not beginning with a digit

(2) A place in memory where a data object that cannot be changed is stored

(3) A program that takes a program in a high-level language and translates it
into machine code or Bytecode

(4) An input device

(5) The time spent planning a program

(6) Grammar rules

(7) A sequence of statements enclosed by braces

(8) Meaning

Dwit

Twitnit . . .

Twitnit

Twit . . . Nit . . .

Twit

X
Y
Z

Nit

1
2
3

92

(9) A program that translates assembly language instructions into machine
code

(10) When the compiled version of a program is being run

(11) A place in memory where a data value that can be changed is stored

(12) When a program in a high-level language is converted into machine code
or Bytecode

(13) A part of the computer that can hold both program and data

(14) Instructions for solving a problem in a finite amount of time with a fi-
nite amount of data

(15) Data type specifications and instructions used by a computer to solve a
problem

4. Which of the following are reserved words and which are programmer-defined
identifiers?

Reserved Programmer-Defined

a. char ______ ______

b. sort ______ ______

c. INT ______ ______

d. new ______ ______

e. Public ______ ______

5. Reserved words can be used as variable names. (True or False)?

6. In a Java application containing just one method, that method can be named ei-
ther main or Main. (True or False?)

7. If s1 and s2 are String variables containing "blue" and "bird", respectively, what
does each of the following statements print?

a. System.out.println("s1 = " + s1 + "s2 = " + s2);

b. System.out.println("Result:" + s1 + s2);

c. System.out.println("Result: " + s1 + s2);

d. System.out.println("Result: " + s1 + ' ' + s2);

8. Show precisely what is output by the following statement:

System.out.println("A rolling" +

"stone" +

"gathers" +

"no" +

"moss");

9. How many characters can be stored into a variable of type char?

10. How many characters are in the empty string?

93

11. A variable of the class String can be assigned to a variable of type char. (True or
False?)

12. A literal string can be assigned to a variable of the class String. (True or False?)

13. What is the difference between the literal string "computer" and the identifier
computer?

14. What is output by the following code segment? (All variables are of the class
String.

street = "Elm St.";

address = "1425B";

city = "Amaryllis";

state = "Iowa";

streetAddress = address + " " + street;

System.out.println(streetAddress);

System.out.println(city);

System.out.println(", " + state);

15. Correct the following program so that it displays "Martin Luther King Jr."

// This application is full of errors

class LotsOfErrors;

{

void main (string args[]);

{

constant String FIRST : Martin";

constant String MID : "Luther;

constant String LAST : King

String name;

character initial;

name = Martin + Luther + King;

initial = MID;

LAST = "King Jr.";

System.out.println('Name = ' + name));

System.out.println(mid

}

16. What does a constructor do?

17. Name three kinds of methods other than a constructor.

18. How do you invoke an instance method?

19. Name two instance methods associated with the System.out object.

94

20. What does the expression “sending a message to” mean?

21. Describe the role of a parameter list.

22. What do we call a public class that contains a method called main?

23. What is the function of the readLine method of the class BufferedReader?

24. Do we use a return statement with a void method?

25. We have used the convention that method names begin with a lowercase letter.
Why does a constructor have to begin with an uppercase letter?

Programming Warm-Up Exercises

1. Write the output statement that prints your name.

2. Write three consecutive output statements that print the following three lines.

The moon

is

blue.

3. Write declaration statements to declare three variables of the class String and
two variables of type char.The String variables should be named make, model, and
color.The char variables should be named plateType and classification.

4. Write a series of output statements that display the values in the variables
declared in Exercise 3. Each value should be preceded by an identifying message.

5. Change the PrintName application (pages 71–72) so that it also prints the name in
the following format

First-name Middle-initial. Last-name

Define a new String variable to hold the name in the new format and assign it
the string using the existing variables, any literal strings that are needed for
punctuation and spacing, and concatenation operations. Print the string, labeled
appropriately.

6. Print the following groups of text.

a. Four score

and seven years ago

b. Four score

and seven

years ago

c. Four score

and

seven

years ago

95

d. Four

score

and

seven

years

ago

7. Write the declarations and statements necessary to input a string from
System.in.

8. Write a class that represents a date, with the month, day, and year represented
by strings.The class should have a constructor that takes the three parts of the
date as parameters, and value-returning methods that return the date in
mm/dd/yyyy format and in yyyy-mm-dd format. (Hint: The general structure of
this class is very similar to Name.)

9. Enter and run the following application. Be sure to type it exactly as it appears
here.

//**

// HelloWorld application

// This application displays two simple messages

//**

public class HelloWorld

{

public static void main(String args[])

{

final String MSG1 = "Hello world.";

String msg2;

System.out.println(MSG1);

msg2 = MSG1 + " " + MSG1 + " " + MSG1;

System.out.println(msg2);

}

}

Programming Problems

1. Write a Java application that displays a series of Haiku poems. A Haiku poem is
written in three phrases.The first phrase has five syllables, the second has seven
syllables, and the third phrase has five syllables. For example:

96

Bright flash then silence

My expensive computer

Has gone to heaven

Your program should input three strings with five syllables and two strings of
seven syllables. Output every possible 5–7–5 permutation of these phrases. Do
not use the same phrase twice in any poem. See if you can create phrases that
make sense together in every permutation. Be sure to include appropriate com-
ments in your code, choose meaningful identifiers, and use indentation as
shown in the code in this chapter.

2. Write a program that simulates the children’s game called “My Grandmother’s
Trunk.” In this game, the players sit in a circle, and the first player names some-
thing that goes in the trunk: “In my grandmother’s trunk, I packed a pencil.”The
next player restates the sentence and adds something new to the trunk: “In my
grandmother’s trunk, I packed a pencil and a red ball.” Each player in turn adds
something to the trunk, attempting to keep track of all the items that are already
there.

Your program should simulate just five turns in the game. Starting with the
empty string, simulate each player’s turn by reading and concatenating a new
word or phrase to the existing string, and print the result.

3. Write a program that prints its own grading form.The program should output
the name and number of the class, the name and number of the programming
assignment, your name and student number, and labeled spaces for scores
reflecting correctness, quality of style, late deduction, and overall score. Have the
program input the name, ID number, and assignment number as strings. An ex-
ample of such a form is the following:

CS–101 Introduction to Programming and Problem Solving

Programming Assignment 1

Sally A. Student ID Number 431023877

Grade Summary:

Program Correctness: Quality of Style:

Late Deduction: Overall Score:

Comments:

97

Case Study Follow-Up

1. Change the NameDriver application so that the two formats are shown in the
opposite order on the screen.

2. In the NameDriver application, explain what takes place in the return statement
in the method FirstLastFormat.

3. Change the NameDriver application so that it also prints the name in the
following format:

First-name Middle-initial. Last-name

Make the change by adding a method to the class Name.

4. Change the NameDriver application so that it inputs two names and displays
them in the different formats.

Knowledge Goals
• To understand the relationship between primitive and reference classes

• To see why different numeric types have different ranges of values

• To understand the differences between integral and floating-point types

• To see how precedence rules affect the order of evaluation in an expression

• To understand implicit type conversion and explicit type casting

• To be able to use additional operations associated with the String type

• To understand how a value-returning method works

Skill Goals
To be able to:

• Declare named constants and variables of type int and double

• Construct simple arithmetic expressions

• Evaluate simple arithmetic expressions

• Construct and evaluate expressions that include multiple arithmetic
operations

• Use Java math methods in expressions

• Format the statements in a class in a clear and readable fashion

• Write a simple value-returning method

• Develop a simple class representing an object

• Place classes in separate files and import them into an application

Arithmetic
Expressions

1927
First public
demonstration of
television in the U.S.
takes place: a
speech in D.C. is
broadcast in New
York

1929
Experimentation
with color television
begins; Bell
Laboratories is the
first in the U.S. to
demonstrate the
technology

1935
The IBM 601 punch-
card machine and
the electric
typewriter are
introduced

1935
IBM graduates its
first class of female
service technicians

1936
Konrad Zuse begins
developing the first
binary digital
computer to help
automate
engineering and
architectural
drawing

1937
Howard Aiken
proposes a
calculating machine
that can carry out
operations in a
predetermined
sequence

3
C H A P T E R

we examined enough Java syntax to be able to construct
application classes using assignment and simple input and output, and
to write a user class within an application. In that chapter, we focused on
the char and String types and saw how to construct expressions using the
concatenation operator. In this chapter, we continue to write applications
that use assignment and simple I/O, but we concentrate on additional
built-in data types: int, long, float, and double. These numeric types
include multiple operators that enable us to construct complex arith-
metic expressions. We show how to make expressions even more
powerful by using calls to Java’s value-returning math methods. In addi-
tion, we return to the topics of classes and methods and see how to write
a non-application class that includes a class as well as instance fields and
methods. Such classes can be stored in files separate from the applica-
tion and imported into it.

In Chapter 2,

1937
George Stibitz
develops the “Model
K,” the prototype
binary adder circuit

1937
Alan Turing
introduces the idea
of his “Turing
Machine” a
theoretical model
for a general
purpose computer

1938
Bill Hewlett and
Dave Packard begin
Hewlett-Packard in
a garage with $538
in capitol

1939
John Vincent
Atanasoff and Cliff
Berry create a
model for the
electronic-digital
computer

1943
Construction of the
ENIAC (Electronic
Numerical Integrator
and Computer)
begins at the Moore
School of Electrical
Engineering in
Philadelphia

1943
Invention of the first
all-electronic
calculating device,
the Collosus, used
by England during
World War II to
decrypt secret
messages

Java data types

primitive

integral floating point boolean array interface class

byte char short int long float double

reference

100 | Arithmetic Expressions

Figure 3.1 Java data types

3.1 Overview of Java Data Types

In Chapter 2, we informally discussed the distinctions among Java’s data types. Now it is time
to make this intuitive understanding formal. Java’s built-in data types are organized into
primitive types and reference types (see Figure 3.1).

You might have noticed that String isn’t listed in Figure 3.1. In Chapter 2, we noted that
String is an example of a class construct, which falls under the category of reference types.
We also used classes such as BufferedReader, InputStreamReader, and System. Recall that our
naming convention is to capitalize the first letter of all classes in this manner, so as to help
us identify them in our code.

The division of Java’s data types into primitive and reference types stems from the way that
Java stores values of each type in memory.We briefly discussed the distinction between these
types in Chapter 2, and now we are ready to take a deeper look at them. Recall that Java stores
each primitive value at the memory address it chooses for it.When we assign a value to a vari-
able of a primitive type, Java copies the value into the address that has been chosen for the vari-
able.This procedure is possible because each primitive type takes a specified amount of space.

Because reference types can contain different numbers of fields and methods, they con-
sume different amounts of the computer’s memory.Most are too large to fit into a single mem-
ory location, so Java stores the address of the memory location where the object can be found.
That is, the chosen location contains a binary number that tells the computer where the ob-
ject is stored.When Java assigns an object to a variable, it copies this address into the variable.

Let’s look at a pair of examples that demonstrate the difference between primitive val-
ues and reference values.

char letter;
String title;
String bookName;

3.1 O v e r v i e w o f J a v a D a t a T y p e s | 101

Primitive type Reference type
letter

'J'

title

"Programming and Problem Solving with Java"

01011010101

01011010101

01011010101

Memory address number of the
start of the string value

Location containing
first part of string

Subsequent locations in memory

After executing the assignment: bookName = title;

bookName

Figure 3.2 Primitive types and reference types

letter = 'J';
title = "Programming and Problem Solving with Java";
bookName = title;

When we declare the variables letter,title, and bookName, addresses are assigned to these vari-
ables.When we assign the value 'J' to the char variable letter, Java stores the value 'J' into it.
When we assign the string "Programming and Problem Solving with Java" to the String variable
title, Java chooses locations into which to store the string, and it stores the address of the first
location into title. If we assign the value of title to another String variable called bookName,
then Java simply copies the value stored in title (the address) to the place it chose for bookName.

Figure 3.2 illustrates the difference between primitive and reference types. It also demon-
strates that a reference type offers the advantage of saving memory space when copying val-
ues that take up multiple locations in memory.The lengthy value is stored just once, and each
of the variables assigned that value takes up just one location. If Java stored reference types
the same way it stores primitive types, it would have to store a copy of the whole value in
each variable, which would consume more space.

The fact that only one copy of an object exists is, however, a double-edged sword. If you
assign an integer value to several variables and then change the value in one of those vari-
ables, the change doesn’t affect any of the other copies. With a reference type, in contrast,
each variable stores a reference to the single copy of the object.Thus, if you change the ob-
ject through one of the references, then it affects all of the other references.

102 | Arithmetic Expressions

Value 1 Value 2

output

System.out

output = System.out;
output.print("Value 1");
System.out.println("Value 2");

Figure 3.3 An object may be changed through any of its references

For example, you could declare a variable of the class PrintStream (which is the class
that defines System.out), called output, and assign System.out to it:

PrintStream output;
output = System.out;

Both variables refer to the same object representing the standard I/O window on the
screen. Printing with either one of them causes the output to appear in the same window,
as shown in Figure 3.3.

Having variables that are synonyms for the same object can occasionally be useful, but
often it leads to mystifying behavior. When the value in an object can be changed through
different variables, it becomes more difficult to keep track of the source of the changes.You
may spend a long time trying to figure out how an assignment statement could possibly
have produced the erroneous value in an object, only to discover that an entirely different
assignment to a synonym for the object caused the problem. At this stage in your program-
ming career, it is best to avoid the use of synonyms.

You should understand that assigning a new object to a variable doesn’t change the ob-
ject that was previously assigned to it. Instead, the variable now refers to the new object; the

3.2 N u m e r i c D a t a T y p e s | 103

old object remains unchanged. It’s like when you move to a new house or apartment. Your
old residence still exists, but you go home to the new place each day.To stretch this analogy
a bit farther, if no one else is living in your old residence, and it remains abandoned for long
enough, it may be demolished and the land reused.The same thing happens in Java. If no vari-
able refers to an object, then eventually the JVM notices this lack of a reference and reclaims
its memory space so that it can be reused.

The name “reference,” by the way, comes from the fact that the contents of a reference
variable refer to another place in memory. You can also think of a reference type as being
analogous to the call number of a library book. Armed with the call number, you can go
into the library and find the book. If a friend wants to find the same book, you can give a
copy of the call number to him or her, which is much easier than giving your friend a copy
of the book.

Do not feel overwhelmed by the quantity of data types shown in Figure 3.1. Its purpose
is simply to give you an overall picture of what is available in Java. Except for the String and
I/O classes, this chapter focuses mainly on the primitive types. First we look at the primitive
integral types (used primarily to represent integers), and then we consider the floating-point
types (used to represent real numbers containing decimal points). We postpone detailed
coverage of the remaining primitive type, boolean, until Chapter 4.

3.2 Numeric Data Types

You already are familiar with the basic concepts of integers and real numbers in mathe-
matics. However, as used on a computer, the corresponding data types have certain limita-
tions, which we now examine.

Integral Types

The data types byte, short, int, and long are known as integral types (or integer types) because
they refer to integer values—whole numbers with no fractional part. In Java, the simplest form
of integer value is a sequence of one or more digits:

22 16 1 498 0 4600

Commas are not allowed.
A minus sign preceding an integer value makes the integer negative:

–378 –912

The data types byte, short, int, and long are intended to represent different sizes of in-
tegers, from smaller (fewer bits) to larger (more bits), as shown in Figure 3.4.

The Java language specifies the sizes of the integral types to match those shown in the
figure.The more bits in the type, the larger the integer value that can be stored.

104 | Arithmetic Expressions

byte

short

int

long

8 bits

16 bits

32 bits

64 bits

Figure 3.4 TheiIntegral types in Java

The int type is, by far, the most common data type for manipulating integer data. The
byte and short types are used far less frequently. In Java you nearly always use int for ma-
nipulating integer values, but sometimes you may use long if your application requires val-
ues larger than the maximum int value.The range of int values is from –2147483648 through
+2147483647.As noted in Chapter 1, numbers like these remind us that the binary number sys-
tem is working in the background.

A variable of type int can hold any value with up to 9 decimal digits, such as a Social
Security number. For values with more digits, such as a telephone number with country and
area codes, this type isn’t large enough. Such numbers require the long type, which can hold
any integer up to 18 digits in length.

When you write a literal integer value, Java automatically assumes that it is of type int.
To write a literal of type long, you must follow the last digit of the number with the letter “L”.
You may also use the lowercase “l”, but it looks so much like the digit “1” that it may be im-
possible for a person to recognize the literal as long when reading your code.We use only the
uppercase “L” in this text. Here are some examples of literals of type int and long:

Literal Type

0 int

0L long

2001 int

18005551212L long

18005551212 invalid (11 digits are too many for the type int)

If your code tries to compute a value larger than a type’s maximum value, it results in
integer overflow. Some programming languages give you an error message when overflow
occurs, but Java doesn’t. If a computation in Java produces a value that is too large for the type
to represent, you simply get an erroneous result.

3.2 N u m e r i c D a t a T y p e s | 105

One caution about integer literals in Java: A literal constant beginning with a zero is as-
sumed to be an octal (base–8) number instead of a decimal (base–10) number. For exam-
ple, if you write

015

the Java compiler takes it to mean the decimal number 13. If you aren’t familiar with the oc-
tal number system, don’t worry about why an octal 15 is the same as a decimal 13. The im-
portant thing to remember is not to start a decimal integer literal with a zero (unless you want
the number 0, which is the same in both octal and decimal).

Floating-Point Types

We use floating-point types (or floating types) to represent real numbers. Floating-point
numbers have an integer part and a fractional part, with a decimal point in between. Either
the integer part or the fractional part, but not both, may be missing. Here are some examples:

18.0 127.54 0.57 4. 193145.8523 .8

Starting 0.57 with a 0 does not make it an octal number. Only with integer values does a
leading 0 indicate an octal number.

Just as the integral types in Java come in different sizes (byte, short, int, and long), so
do the floating-point types. In increasing order of size, the floating-point types are float
and double (meaning double precision).The double type gives us a wider range of values and
more precision (the number of significant digits in the number) than the float type, but
at the expense of twice the memory space to hold the number. In Java, int and float val-
ues take up 32 bits of memory space, whereas both long and double take up 64 bits of mem-
ory space.

Floating-point values also can have an exponent, as in scientific notation. (In scientific
notation, a number is written as a value multiplied by 10 to some power.) Instead of writing
3.504 � 1012, in Java we would write 3.504E12.The E (you can also use e) means “exponent of
base 10.”The number preceding the letter E doesn’t need to include a decimal point. Here are
some examples of floating-point numbers in scientific notation:

1.74536E–12 3.652442E4 7E20 –8.01994E–23

A float value can represent any 7-digit decimal number with an exponent in the range
of –45 through 38. A double value can represent any 15-digit decimal number with an expo-
nent ranging from –324 to 308.

In Java, the compiler automatically assumes that floating-point literals of the form
shown here are of type double.To write a literal of type float, you must end the number with
the letter F (or f). Here are some examples of floating-point literals:

106 | Arithmetic Expressions

Literal Type

0.0 double

0.0f float

2.001E3 double

2.001E3F float

1.8E225F invalid (the exponent 225 is too large for the type float)

We’ll discuss floating-point numbers in more detail in Chapter 12, but there is one more
thing you should know about them now. Computers cannot always represent floating-point
numbers exactly. In Chapter 1, you learned that the computer stores all data in binary (base–2)
form. Many decimal floating-point values can only be approximated in the binary number
system. Don’t be surprised if your application prints out the number 4.8 as 4.799998. In most
cases, slight inaccuracies in the rightmost fractional digits are to be expected and are not the
result of programmer error.

3.3 Declarations for Numeric Types

Just as with the types char and String, we can declare fields of type int, long, float, and dou-
ble. Such declarations use the same syntax introduced earlier, except that the literals and
the names of the data types are different.

Named Constant Declarations

In the case of named constant declarations, the literal values in the declarations are nu-
meric instead of being characters in single or double quotes. For example, here are some con-
stant declarations that define int, long, float, and double values. For comparison, declarations
of char and String values are included.

final double PI = 3.14159;
final float E = 2.71828F;
final long MAX_TEMP = 1000000000L;
final int MIN_TEMP = –273;
final char LETTER = 'W';
final String NAME = "Elizabeth";

Although we put character and string literals in quotes, we do not follow this approach
with literal integers and floating-point numbers, because there is no chance of confusing them
with identifiers. Why? Because identifiers must start with a letter or underscore, and num-
bers must start with a digit or sign.

3.3 D e c l a r a t i o n s f o r N u m e r i c T y p e s | 107

Using Named Constants Instead of Literals
It’s a good idea to use named constants instead of literals in your code. In addition to making
your code more readable, named constants can make your applications easier to modify.
Suppose you wrote an application last year to compute taxes. In several places you used the lit-
eral 0.05, which was the sales tax rate at the time. Now the rate has gone up to 0.06.To change
your code, you must locate every mention of the literal 0.05 and change it to 0.06. If 0.05 is
used for some other reason—to compute deductions, for example—you also need to find each
place where it is used, figure out its purpose, and then decide whether to change it.

This process becomes much simpler if you use a named constant. Instead of using the literal
constant 0.05, suppose you had declared a named constant TAX_RATE with a value of 0.05. To
change your code, you would simply change the declaration, setting TAX_RATE equal to 0.06.This
one modification changes all of the tax rate computations without affecting the other places
where 0.05 is used.

Java allows us to declare constants with different names but the same value. If a value has
different meanings in different parts of an application, it makes sense to declare and use a con-
stant with an appropriate name for each meaning.

Named constants are also reliable—they protect us from mistakes. If you mistype the name
PI as PO, for example, the Java compiler will tell you that the name PO has not been declared. On
the other hand, even though we recognize that the number 3.14149 is a mistyped version of pi
(3.14159), the number is perfectly acceptable to the compiler. It won’t warn us that anything is
wrong.

Variable Declarations

We declare numeric variables the same way that we declare char and String variables, except
that we use the names of numeric types. Here are some example declarations:

int studentCount; // Number of students
int sumOfScores; // Sum of their scores
long sumOfSquares; // Sum of squared scores
double average; // Average of the scores
float deviation; // Standard deviation of scores
char grade; // Student's letter grade
String stuName; // Student's name

Given these declarations

int num;
int alpha;
double rate;
char ch;

108 | Arithmetic Expressions

the following are appropriate assignment statements:

Variable Expression

alpha = 2856;

rate = 0.36;

ch = 'B';

num = alpha;

In each of these assignment statements, the data type of the expression matches the data
type of the variable to which it is assigned. Later in this chapter, we will see what happens
when the data types do not match.

3.4 Simple Arithmetic Expressions

Now that we have looked at declarations and assignments, we can consider how to use val-
ues of numeric types in our calculations. Calculations are performed with expressions. Here
we look first at simple expressions that involve at most one operator so that we may exam-
ine each operator in detail.Then we move on to compound expressions that combine mul-
tiple operations.

Arithmetic Operators

Expressions are made up of constants, variables, and operators. The following are all valid
expressions:

alpha + 2 rate – 6.0 4 – alpha rate alpha * num

The operators allowed in an expression depend on the data types of the constants and
variables in the expression.The arithmetic operators are

+ Unary plus

- Unary minus

+ Addition

- Subtraction

* Multiplication

/ { Floating-point division (floating-point result)

Integer division (no fractional part)

% Modulus (remainder from division)

The first two operators are unary operators—they take just one operand.The last
five are binary operators—they take two operands. Unary plus and minus are used
as follows:

–54 +259.65 -rate

Unary operator An operator
that has just one operand

Binary operator An operator
that has two operands

3.4 S i m p l e A r i t h m e t i c E x p r e s s i o n s | 109

Programmers rarely use the unary plus. Without any sign, a numeric constant is assumed
to be positive anyway.

You may be less familiar with integer division and modulus (%), so let’s look at them
more closely. Note that % can be used with both integers and floating-point numbers.When
you divide one integer by another, you get an integer quotient and a remainder. Integer di-
vision gives only the integer quotient, and % gives only the remainder.

3 ← 6 / 2 3 ← 7 / 2
2)6 2)7

6 6
0 ← 6 % 2 1 ← 7 % 2

In Java, the sign of the remainder is the same as the sign of the dividend. For example:

3 % 2 = 1
3 % –2 = 1
–3 % 2 = –1
–3 % –2 = –1

In contrast to integer division, floating-point division yields a floating-point result. For
example, the expression

7.2 / 2.0

yields the value 3.6.
The floating-point remainder operation returns the remainder after dividing the dividend

by the divisor a whole number of times. For example,

7.2 % 2.1

yields the value 0.9 because 2.1 goes into 7.2 exactly 3 times (3 * 2.1 = 6.3), with 0.9 remaining.
Here are some expressions using arithmetic operators and their values:

Expression Value

3 + 6 9

3.4 – 6.1 �2.7

2 * 3 6

8 / 2 4

8.0 / 2.0 4.0

8 / 8 1

8 / 9 0

8 / 7 1

110 | Arithmetic Expressions

8 % 8 0

8 % 9 8

8 % 7 1

0 % 7 0

5.0 % 2.3 0.4

Be careful with division and modulus calculations. For instance, the expressions 7 / 0 and
7 % 0 will produce error messages, because the computer cannot divide an integer by zero.
With floating-point values, however, the expressions 7.0 / 0.0 and 7.0 % 0.0 do not result
in error messages. The result of the expression 7.0 / 0.0 is a special value representing in-
finity.The result of 7.0 % 0.0 is another special value called not a number (NaN).

Calculations involving these special values produce unusual results. For example, the re-
sult of any arithmetic operation involving NaN is also NaN. If you encounter such results, they
indicate that you need to carefully reexamine the expressions in your code to confirm that
division and remainder cannot have a zero divisor.

Because variables are allowed in expressions, the following are valid assignments:

alpha = num + 6;
alpha = num / 2;
num = alpha * 2;
num = 6 % alpha;
alpha = alpha + 1;
num = num + alpha;

As we saw with assignment statements involving String expressions, the same variable
can appear on both sides of the assignment operator. In the case of

num = num + alpha;

the value in num and the value in alpha are added together, and then the sum of the two val-
ues is stored into num, replacing the value previously stored there. This example shows the
difference between mathematical equality and assignment.The mathematical equality

num = num + alpha

is true only when alpha equals zero.The assignment statement

num = num + alpha;

is valid for any value of alpha.
Here’s a simple application that uses arithmetic expressions:

3.4 S i m p l e A r i t h m e t i c E x p r e s s i o n s | 111

//**
// FreezeBoil application
// This application computes the midpoint between
// the freezing and boiling points of water
//**

public class FreezeBoil
{
public static void main(String[] args)
{
final double FREEZE_PT = 32.0; // Freezing point of water
final double BOIL_PT = 212.0; // Boiling point of water
double avgTemp; // Holds the result of averaging

// FREEZE_PT and BOIL_PT

// Display initial data
System.out.print("Water freezes at " + FREEZE_PT);
System.out.println(" and boils at " + BOIL_PT + " degrees.");
// Calculate and display average
avgTemp = FREEZE_PT + BOIL_PT;
avgTemp = avgTemp / 2.0;
System.out.println("Halfway between is " + avgTemp + " degrees.");

}
}

The application begins with a comment that explains what the application does. Inside the
class is a declaration section where we declare the main method, which includes declarations
of the constants FREEZE_PT and BOIL_PT and the variable avgTemp and then a sequence of exe-
cutable statements. These statements display the initial data, add FREEZE_PT and BOIL_PT, di-
vide the sum by 2, and then show the result. Here is the output from the application:

112 | Arithmetic Expressions

Increment and Decrement Operators

In addition to the familiar arithmetic operators, Java provides increment and decrement operators:

++ Increment

-- Decrement

These unary operators take a single variable name as an operand. For integer and floating-
point operands, the effect is to add 1 to (or subtract 1 from) the operand. If num currently con-
tains the value 8, for example, the statement

num++;

causes num to contain 9.You can achieve the same effect by writing the assignment statement

num = num + 1;

Java programmers, however, typically prefer the increment operator.
The ++ and -- operators can be either prefix operators

++num;

or postfix operators

num++;

Both of these statements behave in exactly the same way; that is, they add 1 to whatever is
in num.The choice between the two is a matter of personal preference, although most Java pro-
grammers favor the latter form.

Java allows you to use ++ and -- in the middle of a larger expression:

alpha = num++ * 3;

In this case, the postfix form of ++ gives a different result from the prefix form. In Chapter
10, we examine the ++ and -- operators in more detail. In the meantime, you should use
them only to increment or decrement a variable as a separate, stand-alone statement:

Variable ++ ;

++ Variable ;

Increment-Statement

Variable –– ;

–– Variable ;

Decrement-Statement

3.4 S i m p l e A r i t h m e t i c E x p r e s s i o n s | 113

The Origins of Java
If we were to chart the history of programming languages, we would find several distinct fami-
lies of languages that have their origins in the early days of computing. When the idea of high-
level languages first arose, it seemed that everyone had his or her own notion of the ideal form
for a programming language.The result—the Tower of Babel period of programming languages.
As more programs were written, the cost of rewriting them to use the features of a new
language increased, so the computing world began to concentrate on a few languages.These
included Fortran, Algol, COBOL, Basic, PL/1, Lisp, and BCPL.

As computers were used in more sophisticated ways, it became necessary to create more
powerful languages. In many cases, these new languages were just expanded versions of older
languages. Expanding a language allows older applications to be used unchanged, but enables
programmers to add to applications using the language’s new features.This strategy is known
as upward compatibility. A good example is the Fortran series that began with Fortran, then
Fortran II, Fortran IV, Fortran 77, Fortran 90, and High-Performance Fortran.

Sometimes, however, extensions to a language result in excess complexity.The solution is to
redesign the language to eliminate conflicting features while preserving its desirable qualities.
For example, Pascal replaced the Algol language series and was itself superseded by the Modula
series of languages. Java is a redesign of languages derived from BCPL (Basic Combined
Programming Language).

In the 1960s BCPL had a small but loyal following, primarily in Europe. It spawned another
language with the abbreviated name of B. In the early 1970s, Dennis Ritchie, working on a new
language at AT&T Bell Labs, adopted features from the B language and decided that the succes-
sor to B naturally should be named C.

In 1985, Bjarne Stroustrup, also of Bell Labs, invented the C++ programming language by
adding features for object-oriented programming to the C language. Instead of naming the new
language D, the Bell Labs group named it C++ in a humorous vein: ++ is the increment operation
in C, so the name C++ suggests it is the successor of the C language.

C includes many features that are close to the level of machine code, allowing programmers
to write detailed instructions for the computer. C++ adds features that enable programmers to
write instructions at a very powerful and abstract level that is far removed from machine lan-
guage. If used with care, this combination of features enables programmers to “shift gears” be-
tween easily programming complex operations and writing instructions that are close to
machine code. Many people find it difficult to keep the features separate, however, and view
the combination as fraught with potential for introducing errors.

In the early 1990s, James Gosling, working at Sun Microsystems, needed a language for pro-
gramming the microprocessors being used in consumer electronics (for example, digital cam-
eras). Like Stroustrup, he began with C. Gosling, however, decided to eliminate features that
would conflict with the structures that he was adding.The Algol family of languages as well as
several experimental programming languages inspired some of the new features. Gosling
called his language Oak, and he spent several years experimenting with it and refining it. When
the popularity of the Internet began to grow, Gosling worked with a team of designers at Sun to
adapt Oak for writing applications that could operate over the network.The revised language
was renamed Java and released to the public in May 1996.

Java offers many of the capabilities of C++, albeit in a less complicated fashion. It supports
programming for the Internet and writing applications with graphical user interfaces that are
now the standard for interactive I/O. In addition, Java applications are highly portable.These
features combined to cause the popularity of Java to skyrocket in the first year after it was
released. It is very rare for a new programming language to appear and achieve success so
quickly. Because Java is powerful yet simple, it has also become popular as a language for
teaching programming.

114 | Arithmetic Expressions

3.5 Compound Arithmetic Expressions

The expressions we’ve used so far have contained at most a single arithmetic operator. We
also have been careful not to mix integer and floating-point values in the same expression.
Now we look at more complicated expressions—ones that are composed of several opera-
tors and ones that contain mixed data types.

Precedence Rules

Arithmetic expressions can be made up of many constants, variables, operators, and paren-
theses. In what order are the operations performed? For example, in the assignment statement

avgTemp = FREEZE_PT + BOIL_PT / 2.0;

is FREEZE_PT + BOIL_PT calculated first or is BOIL_PT / 2.0 calculated first?
The five basic arithmetic operators (+ for addition, – for subtraction, * for multiplica-

tion, / for division, and % for modulus) and parentheses are ordered the same way mathe-
matical operators are, according to precedence rules:

Highest precedence: ()

++ (postfix increment) -- (postfix decrement)

++ (prefix increment) -- (prefix decrement)

unary + unary -

* / %

Lowest precedence: + -

In the preceding example, we first divide BOIL_PT by 2.0 and then add FREEZE_PT to the result.
You can change the order of evaluation by using parentheses. In the statement

avgTemp = (FREEZE_PT + BOIL_PT) / 2.0;

FREEZE_PT and BOIL_PT are added first, and then their sum is divided by 2.0. We evaluate
subexpressions in parentheses first and then follow the precedence of the operators.

When multiple arithmetic operators have the same precedence, their grouping order (or
associativity) is from left to right.Thus the expression

int1 – int2 + int3

means (int1 – int2) + int3, not int1 – (int2 + int3). As another example, we would use the
expression

(double1 + double2) / double1 * 3.0

3.5 C o m p o u n d A r i t h m e t i c E x p r e s s i o n s | 115

to evaluate the expression in parentheses first, then divide the sum by double1, and multi-
ply the result by 3.0. Here are some more examples:

Expression Value

10 / 2 * 3 15

10 % 3 – 4 / 2 �1

5.0 * 2.0 / 4.0 * 2.0 5.0

5.0 * 2.0 / (4.0 * 2.0) 1.25

5.0 + 2.0 / (4.0 * 2.0) 5.25

Type Conversion and Type Casting

Integer values and floating-point values are stored differently inside a computer’s memory.
The pattern of bits that represents the constant 2, for example, does not look at all like the
pattern of bits that represents the constant 2.0. (In Chapter 12, we examine why floating-point
numbers need a special representation inside the computer.) What happens if we mix inte-
ger and floating-point values together in an assignment statement or an arithmetic ex-
pression? Let’s look first at assignment statements.

Assignment Statements If you make the declarations

int someInt;
double someDouble;

then someInt can hold only integer values, and someDouble can hold only double-precision
floating-point values.The assignment statement

someDouble = 12;

may seem to store the integer value 12 into someDouble, but this is not true.The com-
puter refuses to store anything other than a double value into someDouble. The
compiler inserts extra Bytecode instructions that first convert 12 into 12.0 and then
store 12.0 into someDouble.This implicit (automatic) conversion of a value from one
data type to another is known in Java as type conversion.

The statement

someInt = 4.8;

also causes type conversion. When a floating-point value is assigned to an int variable, the
fractional part is truncated (cut off). As a result, someInt is assigned the value 4.

With both of the preceding assignment statements, the code would be less confusing for
someone to read if we avoided mixing data types:

someDouble = 12.0;
someInt = 4;

Type conversion The implicit
(automatic) conversion of a
value from one data type to an-
other

116 | Arithmetic Expressions

1In non-Java terminology, implicit conversions are called coercions and explicit conversions are called casts.

More often, it is not just constants but entire expressions that are involved in type con-
version. For example, both of the assignments

someDouble = 3 * someInt + 2;
someInt = 5.2 / someDouble – anotherDouble;

lead to type conversion. Storing the result of an int expression into a double vari-
able doesn’t cause loss of information; a whole number such as 24 can be repre-
sented in floating-point form as 24.0. In the Java language, a type conversion that
does not result in a loss of information is known as a widening conversion.Assigning
int values to long variables or float values to double variables are also examples
of widening conversions.

However, storing the result of a floating-point expression into an int variable
can cause a loss of information because the fractional part is truncated. Java refers
to such a conversion as a narrowing conversion. It is easy to overlook the assign-
ment of a floating-point expression to an int variable, a double value to a float vari-
able, or a long value to an int variable when we try to discover why our code is
producing the wrong answers.

To make our code as clear (and error-free) as possible, we should use explicit
type casting. A Java cast operation consists of a data type name within parentheses,
followed by the expression to be converted:

someDouble = (double)(3 * someInt + 2);
someInt = (int)(5.2 / someDouble – anotherDouble);

Both of the statements

someFloat = someInt + 8;
someFloat = (float)(someInt + 8);

produce identical results; the only difference is in their clarity.With the cast operation, it is per-
fectly clear to the programmer and to others reading the code that the mixing of types is in-
tentional,not an oversight.Countless errors have resulted from unintentional mixing of types.

There is a nice way to round off rather than truncate a floating-point value before stor-
ing it into an int variable:

someInt = (int)(someDouble + 0.5);

With pencil and paper, see for yourself what gets stored into someIntwhen someDouble con-
tains 4.7. Now try it again, assuming someDouble contains 4.2. (This technique of rounding by
adding 0.5 assumes that someDouble is a positive number.)

Widening conversion A type
conversion that does not result
in a loss of information1

Narrowing conversion A type
conversion that may result in a
loss of some information, as in
converting a value of type
double to type float

Type casting The explicit con-
version of a value from one data
type to another

3.5 C o m p o u n d A r i t h m e t i c E x p r e s s i o n s | 117

Arithmetic Expressions So far we have discussed mixing data types across the assignment op-
erator (=). It’s also possible to mix data types within an expression:

someInt * someDouble
4.8 + someInt – 3

Such expressions are called mixed type (or mixed mode) expressions.

Whenever an integer value and a floating-point value are joined by an oper-
ator, implicit type conversion occurs as follows:

1. The integer value is temporarily converted to a floating-point value.

2. The operation is performed.

3. The result is a floating-point value.

Let’s examine how the computer evaluates the expression 4.8 + someInt – 3, where
someInt contains the value 2. First, the operands of the + operator have mixed types, so the
value of someInt is converted to 2.0. (This conversion is merely temporary; it does not affect
the value that is currently stored in someInt.) The addition takes place, yielding a value of 6.8.
Next, the subtraction (-) operator joins a floating-point value (6.8) and an integer value (3).
The value 3 is converted to 3.0, the subtraction takes place, and the result is the floating-point
value 3.8.

Just as with assignment statements, you can use explicit type casts within expressions
to lessen the risk of errors. Writing expressions such as

(double)someInt * someDouble
4.8 + (double)(someInt – 3)

makes it clear what your intentions are.
Not only are explicit type casts valuable for code clarity, but in some cases they are

mandatory for correct programming.To see why this is so, given the declarations

int sum;
int count;
double average;

suppose that sum and count currently contain 60 and 80, respectively. Assuming that sum rep-
resents the sum of a group of integer values and count represents the number of values, let’s
find the average value:

average = sum / count; // Gives the wrong answer

Unfortunately, this statement stores the value 0.0 into average. Here’s why: The expression
to the right of the assignment operator is not a mixed type expression. Instead, both operands

Mixed type expression An ex-
pression that contains operands
of different data types; also
called a mixed mode expression

118 | Arithmetic Expressions

of the / operator are of type int, so integer division is performed. Dividing 60 by 80 yields the
integer value 0. Next, the machine implicitly converts 0 to the value 0.0 before storing it into
average.The correct (and clear) way to find the average is

average = (double)sum / (double)count;

This statement gives us floating-point division instead of integer division. It results in the
value 0.75 being stored into average.

As a final remark about type conversion and type casting, you may have noticed that we
have concentrated only on the int and double types. It is also possible to stir byte, long, short,
and float values into the pot. The results can be confusing and unexpected. You should
avoid unnecessarily mixing values of these types within an expression. Whenever it be-
comes necessary to do so, you should use explicit type casting to clarify your intentions.

String Conversion Just as Java attempts to convert between numeric types when we mix them
in expressions, so it also tries to convert numeric values to strings when we mix them into
expressions with the string concatenation operator. For instance, if we declare a String ob-
ject called answer, we can write an assignment expression of the following form:

answer = "The average is: " + average;

If average contains the value 27.65, then the outcome of this assignment is that answer con-
tains the following string:

"The average is: 27.65"

When one of the operands of the + operator is a string and the other operand is a numeric
type, the numeric type is converted to a string prior to concatenation.The + operator has the
same precedence whether it is adding numeric values or concatenating strings. Java’s string
conversion is a useful feature for formatting output in which we mix numeric values with
text that explains their meaning. For example, we might use the preceding expression in a
call to println as follows:

System.out.println("The average is: " + average);

You can use a series of concatenation operators to create complex strings. For example,

answer = "The results are: " + 27 + 18 + " and " + 9;

produces the string

"The results are: 2718 and 9"

Notice, however that the values 27 and 18 were concatenated without any spaces between
them. String conversion of numeric values doesn’t add any space around the digits of the

3.5 C o m p o u n d A r i t h m e t i c E x p r e s s i o n s | 119

number. Instead, we must explicitly include any spaces that we need as part of the expres-
sion:

answer = "The results are: " + 27 + ", " + 18 + ", and " + 9;

It is also important to note that the result of the original expression wasn’t

"The results are: 45 and 9"

Why doesn’t the subexpression 27 + 18 perform an integer addition? The answer lies in
the precedence rules. Let’s take a closer look at the evaluation of this expression. All of the
operators in the expression have the same precedence and thus are evaluated left to right.
The first operand is a string, so the first + is a concatenation.The second operand is converted
to a string and concatenated, giving the string

"The results are: 27"

as the result.This string becomes the first operand of the second + operator, so it is also a con-
catenation.The number 18 is thus converted to a string and concatenated with the result of
the first operator to produce a new string:

"The results are: 2718"

The third operator has two strings as its operands, so no conversion is necessary. It produces

"The results are: 2718 and "

The last operator then has a string as its first operand and an integer as its second operand.
The integer is converted to a string and concatenated to form the final result, which is as-
signed to answer.

As you can see from the preceding discussion, when an expression mixes strings and nu-
meric types, you must consider the entire expression in light of the precedence rules. Take
a look at the following expression and see if you can determine what its result is:

answer = 27 + 18 + 9 + " are the results."

If you think it is

"27189 are the results."

then you are forgetting the effect of the left-to-right evaluation precedence rule. Its ac-
tual result is

"54 are the results."

120 | Arithmetic Expressions

The first two + operators are integer additions because neither of their operands are
strings. Only the last + operation is a concatenation; its left operand is the sum of the
three numbers, which it converts into a string. If a chain of + operators begins with a con-
catenation, then the succeeding operators are concatenations as well. The following is an
invalid assignment:

answer = 27 + 18 + 9; // Invalid; expression type is int

String conversion occurs only with the concatenation operator, not with assignment.The re-
sult of this expression is an int value, which can’t be assigned to a string. However, we can
use a trick to turn this expression into a series of string concatenations.That is, we can con-
catenate the values with the empty string:

answer = "" + 27 + 18 + 9; // Valid; expression is a String

The value stored in answer is then "27189". But what if we want answer to contain the
string representing the sum of these integers? That is, how do we get Java to first compute
the integer sum before applying string conversion? We do so in the same way that we change
the order of evaluation of any expression: We use parentheses.

answer = "" + (27 + 18 + 9);

Now the expression 27 + 18 + 9 is evaluated first and, because all of the operands are integers,
the + operators perform addition. Once the sum is computed, it is converted to a string and
concatenated with the empty string.The assignment then stores "54" into answer.

To summarize, Java’s string conversion is a useful feature for formatting numeric out-
put. But keep in mind that it works only as part of string concatenation. Also, remember
that you must consider the precedence rules whenever you write a complex expression con-
taining multiple numeric values.

3.6 Additional Mathematical Methods

Certain computations, such as taking square roots or finding the absolute value of a number,
are very common in programming. It would be an enormous waste of time if every program-
mer had to start from scratch and create methods to perform these tasks.To help make the
programmer’s life easier, Java’s Math class provides a number of useful methods, shown in
Table 3.1.Note that the class name must precede each of these methods with a dot in between.

3.6 A d d i t i o n a l M a t h e m a t i c a l M e t h o d s | 121

Blaise Pascal
One of the great historical figures in the world of computing was the French mathematician
and religious philosopher Blaise Pascal (1623–1662), the inventor of one of the earliest known
mechanical calculators.

Pascal’s father, Etienne, was a noble in the French court, a tax collector, and a
mathematician. His mother died when Pascal was three years old. Five years later, the family
moved to Paris, where Etienne took over the education of the children. Pascal quickly showed a
talent for mathematics. When he was only 17, he published a mathematical essay that earned
the jealous envy of René Descartes, one of the founders of modern geometry. (Pascal’s work ac-
tually had been completed before he was 16.) It was based on a theorem, which he called the
hexagrammum mysticum (mystic hexagram) that described the inscription of hexagons in conic
sections (parabolas, hyperbolas, and ellipses). In addition to the theorem (now called Pascal’s
theorem), his essay included more than 400 corollaries.

When Pascal was about 20, he constructed a mechanical calculator that performed addition
and subtraction of eight-digit numbers.That calculator required the user to dial in the numbers
to be added or subtracted; the sum or difference then appeared in a set of windows. His
motivation for building this machine may have been to aid his father in collecting taxes.The
earliest version of the machine does, indeed, split the numbers into six decimal digits and two
fractional digits, as would be used for calculating sums of money. It was hailed by his contem-
poraries as a great advance in mathematics, and Pascal built several more forms of his calcula-
tor. It achieved such popularity that many fake, nonfunctional copies were built by others and
displayed as novelties. Several of Pascal’s calculators still exist in various museums.

Pascal’s box, as it is called, was long believed to be the first mechanical calculator. However,
in 1950, a letter from Wilhelm Shickard to Johannes Kepler written in 1624 was discovered.This
letter described an even more sophisticated calculator built by Shickard 20 years prior to
Pascal’s box. Unfortunately, the machine was destroyed in a fire and never rebuilt.

During his twenties, Pascal solved several difficult problems related to the cycloid curve, in-
directly contributing to the development of differential calculus. Working with Pierre de
Fermat, he laid the foundation of the calculus of probabilities and combinatorial analysis. One
result of this work came to be known as Pascal’s triangle, which simplifies the calculation of
the coefficients of the expansion of (X + Y)N, where N is a positive integer.

Pascal also published a treatise on air pressure and conducted experiments showing that
barometric pressure decreases with altitude, helping to confirm theories that had been
proposed by Galileo and Torricelli. His work on fluid dynamics forms a significant part of the
foundation of that field. Among the most famous of his contributions is Pascal’s law, which
states that pressure applied to a fluid in a closed vessel is transmitted uniformly throughout
the fluid.

When Pascal was 23, his father became ill, and the family was visited by two disciples of
Jansenism, a reform movement in the Catholic Church that had begun six years earlier.The
family converted, and five years later one of his sisters entered a convent. Initially, Pascal was
not so taken with the new movement, but by the time he was 31, his sister had persuaded him
to abandon the world and devote himself to religion. His religious works are considered no less
brilliant than his mathematical and scientific writings. Some consider Provincial Letters, his se-
ries of 18 essays on various aspects of religion, to be the beginning of modern French prose.

Pascal returned briefly to mathematics when he was 35, but a year later his health, which
had always been poor, took a turn for the worse. Unable to perform his usual work, he devoted
himself to helping the less fortunate.Three years later, he died while staying with his sister,
having given his own house to a poor family.

122 | Arithmetic Expressions

Method Argument Type(s) Result Type Result

Math.abs(x) int, long, float, or double same as argument absolute value of x

Math.cos(x) double double cosine of x (x is in radians)

Math.sin(x) double double sine of x (x is in radians)

Math.log(x) double double natural logarithm of x

Math.pow(x,y) double double x raised to the power y (if x = 0.0, y
must be positive; if x ≤ 0.0, y must be
a whole number)

Math.min(x,y) int, long, float, or double same as argument smaller of x and y

Math.max(x,y) int, long, float, or double same as argument larger of x and y

Math.random() none double a random number greater than or
equal to 0.0 and less than 1.0

Math.round(x) double long the argument rounded up to the
nearest integer

Math.round(x) float int the argument rounded up to the
nearest integer

Math.sqrt(x) double double square root of x (x ≥ 0.0)

Table 3.1 Math Methods

3.7 Value-Returning Class Methods

The calls to the Math methods like those in Table 3.1 are value-returning class methods. For
example, the statement

rootX = Math.sqrt(x);

calls the sqrt method associated with the Math class, which returns the square root of x that
is then assigned to rootX.The third column in Table 3.1 tells you the type of the value that is
returned by each of the Math methods.

Notice that these arithmetic value-returning methods (such as Math.abs and Math.sqrt)
are called with the name of their class rather than the name of a specific object. Recall from
Chapter 2 that methods can be instance methods or class methods. The Math methods are
class methods because they are associated with the class itself rather than a particular in-
stance of the class.They belong to the class java.lang.Math, which is automatically imported
into every application by the Java compiler.

In Chapter 2, we saw how easy it is to write our own value-returning instance methods.
Value-returning class methods are just as easy to write. For example, suppose we want to write

3.7 V a l u e - R e t u r n i n g C l a s s M e t h o d s | 123

a public class method that has no parameters and returns an int result.We would write the
heading this way:

public static int myMethod()

The only difference between this heading and the ones we wrote in Chapter 2 is the use of
the reserved word static. We follow the heading with the body of the method enclosed in
braces, just as we did for instance methods. Within the body, when our computation is fin-
ished, we write a return statement.

Let’s look at an example of a value-returning class method declaration. The method
should return a random integer in the range of 1 to 10.We call the Math.random method, which
returns a value that is greater than or equal to 0.0 and less than 1.0.We must change this value
into our desired range, so we multiply it by 10.0 and convert the result to an int.The int will
then be in the range of 0 to 9, so we add 1 to get a number in the desired range. Here’s the
expression that does the job:

(int) (Math.random() * 10.0) + 1

Now we’re ready to write the method. Let’s call it random1to10.

public static int random1to10()
{
return (int) (Math.random() * 10.0) + 1;

}

Is that it? Our new method is just like the value-returning methods that we wrote in
Chapter 2, except that the heading includes static. Of course, we call it by using the name
of the class in which we declare it rather than an object name. It also bears repeating that
class methods can access class fields, but not instance fields. Many value-retuning methods
are self-contained, as in the case of the preceding example. That is, they don’t need to ac-
cess any fields. As a consequence, they can be either class methods or instance methods.
However, the advantage of a class method is that we can use it even when we haven’t in-
stantiated any objects of the class. For example, we don’t have to instantiate an object of the
class Math to be able to use its class methods. Instance methods must be used in conjunction
with an object, so we have to instantiate the class to make use of them.

As noted in Chapter 2, we will defer looking closely at the parameter list syntax until later.
But from what we’ve already said about writing parameters, you could easily extend this ap-
proach to write a method that takes numeric arguments. For example, suppose you want a
method that computes the hypotenuse of a right triangle from its other two sides.You could
write the following:

public static double hypotenuse(double side1, double side2)
{
return Math.sqrt(side1 * side1 + side2 * side2);

}

124 | Arithmetic Expressions

Code Formatting
As far as the compiler is concerned, Java statements are free format: They can appear anywhere on a
line, more than one can appear on a single line, and one statement can span several lines.The
compiler needs only blanks (or comments or new lines) to separate important symbols, and it needs
semicolons to terminate statements. Of course, it is extremely important that your code be readable,
both for your sake and for the sake of anyone else who has to examine it.

When you write an outline for an English paper, you follow certain rules of indentation to make it
readable.The same kinds of rules can make your code easier to read. In addition, it is much easier to
spot a mistake in a neatly formatted class than in a messy one. For these reasons, you should keep
your code neatly formatted while you are working on it. If you’ve gotten lazy and let your code become
messy while making a series of changes, take the time to straighten it up. Often the source of an error
becomes obvious during the process of formatting the code.

Take a look at the following application for computing the cost per square foot of a house. Although
it compiles and runs correctly, it does not conform to any formatting standards.

// HouseCost application This application computes the cost per square foot of
// living space for a house, given the dimensions of the house, the number
// of stories, the size of the nonliving space, and the total cost less land
public class HouseCost { public static void main(String[] arg){
final double WIDTH = 30.0; final double LENGTH = 40.0; //Length of the house
final double STORIES = 2.5; //Number of full stories
final double NON_LIVING_SPACE = 825.0; //Garage, closets, etc.
final double PRICE = 150000.0; //Selling price less land

double grossFootage; //Total square footage
double livingFootage; //Living area
double costPerFoot; //Cost/foot of living area
grossFootage = LENGTH * WIDTH * STORIES; //Compute gross footage

livingFootage = grossFootage – NON_LIVING_SPACE; //Compute net footage
costPerFoot = PRICE / livingFootage; //Compute cost per usable foot

System.out.println(“Cost per square foot is “ + costPerFoot);}}

If we call this method in the following assignment statement, which is within the same
class as the method declaration, then answer is assigned the value 5.0:

answer = hypotenuse(3.0, 4.0);

Working anywhere outside of the class that contains the method declaration, we need
to precede the method name with the class name in a call. Within the same class, we can
refer directly to our method. If we wanted it to be a helper method, we could use the private
modifier in place of public. In Chapters 6 and 7 we explore all of the different rules regard-
ing accessibility and the other modifiers that Java supports.

3.7 V a l u e - R e t u r n i n g C l a s s M e t h o d s | 125

Now look at the same class with proper formatting:

//**
// HouseCost application
// This application computes the cost per square foot of
// living space for a house, given the dimensions of
// the house, the number of stories, the size of the
// nonliving space, and the total cost less land
//**

public class HouseCost
{
public static void main(String[] args)
{
final double WIDTH = 30.0; // Width of the house
final double LENGTH = 40.0; // Length of the house
final double STORIES = 2.5; // Number of full stories
final double NON_LIVING_SPACE = 825.0; // Garage, closets, etc.
final double PRICE = 150000.0; // Selling price less land

double grossFootage; // Total square footage
double livingFootage; // Living area
double costPerFoot; // Cost/foot of living area

grossFootage = LENGTH * WIDTH * STORIES; // Compute gross footage
livingFootage = grossFootage – NON_LIVING_SPACE; // Compute net footage
costPerFoot = PRICE / livingFootage; // Compute cost per usable foot

System.out.println(“Cost per square foot is “ + // Output result
costPerFoot);

}
}

Need we say more?
Appendix F discusses coding style. We suggest you use it as a guide when you are

writing your own code.

126 | Arithmetic Expressions

3.8 Additional String Operations

Now that we have introduced numeric types, we can take advantage of additional features
of the String data type. Here we introduce three useful methods that operate on strings:
length, indexOf, and substring. All three are value-returning instance methods.

The length Method

The length method, when applied to a String, returns an int value that equals the number of
characters in the string. If myName is a String object, a call to the length method looks like this:

myName.length()

The length method requires no arguments to be passed to it, but you still must use paren-
theses to signify an empty argument list. Also, length is a value-returning method, so the
method call must appear within an expression:

String firstName; // Local declarations
String fullName;
int len;

firstName = "Alexandra";
len = firstName.length(); // Assigns 9 to len
fullName = firstName + " Jones";
len = fullName.length(); // Assigns 15 to len

The indexOf Method

The indexOfmethod searches a string to find the first occurrence of a particular substring and
returns an int value indicating the point where the substring was found.The substring,passed
as an argument to the method, can be a literal string or a String expression. If str1 and str2
are of type String, the following are valid method calls, each of which returns an integer:

str1.indexOf("the") str1.indexOf(str2) str1.indexOf(str2 + "abc")

In each case, str1 is searched to see if the specified substring appears within it. If so, the
method returns the position in str1 where the match begins. (Positions are numbered start-
ing at 0, so the first character in a string is in position 0, the second is in position 1, and so
on.) For a successful search, the match must be exact, including identical capitalization. If
the substring could not be found, the method returns the value �1.

Given the code segment

String phrase;
int position;

phrase = "The dog and the cat";

3.8 A d d i t i o n a l S t r i n g O p e r a t i o n s | 127

then the statement

position = phrase.indexOf("the");

assigns to position the value 12. In contrast, the statement

position = phrase.indexOf("rat");

assigns to position the value �1, because no match was found.
The argument to the indexOfmethod can also be a char value. In this case, indexOf searches

for the first occurrence of that character within the string and returns its position (or –1, if
the character was not found). For example, the code segment

String theString;

theString = "Abracadabra";
position = theString.indexOf('a');

assigns the value 3 to position, which is the position of the first occurrence of a lowercase a
in theString.

Following are more examples of calls to the indexOf method, assuming the following
code segment has been executed:

String str1;
String str2;

str1 = "Programming and Problem Solving";
str2 = "gram";

Method Call Value Returned by Method

str1.indexOf("and") 12

str1.indexOf("Programming") 0

str2.indexOf("and") �1

str1.indexOf("Pro") 0

str1.indexOf("ro" + str2) 1

str1.indexOf("Pr" + str2) �1

str1.indexOf(' ') 11

In the fourth example, str1 contains two copies of the substring "Pro", but indexOf returns
only the position of the first copy.Also notice that the matches can be either separate words
or parts of words—indexOf merely tries to match the sequence of characters given in the ar-
gument list. The final example demonstrates that the argument can be as simple as a sin-
gle character, even a single blank.

128 | Arithmetic Expressions

The substring Method

The substring method returns a particular substring of a string.Assuming myString is of type
String, a method call has the following form:

myString.substring(5, 20)

The arguments are integers that specify positions within the string. The method returns
the piece of the string that starts with the position specified by the first argument and con-
tinues to the position given by the second argument minus 1.Thus the length of the substring
returned by the example call is 20 � 5 = 15 characters. Note that substring doesn’t change
myString; instead, it returns a new String value that is a copy of a portion of the string. The
following examples assume that the statement

myString = "Programming and Problem Solving";

has been executed:

Method Call String Contained in Value Returned by Method

myString.substring(0, 7) "Program"

myString.substring(7, 15) "ming and"

myString.substring(10, 10) ""

myString.substring(24, 31) "Solving"

myString.substring(24, 25) "S"

In the third example, specifying the second argument to be the same as the first produces
the empty string as the result.The last example illustrates how to obtain a single character
from a given position in the string.

If either of the arguments specifies a position beyond the end of the string, or if the sec-
ond argument is smaller than the first, then the call to substring results in an error message.
One way to avoid such errors is to write the call to substring in the following form. Here, start
is an int variable containing the starting position, and len is another int variable contain-
ing the length of the desired substring.

myString.substring(start, Math.min(start+len, myString.length()))

Recall from our discussion of Java’s math methods that Math.min returns the smaller of
its two arguments. If, by accident, start+len is greater than the length of the string, then min
returns the length of myString instead. In this way, we ensure that the second argument in
the call to substring can be no greater than the length of myString. We assume that start is
less than the length of the string, but we can use the same sort of formula as the first argu-
ment if we aren’t certain that this assumption is valid.

3.8 A d d i t i o n a l S t r i n g O p e r a t i o n s | 129

*Basili,V. R., and Selby, R.W.,“Comparing the Effectiveness of Software Testing Strategies,” IEEE Transactions
on Software Engineering,Vol. SE–13, No. 12, pp. 1278–1296, Dec. 1987.

Because substring returns a value of type String, you can use it with the concatenation
operator (+) to copy pieces of strings and join them together to form new strings.The indexOf
and length methods can be useful in determining the location and end of a piece of a string
passed to substring as an argument.

Here is a code segment that uses several of the String operations:

fullName = "Jonathan Alexander Peterson Jr.";
startPos = fullName.indexOf("Peterson");
name = "Mr. " + fullName.substring(startPos, fullName.length());

This code assigns "Mr. Peterson Jr." to name. First, it stores a string into the variable fullName.
Then, it uses indexOf to locate the start of the name Peterson within the string. Next, it builds
a new string by concatenating the literal "Mr. " with the characters “Peterson Jr.”, which are
copied from the original string. As we will see in later chapters, string operations are an im-
portant aspect of many computer applications.

Understanding Before Changing
When you are trying to get an application to run and you come across an error, it’s tempting

to start changing parts of the code in an attempt to make it work. Don’t! You’ll nearly always
make matters worse. It’s essential that you understand what is causing the error and that you
carefully think through the solution.The only thing you should try is running the application
with different data to determine the pattern of the unexpected behavior.

No magic trick—inserting an extra semicolon or right brace, for example—can automatically
fix a coding error. If the compiler tells you that a semicolon or a right brace is missing, you need
to examine the code in light of the syntax rules and determine precisely what the problem is.
Perhaps you accidentally typed a colon instead of a semicolon. Or maybe you included an extra
left brace.

If the source of a problem isn’t immediately obvious, a good rule of thumb is to leave the
computer and go somewhere where you can quietly look over a printed copy of the code.
Studies show that people who do all of their debugging away from the computer actually get
their code to work in less time and ultimately produce better code than those who continue to
work on the machine—more proof that there is still no mechanical substitute for human
thought.*

130 | Arithmetic Expressions

Converting Strings to Numeric Values

Many of the problems that we use computers to solve involve the entry of numerical
data—that is, values of the types int, long, float, and double. A BufferedReader object enables
us to enter a String. How, then, do we input a number? The answer is that we can’t—at least
not directly. Java provides only for the input of strings. We must enter a number as a string
and then convert the string into one of the numeric types using methods from Java’s
library.

Java’s standard library includes a set of classes that correspond to the built-in numeric
types. These classes provide methods and constants that are useful in working with the

numeric types. Like the Math class, they are auto-
matically imported to every Java class. Table 3.2
lists these predefined classes and the built-in type
to which each one corresponds.

As you can see, the general rule is that the
class name is the same as the name of the built-
in type except that its first letter is capitalized.
The lone exception is that the class correspon-
ding to int is called Integer.

Among the methods associated with each
of these classes is one that takes a string as its
argument and returns a value of the correspon-
ding type.Table 3.3 shows the relevant methods.

For example, we can write

number = Double.parseDouble("–435.82E27");

to convert "–435.82E27" into a value of type double
and store it in number. Of course, what we really
want to do is convert an input string into a num-
ber. We can replace the string "–435.82E27" in the

preceding statement with a call to the readLine method associated with a BufferedReader:

number = Double.parseDouble(in.readLine());

Let’s look at an example of inputting an integer value:

int intNumber;
intNumber = Integer.parseInt(in.readLine());

We now have a single statement that reads a numerical value from the screen. What if
the user types something other than a number? At this point in our knowledge of Java, the
result is that the application halts and displays a message such as “Number Format Error.”
In Chapter 9, we will see how an application can catch such an error (another example of an
exception) and respond to it without stopping.

Built-in Type Object Type

int Integer

long Long

float Float

double Double

Table 3.2 Predefined Classes Corresponding to Built-in Numeric Types

Object Type Method Argument Returns

Integer parseInt String int

Long parseLong String long

Float parseFloat String float

Double parseDouble String double

Table 3.3 String-to-Numeric Type Conversion Methods

3.9 A p p l i c a t i o n s w i t h M u l t i p l e C l a s s F i l e s | 131

2There are ways of indicating to the compiler that it should search other directories, but such a strat-
egy is mainly useful for much larger programming projects than we use in this book.

Noninteractive Input/Output

Although we tend to use examples of interactive I/O in this book, many applications work
with noninteractive I/O.A common example of noninteractive I/O on large computer systems
is batch processing. In batch processing (introduced in Chapter 1), the user and the computer
do not interact while the application is running.This method is most effective when an ap-
plication will input or output large amounts of data. An example of batch processing is an
application that takes as input a file containing semester grades for thousands of students
and prints grade reports to be mailed out.

When an application must read in many data values, the usual practice is to prepare them
ahead of time, storing them into a disk file.The user can then make changes or corrections
to the data as necessary before running the application.When an application is designed to
print lots of data, the output can be sent directly to a high-speed printer or another disk file.
After the application has been run, the user can examine the data at leisure.

Most Java applications are written for interactive use, but the flexibility of the language
allows you to write noninteractive applications as well.The biggest difference relates to the
input/output requirements. Noninteractive applications are generally more rigid about the
organization and format of the input and output data.

Applications can also combine interactive input and output with file input and output.
In Chapter 5, we will discuss input and output with disk files.

3.9 Applications with Multiple Class Files

An application with multiple classes can be implemented with those classes stored in separate
files.With each Java class stored in its own file, the code is divided into smaller chunks that are
easier to work with. Keeping classes in separate files also makes it easier to import them into
other applications. In addition, most Java development environments keep track of which files
have been changed,and do not recompile unchanged files.Thus,when you’re debugging just one
of the classes, you don’t have to wait for compilation of the other ones. Using multiple files has
a further advantage in that it provides us with more flexibility in developing the classes of an ap-
plication.Team programming projects, in which multiple programmers work together to solve
a problem, would be very cumbersome if all of the programmers had to share a single file.

Java systems require that we name each file using the name of the class it contains.
This approach allows the Java compiler to use file names to locate the classes. For example,
a class called Name would be stored in a file called Name.java. Other classes that wish to use
this class would include the following statement:

import Name;

The class files should all reside in the same directory on the disk. The Java compiler
automatically searches this directory for related files.2 For example, we might have the

132 | Arithmetic Expressions

following three files in a single application directory.The ellipsis (. . .) between the braces in-
dicates the code for the class.

class Name { ... }

class Address { ... }

public class MailList { ... } // Imports Name and Address

The application class MailList then has access to the other two classes, and all these
classes have access to one another’s nonprivate members.Two of the classes,Name and Address,
are not public, so they are not visible to the JVM. However, they are also not private. Recall that
we use public to make a class visible outside of itself, and that the JVM is outside of an appli-
cation. Classes in the same directory are considered to be like a family, so that they can access
one another’s nonprivate members without being public. Later, when we explore Java’s pack-
age construct in more detail, we will see that this kind of access is called package access. If we
make these classes private, then they will have access only to one another’s publicmembers.

As an example, let’s see how we can turn the Name class from the application in Chapter
2 into a class that we could import into an application. At the same time, let’s enhance the
class to make it more general. In its original form, it has just one constructor that goes to the
screen to get the parts of a name. We’ll add a constructor that accepts the three strings as
arguments. The constructor then assigns the values of its arguments to the corresponding
fields in the class. It’s such a simple method that we can code it directly:

public Name(String firstName, String lastName, String middleName)
{
first = firstName; // Assign parameters to fields
last = lastName;
middle = middleName;

}

Let’s also add a method that returns the full name in the usual format of first, then mid-
dle, then last name.This method is equally simple, as it just returns the concatenation of the
three strings:

public String full()
{
return first + " " + middle + " " + last;

}

All we have to do besides adding these methods is to place the class code in a separate
file called Name.java within the directory that has the application, and omit access modi-
fiers from the class heading. Here is the Name class, with the new methods:

3.9 A p p l i c a t i o n s w i t h M u l t i p l e C l a s s F i l e s | 133

//**
// This class provides a basic name object. The default constructor
// requests that a name be entered from System.in. A second constructor
// allows creation of a name from strings. Methods return the name
// in various formats.
//**
import java.io.*; // Package for stream readers
class Name
{
String first; // Person's first name
String last; // Person's last name
String middle; // Person's middle name

// Gets a name from System.in
public Name() throws IOException
{
BufferedReader in; // Input stream for strings
// Instantiates in using System.in
in = new BufferedReader(new InputStreamReader(System.in));
System.out.print("Enter first name: "); // Prompt for first name
first = in.readLine(); // Get first name
System.out.print("Enter last name: "); // Prompt for last name
last = in.readLine(); // Get last name
System.out.print("Enter middle name: "); // Prompt for middle name
middle = in.readLine(); // Get middle name

}

// Builds a name from string parameters
public Name(String firstName, String lastName, String middleName)
{
first = firstName; // Assign parameters to fields
last = lastName;
middle = middleName;

}

// Returns name in first last format
public String firstLast()
{
return first + " " + last;

}

// Returns full name in usual format
public String full()
{
return first + " " + middle + " " + last;

}

134 | Arithmetic Expressions

// Returns name as last, first, m.
public String lastFirstMI()
{
return last + ", " + first + ", " + middle.substring(0, 1) + ".";

}
}

To show how we would use this package, we can rewrite the NameDriver application. We
simply remove the class from the application itself and include an import declaration for
the name package. Let’s call the application NewNameDriver.

//**
// NewNameDriver application
// This application inputs a name and prints it in
// two different formats
//**
import java.io.*; // Package for stream readers
import Name; // Name class
public class NewNameDriver
{
public static void main(String[] args) throws IOException
{
Name testName; // Declare a name
testName = new Name(); // Instantiate a name
System.out.println("Name in first-last format is " +

testName.firstLast()); // First format
System.out.println("Name in last-first-initial format is " +

testName.lastFirstMI()); // Second format
}

}

Now we can really see how object-oriented programming helps simplify application de-
velopment.The NewNameDriver application is very short and easy to understand because we’ve
separated the details of how a name is created and accessed into a class. What’s more, we
can now use Name objects in other problems merely by importing the Name class. In fact, that’s
precisely what we will do in the Case Study.

CASE STUDY 135

SMALL COMPANY PAYROLL

Problem: You’re running a small company with just a few part-time employees, and you
want an application that computes their week’s pay.

Input: The hours worked for each employee, entered as real numbers via System.in.

Output: The pay for each employee, and the company’s total pay for the week.

Discussion: This calculation would be easy to do by hand, but it is a good exercise for ex-
ploring the use of numerical input and object-oriented problem solving.

The objects in our problem are employees, so we would like to define a class for an
employee. An employee in this case has a name, a pay rate, a number of hours worked,
and wages earned.These items can be instance fields in our class. For each employee,
we need to input the hours worked and compute the pay.This task can be a
responsibility of the constructor.

Once we have an employee object, we need to get the name of the employee, the
amount of pay for the employee, and the total pay for all employees.The name and pay
for the employee are associated with each instance of an employee, while the total pay
is a property of the entire class of employees.Thus we need instance methods to return
the employee’s name and pay, and a class method to return the total pay, which should
be kept in a class field. Let’s look at each of these methods in turn.

The constructor must get the employee name and pay rate, which can be passed in
as arguments and stored in the instance fields. Because the employees change
infrequently, we can encode these arguments as literal constants in the constructor
calls.The hours worked are different each time we run the application, so we need to
input them.The constructor must prompt the user via System.out and read the
response via System.in. As we’ve seen, data is input as a string, which we must convert
to a double value using the parseDouble method.

Once we have the hours, computing the pay is quite easy: We simply multiply the
pay rate times the hours worked.The only tricky part is rounding the result to the near-
est cent. Without this step, we are likely to get results that include fractions of cents. In
this chapter, we showed how to round a floating-point value to the nearest integer by
adding 0.5 and using a type cast to truncate the result:

(int)((double)Value + 0.5))

To round to the nearest cent, we first multiply the value by 100, round the result to the
nearest integer, and then divide by 100 again. For example, if doubleValue contains
5.162, then

(double)((int)(doubleValue * 100.0 + 0.5)) / 100.0

CASE STUDY
136

gives 5.16 as its result. Here is the algorithmic solution:

The method to return the name just calls the Name method that provides the name in
the necessary format.

Because the pay was computed and stored when the employee object was instanti-
ated, we return the field value.

The total is updated by each instantiation, so again we can just return the field value.

That’s all there is to the employee class responsibility algorithms. As you can see,
most of the methods are trivial in their design.This simplicity is a common characteris-
tic of object-oriented problem solutions.To hide the implementation details in a
consistent manner, we turn accesses to internal fields into value-returning methods.
Software engineers refer to such methods as observers, and we will have more to say
about their role in a later chapter. Now, let’s look at the code for the Employee class,
which we store in a file called Employee.java.

totalPay value-returning class method

return total

pay value-returning instance method

return wages

name value-returning instance method

return myName in last, first, MI format

Employee Constructor

Parameters: first, last, middle names, all String; payrate, double

Declare a BufferedReader in
Create a new Name, myName, using first, last, middle
Copy payrate parameter into rate field
Instantiate in using System.in
Prompt for hours worked, using myName firstLast format
Get hours worked from in, and convert to double, storing in hours field
Compute wages and round to cents
Add wages to total

Class Fields

Name myName
double rate
double hours
double wages
static double total

CASE STUDY 137

//**
// This class provides an employee record object. The provided
// constructor takes the employee name as three strings and
// creates a Name field. It also takes the pay rate as a double
// value. It then inputs the hours for the week from System.in.
// Instance methods return the name formatted as a string and
// the pay for the employee. A class method returns the total pay.
// Constructor throws IOException.
//**
import java.io.*; // Package for IOException
import Name; // Class for names
class Employee
{
Name myName; // Employee name field
double rate; // Pay rate
double hours; // Hours worked
double wages; // Simple wages (rate * hours)
static double total = 0.0; // Total pay for all employees

// Builds an employee record
public Employee (String first, String last, String middle,

double payrate) throws IOException
{
BufferedReader in; // Input stream for strings
// Initialize fields
myName = new Name(first, last, middle);
rate = payrate;
// Instantiate input stream in using System.in
in = new BufferedReader(new InputStreamReader(System.in));
// Prompt for hours worked
System.out.print("Enter hours worked by " + myName.firstLast() + ": ");
// Get hours worked and convert from string to double
hours = Double.parseDouble(in.readLine());
wages = (double)((int)(hours * rate * 100.0 + 0.5))/100.0;
total = total + wages;

}

// Returns employee name
public String name()
{
return myName.lastFirstMI();

}

// Returns employee wages
public double pay()
{
return wages;

}

CASE STUDY
138

// Returns total wages for all employees
public static double totalPay()
{
return total;

}
}

We now have a simulation of the object on which our application depends, so we can
solve the payroll problem in terms of what the object can do for us.The first task is to
create an object for each employee. In the process, the constructor takes care of
inputting the hours worked, computing the pay, and adding it to the total. Once the ob-
jects are created, all of the work is done, and we just need to report the results. For each
employee object, we print out a message indicating the name and the pay. Finally, we
print the total pay. Here is the algorithm for a payroll with three employees:

Of course, we also need to declare three Employee variables: emp1, emp2, and emp3. In ad-
dition, we need to wrap all of this in main, inside of a class called Payroll. We need to re-
member to import the Employee class. We do not need to import Name, however, because
we don’t use it directly; Employee imports it for its own use. We still need to import
java.io, even though we don’t directly use the BufferedReader class.The reason is that
the Employee constructor can throw an IOException, so we need to explicitly throw this
exception to the next level in the heading of main—and the IOException object is defined
in java.io. If we forget to import java.io, the compiler will complain that IOException
isn’t defined.

We now have three classes in three different files involved in this application: Name,
Employee, and Payroll. How do we get them to find one another? We place the three
class files in the same directory and let Payroll import Employee, which in turn imports
Name. In Chapter 6, we will show an even better solution: bundling related classes into a
user-defined package.

Now we’re ready to write the application. We’ve added comments where needed.
Here is the code:

//**
// Payroll application
// This application computes the pay for three employees
// and also outputs the total pay
//**

Payroll Application

Instantiate emp1 (first, last, middle, rate)
Instantiate emp2 (first, last, middle, rate)
Instantiate emp3 (first, last, middle, rate)
Print “Pay “ emp1 name “ $” emp1 pay
Print “Pay “ emp2 name “ $” emp2 pay
Print “Pay “ emp3 name “ $” emp3 pay
Print Employee total pay

CASE STUDY 139

import java.io.*; // Package for IOException
import Employee; // Employee class

public class Payroll
{
public static void main(String[] args) throws IOException
{
// Declare employees
Employee emp1;
Employee emp2;
Employee emp3;
// Instantiate employees
emp1 = new Employee("Herman", "Herrmann", "George", 14.95);
emp2 = new Employee("Clara", "Eames", "Julia", 16.28);
emp3 = new Employee("Matilda", "Hagen", "Louise", 12.73);
// Output pay for each employee
System.out.println("Pay " + emp1.name() + " $" + emp1.pay());
System.out.println("Pay " + emp2.name() + " $" + emp2.pay());
System.out.println("Pay " + emp3.name() + " $" + emp3.pay());
// Output total pay for all employees
System.out.println("Total pay is $" + Employee.totalPay());

}
}

The output from the application follows:

As you can see, the application code is short and simple. It includes basically just
three statements that are each repeated for the three employees.This is the goal of ob-
ject-oriented design—to produce applications that seem simple on the surface because
the complexity is hidden in the objects. Nor are the objects themselves especially com-
plex. If the algorithm for an object grows in complexity to the point that it becomes dif-
ficult to understand, it likely contains other objects that should be identified and
developed separately. In such a case, we can then simplify the object’s algorithms.

140 | Arithmetic Expressions

3.10 Testing and Debugging

Testing and Debugging Hints

1. An int literal other than 0 should not start with a zero. If it starts with zero, it is an octal (base–8)
number.

2. Watch out for integer division.The expression 47 / 100 yields 0, the integer quotient.This is one
of the major sources of wrong output in Java code.

3. When using the / and % operators with integers, remember that division by zero is not allowed.

4. Double-check every expression according to the precedence rules to confirm that the operations
are performed in the desired order, especially with expressions involving string conversion.

5. Avoid mixing integer and floating-point values in expressions. If you must mix them, use explicit
type casts to reduce the chance of mistakes.

6. For each assignment statement, verify that the expression result has the same data type as the
variable to the left of the assignment operator (=). If not, use an explicit type cast for clarity and
safety. Also, remember that storing a floating-point value into an int variable truncates the frac-
tional part.

7. If an application is producing erroneous results and all of its expressions appear to be correct,
check whether any of them can result in integer overflow. Also, check whether they contain any
unintentional type conversions.

8. For every library package you use in your application, be sure to use an import declaration.

9. Examine each method call to confirm that you have the right number of arguments and that the
data types of the arguments are correct.

10. Remember to return an expression from a value-returning method.The expression must produce
the same type as the result type specified in the method heading.

11. Keep your code neatly formatted so that it is easier to read.

12. If the cause of an error in your code is not obvious, leave the computer and study a printed listing.
Change your code only after you understand the source of the error.

13. Remember to use a class name with a class method, and an object name with an instance
method.

14. You cannot input numeric values directly. Use one of the parse methods to convert an input
string to a numeric value.

15. Be careful to type valid numeric values as input to an application that reads numbers. At this
point in our knowledge of Java, entering an incorrectly formed number will cause the application
to crash with an error message.

141

Summary

Java provides several built-in numeric data types, of which the most commonly used
are int and double.The integral types are based on the mathematical integers, but the
computer limits the range of integer values that can be represented.The floating-
point types are based on the mathematical notion of real numbers. As with integers,
the computer limits the range of floating-point numbers that can be represented. In
addition, it limits the number of digits of precision in floating-point values. We can
write literals of type double in several forms, including scientific (E) notation. Java pro-
vides the standard mathematical operations to go with these data types: addition (+),
subtraction (-), multiplication (*), division (/), and remainder (%). Java also provides an
increment operation (++) and a decrement operation (--).

Mixing values of the integer and floating-point types in an expression results in au-
tomatic type conversion to achieve compatibility between the operands of all of the
operators. If you aren’t careful, these automatic conversions can have unanticipated
results. It is best to explicitly use type cast operations whenever you need to mix
types within expressions.

Much of the computation of an application is performed in arithmetic expressions.
Expressions can contain more than one operator.The order in which the operations
are performed is determined by precedence rules. In arithmetic expressions, the
unary operators (such as negation) are performed first; then type casts; then multipli-
cation, division, and modulus; and finally addition and subtraction. Multiple
arithmetic operations of the same precedence are grouped from left to right.You can
use parentheses to override the precedence rules.

Not only should the output produced by an application be easy to read, but the for-
mat of the code itself should also be clear and readable. A consistent style that uses
indentation, blank lines, and spaces within lines helps you (and other programmers)
understand and work with your code.

Value-returning class methods are another way of implementing the behaviors of
objects.They are written by specifying static in the heading.The call appends the
method name to the name of its class, separated by a period.

A BufferedReader object returns a string.To input numerical data, we must use other
Java-supplied classes corresponding to the numeric types.These classes provide
methods to parse a string and convert it to a value of the corresponding numeric type.

We can save our class code in separate files and import the class into our
applications. Separating the class code makes it easier to manage the files, makes the
classes easier to reuse, and makes it easier to divide a large project among a team of
programmers.

Quick Check

1. When you assign one reference variable to another, how many copies of the ob-
ject are there? (pp. 100–103)

142

2. Which integer and real types take up the same number of bits in the computer’s
memory? (pp. 103–106)

3. What syntactic parts do floating-point values have that integral types lack?
(pp. 105–106)

4. If you want to change the precedence of operations in an expression, what sym-
bols do you use? (p. 114)

5. Add type casts to the following statements to make the type conversions clear
and explicit.Your answers should produce the same results as the original state-
ments. (pp. 115–118)

a. someDouble = 5 + someInt;

b. someInt = 2.5 * someInt / someDouble;

6. If the String variable str contains the string “Now is the time”, what is the result
of the following expression? (pp. 126–129)

str.length() + " " + str.substring(1, 3)

7. A value-returning method can be called either within an expression or as a sep-
arate statement. (True or False?) (pp. 122–123)

8. Write a local Java constant declaration that gives the name PI to the value
3.14159. (p. 106)

9. Declare a local int variable named count and a local double variable named sum.
(pp. 107–108)

10. You want to divide 9 by 5.

a. How do you write the expression if you want the result to be the floating-
point value 1.8?

b. How do you write the expression if you want only the integer quotient? (pp.
108–111)

11. What is the value of the following Java expression? (pp. 108–109)

5 % 2

12. What is the result of evaluating the following expression? (pp. 114–115)

(1 + 2 * 2) / 2 + 1

13. How would you write the following formula as a Java expression that produces a
floating-point value as a result? (pp. 115–118)

c + 32

14. You want to compute the square roots and absolute values of some floating-
point numbers. Which Java methods would you use? (pp. 120–122)

15. Who needs to have code formatted in a clear and readable manner—the Java
compiler, the human reader, or both? (pp. 124–125)

9
�
5

143

16. What distinguishes the heading of a value-returning method from a method
that doesn’t return a value? (pp. 122–123)

17. What features distinguish class methods from instance methods, both syntacti-
cally and semantically? (pp. 122–123)

18. When saving a class called Animals in a separate file, what should you name the
file? (pp. 131–134)

Answers

1. There is only one copy, with two references to it. 2. int and float are both 32 bits. long and double are both 64
bits. 3. A decimal point, a fractional part, and an exponent. 4. Parentheses ()
5. a. someDouble = (double)(5 + someInt);

b. someInt = (int)(2.5 * (double)(someInt) / someDouble);
6. 15 ow 7. False. It can be called only within an expression. 8. final double PI = 3.14159;
9. int count;

double sum;
10. a. 9.0 / 5.0 or (double) 9 / (double) 5 b. 9 / 5
11. The value is 1. 12. The result is 3. 13. 9.0 / 5.0 * c + 32.0 14.Math.sqrt and Math.abs 15. The human reader.
The compiler ignores code formatting. 16. It has a type or class name in place of the keyword void. 17. Class
methods are static.They exist in only one place, yet are accessible to all objects of the class. In referring to a
class method, we precede its name with the class name and a period. Instance methods are not static, and
they are associated with each object. In referring to an instance method, we precede its name with the object
name and a period. 18.Animals.java.

Exam Preparation Exercises

1. Mark the following constructs either valid or invalid. Assume all variables are
of type int.

Valid Invalid

a. x * y = c; ______ _______

b. y = con; ______ _______

c. private static final int x : 10; ______ _______

d. int x; ______ _______

e. a = b % c; ______ _______

2. If alpha and beta are int variables with alpha = 4 and beta = 9, what value is stored
into alpha in each of the following? Answer each part independently of the
others.

a. alpha = 3 * beta;

b. alpha = alpha + beta;

c. alpha++;

d. alpha = alpha / beta;

e. alpha--;

f. alpha = alpha + alpha;

g. alpha = beta % 6;

144

3. Compute the value of each legal expression. Indicate whether the value is an in-
teger or a floating-point value. If the expression is not legal, explain why.

Integer Floating Point

a. 10.0 / 3.0 + 5 * 2 ______ _______

b. 10 % 3 + 5 % 2 ______ _______

c. 10 / 3 + 5 / 2 ______ _______

d. 12.5 + (2.5 / (6.2 / 3.1)) ______ _______

e. –4 * (–5 + 6) ______ _______

f. 13 % 5 / 3 ______ _______

g. (10.0 / 3.0 % 2) / 3 ______ _______

4. What value is stored into the int variable result in each of the following?

a. result = 15 % 4;

b. result = 7 / 3 + 2;

c. result = 2 + 7 * 5;

d. result = 45 / 8 * 4 + 2;

e. result = 17 + (21 % 6) * 2;

f. result = (int)(4.5 + 2.6 * 0.5);

5. If a and b are int variables with a = 5 and b = 2, what output does each of the fol-
lowing statements produce?

a. System.out.println(“a = “ + a + “b = “ + b);

b. System.out.println(“Sum:” + a + b);

c. System.out.println(“Sum: “ + a + b);

d. System.out.println(a / b + “ feet”);

6. What does the following application print?

public class ExamPrep

{

public static void main(String[] args)

{

final int LBS = 10;

int price;

int cost;

char ch;

price = 30;

cost = price * LBS;

ch = 'A’;

System.out.println(“Cost is “);

System.out.println(cost);

145

System.out.println(“Price is “ + price + “Cost is “ + cost);

System.out.println(“Grade “ + ch + “ costs “);

System.out.println(cost);

}

}

7. Translate the following Java code into algebraic notation. (All variables are
double variables.)

y = -b + Math.sqrt(b * b – 4.0 * a * c);

8. Given the code fragment:

int i;

int j;

double z;

i = 4;

j = 17;

z = 2.6;

determine the value of each of the following expressions. If the result is a float-
ing-point value, include a decimal point in your answer.

a. i / (double)j

b. 1.0 / i + 2

c. z * j

d. i + j % i

e. (1 / 2) * i

f. 2 * i + j – i

g. j / 2

h. 2 * 3 – 1 % 3

i. i % j / i

j. (int)(z + 0.5)

9. Evaluate the following expressions. If the result is a floating-point number,
include a decimal point in your answer.

a. Math.abs(–9.1)

b. Math.sqrt(49.0)

c. 3 * (int)7.8 + 3

d. Math.pow(4.0, 2.0)

e. Math.sqrt((double)(3 * 3 + 4 * 4))

f. Math.sqrt(Math.abs(–4.0) + Math.sqrt(25.0))

146

10. Given the statements

String heading;

String str;

heading = “Exam Preparation Exercises”;

what is the output of each of the following code segments?

a. System.out.println(heading.length());

b. System.out.println(heading.substring(6, 16));

c. System.out.println(heading.indexOf(“Ex”));

d. str = heading.substring(2, 26);

System.out.println(str.indexOf(“Ex”));

e. str = heading.substring(heading.indexOf(“Ex”) + 2, 24);

System.out.println(str.indexOf(“Ex”));

f. str = heading.substring(heading.indexOf(“Ex”) + 2, heading.length());

System.out.println(str.indexOf(“Ex”));

11. Incorrectly formatting an application causes an error. (True or False?)

Programming Warm-Up Exercises

1. Change the application in Exam Preparation Exercise 6 so that it prints the cost
for 15 pounds.

2. Write an assignment statement to calculate the sum of the numbers from 1
through n using Gauss’s formula:

sum =

Store the result into the int variable sum.

3. Given the declarations

int i;

int j;

double x;

double y;

write a valid Java expression for each of the following algebraic expressions.

a. – 3 e. (the floating-point result)

b. (x + y)(x – y) f. (the integer quotient)
i
�
j

i
�
j

x
�
y

n(n + 1)
�

2

147

c. g. –

d. + y

4. Given the declarations

int i;

long n;

double x;

double y;

write a valid Java expression for each of the following algebraic expressions. Use
calls to math methods wherever they are useful.

a. | i | e.

b. |n | f. �x6 + y�5�

c. |x + y | g. (x + �y�)7

d. |x | + |y |

5. Write expressions to compute both solutions for the quadratic formula.The for-
mula is

The � symbol means “plus or minus” and indicates that the equation has two
solutions: one in which the result of the square root is added to �b and one in
which the result is subtracted from �b. Assume all variables are float variables.

6. Enter the following application into your computer and run it. In the initial com-
ments, replace the items within parentheses with your own information. (Omit
the parentheses.)

//***********************************

// Programming Assignment One

// (your name)

// (date application was run)

// (description of the problem)

//***********************************

–b��b2 – 4�ac�
��

2a

x3
�
x + y

1
�
x

x – y
�

5
x + y
�

3
1

�
x + y

4x

148

public class WarmUp

{

public static void main(String[] args)

{

final double DEBT = 300.0; // Original value owed

final double PMT = 22.4; // Payment

final double INT_RATE = 0.02; // Interest rate

double charge; // Interest times debt

double reduc; // Amount debt is reduced

double remaining; // Remaining balance

// Compute values for output

charge = INT_RATE * DEBT; // Compute interest charge

reduc = PMT – charge; // Compute debt reduction

remaining = DEBT – reduc; // Compute remaining balance

// Output result

System.out.println(“Payment: “ + PMT + “ Charge: “ + charge +

“ Balance owed: “ + remaining);

}

}

7. Enter the following application into your computer and run it. Add comments,
using the pattern shown in Exercise 6. (Notice how difficult it is to tell what the
code does without the comments.)

public class WarmUp2

{

public static void main(String[] args)

{

final int TOT_COST = 1376;

final int POUNDS = 10;

final int OUNCES = 12;

int totOz;

double uCost;

totOz = 16 * POUNDS;

totOz = totOz + OUNCES;

uCost = TOT_COST / totOz;

System.out.println(“Cost per unit: “ + uCost);

}

}

149

8. Complete the following Java application.The application should find and output
the perimeter and area of a rectangle, given the length and the width. Be sure to
label the output. Don’t forget to use comments.

//***

// Rectangle application

// This application finds the perimeter and the area

// of a rectangle, given the length and width

//***

public class Rectangle

{

public static void main(String[] args)

{

double length; // Length of the rectangle

double width; // Width of the rectangle

double perimeter; // Perimeter of the rectangle

double area; // Area of the rectangle

length = 10.7;

width = 5.2;

9. Write an expression whose result is the position of the first occurrence of the
characters “res” in a String variable named sentence. If the variable contains the
first sentence of this question, then what is the result? (Look at the sentence
carefully!)

10. Write a sequence of Java statements to output the positions of the second and
third occurrences of the characters “res” in the String variable named sentence.
You may assume that there are always at least three occurrences in the variable.
(Hint: Use the substring method to create a new string whose contents are the
portion of sentence following an occurrence of “res”.)

11. Reformat the following application to make it clear and readable.

//**

// This application computes the sum and product of two integers

//**

public class SumProd { public static void main(String[] args){

final int INT2=8; final int INT1=20; System.out.println(

“The sum of “ + INT1 + “ and ”

+ INT2 + “ is “ + (INT1+INT2)); System.out.println (

“Their product is “ + (INT1*INT2)); }}

150

Programming Problems

1. Java systems provide a set of user-defined types that duplicate the names of
primitive types except that the first letter of the type name is capitalized (for ex-
ample, Double and Long instead of double and long).The one exception is that the
type corresponding to int is called Integer. Each of these types contains declara-
tions of constants related to the corresponding primitive type.Two of these con-
stants are Integer.MAX_VALUE and Integer.MIN_VALUE, the largest and smallest int
values that Java allows. Write an application to display the values of
Integer.MAX_VALUE and Integer.MIN_VALUE.The output should identify which value
is Integer.MAX_VALUE and which value is Integer.MIN_VALUE. Be sure to include ap-
propriate comments in your code, and use indentation as we do in the code in
this chapter. Each of these types defines similar constants, so you may want to
extend your application to display Long.MIN_VALUE, and so on, just to learn what
the actual maximum and minimum numbers are for each of the primitive types.

2. Write an application that outputs three lines as follows:

7 / 4 using integer division equals <result>

7 / 4 using floating-point division equals <result>

7 modulo 4 equals <result>

where <result> stands for the result computed by your application. Use named
constants for 7 and 4 everywhere in your application (including the output state-
ments) to make the application easy to modify. Be sure to include appropriate
comments in your code, choose meaningful identifiers, and use indentation as
we do in the code in this chapter.

3. Write a Java application that takes an integral Celsius temperature as input and
converts it to its Fahrenheit equivalent.The formula is

Fahrenheit = Celsius + 32

After the Celsius temperature is input, it should be displayed along with the cor-
responding Fahrenheit equivalent.The application should include appropriate
messages identifying each value. Be sure to include appropriate comments in
your code, choose meaningful identifiers, and use indentation as we do in the
code in this chapter.

4. Write an application to calculate the diameter, circumference, and area of a cir-
cle with a radius input by the user. Assign the radius to a float variable, and then
output the radius with an appropriate message. Declare a named constant PI
with the value 3.14159.The application should output the diameter,
circumference, and area, each on a separate line, with identifying labels. Be sure
to include appropriate comments in your code, choose meaningful identifiers,
and use indentation as we do in the code in this chapter.

9
�
5

Case Study Follow-Up

1. Modify the Payroll application to handle a fourth employee. Use your own
name, and be generous with your pay.

2. Change the Employee class to also return the hours worked, and modify the
Payroll application to echo-print the hours that were entered for each
employee.

3. Modify the Payroll application to also calculate and print the average pay.

4. Change the Employee class to also compute the average pay and provide a
method that returns it, and then modify the Payroll application to display the
average using the new method.

5. If you did Exercises 3 and 4, compare the different versions of Payroll. Which
do you think is simpler?

151

Knowledge Goals
• To understand the Boolean operators AND, OR, and NOT

• To understand the concept of control flow with respect to selection
statements

• To understand how nested control flow works

• To know the differences between the if-else and if-else-if selection structures

• To understand the differences between a nested if structure and a series of if
structures

• To know when each form of selection structure is appropriate

• To know what an algorithm walk-through is and how it is used

• To understand the purpose of tracing the execution of Java code

• To become familiar with the design concepts of encapsulation and
abstraction

Skill Goals
To be able to:

• Construct a simple logical (Boolean) expression to evaluate a given condition

• Construct a complex Boolean expression to evaluate a given condition

• Construct an if-else statement to perform a specific task

• Construct an if statement to perform a specific task

• Construct a set of nested if statements to perform a specific task

• Test and debug a Java application

Selection and
Encapsulation

1943
The first “Walkie-
Talkie” is invented
by Dan Nobel. This
portable FM two-
way radio uses 35
lb. backpacks

1945
J. Presper Eckert and
John Mauchly join
forces to develop the
Electronic Discrete
Variable Automatic
Computer (EDVAC)

1945
John von Neumann
outlines the
principles of a
stored-program
computer

1945
Grace Murray
Hopper discovers a
moth in her
computer: the first
computer “bug”

1946
The ENIAC is
unveiled at the
Moore School of
Electrical
Engineering at
UPENN and is
accepted by the U.S.
Army Ordnance
Corps

1947
Magnetic drum
memory is
introduced

4
C H A P T E R

in our code have always executed in the same or-
der in which we write them.The first statement executes, then the sec-
ond, and so on. One variation on this ordering is the method call, which
executes a separate sequence of statements. But what if we want the
computer to execute the statements in an order other than sequentially?
For example, suppose we want to check the validity of input data and then
perform a calculation or display an error message, but not both.To do so,
we must be able to ask a question and then, based on the answer, choose
one or another course of action.

The if statement allows us to execute statements in an order that
differs from their physical order.We can ask a question with this kind of
statement and do one thing if the answer is yes (true) or another if the
answer is no (false). In the first part of this chapter, we deal with asking
questions; in the second part, we examine the if statement itself. We
then use the if statement to handle multiple event sources, and apply
what we’ve seen in the Case Study.

So far, the statements

1947
The world’s first
transistor is
developed at Bell
Labs

1948
Researchers at the
University of
Manchester develop
the Manchester
Mark I, a computer
with all the main
components of
today’s computers
that can store data
and user programs
in electronic
memory

1949
Jay Forrester refines
magnetic core
memory in his work
on the Whirlwind
computer

1949
John Mauchly
creates the first
high-level
programming
language: Short
Order Code

1950
Alan Turing asks
“Can Machines
Think?” and
outlines criteria for
the Turing Test of
machine intelligence

1951
The UNIVAC
(Universal
Automatic
Computer) I is
completed

154 | Selection and Encapsulation

4.1 Flow of Control

The order in which statements execute is called the flow of control. In a sense, the
computer is under the control of one statement at a time. After a statement exe-
cutes, control turns over to the next statement (like a baton being passed in a re-
lay race).

The flow of control is normally sequential (see Figure 4.1). That is, when one
statement is finished executing, control passes to the next statement in the code.
Where we want the flow of control to be nonsequential, we use control structures,
or special statements that transfer control to a statement other than the one that
physically comes next.As we saw earlier, method calls are control structures that
alter the flow of control so that a separate sequence of statements can be executed.

Selection

We use a selection (or branching) control structure when we want the com-
puter to choose between alternative actions. To do so, we make an asser-
tion, a claim that is either true or false. If the assertion is true, the computer
executes one statement. If it is false, it executes another (see Figure 4.2).The
computer’s ability to solve practical problems is a product of its ability to
make decisions and execute different sequences of instructions.

The Payroll application in Chapter 3 is unable to recognize an invalid amount of hours
worked, such as a negative number. How can the computer respond to erroneous input? It
can decide whether a negative number has been entered. It does so by testing the assertion
that the number is less than zero. If the assertion is true, the computer follows the instruc-
tions for displaying an error message. If the assertion is false, the computer simply computes
the pay. Before we examine selection control structures in Java, let’s look closely at how we
get the computer to make decisions.

4.2 Conditions and Logical Expressions

To ask a question in Java, we don’t phrase it as a question; rather, we state it as an assertion.
If our assertion is true, the answer to the question is yes. If our assertion is false, the answer
to the question is no.The need to simplify assertions to true-false form stems from the fact

Flow of control The order in
which the computer executes
statements

Control structure A statement
used to alter the normally
sequential flow of control

statement 1

statement 2

statement 3

statement 4

Flow of
control

Figure 4.1 Sequential Control

4.2 C o n d i t i o n s a n d L o g i c a l E x p r e s s i o n s | 155

that it is easiest for the computer to work with an-
swers that can be represented by the 1s and 0s of
the binary number system. For example, to ask,“Are
we having spinach for dinner tonight?” we would
say, “We are having spinach for dinner tonight.” If
the assertion is true, the answer to the question is
yes. If it is false, the answer is no.

Thus asking questions in Java means making an
assertion that is either true or false. The computer
evaluates the assertion, checking it against some in-
ternal condition (the values stored in certain vari-
ables, for instance) to see whether it is true or false.

The boolean Data Type

The boolean data type consists of just two values,
the constants true and false. The reserved word
boolean is pronounced “bool-e-un.”1 Boolean data is
used for testing conditions in code so that the computer can make decisions (as in a selec-
tion control structure).

We declare variables of type boolean in the same way that we declare variables of other
standard types—by writing the name of the data type and then an identifier:

boolean dataOK; // True if the input data is valid
boolean done; // True if the process is done
boolean taxable; // True if the item has sales tax

Each variable of type boolean can contain one of two values: true or false. It’s important
to understand right from the beginning that true and false are neither variable names nor
strings. Rather, they are special constants in Java and, in fact, are reserved words.

Logical Expressions

In programming languages, assertions take the form of logical expressions (also called Boolean
expressions). Just as an arithmetic expression is made up of numeric values and operations,
a logical expression is made up of logical values and operations. Every logical expression has
one of the two boolean values: true or false.

Here are some examples of logical expressions:

� A boolean variable or constant

� An arithmetic expression followed by a relational operator followed by an
arithmetic expression

� A logical expression followed by a logical operator followed by a logical expression

Assertion

statement 1A statement 1B

true false

Figure 4.2 Selection (branching) Control Structure

1The name boolean is a tribute to George Boole, a nineteenth-century English mathematician who de-
scribed a system of logic using variables with just two values, true and false. (See the May We Introduce
box on page 164.)

156 | Selection and Encapsulation

Let’s look at each of these possibilities in detail.

booleanVariables and Constants As we have seen, a boolean variable is a variable declared to be
of type boolean, which can contain either the value true or the value false. For example, if
dataOK is a boolean variable, then

dataOK = true;

is a valid assignment statement.

Relational Operators Another way of assigning a value to a boolean variable is to set it equal to
the result of comparing two expressions with a relational operator. Relational operators test
a relationship between two values.

Let’s look at an example. In the following code fragment, lessThanZero is a boolean vari-
able and i and j are int variables:

lessThanZero = (i < 0); // Compare i and 0 with the "less than"
// operator, and assign the value to lessThanZero

By comparing two values, we assert that a relationship (such as “less than”) exists be-
tween them. If the relationship does exist, the assertion is true; if not, it is false.We can test
for the following relationships in Java:

Operator Relationship Tested

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

An expression followed by a relational operator followed by an expression is called a re-
lational expression.The result of a relational expression is of type boolean. For example, if x is
5 and y is 10, the following expressions all have the value true:

x != y
y > x
x < y
y >= x
x <= y

If x and y are instead of type char, and x contains the character 'M' and y holds 'R', the val-
ues of the expressions are still true because the relational operator <, when used with let-
ters, means “comes before in the alphabet” or, more properly, “comes before in the collating

4.2 C o n d i t i o n s a n d L o g i c a l E x p r e s s i o n s | 157

sequence of the character set.” For example, in the ASCII subset of the Unicode character set,
all of the uppercase letters are in alphabetical order, as are the lowercase letters, but all of
the uppercase letters come before the lowercase letters. So the expressions

'M' < 'R'

and

'm' < 'r'

have the value true, but

'm' < 'R'

has the value false. All uppercase letters come before any of the lowercase letters.
Of course, we have to be careful about the data types of things that we compare.The safest

approach is to compare identical types: int with int, double with double, char with char, and
so on. If you mix data types in a comparison, implicit type conversion takes place just as it
does in arithmetic expressions. If you try to compare an int value and a double value, for ex-
ample, the computer temporarily converts the int value to its double equivalent before mak-
ing the comparison. As with arithmetic expressions, it’s wise to use explicit type casting to
make your intentions known:

someDouble >= (double)someInt

If you try to compare a boolean value with a numeric value (probably by mistake), the com-
piler will display an error message. Values of type boolean cannot be converted to any type
other than String. When a boolean variable is concatenated with a string, its value is auto-
matically converted to either "true" or "false". No type can be converted to boolean.

Be careful to compare charvalues only with other charvalues.For example,the comparisons

'0' < '9'

and

0 < 9

are appropriate, but comparing a digit in quotes (a character) and a digit, such as

'0' < 9

generates an implicit type conversion and a result that probably isn’t what you expect.The
character for the digit '0' is converted to its Unicode int value, which is 79, and the com-
parison returns false because 79 is greater than 9.

158 | Selection and Encapsulation

We can use relational operators to compare not only variables or constants, but also the
values of arithmetic expressions. In the following table, we compare the results of adding 3
to x and multiplying y by 10 for different values of x and y:

Value of x Value of y Expression Result

12 2 x + 3 <= y * 10 true

20 2 x + 3 <= y * 10 false

7 1 x + 3 != y * 10 false

17 2 x + 3 == y * 10 true

100 5 x + 3 > y * 10 true

Caution: It’s easy to confuse the assignment operator (=) and the relational operator (==).
These two operators have very different effects in your code, however. Some people pro-
nounce the relational operator as “equals-equals” to remind themselves of the difference.

Comparing Strings You cannot compare strings using the relational operators. Syntactically, Java
lets you write the comparisons for equality (==) and inequality (!=) between values of class
String, but such a comparison is not what you typically want. Recall from Chapter 2 that
String is a reference type.That is, the content of a String variable is the memory address for
the beginning of the string object.When you assign one string to another, Java simply copies
this address. Similarly, when you compare two strings, Java checks whether they have the
same address. It does not check whether they contain the same sequence of characters.

Forgetting that Java makes comparisons involving strings in this manner, and mistak-
enly using the == or != operator, is a source of some insidious errors. Sometimes, the com-
parison seems to work; at other times it fails.The reason is that most Java compilers are quite
clever about how they store String literals. If you type the same literal in two different places
in your code, the compiler recognizes their equality and stores the character sequence just
once; it then uses the same address in the Bytecode.Thus, comparing a String literal to a vari-
able that has been assigned an identical literal elsewhere in the program is likely to indicate
that they are equal (if the Java compiler is well designed).

On the other hand, if you get a string from a BufferedReader object and compare it to a
String literal, the two must always compare as unequal, even when they contain the exact
same sequence of characters. The string from the BufferedReader and the String literal are
stored in different places in memory, which means that their addresses compare as unequal.

Rather than using the relational operators, we compare strings with a set of value-
returning instance methods that Java supplies as part of the String class. Because they are
instance methods, the method name is written following a String object, separated by a dot.
The string to which the method name is appended is one of the strings in the comparison,
and the string in the argument list is the other string to be compared. Because we sometimes
want to compare strings ignoring capitalization, the String class provides methods called
toLowerCase and toUpperCase that convert all the characters of a string to lowercase or up-

4.2 C o n d i t i o n s a n d L o g i c a l E x p r e s s i o n s | 159

Table 4.1 Java Comparison and Case-Conversion Methods

Method Name Argument Type Returns Operation Performed

equals

equalsIgnoreCase

compareTo

toLowerCase

toUpperCase

String

String

String

boolean

boolean

int

String

String

Tests for equality of string
contents.

Returns true if the strings are
equal, ignoring the case of the
letters. Returns false if they
are unequal.

Returns 0 if equal, a positive
integer if this string comes
after the string in the
argument, and a negative in-
teger if it comes before the
argument string.

Returns a new identical string
except that the characters are
all lowercase.

Returns a new identical string
except that the characters are
all uppercase.

percase, respectively.The three most useful comparison methods are summarized in Table
4.1, along with toLowerCase and toUpperCase.

Many of Java’s classes support a method called compareTo.As we will see in later chapters,
this common use of compareTo enables the same piece of code to compare objects of differ-
ent classes. With strings, we often combine the use of compareTo with either toLowerCase or
toUpperCase, as we show below. Note that equals and equalsIgnoreCase test only for equality.
We must use the compareTomethod to test for relationships such as“greater than”or“less than.”

Let’s look at some examples. If lastName is a String variable, we can write

lastName.equals("Olson") // Tests whether lastName equals "Olson"

Because every String literal is also a String object, Java lets us append the method call to a
literal, if we so choose.

"Olson".equals(lastName) // Tests whether lastName equals "Olson"

As another example, we might write

lastName.compareTo("Olson") > 0 // Tests if lastName comes after "Olson"

160 | Selection and Encapsulation

Comparison of strings in Java follows the collating sequence used in the Unicode char-
acter set.When the computer tests a relationship between two strings, it begins with the first
character of each one, compares the characters according to the collating sequence, and if they
are the same, repeats the comparison with the next character in each string.The character-by-
character test continues until either a mismatch is found or the final characters have been
compared and are equal. If all their characters are equal, then the two strings are equal. If a
mismatch is found, then the string with the character that comes before the other is the
“lesser” string.

For example, given the statements

String word1;
String word2;

word1 = "Tremendous";
word2 = "Small";

the following relational expressions have the values shown:

Expression Value Reason

word1.equals(word2) false They are unequal in the first character.

word1.compareTo(word2) > 0 true ’T’ comes after ‘S’ in the collating sequence.

word1.compareTo("Tremble") < 0 false The fifth characters don’t match, and ‘e’
comes after ‘b’.

word2.equals("Small") true They are equal.

"cat".compareTo("dog") == 0 false They are unequal.

Remembering the way that compareTo works can be a bit challenging at first. A conven-
tion that helps overcome this confusion is to write the relational expression with zero on the
right side of the operator.Then the operator has the same meaning as if we were able to sub-
stitute it for the method name.That is, writing

word1.compareTo(word2) > 0

has the same effect as if Java allowed us to write

word1 > word2

In most cases, the ordering of strings corresponds to alphabetical ordering.When strings
have mixed-case letters, however, we can get nonalphabetical results. For example, in a
phone book we would expect to see “Macauley” before “MacPherson.”The Unicode collating
sequence places all English uppercase letters before the lowercase letters, so the string
“MacPherson”compares less than “Macauley” in Java.To compare strings for strict alphabetical
ordering, all the characters must be in the same case. In the following examples, toLowerCase
and toUpperCase are used to convert strings to a single case:

4.2 C o n d i t i o n s a n d L o g i c a l E x p r e s s i o n s | 161

lowerCaseString = myString.toLowerCase();
upperCaseString = myString.toUpperCase();

We can use these methods directly in a comparison expression. For example, the fol-
lowing expressions convert word1 and word2 to the same case before comparing them. It does-
n’t matter whether the strings are both converted to uppercase or both converted to lowercase,
as long as they are both converted using the same method.

word1.toLowerCase().compareTo(word2.toLowerCase()) > 0
word1.toUpperCase().compareTo(word2.toUpperCase()) > 0

If two strings with different lengths are compared and the comparison is equal up to the
end of the shorter string, then the shorter string compares as less than the longer string. For
example, if word2 contains "Small", the expression

word2.compareTo("Smaller") < 0

yields true, because the strings are equal up to their fifth character position (the end of the
string on the left), and the string on the right is longer.

If you are just interested in testing the equality of strings, ignoring their case, then
equalsIgnoreCasemethod is a perfect choice.For example, the following expression returns true:

"MacPherson".equalsIgnoreCase("macpherson")

Logical Operators In mathematics, the logical (or Boolean) operators AND, OR, and NOT take log-
ical expressions as operands. Java uses special symbols for the logical operators: && (for AND),
|| (for OR), and ! (for NOT). By combining relational operators with logical operators, we can
make more complex assertions. For example, suppose we want to determine whether a fi-
nal score is greater than 90 and a midterm score is greater than 70. In Java, we would write
the expression this way:

finalScore > 90 && midtermScore > 70

The AND operation (&&) requires both relationships to be true for the overall result to be true.
If either or both of the relationships are false, then the entire result is false.

The OR operation (||) takes two logical expressions and combines them. If either or both
are true, the result is true. Both values must be false for the result to be false. Now we can de-
termine whether the midterm grade is an A or the final grade is an A. If either the midterm
grade or the final grade equalsA, the assertion is true. In Java,we write the expression like this:

midtermGrade == 'A' || finalGrade == 'A'

The && and || operators always appear between two expressions; they are binary (two-
operand) operators.The NOT operator (!) is a unary (one-operand) operator. It precedes a sin-
gle logical expression and gives its opposite as the result. For example, if (grade == 'A') is

162 | Selection and Encapsulation

2In Boolean algebra, the pattern is formalized by a theorem called DeMorgan’s law.

false, then !(grade == 'A') is true. NOT gives us a convenient way of reversing the meaning
of an assertion. For example,

!(hours > 40)

is the equivalent of

hours <= 40

In some contexts, the first form is clearer; in others, the second makes more sense.
The following pairs of expressions are equivalent:

Expression Equivalent Expression

!(a == b) a != b

!(a == b || a == c) a != b && a != c

!(a == b && c > d) a != b || c <= d

Take a close look at these expressions to be sure you understand why they are equiva-
lent.Try evaluating them with some values for a, b, c, and d. Notice the pattern: The expres-
sion on the left is just the one to its right with ! added and the relational and logical operators
reversed (for example, == instead of != and || instead of &&). Remember this pattern. It allows
you to rewrite expressions in the simplest form.2

You can apply logical operators to the results of comparisons. You can also apply them
directly to variables of type boolean. For example, instead of writing

isElector = (age >= 18 && district == 23);

to assign a value to the boolean variable isElector, we could use two intermediate boolean vari-
ables, isVoter and isConstituent:

isVoter = (age >= 18);
isConstituent = (district == 23);
isElector = isVoter && isConstituent;

The following tables summarize the results of applying && and || to a pair of logical ex-
pressions (represented here by the boolean variables x and y).

Value of x Value of y Value of (x && y)

true true true

true false false

false true false

false false false

4.2 C o n d i t i o n s a n d L o g i c a l E x p r e s s i o n s | 163

Value of x Value of y Value of (x || y)

true true true

true false true

false true true

false false false

The following table summarizes the results of applying the ! operator to a logical ex-
pression (represented by the boolean variable x).

Value of x Value of !x

true false

false true

Short-Circuit Evaluation Consider the logical expression

i == 1 && j > 2

Some programming languages use full evaluation to parse such a logical expres-
sion.With full evaluation, the computer first evaluates both subexpressions (both
i == 1 and j > 2) before applying the && operator to produce the final result.

In contrast, Java uses short-circuit (or conditional) evaluation of logical expres-
sions.That is, evaluation proceeds from left to right, and the computer stops eval-
uating subexpressions as soon as possible—as soon as it knows the Boolean value
of the entire expression. How can the computer know if a lengthy logical ex-
pression yields true or false if it doesn’t examine all the subexpressions? Let’s look
first at the AND operation.

An AND operation yields the value true only if both of its operands are true.
In the preceding expression, suppose that the value of i is 95.The first subexpression yields
false, so it isn’t necessary to even look at the second subexpression.The computer stops eval-
uation and produces the final result of false.

With the OR operation, the left-to-right evaluation stops as soon as a subexpression
yielding true is found. Recall that an OR produces a result of true if either one or both of its
operands are true. Given the expression

c <= d || e == f

if the first subexpression is true, then evaluation stops and the entire result is true.The com-
puter doesn’t waste time evaluating the second subexpression.

Java provides a second set of logical operators that result in full evaluation of Boolean
expressions.The single & and | perform logical AND and OR operations, respectively, with full
evaluation. We don’t recommend their use at this stage in your experience with program-
ming. In Java these operators have another meaning with variables or constants of type byte,
short, int, or long, which can lead to errors that may prove difficult to find.

Short-circuit (conditional) eval-
uation Evaluation of a logical
expression in left-to-right order
with evaluation stopping as
soon as the final Boolean value
can be determined

164 | Selection and Encapsulation

George Boole
Boolean algebra is named for its inventor, English mathematician George Boole, who was born
in 1815. Boole’s father, a tradesman, began teaching him mathematics at an early age. But Boole
initially was more interested in classical literature, languages, and religion—interests that he
maintained throughout his life. By the time he was 20, he had taught himself French, German,
and Italian. He was well versed in the writings of Aristotle, Spinoza, Cicero, and Dante, and
wrote several philosophical papers himself.

At 16, to help support his family, Boole took a position as a teaching assistant in a private
school. His work there and a second teaching job left him little time to study. A few years later,
he opened his own school and began to study higher mathematics independently. Despite his
lack of formal training, his first scholarly paper was published in the Cambridge Mathematical
Journal when he was just 24. Boole went on to publish more than 50 papers and several major
works before he died in 1864, at the peak of his career.

Boole’s The Mathematical Analysis of Logic was published in 1847. It would eventually form the
basis for the development of digital computers. In the book, Boole set forth the formal axioms
of logic (much like the axioms of geometry) on which the field of symbolic logic is built.

Boole drew on the symbols and operations of algebra in creating his system of logic. He as-
sociated the value 1 with the universal set (the set representing everything in the universe) and
the value 0 with the empty set, restricting his system to just these two values. He then defined
operations that are analogous to subtraction, addition, and multiplication.Variables in the sys-
tem have symbolic values. For example, if a Boolean variable P represents the set of all plants,
then the expression 1 � P refers to the set of all things that are not plants. We can simplify the
expression by using �P to mean “not plants.” (0 – P is simply 0 because we can’t remove
elements from the empty set.) The subtraction operator in Boole’s system corresponds to the !
(NOT) operator in Java. In Java code, we might set the value of the Boolean variable plant to true
when the name of a plant is entered, so that !plant is true when the name of anything else is
input.

The expression 0 + P is the same as P. However, 0 + P + F, where F is the set of all foods, is the
set of all things that are either plants or foods. So the addition operator in Boole’s algebra is the
same as the Java || (OR) operator.

The analogy can be carried to multiplication as well: 0 � P is 0, and 1 � P is P. But what is P �

F? It is the set of things that are both plants and foods. In Boole’s system, the multiplication op-
erator is the same as the Java && (AND) operator.

In 1854, Boole published An Investigation of the Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probabilities. In the book, he described theorems built on his
axioms of logic and extended the algebra to show how probabilities could be computed in a log-
ical system. Five years later, Boole published Treatise on Differential Equations, then Treatise on the
Calculus of Finite Differences.The latter is one of the cornerstones of numerical analysis, which
deals with the accuracy of computations. (In Chapter 12, we examine the important role that
numerical analysis plays in computer programming.)

During his lifetime, Boole received recognition and honors for his work on differential equa-
tions. But the importance of Boolean algebra for computer and communication technology was
not recognized until the early twentieth century. George Boole was truly one of the founders of
computer science.

4.2 C o n d i t i o n s a n d L o g i c a l E x p r e s s i o n s | 165

Precedence of Operators

In Chapter 3, we discussed the rules of precedence, which govern the evaluation of complex
arithmetic expressions. Java’s rules of precedence also apply to relational and logical oper-
ators.The following list shows the order of precedence for the arithmetic, relational, and log-
ical operators (with the assignment operator thrown in as well):

() Highest precedence

! unary – unary + ++ -- (post)

++ -- (pre)

* / %

+ -

< <= > >=

== !=

&&

||

= Lowest precedence

Operators on the same line in the list have the same precedence. If an expression contains
several operators with the same precedence, most of the operators group (or associate) from
left to right. For example, the expression

a / b * c

means (a / b) * c, not a / (b * c). However, the ! operator groups from right to left.Although you’d
never have occasion to use the expression

!!badData

It means !(!badData) rather than the useless (!!)badData.Appendix B gives the order of prece-
dence for all operators in Java. In skimming the appendix, you can see that a few of the op-
erators associate from right to left (for the same reason we just described for the ! operator).

You can use parentheses to override the order of evaluation in Boolean expressions. If
you’re not sure whether parentheses are necessary,use them anyway.The compiler disregards
unnecessary parentheses. So, if they clarify an expression, use them. Some programmers
like to include extra parentheses when assigning a relational expression to a boolean variable:

dataInvalid = (inputVal == 0);

The parentheses are not needed; the assignment operator has the lowest precedence of all
the operators we’ve just listed. So we could write the statement as

dataInvalid = inputVal == 0;

The parenthesized version, however, is more readable.

166 | Selection and Encapsulation

PEANUTS reprinted by permission of United Features Syndicate, Inc.

One final comment about parentheses: Java, like other programming languages, re-
quires that you always use parentheses in pairs. Whenever you write a complicated ex-
pression, take a minute to go through and pair up all of the opening parentheses with their
closing counterparts.

Changing English Statements into Logical Expressions
In most cases, you can write a logical expression directly from an English statement or mathe-
matical term in an algorithm. But you have to watch out for some tricky situations. Recall our
example logical expression:

midtermGrade == 'A' || finalGrade == 'A'

In English, you would be tempted to write this expression: “Midterm grade or final grade equals
A.” In Java, you can’t write the expression as you would in English.That is,

midtermGrade || finalGrade == 'A'

won’t work because the || operator connects a char value (midtermGrade) and a logical
expression (finalGrade == 'A').The two operands of || must both be logical expressions.This
example will generate a syntax error message.

A variation of this mistake is to express the English assertion “i equals either 3 or 4” as

i == 3 || 4

This syntax is incorrect. In the second subexpression, 4 is an int rather than a boolean value.
The || operator (and the && operator) can only connect two boolean expressions. Here’s what
we want:

i == 3 || i == 4

In math books, you might see notation like this:

12 < y < 24

It means “y is between 12 and 24.”This expression is illegal in Java. First, the relation 12 < y is
evaluated, giving a boolean result. Next, the computer tries to compare it with the number 24.
Because a boolean value cannot be converted to any type other than String, the expression is
invalid.To write this expression correctly in Java, you must use the && operator:

12 < y && y < 24

4.3 T h e i f S t a t e m e n t | 167

Relational Operators with Floating-Point Types

So far, we’ve talked only about comparing int, char, and String values. Here we look at float
and double values.

Do not compare floating-point numbers for equality. Because small errors in the rightmost dec-
imal places are likely to arise when calculations are performed on floating-point numbers,
two float or double values rarely are exactly equal. For example, consider the following code
that uses two double variables named oneThird and x:

oneThird = 1.0 / 3.0;
x = oneThird + oneThird + oneThird;

We would expect x to contain the value 1.0, but it probably doesn’t. The first assignment
statement stores an approximation of 1/3 into oneThird, perhaps 0.333333. The second state-
ment stores a value like 0.999999 into x. If we now ask the computer to compare x with 1.0,
the comparison will yield false.

Instead of testing floating-point numbers for equality, we can test them for near equal-
ity. To do so, we compute the difference between the two numbers and see whether the re-
sult is less than some maximum allowable difference. For example, we often use comparisons
such as the following:

Math.abs(r – s) < 0.00001

where Math.abs is the absolute value method from the Java library. The expression
Math.abs(r – s) computes the absolute value of the difference between two variables r and
s. If the difference is less than 0.00001, the two numbers are close enough to call them equal.
We discuss this problem with floating-point accuracy in more detail in Chapter 12.

4.3 The if Statement

Now that we’ve seen how to write logical expressions, let’s use them to alter the normal
flow of control in our code.The if statement is the fundamental control structure that allows
branches in the flow of control.With it, we can ask a question and choose a course of action:
If a certain condition exists, perform one action; else perform a different action.

The computer performs just one of the two actions under any given set of circumstances.
Yet we must write both actions into the code.Why? Because, depending on the circumstances,
the computer can choose to execute either of them.The if statement gives us a way of including
both actions in our code and gives the computer a way of deciding which action to take.

168 | Selection and Encapsulation

Statement1A

Statement2

Statement1B

truefalse

if (Expression)

else

Figure 4.3 if-else Flow of Control

The if-else Form

In Java, the if statement comes in two forms: the if-else form and the if form. Let’s look first
at if-else. Here is its syntax template:

The expression in parentheses must produce a boolean result.At run time, the computer
evaluates the expression. If the value is true, the computer executes Statement1A. If the
value of the expression is false, it executes Statement1B. Statement1A is often called the then
clause; Statement1B is the else clause. Figure 4.3 illustrates the flow of control of the if-else state-
ment. In the figure, Statement2 is the next statement in the code after the entire if statement.

Notice that a Java if statement uses the reserved words if and else but the then clause
does not include the word then.The following code fragment shows how to write an if state-
ment. Observe the indentation of the then clause and the else clause, which makes the state-
ment easier to read. Also notice the placement of the statement following the if statement.

If-Statement (the if-else form)

if (Expression)

Statement1A

Statement1B

else

4.3 T h e i f S t a t e m e n t | 169

if (hours <= 40.0)
pay = rate * hours;

else
pay = rate * (40.0 + (hours – 40.0) * 1.5);

System.out.println("Pay is " + pay);

In terms of instructions to the computer, this code fragment says,“If hours is less than or equal
to 40.0, compute the regular pay and then go on to execute the output statement. But if hours
is greater than 40, compute the regular
pay and the overtime pay, and then go
on to execute the output statement.”
Figure 4.4 shows the flow of control of
this if statement.

If-else statements are often used to
check the validity of input. For exam-
ple, before we ask the computer to di-
vide by a data value, we should be sure
that the value is not zero. (Even com-
puters can’t divide something by zero. If
you try it with int values, the computer
will halt the execution of your applica-
tion.With floating-point types, you get
the special infinity value.) If the divisor
is zero,our code should display an error
message.Here’s an example that prints
an error message:

if (divisor != 0)
result = dividend / divisor;

else
System.out.println("Division by zero is not allowed.");

Before we examine if statements further, let’s take another look at the syntax template
for if-else. According to the template, no semicolon appears at the end of an if statement. In
both of the preceding code fragments—the worker’s pay and the division-by-zero exam-
ples—there seems to be a semicolon at the end of each if statement. In reality, the semicolons
belong to the statements in the then clause and the else clause in those examples; assignment
statements end in semicolons, as do method calls.The if statement doesn’t have its own semi-
colon at the end.

Blocks (Compound Statements)

In our division-by-zero example, suppose that when the divisor is equal to zero we want to
do two things: write the error message and set the variable named result equal to a special
value such as Integer.MAX_VALUE. We would need two statements in the same branch to do
so, but the syntax template seems to limit us to one.

pay = rate*hours;

System.out.println("Pay is " + pay);

pay = rate*(40.0+(hours-40.0)*1.5

truefalse

if (hours <= 40.0)

else

Figure 4.4 Flow of Control for Calculating Pay

170 | Selection and Encapsulation

What we really want to do is turn the else clause into a sequence of statements.This is easy.
Recall from Chapter 2 that the compiler treats the block (compound statement)

{
.
.
.

}

as a single statement. If you put a { } pair around the sequence of statements you want in a
branch of the if statement, the sequence of statements becomes a single block. For example:

if (divisor != 0)
result = dividend / divisor;

else
{
System.out.println("Division by zero is not allowed.");
result = Integer.MAX_VALUE;

}

If the value of divisor is zero, the computer both displays the error message and sets the value
ofresult toInteger.MAX_VALUEbefore continuing with whatever statement follows the if statement.

Blocks can be used in both branches of an if-else statement. For example:

if (divisor != 0)
{
result = dividend / divisor;
System.out.println("Division performed.");

}
else
{
System.out.println("Division by zero is not allowed.");
result = Integer.MAX_VALUE;

}

When you use blocks in an if statement, you must remember a rule of Java syntax: Never use
a semicolon after the right brace of a block. Semicolons are used only to terminate simple state-
ments such as assignment statements and method calls. If you look at the earlier examples,
you won’t see a semicolon after the right brace that signals the end of each block.

The if Form

Sometimes you run into a situation where you want to say, “If a certain condition exists,
perform some action; otherwise, don’t do anything.” In other words, you want the computer

4.3 T h e i f S t a t e m e n t | 171

Braces and Blocks
Java programmers use different styles when it comes to locating the left brace of a block.The
style used in this book puts the left and right braces directly below the words if and else, with
each brace on its own line:

if (n >= 2)
{
alpha = 5;
beta = 8;

}
else
{
alpha = 23;
beta = 12;

}

Another popular style is to place the statements following if and else on the same line as
the left brace; the right braces still line up directly below the left braces.

if (n >= 2)
{ alpha = 5;
beta = 8;

}
else
{ alpha = 23;

beta = 12;
}

It makes no difference to the Java compiler which style you use (and other styles exist as
well, such as placing the left braces at the ends of the lines containing if and else). It’s a mat-
ter of personal preference. Whichever style you use, though, you should maintain it throughout
the entire application. Inconsistency can confuse a person reading your code and give the im-
pression of carelessness.

to skip a sequence of instructions if a certain condition isn’t met.You could do so by leaving
the else branch empty, using only the null statement:

if (a <= b)
c = 20;

else
;

172 | Selection and Encapsulation

truefalse

if (Expression)

Statement1

Statement2

Figure 4.5 if Flow of Control

Better yet, you could simply leave off the else part.The resulting statement is the if form of
the if statement. Here is its syntax template:

Here’s an example of an if form. Notice the indentation and the placement of the state-
ment that follows the if.

if (age < 18)
System.out.print("Not an eligible ");

System.out.println("voter.");

This statement means that if age is less than 18, first print "Not an eligible " and then print
"voter." If age is not less than 18, skip the first statement and go directly to printing "voter."
Figure 4.5 shows the flow of control for an if form.

Like the two branches in an if-else, the one branch in an if can be a block. For example,
suppose you are writing an application to compute income taxes. One of the lines on the tax
form says, “Subtract line 23 from line 17 and enter the result on line 24; if the result is less
than zero, enter zero and check box 24A.”You can use an if to perform this task in Java:

result = line17 – line23;
if (result < 0.0)
{
System.out.println("Check box 24A");
result = 0.0;

}
line24 = result;

If-Statement (the if form)

if (Expression)

Statement

4.4 N e s t e d i f S t a t e m e n t s | 173

This code does exactly what the tax form says it should: First it computes the result of sub-
tracting line 23 from line 17.Then it checks whether result is less than zero. If it is, the frag-
ment displays a message telling the user to check box 24A and sets result to zero. Finally, the
calculated result (or zero, if result is less than zero) is stored into a variable named line24.

What happens if we leave out the left and right braces in the code fragment? Let’s look at it:

result = line17 – line23; // Incorrect version
if (result < 0.0)
System.out.println("Check box 24A");
result = 0.0;

line24 = result;

Despite the way we have indented the code, the compiler assumes that the first clause is a
single statement—the output statement. If result is less than zero, the computer executes
the output statement, sets result to zero, and then stores result into line24. So far, so good.
But if result is initially greater than or equal to zero, the computer skips the first clause and
proceeds to the statement following the if statement—the assignment statement that sets
result to zero.The unhappy outcome is that result ends up as zero no matter what its initial
value was! The moral here is not to rely on indentation alone; you can’t fool the compiler. If
you want a compound statement for either clause, you must include the left and right braces.

4.4 Nested if Statements

Java does not place any restrictions on what the statements in an if can be. Therefore, an if
within an if is okay. In fact, an if within an if within an if is legal. The only limitation here is
that people cannot follow a structure that is too involved. Of course, readability is one of the
hallmarks of a good program.

When we place an if within an if, we are creating a nested control structure. Control struc-
tures nest much like mixing bowls do, with smaller ones tucked inside larger ones. Here’s an
example, written in pseudocode:

if today is Saturday or Sunday

 if it is raining

 Sleep late

 else

 Get up and go outside

else

 Go to work

Outer if

Inner (nested) if

174 | Selection and Encapsulation

In general, any problem that involves a multiway branch (more than two alternative
courses of action) can be coded using nested if statements. For example, to store the name
of a month into a string variable, given its number, we could use a sequence of if statements
(unnested):

if (month == 1)
monthName = "January";

if (month == 2)
monthName = "February";

if (month == 3)
monthName = "March";

�

if (month == 12)
monthName = "December";

The equivalent nested if structure,

if (month == 1)
monthName = "January";

else
if (month == 2) // Nested if
monthName = "February";

else
if (month == 3) // Nested if
monthName = "March";

else
if (month == 4) // Nested if

�

is actually more efficient because it makes fewer comparisons. The first version—the se-
quence of independent if statements—always tests every condition (all 12 of them), even if
the first one is satisfied. In contrast, the nested if solution skips all remaining comparisons
after one alternative has been selected. As fast as modern computers are, many applica-
tions require so much computation that an inefficient algorithm can waste hours of com-
puter time. Always be on the lookout for ways to make your code more efficient, as long as
doing so doesn’t make it difficult for other programmers to understand. It’s usually better
to sacrifice a little efficiency for the sake of readability.

In the last example,notice how the indentation of the then and else clauses causes the state-
ments to move continually to the right.Alternatively,we can use a special indentation style with
deeply nested if-else statements to indicate that the complex structure is just choosing one of
a set of alternatives.This general multiway branch is known as an if-else-if control structure:

if (month == 1)
monthName = "January";

else if (month == 2) // Nested if
monthName = "February";

4.4 N e s t e d i f S t a t e m e n t s | 175

else if (month == 3) // Nested if
monthName = "March";

else if (month == 4) // Nested if
�

else
monthName = "December";

This style prevents the indentation from marching continuously to the right. Even more im-
portantly, it visually conveys the idea that we are using a 12-way branch based on the vari-
able month.

It’s important to note one difference between the sequence of if statements and the
nested if structure: More than one alternative can be taken by the sequence of if statements,
but the nested if can select only one choice.To see why this difference is important, consider
the analogy of filling out a questionnaire. Some questions are like a sequence of if state-
ments, asking you to check all the items in a list that apply to you (such as all of your hob-
bies). Other questions ask you to select only one item in a list (your age group, for example)
and thus are like a nested if structure. Both kinds of questions occur in programming prob-
lems. Being able to recognize which type of question is being asked permits you to immedi-
ately select the appropriate control structure.

Another particularly helpful use of the nested if is when you want to select from a se-
ries of consecutive ranges of values. For example, suppose that we want to display a message
indicating an appropriate activity for the outdoor temperature, given the following table:

Activity Temperature

Swimming Temperature > 85

Tennis 70 < Temperature ≤ 85

Golf 32 < Temperature ≤ 70

Skiing 0 < Temperature ≤ 32

Dancing Temperature ≤ 0

At first glance, you may be tempted to write a separate if statement for each range of tem-
peratures. On closer examination, however, it becomes clear that these conditions are in-
terdependent.That is, if one of the statements executes, none of the others should execute.
We really are selecting one alternative from a set of possibilities—just the sort of situation
in which we can use a nested if structure as a multiway branch.The only difference between
this problem and our earlier example of printing the month name from its number is that
we must check ranges of numbers in the if expressions of the branches.

With consecutive ranges,we can take advantage of that fact to make our code more efficient.
To do so,we arrange the branches in consecutive order by range.Then, if a particular branch has
been reached,we know that the preceding ranges have been eliminated from consideration.Thus,
the if expressions must compare the temperature to only the lowest value of each range.

message = "The recommended activity is ";
if (temperature > 85)
message = message + "swimming.";

176 | Selection and Encapsulation

else if (temperature > 70)
message = message + "tennis.";

else if (temperature > 32)
message = message + "golf.";

else if (temperature > 0)
message = message + "skiing.";

else
message = message + "dancing.";

System.out.println(message);

To see how this if-else-if structure works, consider the branch that tests for temperature
greater than 70. If it has been reached, we know that temperature must be less than or equal
to 85 because that condition causes this particular else branch to be taken. Thus, we need
to test only whether temperature is above the bottom of this range (> 70). If that test fails, then
we enter the next else clause knowing that temperature must be less than or equal to 70. Each
successive branch checks the bottom of its range until we reach the final else, which takes
care of all the remaining possibilities.

If the ranges aren’t consecutive, of course, we must test the data value against both the
highest and lowest value of each range. We still use an if-else-if because it is the best struc-
ture for selecting a single branch from multiple possibilities, and we may arrange the ranges
in consecutive order to make them easier for a human reader to follow. But, in fact, we can-
not reduce the number of comparisons when there are gaps between the ranges.

The Dangling else

When if statements are nested, you may find yourself confused about the if-else pairings.
That is, to which if does an else belong? For example, suppose that if a student’s average is
below 60, we want to display “Failing”; if it is at least 60 but less than 70, we want to display
“Passing but marginal”; and if it is 70 or greater, we don’t want to display anything.

We code this information with an if-else nested within an if:

if (average < 70.0)
if (average < 60.0)
System.out.println("Failing");

else
System.out.println("Passing but marginal");

How do we know to which if the else belongs? Here is the rule that the Java compiler fol-
lows: In the absence of braces, an else is always paired with the closest preceding if that
doesn’t already have an else paired with it. We indented the code to reflect this pairing.

Suppose we write the fragment like this:

if (average >= 60.0) // Incorrect version
if (average < 70.0)
System.out.println("Passing but marginal");

else
System.out.println("Failing");

4.5 E n c a p s u l a t i o n | 177

Here we want the else branch attached to the outer if statement, not the inner one, so we in-
dent the code as shown here. But indentation does not affect the execution of the code. Even
though the else aligns with the first if, the compiler pairs it with the second if. An else that
follows a nested if is called a dangling else. It doesn’t logically belong with the nested if but is
attached to it by the compiler.

To attach the else to the first if,not the second,you can turn the outer then clause into a block:

if (average >= 60.0) // Correct version
{
if (average < 70.0)
System.out.println("Passing but marginal")

}
else
System.out.println("Failing");

The { } pair indicates that the first if statement has a compound first clause that contains
an if statement (with no else clause), so the else must belong to the outer if.

4.5 Encapsulation

Prior to this chapter we have written Java classes without considering the larger issues of their
design and reusability. For example, we developed an initial version of the Name class in
Chapter 2 that was just sufficient for the purposes of the NameDriver application. In Chapter
3, we found that we needed to add a constructor to the Name class to make it usable for the
Payroll application. By following some common design principles and using a little fore-
thought, we can develop classes that are much more broadly useful, and that don’t require
modification for each new application.

In this section we consider the principles that result in a well-designed and
general class implementation. Primary among these is the concept of encapsula-

tion.The dictionary provides several definitions of the word capsule. For example,
it can mean a sealed gelatin case that holds a dose of medication. Early spacecraft
were called capsules because they were sealed containers that carried passengers
through space. A capsule protects its contents from outside contaminants or
harsh conditions.To encapsulate something is to place it into a capsule.

What does encapsulation have to do with classes and object-oriented pro-
gramming? One goal in designing a class is to protect its contents from being
damaged by the actions of external code. If the contents of a class can be changed
only through a well-defined interface, then it is much easier to use the class and
to debug errors in an application.

Why is it important to encapsulate a class? Encapsulation is the basis for abstraction in
programming. Consider, for example, that abstraction lets us use a BufferedReader without
having to know the details of its operation.

Abstraction is how we simplify the design of a large application.We design classes that
can be described in simple terms. Some implementation details of each class are irrelevant

Encapsulation Designing a
class so that its implementation
is protected from the actions of
external code except through
the formal interface

Abstraction The separation of
the logical properties of an ob-
ject from its implementation

178 | Selection and Encapsulation

to using it, so those details are hidden by encapsulation. As a consequence, the programmer
who implements the class doesn’t have to understand how the larger application uses it, and
the programmer who uses the class doesn’t have to think about how it is implemented.

Even when you are the programmer in both cases, abstraction simplifies your
job because it allows you to focus on different parts of the implementation in iso-
lation from each other.What seems like a huge programming problem at first be-
comes much more manageable when you break it into little pieces that you can
solve separately (the divide-and-conquer strategy introduced in Chapter 1).

Separating a class into a logical description (an interface) and an encapsulated
implementation has two additional benefits: modifiability and reuse.

Encapsulation enables us to modify the implementation of a class after its ini-
tial development. Perhaps we are rushing to meet a deadline, so we create a sim-
ple but inefficient implementation. Later, we can replace the implementation with
a more efficient version.The modification is undetectable by users of the class with
the exception that their applications run faster and require less memory.

If we write a class in a manner that exposes implementation details, user
code may try to exploit some of those details. If we later change the implemen-
tation, the user code would stop working. Figure 4.6 illustrates an encapsulated im-

plementation versus one that is exposed to external code.
Encapsulation also allows us to use a class in other applications. An en-

capsulated class is self-sufficient so that it doesn’t depend on declarations in
the application. It can thus be imported into different applications without re-
quiring changes to either the class or the application.

As we will see in Chapter 7, reuse also means that an encapsulated class
can be easily extended to form new related classes. For example, suppose you
work for a utility company and are developing software to manage its fleet
of vehicles.As shown in Figure 4.7, an encapsulated class that describes a ve-
hicle could be used in the applications that schedule its use and keep track
of maintenance as well as the tax accounting application that computes its
operating cost and depreciation. Each of those applications could add ex-
tensions to the vehicle class to suit its particular requirements.

Reuse is a way to save programming effort. It also ensures that objects
have the same behavior every place that they are used.
Consistent behavior helps us to avoid and detect program-
ming errors.

Of course, preparing a class that is suitable for wider
reuse requires us to think beyond the immediate situation.
The class should provide certain basic services that enable
it to be used more generally. We will look at some of these
properties later in this chapter where we revisit the design
of the Name class. Not every class needs to be designed for
general reuse. In many cases, we merely need a class that
has specific properties for the problem at hand, and that
won’t be used elsewhere.

Modifiability The property of
an encapsulated class definition
that allows the implementation
to be changed without having
an effect on code that uses it
(except in terms of speed or
memory space)

Reuse The ability to import a
class into code that uses it with-
out additional modification to
either the class or the user code;
the ability to extend the defini-
tion of a class

External Code

Can be
changed
without

affecting
external

code

Changes
can

affect
external

code

Encapsulated
implementation

Exposed
implementation

Figure 4.6 Encapsulated versus
Exposed Implementation

Vehicle
Use

Scheduling
Application

Vehicle
Maintenance
Scheduling
Application

Vehicle
Tax

Accounting
Application

Figure 4.7 Reuse

4.6 A b s t r a c t i o n | 179

3The Java library includes a Date class, java.util.Date. However, the familiar properties of dates make them
a natural example to use in explaining the concepts of class interface design. We ignore the existence
of the library class in the discussion that follows, as if we must design our own Date class. In writing real
programs, however, you would probably use the GregorianCalendar library class that replaced Date in
Java 1.2.

It is important to understand that encapsulation isn’t a Java language construct. We
achieve encapsulation by carefully designing the class interface. Once that task is complete,
we take advantage of Java features that simplify implementation of an encapsulated class.

4.6 Abstraction

How do we design a class with an encapsulated implementation? We begin with an
abstraction for the real-world object. That way, we can focus on the class interface inde-
pendently of how we may implement it.As a result, the implementation is automatically sep-
arated from the interface.We therefore begin with a discussion of abstraction in programming.

Data and Control Abstraction

Creation of a new class begins when we need a new kind of object. We create a list of the
responsibilities associated with the class. (In Chapter 6, we will formalize a process that
helps us do this; for now, however, we will just work with classes in which it is easy to identify
some obvious responsibilities.) Some responsibilities require us to supply data to the class
(for example, constructors or void methods), while others return data (value-returning meth-
ods such as readLine). Each responsibility has a control component (what it does) and a data
component (the information it needs or returns). Encapsulation allows us to create an
abstraction of either or both of these components.

Data abstraction is the separation of the external representation of an object’s
values from their internal implementation. For example, the external represen-
tation of a date might be integer values for the day and year, and a string that spec-
ifies the name of the month. But we might implement the date within the class
using a standard value that calendar makers call the Julian day, which is the
number of days since January 1, 4713 BC.

The advantage of using the Julian day is that it simplifies arithmetic on dates,
such as computing the number of days between dates.All of the complexity of deal-
ing with leap years and the different number of days in the months is captured in
formulas that convert between the conventional representation of a date and the
Julian day.From the user’s perspective,however, the methods of a Dateobject receive
and return a date as two integers and a string.3

In many cases, the external representation and the implementation of the values are
identical. However, we won’t tell that to the user, in case we decide to change the imple-
mentation in the future.

Control abstraction is the separation of the logical properties of the actions of a responsi-
bility from their implementation. For example, the documentation for the Date class says that
it takes into account all of the special leap-year rules. In the implementation, only the Julian

Data abstraction The separa-
tion of the logical representa-
tion of an object’s range of
values from their implementa-
tion

Control abstraction The sepa-
ration of the logical properties
of the operations on an object
from their implementation

180 | Selection and Encapsulation

day conversion formulas handle those rules; the other responsibilities merely perform sim-
ple arithmetic on the Julian day number.

A user can simply imagine that every Date responsibility is separately computing leap
years. Control abstraction lets us actually program a more efficient implementation and
then hide that complexity from the user.

To see how we can apply these principles, let’s revisit our design for the Name class, mak-
ing it more general, and thus making it a more complete abstraction of a real Name object. In
terms of data abstraction, a typical name consists of three parts: first name, middle name,
and last name. Less typical name structures include having two middle names or having no
middle name. Many names also have a prefix, such as “Dr.” or “Rev.”; others have suffixes such
as “Jr.” or “III”. Adding these possibilities to our existing Name class abstraction merely requires
us to provide more fields to hold the values and some methods to access them. We might
also extend the methods that format the name to include the new information as appro-
priate. We won’t change the data abstraction of the Name class here, because it just makes
the example code longer without demonstrating any new concepts.The Case Study Follow-
Up exercises include some problems that ask you to make these additions.

Now let’s turn our attention to the control abstraction of Name. Here are the responsibil-
ities that Name currently supports:

We have two ways to create a new Name: one that hides a series of interactions with the
user via the System class, and another that merely copies the arguments to its internal fields.
Abstraction allows us to make these constructors do very different things, while presenting
similar functionality through the interface.As far as the user code is concerned, calling a Name
constructor builds a new Name object. How it happens doesn’t matter.

A Name can return its contents in three specific formats. But what if we want a Name in a
different format? We could try to create a method for every imaginable format, but that
would be a lot of work and we’d still undoubtedly miss at least one format that a user would
want. Alternatively, we can let the user construct any name formats that aren’t provided, if
we provide methods that return the parts of the name as strings. So we should add the fol-
lowing responsibilities to our design for Name:

knowFirstName() returns String
knowMiddleName() returns String
knowLastName() returns String

new Name()
new Name(first, last, middle)
firstLast() returns String
full() returns String
lastFirstMI() returns String

4.6 A b s t r a c t i o n | 181

As we saw earlier in this chapter, we often want to compare objects so that we can make
decisions based on their values. Thus we should add responsibilities that compare two
names for equality or inequality. Inequality is based on alphabetical ordering by last name,
first name, and middle name.

Now that we’ve defined a more general set of responsibilities for the Name class, we have
a class that can be imported and reused by a wide range of user code.The abstraction is rea-
sonably complete, and we’ve identified some features that could be added to extend it even
further.The use of methods to implement the entire interface encapsulates the abstraction
so that user code cannot take advantage of special features of the implementation.

Here is an implementation of the new Name class. It looks like quite a bit of code, but if
you focus on each method separately, you can see that the class is broken into many pieces,
each of which is quite simple. Pay especially close attention to the methods that implement
the comparisons. They use the equals and compareTo methods associated with the String
class to compare the names. Recall that the == operator tests whether reference variables re-
fer to the same place in memory. To compare the actual contents of two objects, we use
methods such as these.Also note that our comparison methods convert the names to all up-
percase letters as discussed previously.

import java.io.*; // Package for stream readers

//**
// This class provides a basic name object. The default constructor
// requests that a name be entered from System.in. A second constructor
// allows creation of a name from strings. Methods return the name
// in various formats.
//**
class Name
// This class defines a name consisting of three parts
{
String first; // Person's first name
String last; // Person's last name
String middle; // Person's middle name

// Gets a name from System.in
public Name() throws IOException
{
BufferedReader in; // Input stream for strings
// Instantiate in using System.in
in = new BufferedReader(new InputStreamReader(System.in));

equals(Name otherName) returns boolean
compareTo(Name otherName) returns int

182 | Selection and Encapsulation

System.out.print("Enter first name: "); // Prompt for first name
first = in.readLine(); // Get first name
System.out.print("Enter last name: "); // Prompt for last name
last = in.readLine(); // Get last name
System.out.print("Enter middle name: "); // Prompt for middle name
middle = in.readLine(); // Get middle name

}

// Builds a name from string parameters
public Name(String firstName, String lastName, String middleName)
{
first = firstName; // Assign parameters to fields
last = lastName;
middle = middleName;

}

// Basic observer methods that return the value of each field

public String knowFirstName()
{
return first;

}

public String knowMiddleName()
{
return middle;

}

public String knowLastName()
{
return last;

}

// Additional observer methods that return a formatted name

// Returns name in first last format
public String firstLast()
{
return first + " " + last;

}

// Returns full name in usual format
public String full()
{
return first + " " + middle + " " + last;

}

4.6 A b s t r a c t i o n | 183

// Returns name as last, first, m.
public String lastFirstMI()
{
return last + ", " + first + ", " + middle.substring(0, 1) + ".";

}

// Additional observer methods that compare an instance to another name

// Tests for equality
public boolean equals(Name otherName)
{
return first.equals(otherName.knowFirstName()) &&

middle.equals(otherName.knowMiddleName()) &&
last.equals(otherName.knowLastName());

}

// Tests for inequality
public int compareTo(Name otherName)
{
String ourFullName;
String otherFullName;
ourFullName = (last + first + middle).toUpperCase();
otherFullName = (otherName.knowLastName() + otherName.knowFirstName() +

otherName.knowMiddleName()).toUpperCase();
return ourFullName.compareTo(otherFullName);

}
}

CASE STUDY
184

WARNING NOTICES

Problem: Many universities send warning notices to freshmen who are in danger of fail-
ing a class.Your application should calculate the average of three test grades and print
out a student’s name, average, and an indication of whether the student is passing.
Passing is a 60-point average or better. If the student is passing with less than a 70 aver-
age, the program should indicate that he or she is marginal.

Input: Student name followed by three test grades (of type int).

Output:

Prints prompts for input of each value.

The input values (echo print).

Student name, average grade, passing/failing message, marginal indication, and error
message if any of the test scores are negative.

Discussion: Looking for things that are familiar, we notice that the name can be of class
Name. However, we are dealing with an object that is more than a name—it is a record for
a student’s grades. We’d like the class to take care of creating the record, and then tell
us the student’s status so that we can print the proper message.Thus, the object needs
to average the student’s scores and compare them to the ranges of values for passing,
marginal, and failing. How should we have it return the status? The object could
provide one of three strings to output. For example:

"Passing"
"Passing but marginal"
"Failing"

Let’s think about the reusability of this class. What if we want to output a different
message from the application? We would have to compare the string returned from the
class to literals with exactly the same contents to determine the status of the student.
This approach could work, but it’s clumsy and prone to error. And what if we want to
use the student’s status in another way in another application, such as sending a report
to his or her faculty advisor? We need a more general way to indicate the status.

We could simply return an int value with a coded meaning:

0 = Failing

1 = Passing but marginal

2 = Passing

This strategy exposes the internal implementation of the status to the user code.
Knowing that the values are of type int, a programmer might write user code to

CASE STUDY 185

compare them directly. If we later change the representation (perhaps by using type
char to save space), the modification could cause the dependent user code to fail.
Instead, we need a way to indicate a status that is encapsulated. (Notice how we’re ap-
plying means-ends analysis in this problem-solving process.)

What means do we have for representing a set of values that the user cannot
change, and that the class can make available to the user without exposing the type? It
sounds like a set of public named constants. Would this approach work? Well, the user
needs to know only the names and which methods use them.The type doesn’t need to
be specified. We could tell the user that it is okay to compare the constants with the re-
lational operators, but we would retain more control if we provide equals and compareTo
methods for this purpose.That way, if we change the representation later, we don’t
have to preserve the property of being comparable using relational operators. Also, if
we use comparison methods that compare a class constant with the status field of the
object, we don’t even have to return the status value to the user code. In this way, we
avoid having to write a separate knowStatus method. Let’s give the constants the follow-
ing names:

FAILING

MARGINAL

PASSING

The class should provide methods that return the values that the user code stores in
a record. We can simply return a Name, and the user code can use the methods in Name
that return the parts of the name.To return a score, we could use a separate method to
return each score, or we could use a method that takes a score number as a parameter
and returns the corresponding value. Let’s try the latter strategy. If we ever want to
change the record to include more scores, we wouldn’t have to keep adding a method
for each one. Instead, we could just change the one method to accept a wider range of
score numbers. Let’s list the responsibilities of this class:

Now we have a class with an interface that presents an abstraction of a student
record object. Next, we turn to the algorithms for the individual responsibilities. Let’s
begin with the constructor. First we assign the values of the parameters to the fields of
the object.Then we compute the average and determine the student’s status.

To calculate the average, we must add the three test scores and divide by 3.To assign
the appropriate status, we must determine whether the average is at least 70 for pass-
ing or at least 60 for marginal; otherwise, it is failing. We can use a nested if control
structure to test these conditions.

new Student (student name, score1, score2, score3)

knowName() returns Name
knowScore(int number) returns int
equalStatus(class constant) returns Boolean

CASE STUDY
186

The method that returns the name is trivial.

The method that returns a score requires some thought. We receive an integer in the
range of 1 to 3, and use this value to select the score to return.The key word here is “se-
lect.” We use a selection control structure to make the choice. As we’re selecting just
one item from a list, a nested if structure is appropriate.

Oh! What do we do if the score number isn’t an acceptable value? This spot would be
a good place to throw an exception, but we haven’t seen how to do that yet. Instead,
let’s return an invalid score value, such as �1.

The equalStatus method for the status field is quite simple. We just compare the pa-
rameter to the field and return the boolean result, as both are simple types.

equalStatus (int test status) returns boolean

return status == test status

knowScore(int score number) returns int

if score number is 1
return my score1

else if score number is 2
return my score2

else if score number is 3
return my score3

else
return –1

if score number is 1
return score1

else if score number is 2
return score2

else if score number is 3
return score3

else ????

knowName() returns Name

return my name

constructor Student (Name student name, int score1, score2, score3)

Set my name to student name
Set my score1 to score1
Set my score2 to score2
Set my score3 to score3
Set average to (score1 + score2 + score3)/3
if average >= 70

Set status to PASSING
else

if average >= 60
Set status to MARGINAL

else
Set status to FAILING

CASE STUDY 187

Now that we’ve designed this class, we can easily write its Java implementation.

//**
// This class provides a student record object. The constructor
// requires a name and three integer scores. Observers permit the
// user to retrieve these values. A method is provided to compare
// student status with the class constants FAILING, MARGINAL,
// and PASSING.
//**

import Name; // Our Name class
class Student
{
// Class constants for use in comparisons
public static final int FAILING = 0;
public static final int MARGINAL = 1;
public static final int PASSING = 2;

Name myName; // Student name field
int myScore1; // First score
int myScore2; // Second score
int myScore3; // Third score
int average; // Average score
int status; // Status based on average

// Constructor
public Student(Name studentName, int score1, int score2, int score3)
{
myName = studentName;
myScore1 = score1;
myScore2 = score2;
myScore3 = score3;
average = (score1 + score2 + score3)/3;
if (average >= 70)
status = PASSING;

else
if (average >= 60)
status = MARGINAL;

else
status = FAILING;

}

// Returns name field
public Name knowName()
{
return myName;

}

CASE STUDY
188

// Returns one of the three score fields based on parameter value
// Returns –1 if parameter value is invalid
public int knowScore(int scoreNumber)
{
if (scoreNumber == 1)
return myScore1;

else if (scoreNumber == 2)
return myScore2;

else if (scoreNumber == 3)
return myScore3;

else
return –1;

}

// Test for equality of status with a class constant
public boolean equalStatus(int testStatus)
{
return status == testStatus;

}
}

Next, we turn our attention to the application that solves our particular problem. We
need to input the data and instantiate a Student object. For input, we can use the Name
constructor that gets a name, and we can input the three scores separately.Then we
compare the student’s status to the status constants provided by the Student class and
output an appropriate message.To simplify echo-printing of the data, we first create a
string that holds that part of the message and just add the status to it in the appropri-
ate branch of a nested if structure. Here’s the algorithm:

Student Status

inputName = new Name()
print "Enter first score: "
score1 = Integer.parseInt(in.readLine())
print "Enter second score: "
score2 = Integer.parseInt(in.readLine())
print "Enter third score: "
score3 = Integer.parseInt(in.readLine())
the student = new Student(inputName, score1, score2, score3)
message = inputName.full() + " with scores of " + score1 + ", " + score2 +

", and " + score3 + " is "
if the student.equalStatus(Student.FAILING)

message = message + "failing."
else if the student.equalStatus(Student.MARGINAL)

message = message + "marginally passing."
else

message = massage + "passing."
println message

CASE STUDY 189

We need to declare variables to hold the name, the scores, the Student object, and the
message. We also need to import Student, Name, and java.io.*. Now that we have
designed the algorithm for our application, we are ready to implement it in Java.

//**
// This application determines whether a student is passing,
// marginally passing, or failing, based on three test scores.
//**
import java.io.*; // For IOException, BufferedReader
import Student; // Represents a student
import Name; // A basic representation of a name
public class StudentStatus
{
public static void main(String[] args) throws IOException
{
Name inputName; // Place to hold input name
int score1; // First test score
int score2; // Second test score
int score3; // Third test score
Student theStudent; // Student record
String message; // Output message
BufferedReader in; // Input source
// Input name and three scores
in = new BufferedReader(new InputStreamReader(System.in));
inputName = new Name();
System.out.print("Enter first score: ");
score1 = Integer.parseInt(in.readLine());
System.out.print("Enter second score: ");
score2 = Integer.parseInt(in.readLine());
System.out.print("Enter third score: ");
score3 = Integer.parseInt(in.readLine());
// Create a student record
theStudent = new Student(inputName, score1, score2, score3);
// Create basic message with echo print of input
message = inputName.full() + " with scores of " + score1 + ", " +

score2 + ", and " + score3 + " is ";
// Determine status and finish building message
if (theStudent.equalStatus(Student.FAILING))
message = message + "failing.";

else if (theStudent.equalStatus(Student.MARGINAL))
message = message + "marginally passing.";

else
message = message + "passing.";

System.out.println(message); // Output final message
}

}

CASE STUDY
190

Here is a sample output from running the program:

Here is another sample run:

4.7 Testing and Debugging

In Chapter 1, we discussed the problem-solving and implementation phases of computer
programming. Testing is an integral part of both phases. Testing in the problem-solving
phase occurs after the solution is developed but before it is implemented. In the imple-
mentation phase, we test after the algorithm is translated into code, and again after the
code has compiled successfully.The compilation itself constitutes another stage of test-
ing that is performed automatically.

Testing Strategies

When an individual programmer is designing and implementing an application,he or she can
find many software errors with pencil and paper. Desk checking the design solution is a very

common method of manually verifying a design or code.The programmer writes
down essential data (variables, input values,parameters of methods,and so on) and
walks through the design, manually simulating the actions of the computer and
recording changes in the data on paper. Portions of the design or code that are
complex or that are a source of concern should be double-checked.

Desk checking Tracing an
execution of a design or code
on paper

4.7 T e s t i n g a n d D e b u g g i n g | 191

Desk checking can be done by an individual, but most sizable applications are devel-
oped by teams of programmers. Two extensions of desk checking that are used
effectively by programming teams are the design or code walk-through and the
code inspection. The intention of these formal team activities is to move the re-
sponsibility for uncovering bugs from the individual programmer to the group.
Because testing is time-consuming and errors cost more the later they are dis-
covered, the goal is to identify errors before testing begins.

In a walk-through, the team performs a manual simulation of the design or
code with sample test inputs, keeping track of the code’s data by hand. Unlike
thorough testing, the walk-through is not intended to simulate all possible test
cases. Instead, its purpose is to stimulate discussion about the way the pro-
grammer chose to design or implement the code’s requirements.

At an inspection, a reader (typically not the code’s author) goes through the
design or code line by line. Inspection participants point out errors, which are
recorded on an inspection report. Some errors are uncovered just by the process
of reading aloud. Others may have been noted by team members during their
preinspection preparation. As with the walk-through, the chief benefit of the
team meeting is the discussion that takes place among team members. This interaction
among programmers, testers, and other team members can uncover many errors long be-
fore the formal testing stage begins.

At the high-level design stage, the design should be compared to the application re-
quirements to confirm that all required responsibilities have been included and that this
application or class correctly “interfaces” with other software in the system. At the low-
level design stage, when the design has been filled out with more details, it should be
reinspected before its implementation begins.

After the code is written, you should go over it line by line to verify that you’ve faith-
fully reproduced the algorithm—a process known as a code walk-through. In a team-pro-
gramming situation, you could ask other team members to walk through the algorithm
and code with you, to double-check the design and code.

You also should take some actual values and hand-calculate what the output should
be by doing an execution trace (or hand trace).When the code is executed, you can use these
same values as input and check the results.The computer is a very literal device—it does
exactly what we tell it to do, which may or may not be what we want it to do.To make sure
that our code does what we want, we trace the execution of the statements.

When code contains branches, it’s a good idea to retrace its execution using different
input data so that each branch is traced at least once. In the next section, we describe how
to develop data sets that test each branch.

To test an application or method with branches,we need to execute each branch at least
once and verify the results. For example, the constructor of the class Name includes a nested
if statement that selects among three possible conditions. Overall, the application thus
executes three different sections of code depending on the values in its score arguments.

Walk-through A verification
method in which a team
performs a manual simulation of
the code or design

Inspection A verification
method in which one member
of a team reads the code or de-
sign line by line and the other
team members point out errors

Execution trace Going
through the code with actual
values, recording the state of the
variables

192 | Selection and Encapsulation

We need at least three data sets to test the different branches. For example, the following
sets of argument values cause all of the branches to be executed:

Score 1 Score 2 Score 3

Set 1 75 75 75

Set 2 65 65 65

Set 3 50 50 50

Every branch in the code is executed at least once through this series of test runs.
Eliminating any of the test data sets would leave at least one branch untested.This series
of data sets provides what is called minimum complete coverage of the application’s branch-
ing structure. Whenever you test an application containing branches, you should design
a series of tests that cover all of the branches. Because an action in one branch often af-
fects processing in a later branch, it is critical to test as many combinations of branches, or
paths, through the code as possible. By doing so, we can be sure that no interdependen-
cies will cause problems. Shouldn’t we try all possible paths? Yes, in theory. However, the
number of paths in even a small application can be very large.

The approach to testing that we’ve used here is called code coverage because the test
data are designed by looking at the code. Code coverage is also called white-box (or clear-box)
testing because we are allowed to see the application code while designing the tests.Another
approach to testing, called data coverage, attempts to test as many allowable data values as
possible without referencing the code.Because we need not see the code in this form of test-
ing, it is also called black-box testing—we would design the same set of tests even if the code
were hidden in a black box. Complete data coverage is as impractical as complete code cov-
erage for many applications.For example, the Student constructor bases the student’s status
on the average of three int values in the range of 0 to 100 and thus has more than 1,000,000
possible input values.

Often, testing combines these two strategies. Instead of trying every possible data
value (data coverage), we examine the code (code coverage) and look for ranges of values
for which processing is identical. Then we test the values at the boundaries and, some-
times, a value in the middle of each range. For example, a simple condition such as

alpha < 0

divides the integers into two ranges:

1. Integer.MIN_VALUE through –1

2. 0 through Integer.MAX_VALUE

Thus, we should test the four values Integer.MIN_VALUE, �1, 0, and Integer.MAX_VALUE.A com-
pound condition such as

alpha >= 0 && alpha <= 100

4.7 T e s t i n g a n d D e b u g g i n g | 193

divides the integers into three ranges:

1. Integer.MIN_VALUE through –1

2. 0 through 100

3. 101 through Integer.MAX_VALUE

Thus, we have six values to test. In addition, to verify that the relational operators are cor-
rect, we should test for values of 1 (> 0) and 99 (< 100).

Conditional branches are merely one factor in developing a testing strategy. We con-
sider more of these factors in later chapters.

The Test Plan

We’ve discussed strategies and techniques for testing applications,but how do you approach
the testing of a specific application?You design and implement a test plan—a doc-
ument that specifies the test cases that should be tried,the reason for each test case,
and the expected output. In Chapter 3, we briefly and informally discussed the
idea of a test plan. Now we take a closer look at what makes up a formal test plan.
Implementing a test plan involves running the application using the data specified by
the test cases in the plan and checking and recording the results.

The test plan should be developed together with the design.The following
table shows a partial test plan for the StudentStatus application.The first test case
involves a passing set of scores.The second test case is a marginal set, and the
third test case is a failing set.The last set checks what happens when we input
invalid data. Our program treats negative values as valid scores and merely
computes an average with them, so in this case the result should be failing. A
Case Study Follow-Up exercise asks you to add a test for invalid data.

Test Plan for the StudentStatus Application

Reason for Test Case Input Values Expected Output Observed Output

Test passing 70, 80, 90 passing

Test marginal 65, 75, 55 marginally passing

Test failing 45, 55, 65 failing

Test invalid data –10, –10, –10 failing

Implementing a test plan does not guarantee that your code is completely correct. It
means only that a careful, systematic test of the code has not demonstrated any bugs.The
situation shown in Figure 4.8 is analogous to trying to test a program without a plan—de-
pending only on luck, you may completely miss the fact that a program contains numer-
ous errors. Developing and implementing a written test plan, on the other hand, casts a
wide net that is much more likely to find errors.

Test plan A document that
specifies how an application is
to be tested

Test plan implementation
Using the test cases specified in
a test plan to verify that an ap-
plication outputs the predicted
results

194 | Selection and Encapsulation

Tests Performed Automatically During Compilation and Execution

Once a design is coded and test data have been prepared, the application is ready for
compiling.The compiler has two responsibilities: to report any errors and, if there are no
errors, to translate the source code into object code or Bytecode.

Errors can be either syntactic or semantic.The compiler finds syntactic errors. For ex-
ample, the compiler warns you when reserved words are misspelled, identifiers are un-
declared, semicolons are missing, and operand types are mismatched. But it won’t find
all of your typing errors. If you type > instead of <, you won’t receive an error message; in-
stead, you will get erroneous results when you test the code. It’s your responsibility to de-
sign a test plan and carefully check the code to detect errors of this type.

Semantic errors (also called logic errors) are mistakes that give you the wrong answer.
They are more difficult to locate than syntactic errors and usually surface when code is
executing. Java detects only the most obvious semantic errors—those that result in an in-
valid operation (dividing by zero, for example). Although typing errors sometimes cause
semantic errors, they are more often a product of a faulty algorithm design. By walking

Figure 4.8 When You Test a Program without a Plan,You Never Know What You Might Be Missing

4.7 T e s t i n g a n d D e b u g g i n g | 195

through the algorithm and the code, tracing the execution of the application, and devel-
oping a thorough test strategy, you should be able to avoid, or at least quickly locate, se-
mantic errors in your code.

Figure 4.9 illustrates the testing process we’ve been discussing. It shows where syn-
tax and semantic errors occur and in which phase they can be corrected.

Testing and Debugging Hints

1. Java has three pairs of operators that are similar in appearance but different
in effect: == and =, && and &, and || and |. Double-check all of your logical
expressions to make sure you’re using the “equals-equals,” “and-and,” and
“or-or” operators.Then check them again to confirm that you didn’t double
type the < or > operators.

2. If you use extra parentheses for clarity, make sure that the opening and clos-
ing parentheses match up.To verify that parentheses are properly paired,

Phase Result Testing Technique Type of Error

Problem solving Algorithm
Algorithm
walk-through

Semantic

Implementation Coded program
Code walk-through,
Trace

Syntax
Semantic

Compilation Object program
Compiler-generated
error messages

Syntax

Execution Output
Implement
test plan

Typographical semantic
Algorithm semantic

Figure 4.9 Testing Process

196 | Selection and Encapsulation

start with the innermost pair and draw a line connecting them. Do the same
for the others, working your way out to the outermost pair. For example:

3. Here is a quick way to tell whether you have an equal number of opening and
closing parentheses.The scheme uses a single number (the “magic number”),
whose initial value is 0. Scan the expression from left to right. At each
opening parenthesis, add 1 to the magic number; at each closing parenthesis,
subtract 1. At the final closing parenthesis, the magic number should be 0. For
example,

if (((total/scores) > 50) && ((total/(scores – 1)) < 100))
0 123 2 1 23 4 32 10

4. Don’t use =< to mean “less than or equal to”; only the symbol <= works.
Likewise, => is invalid for “greater than or equal to”; you must use >= for this
operation.

5. Don’t compare strings with the == operator. Use the associated instance
methods such as equals and compareTo. When testing for alphabetical order, re-
member to convert the strings to the same case before making the
comparison.

6. When comparing values of different types, use explicit casting to clarify how
the values should be converted before comparison.

7. Don’t compare floating-point types for exact equality. Check that the
difference between the values is less than some small amount.

8. In an if statement, remember to use a { } pair if the first clause or the else
clause is a sequence of statements. Also, don’t put a semicolon after the right
brace.

9. Test for bad data. If a data value must be positive, use an if statement to test
the value. If the value is negative or 0, an error message should be displayed;
otherwise, processing should continue.

10. Take some sample values and try them by hand. Develop a test plan before
you start testing your code.

11. If your application produces an answer that does not agree with a value
you’ve calculated by hand, try these suggestions:

� Redo your arithmetic.

� Recheck your input data.

� Carefully go over the section of code that performs the calculation. If you’re
in doubt about the order in which the operations are performed, insert clar-
ifying parentheses.

if (((total/scores) > 50) && ((total/(scores - 1)) < 100))

S u m m a r y | 197

12. Check for integer overflow.The value of an int variable may have exceeded
Integer.MAX_VALUE in the middle of a calculation. Java doesn’t display an error
message when this problem happens.

13. Check the conditions in branching statements to confirm that the correct
branch is taken under all circumstances.

14. Design your classes to be encapsulated so they can be tested independently of
user code.

Summary

Using logical expressions is a way of asking questions while code is executing.The
computer evaluates each logical expression, producing the value true if the
expression is true or the value false if the expression is not true.

The if statement allows you to take different paths through the code based on the
value of a logical expression.The if-else statement is used to choose between two
courses of action; the if statement is used to choose whether to take a particular
course of action.The branches of an if or if-else can be any statement, simple or com-
pound.They can even be another if statement.

Encapsulation is an approach to implementing a class that is reusable in other con-
texts. By starting with an abstraction of an object and then designing an interface that
is a general representation of the object, we create a design that is logically complete
and that hides its implementation details from the user.

The algorithm walk-through is a manual simulation of the algorithm at the design
phase. By testing our design in the problem-solving phase, we can eliminate errors
that can be more difficult to detect in the implementation phase.

An execution trace allows us to find errors once we’ve entered the implementation
phase. It’s a good idea to trace your code before you run it, so that you have some sam-
ple results against which to check the output. A written test plan is an essential part
of any application development effort.

Quick Check

1. Given that A holds true and B holds false, what are the values of A && B, A || B,
and !A? (pp. 161–163)

2. How does an if statement let us affect the flow of control? (pp. 167–169)

198

3. If an if-else structure contains a nested if-else in each of its branches, as shown
below, how many different paths can be taken through the whole structure? (pp.
173–176)

if
if
else

else
if
else

4. What is the difference between the if and the if-else control structures? (pp.
170–173)

5. Which actions below are more like a sequence of ifs, and which are more like
nested ifs (mark the questions with S or N) (pp. 173–176)

a. Indicating your age in a list of ranges?

b. Marking all of your hobbies in a list

c. Checking off in a list all of the magazines you receive

d. Marking the items you want to order on a menu

e. Checking the box that indicates your marital status on a tax form

6. In a problem where you are determining the grade for a test score, given a series
of score ranges and corresponding grades, would it be more appropriate to use a
nested if structure or a sequence of ifs? (pp. 173–176)

7. What is the purpose of an algorithm walk-through? (pp. 190–193)

8. In what phase of the program development process should you carry out an exe-
cution trace? (pp. 190–193)

9. How does encapsulation make a class reusable? (pp. 177–179)

10. Write a Java expression that compares the variable letter to the constant ’Z’
and yields true if letter is less than ’Z’. (pp. 156–158)

11. Write a Java expression that yields true if letter is between ’A’ and ’Z’ ,
inclusive. (pp. 156–158)

12. Write a Java statement that sets the variable value to its negative if it is greater
than zero. (pp. 170–173)

13. Extend the statement in Question 12 so that it sets value to 1 if it is less than or
equal to 0. (pp. 168–169)

14. On a telephone, each of the digits 2 through 9 has a segment of the alphabet as-
sociated with it. What kind of control structure would you use to decide which
segment a given letter falls into and to display the corresponding digit? (pp.
173–176)

199

15. You’ve written an application that displays the corresponding digit on a phone,
given a letter of the alphabet. Everything seems to work right except that you
can’t get the digit 5 to display; you keep getting the digit 6. What steps would you
take to find and fix this bug? (pp. 190–195)

Answers

1.false, true, false 2. It enables us to choose one course of action (control flow path) or another. 3. Four paths.
4. The if lets us choose whether to perform an action; the if-else allows us to choose between two courses of
action. 5. a. N, b. S, c. S, d. S, e. N 6. A nested if structure 7. To have a team verify the algorithm through hand-
simulation 8. The implementation phase 9. By making the class self-contained and independent of the code
that uses it 10. letter < 'Z’ 11.letter >= 'A’ && letter <= 'Z’ 12. if (value > 0) value = -value; 13.if (value >
0) value = -value; else value = 1; 14. A nested if statement 15. Carefully review the section of code that should
display 5. Check the branching condition and the output statement there.Try some sample values by hand.

Exam Preparation Exercises

1. What is the purpose of a control structure?

2. What is a logical expression?

3. Given the following relational expressions, state in English what they say.

Expression Meaning in English

one == two

one != two

one > two

one < two

one >= two

one <= two

4. Given these values for the boolean variables x, y, and z:

x = true
y = false
z = true

evaluate the following logical expressions. In the blank next to each expression,
write a T if the result is true or an F if the result is false.

_____ a. x && y || x && z

_____ b. (x || !y) && (!x || z)

_____ c. x || y && z

_____ d. !(x || y) && z

200

5. Given these values for variables i, j, p, and q:

i = 10
j = 19
p = true
q = false

add parentheses (if necessary) to the expressions below so that they evaluate to
true.

a. i == j || p

b. i >= j || i <= j && p

c. !p || p

d. !q && q

6. Given these values for the int variables i, j, m, and n:

i = 6
j = 7
m = 11
n = 11

what is the output of the following code?

System.out.print("Madam");
if (i < j)
if (m != n)
System.out.print("How");

else
System.out.print("I’m");

if (i >= m)
System.out.print("Cow");

else
System.out.print("Adam");

7. Given the int variables x, y, and z, where x contains 3, y contains 7, and z
contains 6, what is the output of each of the following code fragments?

a. if (x <= 3)
System.out.print ("x" + "y");

System.out.print("x" + "y");

b. if (x != –1)
System.out.print("The value of x is " + x);

else
System.out.print("The value of y is " + y);

201

c. if (x != –1)

{
System.out.print(x);
System.out.print(y);
System.out.print(z);

}
else
System.out.print("y");
System.out.print("z");

8. Given this code fragment:

if (height >= minHeight)
if (weight >= minWeight)
System.out.print("Eligible to serve.");

else
System.out.print("Too light to serve.");

else
if (weight >= minWeight)
System.out.print("Too short to serve.");

else
System.out.print("Too short and too light to serve.");

a. What is the output when height exceeds minHeight and weight exceeds
minWeight?

b. What is the output when height is less than minHeight and weight is less than
minWeight?

9. Match each logical expression in the left column with the logical expression in
the right column that tests for the same condition.

____ a. x < y && y < z (1) !(x != y) && y == z

____ b. x > y && y >= z (2) !(x <= y || y < z)

____ c. x != y || y == z (3) (y < z || y == z) || x == y

____ d. x == y || y <= z (4) !(x >= y) && !(y >= z)

____ e. x == y && y == z (5) !(x == y && y != z)

10. The following expressions make sense but are invalid according to Java’s rules of
syntax. Rewrite them so that they are valid logical expressions. (All the variables
are of type int.)

a. x < y <= z

b. x, y, and z are greater than 0

c. x is equal to neither y nor z

d. x is equal to y and z

202

11. Given these values for the boolean variables x, y, and z,

x = true
y = true
z = false

indicate whether each expression is true (T) or false (F).

____ a. !(y || z) || x

____ b. z && x && y

____ c. ! y || (z || !x)

____ d. z || (x && (y || z))

____ e. x || x && z

12. For each of the following problems, decide which is more appropriate, an if-else
or an if. Explain your answers.

a. Students who are candidates for admission to a college submit their SAT
scores. If a student’s score is equal to or above a certain value, print a letter of
acceptance for the student. Otherwise, print a rejection notice.

b. For employees who work more than 40 hours per week, calculate overtime
pay and add it to their regular pay.

c. In solving a quadratic equation, whenever the value of the discriminant (the
quantity under the square root sign) is negative, print out a message noting
that the roots are complex (imaginary) numbers.

d. In a computer-controlled sawmill, if a cross section of a log is greater than
certain dimensions, adjust the saw to cut 4-inch by 8-inch beams; otherwise,
adjust the saw to cut 2-inch by 4-inch studs.

13. What causes the error message "UNEXPECTED ELSE" when this code fragment is
compiled?

if (mileage < 24.0)
{
System.out.print("Gas ");
System.out.print("guzzler.");

};
else
System.out.print("Fuel efficient.");

14. The following code fragment is supposed to print "Type AB" when boolean
variables typeA and typeB are both true, and to print "Type O" when both variables
are false. Instead, it prints "Type O" whenever just one of the variables is false.
Insert a { } pair to make the code segment work the way it should.

203

if (typeA || typeB)
if (typeA && typeB)
System.out.print("Type AB");

else
System.out.print("Type O");

15. The nested if structure below has five possible branches depending on the
values read into char variables ch1, ch2, and ch3.To test the structure, you need
five sets of data, each set using a different branch. Create the five test data sets.

if (ch1 == ch2)
if (ch2 == ch3)
System.out.print("All initials are the same.");

else
System.out.print("First two are the same.");

else if (ch2 == ch3)
System.out.print("Last two are the same.");

else if (ch1 == ch3)
System.out.print("First and last are the same.");

else
System.out.print("All initials are different.");

a. Test data set 1: ch1 = _____ ch2 = _____ ch3 = _____

b. Test data set 2: ch1 = _____ ch2 = _____ ch3 = _____

c. Test data set 3: ch1 = _____ ch2 = _____ ch3 = _____

d. Test data set 4: ch1 = _____ ch2 = _____ ch3 = _____

e. Test data set 5: ch1 = _____ ch2 = _____ ch3 = _____

16. If x and y are boolean variables, do the following two expressions test the same
condition?

x != y
(x || y) && !(x && y)

17. The following if condition is made up of three relational expressions:

if (i >= 10 && i <= 20 && i != 16)
j = 4;

If i contains the value 25 when this if statement is executed, which relational
expression(s) does the computer evaluate? (Remember that Java uses short-cir-
cuit evaluation.)

18. a. If strings cannot be compared using the relational operators in Java, how can
you compare two strings?

204

b. Fill in the following table that describes methods that can be applied to
string objects.

Method Name Argument Returns English Description

equals

equalsIgnoreCase

compareTo

toUpperCase

toLowerCase

Programming Warm-Up Exercises

1. Declare eligible to be a boolean variable, and assign it the value true.

2. Write a statement that sets the boolean variable available to true if numberOrdered
is less than or equal to numberOnHand minus numberReserved.

3. Write a statement containing a logical expression that assigns true to the
boolean variable isCandidate if satScore is greater than or equal to 1100, gpa is not
less than 2.5, and age is greater than 15. Otherwise, isCandidate should be false.

4. Given the declarations

boolean leftPage;
int pageNumber:

write a statement that sets leftPage to true if pageNumber is even. (Hint: Consider
what the remainders are when you divide different integers by 2.)

5. Write an if statement (or a series of if statements) that assigns to the variable
biggest the greatest value contained in variables i, j, and k. Assume the three
values are distinct.

6. Rewrite the following sequence of if-(then) as a single if-else.

if (year % 4 == 0)
System.out.print(year + " is a leap year.");

if (year % 4 != 0)
{
year = year + 4 – year % 4;
System.out.print(year + " is the next leap year.");

}

7. Simplify the following code segment, taking out unnecessary comparisons.
Assume that age is an int variable.

205

if (age > 64)
System.out.print("Senior voter");

if (age < 18)
System.out.print("Under age");

if (age >= 18 && age < 65)
System.out.print("Regular voter");

8. The following code fragment is supposed to print out the values 25, 60, and 8, in
that order. Instead, it prints out 50, 60, and 4. Why?

length = 25;
width = 60;
if (length = 50)
height = 4;

else
height = 8;

System.out.print("" + length + " " + width + " " + height);

9. The following Java code segment is almost unreadable because of the
inconsistent indentation and the random placement of left and right braces. Fix
the indentation and align the braces properly.

// This is a nonsense program segment
if (a > 0)
if (a < 20)

{
System.out.print("A is in range.");
b = 5;

}
else

{
System.out.print("A is too large.");
b = 3;

}
else

System.out.print("A is too small.");
System.out.print("All done.")

10. Given the float variables x1, x2, y1, y2, and m, write a code segment to find the
slope of a line through the two points (x1, y1) and (x2, y2). Use the formula

m =
y2 – y1
�
x2 – x1

206

to determine the slope of the line. If x1 equals x2, the line is vertical and the
slope is undefined.The segment should display the slope with an appropriate la-
bel. If the slope is undefined, it should display the message “Slope undefined.”

11. Given the float variables a, b, c, root1, root2, and discriminant, write a code
segment to determine whether the roots of a quadratic polynomial are real or
complex (imaginary). If the roots are real, find them and assign them to root1
and root2. If they are complex, write the message “No real roots.”

The formula for the solution to the quadratic equation is

The � means “plus or minus” and indicates that the equation has two solutions:
one in which the result of the square root is added to �b and one in which the
result is subtracted from �b.The roots are real if the discriminant (the quantity
under the square root sign) is not negative.

Programming Problems

1. Design and write a Java application that takes as input a single letter and
displays the corresponding digit on the telephone.The letters and digits on a
telephone are grouped this way:

2 = ABC 4 = GHI 6 = MNO 8 = TUV

3 = DEF 5 = JKL 7 = PRS 9 = WXY

No digit corresponds to either Q or Z. For these two letters, your application
should display a message indicating that they are not used on a telephone.

The screen dialog might look like this:

Enter a single letter, and I will tell you what the corresponding
digit is on the telephone.
R
The digit 7 corresponds to the letter R on the telephone.

Here’s another example:

Enter a single letter, and I will tell you what the corresponding
digit is on the telephone.
Q
There is no digit on the telephone that corresponds to Q.

Your code should display a message indicating that there is no matching digit
for any nonalphabetic character entered by the user. Also, the application should
recognize only uppercase letters. Include the lowercase letters with the invalid
characters.

–b��b2 –4a�c�
��

2a

207

4Notice that this formula can give a date in April.

Prompt the user with an informative message for the input value, as shown
above.The application should include the input letter as part of the output.

Use proper indentation, appropriate comments, and meaningful identifiers
throughout the code.

2. People who deal with historical dates use a number called the Julian day to
calculate the number of days between two events.The Julian day is the number
of days that have elapsed since January 1, 4713 B.C. For example, the Julian day
for October 16, 1956, is 2435763.

There are formulas for computing the Julian day from a given date, and vice
versa. One very simple formula computes the day of the week from a given
Julian day:

Day of the week = (Julian day + 1) % 7

where % is the Java modulus operator.This formula gives a result of 0 for
Sunday, 1 for Monday, and so on, up to 6 for Saturday. For Julian day 2435763, the
result is 2 (Tuesday).Your job is to write a Java application that requests and
inputs a Julian day, computes the day of the week using the formula, and then
displays the name of the day that corresponds to that number.

Your output might look like this:

Enter a Julian day number and press Enter.
2451545
Julian day number 2451545 is a Saturday.

Enter a Julian day number and press Enter.
2451547
Julian day number 2451547 is a Monday.

3. You can compute the date for any Easter Sunday from 1982 to 2048 as follows (all
variables are of type int):

a is year % 19

b is year % 4

c is year % 7

d is (19 * a + 24) % 30

e is (2 * b + 4 * c + 6 * d + 5) % 7

Easter Sunday is March (22 + d + e)4

For example, Easter Sunday in 1985 is April 7.
Write an application that inputs the year and outputs the date (month and

day) of Easter Sunday for that year.

208

4. The algorithm for computing the date of Easter can be extended easily to work
with any year from 1900 to 2099.There are four years—1954, 1981, 2049, and
2076—for which the algorithm gives a date that is seven days later than it should
be. Modify the application for Programming Problem 3 to check for these years
and subtract 7 from the day of the month.This correction does not cause the
month to change. Be sure to change the documentation for the code to reflect its
broadened capabilities.

5. Write a Java application that calculates and prints the diameter, the
circumference, or the area of a circle, given the radius.The application should in-
put a character corresponding to one of three actions: D for diameter, C for
circumference, and A for area.The user should be prompted to enter the radius
in floating-point form and then the appropriate letter.The output should be
labeled appropriately. For example, if the input is 6.75 and A, your application
should print something like this:

The area of a circle with radius 6.75 is 143.14.

Here are the formulas you need:

Diameter = 2r

Circumference = 2πr

Area of a circle = πr2

where r is the radius. Use 3.14159265 for π.

6. The factorial of a number n is n * (n � 1) * (n � 2) * . . . * 2 * 1. Stirling’s formula ap-
proximates the factorial for large values of n:

where � = 3.14159265 and e = 2.718282.
Write a Java application that inputs an integer value (but stores it into a

double variable n), calculates the factorial of n using Stirling’s formula, assigns
the (rounded) result to a long integer variable, and then displays the result
appropriately labeled.

Depending on the value of n, you should obtain one of these results:

� A numerical result.

� If n equals 0, the factorial is defined to be 1.

� If n is less than 0, the factorial is undefined.

� If n is too large, the result exceeds Long.MAX_VALUE.

Because Stirling’s formula is used to calculate the factorial of very large num-
bers, the factorial approaches Long.MAX_VALUE quickly. If the factorial exceeds
Long.MAX_VALUE, it causes an arithmetic overflow in the computer, in which case

nn �2πn�
��

en

209

the program continues with a strange-looking integer result, perhaps a negative
value. Before you write the application, then, you first must write a small appli-
cation that lets you determine, by trial and error, the largest value of n for which
Java can compute a factorial using Stirling’s formula. After you’ve determined
this value, you can write the application using nested ifs that display different
messages depending on the value of n. If n is within the acceptable range, output
the number and the result with an appropriate message. If n is 0, write the mes-
sage, “The number is 0.The factorial is 1.” If the number is less than 0, write “The
number is less than 0.The factorial is undefined.” If the number is greater than
the largest value of n for which Java can compute a factorial, write “The number
is too large.”

Hint: Don’t compute Stirling’s formula directly.The values of nn and en can be
huge, even in floating-point form.Take the natural logarithm of the formula and
manipulate it algebraically to work with more reasonable floating-point values.
If r is the result of these intermediate calculations, the final result is er. Make use
of the standard library methods Math.log and Math.exp.These methods compute
the natural logarithm and natural exponentiation, respectively.

Case Study Follow-Up

1. Add support for a second middle name, a prefix, and a suffix to the Name class.
The full method should now include these parts of the name.You should add
know methods to return these new parts.You may optionally provide methods for
different name formats based on the extended Name class.

2. Change the Student class to include an INVALID status constant, and set it to
invalid when any of the scores are outside of the range of 0 to 100.

3. Change the StudentStatus application so that it prints an appropriate message
when the input data are invalid.

4. Write a test plan to fully test the StudentStatus application and implement the
test plan.

5. Write a driver application that is designed specifically to test all aspects of the
Student class, and implement the test plan associated with the driver.

6. Add a method to the Student class that enables it to compare the status of two
students in the same manner that compareTo does for names or string. Call the
method compareStatusTo, and have it take another Student object as an argument.
It should return �1 if the other student’s status is greater, 0 if it is equal, and 1 if
it is less than the instance’s status.

7. Add equals and compareTo methods to the Student class that compare two student
records. In the case of equals, the method should return true if the names and
scores are equal.The compareTo method should test for alphabetical ordering of
the student names. (Hint: You’ll be glad we implemented compareTo for the Name
class.)

Knowledge Goals
• To recognize when noninteractive input/output is appropriate and how it

differs from interactive input/output

• To know how to read from a text file

• To know how to write to a text file

• To know how to read a numeric value from a file

• To understand the semantics of a while loop

• To understand when a count-controlled loop is appropriate

• To understand when an event-controlled loop is appropriate

• To recognize how mutable and immutable objects differ

Skill Goals
To be able to:

• Write applications that use data files for input and output

• Construct syntactically correct while loops

• Construct count-controlled loops with a while statement

• Construct event-controlled loops with a while statement

• Use the end-of-file condition to control the input of data

• Use flags to control the execution of a while statement

• Construct counting loops with a while statement

• Construct summing loops with a while statement

• Choose the correct type of loop for a given problem

• Construct nested while loops

• Choose data sets that test a looping application comprehensively

File Objects and
Looping Statements

1951
Admiral Grace
Murray Hopper
invents the first
compiler

1952
The EDVAC, the
first stored-program
computer, is
operational

1952
IBM introduces the
IBM 701

1953
The IBM 650
Magnetic Drum
Calculator is
introduced, mass
produced, and
becomes the best
selling computer of
the 1950s

1954
Earl Masterson at
Univac introduces
his Uniprinter, a line
printer that prints
600 lines per
minute

1954
Texas Instruments
develops the world’s
first silicon transistor

5
C H A P T E R

we used System.in for input and System.out for out-
put.With these classes, all input is from the keyboard and output is to the
screen. In this chapter, we look at input that can be prepared ahead of time
on a file and output that can be written to a file for later use.We also ex-
amine another of Java’s control structures, the loop. In Chapter 4, we saw
how the flow of control in an application can be altered to select among
different actions with the if statement. In this chapter, we work with a
statement that allows us to repeat actions: the while statement.

In Chapters 2, 3, and 4,

1956-57
The RAMAC,
random-access
method of
accounting and
control, is
introduced by IBM
for hard disk data
storage

1957
The concept of
artificial intelligence
is developed at
Dartmouth College

1957
John Backus debuts
the first Fortran
compiler

1957
John McCarthy
founds MIT’s
Artificial
Intelligence
Department

1957
The first computer-
controlled launch of
the Atlas missile
takes place

1957
Russia launches
Sputnik I into orbit

212 | File Objects and Looping Statements

Figure 5.1 Disks Used for File Storage

5.1 File Input and Output

In everything we’ve done so far, we’ve assumed that input occurs via the screen.We have read
input typed on the screen and sent messages to the screen.We look now at input/output (I/O)
using files.

Files

Earlier we defined a file as a named area in secondary storage that holds a collection of in-
formation (for example, the Java code we have typed into the editor). The information in a
file usually is stored on an auxiliary storage device, such as a disk (see Figure 5.1).

Reading and writing data on files is similar to input and output on the screen, but it dif-
fers in some important ways. A file contains a sequence of values, and it has a distinct be-
ginning and end—that is, a first value and a last value. You may think of reading a file as
analogous to reading a book in that it is read from the front to the back. Just as you might
use a bookmark to keep track of your place in a book, Java uses a file pointer to remember its
place in a file. Each time some data are read from the file, the file pointer advances to the point
where reading should resume next. Each read operation copies a value from the file into a
variable in the code and advances the file pointer. A series of read operations eventually
reaches the last value in the file, and the pointer is then said to be at end-of-file (EOF).

Writing data on a file is like writing in an empty notebook. At the beginning, the file is
empty.Then data are written onto it from front to back.The file pointer always indicates the
end of the last value written so that writing can resume after that point. In effect, the file

5.1 F i l e I n p u t a n d O u t p u t | 213

pointer is always at EOF when a file is being written.The size of the file increases with each
write operation.The only limit placed on the size of a file is the amount of disk space avail-
able to the application.

Why would we want an application to read data from a file instead of the user interface?
If an application will read a large quantity of data, it is easier to enter the data into a file with
an editor than to enter it while the application is running. With the editor, we can go back
and correct mistakes. Also, we do not have to enter the data all at once; we can take a break
and come back later. If we want to rerun the application at some point, having the data
stored in a file allows us to do so without retyping the data.

Why would we want the output from an application to be written to a disk file? The con-
tents of a file can be displayed on a screen or printed.This ability gives us the option of look-
ing at the output over and over again without having to rerun the application. Also, the
output stored in a file can be read into another application as input. For example, an appli-
cation that calculates a payroll could write its output to a file that could then be input to an
application that prints checks.

Using Files

If we want an application to use file I/O, we have to do five things:

1. Import the library package java.io.*.

2. Use declaration statements to declare the file variable identifiers we will use.

3. Instantiate each file object.

4. Use methods associated with the file object to read or write it.

5. Call a method to close the file when we are done with it.

Import the Package java.io.* The first thing we must do is import the package containing the
classes that define a file:

import java.io.*;

Through the package java.io.*, Java defines many classes for different forms of I/O. In the
case of our applications,we use just four of these classes: FileReader,FileWriter,BufferedReader,
and PrintWriter.The FileReader and FileWriter classes are like the InputStreamReader class that
we’ve been using with System.in.We won’t use them directly, but we do need them as part of
instantiating the BufferedReader and PrintWriter classes. The reason is that the Java library
builds the abstraction for the file classes in layers.The FileReader and FileWriter classes pro-
vide only the basic file object functionality of reading and writing one character at a time. On
top of this abstraction, Java builds another layer of objects that are more convenient for in-
put and output of different kinds of data. Figure 5.2 shows the relationships among these
classes. We explore how we can create our own Java layering of abstractions in Chapter 7.

PrintWriter is the file class that is most similar to System.out. Of course, we’ve been us-
ing BufferedReader on top of System.in all along, and now we see how to apply it to a file.
Thus, many of the operations that we use with files should already be familiar to you.

214 | File Objects and Looping Statements

Disk file
outfile.dat

Disk file
infile.dat

BufferedReader
 dataFile

FileReader inFile

readLine

read
skip
close

Added methods:

Methods:

PrintWriter
 payFile

print
println

Added methods:

FileWriter outFile

write
flush
close

Methods:

Figure 5.2 Relationships between FileWriter and PrintWriter, and between FileReader and BufferedReader

Declare the File Identifier In Java, you declare file identifiers in the same way that you declare any
variable—you specify the class and then the name:

PrintWriter outFile;
BufferedReader inFile;

Note that BufferedReader is used for input files only, and PrintWriter is used for
output files only.With these classes, you cannot read from and write to the same
file. These classes work with what Java calls character stream files. In a later chap-
ter, we will encounter other kinds of files that allow us to output and input whole
objects.The advantage of a character stream file is that we work with this kind of
file in the editor.Thus, we can prepare an input file with the editor, process it with
an application, and then view the output with the editor.

The data in character stream files are organized into lines. A line is a string of charac-
ters that ends with a special character called an end-of-line (EOL) mark.When you examine
such a file with an editor, each line in the file appears as a line of text on the screen.The ed-
itor doesn’t display the EOL mark. Rather, the EOL mark simply tells the editor when to go
to the next line as it places the characters on the screen.

Character stream file A file
that is stored as a sequence of
characters

5.1 F i l e I n p u t a n d O u t p u t | 215

Instantiate the File Objects The third thing we have to do is to instantiate the file objects. Part of
instantiating a file object involves telling the operating system the name of the file on the
disk.Thus, we pass the file’s name on the disk to the constructor for the object.That way, the
JVM and operating system know which disk file to use when the code performs an operation
on the file. As we’ve done with System.in, we nest the instantiation of the simpler class in-
side of the class that we actually use. Here’s what we’ve been doing:

BufferedReader in;
in = new BufferedReader(new InputStreamReader(System.in));

In using BufferedReader with a file, we write the following instead:

inFile = new BufferedReader(new FileReader("infile.dat"));

where the operating system uses the string "infile.dat" to identify the actual disk file we
wish to use. We instantiate a PrintWriter in much the same way. For example, we can write
the following statement:

outFile = new PrintWriter(new FileWriter("outfile.dat"));

Exactly what do these statements do? The constructors create file objects for use in your
code and associate them with physical files on disk. The object is then assigned to a file
variable that you can reference in other statements in your code.The first statement creates
a connection between the file variable inFile and the disk file named infile.dat. (Names of
file variables must be Java identifiers,
but many computer systems do not
use Java syntax for file names on disk.
For example, file names can include
dots and slashes (/) but file variable
identifiers cannot.) Similarly, the sec-
ond statement associates the identi-
fier outFile with the disk file
outfile.dat.

The constructor performs addi-
tional operations depending on
whether the file is an input file or an
output file.With an input file, the con-
structor places the file pointer at the
first piece of data in the file. (Each in-
put file has its own file pointer.) With
an output file, the constructor checks
whether the file already exists. If the
file doesn’t exist, it creates a new
empty file. If the file does exist, it
erases the old contents of the file.Then
the file pointer is placed at the begin-
ning of the empty file (see Figure 5.3).

File infile after the call
to the constructor

File outfile after the call
to the constructor

inFile outFile

File
pointer

File
pointer

Operating system
file name:

outfile.dat

Operating system
file name:

infile.dat

Figure 5.3 The Effect of Calling a Constructor for a Character Stream File Object

216 | File Objects and Looping Statements

As output proceeds, each successive output operation advances the file pointer to add data
to the end of the file.

Because calling the constructor creates a file object and prepares the file for reading or
writing, you must call it before you can use any input or output methods that refer to the file.
It’s a good habit to call the constructor early in the application to be sure that the files are
prepared before any attempts to perform file I/O are made.

public static void main(String[] args)
{
PrintWriter outFile;
BufferedReader inFile;
// Instantiate the file objects
outFile = new PrintWriter(new FileWriter("outfile.dat"));
inFile = new BufferedReader(new FileReader("infile.dat"));
.
.
.

}

Use Methods Associated with the File Object to Read or Write It Once a file has been declared and instan-
tiated, we are ready to use it. The main operation that we can perform on a file of the class
PrintWriter is to print a value onto it.The print method can be passed a value of any of Java’s
primitive types. We typically pass it a string, using string conversion to convert other types
such as int or double to be part of the string. For example:

outFile.print("The answer is " + 49);

We could also write

outFile.print("The answer is ");
outFile.print(49);

and the output would be identical to that produced by the preceding version.The int value
49 is converted to a string for output.

If you print a floating-point value that has been calculated within an application, you have
no control over the number of digits printed. For example, if you divide 1 by 3, you get
0.333333333 To gain control over the appearance of such numbers, you can use the String
class valueOf method, which takes a value of a numeric type as an argument and returns a
string representation of the value.Then you can use the String methods indexOf and substring
to select only the characters representing the digits you wish to output. We ask you to ex-
plore this technique in the exercises at the end of this chapter.

PrintWriter also provides a println method that works in the same way as the println
method associated with System.out. The only difference between print and println is that
println automatically adds the EOL mark at the end of whatever it writes. For example, the

5.1 F i l e I n p u t a n d O u t p u t | 217

following method call first writes its argument to the file payFile, and then writes an EOL mark
to start a new line in the file:

payFile.println("Rate = " + rate);

Now we turn our attention to file input. The BufferedReader class provides the readLine
method with which we’re already familiar from reading lines entered via System.in. Recall
that readLine is a value-returning method that returns the input line as a string.This method
actually reads the EOL mark at the end of the line, but then discards it instead of storing it
in the string. As a consequence, the file pointer advances to the start of the next line. If we
read a line from one file, we can write it out to another file with println. For example, if
dataLine is a String object, we can write

dataLine = dataFile.readLine();
payFile.println(dataLine);

When println outputs the string in dataLine, it appends an EOL mark that replaces the
one discarded by readLine.The advantage of having readLine discard the EOL mark is that it
is easier to work with the input string. For example, if we want to add some characters to the
end of the string before we write it to payFile, we can simply use string concatenation:

dataLine = dataFile.readLine();
dataLine = dataLine + "***";
payFile.println(dataLine);

If readLine did not discard the EOL mark, then after the concatenation an EOL mark would
appear between the last character from the input line and the appended stars. The call to
println would then output two lines on payFile.

What happens when we call readLine and the file pointer is at EOF? At EOF, there’s no valid
value to return as a string. Java defines a special value called null that signifies that a refer-
ence type variable contains an invalid value. When readLine discovers that the file pointer
is already at EOF, it returns the value null. Note that null is not the same as the empty string.
Rather, it is a unique value in Java that does not correspond to any valid object value.We will
see later how we can test for null in a Boolean expression.

If readLine always returns a string, how do we get numbers into our application? Exactly
the same way we did with System.in. We must convert the string to a numeric value using
one of the parse methods. As a reminder, here is how we have been getting a floating-point
value from System.in:

double number;
number = Double.parseDouble(in.readLine());

Using this code as a model, we can input a floating-point value from a file as follows:

double floatNumber;
floatNumber = Double.parseDouble(dataFile.readLine());

218 | File Objects and Looping Statements

Likewise, an integer value can be read as shown here:

int intNumber;
intNumber = Integer.parseInt(dataFile.readLine());

Reading data from a file does not destroy the data on the file. Because the file pointer
moves in just one direction, however, we cannot go back and reread data that has been read
from the disk file unless we return the pointer to the beginning of the file and start over. As
we will see in the next section, closing a file and reassigning it to a file object with new causes
the file pointer to return to the beginning of the file.

Another method associated with objects of the class BufferedReader is called skip.When we
pass a long value to skip, it causes the file pointer to skip over that many characters in the file.
Recall that we write a literal value of type longwith an L at the end. For example, the statement

inFile.skip(100L);

skips the next 100 characters in the file. Reading can then resume at the new file pointer’s
position. If skip reaches EOF before it has skipped the specified number of characters, then
the application halts with an error message because an IOException is thrown.When we put
all of this together in an application, we see that, just as happened when we used System.in,
file input requires us to include the throws IOException clause in the heading for main; it lets
Java know that such an exception should be passed to the JVM.The FileWriter class similarly
includes methods that can throw an IOException.Thus, for any application that uses file I/O,
the heading for main should include the throws clause.

public static void main(String[] args) throws IOException

We will return to the subject of reading data from files later in this chapter. Except for
some trivial cases, we must combine reading operations with loops to read through all of the
data on a file.

Call a Method to Close the File When Done with It After we have finished reading from or writing to a
file, we must close the file. Closing a file tells the operating system that we no longer need
the file, and it makes the file available for use by another application. Once a file is closed,
it is no longer associated with the corresponding identifier in our code. Each of the file classes
that we have discussed in this chapter has a void method called close associated with it.The
close method does not take any arguments.The following code segment closes the files that
we have been using in our discussions:

inFile.close();
outFile.close();

Although most Java systems automatically close every file when an application exits, it
is good programming practice to explicitly close each file. Also, once an application has fin-
ished using a file, it should be closed immediately.You don’t have to wait until the end of an
application to close a file.

5.1 F i l e I n p u t a n d O u t p u t | 219

Once a file is closed, it can again be assigned to a file object with a call to new. For exam-
ple, if the file infile.dat is associated with the file object inFile, we can write the following:

inFile.close();
inFile = new BufferedReader(new FileReader("infile.dat"));

The effect of these two statements is to temporarily break the association between the disk
file (infile.dat) and the file identifier (inFile), and then to restore their connection. A side
effect of these operations is that the file pointer is reset to the beginning of the file as part
of the constructor call. After the call to close, it would also be possible to assign a different
disk file to inFile or to assign infile.dat to a different file identifier. Here’s an example that
does both:

inFile.close();
inFile = new BufferedReader(new FileReader("somefile.dat"));
differentFile = new BufferedReader(new FileReader("infile.dat"));

An Example Application Using Files

Now let’s pull our discussion of file I/O together by writing a simple application. The appli-
cation should read three lines from an input file, display each line on System.out, and write
the lines in reverse order onto an output file. We use BufferedReader and PrintWriter file ob-
jects that we associate with files called infile.dat and outfile.dat. Let’s name the three
lines of input lineOne, lineTwo, and lineThree. Because readLine returns a string, we can invoke
it as we instantiate each string object. Once the lines have been read, we close the input file.

import java.io.*; // File classes
public class UseFile
{
public static void main(String[] args) throws IOException
{
PrintWriter outFile; // Output data file
BufferedReader inFile; // Input data file
String lineOne; // Strings to hold data lines
String lineTwo;
String lineThree;
// Prepare input and output files
inFile = new BufferedReader(new FileReader("infile.dat"));
outFile = new PrintWriter(new FileWriter("outfile.dat"));
// Read in three lines from infile.dat
lineOne = new String(inFile.readLine());
lineTwo = new String(inFile.readLine());
lineThree = new String(inFile.readLine());
inFile.close(); // Finished reading
// Write three lines to screen
System.out.println(lineOne);
System.out.println(lineTwo);

220 | File Objects and Looping Statements

System.out.println(lineThree);
// Write three lines to outFile in reverse order
outFile.println(lineThree);
outFile.println(lineTwo);
outFile.println(lineOne);
outFile.close(); // Finished writing

}
}

Here are the input file, output file, and screen:

File infile.dat: File outfile.dat:

On System.out:

5.2 Looping

In Chapter 4, we introduced a statement that allows us to explicitly change the order in
which statements execute within a method. With this strategy, the flow of control within a
method can differ from the physical order of the statements. The physical order is the order

5.2 L o o p i n g | 221

in which the statements appear in the code; the logical order is the order in which
we want the statements to be executed.

The if statement is one way of making the logical order differ from the phys-
ical order. Looping control structures are another way.A loop executes the same
statement (simple or compound) over and over, as long as a condition or set of
conditions is satisfied.

In this chapter, we discuss different kinds of loops and consider how they
are constructed using the while statement.We also discuss nested loops (loops that
contain other loops).

The while Statement

The while statement, like the if statement, tests a condition. Here is the syntax
template for the while statement:

Here is an example of one:

count = 1;
while (count <= 25)
count = count + 1;

The while statement is a looping control structure. The statement to be executed each
time through the loop is called the body of the loop. In the preceding example, the body of
the loop is a statement that adds 1 to the value of count.This while statement says to execute
the body repeatedly as long as count is less than or equal to 25.The while statement is com-
pleted (and hence the loop stops) when count is greater than 25.The effect of this loop, then,
is to count through the int values from 1 to 25.

Just like the condition in an if statement, the condition in a while statement must be an
expression of type boolean. The while statement says, “If the value of the expression is true,
execute the body and then go back and test the expression again. If the value of the expres-
sion is false, skip the body.”Thus the loop body is executed over and over as long as the ex-
pression remains true when it is tested.When the expression is false, the code skips the body
and execution continues at the statement immediately following the loop. Of course, if the
expression is false initially, the body never executes. Figure 5.4 shows the flow of control of
the while statement, where Statement1 is the body of the loop and Statement2 is the state-
ment following the loop.

While-Statement

while (Expression)

Statement

Loop A control structure that
causes a statement or group of
statements to be executed re-
peatedly

222 | File Objects and Looping Statements

The body of a loop can consist of a block of
statements, which allows us to execute any group
of statements repeatedly. Typically, we use while
loops in the following form:

while (Expression)
{
.
.
.

}

In this structure, if the expression is true, the
entire sequence of statements in the block is exe-
cuted, and then the expression is checked again. If

it is still true, the statements are executed again. The cycle continues until the expression
becomes false.

Although in some ways the if and while statements are alike, there are fundamental dif-
ferences between them (see Figure 5.5). In the if structure, Statement1 is either skipped or
executed exactly once. In the while structure, Statement1 can be skipped, executed once, or
executed over and over. The if is used to choose a course of action; the while is used to repeat
a course of action.

Statement1

Statement2

while (Expression)

Figure 5.4 while Statement Flow of Control

Statement1

Statement2

Statement1

Statement2

if (Expression) while (Expression)

if(f(f then)n) Statement while Statement

Figure 5.5 A comparison of if and while

5.2 L o o p i n g | 223

Phases of Loop Execution

The body of a loop is executed in several phases:

� The moment that the flow of control reaches the first statement inside
the loop body is the loop entry.

� Each time the body of a loop is executed, a pass is made through the
loop.This pass is called an iteration.

� Before each iteration, control is transferred to the loop test at the begin-
ning of the loop.

� When the last iteration is complete and the flow of control has passed
to the first statement following the loop, the code has exited the loop. The
condition that causes a loop to be exited is the termination condition. In
the case of a while loop, the termination condition is that the while
expression becomes false.

Notice that the loop exit occurs at only one point: when the loop test is per-
formed. Even though the termination condition may become satisfied midway
through the execution of the loop, the current iteration is completed before the com-
puter checks the while expression again.

The concept of looping is fundamental to programming. In this chapter, we will
spend some time looking at typical kinds of loops and ways of implementing them
with the while statement.These looping situations come up again and again when
you are analyzing problems and designing algorithms.

Loops Using the while Statement

In solving problems, you will encounter two major types of loops: count-controlled

loops, which repeat a specified number of times, and event-controlled loops, which
repeat until something happens within the loop. In the context of a loop, we use
the word event to mean a specific condition that we expect to occur during some
iteration of the loop, and that can be tested by a Boolean expression.

If you are making an angel food cake and the recipe reads,“Beat the mixture 300 strokes,”
you are executing a count-controlled loop. If you are making a pie crust and the recipe reads,
“Cut with a pastry blender until the mixture resembles coarse meal,” you are executing an
event-controlled loop; you don’t know ahead of time the exact number of loop iterations.

Count-Controlled Loops

A count-controlled loop uses a variable called the loop control variable in the loop test. Before
we enter a count-controlled loop, we must initialize (set the initial value of) the loop control
variable and then test it. Then, as part of each iteration of the loop, we must increment (in-
crease by 1) the loop control variable. Here’s an example:

Loop entry The point at which
the flow of control reaches the
first statement inside a loop

Iteration An individual pass
through, or repetition of, the
body of a loop

Loop test The point at which
the while expression is
evaluated and the decision is
made either to begin a new iter-
ation or to skip to the statement
immediately following the loop

Loop exit The point at which
the repetition of the loop body
ends and control passes to the
first statement following the
loop

Termination condition The
condition that causes a loop to
be exited

Count-controlled loop A loop
that executes a specified num-
ber of times

Event-controlled loop A loop
that terminates when
something happens inside the
loop body to signal that the
loop should be exited

224 | File Objects and Looping Statements

loopCount = 1; // Initialization
while (loopCount <= 10) // Test
{

.

. // Repeated actions

.
loopCount = loopCount + 1; // Incrementation

}

Here loopCount is the loop control variable. It is set to 1 before loop entry.The while state-
ment tests the expression

loopCount <= 10

and executes the loop body as long as the expression is true.The dots inside the compound
statement represent a sequence of statements to be repeated.The last statement in the loop
body increments loopCount by adding 1 to it.

Look at the statement in which we increment the loop control variable. Notice its form:

variable = variable + 1;

This statement adds 1 to the current value of the variable, and the result replaces the old value.
Variables that are used this way are called counters. In our example, loopCount is incremented
with each iteration of the loop—we use it to count the iterations. The loop control variable
of a count-controlled loop is always a counter.

We’ve encountered another way of incrementing a variable in Java.The incrementation
operator (++) increments the variable that is its operand.Thus the statement

loopCount++;

has precisely the same effect as the assignment statement

loopCount = loopCount + 1;

From here on, we will typically use the ++ operator, as do most Java programmers.
When designing loops, it is the programmer’s responsibility to see that the condition to

be tested is set correctly (initialized) before the while statement begins. The programmer
also must make sure that the condition changes within the loop so that it eventually becomes
false; otherwise, the loop will never be exited.

loopCount = 1; // Variable loopCount must be initialized
while (loopCount <= 10)
{
.
.
.
loopCount++; // loopCount must be incremented

}

5.2 L o o p i n g | 225

A loop that never exits is called an infinite loop because, in theory, the loop executes for-
ever. In the preceding code, omitting the incrementation of loopCount at the bottom of the loop
leads to an infinite loop; the while expression is always true because the value of loopCount
is forever 1. If your application runs for much longer than expected, chances are that you’ve
created an infinite loop. In such a case, you may have to issue an operating system command
to stop the application.

How many times does the loop in our example execute—9 or 10? To answer this ques-
tion, we must look at the initial value of the loop control variable and then at the test to see
its final value. Here we’ve initialized loopCount to 1, and the test indicates that the loop body
is executed for each value of loopCount up through 10. If loopCount starts at 1 and runs up to
10, the loop body is executed 10 times. If we want the loop to execute 11 times, we must ei-
ther initialize loopCount to 0 or change the test to

loopCount <= 11

Event-Controlled Loops

There are several kinds of event-controlled loops; we examine two of them here: sentinel-
controlled and end-of-file-controlled. In all event-controlled loops, the termination condi-
tion depends on some event occurring while the loop body is executing.

Sentinel-Controlled Loops Loops often are used to read in and process long lists of data. Each
time the loop body is executed, a new piece of data is read and processed. Often a special data
value, called a sentinel or trailer value, is used to signal the code that no more data remain to
be processed. Looping continues as long as the data value read is not the sentinel; the loop
stops when the code recognizes the sentinel. In other words, reading the sentinel value is the
event that controls the looping process.

A sentinel value must be something that never shows up in the normal input to an ap-
plication. For example, if an application reads calendar dates, we could use February 31 as
a sentinel value:

// This code is incorrect
while (!date.equals("0231"))
{
date = dataFile.readLine(); // Get a date
. // Process it
.
.

}

There is a problem in the loop this example.The value of date is not defined before the first
pass through the loop. Somehow we have to initialize this String. We could assign an arbi-
trary value to it, but then we would run the risk that the first value input will be the sentinel
value, which would then be processed as data. Also, it’s inefficient to initialize a variable
with a value that is never used.

226 | File Objects and Looping Statements

We can solve the problem by reading the first data value before entering the loop.This is
called a priming read. (The idea is similar to priming a pump by pouring a bucket of water into
the mechanism before starting it.) Let’s add the priming read to the loop:

// This is still incorrect
date = dataFile.readLine(); // Get a date--priming read
while (!date.equals("0231"))
{
date = dataFile.readLine(); // Get a date
. // Process it
.
.

}

With the priming read, if the first value input is the sentinel value, then the loop correctly
does not process it. We’ve solved one problem, but now a problem crops up when the first
value input is valid data. The first thing the code does inside the loop is to get a date, de-
stroying the value obtained by the priming read.Thus, the first date in the data list is never
processed. Given the priming read, the first thing that the loop body should do is process the
data that’s already been read. But at what point do we read the next input value? We do so
last in the loop. In this way, the while condition is applied to the next input value before it is
processed. Here’s how it looks:

// This version is correct
date = dataFile.readLine(); // Get a date--priming read
while (!date.equals("0231"))
{
. // Process it
.
.
date = dataFile.readLine(); // Get a date

}

This segment works correctly.The first value is read in; if it is not the sentinel, it is processed.
At the end of the loop, the next value is read in, and we return to the beginning of the loop.
If the new value is not the sentinel, it is processed just like the first value.When the sentinel
value is read, the while expression becomes false, and the loop exits (without processing the
sentinel).

Many times the problem dictates the value of the sentinel. For example, if the problem
does not allow data values of 0, then the sentinel value should be 0. Sometimes a combina-
tion of values is invalid. The combination of February and 31 as a date is such a case.
Sometimes a range of values (negative numbers, for example) is the sentinel.

When you are choosing a value to use as a sentinel, what happens if no invalid data
values exist? Then you may have to input an extra value in each iteration: a value whose only
purpose is to signal the end of the data. For example, look at this code segment:

5.2 L o o p i n g | 227

data = dataFile.readLine(); // Get first data line
sentinel = data.substring(0, 1); // Extract sentinel character
while (sentinel.equals("Y"))
{
// Extract data value from line and convert to double
value = Double.parseDouble(data.substring(1, data.length()));
. // Process data value
.
.
data = dataFile.readLine(); // Get next data line
sentinel = data.substring(0, 1); // Extract sentinel character

}

The first value on each line of the following data set is used to indicate whether more data are
present. In this data set,when the sentinel value is anything other than Y,no more data remain;
when it is Y, more data should be processed.

Sentinel Data
Values Values

Y 12.78

Y –47.90

Y 5.33

Y 21.83

Y –99.01

N

What happens if you forget to include the sentinel value? Once all the data have been
read from the file, the loop body is executed again. However, there aren’t any data left—be-
cause the computer has reached the end of the file. In the next section, we describe a way
to use the end-of-file situation as an alternative to a sentinel.

End-of-File-Controlled Loops After an application has read the last piece of data from an input file,
the computer is at the end of the file (EOF, for short).The next time that we attempt to read
from the file, there is nothing to read and thus nothing for the readLinemethod to return.What
happens? The readLine method normally returns a String value that holds the contents of
the line, so it returns null as its sentinel.

Thus, to read and process lines from a file, we can write a sentinel-controlled loop like
the following:

line = dataFile.readLine(); // Get a line--priming read
while (line != null)
{
. // Process it
.
.
line = dataFile.readLine(); // Get the next line

}

228 | File Objects and Looping Statements

The test in this while statement uses the relational operator != instead of the equals
method.The reason is that equals compares the contents of two strings, but the meaning of
null is that the String variable doesn’t even contain the address of a String object. Thus, a
null String has no contents to compare with anything. Be sure that you understand the dis-
tinction between a null String and an empty string (""). If the empty string is assigned to a
String variable, then the variable contains the address of a place in memory where a String
object of length 0 is stored. When null is assigned to a String variable, it has an invalid ad-
dress value that refers to nowhere in memory.The comparison

line.equals(null)

always returnsfalse,because thenull Stringhas no contents that can be compared toline.When

line == null

returns true, the equals method in the preceding example throws a NullPointerException.
Because it is an uncaught exception, the application crashes.

Java provides a convenient way of avoiding the need to separately write the priming
read and the read that gets the next value.When the input operation consists of a simple as-
signment statement, we can instead write the loop as follows:

while ((line = dataFile.readLine()) != null) // Get a line
{
. // Process it
.
.

}

At first glance, the expression in this while statement looks rather strange.The reason for its
strangeness is that there is an aspect of the assignment operator that we haven’t discussed
yet. In the past, we have written the assignment operator in assignment statements:

x = 2;

The assignment operator can also appear in expressions, where it has both a value and a side
effect.The side effect is the action we normally associate with assignment statements: The
result of the expression to the right of = is assigned to the variable to its left.The value that
= returns is the same as the value that is assigned to the variable. An assignment statement
is really just a special form of assignment expression where the side effect (the assignment)

5.2 L o o p i n g | 229

takes place and then the value returned by the expression is discarded. For example, in the
comparison

(x = 2 + 2) == 5

the value 4 is assigned to the int variable x as a side effect, and the subexpression (x = 2 +
2) has the result 4, which is compared to the literal 5, giving a final result of false. When we
use the result of an assignment expression in a comparison, we must enclose the assignment
expression in parentheses because = has the lowest precedence of all the operators. This
example demonstrates why you must be careful not to confuse the = and == operators in writ-
ing a comparison!

In the while statement

while ((line = dataFile.readLine()) != null) // Get a line
{
. // Process it
.
.

}

line is assigned the value returned by readLine, and the != operator compares that same
value (the result of the assignment expression) to null.

Because the parentheses force the input operation to happen before the comparison, the
effect is the same as using a separate priming read.When the flow of control reaches the end
of the loop, it returns to the test in the while statement.There another input operation takes
place before the comparison, with the same effect as using a separate input operation at the
end of the loop body.Thus, the input operation in the assignment expression, within the while
statement’s comparison, takes the place of two separate input operations.

If we can write the while statement in this manner, why would we ever need the longer
form with the two separate input operations? When the test in the while statement depends
on something other than the value returned by the input operation, we need to use the longer
form. For example, if an input line contains three numbers that must be converted to int val-
ues and their sum is then compared to zero to decide whether the loop should exit, we can’t
use a simple assignment expression within the while. Whenever the condition in the while
depends on performing multiple operations on the input value, it is best to code the input
and the operations as separate priming and updating statements before and within the loop.

Looping Subtasks

We have been looking at ways to use loops to affect the flow of control in code. But looping by
itself does nothing.The loop body must perform a task for the loop to accomplish something.
In this section, we look at two tasks—counting and summing—that often are used in loops.

Counting A common task in a loop is to keep track of the number of times the loop has been
executed. For example, the following code fragment reads and counts integer input values

230 | File Objects and Looping Statements

until it comes to a zero. (Both number and count are of type int.) The loop in the following ex-
ample has a counter variable, but it is not a count-controlled loop because the variable is not
used as a loop control variable:

count = 0; // Initialize counter
number = Integer.parseInt(inFile.readLine()); // Read a number
while (number != 0) // Test the number
{
count++; // Increment counter
number = Integer.parseInt(inFile.readLine()); // Read a number

}

The loop continues until a zero is read.After the loop is finished, count contains one less than
the number of values read. That is, it counts the number of values up to, but not including,
the sentinel value (the zero). If a zero is the first value, the loop body is not entered and count
contains a zero, as it should. We use a priming read here because the loop is sentinel-con-
trolled, and because it is easier to understand the intent of the loop test than if we write it
using our shortcut. Here’s how the loop looks if we use an assignment in the comparison:

count = 0; // Initialize counter
while ((number = Integer.parseInt(inFile.readLine())) != 0)
count++; // Increment counter

As you can see, this code is shorter, but its meaning is not nearly as obvious
to the reader. A good Java compiler generates Bytecode that is equally efficient in
both cases, so it is better to use the version that is easier to understand.

The counter variable in this example is called an iteration counter because its
value equals the number of iterations through the loop. According to our defini-
tion, the loop control variable of a count-controlled loop is an iteration counter.
However, as you’ve just seen, not all iteration counters are loop control variables.

What happens if our example loop encounters EOF before it reads a zero? It crashes
with a NumberFormatException. The reason is that readLine returns null when the file pointer
is at EOF. The parseInt method cannot convert this value to a number, so it throws an ex-
ception.The loop is thus more properly written as follows:

count = 0; // Initialize counter
inLine = inFile.readLine(); // Read a number string
if (inLine == null) // If EOF
number = 0; // Set number to 0

else
{
number = Integer.parseInt(inFile.readLine()); // Convert string to int
while (number != 0) // Test the number
{
count++; // Increment counter
inLine = inFile.readLine(); // Read a number string

Iteration counter A counter
variable that is incremented in
each iteration of a loop

5.2 L o o p i n g | 231

if (inLine == null) // If EOF
number = 0; // Set number to 0

else
number = Integer.parseInt(inFile.readLine()); // Convert number

}
}

We’ve used parseInt previously but we haven’t included NumberFormatException
in the throws clause of main.Why is it different from the IOException that we must
list in a throws clause when we use file I/O? The reason is that Java defines two
kinds of exceptions, caught and uncaught. Caught exceptions must be caught or ex-
plicitly forwarded with a throws clause. Uncaught exceptions may be optionally
caught, or they can be allowed to pass automatically to the JVM.
NumberFormatException is an uncaught exception so it does not have to be listed in
a throws clause, while IOException is an example of a caught exception that must
be explicitly thrown.

Caught exceptions usually indicate error conditions that are unlikely to oc-
cur, while uncaught exceptions are intended for errors that every good pro-
grammer is careful to avoid, such as division by zero. If we had to list every possible
uncaught exception in the heading of main, then it would be several lines long. Instead of mak-
ing us do so, the designers of the Java library simply assume that our code is carefully writ-
ten to avoid these common errors. If one of them does occur, the error is automatically
forwarded to the JVM, and our application crashes. In response, we identify the source of the
error, and then we correct the algorithm and the corresponding code to avoid further crashes.

To keep our examples short and understandable, we often omit tests for uncaught ex-
ceptions in this book. However, in writing code for actual applications, you should always try
to avoid such potential sources of crashes.

Summing Another common looping task is to sum a set of data values. Notice in the follow-
ing example that the summing operation is written the same way, regardless of how the
loop is controlled:

sum = 0; // Initialize sum
count = 1;
while (count <= 10)
{
number = Integer.parseInt(dataFile.readLine()); // Input a value
sum = sum + number; // Add value to sum
count++;

}

We initialize sum to 0 before the loop starts so that the first time the loop body executes,
the statement

sum = sum + number;

Caught exception An excep-
tion in Java that must either be
caught with a catch statement
or explicitly thrown to the next
level

Uncaught exception An ex-
ception in Java that can option-
ally be caught or allowed to
propagate automatically to the
next level

232 | File Objects and Looping Statements

adds the current value of sum (0) to number to form the new value of sum. After the entire code
fragment has executed, sum contains the total of the 10 values read, count contains 11, and
number contains the last value read.

In the preceding code, count is incremented in each iteration. For each new value of
count, there is a new value for number. Does this mean we could decrement count by 1 and in-
spect the previous value of number? No. Once a new value has been read into number, the pre-
vious value is gone forever unless we’ve saved it in another variable (or we reset the file and
reread the data).

Let’s look at another example.This time, let’s also check for EOF.We want to count and
sum the first 10 odd numbers in a data set. To do so, we need to test each number to see
whether it is even or odd. (We can use the modulus operator to find out. If number % 2
equals 1, number is odd; otherwise, it’s even.) If the input value is even, we do nothing. If it
is odd, we increment the counter and add the value to our sum. We use a flag (a boolean
variable) to control the loop because this is not a normal count-controlled loop. In the
following code segment, all variables are of type int except the String line and the boolean
flag, notDone.

count = 0; // Initialize event counter
sum = 0; // Initialize sum
notDone = true; // Initialize loop control flag
while (notDone)
{
line = dataFile.readLine(); // Get a line
if (line != null) // Got a line?
{
number = Integer.parseInt(line); // Convert line to an int
if (number % 2 == 1) // Is the int value odd?
{
count++; // Yes--increment counter
sum = sum + number; // Add value to sum
notDone = (count < 10); // Update loop control flag

}
}
else // Hit EOF unexpectedly
{
errorFile.println("EOF reached before ten odd values read.");
notDone = false; // Update loop control flag

}
}

We control the loop with the flag notDone, because the loop exits when either of two
events occurs: reading and processing 10 odd values or reaching EOF. Because we use a
Boolean flag to control the loop, this type of loop is often called a flag-controlled loop.

In this example, there is no relationship between the value of the counter variable and
the number of times that the loop is executed. Note that count is incremented only when an

5.2 L o o p i n g | 233

odd number is read; it is an event counter. We initialize an event counter to 0 and
increment it only when a certain event occurs. The counter in the previous ex-
ample was an iteration counter; it was initialized to 1 and incremented during each
iteration of the loop.

How to Design Loops

It’s one thing to understand how a loop works when you look at it and something else again
to design a loop that solves a given problem. In this section, we look at how to design loops.
We can divide the design process into two tasks: designing the flow of control and design-
ing the processing that takes place in the loop. Each task consists of three parts: the task it-
self, initialization, and updating. It’s also important to specify the state of the code when it
exits the loop, because a loop that leaves variables and files in a mess is not well designed.

There are seven different points to consider in designing a loop:

1. What condition ends the loop?

2. How should the condition be initialized?

3. How should the condition be updated?

4. What is the process being repeated?

5. How should the process be initialized?

6. How should the process be updated?

7. What is the state of the code on exiting the loop?

We can use these questions as a checklist.The first three help us design the parts of the loop
that control its execution.The next three help us design the processing within the loop.The
last question reminds us to make sure that the loop exits in an appropriate manner.

Designing the Flow of Control

The most important step in loop design is deciding what should make the loop stop. If the
termination condition isn’t well thought out, infinite loops and other mistakes could po-
tentially occur. Here is our first question:

� What condition ends the loop?

We can usually answer this question by closely examining the problem statement.
For example:

Event counter A variable that
is incremented each time a par-
ticular event occurs

Key Phrase in Problem Statement Termination Condition

“Sum 365 temperatures”

“Process all data in the file”

“Process until 10 odd integers have been
read”

“The end of the data is indicated by a neg-
ative test score”

The loop ends when a counter reaches 365 (count-
controlled loop)

The loop ends when EOF occurs (EOF-controlled loop)

The loop ends when 10 odd numbers have been input
(event counter)

The loop ends when a negative input value is encoun-
tered (sentinel-controlled loop)

234 | File Objects and Looping Statements

Now we need statements that make sure the loop starts correctly and statements that
allow the loop to reach the termination condition. We need to ask the next two questions:

� How should the condition be initialized?

� How should the condition be updated?

The answers to these questions depend on the type of termination condition.

Count-Controlled Loops If the loop is count-controlled, we initialize the condition by giving an
initial value to the loop control variable. For count-controlled loops in which the loop con-
trol variable is also an iteration counter, the initial value is usually 1. If the process requires
the counter to run through a specific range of values, the initial value should be the lowest
value in that range.

The condition is updated by increasing the value of the counter by 1 for each iteration.
(Occasionally, you may come across a problem that requires a counter to count from some
value down to a lower value. In this case, the initial value is the greater value, and the counter
is decremented by 1 for each iteration.) For count-controlled loops that use an iteration counter,
these are the answers to the two questions:

� Initialize the iteration counter to 1.

� Increment the iteration counter at the end of each iteration.

If the loop is controlled by a variable that counts an event within the loop, the control
variable usually is initialized to 0 and incremented each time the event occurs. For count-
controlled loops that use an event counter, here are the answers to the two questions:

� Initialize the event counter to 0.

� Increment the event counter each time the event occurs.

Sentinel-Controlled Loops In sentinel-controlled loops, a priming read may be the only initialization
required. You may also need to open the file in preparation for reading. To update the con-
dition, a new value is read at the end of each iteration. For sentinel-controlled loops, we an-
swer our two questions this way:

� Open the file, if necessary, and input a value before entering the loop (priming read).

� Input a new value for processing at the end of each iteration.

EOF-Controlled Loops EOF-controlled loops require the same initialization as sentinel-controlled
loops. You must open the file, if necessary, and perform a priming read. Updating the loop
condition happens implicitly; the input value reflects the success or failure of the operation.
However, if the loop doesn’t read any data, it never reaches EOF, so updating the loop con-
dition means the loop must keep reading data.

Flag-Controlled Loops In flag-controlled loops, the Boolean flag variable must be initialized to true
or false and then updated when the condition changes. Here are the answers to the two
questions:

5.2 L o o p i n g | 235

� Initialize the flag variable to true or false, as appropriate.

� Update the flag variable as soon as the condition changes.

In a flag-controlled loop, the flag variable essentially remains unchanged until it is time
for the loop to end.Then the code detects some condition within the process being repeated
that changes the value of the flag (through an assignment statement). Because the update
depends on what the process does, sometimes we have to design the process before we can
decide how to update the condition.

Designing the Process Within the Loop

Once we’ve decided on the appropriate looping structure, we can fill in the details of the
process. In designing the process, we must first decide what a single iteration should do.
Assume for a moment that the process will execute only once.What tasks must it perform?

� What is the process being repeated?

To answer this question, we have to take another look at the problem statement.The def-
inition of the problem may require the process to sum up data values or to keep a count of
data values that satisfy some test. For example:

Count the number of integers in the file howMany.

This statement tells us that the process to be repeated is a counting operation.
Here’s another example:

Read a stock price for each business day in a week and compute the average price.

In this case, part of the process involves reading a data value. We conclude from our
knowledge of how an average is computed that the process also involves summing the
data values.

In addition to counting and summing, another common loop process is reading data,
performing a calculation, and writing out the result. Many other operations can appear in
looping processes. We’ve mentioned only the simplest here; we will look at some other
processes later on.

After we’ve determined the operations to be performed if the process is executed only
once, we can design the parts of the process that are necessary for it to be repeated cor-
rectly. We often have to add some steps to account for the fact that the loop executes more
than once.This part of the design typically involves initializing certain variables before the
loop begins and then reinitializing or updating them before each subsequent iteration.

� How should the process be initialized?

� How should the process be updated?

For example, if the process within a loop requires that several different counts and sums
be performed, each must have its own statements to initialize variables, increment counting
variables, or add values to sums. Just deal with each counting or summing operation by it-
self—that is, first write the initialization statement, and then write the incrementing or sum-
ming statement.After you’ve handled this task for one operation, go on to the next operation.

236 | File Objects and Looping Statements

The Loop Exit

When the termination condition occurs and the flow of control passes to the statement fol-
lowing the loop, the variables used in the loop still contain values. Also, if an input file has
been used, the reading marker has been left at some position in the file. Or maybe an out-
put file has new contents. If these variables or files are used later in the application, the loop
must leave them in an appropriate state. For this reason, the final step in designing a loop
is answering this question:

� What is the state of the code on exiting the loop?

Now we have to consider the consequences of our design and double-check its validity.
For example, suppose we’ve used an event counter and later processing depends on the
number of events. It’s important to confirm (with an algorithm walk-through) that the value
left in the counter is the exact number of events—that it is not off by 1.

Look at this code segment:

lineCount = 1; // This code is incorrect
while ((inLine = inFile.readLine()) != null)
lineCount++;

System.out.println("There are " + lineCount + " lines in the file.");

This loop reads lines from an input file and counts the number of lines in the file. However,
when the loop terminates, lineCount equals the actual number of lines plus 1 because the
loop initializes the event counter to 1 before any events take place. By determining the state
of lineCount at loop exit, we’ve detected a flaw in the initialization. lineCount should be initialized
to zero. Note that this code segment also demonstrates the use of an assignment expression
within a loop test. Because the loop contains just a single statement (the increment statement),
there is no need for the usual braces to enclose a block of statements.

Designing correct loops depends as much on experience as it does on the application of de-
sign methodology.At this point, you may want to read through the Problem-Solving Case Study
at the end of the chapter to see how the loop design process is applied to a real problem.

Nested Loops

In Chapter 4, we described nested if statements. It’s also possible to nest while statements.
Both while and if statements contain statements and are themselves statements. So the
body of a while statement or the branch of an if statement can contain other while and if
statements. By nesting, we can create complex control structures.

Suppose we want to count the commas in each line, repeating this operation for all the
lines in a file.We put an event-controlled loop within the main loop.The inner loop uses the
charAt method of the String class, which returns the character at a given position in the
string.The loop scans the line, position by position, searching for commas.

lineCount = 0; // Initialize iteration count
inLine = inFile.readLine(); // Priming read
while (inLine != null) // Outer loop test for EOF
{
lineCount++; // Update outer iteration count

5.2 L o o p i n g | 237

commaCount = 0; // Initialize event counter
index = 0; // Initialize loop control count
while (index < inLine.length()) // Inner loop test
{
if (inLine.charAt(index) == ',')
commaCount++; // Update inner event count

index++; // Update inner exit condition
}
System.out.println("Found " + commaCount + " commas on line " + lineCount);
inLine = inFile.readLine(); // Update outer exit condition

}
System.out.println("There are " + lineCount " lines in the file.");

The outer loop is EOF-controlled, and its process is to count input lines and run the in-
ner loop. The inner loop is count-controlled, and its process is to count the commas that it
finds on a line. Note the unusual starting and ending values for this inner count-controlled
loop.We usually begin at 1, and our ending condition is <= the maximum value. However, the
positions in a String are numbered starting at 0 and go up to length() – 1. In this case, be-
cause the iteration counter is also used as the position number within the string, it is more
natural to start at 0.

General Pattern

Let’s examine the general pattern of a simple nested loop. Here the dots represent places
where the processing and updating may take place in the outer loop:

…

Initialize outer loop
while (Outer loop condition)
{

…

Initialize inner loop
while (Inner loop condition)
{
 Inner loop processing and update
}

}

Notice that each loop has its own initialization, test, and update steps.An outer loop could
potentially do no processing other than to execute the inner loop repeatedly. On the other
hand, the inner loop might be just a small part of the processing done by the outer loop; many
statements could precede or follow the inner loop.

238 | File Objects and Looping Statements

Let’s look at another example. For nested count-controlled loops, the pattern looks like
this (where outCount is the counter for the outer loop, inCount is the counter for the inner loop,
and limit1 and limit2 are the number of times each loop should be executed):

outCount = 1; // Initialize outer loop counter
while (outCount <= limit1)
{

�

inCount = 1; // Initialize inner loop counter
while (inCount <= limit2)
{

�

inCount++; // Increment inner loop counter
}
�

outCount++; // Increment outer loop counter
}

Here, both the inner and outer loops are count-controlled loops, but the pattern can be
used with any combination of loops.The following code fragment shows a count-controlled
loop nested within an EOF-controlled loop.The outer loop inputs an integer value telling how
many asterisks to print on each line of an output file. (We use the numbers to the right of the
code to trace the execution of the code.)

line = dataFile.readLine(); 1
while (line != null) 2
{
starCount = Integer.parseInt(line); 3
loopCount = 1; 4
while (loopCount <= starCount) 5
{
outFile.print('*'); 6
loopCount++; 7

}
outFile.println(); 8
line = dataFile.readLine(); 9

}
outFile.println("End"); 10

To see how this code works, let’s trace its execution with these data values (<EOF> denotes
end-of-file):

3
1
<EOF>

5.2 L o o p i n g | 239

We’ll keep track of the variables line, starCount, and loopCount, as well as the logical expres-
sions.To do so, we’ve numbered each line (except lines containing only a brace). As we trace
the code, we indicate the first execution of line 3 by 3.1, the second by 3.2, and so on. Each
loop iteration is enclosed by a large brace, and true and false are abbreviated as T and F (see
Table 5.1).

Variables Logical Expressions

Statement line starCount loopCount line != null loopCount <= starCount Output

1.1 ‘3’ — — — — —

2.1 ‘3’ — — T — —

3.1 ‘3’ 3 — — — —

4.1 ‘3’ 3 1 — — —

5.1 ‘3’ 3 1 — T —

6.1 ‘3’ 3 1 — — *

7.1 ‘3’ 3 2 — — —

5.2 ‘3’ 3 2 — T —

6.2 ‘3’ 3 2 — — *

7.2 ‘3’ 3 3 — — —

5.3 ‘3’ 3 3 — T —

6.3 ‘3’ 3 3 — — *

7.3 ‘3’ 3 4 — — —

5.4 ‘3’ 3 4 — F —

8.1 ‘3’ 3 4 — — \n (newline)

9.1 ‘1’ 3 4 — — —

2.2 ‘1’ 3 4 T — —

3.2 ‘1’ 1 4 — — —

4.2 ‘1’ 1 1 — — —

5.5 ‘1’ 1 1 — T —

6.4 ‘1’ 1 1 — — *

7.4 ‘1’ 1 2 — — —

5.6 ‘1’ 1 2 — F —

8.2 ‘1’ 1 2 — — \n (newline)

9.2 null 1 2 — — —

2.3 null 1 2 F — —

10.1 null 1 2 — — End

Table 5.1 Code Trace

240 | File Objects and Looping Statements

Here’s the output on outFile from the code given the input used for our trace:

*
End

Because starCount and loopCount are variables, their values remain the same until they
are explicitly changed, as indicated by the repeating values in Table 5.1.The values of the log-
ical expressions line != null and loopCount <= starCount exist only when the test is made.
We indicate this fact with dashes in those columns at all other times.

Designing Nested Loops

To design a nested loop, we begin with the outer loop. The process being repeated includes
the nested loop as one of its steps. Because that step is complex, we defer designing it; we
will come back to it later.Then we can design the nested loop just as we would any other loop.

As an example, here’s the design process for the outer loop in the preceding code
segment:

1. What condition ends the loop? EOF is reached in the input.

2. How should the condition be initialized? A priming read should be performed before
the loop starts.

3. How should the condition be updated? An input statement should occur at the end
of each iteration.

4. What is the process being repeated? Using the value of the current input integer, the
code should print that many asterisks across one output line.

5. How should the process be initialized? No initialization is necessary.

6. How should the process be updated? A sequence of asterisks is output and then a
newline character is output.There are no counter variables or sums to update.

7. What is the state of the code on exiting the loop? The file dataFile is at EOF, starCount
contains the last integer read from the input stream, and the rows of asterisks
have been printed along with a concluding message.

From the answers to these questions, we can write this much of the algorithm:

5.2 L o o p i n g | 241

After designing the outer loop, it’s obvious that the process in its body (printing a sequence
of asterisks) is a complex step that requires us to design an inner loop. So we repeat the
methodology for the corresponding lower-level module:

1. What condition ends the loop? An iteration counter exceeds the value of starCount.

2. How should the condition be initialized?The iteration counter should be initialized to 1.

3. How should the condition be updated? The iteration counter is incremented at the
end of each iteration.

4. What is the process being repeated? The code should print a single asterisk on the
output file.

5. How should the process be initialized? No initialization is needed.

6. How should the process be updated? No update is needed.

7. What is the state of the code on exiting the loop? A single row of asterisks has been
printed, the writing marker is at the end of the current output line, and loopCount
contains a value one greater than the current value of starCount.

Now we can write the full algorithm:

Read line from dataFile
while NOT EOF

Set starCount to the integer equivalent of the string in line
Set loopCount = 1
while loopCount <= starCount

Print '*' on outFile
Increment loopCount

Output newline on outFile
Read line from dataFile

Print "End"

Read line from dataFile
while NOT EOF

Set starCount to the integer equivalent of the string in line
Print starCount asterisks
Output newline on outFile
Read line from dataFile

Print "End"

242 | File Objects and Looping Statements

Of course, nested loops themselves can contain nested loops (called doubly nested loops),
which can contain nested loops (triply nested loops), and so on.You can use this design process
for any number of levels of nesting.The trick is to defer details—that is, focus on the outer-
most loop first, and treat each new level of nested loop as a single step within the loop that
contains it.

It’s also possible for the process within a loop to include more than one loop. For exam-
ple, here’s an algorithm that reads students’ test and homework scores from a file and prints
their average on another file:

The steps for reading and averaging the scores require us to design two separate loops. All
of these loops are sentinel-controlled.

This kind of complex control structure would be difficult to read if written out in full. It
contains too many variables, conditions, and steps to remember at one time. When an al-
gorithm becomes so complex, it is an indication that we failed to identify objects that would
naturally hide some of this complexity via abstraction. In this case, we could create a new
class with methods that get the scores of one type for a student and return their average.We
could call the new class ScoreFileReader. The individual loops would then be hidden in the
class, and the application would look essentially like the algorithm above.

5.3 Mutable and Immutable Objects

In this section, we see how objects are divided into two distinct categories, mutable and im-
mutable.The distinction determines their behavior when they are passed as arguments to meth-
ods.When a method is executed, it uses copies of the values of the arguments. Because of how
reference types are stored, however, the effect of passing mutable or immutable arguments
varies.Thus far, most of our objects have been immutable, but in the Case Study we will create
a class with mutable objects. First we review how arguments and parameters work in general.

With primitive types, such as int, double, and boolean, the parameter receives a copy of
the value of the argument. The method can freely use and change the copy in the parame-
ter. When we pass a variable as an argument to a parameter, it is easy to think that the two
identifiers are connected in some way, as if the parameter becomes a synonym for the ar-
gument. In reality, their only connection occurs at the moment when the value of the argu-
ment is copied to the parameter. Otherwise, they remain independent of each other.That is,
operations on the parameter do not affect the argument.

while NOT EOF
Input line with name
Print name
Read and average test scores until a negative score is input
Print average test score
Read and average homework scores until a negative score is input
Print average homework score
Output newline

5.3 M u t a b l e a n d I m m u t a b l e O b j e c t s | 243

When the method returns, whatever value is in the pa-
rameter is discarded. It is not copied back into a variable in
the argument.Thus, values of primitive types may be passed
into methods, but changes to those values aren’t returned.
Figure 5.6 illustrates the passing of primitive types. Keep in
mind that we are referring here only to the parameters, not
to the return value of a value-returning method.

With reference types such as String and other classes,
a variable contains the address where an object’s fields are
stored in memory. This address is the value copied from
the argument to the parameter. Only one copy of the ob-
ject’s fields exists, which both the calling code and the
method use. Figure 5.7 illustrates the difference between
passing primitive and reference types to a method.

Changes to the primitive type parameters don’t affect
the argument. But in the situation pictured in Figure 5.7,
wouldn’t the changes to a reference type parameter, such
as String, also change the argument? For many reference
types the answer would be yes, but String is an immutable

class.
Any object that stores information is said to have state. The object’s state

is the current set of values that it contains.An object is instantiated with an ini-
tial state. If any of its methods can subsequently change its state, then the ob-
ject is said to be mutable. System.out, for example, is a mutable object: Its print
method changes its state—it makes the appearance of the window change by
adding text to it. If an object doesn’t have any methods that can change its
state, it is immutable. A String is an immutable object; we can merely retrieve
its contents.

Thus there is no way to change a String object; we can only
assign a new value to a String variable. Because each string value
occupies a different place in memory, the effect of assigning a
new value to a String variable is to store a different address in it.
A parameter of type String is initially given a copy of the address
of the string argument.When we assign a new value to it, the ad-
dress is replaced by the address of the new value. The argument
itself is left unchanged. Figure 5.8 illustrates what happens when
we change the value of a parameter of type String.

In contrast to the primitive types and immutable classes like
String, some classes provide methods for directly changing in-
stance fields. For example, we could write a method that takes
System.out as a parameter and uses System.out.print to display
the string "Java". The method’s parameter receives the address
where System.out is stored. Calling print with the parameter di-
rectly changes the same window that the argument refers to.

Argument Parameter

Call

double arg1

double arg1

double arg1

321.89

321.89

321.89

During execution

Return

double param1

double param1

double param1

321.89

91773.112

paraml = 91773.112;paraml =paraml =paraml = ;;;

Figure 5.6 Passing a Primitive Type as an Argument to a
Parameter

Immutable object An object
whose state cannot be changed
once it is created

State The information stored
in an object at any given time

Mutable object An object
whose state can be changed
after it is created

Argument Parameter

PrimitiveType

double arg1

String arg2

321.89

Addr 317401

Memory Address
317401

Addr 317401

ReferenceType

double param1

String param2

321.89

"Java"

Figure 5.7 Passing Primitive and Reference Types

244 | File Objects and Looping Statements

Figure 5.8 The Effect of Assigning a New Value to a Reference Type Parameter

Figure 5.9 shows this process, and you should carefully compare it to Figure 5.8 to be sure
that you understand the difference.Assigning a new value (the address of a different object)

to a reference type parameter does not change the object to which the argument
refers. But changes to the fields of the object referred to by the parameter are
made to the argument object.

When you need to change the contents of an argument’s object, you should
make it clear in the documentation that the method changes the object. Software
engineers refer to a method that changes the state of a mutable object as a trans-

former. We will have more to say about this issue in Chapter 7.

A Parameter-Passing Analogy

To help you remember the behavior of simple and reference parameters, we offer another
analogy. Suppose you have a slip of paper in your hand, and you are talking to someone who
has another slip of paper. You are like the call and the other person is like the method. You
read to the person what’s written on your paper and he or she writes it down. If your slip con-
tains a simple type, such as a number representing the current temperature, the other party

Transformer A method that
changes the state of a mutable
object

5.3 M u t a b l e a n d I m m u t a b l e O b j e c t s | 245

Argument Parameter

Call

PrintStream
System.out

PrintStream
param1

PrintStream
param1

PrintStream
param1

PrintStream
System.out

PrintStream
System.out

Address 2015

Address 2015 Address 2015

Address 2015

2015

Address 2015

During execution

Return

param1.print("Java");

Memory before call
Address Contents

"some text"
"other text"
"more text"

2015

Memory after call
Address Contents

"some text"
"other text"
"more text"
"Java"

Figure 5.9 The Effect of Changing the Fields of a Reference Type Parameter

can use his or her copy of that number to perform some task.The person could also replace
the number with a different one.When done, the individual throws away that paper and your
paper remains unchanged.

Now suppose your slip of paper contains the address of a house (a reference type). The
other person can use his or her copy of the address to go look at the house. If the person
changes the address on that slip of paper (assigns a new value to the reference type param-
eter), then he or she can go to a different house, but would no longer have the address of the
first house.When the other person is done, he or she throws away the paper.Your slip of pa-
per still has the original address, so you can go and look at the house; you find it unchanged.

Finally, suppose that you again have an address on your slip of paper, but this time
the person goes to the house and, instead of just looking at it, goes inside and rearranges
the furniture. When done, the other party throws away his or her paper, but your paper
still has the address of the house. When you go to the house, you find that its contents
have changed.

In every case, your slip of paper remained unchanged. In Java, the argument is never af-
fected by a method call. But in the last situation, the method changed the object at the ad-
dress it was given. So even though the address in the argument remained untouched, the
object to which it refers was altered. Whenever you are writing a method that changes a
reference parameter, and you are unsure about how the operation will behave, stop and ask
yourself, “Am I going inside the house, or am I going to a different address?”

CASE STUDY
246

AVERAGE INCOME BY GENDER

Problem: You’ve been hired by a law firm that is working on a sex discrimination case.
Your firm has obtained a file of incomes, gender.dat, which contains the salaries for
every employee in the company being sued. Each salary amount is preceded by “F” for
female or “M” for male. As a first pass in the analysis of these data, you’ve been asked
to compute the average income for females and the average income for males.The
number of males and the number of females should be output as well.The output
should be saved on a file for later review.

Discussion: Most of the nouns in this problem statement (which are usually good
indicators of potential objects) relate to the reason for the problem, not the problem it-
self.There are two file objects: one for input and one for output.The result of the appli-
cation is a pair of averages and a pair of counts, one of each for males and for females.
These averages are double values, not classes. However, male and female are two
instances of a single concept: gender. Sometimes a problem statement may list specific
instances of objects, and it’s our job to identify the class that describes those instances
in general. We will begin by creating a Gender class.

What state and responsibilities do we need to support for a Gender object? Well, we
need to provide a count of the number of this particular gender and the average salary.
That task can be handled via value-returning methods.The average is the total salary
divided by the count, so we need to keep a running total along with the count. We also
need a constructor to create an object and initialize those values.The only responsibil-
ity left is to update the values each time this particular gender is input. Because we’re
changing the initial state of the object, we know that the object is mutable and this re-
sponsibility is a transformer. Let’s list the state and responsibilities of a Gender object:

State

count (initially 0)

total salary (initially 0.0)

Responsibilities

constructor

update (double salary)

knowCount returns int

knowAverage returns double

Next, we go through the responsibilities, one by one, designing their algorithms.The
constructor needs no arguments, as it merely initializes the fields. In fact, if the decla-

CASE STUDY 247

rations for the fields include initialization, then the constructor doesn’t have to do any-
thing. In such a case, Java lets us omit the constructor, and it provides a default
constructor for the class that does nothing. We can just strike the constructor off our
list.That’s about as easy as it can get!

Updating is very simple.This operation just increments the count and adds its argu-
ment to the total salary. Note that it is a void method.

The knowCount responsibility just returns the count field.

For the knowAverage responsibility, we need to return the result of dividing the total
salary by the count, remembering to cast the value of the count to type double.

That completes the design for the Gender class. Now we’re ready to implement it in Java.

//***
// This class keeps the statistics for an individual
// gender in processing a set of incomes.
//***
class Gender
{
int count = 0;
double totalSalary = 0.0;

// Transformer to update state
public void update(double salary)
{
count++;
totalSalary = totalSalary + salary;

}

// Returns count of salary values added with update
public int knowCount()
{
return count;

}

knowAverage () returns double

return total salary / (double) count

knowCount () returns int

return count

void update (double salary)

increment count
add salary to total salary

CASE STUDY
248

// Returns average of salary values added with update
public double knowAverage()
{
return totalSalary / (double)count;

}
}

Now we can turn to the processing for this application and its main method; let’s call
this class Incomes. We need to prepare the files for input and output, then process the
data on the input file. After the last value has been input, we write the output to its file.
Of course, we also need to close the files when we’re finished with them.

We must write the file processing as a loop that involves two subtasks, because we
must process two genders instead of just one. We use our checklist of questions to de-
velop these subtasks in detail.

1. What condition ends the loop? The termination condition is EOF on the file inFile. It
leads to the following loop test (in pseudocode):

2. How should the condition be initialized? A priming read must take place to enter a
gender code and amount.

3. How should the condition be updated? We must input a new data line with a gender
code and amount at the end of each iteration.

We must input each data line as a string.Then we need to extract the gender
code and amount from the string. Because the input of the line is a single opera-
tion, we can combine the priming read and the updating read using Java’s
assignment expression shortcut. Here’s the resulting algorithm:

4. What is the process being repeated? We need to update the appropriate Gender
object with the input data.

5. How should the process be initialized? female and male objects need to be
instantiated.

6. How should the process be updated? When a female income is input, female.update
is called. Otherwise, an income is assumed to be for a male, so male.update is
called.

7. What is the state of the code on exiting the loop? The file inFile is at EOF; female con-
tains the number of input values preceded by ‘F’ and their total salary; male con-
tains the number of values not preceded by ‘F’ and the sum of those values.

From the description of how the process is updated, we can see that the loop must
contain an if structure, with one branch for female incomes and one branch for male

while Reading inLine from inFile does not return EOF
Extract gender code and amount from inLine
� (Process being repeated)

while NOT EOF on inFile

CASE STUDY 249

incomes. Each branch must call the correct update method. After the loop has exited,
we use the know methods associated with each gender to output the count and average.

Now we’re ready to write the complete algorithm:

We can use the charAt method to extract the gender code from the first position (po-
sition 0) of the input line:

genderCode = inLine.charAt(0);

Then we use substring to retrieve the remainder of the line for conversion by
parseDouble:

salary = Double.parseDouble(inLine.substring(1, inLine.length()));

All of these algorithms depend on the file being created in a certain way.These
assumptions should be stated in a special section of the design as follows.

Assumptions: There is at least one male and one female among the data sets.The data
sets are entered properly in the input file, with the gender code in the first character
position on each line and a floating-point number starting in the second character po-
sition.The only gender codes in the file are ‘M’ and ‘F’—any other codes are counted as
‘M’. (This last assumption invalidates the results if the data contain any illegal codes.
Case Study Follow-Up Exercise 1 asks you to change the application as necessary to ad-
dress this problem.)

Here is the code for the application.

//***
// This application reads a file of income amounts classified by
// gender and computes the average income for each gender.
//***

main method

Instantiate inFile
Instantiate outFile
Instantiate female
Instantiate male
while Reading inLine from inFile does not return EOF

Extract gender code and salary from inLine
if gender code == 'F'

female.update(salary)
else

male.update(salary)
close inFile
Print female.knowCount() and female.knowAverage()
Print male.knowCount() and male.knowAverage()
close outFile

CASE STUDY
250

import java.io.*; // File types

public class Incomes
{
public static void main(String[] args) throws IOException
{
Gender female; // Females
Gender male; // Males
String inLine; // A line from the file
char genderCode; // Indicates gender
double salary; // Salary amount
BufferedReader inFile; // Input data file
PrintWriter outFile; // Output data file

// Prepare files for reading and writing
inFile = new BufferedReader(new FileReader("gender.dat"));
outFile = new PrintWriter(new FileWriter("results.dat"));

// Initialize process
female = new Gender();
male = new Gender();

while ((inLine = inFile.readLine()) != null)
{
// Update process
// Extract gender code and amount from input line
// Gender is the first character
genderCode = inLine.charAt(0);
// Amount begins in the second position
salary = Double.parseDouble(inLine.substring(1, inLine.length()));
// Process amount based on gender code
if (genderCode == 'F')
// Female
female.update(salary);

else
// Male
male.update(salary);

}
inFile.close(); // Done reading
// Write results
outFile.println("For " + female.knowCount() + " females, the average income is "
+ female.knowAverage() + ".");

outFile.println("For " + male.knowCount() + " males, the average income is " +
male.knowAverage() + ".");

outFile.close();
}

}

CASE STUDY 251

Testing: Given the following data on the file gender.dat

the application Incomes writes the following on the file results.dat:

With an EOF-controlled loop, the obvious test cases are a file with data (as that
shown above) and an empty file. We should test input values of both ‘F’ and ‘M’ for the
gender, and try some typical data (so that we can compare the results with our hand-
calculated values) and some atypical data (to see how the process behaves). An atypical
data set for testing a counting operation is an empty file, which should result in a count
of zero. Any other result for the count indicates an error. For a summing operation,
atypical data might include negative or zero values.

The Incomes application is not designed to handle empty files or negative income val-
ues; the assumption that the file was not empty and contained at least one male and
one female was written into the design. An empty file causes both female and male to
have count equal to zero at the end of the loop. Although this result is correct, the state-
ments that compute the average income cause the application to produce invalid
results (infinity) because they divide by zero. A negative income would be treated like
any other value, even though it is probably a mistake.

To correct these problems, we should insert if statements to test for the error condi-
tions at appropriate points in the application. When an error is detected, the
application should either display an error message or write an error report to a file
instead of carrying out the usual computation.

252 | File Objects and Looping Statements

5.4 Testing and Debugging

Loop-Testing Strategy

Even if a loop has been properly designed, it is still important to test it rigorously, because
the chance of an error creeping in during the implementation phase is always present.To
test a loop thoroughly, we must check for the proper execution of both a single iteration
and multiple iterations.

Remember that a loop has seven parts (corresponding to the seven questions in our
checklist).A test strategy must test each part.Although all seven parts aren’t implemented
separately in every loop, the checklist reminds us that some loop operations serve multi-
ple purposes, each of which should be tested. For example, the incrementing statement in
a count-controlled loop may update both the process and the ending condition. It’s impor-
tant to verify that it performs both actions properly with respect to the rest of the loop.

Consider what the acceptable ranges of variables are and what sorts of I/O opera-
tions you expect see in the loop. Try to devise data sets that could cause the variables to
go out of range or leave the files in unexpected states.

It’s also good practice to test a loop for four special cases:

1. When the loop is skipped entirely

2. When the loop body is executed just once

3. When the loop executes some normal number of times

4. When the loop fails to exit

Statements following a loop often depend on its processing. If a loop can be skipped,
those statements may not execute correctly. If it’s possible to execute a single iteration of a
loop, the results can show whether the body performs correctly in the absence of the effects
of previous iterations, which can prove very helpful when you’re trying to isolate the source
of an error. Obviously, it’s important to test a loop under normal conditions, with a wide va-
riety of inputs. If possible, you should test it with real data in addition to mock data sets.
Count-controlled loops should be tested to confirm that they execute exactly the right num-
ber of times. Finally, if there is any chance that a loop might never exit, your test data should
try to make that happen.

Testing an application can be as challenging as writing it.To test an application, you
need to step back, take a fresh look at what you’ve written, and then attack it in every way
possible to make it fail. This isn’t always easy to do, but it’s necessary to make your ap-
plications be reliable. (A reliable application works consistently and without errors regard-
less of whether the input data is valid or invalid.)

Test Plans Involving Loops

In Chapter 4, we introduced formal test plans and discussed the testing of branches.
Those guidelines still apply to applications with loops, but here we provide some additional

5.4 T e s t i n g a n d D e b u g g i n g | 253

guidelines that are specific to loops. In general, the goal of testing a loop is to verify that
it behaves as expected.

Unfortunately,when a loop is embedded in a larger application, it sometimes is difficult
to control and observe the conditions under which the loop executes using test data and out-
put alone. In some cases we must use indirect tests.For example, if a loop reads floating-point
values from a file and prints their average without echo-printing them, you cannot tell di-
rectly that the loop processes all of the data. If the data values in the file are all the same, for
example,then the average will appear correct if even one of them is processed.You must con-
struct the input file so that the average is a unique value that can be arrived at only by pro-
cessing all the data.

To simplify our testing of such loops, we would like to observe the values of the vari-
ables involved in the loop at the start of each iteration. How can we observe the values of
variables while an application is running? Two common techniques are the use of the
system’s debugger application and the use of extra output statements designed solely for
debugging purposes. We discuss these techniques in Testing and Debugging Hints.

Now let’s look at some test cases that are specific to the different types of loops that
we’ve examined in this chapter.

Count-ControlledLoops When a loop is count-controlled,you should include a test case that spec-
ifies the output for all the iterations. It may help to add an extra column to the test plan that
lists the iteration number. If the loop reads data and outputs a result, then each input value
should produce a different output to make it easier to spot errors.For example, in a loop that
is supposed to read and print 100 data values, it is easier to tell that the loop executes the cor-
rect number of iterations when the values are 1, 2, 3 ... , 100 than if they are all the same.

If the application takes as input the iteration count for the loop, you need to test the
cases in which the count is invalid. For example, when a negative number is input, an er-
ror message should be output and the loop should be skipped.You should also test vari-
ous valid cases. When a count of 0 is input, the loop should be skipped; when a count of
1 is input, the loop should execute once; and when some typical number of iterations is
input, the loop should execute the specified number of times.

Event-Controlled Loops In an event-controlled loop, you should test the situation in which
the event occurs before the loop, in the first iteration, and in a typical number of iterations.
For example, if the event is that EOF occurs, then try an empty file, a file containing one
data set, and another containing several data sets. If your testing involves reading from
test files, you should attach printed copies of the files to the test plan and identify each
in some way so that the plan can refer to them. It also helps to identify where each iter-
ation begins in the Input and Expected Output columns of the test plan.

When the event is the input of a sentinel value, you need the following test cases:

1. The sentinel is the only data set.

2. The sentinel follows one data set.

3. The sentinel follows a typical number of data sets.

254 | File Objects and Looping Statements

Given that sentinel-controlled loops involve a priming read, it is especially important to
verify that the first and last data sets are processed properly.

Testing and Debugging Hints

1. For each file that an application uses, check that all five of the required steps
are performed: import the package java.io.*, declare a variable of the given
file class, instantiate the file object, use the methods associated with the file
object to perform input or output operations, and close the file when you are
done using it.

2. Remember that the constructor for a FileReader or a FileWriter can be passed
the name of the disk file, but the constructor for a BufferedReader must be
passed an object of type FileReader and the constructor for a PrintWriter must
be passed a FileWriter object.

3. If you use file I/O, remember that main must have the throws IOException
clause appended to its heading.

4. Plan your test data carefully to test all sections of an application.

5. Beware of infinite loops, where the expression in the while statement never
becomes false.The symptom: the application doesn’t stop.

6. If you have created an infinite loop, check your logic and the syntax of your
loops. Be sure no semicolon follows immediately after the right parenthesis of
the while condition:

while (Expression); // Wrong
Statement

This semicolon causes an infinite loop in most cases; the compiler thinks the
loop body is the null statement (the do-nothing statement composed only of
a semicolon). In a count-controlled loop, make sure the loop control variable
is incremented within the loop. In a flag-controlled loop, make sure the flag
eventually changes.

7. Check the loop termination condition carefully, and verify that something in
the loop causes it to be met. Watch closely for values that cause one iteration
too many or too few (the “off-by-one” syndrome).

8. Write out the consistent, predictable part of a loop’s behavior in each
iteration. Look for patterns that it establishes. Are they just what you want?
Perform an algorithm walk-through to verify that all of the appropriate condi-
tions occur in the right places.

9. Trace the execution of the loop by hand with a code walk-through. Simulate the
first few passes and the last few passes very carefully to see how the loop really
behaves.

Summary | 255

10. Use a debugger if your system provides this kind of application. A debugger
runs your application in “slow motion,” allowing you to execute one
instruction at a time and to examine the contents of variables as they change.
If you haven’t already done so, find out whether a debugger is available on
your system.

11. If all else fails, use debug output statements—output statements inserted into
an application to help debug it.They output a message to a separate file that
indicates the flow of execution in the application or reports the values of vari-
ables at certain points in the application.

For example, if you want to know the value of variable beta at a certain
point in an application, you could insert this statement:

logFile.println("beta = " + beta);

If this output statement appears in a loop, you will get as many values of beta
on the file associated with logFile as there are iterations of the body of the
loop.

After you have debugged your application, you can remove the debug out-
put statements or just precede them with // so that they’ll be treated as com-
ments. (This practice is referred to as commenting out a piece of code.) You can
remove the double slashes if you need to use the statements again.

12. An ounce of prevention is worth a pound of debugging. Use the checklist
questions, and design your loop correctly at the outset. It may seem like extra
work, but it pays off in the long run.

Summary

Applications operate on data. If data and applications are kept separate, the data are
available to use with other applications, and the same application can be run with
different sets of data. Noninteractive input/output allows data to be prepared before
an application is run and allows the application to be run again with the same data
in the event that a problem crops up during processing.

Data files are often used for noninteractive processing and to permit the output
from one application to be used as input to another application. In Java, we use four
file classes to read and write text data: FileReader, FileWriter, BufferedReader, and
PrintWriter. FileReader and FileWriter work with individual characters, and we use

256

them in the instantiation of objects of the other two classes. BufferedReader provides a
readLine method that inputs an entire line as a string. PrintWriter provides the print
and println methods that enable the output of the standard Java primitive types and
the String class.

To use files, you must do five things: (1) import the package java.io.*, (2) declare
the file variables along with your other variable declarations, (3) instantiate each file
object, (4) use methods associated with each file object to read or write it, and (5) call
the close method associated with each file object when you are finished with it.
When using files, we must forward exceptions to the JVM by adding a throws
IOException clause to the heading of main.

The while statement is a looping construct that allows the application to repeat a
statement as long as the value of an expression remains true. When the value of the
expression becomes false, the statement is skipped, and execution continues with
the first statement following the loop.

With the while statement, you can construct several types of loops that you can
use again and again.These types of loops are classified into two categories: count-
controlled loops and event-controlled loops.

In a count-controlled loop, the loop body is repeated a specified number of times.
You initialize a counter variable immediately before the while statement.This
variable is the loop control variable.The control variable is tested against the limit in
the while expression.The last statement in the loop body increments the control
variable.

Event-controlled loops continue executing until something inside the body
signals that the looping process should stop. Event-controlled loops include those
that test for a sentinel value in the data, end-of-file, or a change in a flag variable.

Sentinel-controlled loops are input loops that use a special data value as a signal
to stop reading. EOF-controlled loops are loops that continue to input (and process)
data values until no more data remain.To implement them with a while statement,
you must test the value returned by the input method.The readLine method returns
null. Sentinel-controlled loops usually require a priming read just before entry into
the loop and an updating read at the end of the loop.You can use Java’s assignment
expression as a shortcut to combine these two input operations into one within the
loop test.The assignment expression shortcut should be used only in simple cases
where the intent is clear to a human reader. Otherwise, it is preferable to write a sen-
tinel-controlled loop in the usual manner.

Counting is a looping operation that keeps track of how many times a loop is
repeated or how many times some event occurs.This count can be used in computa-
tions or to control the loop. A counter is a variable that is used for counting. It may
be the loop control variable in a count-controlled loop, an iteration counter in a
counting loop, or an event counter that counts the number of times a particular con-
dition occurs in a loop.

257

Summing is a looping operation that keeps a running total of certain values. It is
like counting in that the variable that holds the sum is initialized outside the loop.
The summing operation, however, adds up unknown values; the counting operation
adds a constant to the counter (or decrements it by a constant) each time.

When you design a loop, there are seven points to consider: how the termination
condition is initialized, tested, and updated; how the process in the loop is
initialized, performed, and updated; and the state of the code upon loop exit. By an-
swering the checklist questions, you can bring each of these points into focus.

To design a nested loop structure, begin with the outermost loop. When you get to
the point where the inner loop must appear, make it a separate module and come
back to its design later.

Objects have state. If an object’s initial state can be changed by any of its
methods, it is said to be mutable. Otherwise, it is immutable. When a mutable object
is passed as an argument, changes made by the method to its corresponding param-
eter can affect the state of the object. Immutable objects are protected from such
changes.

Quick Check

1. If an application will have input consisting of 1,000 integer numbers, is interac-
tive input appropriate? (pp. 212–213)

2. What does a constructor for an input file do? (pp. 215–216)

3. What does the following series of statements write on the file fileOut?
(pp. 216–218)

fileOut.print(’W’);

fileOut.print(88);

fileOut.print(" What comes next?");

4. What is the statement that reads in a string and stores the integer equivalent
into number? (pp. 217–218)

5. Write the first line of a while statement that loops until the value of the boolean
variable done becomes true. (pp. 221–222)

6. What are the four parts of a count-controlled loop? (pp. 223–225)

7. Should you use a priming read with an EOF-controlled loop? (pp. 227–229)

8. How is a flag variable used to control a loop? (pp. 232–233)

9. What is the difference between a counting operation in a loop and a summing
operation in a loop? (pp. 229–233)

10. What is the difference between a loop control variable and an event counter?
(pp. 229–233)

258

11. What kind of loop would you use in an application that reads the closing price
of a stock for each day of the week? (pp. 233–236)

12. How would you extend the loop in Question 11 to make it read prices for 52
weeks? (pp. 236–242)

13. What distinguishes a mutable object from an immutable object? (pp. 242–245)

14. Describe the data sets you would use to test an EOF-controlled loop that
averages test scores. (pp. 252–255)

Answers

1. No. File input is more appropriate for applications that input large amounts of data.
2. The constructor associates the name of the disk file with the file variable used in the code, and places the

file pointer at the first piece of data in the file.
3. W88 What comes next?
4. number = Integer.parseInt(infile.readLine());
5. while (!done) 6. The process being repeated, plus initializing, testing, and incrementing the loop control
variable 7. Yes 8. The flag is set outside the loop; the expression checks the flag; and an if inside the loop re-
sets the flag when the termination condition occurs. 9. A counting operation increments by a fixed value
with each iteration of the loop; a summing operation adds unknown values to the total. 10. A loop control
variable controls the loop; an event counter simply counts certain events during execution of the loop. 11.

Because there are five days in a business week, you would use a count-controlled loop that runs from 1 to 5.
12. Nest the original loop inside a count-controlled loop that runs from 1 to 52. 13. The state of a mutable ob-
ject can be changed after instantiation; an immutable object cannot be changed. 14. Normal data, data with
erroneous values such as negative test scores, a set with a single input value, and an empty file

Exam Preparation Exercises

1. What are the five steps in using file input?

2. What is the meaning of the argument to the constructor for file types
FileReader and FileWriter?

3. Where should the file declarations and the calls to the appropriate
constructors be placed in an application? Why?

4. What does the following statement do?

inFile.skip(1000L);

5. What does the readLine method for the class BufferedReader return?

6. a. What value does the readLine method return at end-of-file?

b. Does the readLine method include the newline character in its return value?

c. Distinguish between a null value and an empty string.

7. Explain the difference between a loop and a branch.

8. What does the following loop print out? (number is of type int.)

number = 1;
while (number < 11)

259

{
number++;
out.println(number);

}

9. By rearranging the order of the statements (don’t change the way they are writ-
ten), make the loop in Exercise 8 print the numbers from 1 through 10.

10. When the following code is executed, how many iterations of the loop are per-
formed?

number = 2;
done = false;
while (!done)
{
number = number * 2;
if (number > 64)
done = true;

}

11. What is the output of this nested loop structure?

i = 4;
while (i >= 1)
{
j = 2;
while (j >= 1)
{
out.print(j + " ");
j--;

}
out.println(i);
i--;

}

12. The following code segment is supposed to write out the even numbers
between 1 and 15. (n is an int variable.) It has two flaws in it.

n = 2;
while (n != 15)
{
n = n + 2;
out.print(n + " ");

}

a. What is the output of the code as written?

b. Correct the code so that it works as intended.

260

13. The following code segment is supposed to copy one line from the file inFile to
the file outFile.

inLine = inFile.readLine();
count = 1;
while (count < inLine.length())
{
outFile.print(inLine.charAt(count));
count++;

}
outFile.println();

a. What is the output if the input line consists of the characters ABCDE?

b. Rewrite the code so that it works properly.

14. Does the following code segment need any priming reads? If not, explain why.
If so, add the input statement(s) in the proper place. (letter is of type char.)

while (datum != null)
{
letter = datum.charAt(0);
count = 0;
while (count < datum.length())
{
outFile.print(letter);
count++;
letter = datum.charAt(count);

}
outFile.println();
datum = inFile.readLine();
outFile.println("Another line read ...");

}

15. What sentinel value would you choose for an application that reads telephone
numbers as integers?

16. Consider the following code segment:

sum = 0;
i = 1;
limit = 8;
finished = false;

261

while (i <= limit && !finished)
{
number = Integer.parseInt(dataFile.readLine());
if (number > 0)
sum = sum + number;

else if (number == 0)
finished = true;

i++;
}
out.print("End of test. " + sum + " " + number);

and these data values:

5 6 –3 7 –4 0 5 8 9

a. What are the contents of sum and number after exit from the loop?

b. Does the data fully test the code? Explain your answer.

17. What is the output of the following code segment? (All variables are of type
int.)

i = 1;
while (i <= 5)
{
sum = 0;
j = 1;
while (j <= i)
{
sum = sum + j;
j++;

}
System.out.print(sum + " ");
i++;

}

18. The physical order of the statements in an application is the order in which the
statements are _________ (written, executed).

19. The logical order of the statements in an application is the order in which the
statements are __________ (written, executed).

262

20. a. What are the two major types of loops?

b. Distinguish between a count-controlled loop and an event-controlled loop.

c. What happens if you forget to increment the loop control variable in a
count-controlled loop?

d. What happens if you forget to change the event within the body of an event-
controlled loop?

e. Name three kinds of event-controlled loops.

21. Distinguish between an iteration counter and an event counter.

22. a. What is an assignment expression?

b. Write the assignment expression that can be used to control a reading loop
with the method readLine.

23. Which of the following, when passed as an argument to a method, can have its
value changed as a result of the method changing its parameters?

a. Variable of primitive type

b. Immutable object

c. Mutable object

24. What is a method called that changes the state of a mutable object?

Programming Warm-Up Exercises

1. Write the statements that associate an object of the class FileReader with the
file infile.dat.

2. Write the statements that associate an object of the class BufferedReader with
the file infile.dat.

3. Write the statements that associate an object of the class PrintWriter with the
file outfile.dat.

4. What does the following series of statements write on the file fileOut?

fileOut.print(’W’);
fileOut.print(’\n’);
fileOut.print(88);
fileOut.print(’\n’);
fileOut.println(" This is a string.");

5. What is printed by the following series of statements?

fileOutPr.println(’W’);
fileOutPr.println(88);
fileOutPr.println(" This is a string");

263

6. Write a code fragment that reads a line from fileIn and stores the first two
characters into two char variables first and second. (fileIn is of the class
BufferedReader and has been declared and assigned.)

7. Write a code fragment that reads a line from fileInBuf and prints it on
fileOutPr with blank lines before and after it.

8. Write the statements that close fileOut and then associate it with the file
dataOut.dat.

9. Write an application segment that sets a boolean variable dangerous to true and
stops reading data if pressure (a float variable being read in) exceeds 510.0. Use
dangerous as a flag to control the loop.

10. Here is a simple count-controlled loop:

count = 1;
while (count < 20)

count++;

a. List three ways of changing the loop so that it executes 20 times instead of
19.

b. Which of those changes makes the value of count range from 1 through 21?

11. Write an application segment that counts the number of times the integer 28
occurs in a file of 100 integers.

12. Write a nested loop code segment that produces this output:

1
1 2
1 2 3
1 2 3 4

13. Write a code segment that reads a file of student scores for a class (any size)
and finds the class average.

14. Write a code segment that reads in integers and then counts and prints the
number of positive integers and the number of negative integers. If a value is
zero, it should not be counted.The process should continue until end-of-file
occurs.

15. Write a code segment that adds the even integers from 16 through 26,
inclusive.

16. Write a statement(s) that increments count by 1 and sets it back to 0 when it
reaches 13.

17. Write an application segment that prints out the sequence of all the hour and
minute combinations in a day, starting with 1:00 A.M. and ending with 12:59
A.M.

264

18. Rewrite the code segment for Exercise 17 so that it prints the times in 10-
minute intervals.

19. Write a loop or loops to count the number of not-equal operators (!=) in a file
that contains a Java application.Your algorithm should count the number of
times an exclamation mark (!) followed by an equals sign (=) appears in the in-
put. Process the input file one character at a time, keeping track of the two
most recent characters (the current value and the previous value). In each iter-
ation of the loop, a new current value is extracted from the input line with
charAt and the old current value becomes the previous value. When EOF is
reached, the loop is finished.

20. Write statements that print a floating-point number on the file outfile, with
four digits after the decimal point. Use the String.valueOf method to convert
the floating-point value to a string. (It is a value-returning class method that
takes the floating-point value as an argument.) Then use indexOf to locate the
decimal point. After the decimal point, select the next four digits using the sub-
string method. Note that fewer than four digits may follow the decimal point.
You can check this by comparing the result of indexOf with the length of the
string. When there are fewer than four digits to the right of the decimal point,
you should concatenate “0” characters to the string to fill it out to the correct
number of places.

Programming Problems

1. Design and write a Java application that takes as input an integer and a charac-
ter from the screen.The output should be a diamond on the screen composed
of the character and extending for the width specified by the integer. For exam-
ple, if the integer is 11 and the character is an asterisk (*), the diamond would
look like this:

*

*

265

If the input integer is an even number, it should be increased to the next odd
number. Use meaningful variable names, proper indentation, appropriate com-
ments, and good prompting messages. Use System.in for input and a
PrintWriter object for output.

2. Design and write a Java application that takes as input an integer larger than 1
and calculates the sum of the squares from 1 to that integer. For example, if the
integer equals 4, the sum of the squares is 30 (1 + 4 + 9 + 16).The output should
be the value of the integer and the sum, properly labeled on the screen.The ap-
plication should repeat this process for several input values. Use a sentinel
value to end processing, and use screen input and output.

3. You are burning some music CDs for a party.You’ve arranged a list of songs in
the order in which you want to play them.You would like to maximize your use
of space on the CD, which holds 80 minutes of music.To do so, you want to fig-
ure out the total time for a group of songs and see how well they fit. Design and
write a Java application to help you do this.The data is on the file songs.dat.
The time is entered as seconds. For example, if a song takes 7 minutes and 42
seconds to play, the data entered for that song would be

462

After all the data has been read, the application should print a message
indicating the time remaining on the CD.

The output should be in the form of a table with columns and headings
written on a file. For example:

Song Song Time Total Time
Number Minutes Seconds Minutes Seconds
------ ------- ------- ------- -------

1 5 10 5 10
2 7 42 12 52
5 4 19 17 11
3 4 33 21 44
4 10 27 32 11
6 8 55 41 6

There are 38 minutes and 54 seconds of space left on the 80 minute CD.

Note that the output converts the input from seconds to minutes and seconds.

266

4. Design and write an application that prints out the approximate number of
words in a file of text. For our purposes, this number is the same as the number
of gaps following words. A gap is defined as one or more spaces in a row, so a
sequence of spaces counts as just one gap.The newline character also counts
as a gap. Anything other than a space or newline is considered to be part of a
word. For example, there are 13 words in this sentence, according to our defini-
tion.The application should echo-print the data.

Use meaningful variable names, proper indentation, and appropriate com-
ments.Thoroughly test the application with your own data sets.

Case Study Follow-Up

1. Change the Incomes application so that it does the following:

a. Prints an error message when a negative income value is input and then
goes on to process any remaining data.The erroneous data should not be in-
cluded in any of the calculations.Thoroughly test the modified application
with your own data sets.

b. Does not produce infinity values when the input file contains no males or
no females (or the file is empty). Instead, it should print an appropriate error
message.Test the revised application with your own data sets.

c. Rejects data sets that are coded with a letter other than ‘F’ or ‘M’ and prints
an error message before continuing to process the remaining data.The
application also should print a message indicating the number of erroneous
data sets encountered in the file.

2. Develop a thorough set of test data for the Incomes application as modified in
Exercise 1.

3. Rather than having the application class responsible for extracting the gender
code and salary from the input line, redesign this problem to extend Gender
with two new methods: char getGender(String inLine) and double
getSalary(String inLine).

Code and test your redesign.

4. Use the String methods valueOf, indexOf, and substring to print only two
decimal places for all floating-point output values in the Incomes application.To
accomplish this conversion, you must perform the following tasks:

a. Convert the floating-point value to a string using the valueOf method.

b. Find the location of the decimal point using the indexOf method.

c. Create a new string that is a substring of the original with only two
characters following the decimal point using the substring method.

267

Knowledge Goals
• To understand the basic principles of object-oriented design

• To know what distinguishes a class member from an instance member

• To understand what a responsibility is

• To understand how objects collaborate

• To understand the concept of inheritance

• To understand the concept of a compilation unit

• To understand how using a package facilitates information hiding

• To know some aspects of ethics as related to computing

• To appreciate the differences between programming projects at different scales

Skill Goals
To be able to:

• Develop an initial set of objects for solving a problem, using brainstorming

• Filter an initial set of objects

• Write a CRC card for an object

• Conduct scenarios using CRC cards

• Identify collaborations between objects

• Identify responsibilities for classes and objects

• Convert a CRC card into a Java class

• Convert responsibilities into methods

• Distinguish between superclass and subclass relationships in a design

• Write a compilation unit

• Create and use a package

Object-Oriented
Software Design and
Implementation

1958
Kenneth Olsen, Stan
Olsen, and Harlan
Anderson form the
Digital Equipment
Corp.

1958
Jack Kilby at Texas
Instruments invents
the integrated
circuit

1958
Bell Labs’ modem
data phone makes
possible the
transmission of
binary data through
phone lines

1959
The language Cobol,
Common Business
Oriented Language,
is developed

1959
John McCarthy at
M.I.T. develops the
language Lisp on
the IBM 704 for
artificial intelligence
applications

1959
Japan introduces its
first commercial
transistor computer

6
C H A P T E R

we introduced some general techniques for solving simple
problems. In the real world, many programming problems are collections
of multiple problems that must be solved in a coordinated manner. We
now know enough Java syntax to solve many such problems, but we need
to learn how to organize our problem solving to achieve success in the face
of greater complexity.

In this chapter, we reexamine the programming process and intro-
duce a software design strategy that helps us tame the seemingly vast ar-
ray of details that accompany a larger problem. In particular, we formalize
the concepts of object-oriented design and present the CRC card design
technique.

We revisit the class construct, the implementation structure that we
use to code our object-oriented design. Once we have a design in the
form of CRC cards, we see how to convert it into a class. As part of this
process, we look at the user interface, the implementation of the re-
sponsibility algorithms, and the testing of the class. Then we explore
how to use Java packages to organize groups of classes.

Finally, we take the opportunity to emphasize that professional re-
sponsibility comes with the skills that this book teaches.

In Chapter 1,

1959
Xerox debuts the
first commercial
copy machine

1959
General Electric
develops the GE
ERMA, the first
machine that can
process checks
encoded with
magnetic ink

1960
Digital Equipment
Corporation debuts
the PDP-1, which
has a monitor and
keyboard input

1961
The first robot
patent is obtained
by Georg Devol
whose “Unimates”
are the first modern
industrial robots

1961
Computer
capabilities launch
forward with the
IBM 7030, which
runs 30 times faster
than the 704

1962
The first computer
science departments
are established at
Stanford University
and Purdue
University

270 | Object-Oriented Software Design and Implementation

6.1 Software Design Strategies

As we have stressed several times, the programming process consists of a problem-solving
phase and an implementation phase.The problem-solving phase includes analysis (analyz-
ing and understanding the problem to be solved) and design (designing a solution to the
problem). Given a complex problem—one that results in a 10,000-line program, for example—
it’s simply not reasonable to skip the design process and go directly to writing Java code.What

we need is a systematic way of designing a solution to a problem, no matter how
complicated the problem is.

We’ve used the term object-oriented design (OOD) frequently throughout this
book, and we have employed OOD in an intuitive manner in the Case Studies. In
this chapter, we describe in a more methodical way and see how OOD can be used
in designing solutions to more complex problems.This methodology helps you cre-
ate solutions that can be easily implemented as Java applications. The resulting
applications are readable, understandable, and easy to debug and modify. Java
was developed in part to facilitate the use of the OOD methodology. In the next two
sections, we present the essential concepts of OOD; throughout the rest of the
book, we will expand our treatment of this approach.At times OOD is used in con-
junction with a second, older methodology, which we also discuss in this chapter—
functional decomposition.

OOD focuses on the entities (objects) in a problem.Using this approach,we solve
a problem by identifying the components that make up a solution and determin-
ing how those components interact.The result is a design for a set of objects that
cooperate to solve a problem.

In contrast, functional decomposition views the solution to a problem as a task
to be accomplished. It focuses on the sequence of operations that are required to complete
the task. When the problem requires a series of steps that is long or complex, we divide it
into easier-to-solve subproblems. Functional decomposition is the method that we have
used to this point to break our simple problems into sequences of steps that the computer
can follow.This strategy can be used to develop algorithms for an object’s methods.

In most large problems, we naturally find entities that we wish to represent in our code.
For example, in designing an application that manages a checking account, we might iden-
tify checks, deposits, account balances, and account statements as entities. These entities
interact through messages. For example, a check could send a message to the balance en-
tity that tells it to deduct an amount from itself. We didn’t list the amount in our initial set
of objects, but it may be another entity that we need to represent.

This example illustrates a common approach to OOD.We begin by identifying a set of ob-
jects that we think are important in a problem.Then we consider some scenarios in which the
objects interact to accomplish a task. In the process of envisioning how a scenario happens,
we identify additional objects and messages.We keep trying new scenarios until we find that
our set of objects and messages is sufficient to accomplish any task required by the problem.

Object-oriented design A
technique for developing soft-
ware in which the solution is ex-
pressed in terms of
objects—self-contained entities
composed of data and
operations on that data that in-
teract by sending messages to
one another

Functional decomposition A
technique for developing soft-
ware in which the problem is di-
vided into more easily handled
subproblems, the solutions to
which create a solution to the
overall problem

6.2 O b j e c t s a n d C l a s s e s R e v i s i t e d | 271

6.2 Objects and Classes Revisited

Let’s review what we have said about objects and see how they work in the context of pro-
gramming.Then we can more effectively explore how to solve a problem with OOD.

What is an object? We have defined an object in three ways: as a collection of data together
with associated operations, as an entity or thing that is relevant in the context of a problem,
and as an instance of a class. What is a class? We have also defined a class in three ways: as
a description of an object that specifies the types of data values that it can hold and the op-
erations that it can perform, as a description of the behavior of a group of objects with sim-
ilar properties, and as a pattern for an object.

Although varied, these definitions are complementary rather than contradictory. In the
problem-solving phase, we look for objects (things) that are relevant to the problem at hand.
We analyze these objects and see how they interact.We abstract the common properties and
behaviors from these real objects and define classes that describe this behavior. In the im-
plementation phase, we then use these descriptions (classes) and the syntax of our pro-
gramming language to define classes (in the Java sense) that describe the data values that
an object can have and the operations that it can perform. Our application instantiates
objects of these classes that interact to solve the original problem.

Several object-oriented programming languages have been created specifically to support OOD.
Examples include Java, C++, Visual Basic.NET, Ada 95, C#, Smalltalk, CLOS, Eiffel, and Object-
Pascal. In these languages, a class is the construct used to define the pattern employed when
instantiating an object. Let’s look first at this construct in a little more depth; in the next sec-
tion, we outline a strategy for finding objects and classes in the problem-solving phase.

As you should recognize by now, a class isn’t an object, but rather specifies a pattern to
use in creating a specific kind of object. For example, in Chapter 2 we defined a Name class.
Once we define the class, we can declare a variable of the class Name, such as testName,
instantiate an object with new, and assign the object’s address to testName. Here is some ex-
ample code that illustrates the process:

// Define a class
class Name
{
.
.
.

}
// End of Name class definition
.
.
.

// Now that we have defined the class, we can declare a variable of
//the class Name
Name testName;

272 | Object-Oriented Software Design and Implementation

Figure 6.1 An Analogy Illustrating the Relationships among a Class, a Variable, and an Object

.

.

.
//Then we can instantiate an object of the class Name with new
//and assign it to the variable
testName = new Name();

Think of the class definition as analogous to a set of blueprints.A blueprint isn’t a house,
but it tells you how to construct a house.A class isn’t an object, but it tells the computer how
to construct an object. Declaring a variable is like putting an empty page in your address book
in anticipation of having an address for the house. You don't yet have the address because
the house hasn't been built.

The new operator invokes the constructor method for the class; it is analogous to calling
in a construction crew to interpret the blueprints and actually build the house. Once the
house is built on a lot, it has an address, and you can then write this address on the blank
page in your address book (assign the address of the object to the variable). Figure 6.1 illus-
trates this analogy.

6.2 O b j e c t s a n d C l a s s e s R e v i s i t e d | 273

1It is an instance method.

In Chapter 2, we saw that a class declaration is a collection of field and method
declarations.The fields and methods in a class are called the members of the class.
As we have also seen, members can be public or private, and they can be static (or
not static) and final (or not final). The public members of a class combine to
specify its public interface. Here we use interface in the general sense of the word, in
contrast to the Java interface construct, which we introduce later. When a pro-
grammer wishes to employ a predefined class in writing a program, he or she
looks up its interface to see what fields and methods it makes available for use.

What do we mean by “modes of access” in our definition of interface? In
Chapter 2, we defined the access modifiers as reserved words and explained their
effects. Here we are interested in how they relate to the public interface of a class.
Recall our earlier discussion of instance methods and class methods. We invoke a class
method by writing the class name, a period, and then the method name. We invoke an in-
stance method by writing the object name, a period, and then the method name. In a class
declaration, the two types of methods look exactly the same except that class method dec-
larations include the static modifier. In other words, the static modifier specifies this as-
pect of how we access the method. Consider these statements:

value = Double.parseDouble(inFile.readLine());
System.out.println("Value input is: " + value);

parseDouble is a class method and is prefaced by the name of the class Double. It takes a string
and converts it into a value of type double. readLine is an instance method and is prefaced by
inFile, an instance of the class BufferedReader. The third method call in these two state-
ments is a call to println. From its call, can you tell whether println is an instance method
or a class method?1

The public and private modifiers determine whether a member can be accessed outside
of a class. The final modifier specifies whether a member can be changed. There are eight
combinations of these modifiers, each of which effectively defines a mode of access. Only
the public members are part of the public interface, however. From code that is outside of the
class definition, we cannot access members that are private.

For example, the public interface for the class Double includes some final fields, such as
the maximum and minimum double values. It provides a set of class (static) methods that
includes parseDouble, and a set of instance methods that includes a version of compareTo. All
of these members are public.We can also surmise that the definition of Double includes a pri-
vate field of type double that is used to store a numerical value. Later in this chapter and in
Chapter 7, we introduce additional access modifiers.

Member A field or method
within a class

Public interface The members
of a class that can be accessed
outside of the class, together
with the modes of access that
are specified by other modifiers

274 | Object-Oriented Software Design and Implementation

MAX_VALUE

MIN_VALUE

parseDouble

compareTo

Public
interface Private data

and methods

Figure 6.2 An Object and Its Public Interface

2Originally published in: Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-Oriented
Thinking,” OOPSLA ‘89 Proceedings, SIGPLAN Notices 24(10): 1–6, October 1989.

In Figure 6.2, we picture a Double object as having a private part and a public part.The pri-
vate part includes fields and methods that the user cannot access and doesn’t need to know
about to use the object.The public part, shown as ovals in the side of the object, represents
its public interface: values and operations that are available to programmers wishing to use
the object.

6.3 Object-Oriented Design

Now we turn to the process of developing a problem solution using OOD. Our goal is to de-
velop a design that captures the information needed to program a solution to a problem. Our
design should not be at the level of detail of an actual program, however. That is, we want
a way to write out a solution without becoming distracted by programming language syn-
tax. As we have said before, it is important to think first and code later. In this section, we
introduce an informal technique for developing object-oriented designs, known as CRC
cards.2

The first step in OOD is to identify the major objects in the problem.We identify the ab-
stract properties of each object, and use these to define the classes that we need. Each class

6.3 O b j e c t - O r i e n t e d D e s i g n | 275

specifies a set of responsibilities, which are the actions that its objects support.
Objects collaborate with each other by sending messages. A message is a request
for an object to carry out one of its responsibilities. The collection of Classes,
Responsibilities, and Collaborations (CRC) works together to solve a problem.

OOD thus leads to programs that are collections of objects. Each object is re-
sponsible for one part of the entire solution, and the objects send messages to one
another in a collaborative manner. Many libraries of prewritten classes are avail-
able, including the standard Java library. In many cases, it is possible to browse
through a library, choose classes you need for a problem, and assemble them to
form a substantial portion of your application. Putting existing pieces together in
this fashion is an excellent example of the building-block approach discussed in
Chapter 1.

Let’s briefly return to the more general topic of problem solving before we look at CRC
cards in depth.

Object-Oriented Problem Solving

As we discuss OOD, keep in mind that there are many different correct solutions to most prob-
lems.The techniques we use may seem imprecise, especially when contrasted with the pre-
cision required by the computer. In fact, the computer merely demands that we express
(code) a particular solution precisely.The process of deciding which particular solution to use
involves the skills of judgment and reasoning. It is our human ability to make choices with-
out having complete information that enables us to solve problems. Different choices nat-
urally lead to different solutions to a problem.

For example, in developing a simulation of an air traffic control system, we might decide
that airplanes and control towers are objects that communicate with each other. Or we might
decide that pilots and controllers are the objects that communicate.This choice affects how
we subsequently view the problem and the responsibilities that we assign to the objects. Either
choice can lead to a working application. We may simply prefer the one with which we are
most familiar (recall the “Look for things that are familiar” strategy from Chapter 1).

Some of our choices lead to designs that are more or less efficient than others. For ex-
ample, keeping a list of names in alphabetical order rather than random order makes it pos-
sible for the computer to find a particular name much faster. However, choosing to leave the
list randomly ordered still produces a valid (but slower) solution.

Other choices affect the amount of work that is required to develop the remainder of a
problem solution. In creating an application for choreographing ballet movements, we might
begin by recognizing the dancers as the important objects and then create a class for each
dancer. In doing so, we discover that all of the dancers have certain common responsibili-
ties. Rather than repeat the definition of those responsibilities for each class of dancer, we
can change our initial choice: we can define a class for a generic dancer that includes all the
common responsibilities and then develop subclasses (the subject of Chapter 7) that add re-
sponsibilities specific to each individual.

Responsibility An action that
an implementation of an object
must be capable of performing

Collaboration An interaction
between objects in which one
object requests that another ob-
ject carry out one of its responsi-
bilities

276 | Object-Oriented Software Design and Implementation

The point is this: Don’t hesitate to begin solving a problem because you are waiting for
some flash of genius that leads to the perfect solution.There is no such thing. It is better to
jump in and try something, step back and see if you like the result, and then either proceed
in the same direction or make changes. The CRC card technique is a way to easily explore
different design choices and keep track of them.

Software Engineering

Humans have come to depend greatly on computers in many aspects of their lives.That re-
liance is fostered by the perception that computers function reliably; that is, they work cor-
rectly most of the time. However, the reliability of a computer depends on the care that is taken
in writing its software.

Errors in code can have serious consequences. Here are a few examples of real inci-
dents involving software errors. An error in the control software of the F–18 jet fighter
caused it to flip upside down the first time it flew across the equator. A rocket launch went
out of control and had to be blown up because a comma was typed in place of a period in
its control software. A radiation therapy machine killed several patients because a software
error caused the machine to operate at full power when the operator typed certain com-
mands too quickly.

Even when the software is used in less critical situations, errors can have significant ef-
fects. Examples of such errors include the following:

� An error in your word processor that causes your term paper to be lost just hours
before it is due

� An error in a statistical package that causes a scientist to draw a wrong
conclusion and publish a paper that must later be retracted

� An error in a tax preparation application that produces an incorrect return, lead-
ing to a fine

6.4 T h e C R C C a r d D e s i g n P r o c e s s | 277

Programmers have a responsibility to develop software that is free from er-
rors.The process that is used to develop correct software is known as software en-

gineering.
Software engineering has many aspects.The software life cycle described in

Chapter 1 outlines the stages in the development of software. Different tech-
niques are used at each of these stages.We address many of these techniques in
this text. In this chapter we introduce methodologies for developing object-ori-
ented designs.We discuss strategies for testing and validating programs in every
chapter. We use a modern programming language that enables us to write read-
able, well-organized code, and so on. Some aspects of software engineering, such as the de-
velopment of a formal, mathematical specification for an application, are beyond the scope
of this text.

6.4 The CRC Card Design Process

There are three basic steps in developing an OOD using CRC cards. We’ve actually been us-
ing these steps in the Case Studies without naming them.The first step is to identify an ini-
tial set of object classes that seem to be relevant to the problem. In previous Case Studies,
we looked at the nouns in a problem statement as a source of possible objects. The second
step is to filter this list, eliminating duplicates or objects that aren’t really appropriate for
the computer to implement.The third step is to identify the responsibilities for the reduced
list of objects. In the Case Studies, we’ve merely listed the responsibilities, but the method-
ology we present uses scenarios to determine and refine the responsibilities.

In moving to problems that involve multiple classes, however, these steps become
more complex. We must explore how the objects interact. In the CRC card design process,
we do so through role-playing under a variety of scenarios. That is, we pretend to be the
objects, and we go through the steps required to carry out some portion of the problem’s
solution. Along the way, we identify new objects or responsibilities that are needed. We
also note special relationships between classes, such as the subclasses mentioned ear-
lier. After gaining some experience with a few initial scenarios, we identify additional sce-
narios that should be tried. We repeat the last step until we run out of ideas for scenarios
or are convinced that we’ve covered all of the necessary objects and responsibilities in
our design.

Now we look at each of these steps in turn.

Identifying the Initial Classes Through Brainstorming

The first step in solving a problem with OOD is to identify the classes of objects that are
found in the problem. There is no foolproof technique for doing this; we just have to start
brainstorming ideas and see where they lead us.A large program is typically written by a team
of programmers, so the brainstorming process often occurs in a team setting. Team mem-
bers identify whatever objects they see in the problem and then propose classes to represent

Software engineering The ap-
plication of traditional engineer-
ing methodologies and
techniques to the development
of software

278 | Object-Oriented Software Design and Implementation

them.The proposed classes are written on a board. None of the ideas for classes are discussed
or rejected in this first stage.

For example, suppose we have the following problem statement: Create an application
that mimics a physical address book for holding names, addresses, and other information
about friends, relatives, and business contacts.

We begin by looking at a physical address book and then brainstorm with our teammates
about what we see there.We decide that our application has the following potential objects:

Some of these items are clearly not a part of our solution, such as the user.The purpose
of brainstorming, however, is to generate ideas without any inhibitions. Once we’ve run out
of ideas, we move on to critiquing them.

Filtering

After brainstorming, we filter the classes. First, we eliminate duplicates. Next, we decide
whether each class really represents an object in the problem. The team then looks for
classes that seem to be related. Perhaps they aren’t duplicates, but they have much in com-
mon, and so they are grouped together on the board. At the same time, the discussion may
reveal some classes that were overlooked.

For each class that survives the filtering stage, we create a CRC card.The CRC card is just
an index card with a line drawn vertically down the middle. The name of the class is writ-
ten at the top and the two columns have the headings Responsibilities and Collaborations.
Figure 6.3 shows a blank CRC card.

We have added spaces at the top of the CRC card for naming the superclass and sub-
classes of the class. These items are discussed in Chapter 7. Recalling our example of the

Cover

Pages

Address

Name

Home phone number

Work phone number

E-mail

Fax number

Pager number

Cell phone number

Birthday

Company name

Work address

Calendar

Time zone map

Owner information

Emergency numbers

User

6.4 T h e C R C C a r d D e s i g n P r o c e s s | 279

choreography application, the different kinds of dancers would be subclasses of the generic
dancer class. Each specific dancer class would have the generic dancer class listed as its
superclass. Filling in these spaces helps us to keep track of these relationships between
our classes.

Let’s filter the list we just generated for the address book. Our application doesn’t need
to represent the physical parts of an address book, so we can delete Cover and Pages. However,
we need something analogous to a page that holds the same sort of information. Let’s call
it an Entry.The different telephone numbers can all be represented by the same kind of ob-

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

Figure 6.3 A Blank CRC Card

280 | Object-Oriented Software Design and Implementation

ject. Thus we can combine Home, Work, Fax, Pager, and Cell Phone into a Phone number
class.We decide that the electronic address book doesn’t need the special pages that are of-
ten found in a printed address book, so we delete Calendar, Time Zone Map, Owner
Information, and Emergency Numbers.

Of course, the User isn’t part of the application, although its identification does point to
the need for a User interface that we did not originally list. A Work Address is a specific kind
of address that has additional fields, so we can make it a subclass of Address. Company
Names are just strings, so there is no need to distinguish them, but Names have a first, last,
and middle part. Our filtered list of classes now looks like this:

For each of these classes, we create a CRC card. In the case of a Work Address, we list
Address as its Superclass and on the Address card we list Work Address in its Subclasses space.

In doing coursework, you may be asked to work individually rather than in a collabora-
tive team. You can still do your own brainstorming session and filtering. However, we rec-
ommend that you take a break after the brainstorming session and do the filtering once you
have let your initial ideas rest for a while.An idea that seems brilliant in the middle of brain-
storming may lose some of its attraction after a day or even a few hours.

Determining Responsibilities

Initial Responsibilities Once you (or your team) have identified the classes and created CRC cards
for them, go over each card and write down any responsibilities that are obvious. For exam-
ple, a Name class has a responsibility to know its first name, its middle name, and its last
name. We would list these three responsibilities in the left column of its card as shown in
Figure 6.4. In an implementation, they become methods that return the corresponding part
of the name. For many classes, the initial responsibilities include knowing some value or set
of values. We call these knowledge responsibilities. We indicate the type or object that the re-
sponsibility returns on the CRC card.

Scenario Walk-Through To further expand the responsibilities of the classes and see how they
collaborate, we must pretend to carry out various processing scenarios by hand. This kind
of role-playing is known as a walk-through. It is a different process than the algorithm walk-
through discussed in Chapter 4.An algorithm walk-through is intended to verify an algorithm.

Entry

Name

Address

Work address

Phone number

E-mail

Birthday

User interface

6.4 T h e C R C C a r d D e s i g n P r o c e s s | 281

A scenario walk-through is intended to explore potential solutions to a problem. We ask a
question such as,“What happens when the user wants to find an address that’s in the book?”
We then answer the question by explaining how each object is involved in accomplishing this
task. In a team setting, the cards are distributed among the team members.When an object
of a class is doing something, its card is held in the air to visually signify that it is active.

For the preceding question, we might pick up the User Interface card and say, “I have a
responsibility to get the person’s name from the user.” That responsibility is written down
on the card. Once the name is input, the User Interface must collaborate with other objects
to look up the name and get the corresponding address. With which objects should it col-
laborate?

We’ve found a hole in our list of classes! The Entry objects should be organized into a Book
object.We quickly write out a Book CRC card.The User Interface card-holder then says, “I’m
going to collaborate with the Book class to get the address.”“Book” is written in the right col-
umn of the User Interface card, which remains in the air.The owner of the Book card holds
it up, saying, “I have a responsibility to find an Entry in the list of Entry objects that I keep,
given a name from User Interface.”That responsibility gets written on the Book card, whose
owner says, “I have to collaborate with each Entry to compare its name with the name sent
to me by the User Interface.” Figure 6.5 shows a team in the middle of a walk-through.

Now comes a decision. What are the responsibilities of Book and Entry for carrying out
the comparison? Should Book get the name from Entry and do the comparison,or should Book
send the name to Entry and receive an answer that indicates whether they are equal?The team
decides that Book should do the comparing, so the Entry card is held in the air, and its owner
says,“I have a responsibility to return a copy of my Name object.”The responsibility is recorded
and the Entry card is lowered.

Class Name: Name Superclass: Subclasses:

Responsibilities Collaborations

Know first None

 return String

Know middle None

 return String

Know last None

 return String

.

.

.

Figure 6.4 A CRC Card with Initial Responsibilities

282 | Object-Oriented Software Design and Implementation

Figure 6.5 A Scenario Walk-through in Progress

Book says,“I need to collaborate with Name.”Name says,“I have the responsibilities to know
my first, middle, and last names.These are already on my card, so I’m done.”The Name card
is then lowered. Book says, “I keep collaborating with Entry, getting a new Name object until I
find the matching name. Then I must return the entry from which the name came to User
Interface.” Now the Book card is lowered. Next, the User Interface says, “I need to get the ad-
dress from Entry.”This collaboration is placed on its card and the Entry card is held up again,
with its holder saying “I have a responsibility to provide an address. I’m not going to collabo-
rate with Address, but am just going to return the Address object to User Interface.”The Entry
card has this responsibility added and then goes back on the table. Figure 6.6 shows User
Interface’s, Book’s, and Entry’s CRC cards after this scenario. Notice that we have included
Entry’s knowledge responsibilities.

At this point, the holder of User Interface (whose arm is getting very tired) says, “I need
to collaborate with Address to get each line of the address as a string that I can place in a pair
of labels.”Address is raised, with its holder saying,“I have responsibilities to know my street,

6.4 T h e C R C C a r d D e s i g n P r o c e s s | 283

Class Name: User Interface Superclass: Subclasses:

Responsibilities Collaborations

Find address for (name)

.

.

.

Entry, Address

Class Name: Book Superclass: Subclasses:

Responsibilities Collaborations

Find entry with (name)

.

.

.

Entry, Address

 return Entry

Class Name: Entry Superclass: Subclasses:

Responsibilities Collaborations

Know name None

 return Name

Know address None

 return Address

Know phone number None

 return Phone

Know birthday None

 return Date

Figure 6.6 The CRC Cards for Entry, Book, and User Interface

284 | Object-Oriented Software Design and Implementation

city, state, and ZIP code, and those are already on my list.” User Interface says, “I can con-
catenate the last three to form the second line, so that satisfies the collaboration.”The col-
laboration is recorded, and User Interface says,“Now I display the information, and I’m done.”
The last card is lowered and the scenario ends.

Reading about the scenario makes it seem longer and more complex than it really is. Once
you get used to role-playing, the scenarios move quickly and the walk-through becomes more
like a game. However, to keep things moving, it is important to avoid becoming bogged down
with implementation details. Book should not be concerned with how the Entry objects are or-
ganized on the list. Address doesn’t need to think about whether the ZIP code is stored as an
int or a String. Merely explore each responsibility in enough depth to decide whether a fur-
ther collaboration is needed or if it can be solved with the available information.

SubsequentScenarios We began the first scenario with a“What happens when.. .”question for the
most obvious case.The next step is to brainstorm some additional questions that produce new
scenarios.Consider the following list of some further scenarios for our address book example:

We walk through each of the scenarios, adding responsibilities and collaborations to
the CRC cards as necessary.After several scenarios have been tried, the number of additions
decreases. When one or more scenarios take place without adding to any of the cards, we
brainstorm further to see if we can come up with new scenarios that may not have been cov-
ered yet.When all of the scenarios that we can envision seem to be doable with the existing
classes, responsibilities, and collaborations, then the design is finished.

When our design is complete, we can implement the responsibilities for each class.The
implementation may reveal details of a collaboration that weren’t obvious in the walk-through.
Of course, knowing the collaborating classes makes it easy to change their corresponding re-
sponsibilities. The implementation phase should also include a search of available class li-
braries to see if any existing classes can be used. For example, the java.util.GregorianCalendar
class represents a date that can be used to implement Birthday.

What happens when the user

 asks for a name that's not in the book?

 wants to add an entry to the book?

 deletes an entry?

 tries to delete an entry that isn't in the book?

 wants a phone number?

 wants a business address?

 wants a list of upcoming birthdays?

6.5 F u n c t i o n a l D e c o m p o s i t i o n | 285

Inheritance

In walking through the scenario in which the user requests a business address, we notice that
the Work Address class is nearly identical to the Address class, except that it also provides
a Work Name and a Second Address Line. Rather than copy all of the responsibilities and col-
laborations from the Address card to this one, we can list Address as the superclass of Work
Address.

Because Business Address is a subclass of Address, it inherits all of the re-
sponsibilities that are in Address. A subclass is automatically able to use the re-
sponsibilities of its superclass and also add its own unique responsibilities. In
addition, a subclass can replace an inherited responsibility with a new defini-
tion of the responsibility. The new definition provides a way to retain the same
form of interface, but customize its implementation to reflect the differences be-
tween the superclass and the subclass. In OOD, this concept is called inheritance,
and it allows you to adapt an existing class to satisfy additional responsibilities.

All classes in Java are actually subclasses of a master class called Object.They form a hi-
erarchy of subclasses and superclasses that may be many levels deep. As we will see in
Chapter 7, looking at the definition of a class in the Java library may reveal only a small por-
tion of its capabilities, like the tip of an iceberg. Its superclasses may define many more fea-
tures that it inherits.The inheritance mechanism is a very powerful tool in object-oriented
design, enabling us to reuse existing code easily and flexibly. In this way, we can gradually
build up classes, one on top of another, until we have classes with very extensive capabili-
ties. Yet at each stage, the capabilities are added in a clear and simple manner, making the
code easy to manage and maintain.

To summarize the CRC card process, we brainstorm the objects in a problem and abstract
them into classes.Then we filter the list of classes to eliminate duplicates and unnecessary
items. For each class, we create a CRC card and list any obvious responsibilities that it should
support. We then walk through a common scenario, recording responsibilities and collabo-
rations as they are discovered. Next, we walk through additional scenarios, moving from
common cases to special and exceptional cases. When it appears that we have all of the
scenarios covered, we brainstorm additional scenarios that may need more responsibilities
and collaborations.When our ideas for scenarios are exhausted and all the scenarios are cov-
ered by the existing CRC cards, the design is done.

6.5 Functional Decomposition

The second design technique we use is functional decomposition (also called structured design,
top-down design, stepwise refinement, and modular programming). It allows us to use the divide-
and-conquer approach, which we presented in Chapter 1.We apply this technique to design-
ing the algorithms that implement the responsibilities for an object-oriented design.

Inheritance A mechanism that
enables us to define a new class
by adapting the definition of an
existing class

286 | Object-Oriented Software Design and Implementation

Hierarchical Solution Tree

Solve the problem
Abstract

Concrete

Level 0

Level 1

Level 2

Level 3

Top

Bottom

Step A
Step B

Step C Step E
Step F

Step 1

Subproblem I

Subproblem A Subproblem B

Subproblem 2

Subproblem C Subproblem F

Subproblem II Subproblem III

Step I
Step II
Step III

Figure 6.7 Hierarchical Solution Tree

When a responsibility clearly involves a series of major steps, we break it down (de-
compose it) into pieces. In the process, we move to a lower level of abstraction—that is, some
of the implementation details (but not too many) are now specified. Each of the major steps
becomes an independent subproblem that we can tackle separately.The process continues
until each subproblem cannot be divided further or has an obvious solution.

By subdividing the problem, you create a hierarchical structure called a tree structure. Each
level of the tree is a complete solution to the problem that is less abstract (more detailed) than
the level above it. Figure 6.7 shows a generic solution tree for a problem. Steps shown in
black type have enough implementation details to be translated directly into Java state-

6.5 F u n c t i o n a l D e c o m p o s i t i o n | 287

ments; they are concrete steps. Those shown in colored type are abstract steps; they
reappear as subproblems in the next level down. Each box in the figure repre-
sents a module. Modules are the basic building blocks in a functional decompo-
sition.The diagram in Figure 6.7 is, therefore, also called a module structure chart.

Writing Modules

Here’s one approach to writing modules:

1. Think about how you would solve the subproblem by hand.

2. Begin writing down the major steps.

3. If a step is simple enough that you can see how to implement it
directly in Java, it is at the concrete level; it doesn’t need any further re-
finement.

4. If you have to think about implementing a step as a series of smaller steps or as
several Java statements, it is still at an abstract level.

5. If you are trying to write a series of steps and start to feel overwhelmed by
details, you are probably bypassing one or more levels of abstraction. Stand back
and look for pieces that you can write as more abstract steps.

We could call this approach the “procrastinator’s technique.” If a step is cumbersome or
difficult, put it off to a lower level; don’t think about it today, think about it tomorrow. Of
course, tomorrow does come eventually, but the whole process can be applied again to the
subproblem.A trouble spot often seems much simpler when you can focus on it. Ultimately,
the entire problem is broken up into manageable units.

As you work your way down the solution tree, you inevitably make a series of design de-
cisions. If a decision proves awkward or wrong (and many times it does!), you can backtrack
(go back up the tree to a higher-level module) and try something else.You don’t have to scrap
the entire design—only the small part you are working on.You may make many intermedi-
ate steps and try many trial solutions before you reach a final design.

Before OOD was developed, functional decomposition was used to solve entire prob-
lems. However, by itself, it results in designs that lack flexibility. Applications developed en-
tirely this way are hierarchical in nature, and often we find that at the bottom of the
hierarchy we are implementing multiple versions of the same responsibility. With OOD, we
would define a superclass and a set of subclasses to organize these responsibilities and save
ourselves programming effort. But functional decomposition doesn’t allow for this kind of
organization.

Today, we typically use functional decomposition as a way to design the algorithm for
a complex responsibility. For example, in a class that supports image processing, a morph-
ing responsibility that distorts part of an image might have no need of any other collabora-
tion. Yet the algorithm that transforms the image data may include many mathematically

Concrete step A step for
which the implementation de-
tails are fully specified

Abstract step A step for which
some implementation details
remain unspecified

Module A self-contained col-
lection of steps that solves a
problem or subproblem; it can
contain both concrete and ab-
stract steps

288 | Object-Oriented Software Design and Implementation

sophisticated steps. Functional decomposition provides a way to break such a
problem down into simpler pieces that are easier to solve.

Pseudocode You’ll find it easier to implement a design if you write the steps in
pseudocode. Pseudocode is a mixture of English statements and Java-like control
structures that can be translated readily into Java. (We’ve been using pseudocode
in the algorithms in the Problem-Solving Case Studies.) When a concrete step is
written in pseudocode, it should be possible to rewrite it directly as a Java state-
ment in a program.

Always remember that the problem-solving phase of the programming process
takes time. If you spend the bulk of your time analyzing and designing a solution,
coding (implementing) the program should take relatively little time.

Constructor An operation that
creates a new instance of a class

Transformer An operation
that changes the internal state
of an object

Observer An operation that
allows us to observe the state of
an object without changing it

Copy constructor An opera-
tion that creates a new instance
of a class by copying an existing
instance, possibly altering some
or all of its state in the process

Iterator An operation that al-
lows us to process—one at a
time—all the components in an
object

Categories of Responsibilities
Class instance responsibilities generally fall into three categories: constructors, transformers, and ob-

servers.
A constructor is an operation that creates a new instance of a class. Operators that modify

the state of an object are transformers. For example, an operation that changes the year of a Date
object is a transformer.The knowFirstName method of a Name class is an example of an observer.

Some operations are combinations of observers and constructors. An operation that takes a
Date object and an integer value and returns a new Date object that is the original date plus that
number of days is an example of an observer (of the original Date object) and a constructor (of
the new Date object).This particular case is an example of a copy constructor.

In addition to the three basic categories of responsibility, there is a fourth category that is less
common: iterators.

In later chapters we will examine classes that are made up of multiple values, all of the same
type. An iterator allows us to observe each of these components one at a time. For example,
given a class representing a list of names, an iterator would enable us to go through the list, ob-
serving or transforming each of the names one by one.

6.6 O b j e c t - O r i e n t e d I m p l e m e n t a t i o n | 289

6.6 Object-Oriented Implementation

Our design is now represented in a set of CRC cards. In general, each CRC card becomes a Java
class and the responsibilities become methods of the class. This translation begins by re-
placing the expressions used to describe a responsibility with properly formed method
names. If the responsibility returns a value, the method should be a value-returning method.
If the responsibility requires information, the information becomes a parameter in the
method.This information is available on the CRC card.

The next step is to write the algorithms to implement the responsibilities. In many cases
the algorithms are very simple, requiring only the return of a value. In other cases the algo-
rithms are more complex, requiring a further functional design.

Class Interface Design

Let’s begin our discussion of designing the class interface by looking at the CRC card for a
new class, Phone, with two fields: one for the area code and one for the digits in the number.

We know that “Create itself” must be a constructor that uses new to instantiate itself.The
remaining responsibilities all return information about a phone number, so they are observers.

Class Name: Phone Superclass: Subclasses:

Responsibilities Collaborations

Create itself (areaCode, digits) None

Know area code None

 return int

Know digits None

 return int

Number as digits

Are two numbers equal?

None

 return int

String

 return boolean Phone

 return int

Number in print form None

290 | Object-Oriented Software Design and Implementation

The responsibilities do not include any transformers, so an instance of this class is an im-
mutable object; once created, it doesn’t change. How do we know that the instance doesn’t
change? No transformer methods are defined for the class.

Now let’s look at how we turn this CRC card into a design for a class. The data abstrac-
tion of an object can be provided to the user in two ways: in the fields that it makes publicly
accessible and in the parameters of its methods.We briefly consider public field values, and
then look at methods and parameters.The data fields are areaCode and digits.

int areaCode;
int digits;

Because the observer responsibilities return the values of these fields, we might consider
simply declaring the corresponding fields to be public and letting the user access them di-
rectly. However, this approach defeats the purpose of encapsulating the class by revealing
its internal representation to the user. We can achieve encapsulation by making each of
these responsibilities be a method. If we later change the internal representation, the
methods can be rewritten to convert the new internal representation into the existing ex-
ternal form.

Would we ever want to declare a public data field in a class? Yes. Sometimes it’s useful
to provide constants that a collaborator can pass to responsibilities. For example, the names
of the primary colors for a Spectrum object could be represented by public constants. The
constant RED could be an int with a value of 1 or a String with a value of "RED". The collabo-
rator doesn’t know how the class represents the constant. It merely passes the class-supplied
constant as an argument to a method, as in this example:

colorObject.mixWith(RED);

In Java, such constants are declared static; that is, they belong to the class rather than
to an instance.We want every object of a given class to use the same set of constants, so they
should be kept centrally located in the class. The Phone class doesn’t have any such con-
stants on its CRC card. Normally, they would be identified during the scenario phase, when
we would note that some responsibilities receive one value from among a small set. Here’s
part of the CRC card for Spectrum that illustrates the need for constants.

Class Name: Spectrum Superclass: Subclasses:

Responsibilities Collaborations

mixWith (a color, one of red, orange, yellow,

 green, blue, indigo or violet)

.

.

.

None

6.6 O b j e c t - O r i e n t e d I m p l e m e n t a t i o n | 291

Internal Data Representation

The first implementation step for a class is to decide on the internal representation of data.
Then we can use the means-ends analysis technique from Chapter 1 to design the algo-
rithms for translating between the abstract and internal representations.These algorithms
form the basis for the constructor and observer methods, as well as parts of some transformer
and iterator methods.

As we saw with our example of a Date object, the internal representation (Julian day) and
the abstract representation (month, day, year) can be quite different. In other cases, such as
the Name class, the internal representation may be exactly the same as the abstract form of
the data.We choose the internal form to be useful for the programmer rather than the user.

Our goal in selecting an internal representation should be to simplify our task and to
make the object efficient in terms of storage space and execution time. These goals some-
times come in conflict, and we must balance simplicity against efficiency.

Two problem-solving strategies that are valuable in designing the internal data repre-
sentation are looking for things that are familiar and solving by analogy. In the case of the
Date class, you can go to the library and research calendars. For the Name class, you already
know how to write a name.

Rarely will you have to invent an entirely new data representation. Most programs are
written to solve problems with which people have dealt in the past. Consider who would
normally use such data, and consult with those people or look in books that they would use
(Figure 6.8). For example, astronomers use dates in computing the positions of planets over
the centuries.You can find the formulas for computing the Julian day in some astronomy texts.

As another example, a geography professor gave an assignment to draw a map show-
ing nearby airports with their elevations and the lengths of their runways. Most students spent
hours poring through almanacs and topographic maps to gather the data. Even so, their
maps were inaccurate. One student, however, got a perfect grade because she stopped to
consider who would use such data. She went to a pilot supply shop and bought a precise map
of nearby airports.While there, she noticed a book that listed information for airports using
an especially efficient representation. If she ever had to develop a computerized version of
the map, she would start with that representation.

From the preceding discussion, it should be clear that we can’t give you a set of rules that
will automatically lead you to an internal data representation for a class. Each situation you
encounter is different. Be prepared to give this part of your design some careful thought, to
go to a library and do some research, to consult with other people, and to trade off issues of
efficiency and complexity.

Sometimes you may discover that no one representation is always best. Or there may not
be enough information to choose among several options. In those cases, you simply have to
pick a representation and use it. In the end, it may not turn out to be the best choice. But
remember the beauty of encapsulation—you can go back later and change to a better inter-
nal representation!

Now back to our Phone class. The CRC card for Phone assumed that the area code and
number would be kept as numeric values.These fields could just as easily be kept as strings.

292 | Object-Oriented Software Design and Implementation

Julian Day Formula

intRes1 = 2-year/100+year/400
intRes2 = (int) (365.25*year)
intRes3 = (int) (30.6001*(month+1))
julianDay = intRes1+intRes2+intRes3+day+1720994.5

cla
ss

Dat
e

Astronomy
Text

Figure 6.8 Who Would Use Similar Data?

Is one representation better than another? We can’t answer that question without knowing
how the class might be used in a problem. However, the beauty of abstraction and encap-
sulation is that the internal representation of the fields can be changed and the program that
uses the class remains oblivious to the modification.

Responsibilities as Methods

Each responsibility on the CRC card can be implemented by a method in the class. If we
know the information that is needed and what is returned by each one, then the design is
straightforward. An observer naturally returns a value, so we implement observers as Java
value-returning methods. A transformer is typically a void method. Iterators may be either
value-returning or void, but we won’t consider them until we introduce arrays in Chapter 11.

If a responsibility implicitly refers to an object, then it should be implemented as an in-
stance method. Observers, transformers, and iterators are always instance methods. They

6.6 O b j e c t - O r i e n t e d I m p l e m e n t a t i o n | 293

implicitly take their associated object as an argument and have access to its fields. In addi-
tion, they can receive values through the parameter list, as noted on the CRC card.

Class methods are used to implement responsibilities that are not associated with a
particular object, such as the Math.absmethod.They may also affect all the instances of a class.
For example, we can set the maximum score for all TestScore objects so that they can be
checked for errors. None of the responsibilities of the Phone class is appropriate for a class
method implementation.

We are ready to write the responsibilities of the Phone class as methods. We must con-
vert the responsibility names written as phrases into Java method identifiers. “Create itself”
becomes the class constructor Phone. “Know area code” becomes knowAreaCode, and “Know dig-
its” becomes knowDigits. “Number as digits” becomes asDigits, and “Number in print form”
becomes asString. “Are two numbers equal” becomes equals(Phone secondNumber).

The algorithms for knowledge responsibilities are so simple that we can go straight to
writing code.What about asDigits, the method that returns the number as 10 digits? We can
multiply the area code by 10,000,000 to shift the digits over and add the result to the num-
ber. How do we convert the area code and number to strings and insert hyphens as separa-
tors? Hyphens! Exactly how is the number as a string supposed to look? We often see a
telephone number written with two hyphens as follows: 512–441–2323. Thus we have to
break the number portion into two pieces: the first three digits and the last four digits. We
can use integer division and remainder to accomplish this separation.To compare two phone
numbers, we first compare the area codes. If they are not the same, the numbers are not equal.
If the area codes are the same, we then compare the numbers. If both the area codes and the
numbers are the same, the method returns the value true.

public class Phone
{
private int areaCode;
private int digits;

public Phone(int area, int number)
// Constructor
{
areaCode = area;
digits = number;

}

public int knowAreaCode()
{
return areaCode;

}

public int knowDigits()
{
return digits;

}

294 | Object-Oriented Software Design and Implementation

public long asDigits()
// Returns area code and number as a sequence of 10 digits
{
return (long)(areaCode * 10000000L + digits);

}

public String asString()
// Returns area code, hyphen, first three digits of the number, hyphen,
// and last four digits of the number
{
String result;
long firstThree; // First three digits of the number
long lastFour; // Last four digits of the number
firstThree = digits / 10000;
lastFour = digits % 10000;
result = new String(areaCode + "-" + firstThree + "-" + lastFour);
return result;

}

public boolean equals(Phone secondNumber)
// Returns true if the phone numbers are the same; false otherwise
{
if (areaCode != secondNumber.knowAreaCode())
return false;

if (digits != secondNumber.knowDigits())
return false;

else
return true;

}
}

6.7 Packages

As we noted previously, Java lets us group related classes together into a unit called a pack-
age. Classes within a package can access each other’s nonprivate members, which can save
us programming effort and make it more efficient to access their data.The other advantage
of packages is that they can be compiled separately and imported into our code.Together with
the access modifiers, packages provide the means for implementing encapsulation because
they allow us to distribute our classes as Bytecode files.The unreadable nature of Bytecode
prevents users from seeing the implementation details.

Package Syntax

The syntax for a package is extremely simple.We’ve been writing our separate classes as un-
named packages all along, so we merely have to specify the package name at the start of the
class.The first line of a package consists of the keyword package followed by an identifier and

6.7 P a c k a g e s | 295

a semicolon. By convention, Java programmers start a package identifier with a lowercase let-
ter to distinguish it from class identifiers.

package someName;

Next, we can write our import declarations and then one or more class declarations.
Java calls this a compilation unit. Its syntax diagram is shown here:

As you can see from the syntax diagram, we can write a series of class declarations follow-
ing the import declarations. These classes are members of the package. All of the package
members (the classes) have access to each other’s nonprivate members. We say “nonpri-
vate” because, in addition to using the keywords public or private with fields and methods,
we can write member declarations without any modifiers. When we do so, then the field or
method is neither publicnor private, but rather it is something in between—it can be accessed
by any member of the package.

When we use public, then a field or method can be used outside of the class and by any class
that imports its package.When we use private, then the field or method can be accessed only
within the class itself.When we use neither, the field or method can be used within the class
and within other classes in the same package, but not by classes outside of the package.As an
analogy,you can think of packages as being like a family.Some things are yours alone (private),
some things you share with your family (package), and some things anyone can use (public).

Classes that are imported into the package can be used by any of the classes declared
in the package. From the perspective of the imported classes, the declared classes are user
code and thus can access only their public members. Note that imported classes are not
members of the package.You can think of an imported package as a guest in your house.Your
guest may share some things (public) with your family, but the things that you share only with
your family are not shared with the guest, and the things that the guest shares only with his
or her family aren’t shared with you.

Although we can declare multiple classes in a compilation unit, only one class can be de-
clared public. The others must have package-level access; that is, they are written without
an access modifier. If a compilation unit can hold at most one public class, how do we cre-
ate packages with multiple public classes? We use multiple compilation units, as we de-
scribe next.

package Identifier;

Class

Import-Declaration

Compilation-Unit

…

…

296 | Object-Oriented Software Design and Implementation

3In addition to following the naming conventions, most Java systems require that you specify that the
compiler should include this directory among the set that it examines when it compiles your code.
With an integrated development environment, this specification can be as simple as dragging the file
into a window that lists all of the files for the project. In a command-line environment, you may have
to enter an operating system command that defines a value called a class path. Check the documenta-
tion for your system, or ask your instructor whether something like this needs to be done.

Packages with Multiple Compilation Units

Each Java compilation unit is stored in its own file. Java systems name the file using a com-
bination of the package name and the name of the public class in the compilation unit. Java
restricts us to having a single public class in a file so that it can use file names to locate all
public classes.Thus, a package with multiple public classes must be implemented with mul-
tiple compilation units, each placed in a separate file.

Using multiple compilation units has the further advantage that it provides us with
more flexibility in developing the classes of a package. Team programming projects would
be very cumbersome if Java made multiple programmers share a single package file.

We split a package among multiple files simply by placing its members into separate com-
pilation units with the same package name. For example, we can create one file containing
the following code (the . . . between the braces represents the code for each class):

package someName;
public class One { ... }
class Two { ... }

A second file contains the following code:

package someName;
class Three { ... }
public class Four { ... }

The result is that the package someName contains four classes, all of which have access to
each other’s nonprivate members. Two of the classes, One and Four, are public, and so are
available to be imported by user code.

Many programmers simply place every class in its own compilation unit. Others gather
the nonpublic classes into one unit, separate from the public classes. How you organize your
packages is up to you, but you should use a consistent approach to make it easy to find the
members of the package among all of its files.

How does the Java compiler find these separate pieces and put them together? The an-
swer is that the compiler requires all of the compilation unit files for a package to reside in
a single directory or folder. For our preceding example, a Java system would store the source
code in files called One.java and Four.java in a directory called someName.

Splitting a package among multiple files has one other benefit. Each compilation unit can
have its own set of import declarations.Thus, if the classes in a package need to use differ-
ent sets of imported classes, you can place them in separate compilation units, each with just
the import declarations that are required.3

6.7 P a c k a g e s | 297

Package Example

If the class Phone must be made available for others to use, we need to be sure that it has been
thoroughly tested. Let’s write and implement a test plan to test Phone. We must test five
methods plus the constructor.The knowledge methods need to be tested with only one case:
Do they return the proper fields? Likewise, do the two conversion methods return the data
in the proper format? The sixth method compares two instances of the class Phone. This
method must be tested several times: once when the area codes are not equal, once when
the area codes are equal but the numbers are not, and once when both are equal.

Reason for Test Case Input Values Expected Output Observed Output

Phone 523, 3733344

knowAreaCode 523

knowDigits 3733344

asDigits 5233733344

asString 523–373–3344

equal 523, 3774433 Numbers are not equal

521, 3733344 Numbers are not equal

523, 3733344 Numbers are equal

This test plan is implemented in the following application class:

import java.io.*;
import Phone;
public class TestPhone
{
public static void main(String[] args) throws IOException
{
Phone firstPhone;
Phone secondPhone;
Phone thirdPhone;
Phone fourthPhone;
PrintWriter outFile;
outFile = new PrintWriter(new FileWriter("phoneOut"));
outFile.println("Test results for class Phone");
firstPhone = new Phone(523, 3733344);
secondPhone = new Phone(523, 3774433);
thirdPhone = new Phone(521, 3733344);
fourthPhone = new Phone(523, 3733344);
outFile.println("knowAreaCode: " + firstPhone.knowAreaCode());
outFile.println("knowDigits: " + firstPhone.knowDigits());
outFile.println("asDigits: " + firstPhone.asDigits());
outFile.println("asString: " + firstPhone.asString());
outFile.print("equal: Is firstPhone equal to secondPhone? ");
if (firstPhone.equals(secondPhone))

298 | Object-Oriented Software Design and Implementation

outFile.println(" Yes.");
else
outFile.println(" No.");

outFile.print("equal: Is firstPhone equal to thirdPhone? ");
if (firstPhone.equals(thirdPhone))
outFile.println(" Yes.");

else
outFile.println(" No.");

outFile.print("equal: Is firstPhone equal to fourthPhone? ");
if (firstPhone.equals(fourthPhone))
outFile.println(" Yes.");

else
outFile.println(" No.");

outFile.close();
}

}

We have a public class Phone and a public class TestPhone, which includes several variables
of the class Phone. How do we get these two classes to interact? Until now, we have simply
put them in the same directory and had the driver import the class. We promised a better
way to do this; here it is. We declare the class Phone to be in the package phone and store it in
the file Phone.java in the directory phone.The class TestPhone then imports the package phone.
That is, in the file Phone.java in the directory phone, we have

package phone;
public class Phone { ... }

In the file TestPhone.java, we have

import phone.*;
public class TestPhone { ... }

Here is a copy of the file phoneOut:

6.7 P a c k a g e s | 299

Why is putting a class in a package and importing the package a better strat-
egy than putting the class in the same directory as the importing class?There are
two reasons. First, any number of compilation units can be put in a package and
imported with one statement. Second, a package can be imported from anywhere.
That is, a package is stored in a directory named after the package, so it can be im-
ported by any application, not just one in the same directory.

Documentation
As you create your object-oriented design, you are developing documentation for your code.
Documentation includes the written problem specifications, design, development history, and
actual code.

Good documentation helps other programmers read and understand your code and can
prove invaluable when software is being debugged and modified (maintained). If you haven’t
looked at your code for six months and need to change it, you’ll be happy that you documented
it well. Of course, if someone else has to use and modify your program, good documentation is
indispensable.

Documentation is both external and internal to the code. External documentation includes
the specifications, the development history, and the design documents, such as CRC cards.
Internal documentation includes code formatting and self-documenting code—meaningful iden-
tifiers and comments.You can use the pseudocode from your design as comments in your
code.

This kind of documentation may be sufficient for someone reading or maintaining your ap-
plications. However, if an application will be used by people who are not programmers, you
must provide a user’s manual as well.

Be sure to keep your documentation up-to-date. Indicate any changes you make in the code
in all of the pertinent documentation. Use self-documenting code to make your programs more
readable.

Self-documenting code
Program code containing mean-
ingful identifiers as well as judi-
ciously used clarifying
comments

300 | Object-Oriented Software Design and Implementation

Programming at Many Scales
To help you put the topics in this book into context, we describe in broad terms the way
programming in its many forms is done in “the real world.” Obviously, we can’t cover every pos-
sibility, but we can try to give you a flavor of the state of the art.

Programming projects range in size from the small scale, in which a student or computer
hobbyist writes a short application to try out something new, to large-scale multicompany pro-
gramming projects involving hundreds of people. Between these two extremes are efforts of
many other sizes. Some people use programming in their professions, even though it isn’t their
primary job. For example, a scientist might write a special-purpose application to analyze data
from a particular experiment.

Even among professional programmers, many specialized programming areas exist. An in-
dividual might have a specialty in business data processing, in writing compilers or developing
word processors (an area known as “tool making”), in research and development support, in
graphical display development, in writing entertainment software, or in one of many other ar-
eas. However, one person can produce only a fairly small application (a few tens of thousands
of lines of code at best). Work of this kind is called programming in the small.

A larger application, such as the development of a new operating system, might require
hundreds of thousands or even millions of lines of code. Such large-scale projects require
teams of programmers, many of them specialists, who must be organized in some manner. If
left unorganized, they may waste valuable time just trying to communicate with one another.

Usually, a hierarchical organization is set up to handle this kind of project. One person, the
chief architect or project director, determines the basic structure of the application and then dele-
gates the responsibility of implementing the major components.The components may be im-
plemented by either teams or individual programmers.This sort of organization is called
programming in the large.

Programming languages and software tools can help a great deal in supporting
programming in the large. For example, if a programming language lets programmers develop,
compile, and test parts of an application independently before they are put together, then sev-
eral people can work on the code simultaneously. Of course, it is hard to appreciate the
complexity of programming in the large when you are writing a small application for a class as-
signment. However, the experience you gain in this course will be valuable as you begin to de-
velop larger applications.

The following story is a classic example of what happens when a large project is developed
without careful organization and proper language support. In the 1960s, IBM developed a major
new operating system called OS/360, which was one of the first true examples of programming
in the large. After the operating system was written, more than 1,000 significant errors were
found. Despite years of trying to fix these errors, the programmers never did get the number of
errors below 1,000, and sometimes the “fixes” produced far more errors than they eliminated.

What led to this situation? Hindsight analysis showed that the code was badly organized and
that different pieces were so interrelated that no one could keep all of it straight. A seemingly sim-
ple change in one part of the code caused several other parts of the system to fail. Eventually, at
great expense, an entirely new system was created using better organization and tools.

In those early days of computing, everyone expected occasional errors to occur, and it was still
possible to get useful work done with a faulty operating system.Today, however, computers are
used increasingly more often in critical applications such as medical equipment and aircraft control
systems, where errors can prove fatal. Many of these applications depend on large-scale program-
ming. If you were stepping onto a modern jetliner right now, you might well pause and wonder, “Just
what sort of language and tools did they use when they wrote the code for this thing?” Fortunately,
most large, life-critical, software development efforts today use a combination of good
methodology, appropriate language, and extensive organizational tools—that is, software engineering.

6.8 E t h i c s a n d R e s p o n s i b i l i t i e s i n t h e C o m p u t i n g P r o f e s s i o n | 301

6.8 Ethics and Responsibilities in the Computing Profession

Every profession operates with a set of ethics that help to define the responsibilities of
the people who practice that profession. For example, medical professionals have an eth-
ical responsibility to keep information about their patients confidential. Engineers have
an ethical responsibility to their employers to protect proprietary information, but they
also have a responsibility to protect the public and the environment from harm that may
result from their work. Writers are ethically bound not to plagiarize the work of others,
and so on.

The computer presents us with a vast new range of capabilities that can affect peo-
ple and the environment in dramatic ways. As a consequence, it challenges society with
many new ethical issues. Some of our existing ethical practices apply to the computer,
whereas other situations require new ethical rules. In some cases, no guidelines have
been established, but it is up to you to decide what is ethical. In this section, we examine
some common situations encountered in the computing profession that raise particular
ethical issues.

A professional in the computing industry, like any other professional, has knowledge that
enables him or her to do certain things that others cannot do. Knowing how to access com-
puters, how to program them, and how to manipulate data gives the computer professional
the ability to create new products, solve important problems, and help people to manage their
interactions with the ever more complex world in which we all live. Knowledge of comput-
ers can be a powerful means to effecting positive change.

Of course, knowledge can also be used in unethical ways.A computer can be programmed
to trigger a terrorist’s bomb, to sabotage a competitor’s production line, or to steal money.
Although these blatant examples make an extreme point and are unethical in any context,
some more subtle examples are unique to computers.

Software Piracy

Computer software is easy to copy. But just like books, software is usually copy-
righted—it is illegal to copy software without the permission of its creator. Such
copying is called software piracy.

Copyright laws exist to protect the creators of software (and books and art)
so that they can make a profit from their effort and money spent developing the
software. A major software package can cost millions of dollars to develop, and
this cost (along with the cost of producing the package, shipping it, supporting customers,
and allowing for retailer markup) is reflected in the purchase price. If people make unau-
thorized copies of the software, then the company loses those sales and either has to raise
its prices to compensate for the loss or spend less money to develop improved versions of
the software. In either case, a desirable piece of software becomes more difficult to obtain.

Software pirates sometimes rationalize their theft with the excuse that they’re just mak-
ing one copy for their own use. It’s not that they’re selling a bunch of bootleg copies, after all.
But if thousands of people do the same thing, the company’s revenue losses add up to mil-
lions of dollars, which leads to higher prices for everyone.

Software piracy The unautho-
rized copying of software for ei-
ther personal use or use by
others

302 | Object-Oriented Software Design and Implementation

Computing professionals have an ethical obligation to not engage in software piracy and
to try to stop it from occurring. You never should copy software without permission. If
someone asks you for a copy of a piece of software, you should refuse to supply it. If some-
one says that he or she just wants to “borrow” the software to “try it out,” tell the person that
he or she is welcome to try it out on your machine (or at a retailer’s shop) but not to make
a copy.

This rule isn’t restricted to duplicating copyrighted software; it includes plagiarism of
all or part of code that belongs to anyone else. If someone gives you permission to copy some
of his or her code, then, just like any responsible writer, you should acknowledge that per-
son with a citation in the code.

Privacy of Data

The computer enables the compilation of databases containing useful information about peo-
ple, companies, geographic regions, and so on.These databases allow employers to issue pay-
roll checks, banks to cash a customer’s check at any branch, the government to collect taxes,
and mass merchandisers to send out junk mail. Even though we may not care for every use of
databases,they generally have positive benefits.However,they can also be used in negative ways.

For example, a car thief who gains access to the state motor vehicle registry could print
out a “shopping list” of valuable car models together with their owners’ addresses. An in-
dustrial spy might steal customer data from a company database and sell it to a competitor.
Although these are obviously illegal acts, computer professionals face other situations that
are not so obviously unethical.

Suppose your job includes managing the company payroll database, which includes the
names and salaries of the firm’s employees.You might be tempted to poke around in the data-
base and see how your salary compares to your associates—but this act is unethical and an
invasion of your associates’ right to privacy. The information is confidential. Any informa-
tion about a person that is not clearly public should be considered confidential. An exam-
ple of public information is a phone number listed in a telephone directory. Private
information includes any data that has been provided with an understanding that it will be
used only for a specific purpose (such as the data on a credit card application).

A computing professional has a responsibility to avoid taking advantage of special ac-
cess that he or she may have to confidential data.The professional also has a responsibility
to guard that data from unauthorized access. Guarding data can involve such simple things
as shredding old printouts, keeping backup copies in a locked cabinet, not using passwords
that are easy to guess (such as a name or word), and more complex measures such as en-
cryption (keeping data stored in a secret coded form).

Use of Computer Resources

If you’ve ever bought a computer, you know that it costs money. A personal computer can
be relatively inexpensive, but it is still a major purchase. Larger computers can cost millions

6.8 E t h i c s a n d R e s p o n s i b i l i t i e s i n t h e C o m p u t i n g P r o f e s s i o n | 303

of dollars. Operating a PC may cost a few dollars per month for electricity and an occasional
outlay for paper, disks, and repairs. Larger computers can cost tens of thousands of dollars
per month to operate. Regardless of the type of computer, whoever owns it has to pay these
costs.They do so because the computer is a resource that justifies its expense.

A computer is an unusual resource because it is valuable only when code is running.Thus,
the computer’s time is really the valuable resource.There is no significant physical difference
between a computer that is working and one that is sitting idle. By contrast, a car is in mo-
tion when it is working.Thus, unauthorized use of a computer is different from unauthorized
use of a car. If one person uses another’s car without permission, that individual must take
possession of it physically—that is, steal it. If someone uses a computer without permission,
the computer isn’t physically stolen, but just as in the case of car theft, the owner is de-
prived of a resource for which he or she is paying.

For some people, theft of computer resources is a game—like joyriding in a car.The thief
doesn’t really want the resources,but rather seeks out the challenge of breaking through a com-
puter’s security system and seeing how far he or she can get without being caught. Success
gives a thrilling boost to this sort of person’s ego. Many computer thieves think that their ac-
tions are acceptable if they don’t do any harm.Whenever real work is displaced from the com-
puter by such activities, however, harm is clearly being done. If nothing else, the thief is
trespassing in the computer owner’s property.By analogy,consider that even though no phys-
ical harm may be done by someone who breaks into your bedroom and takes a nap while you
are away,such an action is certainly disturbing to you because it poses a threat of potential phys-
ical harm. In this case, and in the case of breaking into a computer, mental harm can be done.

Other thieves have malicious intentions. Like a joyrider who purposely crashes a stolen
car, these people destroy or corrupt data to cause harm.They may feel a sense of
power from being able to hurt others with impunity. Sometimes these people
leave behind programs that act as time bombs, causing harm long after they have
gone. Another kind of program that may be left is a virus—a program that repli-
cates itself, often with the goal of spreading to other computers. Viruses can be
benign, causing no other harm than to use up some resources. Others can be de-
structive, causing widespread damage to data. Incidents have occurred in which
viruses have cost millions of dollars in lost computer time and data.

Computing professionals have an ethical responsibility never to use com-
puter resources without permission. This guideline includes activities such as
doing personal work on an employer’s computer.We also have a responsibility to help guard
resources to which we have access—by using unguessable passwords and keeping them se-
cret, by watching for signs of unusual computer use, by writing applications that do not pro-
vide loopholes in a computer’s security system, and so on.

Virus Code that replicates it-
self, often with the goal of
spreading to other computers
without authorization, and pos-
sibly with the intent of doing
harm

CASE STUDY
304

ADDRESS BOOK

Problem: Create an address book application that creates entries and writes them to the
file bookFile.

Brainstorming: We’ve already started this process, having brainstormed the initial set
of classes and filtered them. After the initial scenario walk-through, we have the
following list:

We also have the following what-if questions left unresolved:

Filtering: All of this information is important, but let’s begin small.This application only
needs to create a file of entries, not process them. Let’s limit ourselves to an application
that creates an address book with just a name, an address, and a phone number in each

What happens when the user
 asks for a name that's not in the book?
 wants to add an entry to the book?
 deletes an entry?
 tries to delete an entry that isn't in the book?
 wants a phone number?
 wants a business address?
 wants a list of upcoming birthdays?

Entry

Name

Address

Work address

Phone number

E-mail

Birthday

User interface

CASE STUDY 305

entry. We can add more information as we go on. Here then is our filtered list of classes
for this application:

Determining Responsibilities: Let’s look at the Entry class as it was left when we stopped
the scenarios.

We can omit the “Know birthday” responsibility for the time being. Our driver needs
to create one instance of Entry at a time and write it to a file. Create! We forgot to list
Create as a responsibility. Because each class should be as encapsulated as possible,
let’s have two constructors: one that inputs values into its own fields and one that

Class Name: Entry Superclass: Subclasses:

Responsibilities Collaborations

Know name None

 return Name

Know address None

 return Address

Know phone number None

 return Phone

Know birthday None

 return Date

Entry

Name

Address

Phone number

User interface

CASE STUDY
306

takes the values as arguments and stores the values into its fields. Have we forgotten
anything else? The entry is to be written to a file. Should the Entry class be responsible
for writing itself to a file or should the driver provide this function? Encapsulation dic-
tates that the Entry should bear this responsibility. Here, then, is our revised CRC card
for Entry:

The knowledge responsibilities give us at least a partial list of the instance variables
of the Entry class: a Name, an Address, and a Phone.There may be other internal fields. If
so, we can add them later. We have a Name class and a Phone class.The only classes left to
write are Address, Entry, and a driver.

In Chapter 7, we will examine several different versions of addresses. For this appli-
cation, let’s just use the street, city, state, and ZIP code. We should have one constructor
that takes these attributes as parameters. Let’s include another constructor that reads
values into its fields.There should be four knowledge responsibilities, one for each of
these fields.The first three fields should be strings. What about the ZIP code? If the ZIP
code is just the standard five digits, we could use an integer. However, many ZIP codes
now use five digits, plus a hyphen and four more digits.To cover both cases, let’s use a
string to represent the ZIP code. Should this class provide the values in these fields in a
variety of formats like the Name class does? Not at this stage. We are only creating the
address book now, not processing the information in some way.

Class Name: Entry Superclass: Subclasses:

Responsibilities Collaborations

Create (name, address, phone) Name, Address, Phone

Name, Address, Phone, BufferedReaderCreate()

Know name None

 return Name

Know address None

 return Address

Know phone number None

 return Phone

Write entry to a file (outfile) PrintWriter

CASE STUDY 307

What are the responsibilities of the driver? To create instances of the class Entry and
write them to a file. Entry has a responsibility that writes itself to a file, so that respon-
sibility is implemented by sending a message to Entry. We have two possibilities for cre-
ating instances of the class: We can use the nonparameterized version of the
constructor for Entry and let it be responsible for instantiating Name, Address, and Phone,
or we can let the driver input the values and use Entry’s parameterized constructor.
Because this is a special-purpose driver whose only function is to create entries, let’s
centralize the input for the fields of Entry in the driver. We should also use the parame-
terized constructors for Name and Address. Phone doesn’t have a nonparameterized
constructor, so there is no choice. Here, then, is the CRC card for the driver:

Class Name: AddressDr Superclass: Subclasses:

Responsibilities Collaborations

Prepare input file BufferedReader

Prepare output file PrintWriter

Process entries Name, Address, Phone, Entry

Close files BufferedReader, PrintWriter

Class Name: Address Superclass: Subclasses:

Responsibilities Collaborations

Create (street, city, state, zip) String

Create() String. BufferedReader

Know street None

 return String

Know city None

 return String

 return String

Know state None

Know zip None

 return String

CASE STUDY
308

Responsibility Algorithms for AddressDr: We have prepared enough files for both input
and output by now to consider these responsibilities concrete. “Process entries” implies
more than one entry, which implies a loop. Let’s instruct the user to enter “Quit” for the
first name when all of the entries have been processed.

Now all of the steps in “Process entries” are concrete.

Enter phone

Write "Enter area code: "
Read and convert area code to int
Write "Enter number: "
Read and convert number to int

Enter address

Write "Enter street address: "
Read street
Write "Enter city: "
Read city
Write "Enter state: "
Read state
Write "Enter ZIP code: "
Read zip

Enter rest of name

Write "Enter last name: "
Read last
Write "Enter middle name: "
Read middle

Process entries

Write "Quit entered for the first name ends the application."
Write "Enter first name: "
Read first
while (name is not equal to "quit")

Enter rest of name
name = new Name(first, last, middle)
Enter address
address = new Address(street, city, state, zip)
Enter phone
phone = new Phone(areaCode, number)
entry = new Entry(name, address, phone)
entry.writeToFile(outFile)
Read first

close files

CASE STUDY 309

Responsibility Algorithms for Address and Entry: This application is not using the
nonparameterized constructors of the classes Address and Entry. Instead, we leave their
implementations as a Case Study Follow-Up exercise.The remaining responsibilities
are knowledge responsibilities that need no further refinement. However, we do need
to decide what the file that Entry is writing should look like. We have two choices: (1)
We can make it look like an address by printing the name on the first line, the address
on two lines, and the phone number as a string with hyphens or (2) we can print each
string or number on a line by itself.The address format is easy to create—so why would
we even consider the one string per line format? The address format is easy to write,
but it is not easy for another application to read. If we write the name all on one line,
we must read the string back in and break the name apart.The same is true of the
address and the phone number. Because the intent of this application is to create the
beginnings of an address book that will be processed on the computer, we know that
the values will be read in at a later time. Here we write them out one string per line for
ease of subsequent input. In the next chapter, we introduce an even easier way to read
the values into an object.

Implementation: Now we are ready to code these classes.The only question is whether
to code “Process entries” as one method or to break up the subalgorithms into helper
methods. It would be better style to make use of helper methods. However, this special-
purpose driver probably will not be used again, so let’s simply code it in main.

Here is the code for Address, Entry, and AddressDr. Name and Phone were defined
previously. A copy of the input screen and the output file follow the code.

//**
// This class provides a basic address object. The constructor
// takes the state variables as strings. Four knowledge
// methods return the state values.
//**

package addressBook;
// Includes Name, Address, Phone, and Entry
public class Address
{
// Instance variables
String street;
String city;
String state;
String zipCode;

public Address(String newStreet, String newCity, String newState,
String zip)

{

CASE STUDY
310

street = newStreet;
city = newCity;
state = newState;
zipCode = zip;

}

// Knowledge methods
public String knowStreet()
{
return street;

}
public String knowCity()
{
return city;

}
public String knowState()
{
return state;

}
public String knowZip()
{
return zipCode;

}
}

//**
// This class provides a basic entry object. The constructor
// takes the state variables as class objects. Three
// knowledge methods return the state objects. An observer
// writes the contents of the state objects on the file passed
// as a parameter.
//**

package addressBook;
// Includes Name, Address, Phone, and Entry
import java.io.*;
public class Entry
{
// Instance variables
Name name;
Address address;
Phone phone;

public Entry(Name newName, Address newAddress, Phone phoneNumber)
{
name = newName;
address = newAddress;
phone = phoneNumber;

}

CASE STUDY 311

// Knowledge responsibilities
public Name knowName()
{
return name;

}
public Address knowAddress()
{
return address;

}
public Phone knowPhone()
{
return phone;

}

public void writeToFile(PrintWriter outFile)
// State variables are written on file outFile
{
outFile.println(name.knowFirstName());
outFile.println(name.knowLastName());
outFile.println(name.knowMiddleName());
outFile.println(address.knowStreet());
outFile.println(address.knowCity());
outFile.println(address.knowState());
outFile.println(address.knowZip());
outFile.println(phone.knowAreaCode());
outFile.println(phone.knowDigits());

}
}

//**
// This class is a driver that creates entries made up of a
// name, an address, and a phone number. Data are read
// from the screen. Each entry is written to the file Entries.
//**
import java.io.*;
import addressBook.*;
public class AddressDr
{
public static void main(String[] args) throws IOException
{
// Declare local variables
Name name;
Address address;
Phone phone;
Entry entry;
// String and integer variables used for input
String first, last, middle, street, city, state, zip;
int areaCode, number;

CASE STUDY
312

// Set up input file
BufferedReader in; // Input stream for strings
// Instantiate in using System.in
in = new BufferedReader(new InputStreamReader(System.in));

// Set up output file
PrintWriter outFile;
outFile = new PrintWriter(new FileWriter("Entries"));

System.out.println("Quit entered for the first name ends the " +
"application.");

// Prompt for and read first name
System.out.print("Enter first name: ");
first = in.readLine();

while (first.compareTo("Quit") != 0)
{
// Prompt for and read the rest of the name
System.out.print("Enter last name: ");
last = in.readLine();
System.out.print("Enter middle name: ");
middle = in.readLine();
name = new Name(first, last, middle);

// Prompt for and read the address
System.out.print("Enter street address: ");
street = in.readLine();
System.out.print("Enter city: ");
city = in.readLine();
System.out.print("Enter state: ");
state = in.readLine();
System.out.print("Enter ZIP code: ");
zip = in.readLine();
address = new Address(street, city, state, zip);

// Prompt for and read the phone number
System.out.print("Enter areaCode: ");
areaCode = Integer.parseInt(in.readLine());
System.out.print("Enter number: ");
number = Integer.parseInt(in.readLine());
phone = new Phone(areaCode, number);

// Instantiate and output entry
entry = new Entry(name, address, phone);
entry.writeToFile(outFile);
// Prompt for and read first name

System.out.print("Enter first name: ");
first = in.readLine();

}
outFile.close();

}
}

File Entries:

CASE STUDY 313

314 | Object-Oriented Software Design and Implementation

6.9 Testing and Debugging

In addition to providing a design that is easy to implement, the CRC card process
makes it easy to create an initial test plan. The scenario walk-throughs naturally cor-
respond to test cases in our plan. We simply need to note an example of typical data
and expected results from each walk-through. For example, in the walk-through for dis-
playing an entry, we could write down a set of typical values that the user might en-
ter for a name, and we could specify that the address book must contain the
corresponding entry. We could also indicate what other information we expect to be
returned with the entry.

The scenarios produce a plan that combines aspects of both code and data coverage.
At the level of collaborations, we cover the structure of the code.That is, our test plan nat-
urally covers the pattern of method calls corresponding to the collaborations that imple-
ment each responsibility.

If we think a little bit about the range of values that could be present as arguments in
each call during a scenario walk-through, then we can also include data coverage in our
plan. As you go through a scenario, each time a collaboration invokes a responsibility of
another class, record the range of values that could appear in the arguments, as well as an
example value and its expected result. For example, in walking through the addition of an
entry, we collaborated with methods to create each of the objects contained within the en-
try. In each of these cases, we can also record the range of values that are acceptable and
unacceptable as test cases.

Remember, however, that our CRC cards do not develop the algorithms for the individ-
ual responsibilities.Thus, we must extend the test plan with cases that exercise the paths
found within each responsibility. Once the responsibility algorithms are written, review
the test cases that were recorded during the scenario walk-throughs. In each case, con-
sider whether your knowledge of the algorithm indicates control-flow paths that should be
tested specifically.

It may be easiest to test individual classes with a separate driver application class, as
we did with the Phone class. The purpose of the driver is to provide a very simple envi-
ronment that allows us to directly test the methods of a class, explicitly controlling the
argument values that are passed to them. When a class is part of a complex design that
involves many different collaborations, it can be difficult to constrain the testing to just
the one class, and to ensure that errors in other classes do not affect its arguments.

Testing and Debugging Hints

1. Use the design methodologies presented in this chapter to carefully design a
complete OOD solution to a problem before you start writing any Java code.
The design should be sufficiently detailed that converting it to Java becomes
almost a mechanical process.

S u m m a r y | 315

2. During brainstorming, don’t try to filter ideas while they are being generated.
It is the free flow of ideas that often produces the most innovative
approaches.

3. If you are developing a design by yourself, wait to start filtering until the next
day, or at least after a few hours of doing something different. It takes some
mental distance to give the necessary perspective for successful filtering.

4. Pick a simple initial scenario, and then work your way into the more complex
scenarios. Otherwise, the number of new classes that you have to create
initially can be overwhelming.

5. Don’t hesitate to write down additional useful information that is identified
during the scenario walk-throughs. At the same time, don’t get bogged down
in writing responsibility algorithms during the walk-through process.

6. Use the package level of access for each data field unless your design specifi-
cally calls for it to be public or private.

7. Store multifile packages in the same directory. Otherwise, you will get an
error message saying that the classes in the package can’t be found.

Summary

Object-oriented design (OOD) and functional decomposition are methods for
tackling nontrivial programming problems.The two methodologies are often used in
combination, and experienced programmers often switch back and forth between
them in solving a problem. We use OOD to design the overall solution to a complex
problem, and then apply functional decomposition to aid in writing the algorithms
for the individual responsibilities of each object.

Object-oriented design produces a problem solution by focusing on objects, their
associated operations, and their interactions.The first step is to identify the major ob-
jects in the problem and create classes that are abstract descriptions of them. Next, we
filter the initial classes, eliminating duplicate and inappropriate classes.We then walk
through a series of scenarios, working from common cases to exceptional cases to de-
termine the responsibilities and collaborations of the classes.The use of CRC cards
helps us to keep track of this information as we explore the scenarios.The result of
this process is a design consisting of self-contained objects that have responsibilities

316

for managing their own data and collaborating with other objects by invoking each
other’s methods.

Functional decomposition begins with an abstract solution that then is divided
into major steps. Each step becomes a subproblem that is analyzed and subdivided
further. A concrete step is one that can be translated directly into Java; abstract steps
need more refining. A module is a collection of concrete and abstract steps that
solves a subproblem.

A package collects a set of related classes into a common structure that can be
imported by other classes.The Java compiler allows just one public class per compi-
lation unit, so a package consists of multiple files, all of which begin with identical
package statements.

Careful attention to algorithm design, code formatting, and documentation
produces well-organized and readable programs that are easy to debug and
maintain.

Quick Check

1. Object-oriented design focuses on the _______ (nouns, verbs) when identifying
potential objects in a problem statement. (p. 270)

2. (True or False?) A class field is distinguished from an instance field by having
the modifier static in its declaration (p. 273)

3. What Java construct do we typically use to implement a responsibility in a
class? (p. 280)

4. How do objects collaborate with each other? (p. 275)

5. A subclass may ___________ (import, inherit, construct) methods from its super-
class. (p. 285)

6. How many public classes may a compilation unit contain? (p. 295)

7. Can classes within the same package access each other’s fields that are at the
package level of access? (p. 295)

8. Name three ways that you can help to protect confidential data. (p. 302)

9. Class assignments are examples of programming in the _______ (small, large).
(p. 300)

10. (True or False?) In the initial brainstorming for an object-oriented design, as we
are generating ideas for candidate classes, we can simultaneously critique and
filter them. (pp. 277–278)

11. What happens in the filtering stage of a design? (pp. 278–280)

12. What do we write on a CRC card? (pp. 277–285)

13. Should the first scenario that you explore be a common case or one of the
exceptional cases? (pp. 280–285)

14. What is a collaboration between classes? (p. 275)

317

15. In what stage of the CRC card process do we identify responsibilities for
classes? (pp. 280–285)

16. Does each CRC card result in the creation of a new class? (pp. 274–275)

17. Suppose you want to create a class that has all of the responsibilities of an ex-
isting class, but adds some new responsibilities. Would the new class be a
superclass or a subclass of the existing class? (p. 285)

18. What should be the file name for a compilation unit that has a public class
called SomeClass? (pp. 295–299)

19. What is the Java syntactic construct that bundles related classes? (pp. 295–299)

Answers

1. Nouns 2. True 3. A method 4. By sending messages in the form of method calls 5. Inherit 6. One 7. Yes 8. Use
passwords that are difficult to guess, encrypt the data, store backup copies of the data securely, use or
develop well-engineered software that avoids security loopholes 9. Small 10. False 11. We eliminate candidate
classes that are duplicates, or clearly not part of the problem. 12. The name of the class, its superclass and
subclass relationships, its responsibilities, and its collaborators 13. A common case 14. A message passed be-
tween them, which is usually a method call, but can also involve the use of public fields 15. During the sce-
nario walk-through 16. No. A CRC card may refer to an existing class that can be used directly. 17. A subclass
18.SomeClass.java 19. package

Exam Preparation Exercises

1. Distinguish between the OOD and functional decomposition methodologies in
terms of what aspect of a problem each focuses on.

2. Distinguish between the OOD and functional decomposition methodologies in
terms of what kind of design each produces.

3. If it is natural to think of the solution to a problem in terms of a collection of
component parts, which design technique is more appropriate?

4. If a method is modified by static, is it a class method or an instance method?

5. What are class members?

6. What is the public interface to a class?

7. Why would we want to have a private part of a class?

8. Name four responsibilities that might be associated with a class that repre-
sents a date.

9. Name two responsibilities that could be associated with a class that represents
an exam score.

10. What are the responsibilities of the BufferedReader class that we have discussed
in this text?

11. What are the responsibilities of the PrintWriter class that we have discussed in
this text?

318

12. To have a value entered on the screen and provide it as a value of type double,
with what classes do we collaborate?

13. What is the goal of the brainstorming phase of the CRC card design process?

14. If you are working by yourself, how long should you wait to begin filtering after
you’ve completed brainstorming a CRC card design?

15. Do we need to identify all of the classes for solving a problem in the
brainstorming stage? Explain.

16. Is there a CRC card for every class identified during brainstorming? Explain.

17. At what point do you add initial responsibilities to the CRC cards?

18. During a scenario walk-through, how do you indicate that a class is active?

19. When does a class become inactive in a scenario?

20. What happens when the need for a new class is identified in the middle of a
scenario?

21. Inheritance enables us to create what kinds of classes?

22. What special notation do you make on a CRC card when you recognize that a
new class is just a variation of an existing class that adds some new responsi-
bilities?

23. Give some examples of additional information that you might add to a CRC
card to enhance it.

24. How many levels of abstraction are present in a functional decomposition
before you reach the point at which you can begin coding?

25. Is it software piracy if you make a copy of a commercial application for your
own use without paying for it?

26. Give an example of data that is public and an example of data that is confiden-
tial.

27. Hacking into somebody else’s computer and using it to send e-mail is obviously
unethical. But what about using an employer’s computer for personal work?
Explain your answer.

28. What is a computer virus?

29. Why is it unethical to write an application for public use without using proper
software engineering methodology?

30. What is self-documenting code?

31. a. What is a compilation unit?

b. Can one compilation unit include multiple public classes?

c. Where is each compilation unit stored?

d. How is the file containing a compilation unit named?

e. Can multiple public classes appear in the same package?

319

32. a. What are the two places in which data abstraction is visible to the user?

b. Should public constants be initialized in their declarations or in assignment
statements?

c. Can variables be marked as public in Java?

Programming Warm-Up Exercises

1. Write a CRC card for a class, Car, representing an automobile with its make,
model, color, and license plate number.

2. Write a CRC card for a subclass of the automobile class in Exercise 1, called
RentalCar, that adds a responsibility for taking trip mileage and rental days val-
ues and computing a rental cost. Extend the responsibility for creating an
object of this class to include specification of the cost per mile and cost per day.

3. Write a CRC card for a class, Book, representing a library book. It should
support creating a book with a title, author, and call number, and knowing each
of these values.

4. Write a CRC card that is a subclass of the Book class developed in Exercise 3,
called LoanRecord. It adds the capability to record a patron ID number and a
due date for the book, and to determine whether the book is overdue.

5. Write a CRC card for a subclass of LoanRecord (Exercise 4) that allows the inclu-
sion of library ID number for interlibrary loans. Also add the ability to indicate,
when an object is created, if it is not available for interlibrary lending. Provide a
responsibility to test for this property of an object.

6. Write a CRC card for a class, Cow, representing a cow in a dairy herd.The class
should include a name, an ID number, a date of birth, and a date of most recent
calving.

7. Write a CRC card for a subclass of Cow (Exercise 6) that adds the ability to keep
a total of milk output, to enter a value for a milking, and to compute average
milk production.The subclass should also support the ability to reset the total
milk output value to zero.

8. Brainstorm a set of classes for the following problem statement: You are creat-
ing an application that records progress in a fitness program. For each user of
the program, you should keep track of the person’s initial weight, quarter-mile
jog time, standing long-jump distance, and bench-press weight. After each
training session, new values are entered for each of these measurements, and
the difference from the original values is displayed.The total number of
sessions should also be counted.

9. Filter the classes that were brainstormed in Exercise 8.

10. Write CRC cards for the classes that remain after the filtering in Exercise 9.
Include the initial responsibilities.

320

11. Conduct a first scenario walk-through of the CRC cards from Exercise 10, for
recording a training session, and indicate any additional classes or responsibil-
ities that you find.

12. Brainstorm a list of additional scenarios for the problem given in Exercises
8–11.

13. Use the scenario in Exercise 11 as the basis for the first test case in a test plan
for the application.

14. Declare a package named somePackage with headings for the public classes
AddressLabel and PrintLabel.

15. How does Java manage to put all the pieces of a package together?

Programming Problems

1. Use the CRC card process to design a game application that simulates a
roulette table.The roulette table has 36 numbers (1–36) that are arranged in
three columns of 12 rows.The first row has the numbers 1 through 3, the
second row contains 4 through 6, and so on.The number 0 is outside of the
table of numbers.The numbers in the table are colored red and black (0 is
green).The red numbers are 1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34,
and 36.The other half of the numbers are black. In a simplified set of rules,
players can bet on an individual number (including 0), the red numbers, the
black numbers, the even numbers, the odd numbers, the numbers 1–18, the
numbers 19–36, and any of the columns or rows in the table.

321

The user should be allowed to enter one of the bets, and the application should
use the Math.random method as the basis for computing the number that would
be rolled on the wheel. It should then compare this number to the bet, and re-
port whether it won or lost.The process repeats until the user closes the appli-
cation window.

2. Develop the responsibility algorithms for the CRC card design of Programming
Problem 1 and code the application. Use the scenarios to design the test plan.

3. Use the CRC card process to design an extension to the application of
Programming Problem 1.The new application should allow the user to enter an
initial amount of money into an account. In addition to placing a bet, the user
should be able to specify an amount to go with the bet; this amount should be
deducted from the account. Any winnings should be added to the account.The
current winnings or losses (difference from the original amount) should be dis-
played as well as the value of the account. Winnings are computed as follows:

Single-number bets pay 36 times the amount placed.

Row bets pay 12 times.

Column bets pay 3 times.

Odd/even, red/black, and high/low half-bets pay 2 times the amount.

The user should not be allowed to bet more than the total in the account.

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

4. Develop the responsibility algorithms for the CRC card design of Programming
Problem 3 and code the application. Use the scenarios to design the test plan.

5. Use the CRC card process to design a game application that plays the children’s
game of rock, paper, scissors.The user enters a letter, indicating a choice.The
Math.random method is then used to pick a value in the range of 1 through 3,
with 1 corresponding to rock, 2 corresponding to paper, and 3 corresponding to
scissors.The computer’s choice is compared to the user’s choice according to
the rules: rock breaks scissors, scissors cut paper, paper covers rock. Choices
that match are ties. Display a count of the wins by the user and the computer,
and the number of ties.The application ends when the user enters an invalid
choice.

6. Develop the responsibility algorithms for the CRC card design of Programming
Problem 5 and code the application. Use the scenarios to design the test plan.

322

Case Study Follow-Up

1. Enhance the Address class with a constructor that reads values from the screen
and stores them into its own fields.

2. Enhance the Entry class with a constructor that reads values from the screen
and stores them into its own fields.

3. Enhance the Phone class with a constructor that reads values from the screen
and stores them into its own fields.

323

Knowledge Goals
• To understand the hierarchical nature of classes in object-oriented

programming

• To understand the concept of inheritance in a class hierarchy

• To recognize the distinction between overriding and hiding in Java

• To understand the concept of polymorphism

• To recognize the difference between deep and shallow copying of objects

• To know and understand the access rules for Java classes

• To know and understand the assignment compatibility rules for objects

• To understand the concept of overloading in Java

Skill Goals
To be able to:

• Identify the interface components of a class in a hierarchy

• Design a derived class to extend an existing class hierarchy

• Implement a derived class using inheritance

• Use the keywords super and this to disambiguate references

• Create, write, and read files of objects

Inheritance,
Polymorphism,
and Scope

1962
MIT grad student
Steve Russell uses
the DEC computer
PDP-1 to create
Spacewar, the first
video game

1962
The Bell Labs
Telstar
communications
satellite makes
possible the first
transatlantic
television pictures

1963
Joseph Weizenbaum
develops “Eliza,” a
program that acts
like a
psychotherapist by
following a script,
but appears to have
intelligence

1963
The ASCII character
code, largely the
work of Bob Bemer,
is accepted by the
American National
Standards Institute

1963
The Semi-
Automatic Ground
Environment
(SAGE) system, a
real-time computer-
based command
and control defense
system, is fully
deployed

1964
John Kemeny and
Thomas Kurtz
develop the
programming
language BASIC

7
C H A P T E R

you saw how to create an object-oriented design through
the use of CRC cards and how to translate a CRC card description into a
Java class.At that time, we pointed out that classes can be related to each
other through a hierarchy of properties. The relationship between de-
rived classes (subclasses) and their superclass is defined by Java’s rules
of inheritance, which tell us the parts of the superclass that are auto-
matically included in the derived classes. Java also provides a set of rules
that determine the fields and methods of a class that can be accessed by
derived classes, classes in the same package, user code, and so on.We ex-
amine these rules in this chapter.

Also in this chapter, we describe a class within the input/output hi-
erarchy that allows us to write and read objects as a whole rather than
having to read them field by field.

In Chapter 6,

1964
Control Data
Corporation
presents Seymour
Cray’s CDC 6600,
the first commercial
supercomputer

1964
IBM develops a
computer-aided
design (CAD)
system

1964
Douglas Engelbart
invents the
computer mouse

1965
J.A. Robinson sets
the stage for logic
programming with
the development of
unification

1967
Ole-Johan Dahl and
Kristen Nygaard
create Simula, the
first object-oriented
programming
language

1967
The first hand-held
electronic calculator
that can add,
subtract, multiply,
and divide is created
by Jack Kilby, Jerry
Merryman, and
James Van Tassel at
Texas Instruments

326 | Inheritance, Polymorphism, and Scope

7.1 Inheritance

Let’s look at an analogy between the work of an architect and the work of a programmer.The
way that an architect handles the complexity of a large building design sheds some light on
how we can organize our own programming work. This analogy lets us consider the same
concepts but without the distraction of Java syntax and semantics.

An Analogy

The architect begins by considering the overall requirements for a building: square footage,
number of occupants, types of usage, size of the building lot, height limits, and so on. After
making some initial decisions, the architect faces a basic aspect of any design: The building
is composed of floors. In many buildings, the floors all have common characteristics: the same
size and shape; the same number and locations for elevator shafts, stairways, and utility
trunks; and so on. The architect could begin by designing a basic empty floor with all of
these common elements in place. Once she installs this plan in the library of her computer
aided design (CAD) program, she can then use it repeatedly as the starting point for design-
ing each floor of the building.

The architect may further decide that the building has two main types of floors: office floors
and mechanical equipment floors.The office floors might be of two types: executive office space
and standard office space. Starting from the basic empty floor design, the architect adds com-
ponents such as lavatories and hallways to make an empty office floor.She can then add offices
and conference rooms to the empty space. Each of the four types of floor is thus derived from
the basic empty floor and added to the library (see Figure 7.1). Drawing the entire building then
becomes simply a matter of creating an instance of one of these four floor plans for each story.

The architect uses the same process to design the components that make up the floors.
She might design a basic type of office, with a door, windows, lights, heating, wiring, and so
forth, and then derive several types of offices from that one design. From a given type of of-
fice, such as secretarial, she might further refine the design into subtypes such as general
secretarial, secretary/receptionist, and executive secretary.

Creating hierarchies of designs simplifies the architect’s job. She begins each hierarchy
with the most general form of a building component, such as the basic empty floor, and then
derives new designs by adding details to the more general forms.The new designs inherit all
of the characteristics of the general form, saving the architect from having to redraw those
pieces they share in common. In some cases she replaces existing parts of a design, as when
she substitutes a wider door for a reception area than appears in the basic secretarial office.
The replacement part overrides what was originally specified in the more general form.

In addition to the components of individual floors, the architect can specify character-
istics that are common to all floors, such as a color scheme. Each floor will then inherit these
general properties. Sometimes she hides or deletes portions of the general properties, as
when she customizes the color scheme for a particular floor that has been rented in ad-
vance by a company with its own corporate colors. We will see later how inheritance, over-
riding, and hiding are formally defined mechanisms in Java.

7.1 I n h e r i t a n c e | 327

Util. Trunk

Stair

Elev. Janit.

Basic Empty
Floor

Mechanical
Floor

Executive
Office Floor

Standard
Office Floor

Mechanical Floor

Heating/Ventilation
Air Conditioning

Electrical
Transformer

and
Distribution

Phone
and

Data Networks

Empty Office Floor

Basic Empty Floor

Empty Office
Floor

Executive Office Floor

Executive
Office

Executive
Office

Secretary/
Receptionist

Executive
Office

Executive
Office

Secretary/
Receptionist

Secretary/
Receptionist

Secretary/
Receptionist

Standard Office Floor

Office Office Office

Office

Office

Office

Office

Office

Office

Office Office Office

Lav.Lav.

Util. Trunk

Stair

Elev. Janit.

Lav.Lav.

Util. Trunk

Stair

Elev. Janit.

Lav.Lav.

Util. Trunk

Stair

Elev. Janit.

Util. Trunk

Stair

Elev. Janit.

Figure 7.1 A Hierarchy of Floor Types

328 | Inheritance, Polymorphism, and Scope

7.2 Inheritance and the Object-Oriented Design Process

Now let’s consider how a class hierarchy originates in the CRC card design process. At the
end of the filtering phase, we sometimes discover that several classes are similar. For example,
in the address book example of Chapter 6, our filtered list of classes included Address and
Work Address. Let’s look at the CRC cards for some different address objects.

Class Name: WorkAddress Superclass: Subclasses:

Responsibilities Collaborations

Create itself (name, company, street, city,

 state, ZIP code)
Name

Know its name Name

 return String

 return String

None

None

 return String

 return String

 return String

 return String

Know its company

None

Know its street

Know its city

NoneKnow its state

Know its ZIP code None

7.2 I n h e r i t a n c e a n d t h e O b j e c t - O r i e n t e d D e s i g n P r o c e s s | 329

Class Name: HomeAddress Superclass: Subclasses:

Responsibilities Collaborations

Create itself (name, street, apartment,

city, state, ZIP code)

Name

Know its name

 return String

 return String

 return String

 return String

 return String

 return String

Name

Know its street

Know its apartment

None

Know its city return

Know its state

Know its ZIP code

None

None

None

None

330 | Inheritance, Polymorphism, and Scope

These CRC cards might originate in the brainstorming phase, or they could re-
sult from a series of scenarios. No matter how they arise, it is quite obvious that
they have several responsibilities in common: “Know its name”, “Know its city”,
“Know its state”, and “Know its ZIP code”. We can save ourselves duplicate effort
by defining a superclass, Address, that has the common responsibilities. In addition,
two of the classes share the “Know its company” responsibility. We can thus de-
fine a subclass of Address called Company Address that becomes the superclass of
these two. The third class directly extends Address with its specific responsibili-
ties. Here are the revised CRC cards:

Class Name: BoxAddress Superclass: Subclasses:

Responsibilities Collaborations

Create itself (name, company, box, city,

state, ZIP code)

Name

Know its name Name

Know its company

Know its box

None

Know its city

Know its state

None

Know its ZIP code

None

None

None

 return String

 return String

 return String

 return String

 return String

 return String

Superclass A class that is ex-
tended by one or more derived
classes (its subclasses)

Subclass A class that is
derived from another class (its
superclass)

7.2 I n h e r i t a n c e a n d t h e O b j e c t - O r i e n t e d D e s i g n P r o c e s s | 331

Class Name: Work Address Superclass: Company Address Subclasses:

Responsibilities Collaborations

Create itself (name, company, street, city,

state, ZIP code)

Name

Know its street

 return String
None

Class Name: Company Address Superclass: Address Subclasses: Work Address,

Box Address

Responsibilities Collaborations

Create itself (name, company, city, state,

ZIP code)

Name

Know its company

 return String

None

Class Name: Address Superclass: Subclasses: Home Address,

Company Address

Responsibilities Collaborations

Create itself (name, city, state, ZIP code) Name

Know its name

 return String

 return String

 return String

 return String

Name

Know its city

Know its state

None

None

Know its ZIP code None

332 | Inheritance, Polymorphism, and Scope

Figure 7.2 shows the relation-
ships among these classes. Address,
the most general form, appears at the
top of its hierarchy, just below Object,
which is at the top of any hierarchy.

The ability of a programming lan-
guage to support the creation of su-
perclasses and subclasses is known
as inheritance. Each subclass inherits
the responsibilities that are defined
by its superclass, including all of the
responsibilities that the superclass
has inherited. In addition, subclasses
are assignment-compatible with the

superclasses above them in the hierarchy. That is, we can assign a Work Address
object to a Work Address variable, a Company Address variable, an Address vari-
able, or an Object variable.

Periodically in the CRC card design process, it is useful to look for similarities
among the cards and decide whether a superclass should be created. Inheritance
is also used when we start to create a new class and realize that it is just a varia-
tion of an existing class. In this situation, there is no need to define an entirely new

Class Name: Home Address Superclass: Address Subclasses:

Responsibilities: Create Collaborations

Create itself (name, street, apartment,

city, state, ZIP code)

Name

Know its apartment

 return String

None

Know its street
 return String

None

Class Name: Box Address Superclass: Company Address Subclasses:

Responsibilities Collaborations

Create itself (name, company, box, city,

state, ZIP code)

Name

Know its Box

 return String

None

Object

Address

Home Address Company Address

Work Address Box Address

Figure 7.2 Address Object Hierarchy

Inheritance A mechanism by
which one class acquires the
properties—the data fields and
methods—of another class

7.3 H o w t o R e a d a C l a s s H i e r a r c h y | 333

class when we can simply extend an existing class. As you look for things that are familiar
in solving a problem, keep in mind the existing classes.

In our address book example, we collected responsibilities from similar classes to form
a superclass. If we need to represent international telephone numbers, we could create a com-
pletely new class, but a better solution is create a subclass of Phone with a field for the coun-
try code. Whenever you encounter such a situation, you should immediately consider how
you can take advantage of it through inheritance.

7.3 How to Read a Class Hierarchy

In Java, all classes can eventually trace their roots back to the Object class, which is so general
that it does almost nothing: Objects of type Object are nearly useless by themselves.But Object
does define several basic methods: comparison for equality, conversion to a string, and so on.

The Java library defines numerous classes that directly extend the Object class and thus
inherit all of its methods. For example, a class called Component extends Object
with the basic operations needed to display something in a window on the screen.
We can’t instantiate objects of the class Component directly, however, because they
are incomplete. Java calls such classes abstract. Returning to our analogy, the ar-
chitect would never include the basic empty floor in a building plan, but uses it
instead to design floors that are complete. Similarly, we would never instantiate
an object of an abstract class in our code, but we can use it as the superclass for
defining new subclasses that are complete.

In Chapter 8, we will see how to create a graphical user interface consisting
of a window on the screen, with buttons, labels that hold output, and boxes in
which a user can enter data values.As a preview of the graphical user interface
we introduce in Chapter 8, and because it provides a good example of the use
of inheritance, let’s look at the hierarchy of a class that allows us to create a data
entry field within a window.

Being familiar with how Java functions, you should not be surprised to learn
that Java provides a class called JTextField that is used to create input fields in
a window. JTextField is derived from a class called JTextComponent, which is in
turn derived from a class called JComponent, which is in turn derived from a class
called Container, which is in turn derived from Component.As you can see, the hi-
erarchy of classes can be many levels in depth, so it can become difficult to
keep track of which class is descended from which class. Figure 7.3 shows how
these classes are related. We use boxes with their corners cut out to represent
the incomplete nature of an abstract class.

When the architect looks at a floor plan with her CAD program, she sees all
of its parts, including those that are derived from the basic empty floor. When
we look at the documentation for a Java class, however, we see only those fields
that are added by that specific class and the name of its superclass.

As an example, let’s look at a summary of the methods in the JTextField
class. Java class summaries (documentation) are typically written as method
headings. This summary includes a modifier, protected, that we have not yet

Abstract A modifier of a class
or field that indicates it is incom-
plete and must be fully defined
in a derived class

Derived class A class that is
created as an extension of
another class in the hierarchy

Object

Component

Container

JComponent

JTextComponent

JTextField

Figure 7.3 Hierarchy of
Component Classes above
JTextField

334 | Inheritance, Polymorphism, and Scope

discussed.We will explain its meaning later in this chapter. Don’t worry—you don’t need to
learn how any of these methods work! We’re just illustrating how Java library classes are doc-
umented.

public class JTextField extends JTextComponent
{
JTextField()
JTextField(Document doc, String text, int columns)
JTextField(int columns)
JTextField(String text)
JTextField(String text, int columns)
void addActionListener(ActionListener l)
protected void configurePropertiesFromAction(Action a)
protected PropertyChangeListener createActionPropertyChangeListener(Action a)
protected Document createDefaultModel()
protected void fireActionPerformed()
AccessibleContext getAccessibleContext()
Action getAction()
ActionListener[] getActionListeners()
Action[] getActions()
int getColumns()
protected int getColumnWidth()
int getHorizontalAlignment()
BoundedRangeModel getHorizontalVisibility()
Dimension getPreferredSize()
int getScrollOffset()
String getUIClassID()
boolean isValidateRoot()
protected String paramString()
void postActionEvent()
void removeActionListener(ActionListener l)
void scrollRectToVisible(Rectangle r)
void setAction(Action a)
void setActionCommand(String command)
void setColumns(int columns)
void setDocument(Document doc)
void setFont(Font f)
void setHorizontalAlignment(int alignment)
void setScrollOffset(int scrollOffset)

}

A first glance at the class is somewhat disappointing. If this class is used to create input
boxes in a window, shouldn’t it list methods to retrieve what the user inputs? None of these
methods have identifiers that indicate they input values. But wait! The class header says that
JTextField extends JTextComponent. That little bit of code tells us that this definition is just
part of the story.We have to look at the documentation for JTextComponent to determine what
JTextField inherits from it. In fact, JTextComponent defines 68 additional methods that are in-

7.3 H o w t o R e a d a C l a s s H i e r a r c h y | 335

herited by JTextField.We won’t list them here, but among them is getText.We also see other
methods in JTextComponent whose names imply that they manipulate text within the field.

The class heading for JTextComponent indicates that the story continues, because it extends
the class JComponent. If we look at the documentation for that class, we find that it defines
138 more methods. We’ll look at just one of them here, together with its heading:

public abstract class JComponent extends Container
{
public void setVisible(boolean flag);
.
.
.

}

Notice the use of the abstract modifier in the class heading.Whenever you see the key-
word abstract in a class declaration, it tells you that the class being defined is incompletely
specified and cannot be instantiated.

When a class is declared as abstract, its purpose is to provide a placeholder for a defi-
nition to be supplied in a derived class.The class JComponent doesn’t have any constructors.
It doesn’t define the structure of a useful object that we can instantiate. Instead, it defines
a collection of methods that are common to various objects that can appear in a window. By
deriving classes for those objects from this common class, Java makes it easy to ensure that
they all behave in a consistent manner.

As we can see from its definition, JComponent extends Container. Looking at Container, we
see that it defines another 51 methods; it also extends Component, which in turn supplies an-
other 138 methods. Finally, Component extends Object, which is the top of the entire hierarchy
and supplies another 10 methods.We rarely use Object’s methods directly, and several of them
are related to features of Java that are beyond the scope of this text. Here we list just the ones
that are familiar:

public class Object
{
public Object(); // Constructor
public boolean equals(Object obj);
public String toString();
.
.
.

}

Now that we have the specification for every class that is an ancestor of JTextField, we
can determine the methods that it has available.There are more than 400 methods that it may
inherit.We could begin at the bottom of the hierarchy (JTextField) and write a list of all of its
members as a column on one side of the page. In the next column, we would write the mem-
bers of its superclass (excluding its constructors, because constructors technically aren’t

336 | Inheritance, Polymorphism, and Scope

members and aren’t inherited).We repeat this process in the third column, adding the mem-
bers of JComponent. The process continues until finally, we write the members of Object (ex-
cluding its constructors) in the last column. Of course, with more than 400 methods, this
process is quite tedious, especially given that we aren’t interested in the vast majority of
them. In practice, we just write down the ones that pertain to the problem at hand.

Overriding

A careful examination of the JComponent class reveals that it defines a method called
getUIClassID. We don’t use this method in this book, but it illustrates another aspect of Java

class hierarchies. Looking back down the hierarchy, we find that JTextField rede-
fines (overrides) getUIClassID, substituting its own version of getUIClassID.Thus, in
our lists of methods, we would cross off the JComponent member name to indicate
that it is redefined by JTextField.

Together, the columns in the complete table would tell us every member that
is available in the class JTextField.When we first looked at the documentation for
JTextField, it appeared that the class had just 33 members. Now, however, we can
identify more than 400 members.This example illustrates the power of using in-
heritance in a hierarchy of classes. Just as the architect can save effort by defin-
ing a hierarchy of building parts, we can save ourselves a lot of work by using
inheritance.

Hiding

In our JTextField example, we considered only inheritance of methods. In reality,
fields may also be inherited through the hierarchy. When a derived class defines
a field with the same name as one in its superclass, the field in the derived
class hides the one in the superclass. Java also distinguishes the case of over-
riding a static (class) method with another class method as a form of hiding.
The term overriding technically applies only to instance methods.

If you look at the JTextField hierarchy carefully, you would notice that nothing is deleted
as a result of inheritance (except constructors). Java does not provide any way to remove a
member that is inherited.We can cover over a member with a replacement member, but we
can’t delete it.This is an aspect of the philosophy of object-oriented design: As we go deeper
in the hierarchy, we add or change functionality, but we do not lose functionality. In object-
oriented design, a derived class is always an extension of its superclass.

For example, we would say that a JTextField is a JTextComponent. In object-oriented de-
sign, a fundamental concept is the “is a” relationship between a derived class and its su-
perclass. A derived class is a form of its superclass. The closest that we can get to deleting
a member of a superclass in a derived class is to override it or hide it with a member of the
same name that does nothing. For example, we could override a method with a version that
simply returns null.This approach would be considered poor programming practice, how-
ever.

Override To provide an
instance method in a derived
class that has the same form of
heading as an instance method
in its superclass.The method in
the derived class redefines
(overrides) the method in its su-
perclass.We cannot override
class methods.

Hide To provide a field in a de-
rived class that has the same
name as a field in its superclass;
to provide a class method that
has the same form of heading as
a class method in its superclass.
The field or class method is said
to hide the corresponding com-
ponent of the superclass.

7.4 D e r i v e d C l a s s S y n t a x | 337

Polymorphism

Let’s take a closer look at the mechanism that allows getUIClassID to have two different imple-
mentations. When it is applied to a JTextField, it has one implementation; when applied to a
JComponent, it has another. In object-oriented terms,we say that getUIClassID is poly-

morphic.That is, it has multiple forms. Java decides which form to use depending on
the class of the object.

Together with inheritance and encapsulation, polymorphism gives us the
ability to flexibly implement a hierarchy of objects.We use polymorphism to sub-
stitute different implementations of a responsibility as required by variations in
the internal representation of classes at different levels of the hierarchy. For ex-
ample, Address might represent a ZIP code as a single string, but then we might
redefine its representation in the CompanyAddress class so that the four-digit extension is kept
separately. Thus, the “Know ZIP code” responsibility would be implemented differently in
CompanyAddress than in Address.

7.4 Derived Class Syntax

The declaration of a derived class looks very much like the declaration of any other class. Here
is the syntax template for a declaring class:

The only difference between this template and the one in Chapter 2 is that we’ve added
the optional extends clause that allows us to indicate the superclass from which our new class
is derived. Here’s an example declaration:

public class BusinessPhone extends Phone
{
// Declare new data fields and methods as needed

}

This new class inherits all of the fields and methods of Phone (including anything Phone has
inherited) and then adds some of its own. Is that all there is to implementing a derived class?
In terms of syntax, yes. But in terms of semantics, there is more we need to know.

In Chapters 2 and 3, we learned how to create individual classes that are fully encapsu-
lated.With inheritance and polymorphism, we are beginning to create related sets of classes.

extends ClassnameClass-Modifiers . . .

Class-Declaration . . .
{

class Identifier

}

Polymorphic operation An
operation that has multiple
meanings depending on the class
of object to which it is bound

Ada Lovelace
On December 10, 1815 (the same year that George Boole was born), a daughter—Augusta Ada
Byron—was born to Anna Isabella (Annabella) Byron and George Gordon, Lord Byron. In
England at that time, Byron’s fame derived not only from his poetry but also from his wild and
scandalous behavior.The marriage was strained from the beginning, and Annabella left Byron
shortly after Ada’s birth. By April 1816, the two had signed separation papers. Byron left
England, never to return.Throughout the rest of his life he regretted that he was unable to see
his daughter. At one point he wrote of her,

I see thee not. I hear thee not.

But none can be so wrapt in thee.

Before he died in Greece, at age 36, he exclaimed,

Oh my poor dear child! My dear Ada!

My God, could I but have seen her!

Meanwhile, Annabella, who eventually became a baroness in her own right, and who was ed-
ucated as both a mathematician and a poet, carried on with Ada’s upbringing and education.
Annabella gave Ada her first instruction in mathematics, but it soon became clear that Ada was
gifted in the subject and should receive more extensive tutoring. Ada received further training
from Augustus DeMorgan, today famous for one of the basic theorems of Boolean algebra. By age
eight, Ada had demonstrated an interest in mechanical devices and was building detailed model
boats.

When she was 18, Ada visited the Mechanics Institute to hear Dr. Dionysius Lardner’s
lectures on the Difference Engine, a mechanical calculating machine being built by Charles
Babbage. She became so interested in the device that she arranged to be introduced to Babbage.
It was said that, upon seeing Babbage’s machine, Ada was the only person in the room to
understand immediately how it worked and to recognize its significance. Ada and Charles
Babbage became lifelong friends. She worked with him, helping to document his designs,
translating writings about his work, and developing programs for his machines. In fact, Ada to-
day is recognized as history’s first computer programmer.

When Babbage designed his Analytical Engine, Ada foresaw that it could go beyond
arithmetic computations and become a general manipulator of symbols, and thus would have
far-reaching capabilities. She even suggested that such a device eventually could be
programmed with rules of harmony and composition so that it could produce “scientific” mu-
sic. In effect, Ada foresaw the field of artificial intelligence more than 150 years ago.

In 1842, Babbage gave a series of lectures in Turin, Italy, on his Analytical Engine. One of the at-
tendees was Luigi Menabrea, who was so impressed that he wrote an account of Babbage’s
lectures. At age 27, Ada decided to translate the account into English, with the intent to add a few
of her own notes about the machine. In the end, her notes were twice as long as the original ma-
terial, and the document, “The Sketch of the Analytical Engine,” became the definitive work on
the subject.

338 | Inheritance, Polymorphism, and Scope

It is obvious from Ada’s letters that her “notes” were entirely her own and that Babbage was
acting as a sometimes unappreciated editor. At one point, Ada wrote to him,

I am much annoyed at your having altered my Note. You know I am always willing
to make any required alterations myself, but that I cannot endure another person

to meddle with my sentences.

Ada gained the title Countess of Lovelace when she married Lord William Lovelace.The cou-
ple had three children, whose upbringing was left to Ada’s mother while Ada pursued her work
in mathematics. Her husband was supportive of her work, but for a woman of that day, such
behavior was considered almost as scandalous as some of her father’s exploits.

Ada died in 1852, just one year before a working Difference Engine was built in Sweden from
one of Babbage’s designs. Like her father, Ada lived only to age 36. Even though they led very
different lives, she undoubtedly had admired him and took inspiration from his
unconventional and rebellious nature. In the end, Ada asked to be buried beside him at the
family’s estate.

Java lets us group related classes in a package so that encapsulation protects the whole col-
lection.Within the package, it allows the related classes to communicate directly. Direct ac-
cess is more efficient than converting back and forth between external and internal
representations when classes share a common internal representation.

Also, when a derived class overrides or hides members of its superclass, it can no longer
refer to them directly. Java provides additional syntax and semantics that enable a subclass
to access such superclass members when the need arises.

In the next section, we examine the Java semantics for accessing members from dif-
ferent places. Then we can return to the specifics of implementing a hierarchy of de-
rived classes.

7.5 Scope of Access

In writing a Java class, we declare variables, constants, and methods that are given
identifiers. Java defines a set of rules that specify where those identifiers can then
be used, both inside and outside of the class.We say that the rules determine the
scope of access of an identifier.The term is usually shortened to scope, and the rules
are thus called the scope rules of the language.

The scope rules for access within a class (internal access scope rules) are
straightforward and do not depend on the access modifiers attached to an iden-
tifier. External access scope rules determine where an identifier can be used out-
side of a class and depend on both the access modifiers and the location where
the access takes place.We look first at internal scope and then at external scope.

Scope of access (scope) The
region of program code where it
is legal to reference (use) an
identifier

Scope rules The rules that de-
termine where in a program an
identifier may be referenced,
given the point where the iden-
tifier is declared and its specific
access modifiers

7.5 S c o p e o f A c c e s s | 339

340 | Inheritance, Polymorphism, and Scope

Internal Scope

Any identifier declared as a static or instance member of a class can be used anywhere
within the class, with two exceptions. You can’t use one class variable to initialize another
before the first one has been defined. And, within its block, a local identifier hides a class
member of the same name. Let’s take a closer look at each of these exceptions.

Order of Definition Suppose you are defining a Circle class and you want to provide class vari-
ables that are initially set to pi and pi times two. The first of the following two declarations
is illegal because its initialization expression uses the second identifier before it has been
given a value:

public static double twoPI = PI * 2; // PI isn't defined yet
public static double PI = 3.14159265358979323846;

Reversing the order of the statements makes them both legal:

public static double PI = 3.14159265358979323846;
public static double twoPI = PI * 2; // PI already has a value

The scope rule that requires us to define a class variable’s value before it is used applies
only to references in expressions that initialize other class variables as part of their decla-
ration. Otherwise, it’s legal to refer to class variables before they are defined. For example,
the following declarations are legal:

public static int circumference(Circle anyCircle)
{
return anyCircle.radius * twoPI;

}
static double PI = 3.14159265358979323846;
static double twoPI = PI * 2;

In this code, the method is allowed to refer to the variable twoPI before it is defined. Why is
this case different? The JVM performs all class variable declaration initializations before it
starts executing statements in main, and it does so in the order that the initializations are writ-
ten in the code. So an initialization expression can use only class variables that have already
been given values.

The method circumference isn’t executed until it is called from some point in the program,
which can happen only after all of the variable declaration initializations are complete. In
terms of the order of execution, all initialization expressions are executed before any other
use of a variable.

Note that regular assignment statements that initialize variables in methods are distinct
from declaration initialization expressions.They are executed in the normal flow of control,
which starts after all of the declaration initializations take place.

7.5 S c o p e o f A c c e s s | 341

Constant declarations do not follow this rule because the compiler computes constant val-
ues at compile time. That is, the compiler searches through our code to find all the constant
declarations before it computes their values.As a consequence, it doesn’t require us to define
a constant before referring to it.The JVM isn’t able to search through Bytecode in the same way,
so it requires us to initialize variables before their use in initialization expressions.

To make life easier for human readers of your code, it’s good form to define constants
ahead of any references to them. Some programmers even make a point of writ-
ing all constant declarations before the variable declarations, just as a reminder
that constants are given their values first.

Shadowing The scope rule that says local identifiers block access to identifiers
with the same name in the enclosing class is called shadowing.

In Java, the scope of a local identifier is the remainder of the block follwing the
point at which it is declared.The block includes all of the statements between the
{ and } that contain the declaration. For example:

public class SomeClass
{
static int var; // Class member var
static final int CONST = 5; // Class member CONST
static Label label1;
public static void someMethod(int param)
{
int var = CONST;
final int CONST = 10;
var = param * CONST;
label1.setText("" + var);

}
}

In this example, the scope of the local declarations extends from the point that each one ap-
pears to the end of the block.Thus, in the first use of CONST, to initialize var as part of its dec-
laration, the initialization refers to the class version of CONST.The second use of CONST in the
expression assigned to var, refers to the local constant.

Using this Refer to an Object from Within Itself Java provides a keyword, this, which can be used
within an object to refer to the object itself. With regard to their scope, formal parameters
are treated as local identifiers that are declared at the beginning of the method body. Their
scope thus includes the entire body of the method.

Here’s an example showing the use of this to access instance fields from within a method
that defines local names that shadow access to those fields:

public class SomeClass
{
static int var = –1; // Instance member var
static final int CONST = 5; // Class member CONST

Shadowing A scope rule spec-
ifying that a local identifier dec-
laration blocks access to an
identifier declared with the
same name outside of the block
containing the local declaration.

Scope of local variable var which
shadows the same identifier
declared as a class member

Scope of local constant CONST,
which shadows the same identifier
declared as a class member. }{

342 | Inheritance, Polymorphism, and Scope

int param = 0; // Instance member param
public int someMethod(int param) // Defines local param
{
int var; // Defines local var
// Define and set local CONST to instance CONST * 2
final int CONST = this.CONST*2;
if (param > this.param) // Compare local and instance params

var = param * CONST; // Use local values
else
var = this.param * this.CONST; // Use instance values

return var;
}

}

Understanding the internal scope rules helps to avoid or locate errors in implementing
the internal representation of the class.An example of a scope-related error is when you de-
clare a local identifier that shadows a class member, but misspell the name in the local dec-
laration. The compiler won’t complain, but merely directs all of the references to the local
identifier to its correctly spelled class member equivalent, as shown here:

public class SomeClass
{
static int var; // Class member var
public static void someMethod(int param)
{
int ver; // Misspelling of var
var = param * param; // Accidentally refers to class member var
System.out.println("" + var); // Accidentally refers to class member var
System.out.println("" + SomeClass.var); // Intentional reference to class member var

}
}

This program exhibits erroneous behavior in which a class member is changed and dis-
played as a side effect of calling a method. Knowing the scope rules leads us to look for ref-
erences to the class member within the method, and then to check the local declarations.
The last line of someMethod illustrates how to intentionally access a shadowed class field.We
just use the class name to refer to the field.

External Scope

The external access scope rules for members control their use by code that is outside of the
class. Java allows class members to be accessed from three external places: derived classes,
members of the same package, and code external to the package.

A package contains a set of related classes, and sometimes we want to make members
of those classes accessible to each other, even if they aren’t public. For example, suppose
that a Date class is part of a calendar package. Another class, called ShowWeek, in the package

7.5 S c o p e o f A c c e s s | 343

displays a week surrounding a given date. Both of the classes use the Julian day as their in-
ternal representation. It is thus more efficient for a Date object to make its Julian day mem-
ber directly accessible to ShowWeek than to require conversion of the date first to its external
form and then back to a Julian day in the other object.The user is unaware of this shortcut,
so the encapsulation is preserved.

Classes naturally belong together in a package if they have common internal represen-
tations. In that case, they can bypass each other’s encapsulations because the common de-
tails of their implementations are already known to anyone who’s working with them.

Java defines four levels of access for class members, three of which enable direct access
by other package members.The four levels of access are public, protected, default (package),
and private.There are keywords that we use as access modifiers for each of these levels ex-
cept the package level, which is the default level. If you omit an access modifier from the dec-
laration of a class member, it is at the package level of access by default.

public Access A publicmember can be accessed from anywhere outside of the class. User code,
derived classes, and other classes in the same package can all access a public member.The
member may still be hidden by a declaration of the same name in another class, in which
case references to it must be qualified with its class or instance name.

Here’s an example of using qualified names. If the class ShowWeek defines a julianDay field
and Date also defines julianDay as a static field, then ShowWeek would need to refer to

Date.julianDay

to access the static field of Date. If julianDay is an instance field of Date and the particular ob-
ject is called instanceName, then ShowWeek must refer to it as follows:

instanceName.julianDay

protected Access A protected member is accessible to classes in the same
package and can be inherited by derived classes outside of the package.
Code that is outside of the package can only inherit protected members of a
class; it can’t access them directly.

In the following code segment, we define two packages. The second
package has a class (DerivedClass) that is derived from the class in the first
package (SomeClass). DerivedClass inherits the protected field someInt from
SomeClass. Notice that DerivedClass doesn’t include a declaration of someInt.

DerivedClass defines a method that has one parameter of the class SomeClass and another
parameter of its own class. It then tries to access the someInt field in both parameters.

package one;
public class SomeClass
{
protected int someInt;

}

Inherit To acquire a field or
method from a superclass

344 | Inheritance, Polymorphism, and Scope

import one.*;
package two;
public class DerivedClass extends SomeClass
{
void demoMethod(SomeClass param1, DerivedClass param2)
{
param1.someInt = 1; // Generates a compiler error

// Can't access member of instance of SomeClass
param2.someInt = 1; // This access is legal

// It refers to the inherited member
}

}

The compiler will issue an error message for the first assignment statement because it
is illegal to access the protected field of a superclass when the superclass resides in a different
package. The second assignment is valid because it refers to the inherited field within
DerivedClass.

The protected modifier provides the least restrictive level of access that isn’t public. We
use protected to enable users to extend our class with a subclass. The subclass inherits its
own copies of the protected members, but cannot access the originals.

It is unusual to see protected in an application designed with CRC cards because all of
the responsibilities and collaborations are known in advance. But if a package of classes is
independent of an application (such as the java.util package), it is often desirable to enable
users to derive their own classes from the library classes.

Package Access When no access modifier is specified, then classes in the same package can ac-
cess the member. No other external access is allowed. A member at the package level of ac-
cess cannot be inherited by a derived class in another package. Up to this point, we’ve given
only examples in which every member of a class is inherited by a subclass. With the intro-
duction of the package level of access, we see that Java also lets us selectively restrict the
members that are inherited.

A derived class in the same package retains access to the members of its superclass
that are at the package level of access. All classes within the same package have access to
each other’s public, protected, and package members.

Here’s the preceding example, but with both classes in the same package and someInt at
the package level of access. In this case, both assignment statements are valid.

package one;
public class SomeClass
{
int someInt;

}

package one;
public class DerivedClass extends SomeClass

7.5 S c o p e o f A c c e s s | 345

{
void demoMethod(SomeClass param1, DerivedClass param2)
{
param1.someInt = 1;
param2.someInt = 1;

}
}

private Access Lastly, the private modifier cuts off all external access, even by classes in the
same package. A private member of a class can be referred to only by other members of the
class, and only the internal scope rules apply to it. It isn’t even permissible for a derived
class in the same package to access a private member of its superclass.

Instances of a class can refer to each other’s private members. A member is private to
its class, which includes all instances of the class.Thus two objects, someObj and otherObj, that
have private int fields called someInt can refer to each other’s fields.That is, someObj can re-
fer to otherObj.someInt and otherObj can refer to someObj.someInt.

Within a method, all local identifiers are automatically private; Java doesn’t allow us to
declare them with access modifiers.The reason is that the lifetime of a local identifier is lim-
ited to a particular method call, so it simply doesn’t exist when external code is running.Table
7.1 summarizes the external scope rules.

So far, we have primarily used the public and package levels of access, keeping data
members at the package level and making most methods and classes public. This simple
scheme provides encapsulation and a consistent user interface that is strictly a set of method
calls. However, this scheme is inflexible and limits our ability to provide for either extension
or the construction of related classes that are grouped into a package.

Now that we have a better understanding of Java’s access rules, we must consider which
access modifier is most appropriate for each member of a class. Once you have identified all
of its members, take a second look at each one and ask the following question:

Do I want to access this member from other classes in the same package, from derived classes, or
from user code?

Based on your answer to each part of this question, use Table 7.1 to decide which access
modifier is most appropriate.

External Access public protected Default (package) private

Same package yes yes yes no

Derived class in another yes yes no no
package (inheritance only)

User code yes no no no

Table 7.1 Java’s External Scope Rules

346 | Inheritance, Polymorphism, and Scope

7.6 Implementing a Derived Class

Given the CRC card design for a subclass and its superclass, you can determine what you must
include in the subclass to implement its responsibilities.You may find that you simply need
to change the operation of an inherited method, which means that you override or hide it
with a new version. Because a derived class doesn’t inherit any constructors, it will proba-
bly need one or more new constructors.We often implement new constructors by calling the
old ones to do much of the work, and then adding a few statements to take care of initializ-
ing any new fields that we’ve added. In some cases, you may find it necessary to change the
internal representation of the subclass.

After you have designed the subclass interface and its internal representation, you im-
plement it by writing the necessary field and method declarations within a class declaration
that extends the superclass. Here are the steps in the form of a checklist:

1. Study the interfaces of the superclass and the subclass, identifying the members
that are inherited.

2. Determine whether the internal representation must change in the subclass.

3. Provide constructors as needed.

4. Add fields and methods to those that are inherited, as necessary.

5. Hide any inherited fields or class methods that you wish to replace.

6. Override any instance methods that you wish to replace.

We have already seen how to read an existing class hierarchy to determine what is
inherited by a subclass. When we are creating a new hierarchy, we start from a set of
CRC cards. During the enactment of the scenarios, it may become clear that certain re-
sponsibilities are public, private, or package-level in their access requirements; this fact
should be written on the cards. As we’ve noted, a CRC card design rarely results in a pro-
tected responsibility.

As we design the internal representation for a class, we may also notice that certain
fields need an access level other than package. For example, we might define some public
class constants. Armed with this information, we can list the members that a subclass in-
herits.

Next, we reconsider the choice of internal representation given the responsibilities of the
subclass. Unless we have a good reason for making the representation different from the su-
perclass, it should remain the same. Thus we begin with the inherited representation and
look for any omissions. We can easily add any extra fields needed.

Sometimes an inherited field is inappropriate for the subclass. Perhaps the superclass
uses an int field for part of its representation, and the purpose of the subclass is to extend
its range by using long.Then we must hide the inherited field in the subclass.

Once we have the interface and internal representation, we can begin to implement the
constructors. Java has some special rules regarding constructors in derived classes that we
examine next.

7.6 I m p l e m e n t i n g a D e r i v e d C l a s s | 347

Constructors in Derived Classes

What would happen if we forgot to include a constructor in the declaration of a derived
class? Java automatically provides a default constructor that calls the superclass construc-
tor with an empty parameter list. We mentioned this issue briefly in Chapter 5.

In fact, Java requires every constructor in a derived class to call a constructor in its su-
perclass.That call must be the first statement appearing in the constructor even before any
declarations. If it isn’t the first statement, Java automatically inserts the same default call.

Java requires us to call a superclass constructor in this way because every derived class
is a specialized form of its superclass.An object of the subclass can be assigned to a variable
of both its own class and its superclass (and by extension, any of the classes above it in the
hierarchy). The superclass may perform initialization operations to create a valid object.
Rather than requiring every derived class to duplicate those operations, Java simply enforces
the rule that one of the superclass constructors must be called, either explicitly in our con-
structor or implicitly by default.

Of course, the superclass constructor must call a constructor for its superclass, and so on
until the constructor for Object is called.Thus the process of instantiating an object calls a chain
of constructors that provides essential initialization all the way up to Object.Next,we examine
how Java identifies methods and the Java syntax for calling a constructor in the superclass.

Overloading and Method Signatures

If you were to examine the interface of the class JTextField, you would discover that it has
not one, but five constructors:

public JTextField()
public JTextField(String text)
public JTextField(int columns)
public JTextField(String text, int columns)
public JTextField(Document doc, String text, int columns)

We’ve always been careful to avoid declaring duplicate identifiers in our pro-
grams,yet JTextFieldhas five constructors,all with the same name.How is this pos-
sible? In the case of methods, Java uses more than just the name to identify them; it
also uses the parameter list.A method’s name,the number and types of parameters
that are passed to it, and the arrangement of the different parameter types within
the list combine into what Java calls the signature of the method.

Java allows us to use the name of a method as many times as we wish, as long
as each one has a different signature. When we use a method name more than
once, we are overloading its identifier. The Java compiler needs to be able to look
at a method call and determine which version of the method to invoke.The five
constructors in the class JTextField, for instance, all have different signatures: the
first constructor takes no arguments, the second takes a String, the third takes an int, the
fourth takes both a String and an int, and the fifth takes an object of class Document, a String,

Signature The distinguishing
features of a method heading;
the combination of the method
name with the number and
type(s) of its parameters in their
given order

Overloading The repeated
use of a method name with a
different signature

348 | Inheritance, Polymorphism, and Scope

and an int. Java decides which version to call based on the arguments in the statement that
invokes JTextField.

The following method headings have different signatures and thus overload each other:

public static void someName(int formal1, int formal2, int formal3)
public static void someName(int formal1, double formal2, int formal3)
public static void someName(double formal1, int formal2, int formal3)
public static void someName(int formal1, int formal2, String formal3)

Even though all of these parameters have the same names, the differences in their types en-
able Java to distinguish among them. For example, the statement

someName(1, 2.0, 3);

calls the second version because it has an int value, a double value, and another int value as
its arguments. If we write the call as

someName(1.0, 2, 3);

then the double, int, int pattern of its arguments identifies the third version of the method
as the target of the call.

The following method headings all have the same signature and cannot be declared to-
gether in a class. Their signature is the method name (aName) and the presence of three pa-
rameters of types int, double, and String, in that order.

public static void aName(int formal1, double formal2, String formal3)
public static void aName(int large, double medium, String small)
public void aName(int red, double green, String blue)
static int aName(int thing1, double thing2, String hatCat)

Keep in mind that the types of the parameters determine the signature of a method.The
names of the parameters, the return type, and the modifiers of a method are not part of its
signature.

Overloading is related to, but different from, hiding and overriding. Hiding and overrid-
ing are mechanisms whereby a name is replaced when the same name is declared in a new
context. For example, an instance method identifier overrides a method with the same name
in its superclass if it has the same signature. The declaration in the derived class results in
an identifier that duplicates the one in the superclass. Because they are in different classes,
however, the duplication is acceptable. When we use the identifiers, we indicate which one
we mean. An instance identifier is associated with a specific object of one or the other class
type, and a class identifier is preceded with the name of the class and a period.

If we declare a method with the same name as an inherited superclass method, but the
methods have different signatures, then the new method overloads the name of the super-
class method. The two identifiers are the same, but the different signatures allow them to
be distinguished. Different signatures also serve to distinguish overloaded methods within
the same class. The Java compiler decides which version to call by comparing the types of
the arguments with the types of the parameters in each signature.

7.6 I m p l e m e n t i n g a D e r i v e d C l a s s | 349

To summarize, overloading allows us to add new versions of a name that can coexist in
a single context, while hiding and overriding provide a way to replace a name with a new dec-
laration in a different context.

Accessing Overridden and Hidden Methods and Fields

Using the keyword super followed by a parameter list refers to the constructor in the super-
class with the same signature. Keep in mind that you have to use super or the name of the
superclass in only two cases:

� When you are accessing a method or field that has been overridden or hidden

� When you are accessing a superclass constructor

Otherwise, the name has been inherited and you can refer to it directly.
Here are some examples of using super:

super(); // Call to the default constructor of the superclass
someInt = super.someInt; // Reference to a hidden field in the superclass
super.classMethod(); // Call to a hidden class method in the superclass
SuperClassName.classMethod(); // Another way to call the same hidden method
super.instanceMethod(); // Call to an overridden instance method in the superclass

A Concrete Example

In the example used to present the CRC card technique in Chapter 6, the filtered list of
classes included a business phone number. What distinguishes a business number from a
home number is the presence of an extension in the business number. Let’s extend the class
Phone to include an extension number.We need to add a field in BusinessPhone to hold the ex-
tension. Should we change the methods asDigits and asString to include the extension? Yes;
let’s do so. Here, then, is the CRC card for BusinessPhone:

Class Name: BusinessPhone Superclass: Phone Subclasses:

Responsibilities Collaborations

Create itself (area code, number, extension) Phone

Know its extension None

 return int

asDigits Phone

 return long

asString Phone

 returnString

.

.

.

350 | Inheritance, Polymorphism, and Scope

The constructor can call its superclass constructor and then store the extension.
knowExtension just returns the value of extension. asDigits and asString can call upon their su-
perclass methods to help them.

package phone;
public class BusinessPhone extends Phone
// Adds an extension to an object of class Phone
{
private int extension;

public BusinessPhone(int area, int number, int exten)
{
super(area, number); // Calls superclass constructor
extension = exten;

}

// Knowledge methods
public int knowExtension()
{
return extension;

}

public long asDigits()
{
long digits;
digits = super.asDigits(); // Accesses superclass method
return (long) (digits * 10000 + extension);

}

public String asString()
{
String string = super.asString(); // Accesses superclass method
return (string + "-" + extension);

}
}

Notice that the asDigits and asString methods of BusinessPhone override the instance
methods of the same name in Phone.The new class inherits all of the fields and methods of
Phone and then adds some of its own.The following program is a test driver that creates a Phone
object and three BusinessPhone objects, and applies the methods from both classes to them:

import java.io.*;
import phone.*;
public class TestDrPhone

7.6 I m p l e m e n t i n g a D e r i v e d C l a s s | 351

{
public static void main(String[] args) throws IOException
{
Phone firstPhone;
BusinessPhone secondPhone;
BusinessPhone thirdPhone;
BusinessPhone fourthPhone;
PrintWriter outFile;
outFile = new PrintWriter(new FileWriter("DrPhoneOut"));
outFile.println("Test results for class Business Phone");
firstPhone = new Phone(523, 3733344);
secondPhone = new BusinessPhone(713, 2233121, 1234);
thirdPhone = new BusinessPhone(523, 3733344, 1234);
fourthPhone = new BusinessPhone(713, 2233121, 1234);
outFile.println("knowAreaCode: " + firstPhone.knowAreaCode());
outFile.println("knowDigits: " + firstPhone.knowDigits());
outFile.println("asDigits: " + firstPhone.asDigits());
outFile.println("asString: " + firstPhone.asString());
outFile.println("knowAreaCode business: " +
secondPhone.knowAreaCode());

outFile.println("knowDigits business: " + secondPhone.knowDigits());
outFile.println("asDigits business: " + secondPhone.asDigits());
outFile.println("asString business: " + secondPhone.asString());
if (secondPhone.equals(thirdPhone))
outFile.println("two business phones are equal");

else
outFile.println("two business phones are not equal");

if (firstPhone.equals(secondPhone))
outFile.println("a phone and a business phone are equal");

else
outFile.println("a phone and a business phone are not equal");

if (firstPhone.equals(thirdPhone))
outFile.println("a phone and a business phone are equal");

else
outFile.println("a phone and a business phone are not equal");

if (secondPhone.equals(fourthPhone))
outFile.println("two business phones are equal");

else
outFile.println("two business phones are not equal");

outFile.close();
}

}

352 | Inheritance, Polymorphism, and Scope

Here are the results of file DrPhoneOut:

Look carefully at this driver.The method equals, as defined in Phone, is applied to objects
of both Phone and BusinessPhone. The methods knowAreaCode and knowDigits, as defined in
Phone, are applied to objects of both Phone and BusinessPhone.The overridden methods asDigits
and asString are applied to objects of both Phone and BusinessPhone, with the system deter-
mining which method is appropriate.

Before we move on to the input and output of objects, we would like to introduce one
more technique. In Chapter 6, we mentioned that it is sometimes useful to create construc-
tors that take an existing instance and use its contents to build a new instance.We use these
copy constructors to illustrate the difference between shallow and deep copying of objects.

7.7 Copy Constructors

One way to simplify the creation of a new instance of an immutable object (one with no
transformer methods) from an old instance is to provide a constructor that takes an exist-
ing object as a parameter. It may also have other parameters that provide values to substi-
tute in creating the new object. Here’s an example of the heading and documentation for such
a constructor:

public SavingsAccount(SavingsAccount oldAcct, String address)
// oldAcct must contain valid account information.
// A SavingsAccount object is created with its contents
// equal to those of the old account except that
// the address is set equal to the address parameter.

7.7 C o p y C o n s t r u c t o r s | 353

Here’s an example of how it would be called, where oldAccount is an existing
object of type SavingsAccount and address is a string that holds a new address
value for the account:

account = new SavingsAccount(oldAccount, address);

The body of the constructor would copy every field from oldAccount to its own
equivalent fields, substituting the value in its address parameter for the one in the
address field of oldAccount. Note that if any of the fields in the object are themselves
objects, we must use their observers to copy the actual values from the fields of
the nested objects. Otherwise, the new object simply refers to the same places in
memory as oldAccount.

This copy constructor is said to perform a deep copy of the object. A deep
copy copies what a reference refers to, rather than the reference itself. A shal-

low copy ignores the presence of nested objects, treating them like fields of
simple types. Figure 7.4 illustrates shallow copying, and Figure 7.5 shows deep
copying. In both figures, the colored arrows indicate that a field is a reference
type with an address that specifies another place in memory.The black arrows
indicate copying of values.

New SavingsAccount
Object

account = 4295110
name =
address =
phone =
balance = 8337.26
activation =
status = 1

Existing SavingsAccount
Object

account = 4295110
name =
address =
phone =
balance = 8337.26
activation =
status = 1

Existing Nested Objects

"Jane A. Smith"

"4731 East Oak St., Fossil, OR, 97364"

"541-555-9111"

month =
day = 17
year = 1993

"August"

Figure 7.4 Shallow Copying

Deep copy An operation that
copies one class instance to an-
other, using observer methods
as necessary to eliminate nested
references and copy only the
simple types to which they refer;
the result is that the two
instances do not contain any du-
plicate references

Shallow copy An operation
that copies a source class
instance to a destination class
instance, simply copying all ref-
erences so that the destination
instance contains duplicate ref-
erences to values that are also
referred to by the source

354 | Inheritance, Polymorphism, and Scope

New SavingsAccount
Object

account = 4295110
name =
address =
phone =
balance = 8337.26
activation =
status = 1

Existing SavingsAccount
Object

account = 4295110
name =
address =
phone =
balance = 8337.26
activation =
status = 1

New Nested Objects

"Jane A. Smith"

"4731 East Oak St., Fossil, OR, 97364"

"541-555-9111"

month =
day = 17
year = 1993

"August"

Existing Nested Objects

"Jane A. Smith"

"4731 East Oak St., Fossil, OR, 97364"

"541-555-9111"

month =
day = 17
year = 1993

"August"

Figure 7.5 Deep Copying

7.8 Output and Input of Objects

The title of this section looks a bit strange.We usually talk about “input and output,” not “out-
put and input.” However, if we are talking about objects, they cannot be created outside the
application and read in. Rather, objects must be created in an application and then written
to a file. Once they are on a file, we can read the data values back in and re-create the object.
There are two ways to write and read objects. The first is to transform each data field of an
object into a string and then output the strings individually. The reverse transformation is
required to read in the strings representing data fields, convert them to the proper form, and
store them in the object’s fields.Transforming objects into strings and back again is a lot of

7.8 O u t p u t a n d I n p u t o f O b j e c t s | 355

work for the programmer. Fortunately, Java provides a way to save objects and read them back
again without requiring all of this work. Saving an object with this approach is called serial-
izing the object.

The basic unit of data in the FileReader and FileWriter classes is the character. The
BufferedReader and PrintWriter classes include methods that make reading and writing
strings easier, but the basic unit remains the character. Java provides two classes for which
the object is the basic unit of data: ObjectOutputStream (derived from OutputStream) and
ObjectInputStream (derived from InputStream).To write an object to a file, we use the writeObject
method of the ObjectOutputStream class. To read objects from a file, we use the readObject
method of the ObjectInputStream class.

How can this be? Java uses the Unicode character set; all the characters take
up the same number of bits. Untold numbers of objects exist, whose struc-
tures vary in size and shape. Writing would seem to be easy, but how do we fig-
ure out how the bytes group when inputting the object? Fortunately, we don’t
have to know. One of the most important features in the java.io package is
the ability to convert an object into a stream of bytes that can later be converted
back into a copy of the original object. This translation from object to bytes is
called serializing. The reverse translation is called deserializing. We do not need
to understand how Java performs this conversion; we just have to know how
to use this feature.

Let’s examine the syntax and semantics of writing objects through the use of a pair of
application programs.The first creates an object and writes it out; the second reads the ob-
ject back in and writes it to the screen. Let’s use the class Name from Chapter 4 for this example.
Recall that Name has three data fields: first, middle, and last.To serialize objects of the class
Name, we need to add the words implements Serializable beside the class name. Here is the doc-
umentation (a list of the methods) for Name to refresh your memory:

public class Name implements Serializable
// This class defines a name consisting of three parts
{
// Constructors
public Name() throws IOException
public Name(String firstName, String lastName, String middleName)

// Knowledge methods
public String knowFirstName()
public String knowMiddleName()
public String knowLastName()

// Additional observer methods that return a formatted name
public String firstLast()

Serializing Translating an
object into a stream of bytes

Deserializing Translating a se-
rialized stream of bytes back
into the original object

356 | Inheritance, Polymorphism, and Scope

public String full()
public String lastFirstMI()

// Additional observer methods that compare an instance to another name
public boolean equals(Name otherName)
public int compareTo(Name otherName)

}

In Chapter 8 we explain the meaning of the implements clause in the class heading. For
our purposes here it is sufficient to view it as a way of telling Java that objects of this class
can be output and input using writeObject and readObject, respectively.

Our first application reads the data for the three fields from a file, instantiates a Name ob-
ject, and then writes the Name object onto the second file. The second application reads the
Name object and prints it.

import java.io.*;
import Name;

public class ObjectFileWrite
{

public static void main(String[] args) throws IOException
{
ObjectOutputStream outObject; // Output data file
BufferedReader inFile; // Input data file
String first;
String second;
String last;
Name person;

// Prepare files
inFile = new BufferedReader(new FileReader("infile.dat"));
outObject =
new ObjectOutputStream(new FileOutputStream("outObject.dat"));

// Read names from the file
first = new String(inFile.readLine());
second = new String(inFile.readLine());
last = new String(inFile.readLine());
// Instantiate a person
person = new Name(first, last, second);
// Write out person
outObject.writeObject(person);
// Close files and quit
outObject.close();
inFile.close();

}
}

7.8 O u t p u t a n d I n p u t o f O b j e c t s | 357

Here is infile.dat:

The application that reads the object back in and prints it is very straightforward.We ap-
ply readObject to the file of type ObjectInputStream, which returns an object of the class Object.
Note that the object read from the file must be cast into a Name object before being assigned
to the person variable.We use the methods of the class Name to access the fields so as to print
them. We must also mention one more piece of syntax: readObject can throw a
ClassNotFoundException. In Chapter 9, we show how to handle an exception, but for the mo-
ment we just add it to the throws clause of the main method.

import java.io.*;
import Name;

public class ObjectFileRead
{
public static void main(String[] args)
throws IOException, ClassNotFoundException
{
ObjectInputStream inObject; //Input file
Name person;
// Prepare file
inObject = new ObjectInputStream(new FileInputStream("outObject.dat"));

//Read Name object
person = (Name)inObject.readObject();

System.out.println(person.knowFirstName() + ' ' +
person.knowMiddleName() + ' ' + person.knowLastName());

inObject.close();
}

}

358 | Inheritance, Polymorphism, and Scope

Here is the screen output from the application ObjectFileRead:

You should note two additional points of syntax. The first is how the object files are
instantiated:

inObject =
new ObjectInputStream(new FileInputStream("outObject.dat"));

outObject =
new ObjectOutputStream(new FileOutputStream("outObject.dat"));

This follows the pattern of BufferedReader and PrintWriter: FileInputStream and
FileOutputStream objects are instantiated as arguments to the ObjectInputStream and
ObjectOutputStream constructors.

The second thing to notice is that the input object has to be type cast back into a Name
object. The object that is input is just a sequence of bits. We must indicate how to break up
this sequence of bits into the proper fields by using the appropriate class name as a type cast.

person = (Name)inObject.readObject();

Now that we have seen the mechanics of implementing a derived class and discussed
the method for designing a class interface, let’s bring all the pieces together in a Case Study
that illustrates the process.

CASE STUDY 359

EXTENDING THE ADDRESS BOOK

Problem: In Chapter 6, we created a file that contained a simplified version of a comput-
erized address book. It was so successful, that we will now improve it in the following
ways:

� Add a birthday to each entry.

� Replace the text file with an object file.

Brainstorming: Our problem statement implies that we should replace a PrintWriter
object with an ObjectOutputStream object. We don’t need to brainstorm about this
change, but we do need to think about what is involved in representing a birthday. A
birthday is a date, so we should have a month, day, and year. Do we need separate
classes for month, day, and year? Because each can be represented by an integer, let’s
let month, day, and year just be fields in the Birthday class.

Do we really need a year field? It isn’t polite to ask people how old they are, but
there is no harm in having a year. If we don’t know the year, we can just substitute a
value that represents “not known.”

Determining Responsibilities: Because we may be creating an entry without knowing
what the birthday is, we need a nonparameterized constructor that sets all the values
to “not known.”

What type of scenarios can we imagine for our Birthday class? Certainly, Entry will
send a message to Birthday asking for a copy, so “Know birthday” must be a responsibil-
ity. What else might Entry request of Birthday? Perhaps Entry might want to know if
Birthday is within a certain time period of a date.This task implies that the birthday
can be compared to another date.

We have called this class Birthday because that is its role in our Entry class. However,
it is really just a general date class. We should use Birthday as the field name in Entry,
but Date as the name of the class. Here, then, is the CRC card for the Date class:

Class Name: Date Superclass: Subclasses:

Responsibilities Collaborations

Create (month, day, year) None

Create () None

Know month None
 return int

Know year None

 return int
Know day None

 return int

 return int
Compare (other date)

None

CASE STUDY
360

1A listing of the Java libraries can be found in many reference books as well as on Sun’s Web site.

Notice that we made some assumptions when summarizing this class in a CRC card.
We assumed that the month, day, and year were kept—or at least returned—as
integers. If we implement the Date class ourselves, we might want to rethink an integer
representation for these fields. But before we spend any time writing this class
ourselves, we should look in the Java library. Surely, a date is such a common object
that a Date class must already exist.

Library Search1: Let’s begin by looking for a Date class in the Java Class Library. A Date
class sounds like it might be categorized as a utility, so we look there first. Success right
off the bat: The class Date is a member of the java.util package. A quick scan of the
methods shows that they include appropriate constructors, knowledge methods, and a
compareTo method. However, the parameterized constructor and the knowledge
methods are marked deprecated. “Deprecated” means that they will not be supported
in future language releases. In the case of the Date methods, they are deprecated in fa-
vor of the methods in the Calendar class. So on we go to the Calendar class specification.

The class Calendar is also part of the java.util package. However, it is an abstract
class; that is, some of its methods are marked abstract. Does this mean that we have to
derive a class from Calendar and fill in the missing code? Maybe, but perhaps the pack-
age already offers a derived class.Yes, GregorianCalendar is listed as a subclass of
Calendar. Does the combination of the concrete methods in both of these classes give us
what we need? GregorianCalendar has both a parameterized and a nonparameterized
constructor. It does not provide a comparison method per se, but there are Boolean
methods after and before. A further examination of the documentation for these two
classes shows that they provide a wide variety of class constants and operations to set
and manipulate not only dates down to minutes and seconds, but also time zones.

In our problem, is it appropriate to use the class GregorianCalendar or should we build
a simple Date class ourselves? We use GregorianCalendar in this Case Study and ask you
to implement a new Date class in the Case Study Follow-Up exercises.

We have not yet mentioned the driver class that must read in the entries written in
Chapter 6, prompt for and read the birthday, and then write out the expanded entry.
Oops! We have forgotten that an entry as input has only three fields, but an entry that is
written out now has four fields. We must derive a new class from Entry that includes
the Birthday field. We can read each entry from the file and store the values into the de-
rived class. Because we plan to write the entries as objects, we need to overload the
writeToFile method. We had better summarize these observations in CRC cards.

CASE STUDY 361

Responsibility Algorithms: The only responsibility that needs expanding is “Process en-
tries”. We must read the entries back in, prompt for and read a birthday, and write out
the Entry object. Because we wrote the file one string per line, reading the data back in
is easy. Once we have an object of the class EntryPlus, we can write it to a new file using
ObjectOutputStream.

Get an Entry

Get Name object
Get Address object
Get Phone object

Process Entries

while more entries
Get an entry
Get birthday
entryPlus = new EntryPlus(Name, Address, Phone, Date)
Write entry on outFile

Class Name: PlusDriver Superclass: Subclasses:

Responsibilities Collaborations

Prepare input files BufferedReader

Prepare output files ObjectOutputStream

Process entries EntryPlus, Name, Address, Phone, Date

Close files BufferedReader ObjectOutputStream

Class Name: EntryPlus Superclass: Entry Subclasses:

Responsibilities Collaborations

Create (name, address, phone, date) Name, Address, Phone, Date

Name, Address, Phone, DateCreate ()

Know birthday

 return Date

Write to file (outfile) ObjectOutputStream

CASE STUDY
362

“Get Name object”, “Get Address object”, and “Get Phone object” were previously devel-
oped in Chapter 6.The only difference is that we are reading these objects from a file
rather than from the keyboard, so we don’t need prompts.

//**
// This class extends the Entry class with a date field.
// Method writeToFile overloads the method in the superclass.
//**

package addressBook;
import java.util.*;
import java.io.*;
public class EntryPlus extends Entry implements Serializable
{
private GregorianCalendar birthday;
public EntryPlus(Name newName, Address newAddress, Phone phoneNumber,
GregorianCalendar date)

{
super(newName, newAddress, phoneNumber);
birthday = date;

}
// Knowledge method
public GregorianCalendar knowBirthday()
{
return birthday;

}
public void writeToFile(ObjectOutputStream outObject) throws IOException
{
// The EntryPlus object is written to a file of objects
outObject.writeObject(this);

}
}

Get Birthday

Write "Enter the birthday for " + name.full()
Write "Month: "
Read and convert month to int
Write "Day: "
Read and convert day to int
Write "Year: "
Read and convert year to int

CASE STUDY 363

//**
// This class is a driver that creates entries made up of a
// name, an address, a phone number, and a date. The name, address,
// and phone number are read from a file. The birthday is read
// from the screen. Each entry is written to a file of EntryPlus
// objects.
//**

import java.io.*;
import java.util.*;
import addressBook.*;
public class PlusDriver
{
public static void main(String[] args) throws IOException
{
// Declare instance variables
Name name;
Address address;
Phone phone;
EntryPlus entry;
GregorianCalendar birthday;
// String and integer variables used for input
String first, last, middle, street, city, state, zip;
int areaCode, number, month, day, year;

// Set up input files including screen
BufferedReader inFile;
inFile = new BufferedReader(new FileReader("Entries"));

BufferedReader in; // To input birthday
// Instantiate in using System.in
in = new BufferedReader(new InputStreamReader(System.in));

// Set up output file of objects
ObjectOutputStream outObject;
outObject =
new ObjectOutputStream(new FileOutputStream("EntryObjects"));

first = inFile.readLine(); // Read in first name
while (first != null)
{

CASE STUDY
364

// Read in rest of name
last = inFile.readLine();
middle = inFile.readLine();
name = new Name(first, last, middle);

// Read in address
street = inFile.readLine();
city = inFile.readLine();
state = inFile.readLine();
zip = inFile.readLine();
address = new Address(street, city, state, zip);

// Read in phone number
areaCode = Integer.parseInt(inFile.readLine());
number = Integer.parseInt(inFile.readLine());
phone = new Phone(areaCode, number);

// Prompt for and read in birthday
System.out.println("Enter the birthday for " + name.full()
+ " as integers.");

System.out.println("Month: ");
month = Integer.parseInt(in.readLine());
System.out.println("Day: ");
day = Integer.parseInt(in.readLine());
System.out.println("Year: ");
year = Integer.parseInt(in.readLine());
birthday = new GregorianCalendar(month, day, year);

// Instantiate and output entry
entry = new EntryPlus(name, address, phone, birthday);
entry.writeToFile(outObject);

first = inFile.readLine();
}
outObject.close();
inFile.close();

}
}

7.9 T e s t i n g a n d D e b u g g i n g | 365

7.9 Testing and Debugging

Testing and Debugging Hints

1. Study the entire hierarchy for a class before you try to use or extend it. Watch
out for cases of overriding and hiding that change the semantics of a class
member.

2. An abstract class cannot be instantiated as an object; instead, a derived class
must be written to extend it.

3. Overriding applies to instance methods; hiding applies to class methods.You
cannot hide an instance method with a class method or override a class
method with an instance method. However, Java does allow static and
instance fields to hide each other.

4. When you write a class that extends a superclass, make sure that the compi-
lation unit (program or package) imports the superclass if it isn’t one of the
standard ones that is always imported.

5. The access modifiers for a method that overrides or hides a method in a
superclass must grant the same level of access or greater.The most restrictive
form of access is private, then package, then protected, then public.You can
override a private method with a public one, but you can’t use private to over-
ride a public method.

6. Make sure that the first statement of every constructor is a call to one of the
superclass constructors. If you omit the call, Java automatically inserts a call to
super().

7. Overloading a method requires that the two methods have different
signatures.The signature is the name of the method plus the types of its
parameters in a specific order.The return type and modifiers are not part of
the signature.

8. Use super to access fields or methods of a superclass that have been hidden or
overridden by a derived class.

9. Use this to access instance fields that have been hidden by a local
declaration.

10. Thoroughly document the interface of a class to facilitate its proper use,
ensure its correct design, and simplify testing.

11. If you use any file I/O, remember that main must have the throws IOException
clause appended to its heading.

12. The constructors for arguments to the ObjectInputStream and
ObjectOutputStream are instances of FileInputStream and FileOutputStream,
respectively.

366 | Inheritance, Polymorphism, and Scope

Summary

Object-oriented languages such as Java organize class data types into a hierarchy. At
the top of Java’s hierarchy is a class called Object that provides a few basic
operations. Using inheritance, other classes extend Object and are said to be derived
from it. Derived classes inherit all of the public and protected fields and methods of
their superclass, except for its constructors. We must explore the entire inheritance
hierarchy for a class to determine its full interface.

Instance methods can override superclass instance methods, and class methods
and fields can hide superclass class methods and fields. Overriding and hiding
enable us to change the meaning of a method or field when extending a superclass
with a derived class. In this way, the derived class can retain the same form of inter-
face, but operate in a different manner.

Constructors are not inherited by derived classes.The first statement in a
constructor must be a call to a constructor for the superclass. Otherwise, Java will
automatically insert such a call to the default constructor for the superclass.

Java allows us to declare multiple methods with the same name as long as they
have different signatures.The method name is then said to be overloaded.The
signature consists of the method name plus the types of its parameters in a particu-
lar order.The return type and modifiers are not part of the signature. Java
determines which version of an overloaded method to call by examining the types in
the argument list and selecting the method with the matching parameter list.

Sometimes we need to access a method or field in a superclass that has been
overridden or hidden. We can use the super keyword to refer to the superclass
version of a field or method instead of the local version. Similarly, a method can de-
fine a local variable or parameter with the same name as a field in the class; we can
then use this to refer to the instance version instead of the local version.

Scope rules determine the range of code that has access to an identifier. Internal
scope rules specify where class members can be accessed within a class. In Java,
members can be used anywhere within a class, with two exceptions: Class variables

13. For instances of a class to be written on a file, the class must implement the
Serializable interface.

14. When an instance of a class is read from a file, the object must be type cast
back into its original class. For this reason, the main method of an application
that uses the method readObject must include ClassNotFoundException in its
throws clause.

367

must be defined before they are used to initialize other variables, and local variables
can shadow class variables (name precedence).

External scope rules specify where a member can be accessed outside of a class.
Java provides four levels of external access.The default level is package, which
extends access to all classes in the same package. With protected access, derived
classes can access a member as well. A member with public access can be used by
any code that imports the class.The private access level restricts access to only the
class containing the member.

In this chapter, we learned how to declare derived classes.The advantage of a de-
rived class is that we can use the interface from the superclass as the model for our
design. We benefit from inheriting many fields and methods that give our derived
class powerful capabilities with no extra work on our part. In some cases, however, a
new object is sufficiently different from anything that exists in the standard hierar-
chy that we have to design it from the ground up. Now that you know how to design
and implement both derived classes and top-level classes, you are prepared to
explore a wide range of useful and general abstractions that computer scientists
have identified as fundamental to the development of more advanced algorithms.
The remainder of this text primarily examines some of these abstractions and their
implementation.

Objects can be written to and read from a file.They can be written on a file of the
class ObjectOutputStream and read from a file of the class ObjectInputStream. Only ob-
jects of classes that implement the Serializable interface can be written on object
files. Object files are used when the output from one application is used as input into
another application.

Quick Check

1. What is the most general class in Java? (p. 332)

2. What is the mechanism that allows one class to extend another class?
(pp. 328–333)

3. What do you call a class that is an extension of another class in the hierarchy?
(p. 330)

4. Overriding refers to _________ methods; hiding refers to fields and ________
methods. (p. 336)

5. What kinds of members are not inherited by a derived class? (pp. 333–336)

6. What is an operation that has multiple meanings depending on the object to
which it is applied? (p. 337)

7. Are constructors inherited? (pp. 333–336)

8. A reference to an instance of a _______ class can be assigned to a variable of its
__________ class. (p. 332)

9. Explain the meaning of the keyword extends. (p. 337)

368

10. What do we call the rules that determine where in a program an identifier can
be recognized? (p. 339)

11. What keyword refers to a class’s superclass? (p. 349)

12. What keyword allows an object to refer to itself? (pp. 341–342)

13. What is the name of the file class that outputs objects? (pp. 354–358)

14. What is the name of the file class that inputs objects? (pp. 354–358)

Answers

1.Object 2. Inheritance 3. Derived class 4. instance; class 5.private 6. Polymorphic operation 7. Class construc-
tors are not inherited. 8. derived; super 9. extends tells the compiler the class from which this class is being
derived. 10. Scope rules 11. super 12. this 13. ObjectOutputStream 14.ObjectInputStream

Exam Preparation Exercises

1. a. Name two kinds of scope.

b. Do both internal and external scope depend on the access modifiers of an
identifier?

c. Define internal scope.

d. What are the two exceptions that apply to internal access of members?

e. What is shadowing?

f. Is it legal to define local variables with the same identifier in nested blocks?

2. Name the three external places from which Java allows class members to be
accessed.

3. a. List the four levels of access for class members.

b. Which of the four levels is the default access?

c. From where can a public member be accessed?

d. From where can a member with no access modifier be accessed?

e. From where can a private member be accessed?

f. From where can a protected member be accessed?

4. a. What nonpublic members should be part of the inheritance interface?

b. How do you make them part of the inheritance interface?

5. What happens if we forget to include a constructor in a new class?

6. a. Distinguish between a deep copy and a shallow copy.

b. Under what conditions are a deep copy and a shallow copy the same?

7. To which class can all Java objects trace themselves back?

8. What modifier of a class or field indicates that it is incomplete?

9. What does the inheritance mechanism allow one class to acquire from
another?

10. What do you call the class that is extended by a derived class?

369

11. When we examine a derived class, we have access to more than just the meth-
ods and fields defined in the class. Explain.

12. What happens if a derived class defines an instance method with the same
form of heading as a method in its superclass?

13. What happens if a derived class defines a data field with the same name as a
data field in the superclass?

14. Distinguish between overriding and hiding.

15. Is it possible to remove a member that is inherited?

16. Overloading, overriding, and hiding are similar, yet different. Fill in the follow-
ing table showing whether the sentence describes overloading, overriding, or
hiding.

Situation Hiding Overriding Overloading Shadowing

a. A class method has the
same name and signa-
ture as a superclass
method.

b. An instance method
has the same name and
signature as a superclass
instance method.

c. A class has two methods
with the same name but
different signatures.

d. A field in a derived class
has the same name as
a field in its superclass.

e. An instance method has
the same name but a
different signature than
a superclass instance
method.

f. A method declares a
variable with the same
name as a field in the
class.

g. A method has a parameter
with the same name as a
field in the class.

17. What parts of a superclass’s interface cannot be inherited?

370

18. Can an object file be written with a text editor? Explain.

19. Why does an object read from an object file have to be type cast back into its
original class?

Programming Warm-Up Exercises

1. Declare three constructors for the class MyClass.

2. Fill in the blanks in the documentation in the following code segment.

public class MyName extends YourName
{
int myField; // myField is an ______field.

public MyName(int myField) // _______ with a parameter
// that shadows the _______ ______

{
this.myField = myField; // Assign the ___________ to

// the _________ field.
}

}

3. a. How does the syntax of a constructor differ from that of a method?

b. How is a constructor invoked?

c. How many constructors can a class have?

d. What is the signature of a method?

e. What happens if a class does not have a constructor?

f. What must be the first statement in every constructor?

4. a. Declare a public class SomeClass.

b. Write the heading for a public class method someMethod.

c. Write the heading for an integer class method someMethod that should be ac-
cessible to the classes in the package but not to derived classes.

d. Write the heading for an integer class method someMethod that should be ac-
cessible only to other methods in the class.

e. Write the heading for a character class method someMethod that should be ac-
cessible to classes in the package and any derived classes.

5. a. Write the heading for a public method someMethod.

b. Write the heading for an integer method someMethod that should be accessi-
ble to the classes in the package but not to derived classes.

c. Write the heading for an integer method someMethod that should be accessi-
ble only to other methods in the class.

371

6. Is the following code segment correct? If so, to what does each reference to var re-
fer?

public class SomeClass

{

int var; // Class member var

final int CONST = 3; // Class member CONST

public void someMethod(int param)

{

int var;

var = param * CONST;

final int CONST = 10;

var = 5;

System.out.println("" + this.var);

}

}

7. Examine the following constructor headings and give the signature for each.

public someClass()

public someClass(int a)

public someClass(double a)

public someClass(String a, int b, double c)

8. Examine the following method headings and give the signature for each. Could
methods with these signatures all be declared within one class?

public int someMethod()

public void someMethod()

public double someMethod()

public double someMethod(int a)

public double someMethod(String a)

public double someMethod(int a, int b)

9. Are these code segments correct? If not, why not?

a. public double taxRate = 29.3;
public double myRate = taxRate*1.1;

b. public double myRate = taxRate*1.1;
public double taxRate = 29.3;

372

10. a. Write the statement that declares a variable outFile, instantiates an object
of the class ObjectOutputStream and assigns its address to outFile.

b. Write the statement that writes myName, an instance of the class Name, on
outFile.

c. Write the statement that declares a variable inFile, instantiates an object of
class ObjectInputStream, and assigns its address to inFile.

d. Write the statement that reads myName, an instance of the class Name from
inFile.

Programming Problem

1. Take the CRC cards used to design the Address hierarchy and complete the de-
sign and implementation of a package that contains the five classes. Design
and implement a test plan for the package.

Case Study Follow-Up

1. Write an application that reads the file of objects and prints the names to the
screen.

2. In Chapter 6, you were asked to rewrite the output sections so that the informa-
tion was formatted like an address. Rewrite the driver used in the Case Study to
read the formatted information, using indexOf and substring to parse the data.

3. Design and implement a Date class that could be substituted for class
GregorianCalendar in the Case Study.

373

Knowledge Goals
• To understand the relationship of a JFrame to its content pane and the

objects it contains

• To understand the Java event-handling model

• To learn the different parts of an event loop

• To understand how an event handler can receive events from multiple sources

Skill Goals
To be able to:

• Construct a code segment that creates a JFrame window on the screen

• Use a JLabel object to display a message in a JFrame on the screen

• Use a layout manager to organize labels in a window

• Write an event handler for a single button

• Register an event handler with a button

• Write an event loop using a button

• Use a JTextField to input a value

• Group user interface objects together with a JPanel

• Write an event handler that distinguishes among multiple event sources

Event-Driven Input
and Output

1968
A NATO Science
Committee
introduces the term
“software
engineering”

1968
Edsger Dijkstra
advocates for
reliable software
with a letter citing
the weaknesses of
the Go To statement

1968
Integrated circuits
debut in computers

1968
The Federal
Information
Processing Standard
promotes the
YYMMDD standard
for the date, setting
the stage for the
Y2K problem

1968
Intel Corporation is
established by
Robert Noyce, Andy
Grove, and Gordon
Moore

1969
ARPANET, the
precursor to the
Internet, is
commissioned by
the US Department
of Defense

8
C H A P T E R

we’ve used simplified screen input and output to simulate
the old-fashioned printer and keyboard interface of early computers.
From your use of computers, you’re probably more familiar with the mod-
ern graphical user interface (GUI) based on windows. Although the GUI
makes it much easier for people to use programs, it requires more work
on the part of the programmer. Many older programming languages lack
specific support for GUI programming and rely primarily on the style of
I/O that we introduced in Chapter 2. But because Java was developed af-
ter the GUI became the standard mechanism for interactive input and out-
put, it includes built-in features that simplify the programming of a user
interface.

Java provides many different types of windows and interface com-
ponents. In fact, entire books have been written just to explain all of the
user interface features that Java supports. In this text, we use a very sim-
ple but adequate subset of Java’s capabilities.

Until now,

1970
The mobile robot
Shakey uses
artificial intelligence
in its navigation

1970
Dennis Ritchie and
Kenneth Thompson
at Bell Labs develop
the UNIX operating
system for which
they later received
the U.S. National
Medal of Technology

1970
IBM introduces the
8 inch floppy disk

1971
A team at Intel
creates the first
microprocessor, the
Intel 4004

1971
Ray Tomlinson uses
the @ sign, and
sends the first
electronic-mail
message through
ARPANET

1971
The programming
language Pascal is
developed by
Niklaus Wirth

376 | Event-Driven Input and Output

8.1 Frames

The type of window that we use in this text is called a frame, and it is implemented in Java
by a class called JFrame. A frame has all of the features that you are used to seeing in a win-
dow on a personal computer: the ability to change size, to be closed, to be turned into an icon
(a small pictorial representation of the window), and so on.

Our example applications won’t support all the features of a JFrame. Instead, we focus on
those features that illustrate the essential concepts of GUI programming. Supporting extra
features would make our code longer, and the extra code won’t illustrate new principles but
just add more of the same kinds of method calls. Once you understand the underlying con-
cepts of the GUI, you can easily read the class documentation and add support for more
window features as you wish.

To use a frame for output in Java, our code must perform four steps:

1. Import classes and declare fields.

2. Instantiate frame objects and specify some of their properties.

3. Put display objects into the frame.

4. Make the frame visible on the screen.

Import Classes and Declare Fields

The first of these steps breaks down into three parts.

1. Import the package containing the JFrame class.

2. Declare a variable of the class JFrame.

3. Declare a variable of the class Container.

The JFrame class is contained in the swing package within a larger package called javax.
So we write the following import statement:

import javax.swing.*; // Supplies JFrame class for output display

We need to declare both a JFrame variable and a Container variable. Here’s why. A JFrame ob-
ject has two parts.The window frame contains the “close” button and other components.The
content pane represents the main area inside the frame where we place information to be
displayed. (See Figure 8.1.) The content pane is an object of the class Container, so we must
provide a variable of this class so that we can refer directly to it.

Suppose that our JFrame is to be called outputFrame and we want to refer to its content pane
as outputPane.Then we would write the following declarations:

JFrame outputFrame; // Declare a variable of class JFrame
Container outputPane; // Declare a variable of class Container

8.1 F r a m e s | 377

frame

Content
pane

Figure 8.1 A Frame and Its Content Pane

Instantiate Frame Objects and Specify Some of Their Properties

The second step in using a frame has five parts.

1. Instantiate a JFrame object.

2. Ask the JFrame object to return a content pane object whose address we assign to
the Container variable.

3. Specify the action to take when the window is closed.

4. Specify the size of the JFrame object (adjust its size to fit the output).

5. Specify a layout manager for the content pane object.

So far, we have imported the JFrame class and declared a variable of the class JFrame. Like
any other variable, the variable called outputFrame remains empty until we assign it a value.
What sort of value do we assign to a JFrame variable? The answer to this question is both triv-
ial and deep: We assign it the address of a JFrame object. The answer is trivial because it
seems so obvious, like the answer to the question, “Who is buried in Grant’s tomb?” In prac-
tice, it is really that simple. We just write the following assignment statement:

outputFrame = new JFrame();

Java then instantiates an object of the class JFrame and assigns its address to outputFrame.The
answer to our question is deep because the actual contents of a JFrame object are quite com-
plex. We could read a biography of President Grant as one way of knowing who is buried in

378 | Event-Driven Input and Output

his tomb.Likewise,we could read all of the source code in the swingpackage to learn how JFrame
objects work. Fortunately, Java makes it unnecessary for us to do this by relying on the princi-
ple of abstraction: We don’t have to understand what makes JFrame objects work to use them.

Get a Content Pane As we’ve just seen, the JFrame that is referenced by outputFrame consists of two
parts: a window frame and a content pane. Rather than instantiate a new content pane ob-
ject,we merely ask the JFrame to give us the one that was created within it automatically when
we instantiated the JFrame.We send this request to the JFrame by calling one of its methods:

outputPane = outputFrame.getContentPane();

The content pane referenced by outputPane is an empty window that is waiting to be
filled and then shown on the screen. Before we can do so, we need to specify some additional
properties of the frame and content pane. For the frame, we need to indicate what should
happen when it is closed and what its size should be on the screen. For the content pane,
we need to indicate how elements should be arranged within it.

Specify the Action to Take When the Frame Is Closed Specifying what should happen when the frame
is closed by the user is done through a call to an instance method associated with the frame.
This method is named setDefaultCloseOperation. We pass it an argument indicating the ac-
tion that the frame should perform.The JFrame class provides several named class constants
that are allowed as arguments to this method.We created class constants and used them in
a similar fashion in our Student class in Chapter 4.

The only one of these actions that is appropriate for our programs is to exit the pro-
gram (end execution and remove the frame from the screen).The constant for this action is
called EXIT_ON_CLOSE. Because this constant is associated with the JFrame class, we must write
it with the class name, separated by a period, as shown here within the parentheses:

outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Specify the Size of the Frame We set the size of the frame by calling another instance method,
named setSize.This method takes two arguments that are integer numbers.The first is the

width of the frame and the second is its height.The sizes are specified in pixels. A
typical display screen is 1,024 pixels wide by 768 pixels high, so you need to choose
numbers that produce a frame that fits on the screen in a reasonable manner,
with room for all of the information that it displays. Here is an example call, which
sets the size of the frame to be 300 pixels wide and 200 pixels high:

outputFrame.setSize(300, 200);

Specify a Layout Manager We fill the content pane by adding display elements to it. How does Java
know where the elements should be positioned within the pane? We can either tell it manu-
ally or let Java handle their layout automatically. Manual placement of elements allows us to
precisely control the appearance of output within the pane, but requires us to tediously com-

Pixels An abbreviation of “pic-
ture elements”; the individual
dots that make up an image on
a display screen

8.1 F r a m e s | 379

pute the coordinates of each element within the pane and specify them in our code.
We will take the simpler approach of letting Java handle the layout automatically.

Because Java provides several different styles of automatic layout, we have to
indicate which one to use. The style of layout is determined by specifying the
name of a layout manager through a method associated with outputPane. This
method is called setLayout.

The setLayout method that we apply to outputPane takes one argument, a lay-
out manager object.A layout manager is another of Java’s classes that we instan-
tiate with the use of new, just as we did to create a new JFrame object. Let’s use the
simplest of Java’s layout managers, FlowLayout. A call to setLayout is written as follows:

outputPane.setLayout(new FlowLayout());

The FlowLayout manager’s responsibility is to automatically place elements that we add
to a content pane in the order that we add them.The first element goes in the upper-left cor-
ner of the window, and the next element goes to the right of it on the same line. When no
more room is left on a line, the manager moves to the next line in the window and contin-
ues adding elements there. One other bit of housekeeping that we need to perform relates
to the fact that the layout managers we use belong to another package, called awt.Thus, we
need to import awt along with swing. The awt package is part of the java master package, as
you can see from the declarations below.

Let’s review the steps we have taken so far with an example code segment.

import java.awt.*; // Supplies layout manager
import javax.swing.*; // Supplies JFrame class for output display
...
JFrame outputFrame; // Declare a variable of class JFrame
Container outputPane; // Declare a container variable
outputFrame = new JFrame(); // Create a new JFrame object
// Get content pane
outputPane = outputFrame.getContentPane();
// Set the action to take on closing
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set the size of the frame
outputFrame.setSize(300, 200);
// Apply setLayout method to outputPane;
// an object of class FlowLayout is an argument
outputPane.setLayout(new FlowLayout());

Notice in this example that, as we have seen in previous chapters, we can instantiate an
object within an argument list.The argument of setLayout is an object of the class FlowLayout.
We use new to create an instance of FlowLayout in the argument list:

outputPane.setLayout(new FlowLayout());

Layout manager A class that
automatically manages the
placement of display elements
within a content pane on the
screen

380 | Event-Driven Input and Output

Add Output to the Content Pane

We have now taken care of all of the steps needed to create a content pane that is ready to
receive information to display. A content pane is called a container class because we can add

elements into it. Java supports various specialized container classes in addition to
Container.

Initially, we add only elements called labels to our panes. A label is a block of
text that is placed into the pane.We add the label to the pane using the add instance
method. Here is an example:

outputPane.add(new JLabel("This is the text in the label."));

Note that we are instantiating an anonymous object of the class JLabel,within the argument
list. The add method places this new object into the pane. We could also declare a variable to
be of class JLabel, assign it a value, and pass the variable as an argument to add:

JLabel newLabel;
newLabel = new JLabel("This is the text in the label.");
outputPane.add(newLabel);

Once again, because of Java’s use of abstraction, we don’t need to know the details of what
a JLabel object contains.We simply accept that it has been properly defined in the Java library,
and that the add method uses it appropriately.

Make the Frame Visible on the Screen

The only step that remains to cause our frame to be displayed on the screen is to make it vis-
ible. We do this with a method call associated with the frame:

outputFrame.setVisible(true);

As you can see by the way that the call is written, it is an instance method. If we later call
this method with the argument false, the frame will disappear from the screen.

Now let’s put all the pieces together so that we can see their relationship to each other.
Our list of steps is repeated here as comments in the code.

// Import classes
import java.awt.*; // Supplies layout manager
import javax.swing.*; // Supplies JFrame class for output display

public class frameExample ...
...
public static void main(String[] args)
{
// Declare a variable of class JFrame
JFrame outputFrame;

Container class A class into
which you can add other
elements

8.1 F r a m e s | 381

// Declare a variable of class Container
Container outputPane;

final String WORDS = "Programming and Problem Solving with Java";
...
// Instantiate a JFrame object
outputFrame = new JFrame();
// Ask the JFrame object to return a content pane Container object
outputPane = outputFrame.getContentPane();
// Specify the action to take when the window is closed
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Specify the size of the JFrame object
outputFrame.setSize(300, 200);
// Specify a layout manager for the content pane object
outputPane.setLayout(new FlowLayout());
// Add output to the content pane object
outputPane.add(new JLabel("The title of this book is "));
outputPane.add(new JLabel("Introduction to " + WORDS));
// Make the JFrame object visible on the screen
outputFrame.setVisible(true);
...

The ellipses (. . .) in this code segment indicate pieces of the Java application that are yet
to be filled in. Let’s now put all these steps together into a class. We can redo the program
from Chapter 2 that prints a name in two formats, but use a window that the program con-
structs rather than System.out. Thus far, we have not seen how to input values from a win-
dow, so we just supply a name as a series of constants. If you turn back to page 000, you can
compare the differences between this version and our earlier version.

//**
// PrintName application
// This application prints a name in two different formats
//**
import java.awt.*; // Supplies layout manager
import javax.swing.*; // Supplies JFrame class for output display
public class PrintName
{
public static void main(String[] args)
{
final String FIRST = "Herman"; // Person's first name
final String LAST = "Herrmann"; // Person's last name
final char MIDDLE = 'G'; // Person's middle initial
JFrame outputFrame; // Declare JFrame variable
Container outputPane; // Declare Container variable
String firstLast; // Name in first-last format
String lastFirst; // Name in last-first format

382 | Event-Driven Input and Output

// Create a JFrame object
outputFrame = new JFrame();
// Ask the JFrame object to return a content pane Container object
outputPane = outputFrame.getContentPane();
// Specify the action to take when the window is closed
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Specify the size of the JFrame object
outputFrame.setSize(300, 200);
// Specify a layout manager for the content pane object
outputPane.setLayout(new FlowLayout());
// Add output to the content pane
// Display name in first-last format
firstLast = FIRST + " " + LAST;
outputPane.add (new JLabel("Name in first-last format is "

+ firstLast));
// Display name in last-first-middle format
lastFirst = LAST + ", " + FIRST + ", ";
outputPane.add(new JLabel("Name in last-first-initial format is "

+ lastFirst + MIDDLE + "."));
// Make the JFrame object visible on the screen
outputFrame.setVisible(true);

}
}

8.2 Formatting Output

To format a program’s output means to control how it appears visually on the screen. In the
last section, we used the layout manager called FlowLayout to arrange our output. In this sec-
tion, we introduce another layout manager, called GridLayout, and examine how to format
the output values themselves.

Using GridLayout for Tabular Output

We introduced FlowLayout as the simplest of Java’s layout managers. The advantage of
FlowLayout is that it entirely manages the placement of labels as we add them to a pane.
While this simplicity is convenient, it prevents us from controlling the appearance of out-
put on the screen. We do not have the option of telling FlowLayout to place output values on
separate lines. If we use the GridLayout manager, however, we gain the ability to control the
position of a label with respect to others in the pane.

GridLayout works much the same as FlowLayout in that we simply add labels to the pane,
and the layout manager places them consecutively into the available space. The difference
is that GridLayout partitions the pane into a fixed number of rows and columns—a rectan-
gular grid. Starting with the top row and the leftmost column, GridLayout fills successive
columns, moving to the next row when it has filled every column on the row. Every column

8.2 F o r m a t t i n g O u t p u t | 383

Figure 8.2 A Grid Layout with Five Rows and Two Columns

is the same size as every other column, and the rows are also equal in size. Figure 8.2 shows
a frame with a 5 � 2 grid.

When we specify GridLayout as the manager for the content pane, we provide the con-
structor with a pair of integer arguments that determine the number of rows and columns
in the pane. If one of the arguments is zero, then that dimension isn’t specified and the grid
grows as needed in that direction to accommodate the contents of the pane. The first ar-
gument is the number of rows and the second argument is the number of columns.

For example, the layout in Figure 8.2 is specified with a method call to setLayout.

datePane.setLayout(new GridLayout(5,2)); // 5 rows and 2 columns

If we wanted the datePane content pane to have two columns and an arbitrary number of
rows, we would write the call with the first argument to the GridLayout constructor being zero:

datePane.setLayout(new GridLayout(0,2)); // Any number of rows of 2 columns

Using zero for the number of columns (the second argument) would allow GridLayout to
partition the pane into any number of columns.The number it chooses depends on the size
of the largest label (as all columns are equal in size) and the number of these labels that can
fit horizontally on the screen. Because this setup could lead to some rather strange column
configurations, it is more common for the user to specify the number of columns. GridLayout

384 | Event-Driven Input and Output

Figure 8.3 A Grid with Centered Headings in the First Row

is typically used to display a table of values, often with a text label at the top of each column
(called a column heading) that explains what the column contains. Figure 8.2 uses the column
headings “Format” and “Example.”

Alignment of Text Within JLabels

By default, the text within a label begins at the left edge of the label. Sometimes, however,
we want to center the text within the label or have it appear as far to the right as possible
within the label. Java allows us to do so by providing a second argument when calling the
JLabel constructor. This argument can be any of three predefined class constants provided
by the JLabel class: JLabel.LEFT, JLabel.CENTER, or JLabel.RIGHT. For example, if we want the
column heading “Format” in Figure 8.2 to be centered, we would write

datePane.add(new Label("Format", JLabel.CENTER));

If instead we write

datePane.add(new Label("Format", JLabel.RIGHT));

then the text would be positioned as far to the right as possible within the label. Because the
usual position for text is toward the left, we rarely need to use JLabel.LEFT. Figure 8.3 shows
the result of centering the headings from the example in Figure 8.2.

8.3 E v e n t H a n d l i n g | 385

8.3 Event Handling

Recall from Chapter 1 that one of Java’s control structures is asynchronous control.A mouse
click is an action that can trigger the application to perform a set of instructions at any time
during its execution. For this reason, it is called asynchronous, which means “not
connected with a specific moment in time.”The application can be busily work-
ing away on some operation, when the user chooses that random moment to
click the mouse. The application must stop what it is doing and transfer control
to the instructions that take care of the mouse click. Once it has responded to the
user’s action, control returns to the application at the point where it was inter-
rupted. In Java, a user action of this form is called an event, and responding to it
is called event handling. Events are handled by special methods called event handlers.

The event-handling process sounds very much like calling a method, but
there is a basic difference. We write a statement in our code that explicitly calls
a method at a specific point in the application’s execution. An event handler, on
the other hand, can implicitly be called at any time, and no corresponding method
call statement appears anywhere in the application. How, then, is the event han-
dler called?

The answer is that there are objects called event listeners whose function is to
watch for (that is, listen for) events to occur and respond to them. An object that
generates a particular kind of event is called an event source.When an event source
generates an event, we say that the source fired the event. Every event source keeps
a list of the listeners that want to be notified when that kind of event occurs.
Letting an event source know that the listener wants to be notified is called reg-

istering the listener. Perhaps you’ve filled out an online software registration form
that contained a box to check beside words that said something like, “Send me
e-mail notification of new products and product updates.”Filling out this form and
submitting it is like registering a listener (you) with an event source (the company).
When the company has an update to your software (an event fires), it sends you
e-mail (notifies the listener).

Each listener has an event handler method that is designed to respond to
(handle) the event. When an event occurs, the appropriate listener is notified by
calling its event handler method.When the event handler returns (the method fin-
ishes executing), the application continues executing. Figure 8.4 illustrates the
process for a button that the user can click in a frame. If no listener is interested
or if the interested listener doesn’t have an event handler for that particular type
of event, the event is ignored and the application continues uninterrupted.

Creating a Button

Let’s make the abstract concept of event handling more concrete by introducing the JButton
class that allows us to put a button on the screen. We can then explore how to handle the
events that it generates. Before we can handle a button event, we have to put a button object

Asynchronous Not occurring
at the same moment in time as
some specific operation of the
computer; not synchronized
with the computer’s actions

Event An action, such as a
mouse click, that takes place
asynchronously with respect to
the execution of the application

Event handling The process of
responding to events

Event handler A method that
responds to an event; part of the
event listener that is invoked by
the event source object

Event listener An object that
contains event handler methods

Event source An object that
generates events

Firing an event An event
source generates an event

Registering a listener Adding
a listener to an event source’s list
of interested listeners

Button A component that can
be added to a frame and that
fires an event (called a button
event) when the user clicks it
with the mouse

386 | Event-Driven Input and Output

into the pane and register a listener with the button. First we consider how to add a button
to a pane.The process is very much like adding a label.

1. Declare a variable of the JButton class.

2. Instantiate a JButton object and assign its address to the variable.

3. Add the object to the frame’s content pane using the add method.

An example JButton declaration is

JButton done; // Declare a JButton variable called done

Event Listener Object

Button
event
firing Handler

call
Event Handler

public void actionPerformed(ActionEvent event)

class ButtonListener

{ . . . }
myButton

Registering an instance of the
ButtonListener with the button
object that generates the event.

The point of execution when
the event occurred, and where
execution resumes when the
eventhandler returns

Program on Hold

public class PrintName . . .
public static void main(. . .)
{

my Button.addActionListener(new ButtonListener());
.
.
.

}

Figure 8.4 Event Handling

8.3 E v e n t H a n d l i n g | 387

The call to its constructor includes the string that should appear inside the button.For example:

done = new JButton("Done"); // Create a JButton object

The call to the add method for a content pane called dataPane is written as follows:

dataPane.add(done);

When the setVisible method for the frame is called, a button is included in the frame
with the word “Done” appearing inside it. Note that we use our convention of starting a vari-
able identifier with a lowercase letter, but the string that appears in the button is capitalized.
Java may not use proper English capitalization, but our user interface should! The identifier
done with a lowercase “d” is the name of a button object; “Done” with a capital “D” is the string
that appears in the button on the screen. Here’s a code segment showing the steps we’ve cov-
ered so far:

JButton done; // Declare a button variable
...
done = new JButton("Done"); // Instantiate a button
... // Register the event listener
outPane.add(done); // Add the button to the frame

This segment would appear in main, or wherever we are creating the user interface. We still
need to look at how to register the event listener. First, however, we have to create one.

Creating and Registering a Button Event Listener

First we must declare a new class (a button event listener) to handle button events.This class
is based on ActionListener, which we will describe shortly.The button event listener is regis-
tered with an event source through a method call.The method to register the event listener is
called addActionListener, and it takes an object of our listener class as its argument.

We’ve already defined numerous classes in Java. However, ActionListener is
a bit different. Rather than designing the class heading and methods ourselves,
Java gives us a precise model to follow. This Java-provided model is called an in-

terface. Previously, we defined an interface in the general sense. In Java, however,
an interface is part of the language; it is a way of specifying the fields and meth-
ods that must be present in a class that is an implementation of the interface.
Likewise, we previously defined implementation as the stage in the software de-
velopment life cycle in which an algorithm is translated into a programming lan-
guage. In Java, an implementation is a specific part of the language. The Java
designers have used these general terms in a very specific way to define part of
the language.

The ActionListener interface specifies that we need to write a class that has one method
called actionPerformed, with one parameter that takes the event source object as an argument.
Here is the code for a class that implements the ActionListener interface:

Interface (in Java) A model for
a class that specifies the fields
and methods that must be pres-
ent in a class that implements
the interface

Implementation (in Java) A
class containing the definitions
of the methods specified in an
interface

388 | Event-Driven Input and Output

class ButtonHandler implements ActionListener
{
public void actionPerformed(ActionEvent event) // Event handler method
{
// Body of button event handler method goes here

}
} // End of ButtonHandler

There are only two major differences between this and the other classes that we’ve declared:

� The class heading includes the clause implements ActionListener.

� The heading of the actionPerformed method must have a signature that matches
the example.

In Chapter 7 we saw an implements clause when we output objects to a file and read them
back in.There, we used the clause implements Serializable in our class headings. Serializable
is another interface that is defined in the Java library. Unlike ActionListener, however, the
Serializable interface does not require that we implement any methods. Merely including
the implements Serializable clause in the class heading is sufficient to tell Java that objects
of that class should be prepared for input and output. Now, let’s take a closer look at our im-
plementation of ActionListener.

No modifiers appear in front of the heading for the class ButtonHandler in our example.
You must decide which ones are appropriate for each situation. When the class is defined
in the application class itself, you might use private and static. If the class is defined as
part of a package that you import, it could be public.When you are handling all events from
a class of event sources, for example, and all of the buttons will be registered with this one
handler, then it should be static. If you plan to instantiate different handlers for use by dif-
ferent event sources, however, then the modifier should not be static.

Just as we get to choose the name of any other class, so we also get to choose the name
(ButtonHandler) of the class that implements ActionListener. The interface specifies that
actionPerformed has one parameter of the class ActionEvent (a predefined class that represents
a source event). We can choose any name that we wish for the parameter; here we simply
called it event.

The fact that our new class implements the ActionListener interface means that we can
pass a ButtonHandler object to any method that specifies a parameter of type ActionListener
(such as the addActionListener method).A class that implements an interface can be used in
place of the interface that it implements.

Let’s look at how this class definition is written within an application. We provide a
skeleton of an application that includes just the essential parts of the two classes.

// Import declarations go here
public class ButtonDemo // Application class heading
{

// Start of ButtonHandler class
private static class ButtonHandler implements ActionListener

8.3 E v e n t H a n d l i n g | 389

{
public void actionPerformed(ActionEvent event) // Event handler method
{
// Body of button event handler method goes here

}
} // End of ButtonHandler class

// More declarations for the application (ButtonDemo)

public static void main(String[] args) // main, just as usual
{
... // Body of main starts here
JButton done; // Declare a button variable
ButtonHandler buttonAction; // Button listener variable
... // Declarations, set up frame, etc.
done = new JButton("Done"); // Instantiate a button
buttonAction = new ButtonHandler(); // Instantiate the listener
done.addActionListener(buttonAction); // Register the event listener
outPane.add(done); // Add the button to the pane
... // Remainder of application

}
}

As you can see, this application class is just like those we’ve written previously, except that
it contains another class with one method inside of it.We could also declare the ButtonHandler
class separately and import it into our application.

Because addActionListener is an instance method associated with done, this particular
event listener is registered with the event that is generated by the button. We can register
an event listener with multiple sources (different buttons) so that one handler method re-
sponds to all of those sources. Alternatively, we can register each source with a different
handler. We explore both of these approaches later in this chapter.

Although we use the identifier “ButtonHandler” for the class, it is actually a listener class.
Because the listener contains the method that handles the event, we use the linguistic short-
cut of calling it a button handler rather than calling it “the listener that contains the method
that handles the event.” All we have to do to complete the ButtonHandler class definition is
fill in the body of the actionPerformed method with statements to be executed when the
event fires.Those statements might be, for example,

dataPane.add(new JLabel("Some new label text")); // Add a new label
dataLabel.setText("Replacement text"); // Change an existing label

From the preceding code, we can see that we need to take three steps to register the lis-
tener with the event source:

1. Declare a variable of the listener class (for example, ButtonHandler).

2. Instantiate an object of the listener class.

390 | Event-Driven Input and Output

3. Register the listener by calling the addActionListener method associated with the
button, and passing it the variable of the listener class.

An Event-Handling Example

We have seen how to create labels and buttons, how to name a button event, and how to reg-
ister its listener. We now have all of the syntax that we need to write an application with a
user interface dialog that responds to events. But what goes in the body of the event handler?
We’ve been discussing the creation and handling of events in the abstract. In solving a real
problem, we would know beforehand what a button in our interface should do.Then it would
be clear what must happen in the handler.

Let’s look at a very simple problem to illustrate how it all works.We will pick something
absolutely trivial so that we can focus on the essential structure and not on how to solve the
underlying problem. Suppose we want a user interface that contains a label and a button.
The label begins with the number 0 in it, and each time we click the button, the number is
incremented.That is, in the button handler, we add 1 to the current value of number and re-
display it in the label.

number++;
numberLabel.setText("" + number);

We used the setText method in a previous example without mentioning it.This instance
method of a JLabel object simply replaces the text in a label with the new string that is its
argument. (Clearly, setText is a transformer and thus JLabel objects are mutable.)

Now, let’s look at the code for setting up a typical frame, since we’re already familiar with
how to do this.

//**
// SimpleButton application
// This class displays a number and a button, and each time the
// button is clicked, the number is incremented
//**
import java.awt.*; // Supplies layout manager
import javax.swing.*; // Supplies JFrame class for output display
public class SimpleButton
{
public static void main(String[] args)
{
JFrame outputFrame; // Declare JFrame variable
Container outputPane; // Declare Container variable

// Create a JFrame object
outputFrame = new JFrame();
// Ask the JFrame object to return a content pane Container object
outputPane = outputFrame.getContentPane();
// Specify the action to take when the window is closed
outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

8.3 E v e n t H a n d l i n g | 391

// Specify the size of the JFrame object
outputFrame.setSize(200, 75);
// Specify a layout manager for the content pane object
outputPane.setLayout(new FlowLayout());
// Add output to the content pane

�

// Make the JFrame object visible on the screen
outputFrame.setVisible(true);

}
}

We need to add our label and our button to the empty content pane. In past examples,
we’ve added a label with a statement such as the following, which instantiates an anonymous
label within the method call:

outputPane.add(new JLabel("" + number));

However, our problem calls for us to change the value of this label after it has been created.
We therefore need to store its address in a variable so that we can refer to the value after we
create it.The same is true for the button. Here’s how it should look instead, with the button
code added, too:

JLabel numberLabel;
JButton incrementButton;
number = 0;
numberLabel = new JLabel("" + number);
incrementButton = new JButton("Increment");
outputPane.add(numberLabel);
outputPane.add(incrementButton);

Our label and the variable number should be accessible to both main and to the button
handler. We can take care of this task by writing them as class members. They do not have
to be accessible outside of the application class, so they can be private. And because we are
not creating instances of our application class, they should be declared as static.

private static int number;
private static JLabel numberLabel;
private static JButton incrementButton;

Here’s the button handler, which is just the skeleton we saw earlier, with our two lines
of executable statements inserted:

private static class ButtonHandler implements ActionListener
{
public void actionPerformed(ActionEvent event) // Event handler method
{
number++;
numberLabel.setText("" + number);

}
} // End of ButtonHandler class

392 | Event-Driven Input and Output

What’s left to be done? Oh yes! We need to add statements to instantiate a ButtonHandler
object and then register it with the button. We can do this locally within main.

ButtonHandler incrementListener;
incrementListener = new ButtonHandler();
incrementButton.addActionListener(incrementListener);

There’s one more detail that we’ve forgotten. The event-handling classes, such as
ActionListener, are in another package, java.awt.event.*, so we also need to import this pack-
age. Everything is now ready to be assembled into a working application.

//**
// SimpleButton application
// This class displays a number and a button, and each time the
// button is clicked, the number is incremented
//**
import java.awt.*; // Supplies layout manager
import java.awt.event.*; // Supplies event classes and interfaces
import javax.swing.*; // Supplies JFrame class for output display
public class SimpleButton
{
// Field declarations
private static int number;
private static JLabel numberLabel;
private static JButton incrementButton;
// Start of ButtonHandler class
private static class ButtonHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)// Event handler method
{
number++;
numberLabel.setText("" + number);

}
}
// End of ButtonHandler class
// Start of main
public static void main(String[] args)
{
JFrame outputFrame; // Declare JFrame variable
Container outputPane; // Declare Container variable
ButtonHandler incrementListener; // Declare event listener

// Create a JFrame object
outputFrame = new JFrame();
// Ask the JFrame for its content pane
outputPane = outputFrame.getContentPane();
// Specify the window-closing action

8.3 E v e n t H a n d l i n g | 393

outputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Specify the frame size
outputFrame.setSize(200, 75);
// Specify a layout manager
outputPane.setLayout(new FlowLayout());
// Prepare label and button for user interface
number = 0;
numberLabel = new JLabel("" + number);
incrementButton = new JButton("Increment");
incrementListener = new ButtonHandler();
incrementButton.addActionListener(incrementListener);
// Add output to the content pane
outputPane.add(numberLabel);
outputPane.add(incrementButton);
// Make the JFrame visible
outputFrame.setVisible(true);

}
}

Here’s what the application displays after the button has been clicked repeatedly.

Event Loops

Our SimpleButton example allows us to click the button as many times as we wish. Each
time the button is clicked, the number is incremented. When we finally grow tired of
watching the number increase, we simply close the window to stop the appli-
cation. Without explicitly intending to do so, we’ve implemented another con-
trol structure: an event loop. Recall our discussion of looping from Chapter 5,
where we explicitly used a while loop. Here the loop is implicit—no Java state-
ment spells it out. Figure 8.5 illustrates this loop.

In Chapter 5, we saw that loops can be broken down into six parts: initial-
ization, entry, repeated process, exit condition, exit condition update, and exit.
Event loops have a similar breakdown. We initialized our loop by setting up the
button and its event handler, and by setting number to zero and creating the label. We enter
the loop when the frame is displayed on the screen.The repeated process is to increment num-
ber and redisplay it. Our exit condition is the closing of the window, which is handled inde-
pendently by another event handler that is built into objects of the class JFrame.Thus we don’t
have to explicitly program the exit condition update. Later in the chapter, when we look at

Event loop Repeating an ac-
tion in response to repeated
events

394 | Event-Driven Input and Output

129 Increment

//Event handler method
public void actionPerformed(ActionEvent event)
{
 number++;
 numberLabel.setText("" + number);
}

Figure 8.5 An Event Loop

handling events from multiple buttons, we can add a “Done” button for which we program a
separate check.

When you write an event-handling class, it is important to be conscious of any event loops
that you create. Because they are coded implicitly, it is easy to overlook the fact that they are
even present.The danger arises when you create an event loop that doesn’t have an exit con-
dition.Then the only way to end the loop is to issue an operating system command to stop
the application. For example, if we had forgotten to set the default closing operation, we
would have no way out of the event loop. In our code, it is not at all obvious that this action
is what ends the loop.

8.4 Entering Data Using Fields in a Frame

Figure 8.6 shows a frame that might be used for entering data into a company
payroll application.This frame contains three labels and a button (Done) in the left
column of its grid.The right column has three data entry fields.

It’s important to clarify that a data entry field and a Java field (a declaration
in a class) are not the same. One is an area on the screen, while the other is a
name representing a constant or variable. In this case, the Java designers used

Field A component of a frame
in which the user can type a
value; the user must first place
the cursor in the field by clicking
inside the field

8.4 E n t e r i n g D a t a U s i n g F i e l d s i n a F r a m e | 395

the same word to mean two different things.When discussing
fields, we must clearly indicate which kind we mean.
Syntactically, Java doesn’t confuse them because a data entry
field is an object, and a field in a class is a class member.

The user clicks within a data entry field to position the
cursor there and then types a value into the field using the
keyboard. In some cases, the application may display a field
with an initial value that the user can delete before entering
a value. Such an initial value is called a default value.
Alternatively, an application can be written to display a field
without a default value. Including a default value is one way
to show users how they should type their data within the field.

A user can enter the data into the fields in any order and then go back to any field and
correct a mistyped value. None of the user’s actions are seen by the code until the user clicks
a button. Of course, the computer responds to the user’s keystrokes and mouse clicks, so some
code must be handling these actions. What is it? The JVM, working together with the oper-
ating system, handles the individual keystrokes and mouse actions.

The value that the user sees in a field on the screen is stored in the corresponding ob-
ject. We can retrieve this value at any time with the instance method getText. Of course, we
don’t want to get the value at just any old time—we want to get it when the user has finished
editing it.The user can indicate this fact by clicking on a button.

When the button event fires, the handler within the button listener is invoked. Within
the event handler is our code that gets and processes the values that are currently stored in
the field objects. After performing that task, our event handler code might restore the val-
ues in the fields to their default values (using setText, just as with a label). Seeing
the fields return to their default values signals the user that he or she can enter
another set of values. Figure 8.7 shows this process, which you should recognize
as an event loop.

Entering data in the manner just described is typical of modern applications
and is called a dialog. In a theatrical play, a dialog is an exchange between two char-
acters. In the case of the computer, a dialog is an exchange between the user and
an application.The application initiates the dialog by displaying a frame, the user
replies by entering data into the fields of the frame and clicking a button, the ap-
plication processes the data and responds by updating the frame, and the user
replies again. This dialog continues until the user indicates that there are no more data to
enter, perhaps by closing the window.

You should always take time to design a dialog so that it is easy to use. For example, the
dialog should clearly label data entry fields and indicate the form of the data to be entered
into them. Such considerations are especially important when a dialog involves entering
data into multiple fields in a frame.

Figure 8.6 Possible Data Entry Frame for a Payroll
Program

Dialog A user interface tech-
nique in which the user enters
data and then performs a sepa-
rate action (such as clicking a
button) when the entered val-
ues are ready to be processed by
the application

396 | Event-Driven Input and Output

User enters values in fields. JVM copies
values into corresponding objects in the
application.

Clicking the Done button fires
the event that calls the event
handler in the listener. The event
handler processes the values in
the objects referenced by the
field variables and resets the
values in the fields.

Payroll
.

.

hoursField

payRateField

empNumField

Event Handler

Process data
Reset values in fields
Return to program

Create and display frame

Figure 8.7 Data Entry Process

8.5 Creating a Data Entry Field

Creating a data entry field in Java is very similar to creating a label. The essential steps are
the same, with only minor differences:

1. Declare a variable of the appropriate field class.

2. Instantiate an object of the class.

3. Add the object to the content pane using the add method.

8.6 U s i n g a F i e l d | 397

A data entry field is an object of the class JTextField. For example, we would declare a
variable called inputField as follows:

JTextField inputField; // Declare a field for data entry

When creating a JLabel object with new, we pass a string to the JLabel constructor that
tells it what text to display in the label.When creating a JTextField object, we provide the con-
structor with the size of the field. Here is an example of creating a JTextField object and
assigning its address to the variable inputField:

inputField = new JTextField(6);

In this example, the object associated with inputField is specified to have space for typing
six characters within it. We can give a default value to the field by including a string as the
first argument to the constructor. For example,

inputField = new JTextField("Replace Me", 10);

would cause the JTextField object to be created with space for ten characters, and initially
the words "Replace Me" would appear within the field.

The last step in creating a field is to add it to a content pane. Just as with a label, we use
the content pane’s addmethod. If our content pane is called dataEntryPane, then we would write
the following:

dataEntryPane.add(inputField);

When we call dataEntryFrame.setVisible(true), the frame appears on the screen with a
field for entering data. As you can see, creating a field is just as simple as creating a label.
There is one very important difference between a JLabel and a JTextField, however: The user
of the application cannot change the text written in a JLabel, but the user can change the text
in the JTextField.

In some of our examples, we’ve instantiated anonymous labels directly within the ar-
gument list of add. Java lets us do the same thing with a JTextField, but we should never do
so. Our purpose in adding a JTextField is to later access its contents for input data, so a
JTextField object must have its address assigned to a variable to be useful.

Next, let’s look at how to get the data from the field after the user has entered it.

8.6 Using a Field

Just as a JLabel object has methods such as setText associated with it, so a JTextField object
also comes with a set of instance methods. One method that JTextField shares in common
with JLabel is setText.The setTextmethod replaces the current contents of a field with a string
that is passed to it. Here is an example of calling setText:

inputField.setText("Replace Me");

398 | Event-Driven Input and Output

If you want to clear the field so that it appears empty, you simply call setText with an
empty string:

inputField.setText("");

A call to setText immediately changes the contents of the field on the screen.You do not
call the frame’s setVisible method again to update the field. In the last section, we saw how
a field can be given a default value by its constructor. Once a field has been created and shown
on the screen, it is often useful to be able to change its contents. For example, if the user en-
ters an erroneous value into a field, we might display an error message and set the contents
of the field to some value that shows the user how to type an input value correctly.

We previously mentioned the getText method, which is also associated with JTextField.
It enables us to get the current value in the field as it appears on the screen. The getText
method returns a value of the class String that holds a copy of the contents of the field. For
example, if we declare a String variable called fieldContents, we can write

fieldContents = inputField.getText();

to store the characters currently contained in inputField into fieldContents.
Note that we have not yet said anything about when or where to call the getText method.

We have considered the steps of creating the field and taking data from it in isolation from
the rest of the application. In the following sections, we examine how these steps are related
to handling a button event that tells the application when the user is ready to have it look
at the data.

8.7 Reading Data in an Event Handler

Once a button fires its event, control transfers to the first statement in the event handler. But
what should the event handler do? In this case, the event is the user’s signal that some data
has been typed into a field and is now ready for processing. Because we have just been ex-
ploring the mechanics of getting the data, rather than solving an actual problem, we don’t
know what the data represents or what we should do with it.

Our discussion up to this point has put the cart before the horse. In solving a real problem,
we begin by identifying the input data and specifying what should happen to it.Then we de-
sign the user interface to enable the user to enter the data and generate the events that cause
the code to process it. Let’s once again look at a trivial problem that we can use to illustrate the
design process. Suppose the user should be able to enter a string and have it appear in a label
in the same frame when he or she has finished typing. Here is a definition of the problem:

Input: A string that the user enters

Output: The input string, displayed in a label

Processing: Copy the input string from the data entry field to the label

When does the code copy the input string to the label? We need an event to signal when
the user has finished typing. Let’s use a button called “Copy” to generate the event.What hap-

8.7 R e a d i n g D a t a i n a n E v e n t H a n d l e r | 399

pens after the code copies the string? The problem statement doesn’t answer this question.
We need a second event to indicate when the user has finished looking at the output. Such
an event could be generated by a second button, but instead we decide to do what we did in
our SimpleButton example and let the user close the window to end execution.

The event handler for the button simply copies the data from the input field to the out-
put label. For example:

fieldContents = inputField.getText();
outputLabel.setText(fieldContents);

We can even shorten these two lines to just one and eliminate the string variable fieldContents:

outputLabel.setText(inputField.getText());

This single line of code carries out the main action that we want to perform on the data.The
button event handler that contains it is written just as before, except that we insert this line
into the body of the method:

private static class ButtonHandler implements ActionListener
{
public void actionPerformed(ActionEvent event) // Event handler method
{
outputLabel.setText(inputField.getText());

}
} // End of ButtonHandler

After this method executes, it returns control to the JVM. If the user then closes the window,
the application exits.

All that remains is to declare the appropriate variables, assign object addresses to them,
add them to the content pane, and show the frame on the screen. In SimpleButton, we saw that
the output label must be declared as a class field to make it accessible to both mainand the event
handler.Do any of the other declarations here need to be declared outside of main?Yes.We want
to be able to initialize and add the data entry field in main, and access it in the event handler,
so we also declare it at the class level.Here is the complete application,which we call CopyString:

//***
// This application displays a frame with a data entry field and copies its
// contents to a label when the user clicks a button marked "Copy"
//***
import java.awt.*; // Layout manager
import java.awt.event.*; // Event-handling classes
import javax.swing.*; // User interface classes

400 | Event-Driven Input and Output

public class CopyString
{
// Define a button handler
private static class ButtonHandler implements ActionListener
{
public void actionPerformed(ActionEvent event) // Event handler method
{
outputLabel.setText(inputField.getText());

}
} // End of ButtonHandler

// Declare pieces of the user interface shared by main and CopyString
private static JLabel outputLabel; // Label for output
private static JTextField inputField; // Input field

public static void main(String[] args)
{ // Declare pieces of the user interface accessed only by main
JFrame dataFrame; // User interface frame
Container dataPane; // Content pane
JLabel entryLabel; // Label for input field
JButton copy; // Copy button
ButtonHandler copyAction; // Declare action handler
// Instantiate the pieces of the interface
dataFrame = new JFrame();
dataPane = dataFrame.getContentPane();
dataFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
dataFrame.setSize(450, 75);
dataPane.setLayout(new GridLayout(2,2));
entryLabel = new JLabel("Enter a string:");
outputLabel = new JLabel("");
inputField = new JTextField("", 30);
copy = new JButton("Copy");
copyAction = new ButtonHandler(); // Instantiate listener
copy.addActionListener(copyAction); // Register listener
// Put pieces into frame and make it visible
dataPane.add(entryLabel);
dataPane.add(inputField);
dataPane.add(copy);
dataPane.add(outputLabel);
dataFrame.setVisible(true);

}
}

The application initially displays a frame that looks like this:

8.7 R e a d i n g D a t a i n a n E v e n t H a n d l e r | 401

After the user enters a string and clicks the copy button, the frame appears as follows:

When the user closes the window, the program removes the frame from the screen and
quits. But what happens if the user doesn’t close the window? What if the user types some
more data and clicks the button again? The button fires another event, which dutifully calls
the event handler again, and the output label is updated with the new input value.The user
can keep entering new data values until he or she closes the window.We’ve created an event
loop! In some applications, this event loop would be useful. For this problem, however, our
intent is to allow the user to enter just one value.

How can we prevent the user from entering a second value? We can remove the button
from the pane so that it can’t be clicked again. A Container object supports a remove method
that allows us to delete items that we’ve previously inserted with add.We can write a second
line in our event handler that calls this method for dataPane, passing it the button copy:

dataPane.remove(copy);

Notice, however, that dataPane and copy are declared locally within main. If we want them
to be accessible to both main and the event handler, then they must become class fields. Here
is the revised section of the class member declarations:

private static JLabel outputLabel; // Label for output
private static JTextField inputField; // Input field
private static Container dataPane; // Content pane
private static JButton copy; // Copy button

Now, as soon as the user clicks the “Copy” button, the button disappears.At the same time,
the input string appears in the output label.The only event that the user can then generate
is closing the window.

Our example has demonstrated the input of a string. Just as with System.in and file in-
put, String is the only form of input that Java supports with a field. We must use one of the
parse methods if we wish to input a numeric value. For example:

amount = Double.parseDouble(dataField.getText());

Now, let’s put together what we’ve seen thus far in a Case Study.

CASE STUDY
402

TOTALING RAINFALL AMOUNTS

Problem: You are working for a scientific research project that is keeping track of the to-
tal rainfall in your area. Observers from different stations call you to report how much
rain has fallen at the end of a storm.You need to enter the values for each station as
they come in and display the running total for each station.

Brainstorming: We begin by looking at the nouns in the problem statement as the start
of our brainstorming.They are you, project, total rainfall, observers, stations, storm, and val-
ues. Going back over the list, you realize that project and storm are not really objects;
they just give information about the context of the problem. Here is your first pass at
the classes in the problem:

Filtering: Values and total rainfall are numeric values, so we don’t need classes for
them. What are observers? They are the people who provide the rainfall values, so they
are not a class in our problem solution. However, this reminds us that we must have a
frame to input the rainfall values. What does “you” represent? The processing that must
be done. As you cannot actually do the processing within the machine, you are respon-
sible for seeing that the values are input and the total is calculated and displayed.That
is, you are responsible for developing the algorithmic solution and writing the code to
carry out the tasks. Stations are the different places from which you receive values and
for which you need to keep totals.They sound like actual objects, so let’s make a Station
class, and then we can instantiate an object for each station. Here is our filtered list:

Stations

User interface frame

You

Total rainfall

Observers

Stations

Values

CASE STUDY 403

Scenarios: What happens when an observer calls in with a rainfall amount? The user in-
terface CRC card is raised, and it must collaborate with a station. Each station is an in-
stance of the Station class, and we want to enter the rainfall amount for the particular
station. We then click a button and see the new total.Thus a station needs to have a
button, a data entry field, and a label for output. It also needs to label the field and the
output with descriptions.

After a value has been entered, the user clicks the button; the station should then
add the value to the total and the new total should be displayed.The data entry field
should also be reset to 0.0 to indicate that the field is ready for more input.This default
value has the advantage that if you accidentally click its button without entering a new
value, the total isn’t affected. When designing an object that is also a user interface
component, it is a good idea to draw it out by hand to make sure that it is complete and
understandable.

We initially state that Station collaborates with three library classes: JLabel, JButton,
and JTextField. Of course, we need an event handler for the button, so it also needs to
collaborate with an ActionHandler (a class we will write that implements the
ActionListener interface).

Until now, we’ve used main to set up all of the elements in a user interface. But much
of what a station does is related to its part of the user interface. Let’s make a Station ob-
ject be responsible for creating its own portion of the interface and returning it for main
to add as a unit to the frame.

What are the responsibilities of a Station object?

1. Create each piece of the user interface when it is instantiated.

2. Return the station’s portion of the user interface.

3. Handle button clicks by reading a value, updating the total, and resetting the
data entry field.

The first responsibility has to be a constructor, as it takes place during instantiation.
Returning the user interface components is the task of an instance method. Handling
button events is the job of an event handler. So, it sounds like our Station object needs
three methods. Here is the CRC card as it now stands:

Station xxxxxxxxxxx 0.0 Enter Total Rainfall: 123.05

CASE STUDY
404

Now that we’ve identified these responsibilities, the user interface card can be low-
ered. As part of this process, however, we’ve determined that the input and the event
handling are part of the Station class.The user interface is not directly involved in the
data entry scenario. We should also note that each Station represents a separate event
loop. What initializes and terminates these loops? Each loop is initialized by the user
interface instantiating a station, getting its user interface elements, and placing them
in the content pane.The loops are all terminated by closing the window. All of this
activity is handled in the initialization of the user interface, which occurs in the appli-
cation class. Let’s call it Rainfall.

Responsibility Algorithms: The Station constructor should take the name of the station
as a string and use it to form the first label, concatenating it with “Station” and “:”.This
label never changes again, so we can instantiate it anonymously. Our constructor needs
to create the rest of the user interface components described previously.They include

Class Name: Rainfall Superclass: Subclasses:

Responsibilities Collaborations

Initialize user interface

.

.

.

Station, JFrame, Container

Class Name: Station Superclass: Subclasses:

Responsibilities Collaborations

Create self

Get user interface elements

Handle button events

.

.

.

JButton, JLabel, JTextField

None

ActionHandler, JTextField, JLabel

CASE STUDY 405

the data entry field, the button, and the output label. We want each instance of the
class to have its own copy of the fields, so they should be instance fields (nonstatic).
None of the fields is used outside of the class, so they all involve package-level access.
The button needs an event handler, so we also declare an ActionHandler class, nested
within the class. Of course, we need an instance field to hold the total, and it should be
a double variable that is initialized to 0.0. Here are the class declarations that we’ve
identified so far:

We want the user interface elements to be incorporated in a unit that can be added
to a content pane.This “unit” sounds a bit like a pane, but we can’t put a pane inside a
pane. Browsing through your Java library reference, you discover the class JPanel, which
is a Container object that can have a layout manager and hold user interface
components, just like a content pane. It can also be added to a content pane so that its
contents appear within the pane.This is a perfect example of the building-block
approach! We can add these components to a JPanel that is an instance field in our
Station object.

The job of the constructor is then to initialize all of these fields.

To get the panel from the object, we use a value-returning instance method that re-
turns a reference to panel.

Lastly, we have to design an ActionListener implementation within our Station class.
We want the event listener to be unique to each instance of Station.That way, the but-
ton in each Station object has an event handler that can directly access the station’s

Instance method getPanel, has no parameters and returns a JPanel reference

return panel

Constructor Station, takes one parameter, name, of class String

Create a JPanel object, panel
Set the layout manager for the panel to FlowLayout
Create the text field, amountField, leaving space for 10 digits, and
initializing it to "0.0"

Create a button called enter
Create an event handler for the button
Register the handler with the button
Create a label called outputLabel and initialize it to "Total Rainfall: 0.0"
Add a label to the panel with "Station " + name + ":"
Add amountField to the panel
Add enter button to the panel
Add outputLabel to the panel

A text field for data entry
A button to signal when data is ready
A label to hold output
An ActionHandler to handle the button events
Total, a double variable

CASE STUDY
406

fields. So, we must make the event handler be an instance class (not static). What does
the event handler do when the user clicks the button? It gets the string from the input
field, converts it to a double value (using parseDouble), adds it to the total, updates the
output label, and resets the input field to 0.0.

We are now ready to code the Station class.

//**
// This package provides a class for rainfall reporting stations. Each
// station is represented by a separate panel that contains its own
// user interface elements.
//**
package station;
import java.awt.*; // Layout manager
import java.awt.event.*; // Event-handling classes
import javax.swing.*; // User interface classes
public class Station
{
JButton enter; // Enter data button
JTextField amountField; // Data entry field
JLabel outputLabel; // Result display label
JPanel panel; // Panel for user interface
ActionHandler action; // Event handler
double total = 0.0; // Total rainfall

public Station (String name) // Station constructor
{
// Set up panel to hold user interface elements
panel = new JPanel(); // Get a panel
panel.setLayout(new FlowLayout()); // Set layout for the panel
// Create user interface elements
amountField = new JTextField("0.0", 10); // Field for data entry
enter = new JButton("Enter"); // Enter button
action = new ActionHandler(); // Create an event handler
enter.addActionListener(action); // Register handler with button
outputLabel = new JLabel("Total Rainfall: " // Label for output

+ total);
// Add user interface elements to panel
panel.add(new JLabel("Station " + name + ":"));

Private Class ActionHandler implements ActionListener

Public void method actionPerformed takes one parameter, event, of class ActionEvent

Declare a local variable, value, of type double, to hold the input value
Assign value the result of applying parseDouble to the value from
amountField.getText

Set total to total plus value
Use setText to update outputLabel with "Total Rainfall: " + total
Use setText to reset amountField to "0.0"

CASE STUDY 407

panel.add(amountField);
panel.add(enter);
panel.add(outputLabel);

} // End Station constructor

public JPanel getPanel() // Instance method
{
return panel; // Return the filled panel

}

// Define an event handler with an instance of a Station
private class ActionHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)
// Handle events from the Enter button in this station's panel
{
double value; // Holds input value
// Convert string in amountField to a double value
value = Double.parseDouble(amountField.getText()); // Get value from field
total = total + value; // Add amount to sum
outputLabel.setText("Total Rainfall: " + total); // Display total
amountField.setText("0.0"); // Clear input field

}
}

}

All that’s left is to design the application class and main. Given that so much of the
work is done in the Station class, main has very little to do. We need to declare and set
up our frame and content pane as usual.Then we instantiate as many Station objects
as there are stations, adding each one’s panel to the content pane. Finally, we display
the frame. Let’s assume there are three stations: Austin, Amherst, and LaCrosse.

public static void method main, takes the usual parameters

Declare a JFrame, inputFrame
Declare a Container, inputPane
Instantiate a JFrame for inputFrame
Set inputPane to the content pane of inputFrame
Set the size of inputFrame
Set the default closing operation for inputFrame to exit
Set the layout manager for inputPane to be an N by 1 grid
Instantiate station "Austin" and add its panel to inputPane
Instantiate station "Amherst" and add its panel to inputPane
Instantiate station "LaCrosse" and add its panel to inputPane
Make the frame visible

CASE STUDY
408

Let’s call the application class Rainfall. Here is code for the complete application:

//***
// This application keeps track of rainfall amounts for three stations
//***
import java.awt.*; // Layout manager
import java.awt.event.*; // Event-handling classes
import javax.swing.*; // User interface classes
import station.*; // Rainfall station
public class Rainfall
{
public static void main(String[] args)
{
JFrame inputFrame; // User interface frame
Container inputPane; // Content pane
// Set up the frame
inputFrame = new JFrame();
inputPane = inputFrame.getContentPane();
inputFrame.setSize(500, 150);
inputFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); // End event loops
inputPane.setLayout(new GridLayout(0,1));
// Add components to pane at start of event loops
// In each case, create a station object and
// directly get its panel to add to the frame
inputPane.add((new Station("Austin")).getPanel()); // Station for Austin
inputPane.add((new Station("Amherst")).getPanel()); // Station for Amherst
inputPane.add((new Station("LaCrosse")).getPanel()); // Station for LaCrosse
inputFrame.setVisible(true); // Show the frame

}
}

When the application executes, the frame shown below is displayed.The contents
shown in the frame are the result of entering several values, with the frame appearing
as it does just before the user clicks Enter to cause a value to be processed for the
Amherst station.

CASE STUDY 409

With applications that input data from fields, the most common error is to try to as-
sign the field contents directly to an int or double variable. Remember that Java takes
only String values as input and that you must convert the input to any other type with
the appropriate parse method. Another common problem arises when the user enters a
number that causes integer overflow. When you want a field to input an integer value,
limit its size (through the constructor call) to nine characters. As noted earlier, we are
not yet ready to handle errors in which the user enters nonnumeric data into such a
field. Our application simply crashes with an error message if this error happens.

8.8 Handling Multiple Button Events

When we first discussed the handling of button events in a frame, we restricted our user in-
terface to a single button. In the preceding Case Study, we created a user interface containing
multiple buttons, but each button was registered with a different event handler instance. In
this section, we consider the handling of events from multiple buttons with a single handler.

When we instantiate a button with new, we pass a string as an argument to its constructor.
This string is used to label the button on the screen. However, it is also used to identify an
event from the button. For example, suppose we need a user interface with two buttons,
copy and done. We create one ButtonHandler listener object, and register it with both but-
tons as follows:

buttonAction = new ButtonHandler(); // Instantiate a ButtonHandler object,
// and assign its address to the variable
// buttonAction.

copy = new JButton("Copy"); // Instantiate a JButton object that is
// displayed with the word "Copy" and
// assign its address to the variable copy.
// The string also identifies it.

copy.addActionListener(buttonAction); // Register the button listener.
done = new JButton("Done"); // Instantiate a second JButton that

// displays the word "Done" inside it.
// Assign its address to the variable done.
// The string also identifies it.

done.addActionListener(buttonAction); // Register the button listener.

Figure 8.8 shows a frame with these buttons in it.
When the user clicks either of these buttons, actionPerformed is

called, just as we saw previously. How does actionPerformed decide
which button was clicked? Recall that when we write the heading for
the actionPerformed method, we include a parameter of type
ActionEvent.The event source passes an object to the method through
that parameter. That object has a field containing the string we gave Figure 8.8 Frame with Two Buttons

410 | Event-Driven Input and Output

to the button to identify it. We access the string by calling the value-returning method
getActionCommand that is associated with the parameter object.

For example, if the heading for actionPerformed is written

public void actionPerformed(ActionEvent someButton)

then we obtain the string that identifies which button was clicked by using the following state-
ment (command is a String variable):

command = someButton.getActionCommand();

Within our declaration of the method, we use string comparisons and branches to per-
form the necessary action for the particular button. For example, we might extend the event
handler in our CopyString class as follows:

private static class ButtonHandler implements ActionListener
{
public void actionPerformed(ActionEvent buttonEvent) // Event handler method
{
String command; // String to hold button name
command = buttonEvent.getActionCommand(); // Get the button's name
if (command.equals("Copy")) // When the name is "Copy"
outputLabel.setText(inputField.getText()); // Copy the field

else if (command.equals("Done")) // When the name is "Done"
{
dataFrame.dispose(); // Close the frame
System.exit(0); // Quit the program

}
else // Otherwise it's an error
outputLabel.setText("An unexpected event occurred.");

}
}

When the event source calls actionPerformed, the method gets the button’s name using
getActionCommand. It then uses an if-else-if structure to decide which button was clicked and
execute the appropriate statements.Although getActionCommand should never return a name
other than "Copy" or "Done", we provide a branch for other names just to be safe.At some point
in the future, the program could be changed to add another button. If the new programmer
forgets to add a corresponding branch to handle that event, the program will display an er-
ror message instead of crashing.

8.8 H a n d l i n g M u l t i p l e B u t t o n E v e n t s | 411

In the preceding example, we introduced two new methods, dispose and exit. The dis-
posemethod is an instance method associated with a JFrame object. Its effect is to permanently
remove the frame from the screen. We could also have called setVisible(false), but dispose
does some extra work in the background that saves the JVM from having to clean up after
us.The exit method is a class method associated with the System class. It causes the JVM to
terminate execution of our application. Passing it an argument of 0 indicates that the ap-
plication was intentionally ended in a normal manner.

We have now seen how to handle multiple button events in a single handler. In the pre-
ceding Case Study, we saw how to handle events from different buttons by using a handler
for each one. How do we decide which approach to take for a given problem?

When a user interface contains buttons that perform tasks associated with a specific ob-
ject, it makes sense to combine the handling of their events into a single method. If clicking
a button requires processing that is unrelated to other buttons, then it should have its own
event handler. For example, in our Rainfall application, each station has its own Enter but-
ton, and a handler that is dedicated to that particular button. Both the button and its han-
dling are integral to a Station object. It would not make sense to create a single button
handler that responds to the buttons for all of the stations. On the other hand, if we extend
the definition of a Station object to include a Reset button, then it makes perfect sense to have
the handler for a station respond to both the Enter and the Reset buttons appropriately.

CASE STUDY
412

A SIMPLE CALCULATOR

Problem: It’s useful to have a calculator that you can display on your computer screen
when you look around and can’t find your handheld one. Let’s write a Java application
that simulates a simple calculator. Once we have the basic design, we can easily extend
it to provide other functions.

Brainstorming: Rather than look at the problem statement, you pick up your pocket cal-
culator. After all, this problem involves simulating the pocket calculator. What objects
do you see? A register on the top that shows what you are entering and displays the an-
swer, an On button, buttons for each of the 10 decimal digits, buttons for each of the
four basic operations (addition, subtraction, multiplication, and division), a Clear
button, and a button marked with an equals sign.There are buttons for percent and
square root, but you do not use them often enough to add them to the simulation. So
the first list of proposed classes is as follows:

Filtering: We certainly need a register to show the output. Do we need an On button?
No, running the application is equivalent to the On button. However, we do need some
way of quitting the application. We could have a Quit button or we could let the
window-closing event end the application. Window closing . . . We need an object to rep-
resent the calculator itself; that is, we need a window to hold all the other objects. What
about the buttons for each digit? No, we can let the user input a number into a text field
rather than clicking individual buttons.This means that we need a label for the text
field. Do we need an Enter button? No, we can let the button for the operation signal
that the value is ready to be read. We do need a button for each operation. We certainly
need a Clear button to set the register value to zero. What about the Equals button? On
the calculator, it signals that we want to see the results so far in the register. Instead of
an Equals button, let’s just display the result of each operation in the register as we go
along. Here is our filtered list of classes:

Register

On button

Buttons for the digits

Buttons for four operations

Clear button

Equals button

CASE STUDY 413

Scenarios: What happens when the application begins? The user interface card is
raised. It must set up the user interface on the screen.To do so, it collaborates with the
JFrame, JTextField, JButton, and JLabel classes. From our experience with the last Case
Study, we know that we can add the user interface components either to a panel or di-
rectly to the content pane of the frame. If we needed to instantiate multiple calculators
in a window, then using a panel would make sense. Here, however, we need just one
calculator, so we can directly place its components into the content pane. (Case Study
Follow-Up Exercise 12 asks you to rewrite the application using a panel.) We can, there-
fore, use main to organize the window. Let’s call the application class Calculator. We
know that this application collaborates with the usual user interface library classes,
and it also needs to register the button handlers with the buttons. We can lower the
user interface CRC card, which is now called Calculator.

What happens when the user clicks an operation button? The appropriate button
handler performs a calculation and sends the value to the output register.The only col-
laborations that we need are with the input text field (calling its standard methods to
get its contents and to set them to a new value) and with the ActionEvent class (to get
the name of the event).The four operator buttons are event sources. When the user
clicks one, an actionPerformed method is invoked with the event source as an argument.
The processing of the buttons is embedded within this method, the responsibility for
which resides in a class we call NumericHandler.

Class Name: Calculator Superclass: Subclasses:

Responsibilities Collaborations

Initialize user interface JFrame, Container, JLabel,

JButton, JTextField,

Numeric Handler, ClearHandler

User interface window with data register, button, labels

Buttons for four operations

Clear button

CASE STUDY
414

The clear button has a different function than the other buttons. When it is clicked,
the register is set to zero; no value is input from the text field, and no arithmetic opera-
tion is performed. It makes sense to use one button handler for the four arithmetic but-
tons, but a separate one for the clear button.

Most of the objects are instances of classes provided in the Java library.Thus the only
new classes are the two event handlers and Calculator.The main responsibility of the main
method will be to set up the frame and populate it with all of the user interface objects.

Responsibility Algorithms: The first step is to identify the fields of the Calculator class.
They are mainly the interface variables. Declaring these variables requires us to make a
list of the components in the window. We need a frame and content pane to hold every-
thing, three labels (one for input and two for the register), a field for entering a data
value, four buttons for the user to click to indicate the operation when a value is ready
for input, and a button for the user to click to clear the register.This same list also tells
us what we need to add to the frame.This portion of the responsibility algorithms is
shown below. All of the variables should be class fields, so they are static. We can give
them package access, rather than making them explicitly private.

Class Name: ClearHandler Superclass: Subclasses:

Responsibilities Collaborations

Action performed

.

.

.

JTextField, ActionEvent

Class Name: NumericHandler Superclass: Subclasses:

Responsibilities Collaborations

Action performed

.

.

.

JTextField, ActionEvent

CASE STUDY 415

Before we go on, let’s simplify the problem somewhat. We will first create a calcula-
tor with only plus and minus functions. After we verify this simplified version of the
application, we can add division and multiplication operations. (See Case Study Follow-
Up Exercise 10.)

The responsibility of main, creating the user interface, is similar to what we’ve done
in several previous applications. Does this mean that we can just cut and paste the
algorithms? No, the objects in the window are not the same, but the steps used to
create them are the same, so we already know how to write the outline of the
algorithm.The steps shown in color require further expansion. We’re applying
functional decomposition to simplify the problem-solving process.

Instantiate Each Interface Object

Set calcFrame to address of new JFrame
Get content pane from calcFrame and assign its address to calcPane
Set up calcPane as a four-row, two-column grid
Set resultLabel to address of new JLabel, "Result:"
Set register to address of new JLabel, "0.0"
Set inputField to address of new JTextField, empty with 10 spaces
Set add to address of new JButton, "+"
Set subtract to address of new JButton, "-"
Set clear to address of new JButton, "Clear"

public static main method (standard arguments)

Instantiate each interface object
Register listeners with buttons
Create the frame
Get the content pane
Size the frame
Set default close operation
Set layout manager for the pane
Add each interface object to the pane
Make the frame visible

Declare Interface Variables

Declare a JFrame, calcFrame
Declare a Container, calcPane
Declare a JLabel, resultLabel
Declare a JLabel, register
Declare a JLabel, entryLabel, for prompting
Declare a JTextField, inputField, for input
Declare a JButton, add
Declare a JButton, subtract
Declare a JButton, clear

CASE STUDY
416

We still have one more step in main to flesh out.

Registering an event listener for a button involves three steps: declare a variable of
the listener class, instantiate a listener object, and add the listener object to the button.
The listener for the numeric operations is, of course, NumericHandler.

For the clear operation, we just substitute ClearHandler.

We have now completed the responsibility algorithms for the application class
Calculator.The remaining classes handle the buttons. First, we design the listener for
the numeric buttons. We have said that the listener class is called NumericHandler. What
should the actionPerformed method do when the user clicks the add or subtract button?
It should get the value to be used in the calculation from the input field and convert it
to a real number. If the user enters a string that does not represent a legitimate real
number, a NumberFormatException may be thrown. In Chapter 9, we show you how to han-
dle this exception; here, we assume correct input.

Next, we determine which operation should be applied to the number, addition or
subtraction. Wait a minute: Addition and subtraction are binary operations! We have
one value; where is the other one? Actually, the value just input is the second operand.
The first operand is the value in the register. Rather than extract it from the window
each time, we should keep a copy in numeric form. (We must be sure to set that value
to zero originally.) Back to the question of determining which button was clicked: We
use the parameter in the actionPerformed method to tell us.

Register the Event Listener for the Clear Button

Declare a ClearHandler, clearOperation
Instantiate a ClearHandler for clearOperation
add clearOperation as listener for clear button

Register the Event Listener for the Arithmetic Buttons

Declare a NumericHandler, operation
Instantiate a NumericHandler for operation
add operation as listener for arithmetic buttons

Register Listeners with Buttons

Register the event listener for the arithmetic buttons
Register the event listener for the clear button

Add Each Interface Object to the Pane

Add resultLabel to calcPane
Add register to calcPane
Add entryLabel to calcPane
Add inputField to calcPane
Add add to calcPane
Add subtract to calcPane
Add clear to calcPane

CASE STUDY 417

The algorithm for handling the Clear button is even simpler; all we have to do is set
the register to zero as well as the variable that contains the same value. We should also
clear the input field.These actions are performed in the actionPerformed method of the
class ClearHandler.

As in our previous applications, we must decide where each object should be
declared. Because we are writing this application as just a single class that won’t be in-
stantiated by user code, we can make all of the members static and declare them at the
class level.

The coding of the algorithm into Java is now easy. Here is the result:

//***
// This application implements a simple on-screen calculator
//***
import java.awt.*; // awt interface classes
import java.awt.event.*; // awt event classes
import javax.swing.*; // User interface classes

public class Calculator
{
static JTextField inputField; // Data entry field
static JLabel register; // Result shown on screen
static double result; // Keeps current value
static JFrame calcFrame; // Declare a frame
static Container calcPane; // Container to hold

// content pane of frame
static NumericHandler operation; // Declare numeric listener
static ClearHandler clearOperation; // Declare clear listener
static JLabel resultLabel; // Indicate output area
static JLabel entryLabel; // Label for input field
static JButton add; // Add button

Handle Clear Button Event Level 1

Set result to zero
Display result in register
Clear inputField

Handle Numeric Button Events Level 1

Set secondOperand to numerical value (double) of entry string
Set whichButton to name of event source
if whichButton is "+"

Set result to result + secondOperand
else

Set result to result – secondOperand
Display result in register
Clear inputField

CASE STUDY
418

static JButton subtract; // Subtract button
static JButton clear; // Clear button

// Define event listener for numeric buttons
static class NumericHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)
// Handle events from the buttons in calcPane
{
double secondOperand; // Holds input value
String whichButton; // Holds the button's name
// Get the operand
secondOperand =
Double.parseDouble(inputField.getText());

whichButton = event.getActionCommand(); // Get the button's name

if (whichButton.equals("+")) // When the name is "add"
result = result + secondOperand; // add the operand

else // Otherwise
result = result – secondOperand; // subtract the operand

register.setText("" + result); // Display result
inputField.setText(""); // Clear input

}
}

static class ClearHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)
// Handle events from the Clear button in calcPane
{
result = 0.0; // Set result back to zero
register.setText("0.0"); // Reset result in register
inputField.setText(""); // Clear input
}

}

public static void main(String[] args)
{
operation = new NumericHandler(); // Instantiate a NumericHandler
clearOperation = new ClearHandler(); // Instantiate a ClearHandler
result = 0.0; // Initialize result

// Instantiate labels and initialize input field
resultLabel = new JLabel("Result:");
register = new JLabel("0.0", JLabel.RIGHT);
entryLabel = new JLabel("Enter #:");
inputField = new JTextField("", 10);

CASE STUDY 419

// Instantiate button objects
add = new JButton("+");
subtract = new JButton("-");
clear = new JButton("Clear");

// Register the button listeners
add.addActionListener(operation);
subtract.addActionListener(operation);
clear.addActionListener(clearOperation);

// Add interface elements to calcFrame
calcFrame = new JFrame(); // Give the frame a value
calcFrame.setSize(300, 200); // Specify size of frame
// Set close operation to exit
calcFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
calcPane = calcFrame.getContentPane(); // Get the content pane
calcPane.setLayout(new GridLayout(4,2)); // Set the layout manager
calcPane.add(resultLabel);
calcPane.add(register);
calcPane.add(entryLabel);
calcPane.add(inputField);
calcPane.add(add);
calcPane.add(subtract);
calcPane.add(clear);
calcFrame.setVisible(true); // Show the frame

}
}

When we run the application, it displays a window like the one here:

420 | Event-Driven Input and Output

Reason for Test Case Input Values Expected Output Observed Output

Test add command 12.5, + 12.500

Test subtract command 2.5, - 10.000

Test clear command none, Clear 0.000

Test window closing none Window disappears

Table 8.1 Test Plan for the Calculator Application

8.9 Testing and Debugging

Table 8.1 shows a partial test plan for the Calculator application.The first test case assumes
that the calculator has an initial value of 0.0. Successive test cases use the preceding re-
sult as one of the two operands for a calculation. To be more thorough, we should check
that the application properly handles the closing of the window, and we should include
both negative and positive values.

Testing and Debugging Hints

1. Remember to label each input field with a prompting message.

2. Make certain that every field, label, and button follows the three basic steps:
declare a variable, instantiate an object, and add it to the pane.

3. Remember to specify a layout manager for a pane or panel.

4. The value in a TextField is a string. If you need to input a number, you must
use getText to input the string, and then convert the string to a number using
methods such as Integer.parseInt and Double.parseDouble. Applying these
methods to a nonnumeric value causes the application to halt with an error
message such as Number Format Exception.

5. A button event listener declaration must follow the pattern of headings speci-
fied by the ActionListener interface.You can choose the name of the class, and
its modifiers, but the rest of the class heading and the method signature must
appear as shown in the examples in this book.

6. Once you have declared the button action listener class, you must perform
three steps to register the event listener: declare a variable of that class,
instantiate an object of the class and assign its address to the variable, and
register the listener by calling the button’s addActionListener method with the
variable as its argument.

7. Confirm that every part of an event loop is present, especially the exit condi-
tion.

421

Summary

Graphical user interfaces (GUIs) provide more convenient and intuitive input for
users. However, they also take more programming effort than the simple line-
oriented I/O that we’ve used in the past. Java is one of the first widely used
languages to offer extensive support for GUI programming.

The basic window object is a JFrame; it provides a content pane in the form of a
Container object that is returned by the getContentPane instance method.We add user in-
terface objects to the content pane with the add method, and we remove them with the
remove method.As part of creating a JFrame, we must specify its default closing operation,
its size, and the layout manager to use for its content pane.We use setVisible(true) to
make the frame appear on the screen and dispose() to remove the frame.

Objects that we can place into a content pane include a JLabel, JTextField, and
JButton. We can change the contents of a JLabel or JTextField with setText, and we
can retrieve the String value of a JTextField with getText. A JPanel is another class,
with similarities to a content pane, that we can use to preassemble groups of
interface elements. We can then add the whole JPanel as a unit to the content pane
of a JFrame, so that the group of elements appears together.

We must register an event listener with an event source, such as a button, to han-
dle events from the source.The event listener is registered with a call to
addActionListener. An event handler is a method in a class definition that follows the
specification of the ActionListener interface.

Event loops provide an implicit way of repeating actions in event-driven applica-
tions. We must check that an event loop is designed properly and that all of its
aspects are implemented correctly.

When a user interface includes multiple buttons, we can use the string associated
with each button to determine which one was clicked.The event handler is passed
an ActionEvent value as a parameter, and we call its associated value-returning
instance method, getActionCommand, to retrieve the string associated with the button.

Quick Check

1. What contains a content pane, and what does a content pane contain? (pp.
376–380)

2. Where is an event sent when a user clicks a button with the mouse? (pp. 385–393)

3. Where does updating of the process within an event loop occur? (pp. 393–394)

4. What is the handler method to which button events are sent? (pp. 385–393)

5. Write statements that declare a private JTextField variable called dataField, in-
stantiate a corresponding object, and add it to a content pane called outPane.
(pp. 394–398)

6. Write a statement that adds a label with the message "Quick Check" to outPane.
(pp. 376–380)

422

7. When a dialog involves processing input from a field after a button has been
clicked, what part of the code is responsible for reading the field and
processing it? (pp. 394–396)

8. How do you register an event listener with a button? (pp. 387–390)

9. What Java interface does an event listener implement, and in what package is
the interface found? (pp. 387–390)

10. What are the parts of an event loop? (pp. 393–394)

11. Which method provides the string that we use to identify the source of an
event? (pp. 409–411)

Answers

1. A JFrame contains a content pane and the content pane contains user interface elements. 2. The button
event handler 3. In the user’s actions and in the event handler 4.actionPerformed
5. private static JTextField dataField;

dataField = new JTextField(10);
outPane.add(dataField);

6. outPane.add(new JLabel("Quick Check")); 7. The event handler 8. With the addActionListener method
9. ActionListener is found in java.awt.event. 10. Initialization of the loop exit condition and the process, loop
entry, exit condition update, process update, and exit 11. getActionCommand

Exam Preparation Exercises

1. If a and b are int variables with a = 5 and b = 2, what output does each of the fol-
lowing statements produce?

a. outPane.add(new JLabel("a = " + a + "b = " + b));

b. outPane.add(new JLabel("Sum:" + a + b));

c. outPane.add(new JLabel("Sum: " + a + b));

d. outPane.add(new JLabel(a / b + " feet"));

2. What does the following application display?

import java.awt.*;
import javax.swing.*;
public class ExamPrep
{
public static void main(String[] args)
{
JFrame out;
Container outPane;
final int LBS = 10;
int price;
int cost;
char ch;
out = new JFrame();

423

outPane = out.getContentPane();

out.setSize(300, 200);

out.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

outPane.setLayout(new GridLayout(0,1));

price = 30;

cost = price * LBS;

ch = 'A';

outPane.add(new JLabel("Cost is "));

outPane.add(new JLabel("" + cost));

outPane.add(new JLabel("Price is " + price + "Cost is " + cost));

outPane.add(new JLabel("Grade " + ch + " costs "));

outPane.add(new JLabel("" + cost));

out.setVisible(true);

}

}

3. To use each of the following statements, a Java application must import which
package(s)?

a. outPane.add(new JLabel("x"));

b. private static class ButtonHandler implements ActionListener

c. outPane.setLayout(new GridLayout(0, 2));

4. Given the statements

String heading;

String str;

heading = "Exam Preparation Exercises";

what is the output of each of the following code segments?

a. outPane.add(new JLabel("" + heading.length()));

b. outPane.add(new JLabel(heading.substring(6, 16)));

c. outPane.add(new JLabel("" + heading.indexOf("Ex")));

5. Name three kinds of objects that can be contained in the content pane of a
JFrame object.

6. What are the steps in adding a data entry field to the content pane of a JFrame
object in Java?

7. What determines the amount of information in a prompt?

8. (True or False?) A JPanel can hold just one user interface element.

424

9. Do we have to get a content pane from a JPanel as we do with a JFrame?

10. What method would you use to change the value displayed in a JTextField object?

11. When giving a value to a label with new, what is passed to the constructor?

12. What method do you use to change the text within an existing label?

13. What happens if you forget to include the statement
dataFrame.setVisible(true);?

14. What are the three steps needed to add a button to a content pane?

15. What are the three parts of registering an event listener?

16. What happens when a user clicks a button but no listener is registered for
the event?

17. How are normal classes and classes that implement the ActionListener
interface different?

18. actionPerformed takes one argument of a Java class.What is the name of the class?

19. What are the parts of an event loop?

20. Why do you not have to write an event handler for window closing?

21. How do you associate a string with a button event?

22. Describe the two ways that multiple buttons can be distinguished.

Programming Warm-Up Exercises

1. a. Declare a button variable called stop.

b. Instantiate a button object, labeling it “Stop”, and assign its address to stop.

c. Declare a button listener variable and instantiate a button listener object.

d. Register the button listener with the button.

e. Add the button to the content pane dataPane.

f. Write the statements to declare a listener class.

2. Provide a user interface with two buttons, Enter and Quit.

a. Write the statements that declare variables for the buttons and a single
listener.

b. Write the statements that instantiate the buttons and the listener.

c. Write the statements that add the buttons to the content pane.

d. Write the statements that register the listener with the buttons.

e. Write the statement that accesses a button’s name from within an event han-
dler.

f. Code a class that implements ActionListener. When each button is clicked,
display its name on the screen.

425

3. Provide a user interface with two buttons, Enter and Quit.

a. Write the statements that declare the variables for the buttons and two
listeners.

b. Write the statements that instantiate the buttons and the listeners.

c. Write the statements that add the buttons to the content pane.

d. Write the statements that register the listeners with the buttons.

e. Code classes that implement ActionListener for each button. When each but-
ton is clicked, display its name on the screen.

4. a. Write the statement that stores the values entered in the field dataField into
the String variable dataValue.

b. Write a statement to replace the current contents of dataField with "Next
Value".

5. a. Write the declarations needed for a frame (exampleFrame) whose content
pane has one label (exampleLabel), one field (exampleField), and one button
(exampleButton).

b. Write the statements that define a class (ExampleClass) that is an implemen-
tation of ActionListener. When the exampleButton is clicked, the contents of
exampleField are stored into exampleValue and removed from exampleField.

c. Write the statements that registers the button event listener exampleHandler
with its associated event source exampleButton.

d. Write the statements that define a class (Example2Class) that is an
implementation of ActionListener. When the exampleButton is clicked, the
contents of exampleField are copied into exampleLabel.

6. Write the statement that displays the number 2000 in an existing JTextField
object, called exampleField.

7. Write the statement that takes the string representing an integer number in
the JTextField exampleField and stores it into the int variable data.

8. Write the field declarations for a class whose objects each contain three labels
(a data entry prompt, count, and average), a data entry field, and a button. Each
of the objects also keeps a total and a count of the number of values entered.

9. Write the constructor for the class described in Exercise 8.The class is called
Exam.The count and total should initially be zero.

10. Write the event handler for the button component of the class described in
Exercises 8 and 9. When the button is clicked, the value should be read from
the text field, the count and average labels should be updated, and the value in
the text field should be reset to 0.

11. Write the heading for a constructor for a class called Demo that takes one
parameter of the class JLabel and a second parameter of the class String.

426

12. Write the statements to declare a JPanel variable, instantiate an object for it,
set its layout manager to FlowLayout, and add three labels to it.

Programming Problem

1. You have bought a car, taking out a loan with an annual interest rate of 9%.You
will make 36 monthly payments of $165.25 each.You want to keep track of the
remaining balance you owe after each monthly payment.The formula for the
remaining balance is

balk = pmt� �
where

balk = balance remaining after the kth payment

k = payment number (1, 2, 3, . . .)

pmt = amount of the monthly payment

i = interest rate per month (annual rate ÷ 12)

n = total number of payments to be made

Write an application to calculate and display the balance remaining after each
monthly payment. Start by showing the remaining balance after the first
payment, and show each subsequent payment when a button is clicked.
Display an identifying message with each numerical result that indicates
which payment period is being displayed. Be sure to include appropriate
comments in your code, choose meaningful identifiers, and use indentation as
we do in the code in this chapter.

Case Study Follow-Up

1. Does Rainfall crash if the user enters nonnumeric values? Explain.

2. Write a test plan for Rainfall.

3. Rainfall stops when the user closes the window. How else could the
application be designed to allow the user to quit? Explain.

4. What happens when a negative value is input in Rainfall?

5. Modify Rainfall to display the names of three towns in your area for its stations.

6. Modify Rainfall to handle six stations, using names of towns near you.

7. Modify Rainfall to compute and display the average rainfall for a storm for
each station.

1 – (1 + i)k–n
��

i

427

8. Most of the code in the Calculator application involves input/output.The code
is long, but the concepts are simple. Examine the code below and mark the
statements associated with creating the frame and content pane as F; the
statements associated with handling buttons as B; and the statements that
create the buttons, register the listeners with them, and place the buttons into
the frame as FB. Notice that all the comments have been removed; you have to
read and understand the actual code to answer this question and Exercise 9.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Calculator
{
static JTextField inputField;
static JLabel register;
static double result;
static JFrame calcFrame;
static Container calcPane;
static NumericHandler operation;
static ClearHandler clearOperation;
static JLabel resultLabel;
static JLabel entryLabel;
static JButton add;
static JButton subtract;
static JButton clear;

static class NumericHandler implements ActionListener
{

public void actionPerformed(ActionEvent event)
{
double secondOperand;
String whichButton;
secondOperand =
Double.parseDouble(inputField.getText());

whichButton = event.getActionCommand();

if (whichButton.equals("+"))
result = result + secondOperand;

else
result = result – secondOperand;

428

register.setText("" + result);
inputField.setText("");

}
}

static class ClearHandler implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
result = 0.0;
register.setText("0.0");
inputField.setText("");
}

}

public static void main(String[] args)
{
operation = new NumericHandler();
clearOperation = new ClearHandler();
result = 0.0;
resultLabel = new JLabel("Result:");
register = new JLabel("0.0", JLabel.RIGHT);
entryLabel = new JLabel("Enter #:");
inputField = new JTextField("", 10);
add = new JButton("+");
subtract = new JButton("-");
clear = new JButton("Clear");
add.addActionListener(operation);
subtract.addActionListener(operation);
clear.addActionListener(clearOperation);
calcFrame = new JFrame();
calcFrame.setSize(300, 200);

429

calcFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
calcPane = calcFrame.getContentPane();
calcPane.setLayout(new GridLayout(4,2));
calcPane.add(resultLabel);
calcPane.add(register);
calcPane.add(entryLabel);
calcPane.add(inputField);
calcPane.add(add);
calcPane.add(subtract);
calcPane.add(clear);
calcFrame.setVisible(true);

}
}

9. List the statements that relate to the Clear button, describing what each one
does in English.

10. Complete the original Calculator project by adding buttons for multiplication
and division.

11. Write a test plan to test the final project and implement the test plan for
Calculator.

12. Rewrite the Calculator application so that a separate class contains the entire
calculator object. When an object is instantiated, it should create a JPanel con-
taining the user interface for a calculator.The class should provide a method
that returns the JPanel.The function of the main method can then be simplified
to creating the frame, instantiating a calculator object, getting its panel, and
adding it to the content pane, similar to what we did for the Station objects in
the Rainfall program.

13. After completing Exercise 12, change main to instantiate two calculators and
place them into the frame. Be sure to test them thoroughly to ensure that they
operate independently of each other.

Knowledge Goals
• To understand what is and is not an exception

• To know when throwing an exception is appropriate

• To know how an exception should be handled

• To understand the role of the switch statement

• To understand the purpose of the break statement

• To understand the distinctions among the alternative looping statements

• To be aware of Java’s additional operators and their place in the precedence
hierarchy with respect to each other

Skill Goals
To be able to:

• Use the Java exception-handling facilities try, catch, and throw

• Define an exception class

• Throw an exception

• Write a switch statement for a multiway branching problem

• Write a do statement and contrast it with a while statement

• Write a for statement as an alternative to a while statement

• Choose the most appropriate looping statement for a given problem

Exceptions and
Additional Control
Structures

1972
HP introduces the
hand-held scientific
calculator; hand-
held calculators
replace the slide
rule

1972
Nolan Bushnell
takes his video
game Pong and
founds Atari,
launching the
computer-
entertainment
industry

1972
Alan Kay’s ideas
fuel the
development of the
computer language
Smalltalk

1972
Dennis Ritchie
develops the
programming
language C

1972
Alain Colmerauer
develops the
programming
language Prolog

1972
The first
programmable
word processor is
introduced in
Canada

9
C H A P T E R

this book we have said that a construct could
cause an exception. Until now, we have handled exceptions by forwarding
them to “someone else.” In this chapter, we stop passing the buck and ex-
amine how to handle exceptions within our code.We also show you how
to generate exceptions of your own.

In Chapters 4 and 5, we introduced the Java statements for the se-
lection and loop control structures. In some cases, we considered more
than one way of implementing these structures. For example, selection
may be implemented by an if structure. Although the if-(then) is suffi-
cient to implement any selection structure, Java also provides the if-else
for the sake of convenience—the two-way branch is used frequently in
programming.

This chapter introduces several new statements that are also
nonessential to, but nonetheless convenient for, programming.The switch
statement makes it easier to write selection structures that have many
branches.Two new looping statements, for and do, make it easier to pro-
gram certain types of loops. The break and continue statements are con-
trol statements that are used as part of larger looping and selection
structures.

Finally, we examine the remaining operators in Java and study their
place in the precedence hierarchy.

Several times throughout

1972
Steve Wozniak
makes free phone
calls using his
invention, the “blue
box”

1973
Xerox PARC’s
experimental Alto
personal computer,
featuring a mouse,
a graphical user
interface, and
connection to a local
area network,
becomes operational

1973
Ten thousand
components are
placed on a 1-
square-cm chip
through large-scale
integration

1973
Eckert and
Mauchley’s ENIAC
patent is invali-
dated, and John
Vincent Atanasoff is
federally recognized
as the inventor of
the modern
computer

1974
Charles Simonyi
writes the first
WYSIWYG (“What
You See Is What
You Get”) program
entitled Bravo

1974
The first World
Computer Chess
Tournament takes
place in Stockholm;
the winner is the
program Kaissa

432 | Exceptions and Additional Control Structures

9.1 Exception-Handling Mechanism

In Chapter 8, we defined an exception as an unusual situation that is detected while an ap-
plication is running. An exception halts the normal execution of a method. There are three
parts to an exception-handling mechanism: defining the exception, raising or generating the
exception, and handling the exception. We look first at handling exceptions and then at
defining and raising them.

The try-catch-finally Statement

Ever since Chapter 2, when we introduced the BufferedReader class, we have found it neces-
sary to forward an IOException to the JVM. We noted that the alternative to forwarding is to
catch an exception.

When an error occurs in a method call, it isn’t always possible for the method itself to
take care of it. For example, suppose we ask the user for a file name in a dialog, get the name

from a field, and then attempt to open the file (prepare it for reading by calling the
FileReader constructor).The constructor discovers that the file doesn’t exist and,
therefore, cannot open it. Perhaps the file has been deleted, or maybe the user
just mistyped the name. The constructor has no way of knowing that the proper
response to the error is to ask the user to reenter the name. Because the con-
structor can’t deal with this error appropriately, it doesn’t even try. It passes the
problem on to the method that called it, such as main.

When a call returns with an exception, normal execution ends and the JVM
looks to see whether code is available to take care of the problem.That code is called
an exception handler and is part of a try-catch-finally statement.

The syntax template for a try-catch-finally statement follows:

As the diagram shows, the statement has three main parts.The first part is the keyword
try and a block (a { } pair enclosing any number of statements). The second part is an op-
tional series of catch clauses, each consisting of the keyword catch, a single parameter dec-
laration enclosed in parentheses, and a block. The last part is also optional and consists of
the keyword finally and a block.

try

Block

finally
Block

catch (Exception-Type Object-Name)

Block

…

Exception handler A section
of code that is executed when a
particular exception occurs. In
Java, an exception handler ap-
pears within a catch clause of a
try-catch-finally control
structure.

9.1 E x c e p t i o n - H a n d l i n g M e c h a n i s m | 433

When a statement or series of statements in an application may result in an exception,
we enclose them in the block following try. For each type of exception that can be produced
by the statements, we write a catch clause. Here’s an example:

try
{
... // Statements that try to open a file

}
catch (IOException ioErr)
{
... // Statements that execute if the file can't be opened

}
finally
{
... // Statements that are always executed

}

The try statement is meant to sound something like the coach telling the gymnast, “Go
ahead and try this move that you’re unsure of, and I’ll catch you if you fall.” We are telling
the computer to try executing some operations that might fail, and then providing code to
catch the potential exceptions. The finally clause provides an opportunity to clean up, re-
gardless of what happens in the try and catch blocks.We focus on the execution of a try state-
ment without a finally clause (a try-catch statement) and briefly describe at the end of this
section what happens when we add the finally clause.

Execution of try-catch If none of the statements in the try block throws an exception, then con-
trol transfers to the statement following the entire try-catch statement.That is, we try some
statements, and if everything goes according to plan we continue on with the succeeding
statements.

When an exception occurs, control immediately transfers to the block associated with
the appropriate catch. It is important to recognize that control jumps directly from whatever
statement caused the exception to the catch block. If statements appear in the try block fol-
lowing the one that caused the exception, they are skipped. If the catch block executes with-
out causing any new exceptions, then control transfers to the next statement outside of the
try-catch structure.

How does the computer know which catch is appropriate? It looks at the class of the pa-
rameter declared in each one and selects the first one with a class that matches the thrown
exception. Given how Java uses objects for just about everything, it should come as no sur-
prise to learn that an exception is an object and has a class. We’ve already seen three such
classes: IOException, NumberFormatException, and ClassNotFoundException. Another of these
classes is ArithmeticException, which is thrown when we attempt to execute an invalid arith-
metic operation (such as integer division by zero).

434 | Exceptions and Additional Control Structures

Let’s look at an example of a try-catch statement to illustrate this process. In the follow-
ing code, note that the first catch has a parameter of type IOException and the second has a
parameter of ArithmeticException.

try
{
// Some statements

}
catch (IOException ioErr)
{
// Statements to handle IO errors

}
catch(ArithmeticException arithErr)
{
// Statements to handle division by zero

}

The computer begins by executing the statements within the try block. If one of them
causes an IOException, then control jumps to the first catch clause. On the other hand, if a
statement causes an ArithmeticException, then control jumps to the second catch clause.

What happens if a statement throws an exception that isn’t among the catch clauses?
In that case, the try statement fails to catch the error, and its enclosing method throws the
exception to its caller. If the caller doesn’t have a handler for the error, it throws the excep-
tion to its caller, and so on, until the exception is either caught or ends up at the JVM. In the
latter case, the JVM halts the application and displays an error message.

Any object that is passed to a catch clause through its parameter list must have an as-
sociated value-returning method called getMessage. The getMessage method returns a string
containing a message. For example, it might contain the name of the file that could not be
opened.Thus you could write the following statement in a catch clause to display a message:

catch (IOException ioErr)
{
out.add(new JLabel("I/O Exception encountered for " +
ioErr.getMessage()));

}

Let’s look at an actual example. Suppose we have prompted the user to enter a file name
into a field. When the user clicks a button, an event handler is called to open that file as a
PrintWriter.We could use the following code in the button event handler to attempt to open
the file. If the file can’t be opened, we display an error message and clear the input field so
that the user can try again.

filename = fileField.getText();
try
{

9.1 E x c e p t i o n - H a n d l i n g M e c h a n i s m | 435

outFile = new PrintWriter(new FileWriter(filename));
}
catch (IOException ioErr)
{
errorLabel.setText("Unable to open file " + filename);
fileField.setText("");

}

Execution of try-catch-finally When a finally clause appears in a try statement, the block follow-
ing finally is always executed, no matter what happens in the try and catch blocks.Thus, even
when a catch causes a new exception, the finally block executes. The finally block gives us
an opportunity to clean up after a failed catch. In writing the algorithm for the finally block,
however, it is important to realize that this block always executes, even if the try succeeds.

In this book we use only try-catch statements, and we keep our exception handlers sim-
ple so that they won’t produce additional exceptions. The finally clause is really needed
only when a catch contains statements that might generate a new exception, and we need
to undo some of its processing before throwing the exception.

Generating an Exception with throw

Standard library classes are not the only classes that can generate exceptions. Here we in-
troduce the throw statement, which we use when raising or generating an exception.

All exceptions are thrown by a throw statement. Its syntax is quite simple:

The Object-Expression must be either a variable or a value of a reference type that can
be assigned to the class Throwable. That is, it must denote the address of an object of the
class Throwable or a subclass of Throwable such as Exception (which we discuss in the next sec-
tion). The class Throwable and all of its subclasses must have a String-returning getMessage
method.When an exception is thrown, the JVM looks for a catch clause that can handle that
specific class of exception.

The throw statement may be written within a try statement that is intended to catch it.
In that case, control is transferred to the catch clause with the corresponding class.

More often, the throw occurs inside a method that is called from within a try statement,
as shown in Figure 9.1.The JVM first looks for a catch within the method.When it fails to find
one, it causes the method to return.The JVM then looks around the point where the method
was called and finds an appropriate catch clause. The catch executes, and control transfers
to the statement following the try-catch.

If the JVM can’t find a matching catch when it forces the method to return, it causes the
method containing the call to return as well. The JVM looks around that call point for a try-
catch; if it can’t find one, it forces another return. The series of returns can lead all the way

throw Object-Expression;

Throw-Statement

436 | Exceptions and Additional Control Structures

void caller()
{
 // Some statements
 try
 {
 // Statements
 someMethod();
 // Statements
 }
 catch (SomeException except)
 {
 // Statements to handle exception
 }
 // More statements
}

void someMethod() throws SomeException
{
 // Some statements
 if (error)
 throw new SomeException("Message.");
 // More statements
}

Call

Normal
Return

Return from
Thrown Exception

Figure 9.1 Throwing an Exception to be Caught in a Calling Method

back to main. If main fails to catch the exception, then the JVM handles it by stopping the ap-
plication and displaying an error message.

As we’ve seen previously, we must handle each class of exception either by catching it
or explicitly forwarding it with a throws clause in the method heading.Thus an exception can
cause a chain of returns that reaches the JVM only when our code is written to allow it to do
so. We can’t generate an exception that is accidentally uncaught.

We can throw any of the standard exceptions that Java provides. For example:

throw new FileNotFoundException(filename);

It’s actually quite rare to throw one of the predefined exceptions. One situation where
we might do so is when we’ve caught such an exception in a catch clause but some aspect
of handling it must be passed to a higher-level method.

Instead of throwing a predefined exception, we typically want to define and throw a
new exception class.A user of the class must then handle that class of exception. For example,
in our Address class from Chapter 7, we could have validated the ZIP code. Basic ZIP codes are
five digits or less. If a ZIP code is greater than 99,999, we can throw a ZipCodeInvalidException
in the constructor for an Address object as follows:

public Address(String name, String city, String state, int zipCode)
throws ZipCodeInvalidException

{
if (zipCode <= 99999)
this.zipCode = zipCode; // If valid, store value

else // throw exception
throw new ZipCodeInvalidException("" + zipCode);

9.1 E x c e p t i o n - H a n d l i n g M e c h a n i s m | 437

.

.

.
}

We would call this constructor within a try-catch statement:

try
{
myAddress = new Address("myName", "Austin", "Texas", 78744);

}
catch (ZipCodeInvalidException zip)
{
// Exception handler
// Print bad ZIP code
System.out.println(zip.getMessage() + " is invalid");

}

Whatever method is attempting to create an Address object with an invalid ZIP code is
then responsible for handling the error. Of course, we also need to define the class called
ZipCodeInvalidException.

Exception Classes

A throw statement must have an exception object to throw. Exception objects are very sim-
ple to create.Their class name conveys the basic information that tells the JVM what sort of
exception is being thrown. Typically, all we need to add is an error message or some other
piece of information that helps the catch clause handle the error.

The predefined type Exception is derived from Throwable and provides a field for an er-
ror message.All we have to do is extend it with our own class name and supply a pair of con-
structors that call super. Here is how we define zipCodeInvalidException:

package addressBook;
public class ZipCodeInvalidException extends Exception
{
public ZipCodeInvalidException()
{
super();

}
public ZipCodeInvalidException(String message)
{
super(message);

}
}

438 | Exceptions and Additional Control Structures

Look at the try-catch in the previous section:

try
{
myAddress = new Address("myName", "Austin", "Texas", 78744);

}
catch (ZipCodeInvalidException zip)
{
// Exception handler
// Print bad ZIP code
System.out.println(zip.getMessge() + " is invalid");

}

In the catch clause, we use getMessage to retrieve the same string that was
used to instantiate the object of class ZipCodeInvalidException.

Whenever you design a class, you should consider whether some error con-
ditions cannot be handled strictly within the class. Exceptions are, as their name
implies, meant to be used for exceptional situations.We recommend using an ex-
ception only when no simple way to handle an error is available.

9.2 Additional Control Statements

The switch Statement

The switch statement is a selection control structure for multiway branches. A switch is sim-
ilar to nested if statements. The value of a switch expression—an integer expression—deter-
mines which of the branches executes. Look at the following example switch statement:

switch (digit) // The switch expression is (digit)
{
case 1 : Statement1; // Statement1 executes if digit is 1

break; // Go to Statement5
case 2 :
case 3 : Statement2; // Statement 2 executes if digit is 2 or 3

break; // Go to Statement5
case 4 : Statement3; // Statement3 executes if digit is 4

break; // Go to Statement5
default : Statement4; // Execute Statement4 and go to Statement5

}
Statement5; // Always executes

In this example, digit is the switch expression.The statement means, “If digit is 1, execute
Statement1 and break out of the switch statement and continue with Statement5. If digit is
2 or 3, execute Statement2 and continue with Statement5. If digit is 4, execute Statement3

Switch expression The
expression whose value deter-
mines which switch label is se-
lected. It must be an integer
type other than long.

9.2 A d d i t i o n a l C o n t r o l S t a t e m e n t s | 439

and continue with Statement5. If digit is none of the values
previously mentioned, execute Statement4 and continue
with Statement5.” Figure 9.2 shows the flow of control
through this statement.

The break statement causes control to immediately jump
to the statement following the switch statement.We will see
shortly what happens if we omit the break statements.

Let’s look at the syntax template for the switch state-
ment and then consider what actually happens when it ex-
ecutes.The syntax template for the switch statement is

Here Integral-Expression is an expression of type char, byte, short, or int.The Switch-Label
in front of a statement is either a case label or a default label:

In a case label, Constant-Expression is an expression of type char, byte, short, or int,
whose operands must be literal or named constants. Following are examples of constant ex-
pressions (where CLASS_SIZE is a named constant of type int):

3
CLASS_SIZE
'A'

The data type of Constant-Expression is converted, if necessary, to match the type of the
switch expression.

In our earlier example that tests the value of digit, the following are the case labels:

case 1 :
case 2 :
case 3 :
case 4 :

Switch-Label

case Constant-Expression :

default :

Switch-Statement

switch (Integral-Expression)
{
 SwitchLabel . . .Statement . . .
 .
 .
 .
}

If digit == 1

If digit == 2
or digit == 3

If digit == 4

default

Statement1; break;

Statement2; break;

Statement3; break;

Statement4;

Statement5;

Figure 9.2 Flow of Control in the Example switch
Statement

440 | Exceptions and Additional Control Structures

As that example shows, multiple case labels may precede a single branch.
The value resulting from each Constant-Expression within a switch statement must be

unique. If a value appears more than once among the case labels, a syntax error results. In
that scenario, the compiler simply can’t determine to which of the identical cases to branch.
Also, only one default label can appear in a switch statement.

Be careful: case 1 does not mean the first case. We’ve listed the values in order because
it makes the statement easier to read. Java, however, allows us to place them in any order.
The following switch statement behaves in exactly the same way as our earlier example:

switch (digit) // The switch expression is (digit)
{
case 3 :
case 2 : Statement2; // Statement2 executes if digit is 2 or 3

break; // Go to Statement5
case 4 : Statement3; // Statement3 executes if digit is 4

break; // Go to Statement5
case 1 : Statement1; // Statement1 executes if digit is 1

break; // Go to Statement5
default : Statement4; // Else execute Statement4 and go to

// Statement5
}
Statement5; // Always executes

The flow of control through a switch statement goes like this: First, the switch expression
is evaluated. Next, each expression beside the reserved word case is tested to see whether it
matches the switch expression. If the values match, control branches to the statement as-
sociated with that case label (the statement on the other side of the colon). From there, con-
trol proceeds sequentially until either a break statement or the end of the switch statement
is encountered. If the value of the switch expression doesn’t match any case value, then one
of two things happens. If there is a default label, control branches to the associated statement.
If there is no default label, the statements in the switch are skipped and control proceeds to
the statement following the entire switch statement.

The following switch statement prints an appropriate comment based on a student’s
grade (grade is of type char). The switch expression can be char, as Java considers char to be
an integral type because it can be converted to type int.

switch (grade)
{
case 'A' :
case 'B' : outFile.print("Good Work");

break;
case 'C' : outFile.print("Average Work");

break;

9.2 A d d i t i o n a l C o n t r o l S t a t e m e n t s | 441

case 'D' :
case 'F' : outFile.print("Poor Work");

numberInTrouble++;
break; // Unnecessary, but a good habit

}

Note that the final break statement is unnecessary, but programmers often include it any-
way. One reason is that it’s easier to insert another case label at the end if a break statement
is already present.

If grade does not contain one of the specified characters, none of the statements within
the switch executes. It would be wise to add a default label to account for an invalid grade:

switch (grade)
{
case 'A' :
case 'B' : outFile.print("Good Work");

break;
case 'C' : outFile.print("Average Work");

break;
case 'D' :
case 'F' : outFile.print("Poor Work");

numberInTrouble++;
break;

default : outFile.print(grade + " is not a valid letter grade.");
}

A switch statement with a break statement after each case alternative behaves exactly
like an if-else-if control structure. For example, the preceding switch statement is equivalent
to the following code:

if (grade == 'A' || grade == 'B')
outFile.print("Good Work");

else if (grade == 'C')
outFile.print("Average Work");

else if (grade == 'D' || grade == 'F')
{
outFile.print("Poor Work");
numberInTrouble++;

}
else
outFile.print(grade + "is not a valid letter grade.");

Is either of these two versions better than the other? There is no absolute answer to this
question. In this particular example, the switch statement is easier to understand because

442 | Exceptions and Additional Control Structures

of its table-like form. When implementing a multiway branching structure, our advice is to
use the one that you feel is easiest to read. Keep in mind that Java provides the switch state-
ment as a matter of convenience. Don’t feel obligated to use a switch statement for every mul-
tiway branch.

Finally, let’s look at what happens if we omit the break statements inside a switch state-
ment. Let’s rewrite the preceding code segment as if we forgot to include the break statements,
and see how it behaves:

switch (grade) // Wrong version
{
case 'A' :
case 'B' : outFile.print("Good Work");
case 'C' : outFile.print("Average Work");
case 'D' :
case 'F' : outFile.print("Poor Work");

numberInTrouble++;
default : outFile.print(grade + " is not a valid letter grade.");

}

If grade happens to be ‘H’, control branches to the statement at the default label and the
output to the file is

H is not a valid letter grade.

Unfortunately, this case alternative is the only one that works correctly. If grade is ‘A’, all of
the branches execute and the resulting output is

Good WorkAverage WorkPoor WorkA is not a valid letter grade.

Remember that after a branch is taken to a specific case label, control proceeds sequen-
tially until either a break statement or the end of the switch statement is encountered.Forgetting
a break statement in a case alternative is a very common source of errors in Java code.

The do Statement

The do statement is a looping control structure in which the loop condition is tested at the
end (bottom) of the loop. This format guarantees that the loop body executes at least once.
The syntax template for the do statement follows:

As usual in Java, Statement is either a single statement or a block. Also, note that the do

Do-Statement

do
 Statement
while (Expression);

9.2 A d d i t i o n a l C o n t r o l S t a t e m e n t s | 443

Admiral Grace Murray Hopper
From 1943 until her death on New Year’s Day in 1992, Admiral Grace Murray Hopper was
intimately involved with computing. In 1991, she was awarded the National Medal of
Technology “for her pioneering accomplishments in the development of computer
programming languages that simplified computer technology and opened the door to a signifi-
cantly larger universe of users.”

Admiral Hopper was born Grace Brewster Murray in New York City on December 9, 1906. She
attended Vassar and received a Ph.D. in mathematics from Yale. For the next ten years, she
taught mathematics at Vassar.

In 1943, Admiral Hopper joined the U.S. Navy and was assigned to the Bureau of Ordnance
Computation Project at Harvard University as a programmer on the Mark I. After the war, she
remained at Harvard as a faculty member and continued work on the Navy’s Mark II and Mark
III computers. In 1949, she joined Eckert-Mauchly Computer Corporation and worked on the
UNIVAC I. It was there that she made a legendary contribution to computing: She discovered
the first computer “bug”—a moth caught in the hardware.

Admiral Hopper had a working compiler in 1952, at a time when the conventional wisdom
was that computers could do only arithmetic. Although not on the committee that designed
the computer language COBOL, she was active in its design, implementation, and use. COBOL
(which stands for Common Business-Oriented Language) was developed in the early 1960s and
remains in wide use in business data processing.

Admiral Hopper retired from the Navy in 1966, only to be recalled within a year to full-time
active duty. Her mission was to oversee the Navy’s efforts to maintain uniformity in program-
ming languages. It has been said that just as Admiral Hyman Rickover was the father of the nu-
clear navy, Rear Admiral Hopper was the mother of computerized data automation in the Navy.
She served with the Naval Data Automation Command until she retired again in 1986 with the
rank of rear admiral. At the time of her death, she was a senior consultant at Digital Equipment
Corporation.

During her lifetime, Admiral Hopper received honorary degrees from more than 40 colleges
and universities. She was honored by her peers on several occasions, including the first
Computer Sciences Man of the Year award given by the Data Processing Management
Association, and the Contributions to Computer Science Education Award given by the Special
Interest Group for Computer Science Education of the ACM (Association for Computing
Machinery).

Admiral Hopper loved young people and enjoyed giving talks on college and university cam-
puses. She often handed out colored wires, which she called nanoseconds because they were
cut to a length of about one foot—the distance that light travels in a nanosecond (billionth of a
second). Her advice to the young was, “You manage things, you lead people. We went overboard
on management and forgot about leadership.”

When asked which of her many accomplishments she was most proud of, she answered,
“All the young people I have trained over the years.”

444 | Exceptions and Additional Control Structures

statement ends with a semicolon.
The do statement

do
{
Statement1;
Statement2;
.
.
.
StatementN;

} while (Expression);

means “Execute the statements between do and while as long as Expression still has the value
true at the end of the loop.” In other words, you execute the statements before you test the
expression. Because while appears at the end of the block, this statement is sometimes called
the do-while statement.

Let’s compare a while loop and a do loop that perform the same task: They find the first
line that contains just a period in a file of data.We assume that the file contains at least one
such line.

while Solution

inputStr = dataFile.readLine();
while (!inputStr.equals("."))

inputStr = dataFile.readLine();

do Solution

do
inputStr = dataFile.readLine();

while (!inputStr.equals("."));

The while solution requires a priming read so that inputStr has a value before the loop
is entered.This preliminary activity isn’t required for the do solution because the input state-
ment within the loop executes before the loop condition is evaluated.

We can also use the do statement to implement a count-controlled loop if we know in
advance that the loop body should always execute at least once. Following are two versions
of a loop to sum the integers from 1 through n.

while Solution

sum = 0;
counter = 1;
while (counter <= n)
{
sum = sum + counter;
counter++;

}

9.2 A d d i t i o n a l C o n t r o l S t a t e m e n t s | 445

do

while (Expression) ;

Statement

do Statement

truefalse

truefalse

while (Expression)

while Statement

Statement

Figure 9.3 Flow of Control: while and do

do Solution

sum = 0;
counter = 1;
do
{
sum = sum + counter;
counter++;

} while (counter <= n);

If n is a positive number, both of these versions are equivalent. If n is 0 or negative, how-
ever, the two loops give different results. In the while version, the final value of sum is 0 be-
cause the loop body is never entered. In the do version, the final value of sum is 1 because the
body executes once and then the loop test occurs.

Because the while statement tests the condition before executing the body of the loop,
it is called a pretest loop.The do statement does the opposite and thus is known as a posttest
loop. Figure 9.3 compares the flow of control in the while and do loops.

When we finish introducing all of the new looping constructs, we will offer some guide-
lines for determining when to use each type of loop.

The for Statement

The for statement is designed to simplify the writing of count-controlled loops.The follow-
ing statement prints out the integers from 1 through n:

for (count = 1; count <= n; count++)
outFile.println("" + count);

This for statement says, “Initialize the loop control variable count to 1. While count is less
than or equal to n, execute the output statement and increment count by 1. Stop the loop af-
ter count has been incremented to n + 1.”

446 | Exceptions and Additional Control Structures

The syntax template for a for statement follows:

Expression is the condition that continues the loop and must be of type boolean. Init can be
any of the following: nothing, a local variable declaration, or an expression. Init can also be
a series of local variable declarations and expressions separated by commas. Update can be
omitted, can be an expression, or can be a series of expressions separated by commas.

Most often, a for statement is written such that Init initializes a loop control variable and
Update increments or decrements the loop control variable. Here are two loops that execute
the same number of times (50):

for (loopCount = 1; loopCount <= 50; loopCount++)
.
.
.

for (loopCount = 50; loopCount >= 1; loopCount--)
.
.
.

Just like while loops, do and for loops may be nested. For example, the nested for structure

for (lastNum = 1; lastNum <= 7; lastNum++)
{
for (numToPrint = 1; numToPrint <= lastNum; numToPrint++)
outFile.print("" + numToPrint);

outFile.println();
}

prints the following triangle of numbers:

1
12
123
1234
12345
123456
1234567

Although for statements are used primarily for count-controlled loops, Java allows you
to write any while loop by using a for statement. To use for loops intelligently, you should
know the following facts:

for (Init ; Expression ; Update)

 Statement

For-Statement

9.2 A d d i t i o n a l C o n t r o l S t a t e m e n t s | 447

1. In the syntax template, Init and Update are optional. If you omit Update, the ter-
mination condition is not automatically updated.

2. According to the syntax template, Expression—the continuation condition—is
optional, as shown here:

for (; ;)

outFile.println("Hi");

If you omit it, the expression is assumed to be the value true, creating an infinite
loop.

3. Init can be a declaration with initialization:

for (int count = 1; count <= 20; count++)

outFile.println("Hi");

In the last example, the variable count has local scope, even though no braces in the
code explicitly create a block.The scope of count extends only to the end of the for statement.
Like any local variable, count is inaccessible outside its scope (that is, outside the for state-
ment). Because count is local to the for statement, it’s possible to write code like this:

for (int count = 1; count <= 20; count++)
outFile.println("Hi");

for (int count = 1; count <= 100; count++)
outFile.println("Ed");

This code does not generate a compile-time error (such as “MULTIPLY DEFINED IDENTI-
FIER”). Instead, we have declared two distinct variables named count, each of which remains
local to its own for statement.

The syntax for Init and Update allows them to have multiple parts, separated by com-
mas. All of the parts execute as if they form a block of statements. For example, it is some-
times useful to have a second variable in a loop that is a multiple of the iteration counter.
The following loop has two variables: one that counts by one and is used as the loop control
variable and another that counts by five.

for (int count = 1, int byFives = 5; count <= n; count++, byFives = count * 5)
outFile.println("Count = " + count + " * 5 = " + byFives);

If n is 7, this loop produces the following output:

Count = 1 * 5 = 5
Count = 2 * 5 = 10
Count = 3 * 5 = 15
Count = 4 * 5 = 20
Count = 5 * 5 = 25
Count = 6 * 5 = 30
Count = 7 * 5 = 35

448 | Exceptions and Additional Control Structures

Guidelines for Choosing a Looping Statement

Here are some guidelines to help you decide when to use each of the three looping statements
(while, do, and for):

1. If the loop is a simple count-controlled loop, the for statement is a natural
choice. Concentrating the three loop control actions—initialize, test, and
increment/decrement—into one location (the heading of the for statement)
reduces the chances that you will forget to include one of them.

2. If the loop is an event-controlled loop whose body should execute at least once,
a do statement is appropriate.

3. If the loop is an event-controlled loop and nothing is known about the first exe-
cution, use a while statement.

4. When in doubt, use a while statement.

9.3 Additional Java Operators

Java offers a rich, sometimes bewildering, array of operators that allow you to manipulate val-
ues of the primitive data types. Operators you have learned about so far include the assign-
ment operator (=), the arithmetic operators (+, -, *, /, %), the increment and decrement operators
(++, --), the relational operators (==, !=, <, <=, >, >=), the string concatenation operator (+), and
the conditional (short-circuit evaluation) logical operators (!, &&, ||). In certain cases, a pair
of parentheses is also considered to be an operator—namely, the type cast operator,

y = (float)someInt;

Java also has many specialized operators that are seldom found in other programming
languages. Table 9.1 lists these additional operators. As you inspect the table, don’t panic—
a quick scan will do.

The operators in Table 9.1, along with those you already know, comprise all of the Java
operators.

Assignment Operators and Assignment Expressions

Java has several assignment operators. The equals sign (=) is the basic assignment operator.
When combined with its two operands, it forms an assignment expression (not an assignment

statement). Every assignment expression has a value and a side effect—namely, that
the value is stored into the variable denoted by the left side of the expression. For
example, the expression

delta = 2 * 12

has the value 24 and the side effect of storing this value into delta.

Assignment expression A
Java expression with (1) a value
and (2) the side effect of storing
the expression value into a
memory location

9.3 A d d i t i o n a l J a v a O p e r a t o r s | 449

Operator Remarks

Combined Assignment Operators

+= Add and assign
–= Subtract and assign
*= Multiply and assign
/= Divide and assign
%= Remainder and assign

Increment and Decrement Operators

++ Pre-increment Example: ++someVar
++ Postincrement Example: someVar++
-- Pre-decrement Example: --someVar
-- Postdecrement Example: someVar--

Bitwise Operators Integer operands only

<< Left shift
>> Right shift with sign extension
>>> Right shift with zero extension
& Bitwise AND
| Bitwise OR
^ Bitwise EXCLUSIVE OR
~ Complement (invert all bits)

Boolean Full Evaluation Operators Boolean operands only

& Boolean AND
| Boolean OR
^ Boolean EXCLUSIVE OR

More Combined Assignment Operators Integer operands only

<<= Shift left and assign
>>= Shift right with sign extension and assign
>>>= Shift right with zero extension and assign
&= Bitwise AND and assign
|= Bitwise OR and assign
^= Bitwise EXCLUSIVE OR and assign

Other operators

instanceof Type comparison object instanceof ClassName
?: Conditional operator Form: Expr1 ? Expr2 : Expr3

Table 9.1 Additional Java Operators

450 | Exceptions and Additional Control Structures

In Java, an expression consisting of a variable and an increment or decrement
expression also becomes an expression statement when it is terminated by a semi-
colon. All three of the following are valid Java statements:

alpha++;
beta--;
--gamma;

Each of these statements either increments or decrements the given variable.
Because an assignment is an expression and not a statement, you can use it anywhere

that an expression is allowed.The following statement stores the value 20 into firstInt, the
value 30 into secondInt, and the value 35 into thirdInt:

thirdInt = (secondInt = (firstInt = 20) + 10) + 5;

Although some Java programmers use this style of coding, we do not recommend it. It is
hard to read and error-prone.

In Chapter 6, we cautioned against the mistake of using the = operator in place of the
== operator:

if (alpha = 12) // Wrong
.
.
.

The condition in the if statement is an assignment expression, not a relational expression.
The value of the expression is 12, which is not a boolean value, so a compiler error results.

In addition to the = operator, Java has several combined assignment operators (+=, *=, and
the others listed in Table 9.1).These operators have the following semantics:

Statement Equivalent Statement

i += 5; i = i + 5;

pivotPoint *= n + 3; pivotPoint = pivotPoint * (n + 3);

The combined assignment operators are another example of “ice cream and cake.”They
are sometimes convenient for writing a line of code more compactly, but you can do just fine
without them. We do not use them in this book.

Increment and Decrement Operators

The increment and decrement operators (++ and --) operate only on variables, not on con-
stants or arbitrary expressions.Suppose a variable someInt contains the value 3.The expression
++someInt denotes pre-incrementation.The side effect of incrementing someInt occurs first, so
the expression has the value 4. In contrast, the expression someInt++denotes postincrementa-
tion.The value of the expression is 3,and then the side effect of incrementing someInt takes place.
The following code illustrates the difference between pre- and post-incrementation:

Expression statement A state-
ment formed by appending a
semicolon to an assignment ex-
pression, an increment expres-
sion, or a decrement expression

9.3 A d d i t i o n a l J a v a O p e r a t o r s | 451

int1 = 14;
int2 = ++int1;
// At this point, int1 == 15 and int2 == 15
int1 = 14;
int2 = int1++;
// At this point int1 == 15 and int2 == 14

Some people make a game of seeing how much they can accomplish in the fewest key-
strokes possible by using side effects in the middle of larger expressions. Professional soft-
ware development, however, requires writing code that other programmers can read and
understand. Use of side effects reduces readability.

By far, the most common use of ++ and -- is to perform the incrementation or decre-
mentation as a separate expression statement:

count++;

Here, the value of the expression is not used, but we get the desired side effect of incre-
menting count.

Bitwise Operators

You use the bitwise operators listed in Table 9.1 (<<, >>, >>>, &, |, and so forth) to manipulate
individual bits within a memory cell.This book does not explore the use of these operators;
the topic of bit-level operations is most often covered in a course on computer organization
and assembly language programming. However, we will draw your attention to the fact that
three of the bitwise operators have a second meaning in Java: The &, | and ^ operators can
also be used with boolean operands to perform logical AND, OR, and EXCLUSIVE OR opera-
tions without short-circuit evaluation.

Recall from Chapter 4 that when the first operand of && is false, the second operand
need not be evaluated because the result must be false. When used in combination with
boolean operands, the & operator causes the second operand to be evaluated regardless of the
value of the first operand. Similar rules apply to the | and ^ operators.

Here is an example that illustrates the difference between these logical operators:

// This code works OK when i is 0 because m/i isn't evaluated
if (i != 0 && m/i >= 4)
k = 20;

Now consider what happens if we use & in place of &&:

// This code fails when i is 0 because of division by zero
if (i != 0 & m/i >= 4)

k = 20;

In rare cases, full evaluation is useful.We recommend, however, that you always use the re-
lational operators && and || in your logical expressions.

452 | Exceptions and Additional Control Structures

Analysis of Algorithms
If you are given the choice of cleaning a room with a toothbrush or a broom, you probably would
choose the broom. Using a broom sounds like less work than using a toothbrush.True, if the
room is located in a doll house, it may be easier to use the toothbrush, but in general a broom is
the faster way to clean. If you are given the choice of adding numbers together with a pencil and
paper or a calculator, you would probably choose the calculator because it is usually less work. If
you are given the choice of walking or driving to a meeting, you would probably choose to drive;
it sounds like less work.

What do these examples have in common? And what do they have to do with computer sci-
ence? In each of the settings mentioned, one of the choices seems to involve significantly less
work. Measuring the amount of work precisely is difficult in each case, however, because there
are unknowns. How large is the room? How many numbers must be added? How far away is the
meeting? In each case, the unknown information relates to the size of the problem. With an es-
pecially small problem (for example, adding 2 plus 2), our original guess at which approach to
take (using the calculator) might be wrong. Of course, our intuition is usually correct, because
most problems are reasonably large.

In computer science, we need a way to measure the amount of work done by an algorithm
relative to the size of a problem, because usually more than one algorithm is available to solve
any given problem. We often must choose the most efficient algorithm—that is, the algorithm
that does the least work for a problem of a given size.

The amount of work involved in executing an algorithm relative to the size of the problem is
the algorithm’s complexity. We would like to be able to look at an algorithm and determine its
complexity.Then we could take two algorithms that perform the same task and determine
which completes the task faster (requires less work).

How do we measure the amount of work required to execute an algorithm? We use the total
number of steps executed as a measure of work. One statement, such as an assignment,
may require only one step; another statement, such as a loop, may require many steps.
We define a step as any operation roughly equivalent in complexity to a comparison, an
I/O operation, or an assignment.

Given an algorithm with just a sequence of simple statements (no branches or
loops), the number of steps performed is directly related to the number of statements.
When we introduce branches, however, it becomes possible to skip some statements in
the algorithm. Branches allow us to subtract steps without physically removing them
from the algorithm because only one branch executes at a time. Because we usually
want to express work in terms of the worst-case scenario, we use the number of steps
in the longest branch.

Now consider the effect of a loop. If a loop repeats a sequence of 15 simple statements 10
times, it performs 150 steps. Loops allow us to multiply the work done in an algorithm without
physically adding statements.

Now that we have a measure for the work done in an algorithm, we can compare algorithms.
Suppose, for example, that Algorithm A always executes 3,124 steps and Algorithm B always
does the same task in 1,321 steps.Then we can say that Algorithm B is more efficient—that is, it
takes fewer steps to accomplish the same task.

Complexity A measure of the
effort expended by the
computer in performing a com-
putation, relative to the size of
the computation

9.3 A d d i t i o n a l J a v a O p e r a t o r s | 453

If an algorithm, from run to run, always takes the same number of steps or fewer, we say that it
executes in an amount of time bounded by a constant. Such algorithms are said to have constant
time complexity. Be careful: Constant time doesn’t mean small; it just means that the amount of
work done does not exceed some amount from one run to another regardless of the size of the
problem.

If a loop executes a fixed number of times, the work done is greater than the physical
number of statements but is still constant. What happens if the number of loop iterations can
change from one run to the next? Suppose a data file contains N data values to be processed in a
loop. If the loop reads and processes one value during each iteration, then the loop executes N
iterations.The amount of work done therefore depends on a variable, the number of data values.
In this example, the variable N determines the size of the problem.

If we have a loop that executes N times, the number of steps to be executed is some factor
times N.This factor is the number of steps performed within a single iteration of the loop.
Specifically, the work done by an algorithm with a data-dependent loop is given by the
expression

where S1 is the number of steps in the loop body (a constant for a given simple loop), N is the
number of iterations (a variable representing the size of the problem), and S0 is the number of
steps outside the loop. Mathematicians call expressions of this form linear; hence, algorithms
such as this one are said to have linear time complexity. Notice that if N grows very large, the
term S1 � N dominates the execution time.That is, S0 becomes an insignificant part of the total
execution time. For example, if S0 and S1 are each 20 steps, and N is 1,000,000, then the total
number of steps is 20,000,020.The 20 steps contributed by S0 represent only a tiny fraction of the
total in this case.

What about a data-dependent loop that contains a nested loop? The number of steps in the
inner loop, S2, and the number of iterations performed by the inner loop, L, must be multiplied
by the number of iterations in the outer loop:

By itself, the inner loop performs (S2 � L) steps. Because it is repeated N times by the outer loop,
however, it accounts for a total of (S2 � L � N) steps. If L is a constant, then the algorithm still ex-
ecutes in linear time.

S L N S N S2 1 0× ×() + ×() +

Steps performed
by the nested loop

Steps performed
by the outer loop

Steps performed outside
the outer loop

S N S1 0× +

Steps performed
by the loop

Steps performed
outside the loop

454 | Exceptions and Additional Control Structures

Now suppose that for each of the N outer loop iterations the inner loop performs N steps (L =
N). Here the formula for the total steps is

(S2 � N � N) + (S1 � N) + S0

or

(S2 � N2) + (S1 � N) + S0

Because N2 grows much faster than N (for large values of N), the inner loop term (S2 � N2) ac-
counts for the majority of steps executed and the work done.Thus the corresponding
execution time is essentially proportional to N2. Mathematicians call this type of formula quad-
ratic. If we have a doubly nested loop, where each loop depends on N, then the complexity
expression is

(S3 � N3) + (S2 � N2) + (S1 � N) + S0

and the work and time are proportional to N3 whenever N is reasonably large. Such a formula is
called cubic.

The following table shows the number of steps required for each increase in the exponent of
N, where N is a size factor for the problem, such as the number of input values.

N N0 N1 N2 N3

(Constant) (Linear) (Quadratic) (Cubic)

1 1 1 1 1

10 1 10 100 1,000

100 1 100 10,000 1,000,000

1,000 1 1,000 1,000,000 1,000,000,000

10,000 1 10,000 100,000,000 1,000,000,000,000

100,000 1 100,000 10,000,000,000 1,000,000,000,000,000

As you can see, each time the exponent increases by 1, the number of steps is multiplied by an
additional order of magnitude (factor of 10).That is, if N is made 10 times greater, the work in-
volved in an N2 algorithm increases by a factor of 100, and the work involved in an N3 algorithm
increases by a factor of 1,000.To put this idea in more concrete terms, an algorithm with a dou-
bly nested loop, in which each loop depends on the number of data values, takes 1,000 steps for
10 input values and 1 quadrillion steps for 100,000 values. On a computer that executes l billion
instructions per second, the latter case would take more than 10 days to run.

The table also shows that the steps outside the innermost loop account for an insignificant
portion of the total number of steps as N gets bigger. Because the innermost loop dominates
the total time, we classify the complexity of an algorithm according to the highest order of N
that appears in its complexity expression, called the order of magnitude, or simply the order of
that expression.Thus we talk about algorithms having “order N squared complexity” (or
“cubed” or so on) or we describe them with what is called Big-O notation. In Big-O notation, we
express the complexity by putting the highest-order term in parentheses with a capital O in
front. For example, O(1) is constant time; O(N) is linear time; O(N2) is quadratic time; and O(N3)
is cubic time.

9.3 A d d i t i o n a l J a v a O p e r a t o r s | 455

Determining the complexities of different algorithms allows us to compare the work they re-
quire without having to program and execute them. For example, if you had an O(N2) algorithm
and a linear algorithm that performed the same task, you probably would choose the linear
algorithm. We say probably because an O(N2) algorithm actually may execute fewer steps than an
O(N) algorithm for small values of N. Recall that if the size factor N is small, the constants and
lower-order terms in the complexity expression may be significant.

To see how this idea works, let’s look at an example. Suppose that Algorithm A is O(N2) and
that Algorithm B is O(N). For large values of N, we would normally choose Algorithm B because it
requires less work than A. But suppose that in Algorithm B, S0 = 1,000 and S1 = 1,000. If N = 1, then
Algorithm B takes 2,000 steps to execute. Now suppose that for algorithm A, S0 = 10, S1 = 10, and
S2 = 10. If N = 1, then Algorithm A takes only 30 steps to execute.The following table compares
the number of steps taken by these two algorithms for different values of N.

N Algorithm A Algorithm B

1 30 2,000

2 70 3,000

3 130 4,000

10 1,110 11,000

20 4,210 21,000

30 9,310 31,000

50 25,510 51,000

100 101,010 101,000

1,000 10,010,010 1,001,000

10,000 1,000,100,010 10,001,000

From this table we can see that the O(N2) Algorithm A is actually faster than the O(N) Algorithm
B, up to the point where N equals 100. Beyond that point, Algorithm B becomes more efficient.
Thus, if we know that N is always less than 100 in a particular problem, we would choose
Algorithm A. For example, if the size factor N is the number of test scores on an exam and the
class size is limited to 30 students, Algorithm A would be more efficient. On the other hand, if N
is the number of scores at a university with 25,000 students, we would choose Algorithm B.

Constant, linear, quadratic, and cubic expressions are all examples of polynomial expressions.
Algorithms whose complexity is characterized by such expressions are said to execute in polyno-
mial time and form a broad class of algorithms that encompasses everything we’ve discussed so
far.

In addition to polynomial-time algorithms, we will encounter a logarithmic-time algorithm
in Chapter 11.There are also factorial [O(N!)], exponential [O(NN)], and hyperexponential [O(NNN

)]
class algorithms, which can require vast amounts of time to execute and are beyond the scope
of this book. For now, the important point to remember is that different algorithms that solve
the same problem can vary significantly in the amount of work they do.

456 | Exceptions and Additional Control Structures

The ?: Operator

The last operator shown in Table 9.1 is the ?: operator, sometimes called the conditional op-
erator.This ternary (three-operand) operator has the following syntax:

Here’s how it works. First, the computer evaluates Expression1. If the value is true, then
the value of the entire expression is Expression2; otherwise, the value of the entire expres-
sion is Expression3.

A classic example of the conditional operator’s use is to set a variable max equal to the
larger of two variables a and b. Using an if statement, we would do it this way:

if (a > b)
max = a;

else
max = b;

With the ?: operator, we can use the following assignment statement:

max = (a > b) ? a : b;

The ?: operator is certainly not an intuitively obvious bit of Java syntax; it’s one of the
unusual features that Java inherited from C.We do not use it in this book, but you should be
aware of it in case you encounter it when reading code written by someone else.

Operator Precedence

Table 9.2 summarizes the rules of operator precedence for the Java operators we have en-
countered so far, excluding the bitwise operators. (Appendix B contains the complete list.)
In the table, the operators are grouped by precedence level, and a horizontal line separates
each precedence level from the next-lower level.

The column labeled Associativity describes the grouping order.Within a precedence level,
most operators are grouped from left to right. For example,

a – b + c

Expression1 ? Expression2 : Expression3

Conditional-Expression

9.3 A d d i t i o n a l J a v a O p e r a t o r s | 457

Operator Associativity Remarks

++ -- Right to left ++ and -- as postfix operators

++ -- Right to left ++ and -- as prefix operators

Unary + Unary – Right to left

! Right to left

(cast) Right to left

* / % Left to right

+ – Left to right

+ Left to right String concatenation

< <= > >= Left to right

instanceof Left to right

== != Left to right

& Left to right Boolean operands

^ Left to right Boolean operands

| Left to right Boolean operands

&& Left to right

|| Left to right

?: Right to left

= += –= *= /= %= Right to left

Table 9.2 Precedence (Highest to Lowest)

means

(a – b) + c

and not

a – (b + c)

Certain operators, however, are grouped from right to left—specifically, the unary operators,
the assignment operators, and the ?: operator. Look at the unary “– ”operator, for example.
The expression

458 | Exceptions and Additional Control Structures

sum = - -1

means

sum = -(-1)

instead of the meaningless

sum = (- -)1

This associativity makes sense because the unary “–” operation is naturally a right-to-left
operation.

A word of caution: Although operator precedence and associativity dictate the grouping
of operators with their operands, the precedence rules do not define the order in which
subexpressions are evaluated. Java further requires that the left-side operand of a two-
operand operator be evaluated first. For example, if i currently contains 5, the statement

j = ++i + i;

stores 12 into j. Let’s see why.The expression statement contains three operators: =, ++, and
+.The ++ operator has the highest precedence, so it operates just on i, not on the expression
i + i.The addition operator has higher precedence than the assignment operator, giving im-
plicit parentheses as follows:

j = (++i + i);

So far, so good. But now we ask this question: In the addition operation, is the left
operand or the right operand evaluated first? As we just saw, the Java language tells us
that the left-side operand is evaluated first. Therefore, the result is 6 + 6, or 12. If Java had
instead specified that the right-side operand comes first, the expression would have yielded
6 + 5, or 11.

In most expressions, Java’s left-side rule doesn’t have any surprising effects. But when
side effect operators such as increment and assignment are involved, you need to remem-
ber that the left-side operand is evaluated first. To make the code clear and unambiguous,
it’s best to write the preceding example with two separate statements:

i++;
j = i + i;

The moral here is that it’s best to avoid unnecessary side effects altogether.

CASE STUDY 459

MONTHLY RAINFALL AVERAGES

Problem: Meteorologists have recorded monthly rainfall amounts at several sites
throughout a region of the country.You have been asked to write an application that
reads one year’s rainfall amounts from sites within the region from a file and that
prints out the average of the 12 values for each of the sites on a separate file.The first
line of a data set consists of the name of the site, and the 12 values for the site follow
on the next line with exactly one blank in between each value.The data file is named
rainData.dat.

Brainstorming: This problem sounds familiar. In Chapter 8, we wrote an application that
took rainfall amounts from observers and calculated the running average. In that prob-
lem we used a window for input and output; this problem asks for file input and
output. Calculating an average should be the same, but where the calculation takes
place is different. In the previous problem the calculation took place in the handler for
the button event.This problem does not include any buttons.

There are other nouns in the problem, but they describe the context like region, coun-
try, and sites, so they are not objects in the solution. What are the objects? The applica-
tion and the file objects.

Filtering: This looks like a very sparse set of classes for a problem that includes calculat-
ing a series of averages.This problem has a process that is repeated over different data,
but we do not have any objects other than numeric values and files.

What about error conditions? We can’t determine what they might be at this stage,
other than to say that the data might have been entered incorrectly on the file. Let’s
add an exception class to our list of classes.

Before we look at the responsibilities of each class, let’s name them. Let’s call the ap-
plication class RainFall and the exception class DataSetException.

application

input file

output file

CASE STUDY
460

Scenarios: The processing takes place within the application class Rainfall: processing
a data set, writing the average, and repeating the process until no more data sites
remain.The class DataSetException should just pass the message sent to it on to its su-
perclass to be printed if the application ends with an error. Rainfall has the responsibil-
ity to throw a DataSetException if necessary.

CRC Cards: On the CRC card, we summarize RainFall’s responsibilities.

Class Name: DataSetException Superclass: Exception Subclasses:

Responsibilities Collaborations

Create itself

Pass message to super Super

Class Name: Rainfall Superclass: Object Subclasses:

Responsibilities Collaborations

Prepare the file for input FileReader, BufferedReader

Prepare the file for output FileWriter, PrintWriter

Process data BufferedReader

Throw exceptions if necessary DataSetException

Rainfall

input file

output file

DataSetException

CASE STUDY 461

Responsibility Algorithms: Preparing a file for input and output has become so routine
that we do not need to write the algorithms for these operations.The third responsibil-
ity, processing data, is the heart of the problem. At the topmost level of the design, we
need a loop to process the data from all the sites. Each iteration must process one site’s
data, then check for a new site name.The application does not know in advance how
many recording sites are in the file, so the loop cannot be a count-controlled loop.
Although we can make for, while, or do loops work correctly, we use a do loop under the
assumption that the file definitely contains at least one site’s data.Therefore, we can
set up the loop so that it processes the data from a recording site and then, at the
bottom of the loop, decides whether to iterate again.

Processing one site requires another loop to input 12 monthly rainfall amounts and
sum them. Using the summing technique with which we are highly familiar by now, we
initialize the sum to 0 before starting the loop, and each loop iteration reads another
number and adds it to the accumulating sum. A for loop is appropriate for this task, be-
cause we know that exactly 12 iterations must occur. What if the user has keyed one of
the data values incorrectly? What if a negative value is input? We had better put the for
loop in a try-catch statement. Once we have the value, we should throw an exception if
it is negative.

Because all of the input values are on one line with a blank in between them, we
must extract the characters that make up one value before we can convert it. We can

Process One Site

Set sum to 0.0
try to
Get a line of values
for months going from 1 to 12
Get rainfall amount
if amount is negative
throw DataSetException("negative value found")

else
Set sum to sum + amount

Write "Average for " + data set name + " is " + sum/12
catch and handle exceptions

Process Data

Prepare input file, inFile
Prepare output file, outFile
Read data set name
do
Process one site
Read data set name

while (more data)
Close files

CASE STUDY
462

use the String methods indexOf and substring to extract a string that represents exactly
one floating-point value.

Before we go on, we had better hand-simulate this algorithm. Let’s apply it to the fol-
lowing string:

"23.5 5.6 5.44"

index currentValue line amount

4 “23.5” “5.6 5.44” 23.5

3 “5.6” “5.44” 5.6

error “5.44”

There is an error in the logic. Unless a blank follows the last value rather than an end
of line, the indexOf method returns –1, indicating that there isn’t another blank. We then
use the index in the next statement, producing an error in the method substring. We
need to check whether a blank is found. If it is not, the remaining string is the last value
in the line.

We now need to decide what other errors might occur, how to catch them, and how
to handle them.The file can throw an IOException, the conversion operation can throw
a NumberFormatException, and our own code can throw a DataSetException. For the
IOException, let’s catch it, print out the site name, and end the application. For the
NumberFormatException, let’s print out the site name with an error message and continue
processing with the next site. We can do the same for DataSetException.

Get Rainfall Amount (revised)

Set index to line.indexOf(' ')
if index > 0
Set currentValue to line.substring(0, index)
Set line to substring(index+1, line.length())

else
Set currentValue to line
Set amount to Double.parseDouble(currentValue)

Get Rainfall Amount

Set index to line.indexOf(' ')
Set currentValue to line.substring(0, index)
Set line to substring(index+1, line.length())
Set amount to Double.parseDouble(currentValue)

CASE STUDY 463

The only abstract step left is to determine when the outer loop finishes. We could
read in a new site name and quit if there are no more data, or we could use a site name
of “Quit” to end the processing. Let’s use the latter technique here.

Assumptions: The file contains data for at least one site.

package rainfall;

// Define an Exception class for signaling data set errors
public class DataSetException extends Exception
{
public DataSetException()
{
super();

}
public DataSetException(String message)
{
super(message);

}
}

package rainfall;
import java.io.*;
public class Rainfall
// **
// Rainfall application
// This application accepts input of 12 monthly rainfall amounts from a recording
// site and computes the average monthly rainfall.
// This process is repeated for as many recording sites as the user wishes.
// **

More Data

dataSetName is not "Quit"

Catch and Handle Exceptions

catch IOException
Write "I/O Exception with site " + data set name
End application

catch NumberFormatException
Write "NumberFormatException with site " + data set name

catch DataSetException
Write message + data set name

CASE STUDY
464

{
static void processOneSite(BufferedReader inFile, PrintWriter outFile, String
dataSetName)

{
int count; // Loop control variable
double amount; // Rainfall amount for one month
double sum = 0.0; // Sum of amounts for the year
String dataLine; // String to input amount from inFile
String currentValue; // Floating-point string
int index; // Position of blank

try
{
// Next line could produce an IOException
dataLine = inFile.readLine();
for (count = 1; count <= 12; count++) // For 12 months
{
index = dataLine.indexOf(' '); // Find position of blank
if (index > 0)
{ // Blank found
currentValue = dataLine.substring(0, index); // Extract a number
// Remove current value from string
dataLine = dataLine.substring(Math.min(index+1,

dataLine.length()), dataLine.length());
}
else // Remaining string is current value
currentValue = dataLine;

// Next line could produce NumberFormatException
amount = Double.parseDouble(currentValue); // Convert to double
if (amount < 0.0)
throw new DataSetException("Negative value in site ");

else
sum = sum + amount;

}
outFile.println("Average for " + dataSetName + " is " + sum/12);

}
catch (IOException except)
{
outFile.println("IOException with site " + dataSetName);
System.exit(0);

}

CASE STUDY 465

catch (NumberFormatException except)
{
outFile.println("NumberFormatException in site " + dataSetName);

}
catch (DataSetException except)
{
outFile.println(except.getMessage() + dataSetName);

}
}

public static void main(String[] args) throws FileNotFoundException,
IOException

{
String dataSetName; // Name of reporting station
BufferedReader inFile; // Data file
PrintWriter outFile; // Output file

inFile = new BufferedReader(new FileReader("rainData.dat"));
outFile = new PrintWriter(new FileWriter("outfile.dat"));

dataSetName = inFile.readLine(); // Get name of reporting station
do
{
processOneSite(inFile, outFile, dataSetName);
dataSetName = inFile.readLine(); // Get name of reporting station

} while (!dataSetName.equals("Quit"));
inFile.close();
outFile.close();

}
}

Testing: We should test two separate aspects of the Rainfall application. First, we
should verify that the application works correctly given valid input data. Supplying ar-
bitrary rainfall amounts of zero or greater, we must confirm that the application
correctly adds up the values and divides by 12 to produce the average. Also, we should
verify that the application behaves correctly when it reaches the sentinel value “Quit”.

Second, we should test the data validation code. We should include negative
numbers in the file to ensure that such data sets are not processed. Similarly, we need
to include some values that are improperly formed floating-point values. Here’s a sam-
ple input file that accomplishes the necessary testing:

CASE STUDY
466

Here is the output from running the application on this data file:

9.4 Testing and Debugging

The same testing techniques we used with while loops apply to do and for loops as well.
There are, however, a few additional considerations with these loops.

The body of a do loop always executes at least once. For this reason, you should try data
sets that show the result of executing a do loop the minimal number of times.

With a data-dependent for loop, it is important to test for proper results when the loop
executes zero times.This situation arises when the starting value is greater than the end-
ing value (or less than the ending value if the loop control variable is being decremented).

When an application contains a switch statement, you should test it with enough
different data sets to ensure that each branch is selected and executed correctly. You
should also test the application with a switch expression whose value is not in any of
the case labels.

An application that handles exceptions must be tested to ensure that the exceptions
are generated appropriately and then handled properly. Test cases must be included to

S u m m a r y | 467

cause exceptions to occur, and the expected results from handling them must be speci-
fied.

Testing and Debugging Hints

1. Make sure that all exceptions are either caught or forwarded as appropriate.

2. In a switch statement, make sure that a break statement appears at the end of
each case alternative. Otherwise, control “falls through” to the code in the
next case alternative.

3. Case labels in a switch statement consist of values, not variables.They may,
however, include named constants and expressions involving only constants.

4. A switch expression must be one of the types char, byte, short, or int. It cannot
be of type long or a floating-point or string expression.

5. The case constants of a switch statement cannot be of type long or be floating-
point or string constants.

6. If the possibility exists that the value of the switch expression might not
match one of the case constants, you should provide a default alternative.

7. Double-check long switch statements to make sure that you haven’t omitted
any branches.

8. The do loop is a posttest loop. If the possibility exists that the loop body might
be skipped entirely, use a while or for statement.

9. The for statement heading (the first line) always has three parts within the
parentheses.Typically, the first part initializes a loop control variable, the sec-
ond part tests the variable, and the third part increments or decrements the
variable.The three parts must be separated by semicolons. Any of the parts
can be omitted, but the semicolons still must be present.

Summary

An exception occurs when an error condition is encountered in a method and the
method cannot directly resolve the problem.The method is said to “throw an excep-
tion,” which we can catch using a try statement. Catching an exception and handling
it properly enables the application to continue executing, rather than allowing the
error to be passed to the JVM, which halts the application with an error message.

468

Typical exceptions include IOException, NumberFormatException, and Arithmetic-
Exception.

The throw statement gives us the ability to throw exceptions when we detect
them. When we create new classes derived from Exception, we can throw exceptions
that are specific to our classes and methods.Those exceptions can then be caught
and handled in ways that are more appropriate than would be possible if we were re-
stricted to using the exception classes in the Java library.

The switch statement is a multiway selection statement. It allows the code to
choose among a set of branches. A switch statement containing break statements can
always be simulated by an if-then-else-if structure. If a switch statement can be used,
however, it often makes the code easier to read and understand. It cannot be used
with floating-point or string values in the case labels.

The do loop is a general-purpose looping statement. It works like the while loop
except that its test occurs at the end of the loop, guaranteeing at least one execution
of the loop body. As with a while loop, a do loop continues as long as the loop
condition remains true. A do loop is a convenient choice for loops that test input val-
ues and then repeat if the input is not correct.

The for statement is another looping statement and is commonly used to
implement count-controlled loops.The initialization, testing, and incrementation (or
decrementation) of the loop control variable are centralized in one location, the first
line of the for statement.

The for, do, switch, and throw statements are the “ice cream and cake” of Java. We
can live without them if we absolutely must, but they are very nice to have. Similarly,
the additional operators that Java supplies, such as +=, %=, and ?:, are sometimes con-
venient shortcuts, but we can program effectively without them. Often, the use of
the less common operators results in code that is more difficult to understand. For
this reason, we recommend that you avoid them. Even so, you must be aware of their
meaning so that you can interpret them when you encounter code written by a pro-
grammer who values compact syntax over clarity.

Quick Check

1. Write a statement that converts a string to an integer and writes out the string
if a NumberFormatError occurs. (pp. 432–435)

2. What is the superclass of all exceptions? (pp. 437–438)

3. Given a switch expression that is the int variable nameVal, write a switch state-
ment that writes the following to the PrintWriter file called outData: your first
name if nameVal = 1, your middle name if nameVal = 2, and your last name if
nameVal = 3. (pp. 438–442)

469

4. How would you change the code you wrote for Question 3 so that it writes an
error message if the value is not 1, 2, or 3? (pp. 438–442)

5. What is the primary difference between a while loop and a do loop? (pp.
442–445)

6. A certain problem requires a count-controlled loop that starts at 10 and counts
down to 1. Write the heading (the first line) of a for statement that controls this
loop. (pp. 445–447)

7. What Java looping statement would you choose for a loop that is both count-
controlled and event-controlled and whose body might not execute even
once? (p. 448)

8. What is the difference between an expression and an expression statement in
Java? (pp. 448–450)

Answers

1. try
{
intValue = Integer.parseInt("123");

}
catch(NumberFormatException except)
{
System.out.println(except.getMessage);

}
2. Throwable
3. switch (nameVal)

{
case 1 : outData.println("Mary");

break;
case 2 : outData.println("Lynn");

break;
case 3 : outData.println("Smith");

break; // Not required
}

4. switch (nameVal)
{
case 1 : outData.println("Mary");

break;
case 2 : outData.println("Lynn");

break;
case 3 : outData.println("Smith");

break;
default : outData.println("Invalid name value.");

break; // Not required
}

5. The body of a do loop always executes at least once; the body of a while loop may not execute at all. 6. for
(count = 10; count >= 1; count--) 7. A while (or perhaps a for) statement 8. An expression becomes
an expression statement when it is terminated by a semicolon.

470

Exam Preparation Exercises

1. Which control structure should you use if you think an operation might throw
an exception?

2. Which statement raises an exception?

3. What part of the try-catch-finally structure must have a parameter consisting of
an exception object?

4. Our code can catch exceptions it throws, but not exceptions that the system
throws. (True or False?)

5. Mark the following statements as true or false. If a statement is false, explain
why.

a. There can only be one catch clause for each try.

b. The exception handler is located within the catch clause.

c. The finally clause is optional.

d. The finally clause is rarely used.

6. Define the following terms: switch expression, pretest loop, posttest loop.

7. A switch expression may be an expression that results in a value of type int,
float, boolean, or char. (True or False?)

8. The values in case labels may appear in any order, but duplicate case labels are
not allowed within a given switch statement. (True or False?)

9. All possible values for the switch expression must be included among the case
labels for a given switch statement. (True or False?)

10. Rewrite the following code fragment using a switch statement.

if (n == 3)

alpha++;

else if (n == 7)

beta++;

else if (n == 10)

gamma++;

11. What is printed by the following code fragment if n equals 3? (Be careful here.)

switch (n + 1)

{

case 2 : outData.println("Bill");

case 4 : outData.println("Mary");

case 7 : outData.println("Joe");

case 9 : outData.println("Anne");

471

default : outData.println("Whoops!");

}

12. If a while loop whose condition is delta <= alpha is converted to a do loop, the
loop condition of the do loop is delta > alpha. (True or False?)

13. A do statement always ends in a semicolon. (True or False?)

14. What is printed by the following code fragment? (All variables are of type int.)

n = 0;

i = 1;

do

{

outData.print(i);

i++;

} while (i <= n);

15. What is printed by the following code fragment? (All variables are of type int.)

n = 0;

for (i = 1; i <= n; i++)

outData.print(i);

16. What is printed by the following code fragment? (All variables are of type int.)

for (i = 4; i >= 1; i--)

{

for (j = i; j >= 1; j--)

outData.print(j + " ");

outData.println(i);

}

17. What is printed by the following code fragment? (All variables are of type int.)

for (row = 1; row <= 10; row++)

{

for (col = 1; col <= 10 – row; col++)

outData.print("*");

for (col = 1; col <= 2 * row – 1; col++)

outData.print(" ");

for (col = 1; col <= 10 – row; col++)

outData.print("*");

outData.println();

}

472

18. A break statement located inside a switch statement that is located within a
while loop causes control to exit the loop immediately. (True or False?)

19. Classify each of the following as either an expression or an expression
statement.

a. sum = 0

b. sqrt(x)

c. y = 17;

d. count++

20. Rewrite each statement as described.

a. Using the += operator, rewrite the statement

sumOfSquares = sumOfSquares + x * x;

b. Using the decrement operator, rewrite the statement

count = count – 1;

c. Using a single assignment statement that uses the ?: operator, rewrite the
statement

if (n > 8)

k = 32;

else

k = 15 * n;

Programming Warm-Up Exercises

1. a. Declare an exception of the class MyException.

b. Write the class MyException.

c. Write the statement that throws an exception of class MyException.

2. Write a try-catch statement that attempts to open the file data.in for reading
and writes an error message if an exception is thrown.

3. Write a switch statement that does the following:

If the value of grade (a variable of type char) is

‘A’, add 4 to sum

‘B’, add 3 to sum

‘C’, add 2 to sum

‘D’, add 1 to sum

‘F’, print “Student is on probation” on the PrintWriter file outData

4. Modify the code you wrote for Exercise 3 so that an error message is printed if
grade does not equal one of the five possible grades.

473

5. Write a code segment that reads and sums values until it has summed ten data
values or until a negative value is read, whichever comes first. Use a do loop for
your solution.

6. Rewrite the following code segment using a do loop instead of a while loop.

response = Integer.parseInt(inData.readLine());

while (response >= 0 && response <= 127)

{

response = Integer.parseInt(inData.readLine());

}

7. Rewrite the following code segment using a while loop.

inInt = Integer.parseInt(inData.readLine());

if (inInt >= 0)

do

{

System.out.println("" + inInt);

inInt = Integer.parseInt(inData.readLine());

} while (inInt >= 0);

8. Rewrite the following code segment using a for loop.

sum = 0;

count = 1;

while (count <= 1000)

{

sum = sum + count;

count++;

}

9. Rewrite the following for loop as a while loop.

for (m = 93; m >= 5; m--)

outData.println(m + " " + m * m);

10. Rewrite the following for loop as a do loop.

for (k = 9; k <= 21; k++)

outData.println(k + " " + 3 * k);

11. Write a value-returning method that accepts two int parameters, base and ex-
ponent, and returns the value of base raised to the exponent power. Use a for loop
in your solution.

474

Programming Problems

1. Develop a Java application that inputs a two-letter abbreviation for one of the
50 states from a field and displays the full name of the state in a label. If the ab-
breviation isn’t valid, the application should display an error message and ask
for an abbreviation again.The names of the 50 states and their abbreviations
are given in the following table. Use two buttons: one to enter an abbreviation
and one to quit.

State Abbreviation State Abbreviation

Alabama AL Montana MT

Alaska AK Nebraska NE

Arizona AZ Nevada NV

Arkansas AR New Hampshire NH

California CA New Jersey NJ

Colorado CO New Mexico NM

Connecticut CT New York NY

Delaware DE North Carolina NC

Florida FL North Dakota ND

Georgia GA Ohio OH

Hawaii HI Oklahoma OK

Idaho ID Oregon OR

Illinois IL Pennsylvania PA

Indiana IN Rhode Island RI

Iowa IA South Carolina SC

Kansas KS South Dakota SD

Kentucky KY Tennessee TN

Louisiana LA Texas TX

Maine ME Utah UT

Maryland MD Vermont VT

Massachusetts MA Virginia VA

Michigan MI Washington WA

Minnesota MN West Virginia WV

Mississippi MS Wisconsin WI

Missouri MO Wyoming WY

475

(Hint: Use nested switch statements, where the outer statement uses the first
letter of the abbreviation as its switch expression.)

2. Design and write a Java application that reads a date in numeric form from a
set of three fields and displays it in English within a label. Use appropriate but-
tons. For example:

Given the date:

10 27 1942

The application displays:

October twenty-seventh, nineteen hundred forty-two.

Here is another example:

Given the date:

12 10 2010

The application displays:

December tenth, two thousand ten.

The application should display an error message for any invalid date, such as 2
29 1883 (1883 wasn’t a leap year).

3. Write a Java application that reads full names from an input file and writes the
initials for the names to an output file named initials. For example, the input

John James Henry

should produce the output

JJH

The names are stored in the input file as first name, middle name, last name,
with each name separated by an arbitrary number of blanks. Only one name
appears per line.The first name or the middle name could be just an initial, or
there may not be a middle name.

4. Write a Java application that converts letters of the alphabet into their
corresponding digits on the telephone.The application should let the user en-
ter letters repeatedly until a “Q” or a “Z” is entered. (Q and Z are the two letters
that are not on the telephone.) An error message should be printed for any
nonalphabetic character that is entered.

The letters and digits on the telephone have the following correspondence:

ABC = 2 DEF = 3 GHI = 4

JKL = 5 MNO = 6 PRS = 7

TUV = 8 WXY = 9

476

Here is an example:

When the user enters P, the application displays:

The letter P corresponds to 7 on the telephone.

When the user enters A, the application displays:

The letter A corresponds to 2 on the telephone.

When the user enters D, the application displays:

The letter D corresponds to 3 on the telephone.

When the user enters 2, the application displays:

Invalid letter. Enter Q or Z to quit.

When the user enters Z, the application quits.

Case Study Follow-Up

1. Rewrite the processOneSite method in the Rainfall application, replacing the for
loop with a do loop.

2. Rewrite the processOneSite method in the Rainfall application, replacing the for
loop with a while loop.

3. Change main in the Rainfall application so that it asks the user for the input file
name using a JFrame, and catches the FileNotFoundException if the name is
invalid. In the case of an invalid file name, the user should be asked to reenter
the file name until a valid name is entered or the user closes the JFrame
(signalling that he or she wants to stop the application)

4. Change the do loop in main in the Rainfall application to be a while loop.

5. Could the module Get Rainfall Amount be made a method? Explain.

477

Knowledge Goals
• To understand the difference between atomic and composite data types

• To understand the difference between unstructured and structured
composite data types

• To understand how Java implements arrays

• To understand the process of passing an array as an argument

• To understand the difference between an array and the information stored
within the array

• To understand the role of an array in structuring data within a problem

Skill Goals
To be able to:

• Declare and instantiate a one-dimensional array

• Access and manipulate the individual components in a one-dimensional
array where the elements are atomic types

• Access and manipulate the individual components in a one-dimensional
array where the elements are composite types

• Use an initializer list to instantiate a one-dimensional array

One-Dimensional
Arrays

1975
IBM introduces the
first laser printer

1976
The first commercial
e-mail service,
OnTyme, struggles
to find a market for
its product because
of the installation
requirements for its
use

1976
Steve Jobs and
Steve Wozniak
create the “Apple I”
computer

1977
Steve Jobs and
Steve Wozniak
found Apple
Computer Inc.; the
Apple II computer
sets the standard
for personal
computers

1977
Bill Gates and Paul
Allen form a
partnership and
create Microsoft

1977
Commodore
introduces the PET,
a PC with a built-in
monitor

10
C H A P T E R

we showed a diagram of Java data types (repeated on the
next page as Figure 10.1). Java data types are classified into primitive and
reference types. Recall that in Java, a variable of a primitive type holds an
actual value of that type, whereas a variable of a reference type holds
the address of an object. In previous chapters, we have covered all of the
primitive types and the class type. In this chapter, we extend the dis-
cussion of the Java data types by examining the array type. Before doing
so, we first step back and look at data types from a general perspective,
rather than a Java perspective.

In Chapter 3,

1978
Epson introduces
the first successful
dot matrix printer,
the TX-80

1978
The VAX 11/780
and the VMS
operating system
developed at DEC
popularize the 32-
bit architecture

1978
The WordStar
program for word
processing debuts

1978
Ron Rivest, Adi
Shamir, and
Leonard Adleman
introduce RSA, a
strong encryption
algorithm for
public-key
cryptosystems

1979
Dan Bricklin and
Bob Frankston
develop VisiCalc,
the first electronic
spreadsheet

1979
Motorola introduces
the 32-bit 68000
chip, which is later
used for the
Macintosh
computer

480 | One-Dimensional Arrays

Java data types

Primitive

Integral Floating
point

boolean

Reference

float double

array classinterface

shortcharbyte longint

Figure 10.1 Java Data Types

10.1 Atomic Data Types

Recall that a data type is a set of data values, along with a set of operations on those values.
The definitions of integers and real numbers come from mathematics. Integer numbers are
the set of whole numbers from negative to positive infinity.The operations defined for them
are the arithmetic operations [specified by +, -, / (integer division), *, and modulus], assign-
ment, and the relational operations. Real numbers are the set of all numbers from negative
to positive infinity. The operations defined for them are the same as those for the integers,
except that integer division and modulus are excluded.

Because computers have finite capabilities, programming languages put limits on the
range of integers and the range and precision of real numbers. Java provides four types of
integer numbers that differ only in the range of values that they can represent in memory:
byte, short, int, and long. Java has two real (floating-point) types that differ only in the range
and precision that they can represent: float and double.

Alphanumeric characters are the symbols that we use in written language.These sym-
bols vary from one natural language to another.The same is true of characters used to rep-
resent textual data in a computer. For many years, two character sets dominated the computer
world: ASCII and EBCDIC. In these character sets, each character occupies one byte in mem-
ory, giving 256 possible characters. Some of these characters are nonprintable control char-
acters used by the computer’s hardware. Unicode is a relatively new character set that uses
two bytes to represent each character. It was developed to include characters for writing
text in many natural languages. Unicode, which Java uses, contains ASCII as a subset.

The operations defined on alphanumeric characters are the relational operations and as-
signment. The ordering used by the relational operators is the collating sequence of the
character set.Although the collating sequence differs for different character sets, the letters
and digits are ordered as we would expect—that is, ‘A’ < ‘B’ < ‘C’ . . . and ‘1’ < ‘2’ < ‘3’

Different programming languages treat characters differently. In Pascal, for example, the
data type for a character is distinct.Arithmetic operations,when applied to character data,cause
compile-time errors. In C++, no real distinction is made between characters and numbers.

10.2 C o m p o s i t e D a t a T y p e s | 481

Arithmetic operations may be applied to character data (and often are).The only difference is
that when character data is printed, the character itself is printed rather than the numeric rep-
resentation of the character. In Java, applying arithmetic operations to character data causes
the compiler to insert a cast operation that converts the character to a numerical value.

The Boolean data type includes two literals, true and false. The operations allowed on
these values are the logical operators AND, OR, and NOT; the relational operations; and as-
signment. Although many languages consider Boolean values to be ordered, Java does not,
so only equal and not equal can be applied to Boolean values in Java. Java calls the Boolean
type boolean and the constants true and false.

Integers, reals, characters, and Booleans are called atomic or simple elements because they
have no component parts that can be accessed separately.They are also ordered.Types that
are atomic and ordered are called scalar data types.

For example, a single character is atomic, but the string "Good Morning" is not
because it is composed of 12 characters.When we say that the values are ordered,
we mean that exactly one of the relations less than,greater than,or equal holds true
for any pair of values. For example,

1 < 2 'C' > 'A' 3.562 < 106.22 false == false

Integers, characters, and Booleans have yet another property: Each value (ex-
cept the first) has a unique predecessor and each value (except the last) has a
unique successor.Types with this property are called ordinal data types. Although
theoretically Booleans are ordinal, Java’s type boolean is not.

Real numbers are not ordinal because a real value has no unique predeces-
sor or successor. If one more digit of precision is added, the predecessor and suc-
cessor change; that is, 0.52 and 0.520 are the same, but the predecessor of 0.52 is
0.51, and the predecessor of 0.520 is 0.519. Because Java’s type boolean is not or-
dered, it is not ordinal.

Although the ordinals form a subset of the scalars, the two types are quite dif-
ferent. Mathematicians make this same distinction when they talk about con-
tinuous values versus discrete values. Many real-life analogies demonstrate this distinction
as well: the spectrum of colors in a real rainbow versus the discrete colors in a child’s crayon
drawing of a rainbow or the continuous tone of a violin sliding up the scale versus the dis-
crete tones of a piano.

Java classifies the atomic types that it represents as “primitive.”

10.2 Composite Data Types

Sometimes we may need to show a relationship among variables or to store and reference
collections of variables as a group. For this reason, we need a way to associate an identifier
with a collection of values. A data type made up of a collection of values is called a compos-

ite data type.

Atomic (simple) elements
Elements that have no compo-
nent parts

Scalar data type A data type
in which the values are ordered
and each value is atomic (indi-
visible)

Ordinal data type A data type
in which each value (except the
first) has a unique predecessor
and each value (except the last)
has a unique successor

Composite data type A data
type that allows a collection of
values to be associated with an
identifier of that type

482 | One-Dimensional Arrays

Composite data types come in two forms: unstructured and structured. In an
unstructured data type, no relationship exists among the values in the data type other
than that they are members of the same collection. A structured data type, on the
other hand, is an organized collection of components in which a relationship exists
among the items in the collection. We use this relationship to access individual
items within the collection as well as to manipulate the collection as a whole.

A value in an atomic type is a single data item; it cannot be broken down into
component parts. For example, in Java each int value is a single integer number
and cannot be further decomposed. In contrast, in a composite data type, each
value is a collection of component items. The entire collection is given a single
name, yet each component can still be accessed individually.

The class is an example of a composite data type. A class has a name and is
composed of named data fields and methods.An instance of a class, including the

data fields and methods, can be passed as an argument.The data fields and methods can be
accessed individually by name.A class is unstructured because the meaning does not depend
on the ordering of the data fields or the methods within the source code. That is, we can
change the order in which the members of the class are listed without changing the func-
tion of the class.

In Java, all composite types are either classes, interfaces, or arrays. Rather than talking
about the type of a composite object, we talk about its class. An example of a composite ob-
ject in Java is an instance of the String class, used for creating and manipulating strings.When
you declare a variable myString to be of class String, myString does not reference just one
atomic data value; rather, it references an entire collection of characters and the methods
that manipulate the characters. Even so, you can access each component in the string indi-
vidually by using an expression such as myString.charAt(3), which accesses the char value at
position 3.Therefore the characters within the string are ordered.

Atomic data types serve as the building blocks for composite types. A composite type
gathers together a set of component values and usually imposes a specific arrangement

on them (see Figure 10.2). If the compos-
ite type is a built-in type, the syntax of
the language provides the accessing
mechanism. If the composite type is user-
defined, the accessing mechanism is built
into the methods provided with the class.

In Chapters 1 through 9, we have dis-
cussed control structures and the class,
an unstructured composite type. In the
next three chapters, we focus on struc-
tured composite data types. Of course, we
do not abandon the class, but we focus on
having a structured composite type as a
field in a class.

Unstructured data type A col-
lection of components that are
not organized with respect to
one another.

Structured data type An or-
ganized collection of
components; the organization
determines the means used to
access individual components

:

Atomic
Composite

Unstructured
Composite
Structured

Figure 10.2 Atomic (Simple) and Composite Data Types

10.3 O n e - D i m e n s i o n a l A r r a y s | 483

10.3 One-Dimensional Arrays

How we organize our data plays an important role in the design process. If the internal data
representation for a class is a composite type (that is, if it contains more than a single atomic
field), we call the internal representation a data structure.The choice of data struc-
ture directly affects the design because it determines the algorithms used to
process the data.The class gives us the ability to refer to an entire group of com-
ponents by one name, which simplifies the design of many applications.

Many problems, however, have so many components that it is difficult to
process them if each one must have a unique field name. For example, if we use
individually named values to read and print a file in reverse order, all the values
must be read and saved before the last one can be printed. If there are 1,000 values, we must
define 1,000 individual variables to hold the values and input and output each value sepa-
rately—an incredibly tedious task! An array—the last of Java’s built-in reference types—is the
data type that allows us to program operations of this kind with ease.

Let’s look at how we would have to solve this problem with simple variables.

// Read 1,000 numbers and print them in reverse order
import java.io.*;
public class ArrayExample
{
public static void main(String[] args) throws IOException
{
BufferedReader inFile;
PrintWriter outFile;
inFile = new BufferedReader(new FileReader("infile.dat"));
outFile = new PrintWriter(new FileWriter("outfile.dat"));

// Declare 1,000 integer variables
int value0;
int value1;
int value2;
.
.
.
int value999;

// Read 1,000 integer values
value0 = Integer.parseInt(inFile.readLine());
value1 = Integer.parseInt(inFile.readLine());
value2 = Integer.parseInt(inFile.readLine());
.
.
.
value999 = Integer.parseInt(inFile.readLine());

Data structure The implemen-
tation of a composite data field
in an abstract data type

484 | One-Dimensional Arrays

// Write 1,000 values
outFile.println(value999);
outFile.println(value998);
outFile.println(value997);
.
.
.
outFile.println(value0);
inFile.close();
outFile.close();

}
}

This application is more than 3,000 lines long, and we have to use 1,000 separate variables.
Note that all the variables have the same name except for an appended number that dis-
tinguishes them.Wouldn’t it be more convenient if we could put the number into a counter
variable and use for loops to go from 0 through 999, and then from 999 back down to 0? For
example, if the counter variable were number, we could replace the 2,000 original input/out-
put statements with the following four lines of code (we enclose number in brackets to set it
apart from value):

for (number = 0; number < 1000; number++)
value[number] = Integer.parseInt(inFile.readLine());

for (number = 999; number >= 0; number--)
outFile.println(value[number]);

This code fragment is correct in Java if we declare value to be a one-dimensional array. Such an
array is a collection of variables—all of the same type—where the first part of each variable
name is the same, and the last part is an index value.

The declaration of a one-dimensional array is similar to the declaration of a simple vari-
able (a variable of a simple data type), with one exception: You must indicate that it is an ar-
ray by putting square brackets next to the type.

int[] value;

Because an array is a reference type, it must be instantiated.At that time, we must spec-
ify the size of the array.

value = new int[1000];

Here value represents an array with 1,000 components,all of type int.The first component has
index value 0, the second component has index value 1,and the last component has index value
999.

The following application prints out numbers in reverse order using an array. It is cer-
tainly much shorter than our first version of the application.

10.3 O n e - D i m e n s i o n a l A r r a y s | 485

// Read 1,000 numbers and print them in reverse order
import java.io.*;
public class ArrayExample
{

public static void main(String[] args) throws IOException
{
BufferedReader inFile;
PrintWriter outFile;
inFile = new BufferedReader(new FileReader("infile.dat"));
outFile = new PrintWriter(new FileWriter("outfile.dat"));

// Declare and instantiate an array
int[] value = new int[1000];
for (int number = 0; number < 1000; number++)
value[number] = Integer.parseInt(inFile.readLine());

for (int number = 999; number >= 0; number--)
outFile.println(value[number]);

inFile.close();
outFile.close();

}
}

infile outfile
10 9999
20 9998
30 9997
40 .
. .
. 40
9997 30
9998 20
9999 10

In general terminology, an array differs from a class in three fundamental ways:

1. An array is a homogeneous data structure (all components in the structure are of
the same data type), whereas classes are heterogeneous types (their components
may be of different types).

2. A component of an array is accessed by its position in the structure, whereas a
component of a class is accessed by an identifier (the field name).

3. Because array components are accessed by position, an array is a structured
data type.

486 | One-Dimensional Arrays

Let’s now define Java arrays formally and look at the rules for accessing individual
components.

Declaring an Array

A one-dimensional array is a structured collection of components (often called array
elements) that can be accessed individually by specifying the position of a com-
ponent with a single index value.

Here is a syntax template describing the simplest form of a one-dimensional
array declaration:

In the syntax template, Data-Type describes what is stored in each component of the array.
The brackets following Data-Type indicate that this structure is an array of Data-Type ele-
ments. Array components may be of almost any type, but for now we limit our discussion to
atomic components. From Figure 10.1, we know that the array is a reference type. Array-
Name is a location in memory that will hold the address of an array when that array is
instantiated. For example,

int[] numbers;

declares a variable that can hold the address of an array of integers.We tell the compiler how
many components the array contains when we instantiate it.

Creating an Array

You create an array just like you create an object; you use new. Following is the syntax tem-
plate for instantiating an array. Notice that arrays don’t need to be initialized, so we don’t pass
a list of arguments. Instead, we put the number of slots to be in the array in brackets beside
the type of the array.

Int-Expression is an integer expression that specifies the number of components in the ar-
ray.This expression must have a value greater than or equal to 0. If the value is n, the range
of index values is 0 through n � 1, not 1 through n. For example, the declarations

Array-Creation

Array-Name = new Data-Type[IntExpression];

Data-Type [] Array-Name;

Array-Declaration

One-dimensional array A
structured collection of compo-
nents, all of the same type, that
is given a single name. Each
component (array element) is
accessed by an index that indi-
cates the component’s position
within the collection.

10.3 O n e - D i m e n s i o n a l A r r a y s | 487

float[] angle; // Declares the array variable
angle = new float[4]; // Instantiates the array object
int[] testScore; // Declares the array variable
testScore = new int[10]; // Instantiates the array object

instantiate the arrays shown in Figure 10.3.The angle ar-
ray has four components, each capable of holding one
float value.The testScore array has a total of ten compo-
nents, all of type int.

An array can be declared and instantiated in sepa-
rate statements or the declaration and creation can be
combined into one step as shown here.

// Declared and instantiated in one statement
float[] angle = new float[4];
// Declared and instantiated in one statement
int[] testScore = new int[10];

Because arrays are reference types in Java, they are in-
stantiated at run time, not at compile time. Therefore,
the Int-Expression used to instantiate an array object
does not have to be a constant. It can instead be a value
that you have read into the application. For example, if
you have read the value of dataSize from a file, the fol-
lowing declaration is legal:

int[] data = new int[dataSize];

Once instantiated, the array always has the specified number of components. For example,
if dataSize is 10 when the array is instantiated but is later changed to 15, data still has 10 com-
ponents.

Java provides an alternative syntax for declaring an array variable. You can place the
brackets that signal an array after the array name, as shown here:

char letters[];
char upperCase[];
char lowerCase[];

We do not recommend using this syntactic form, however. It is more consistent—and safer—
to place the brackets with the type of the components. It is safer because, as you may recall
from Chapter 2, Java also lets us declare multiple identifiers with a statement such as this:

char letters[], upperCase[], lowerCase;

testScore[0]
testScore[1]
testScore[2]
testScore[3]
testScore[4]

angle[0]
angle[1]
angle[2]
angle[3]

testScore[5]
testScore[6]
testScore[7]
testScore[8]
testScore[9]

angle testScore

Figure 10.3 angle and testScore Arrays

488 | One-Dimensional Arrays

Look closely at this example: letters and upperCase are composite variables of type char[],
but lowerCase is a simple variable of type char. If you use the syntax that we introduced first,
you cannot forget to put the brackets on one of the array identifiers:

char[] letters, upperCase, lowerCase;

Declaring and Creating an Array with an Initializer List

Java also provides an alternative way to instantiate an array. You learned previously that
Java allows you to initialize a variable in its declaration:

int delta = 25;

The value 25 is called an initializer.You can also initialize an array in its declaration, using a
special syntax for the initializer. In this case, you specify a list of initial values for the array
elements, separate them with commas, and enclose the list within braces:

int[] age = {23, 10, 16, 37, 12};

In this declaration, age[0] is initialized to 23, age[1] is initialized to 10, and so on. Notice two
interesting things about this syntax. First, it does not use the new operator. Second, it does not
specify the number of components.When the compiler sees an initializer list, it determines
the size by finding the number of items in the list, instantiates an array of that size, and
stores the values into their proper places. Of course, the types of the values in the initializer
list must match the type of the array.

What values are stored in an array when it is instantiated by using new? If the array com-
ponents are primitive types, they are set to their default value: 0 for integral types, 0.0 for float-
ing-point types, and false for Boolean types. If the array components are reference types, the
components are set to null.

In only two situations can an object be created without using new: when using an array
initializer list and by creating a String literal.

Accessing Individual Components

Recall that to access an individual field of a class, we use dot notation—the name of the
class object, followed by a period, followed by the field name. In contrast, to access an indi-
vidual array component, we write the array name, followed by an expression enclosed in
square brackets.The expression specifies which component to access.The syntax template
for accessing an array component follows:

Array-Component-Access

Array-Name[Index-Expression]

10.3 O n e - D i m e n s i o n a l A r r a y s | 489

1Java inherits the notion that char is a numeric type from C. The Java language specifications say that
arrays must be indexed by int values but that values of type short, byte, or char may also be used because
they are subjected to unary numeric promotion and become int values. For clarity, we type cast char val-
ues to int when using them as indexes.

The Index-Expression may be as simple as a constant or a variable name or as complex as
a combination of variables, operators, and method calls. Whatever the form of the expres-
sion, it must give an integer value as a result. Index expressions can be of type byte, char, short,
or int.1 Using an index expression of type long produces a compile-time error.

The simplest form of index expression is a constant. For example, using our angle array,
the sequence of assignment statements

angle[0] = 4.93;
angle[1] = –15.2;
angle[2] = 0.5;
angle[3] = 1.67;

fills the array components one at a time (see Figure 10.4).
Each array component—angle[2], for instance—can be treated exactly

the same as any simple variable of type float. For example,we can do the fol-
lowing to the individual component angle[2]:

// Assign it a value
angle[2] = 9.6;

// Read a value into it
angle[2] = Double.parseDouble(inFile.readLine());

// Write its contents
outFile.println(angle[2]);

// Pass it as an argument
y = Math.sqrt(angle[2]);

// Use it in an expression
x = 6.8 * angle[2] + 7.5;

Now let’s look at a more complicated index expression. Suppose we declare a 1,000-el-
ement array of int values with the statement

int[] value = new int[1000];

and execute the following statement:

value[counter] = 5;

angle[0]
angle[1]
angle[2]
angle[3]

angle

4.93

–15.2

0.5

1.67

Figure 10.4 angle Array with Values

490 | One-Dimensional Arrays

value[0]
value[1]
value[2]

value[9]

value

value[25]

value[999]

value[0]. (The index is a constant.)

value[i],where i = 9. (The index is a variable.)

value[7 * j + 4], where j = 3.The index is a more
 complex expression.

Figure 10.5 An Index as a Constant, a Variable, and an Arbitrary Expression

In this statement, 5 is stored into an array component. If counter is 0, 5 is stored into the first
component of the array. If counter is 1, 5 is stored into the second place in the array, and so
forth. If we execute the statement

if (value[number+1] % 10 != 0)

then the expression number+1 selects an array component.The specific array component ac-
cessed is divided by 10 and checked to see whether the remainder is nonzero. If number+1 is
0, we are testing the value in the first component; if number+1 is 1, we are testing the second
place; and so on. Figure 10.5 shows the index expression as a constant, a variable, and a
more complex expression.

Out-of-Bounds Array Indexes

Given the declaration

float[] alpha = new float[100];

the valid range of index values is 0 through 99. Starting at 0 seems awkward, because we are
used to numbering things beginning with 1. However, you should not be surprised; the po-
sitions in a string begin with 0. What happens if we try to execute the statement

alpha[i] = 62.4;

when i is less than 0 or when i is greater than 99? A memory location outside the array
would be accessed, which causes an out-of-bounds error. Some languages—C++, for instance—

10.3 O n e - D i m e n s i o n a l A r r a y s | 491

do not check for this kind of error, but Java does. If your code attempts to use an
out-of-bounds array index, an ArrayIndexOutOfBoundsException is thrown. Rather than
try to catch this error, you should write your code so as to prevent it.

In Java, each array that is instantiated has a public instance variable, called
length, associated with it that contains the number of components in the array.
We can use lengthwhen processing the components in the array to keep from hav-
ing an out-of-bounds error. How? Array-processing algorithms often use for loops
to step through the array elements one at a time. The following loop zeroes out
the 100-element alpha array:

for (int index = 0; index < alpha.length; index++)
alpha[index] = 0.0;

Use this pattern—initialize the counter to zero, and then use a “less than” test against the
size of the array as recorded in length—and you can be sure that your counter is within the
bounds of the array. If your code crashes with an ArrayIndexOutOfBoundsException, immediately
verify that your relational operator is the less than operator, not the less than or equal to op-
erator.

Aggregate Array Operations

We can assign one array to another and we can compare two arrays for equality—but we
might not get the answer we expect. Arrays, like classes, are reference types. As a conse-
quence, the value stored in a reference variable is not the object itself but rather the address
of where the object is stored. Let’s see what happens when we test two arrays for equality
and assign one array to another.

int[] numbers = {2, 4, 6};
int[] values = new int[3];
values[0] = 2;
values[1] = 4;
values[2] = 6;

if (numbers == values)
...
numbers = values;
if (numbers == values)
...

The first if expression is false, because the variables numbers and values hold two different
memory addresses. (See Figure 10.6a.) The next statement takes the contents of values (the
address where the array is stored) and stores it into numbers. The next if expression is true,
because the two variables now hold the same memory address. (See Figure 10.6b.)

You should not be surprised at this example. An assignment for reference types is a
shallow assignment; an equality test for reference types is a shallow test. If you want to
have a deep test, you must write a method to do the comparison, element by element.

Out-of-bounds array index
An index value that is either less
than 0 or greater than the array
size minus 1

492 | One-Dimensional Arrays

int[] numbers = {2, 4, 6, 9};
int[] sameNumbers = new int[numbers.length];
// Deep copy of numbers to someNumbers
for (int index = 0; index < numbers.length; index++)
sameNumbers[index] = numbers[index];

// Compare arrays component by component
boolean compareArrays(int[] one, int[] two)
{
if (one.length != two.length)
return false;

boolean result = true;
int index = 0;
while (index < one.length && result)
{
if (one[index] == two[index])
index++;

else
result = false;

}
return result;

}

a. Result is false; these are two different arrays.

b. Result is true after a shallow copy.

numbers[0]
numbers[1]
numbers[2]

numbers

2

4

6

values[0]
values[1]
values[2]

values

2

4

6

numbers[0]
numbers[1]
numbers[2]

numbers

2

4

6

values[0]
values[1]
values[2]

values

2

4

6

Figure 10.6 Comparison of Array Variables

10.4 E x a m p l e s o f D e c l a r i n g a n d P r o c e s s i n g A r r a y s | 493

After the preceding deep copy code executes,what would be the result of each of the following
expressions?

numbers == sameNumbers
. . .
compareArrays(numbers, sameNumbers)
. . .

The first expression is false.The arrays contain the same values, but the equality test is for
addresses, not values.The second expression is true, because compareArrays is a method that
performs a deep comparison.

10.4 Examples of Declaring and Processing Arrays

We now look in detail at some specific examples of declaring and accessing arrays.These ex-
amples demonstrate different uses of arrays in applications.

Occupancy Rates

An application might use the following declarations to analyze occupancy rates in an apart-
ment building:

final int BUILDING_SIZE = 350; // Number of apartments

int[] occupants = new int[BUILDING_SIZE];
// occupants[aptNo] is the number of occupants in apartment aptNo
int totalOccupants; // Total number of occupants

Here occupants is a 350-element array of integers (see Figure 10.7). occupants[0] = 3 if the first
apartment has three occupants; occupants[1] = 5 if the second apartment has five occu-
pants; and so on. If values have been stored into the array, then the following code totals the
number of occupants in the building:

totalOccupants = 0;
for (int aptNo = 0; aptNo < occupants.length; aptNo++)
totalOccupants = totalOccupants + occupants[aptNo];

The first time through the loop, counter is 0. We add the contents of totalOccupants (that is, 0)
and the contents of occupants[0], storing the result into totalOccupants. Next, counter becomes
1 and the loop test occurs.The second loop iteration adds the contents of totalOccupants and
the contents of occupants[1], storing the result into totalOccupants.Now counterbecomes 2 and
the loop test is made. Eventually, the loop adds the contents of occupants[349] to the sum and
increments counter to 350.At this point, the loop condition is false, and control exits the loop.

Note how we used the named constant BUILDING_SIZE in the array declaration and occu-
pants.length in the for loop. When we use a constant in this manner, it is easy to make
changes. If the number of apartments changes from 350 to 400, we just need to alter the
declaration of BUILDING_SIZE. We could also have written

for (int aptNo = 0; aptNo < BUILDING_SIZE; aptNo++)

494 | One-Dimensional Arrays

but we prefer to use the length field because it is specifically associated with the
array. In the future, we might modify the application to use a different constant
to set the size of occupants. Then BUILDING_SIZE would no longer be the correct
value to terminate the loop, but occupants.length would remain valid.

Sales Figures

Now let’s look at an example where the values stored in the array are sales figures
and the indexes are the product numbers. (The products are gourmet hamburg-
ers.)The product numbers range from 1 through 5.We can make the array contain
six components and just ignore the zeroth position, or we can set up five com-
ponents and make sure that we add (or subtract) one from the product number
to get the proper slot. Let’s use the latter strategy.

// Declare and instantiate an array with five real components
double[] gourmetBurgers = new double[5];

The data for this example consist of (hamburger number, day’s sales) pairs.The data file
contains a week’s worth of such pairs.The first value is an integer between 1 and 5 that rep-
resents one of the gourmet hamburgers. The next value is the sales amount for that ham-
burger for the day. Each value appears on a line by itself.The following code segment reads
in a (hamburger number, sales figure) pair:

inFile = new BufferedReader(new FileReader("salesIn.dat"));
outFile = new PrintWriter(new FileWriter("salesOut.dat"));
int burgerNumber;
double salesAmount;
. . .
burgerNumber = Integer.parseInt(inFile.readLine());
salesAmount = Double.parseDouble(inFile.readLine());

To add the sales amount to the value in the appropriate slot in the array, we use
burgerNumber – 1 as the index into the array gourmetBurgers:

gourmetBurgers[burgerNumber – 1] =
salesAmount + gourmetBurgers[burgerNumber – 1];

If we put our input and processing into a loop, we can process the week’s worth of sales
figures. We can then write the totals out to a file with the following loop:

for (burgerNumber = 0; burgerNumber < gourmetBurgers.length; burgerNumber++)
{
outFile.print("Gourmet Burger # " + (burgerNumber + 1));
outFile.println(": " + gourmetBurgers[burgerNumber]);

}

occupants[0]
occupants[1]
occupants[2]

occupants[349]

occupants

Figure 10.7 occupants Array

10.4 E x a m p l e s o f D e c l a r i n g a n d P r o c e s s i n g A r r a y s | 495

Figure 10.8 shows the contents of the array
gourmetBurgers after the data shown have been
processed. Note that the data appear with several
values on each line, with commas between pairs,
to save space.

This example, where the index into the array
component is one less than the number assigned
to a type of hamburger, is a type of problem where
the index has semantic content.That is, the index
has meaning within the problem itself.

Character Counts

As a final example, let’s use an array to count the
number of times that each letter in the English al-
phabet is used in text, either uppercase or lower-
case. We declare an array of 26 integers, one for
each letter. Note that we do not need to set the
contents of the array slots to 0, because they are au-
tomatically initialized to 0 when we instantiate
the array.

int[] letterCount = new int[26];

letterCount[0] is the counter for the number of times we see 'A' or 'a', letterCount[1] is the
counter for the number of times we see 'B' or 'b', and letterCount[25] is the number of
times we see 'Z' or a 'z'. How do we convert a letter to its position in the array? We read a
character and see if it is a letter. If so, we convert it to uppercase using Character.toUpperCase.
The uppercase letter (cast to int) minus 'A' (also cast to int) gives us the letter’s place in the
array.The following code fragment accomplishes this conversion:

if ((letter >= 'A' && letter <= 'Z') || (letter >= 'a' && letter <= 'z'))
{
index = (int)Character.toUpperCase(letter) – (int)'A';

The following statement increments the counter for the character:

letterCount [index] = letterCount [index] + 1;
}

All of the pieces are tied together in the following application:

import java.io.*;
public class CountLetters
{

gourmetBurgers[0]
gourmetBurgers[1]
gourmetBurgers[2]
gourmetBurgers[3]
gourmetBurgers[4]

gourmetBurgers

246.41

271.04

350.13

640.69

177.42

Data 1 50.25, 2 44.75, 4 100.33, 3 85.12, 5 20.76
 3 75.20, 1 50.20, 4 95.12, 5 77.44, 2 44.75
 5 12.23, 4 125.12, 3 55.23, 2 70.12, 1 44.75
 1 55.66, 2 66.67, 3 77.78, 4 200.12, 5 44.75
 2 44.75, 3 56.80, 4 120.00, 5 11.12, 1 45.55

Figure 10.8 gourmetBurgers Array

496 | One-Dimensional Arrays

public static void main(String[] args) throws IOException
{
BufferedReader dataFile;
char letter;
int index;
int location;
String inString;
int[] letterCount = new int[26];
dataFile = new BufferedReader(new FileReader("Words.in"));

inString = dataFile.readLine(); // Priming read
while (inString != null)
{
for (location = 0; location < inString.length(); location++)
{
letter = inString.charAt(location);
if ((letter >= 'A' && letter <= 'Z') || (letter >= 'a' && letter <= 'z'))
{
// Convert letter to an index
index =(int)Character.toUpperCase(letter) – (int)'A';
// Increment counter
letterCount[index] = letterCount[index] + 1;

}

}
inString = dataFile.readLine(); // Get a line

}
// Write the character and the count on the screen
for (index = 0; index < letterCount.length; index++)
System.out.println("The number of " +
(char)(index + (int)'A') + "'s is " + letterCount[index]);

dataFile.close();
}

}

Here are the first and last paragraphs of the input, followed by the output:

10.5 A r r a y s o f O b j e c t s | 497

10.5 Arrays of Objects

Although arrays with atomic components are very common, many applications require a col-
lection of composite objects. For example, a business may need a list of parts records, and a
teacher may need a list of students in a class. Arrays are ideal for these applications. We
simply define an array whose components are references to objects.

Arrays of Strings

Let’s define an array of strings, each of which is a grocery item. Declaring and creating an ar-
ray of objects is exactly like declaring and creating an array where the components are
atomic types.

String[] groceryItems = new String[10]; // Array of references to strings

498 | One-Dimensional Arrays

Here groceryItems is an array of 10 strings.How many characters appear in each string? We don’t
know yet. The array of strings has been instantiated, but the string objects themselves have
not been created. In other words, groceryItems is an array of references to string objects, which
are set to null when the array is instantiated. We must instantiate the string objects sepa-
rately.The following code segment reads and stores references to 10 strings into groceryItems:

inFile = new BufferedReader(new FileReader("infile.dat"));
outFile = new PrintWriter(new FileWriter("outfile.dat"));
...
int index; // Index into groceryItems
String[] groceryItems = new String[10]; // Provides places for 10 references

// Read strings from file inFile and store references
for (index = 0; index < groceryItems.length; index++)
{
groceryItems[index] = inFile.readLine();

}

The readLine method is a value-returning method that instan-
tiates the string, stores values into it, and returns a reference
to it. That is, the reference to the string is returned and stored
into groceryItems. Figure 10.9 shows what the array looks like
with values in it.

An array name with no brackets is an array variable.An ar-
ray name with brackets is a component. We can manipulate
the component just like any other variable of that type or class.

Expression Class/Type

groceryItems Reference to an array

groceryItems[0] Reference to a string

groceryItems[0].charAt(0) A character

How would you read in grocery items if you know that there
are no more than 10, but you don’t know exactly how many?

You would need a while loop that reads in a grocery item and stores it into the first place. If
there were another item, it would be stored into the second place, and so on. As a conse-
quence, you must keep a counter of how many items you read in. The following code frag-
ment reads and stores grocery items until 10 have been read or the file is empty:

// Read and store strings from file inFile
int index = 0;
String anItem = inFile.readLine();
while (index < groceryItems.length && anItem != null)

groceryItems[0]
groceryItems[1]
groceryItems[2]
groceryItems[3]

groceryItems[9]

groceryItems

"cat food"

"butter"

"rice"

"chicken"

"bib lettuce"

Figure 10.9 groceryItems Array

10.5 A r r a y s o f O b j e c t s | 499

{
groceryItems[index] = anItem;
index++;
anItem = inFile.readLine();

};
System.out.println(index + " grocery items were read and stored.");

Look carefully at Figures 10.9 and 10.10. In Figure 10.9, every slot in the array is filled with
grocery items. In Figure 10.10, index items have been read in and stored. If index is equal to
10, then the two figures are the same.To process the items in Figure 10.10, you use a loop that
goes from 0 through index–1.

You first saw a reference to an array of strings in Chapter 2. In the class PrintName, the
following statement appears:

public static void main(String[] args) throws IOException

The parameter for the method main is an array of strings,
called args by convention. You can run Java applications
in ways that allow you to pass string arguments to main.
Although we do not use this feature in our applications,
we still have to list the parameter on the heading.

In the figures throughout this chapter,we have drawn
array variables with an arrow to the object structure to
which they refer. An array type is a reference type.When
we declare an array variable with the name groceryItems,
one location in memory is assigned to that name. When
we instantiate the array, the address of the place in mem-
ory where the actual structure begins is stored into the
location groceryItems. This address is called the base ad-

dress of the array.
If the component type is an atomic type, the values

are actually stored in the memory locations beginning
at the base address. If the component type is a reference
type, a reference to the first component is stored at the base address.We have used
the arrow in our drawings as a visual reminder that the reference variable con-
tains the address indicating where the actual object can be found.

Clearly, strings and arrays are related. You can visualize a string as an array
of characters. Conversely, you can visualize an array as a string of values. Because
of this similarity, the String class has methods that transform a string into an ar-
ray of char and an array of char (char[]) into a string. The method toCharArray in
the class String converts a string value into a char[].The method valueOf takes a char[] and
converts it into a string.

groceryItems[0]
groceryItems[1]
groceryItems[2]
groceryItems[3]

groceryItems[9]

groceryItems

"cat food"

"rice"

"chicken"

"bib lettuce"

"carrots"groceryItems[index–1]

Figure 10.10 Partially Filled Array

Base address The memory
address of the first element of
an array

500 | One-Dimensional Arrays

Arrays of User-Defined Objects

In the last example, the components of the array were strings. Now let’s look at an array of
user-defined objects. We have used a Name class in several Case Studies. The following code
declares and instantiates an array of elements of the class Name:

Name[] friends = new Name[10];

The following table shows the types involved and indicates how to access the various
components:

Expression Class/Type

friends Reference to an array

friends[0] Reference to a Name object

friends[0].knowFirst() Reference to a string

friends[0].knowLast() Reference to a string

friends[0].knowMiddle() Reference to a string

friends[0].knowFirst().charAt(1) A character

10.6 Arrays and Methods

The only observer method provided for arrays is component access, which has its own spe-
cial syntax: the array variable’s name, followed by an index enclosed in brackets.The index
specifies which component to access.

When we use an array as a field in a class, however, we may need to pass an array vari-
able as an argument to a method or pass a component of an array to a method. Recall that
a copy of each argument is sent to the method. Because an array, like a class, is a reference
type, the method receives the address indicating where the object is stored.

Suppose we define a public class method (say, in the class Accounting) that takes the ar-
ray as an argument and returns the sum of the components in the array:

public static double sumSales(double[] data)
{
double sum = 0.0;
for (int index = 0; index < data.length; index++)
sum = sum + data[index];

return sum;
}

The following code uses the method sumSales to sum the week’s gourmet hamburger sales:

outFile.print("This week's sales of gourmet hamburgers: ");
outFile.println(Accounting.sumSales(gourmetBurgers));

10.7 S p e c i a l K i n d s o f A r r a y P r o c e s s i n g | 501

What does sumSales receive as an argument? The base address of gourmetBurgers (the arrow
in Figure 10.8).

We must consider two cases when passing array components as arguments to a method:
(1) the component is of a primitive type or (2) the component is of a reference type. If the com-
ponent is of a primitive type, the method cannot change the value of its argument. If the com-
ponent is of a reference type, and the method changes its parameter, there are two
possibilities. Assigning a new value to the parameter causes it to refer to a different object
and doesn’t affect the argument. Changing the parameter with a transformer method has
the side effect of changing the argument and is considered poor programming style. Recall
our house analogy: Are you just looking at the house, or are you going inside?

10.7 Special Kinds of Array Processing

Two types of problems occur frequently that use arrays. One type of problem uses only part
of the defined array to store data. In the other, the index values have specific meaning within
the problem.

Partial (or Sub) Array Processing

The size of an array is the declared number of array components—the number of slots set aside
for the array object in memory. Java has an instance variable length associated with each array
object that contains this value. In many problems, however, we do not know the number of
data values, so we declare the array to be as big as it would ever need to be.As a consequence,
we may not fill all of the array components with values.To avoid processing slots into which we
have not stored valid data, we must keep track of how many components are actually filled.

As we put values into the array,we keep a count of how many components are filled.We then
use this count to process only those components that contain valid values.The remaining places
are not processed.For example, if there are 250 students in a class,an application to analyze test
grades would set aside 250 locations for the grades. However, some students may be absent on
the day of the test.We must therefore count the number of test grades and use that number,rather
than 250, to control the processing of the array.This number becomes part of the internal rep-
resentation of the class being defined. Figure 10.10 visualizes this type of processing.

Indexes with Semantic Content

In some problems, an array index has meaning beyond a simple position; that is, the index
has semantic content. An example is the gourmetBurgers array discussed earlier. This array
was indexed by the number of the type of hamburger minus one. That is, the sales for the
hamburger that the company called #1 occupied the 0 position in the array; hamburger #2
occupied position 1 in the array; and so on.

CASE STUDY
502

GRADING TRUE/FALSE TESTS

Problem Statement: Your history teacher gives true/false exams. Knowing that you are
studying computer science, she asks you to write an application that grades true/false
questions.The answer key to the exam is on the first line of data, followed by a line
with the student’s name and then a line with his or her answers.Your teacher gives you
the following example of the file to use as a guideline.

TFTFTFTFTTTFFFT
Joe Jones
TFTFTFTFTTTFFTT
Janet Jerome
TFTFTFTFTTTFFFF
Jeff Jubilee
TFTFTFTFTTTFFFT
...

As output, she wants the student’s name followed by the number of questions
answered correctly, written on a file with one student’s data per line.

Brainstorming: The relevant objects in the problem statement are students, exam
answers, and the key.The students each consist of a name.The exam answers are a se-
ries of characters (T’s and F’s).The key is another series of characters.

Filtering: Let’s look at the key object first. An exam is made up of questions, the answers
to which are either T or F.Therefore, the key is an ordered collection of T’s and F’s that
represents the correct answers to the questions.The student object contains a name
and is associated with a set of exam answers, which is a sequence of T’s and F’s.The de-
scription of the key and the exam answers are identical.Viewed in this light, a student
really isn’t an important object; it is a student’s answer sheet that is the object. An
answer sheet is made up of a name and a sequence of T’s and F’s. If we think of the an-
swer key as having the name “Answer Key,” then the answer key and a student’s answer
sheet are instances of the same class: an answer sheet. Finally, we need a driver or ap-
plication class that coordinates the interaction of the other classes.

input filenp f

output fileou pu fi

keyk y

exam answerxam answ r

students ud n

CASE STUDY 503

Scenarios: What are the responsibilities of the AnswerSheet class? The class must create
instances of itself, input a name and a sequence of T’s and F’s from a file, and compare
two AnswerSheet objects (the key and a student’s answer sheet) to find the number of
matching answers.There must also be a knowledge responsibility to return the name
on the answer sheet.There is no need for a knowledge responsibility to return the
sequence of T’s and F’s.

At this stage you should step back and see if anything is missing from the design.
You notice that the sample data provided by your teacher has 15 questions.The test
you took last week had 20 questions. Because the number of questions varies, the num-
ber of questions on the exam must be input to the constructor for the class AnswerSheet
to determine the number of T’s and F’s.

CRC Cards:

Class Name: AnswerSheet Superclass: Object Subclasses:

Responsibilities Collaborations

Create itself (numQuestions)

Input name and answers BufferedReader

Compare with another answer sheet

 return int

None

None

Know the name

 return String

None

input file

output file

answer sheet

application class

CASE STUDY
504

Data Representation: The exam answers are an ordered collection of T’s and F’s. An
array is the obvious choice for holding the T’s and F’s.The index of an individual answer
is the question number minus one. Now we are ready to design the algorithms for the
two classes.

Responsibility Algorithms for AnswerSheet: We have forgotten something. How do we
know how many questions were asked on this exam? We must know this information
to instantiate the objects of class AnswerSheet.The user could enter it from the keyboard
as an event, or the user could enter the number of questions on the file, on the line im-
mediately before the key. Because this application does not need the user to be present
to enter any other data, putting the number of questions on the data file is the better
choice.The responsibility for reading this value should be in the driver.

There is another problem: A student’s answer sheet contains a name that is printed
along with the number correct.The key doesn’t have a name to be read. We can have
two input methods, one that reads a name and the sequence of T’s and F’s and one that
reads just the T’s and F’s. Another alternative is to have the instructor supply “Answer
Key” for the name.This second alternative is simpler because it requires only one input
method. Here, then, is what the input file would look like.

15
Answer Key
TFTFTFTFTTTFFFT
Joe Jones
TFTFTFTFTTTFFTT
Janet Jerome
TFTFTFTFTTTFFFF
Jeff Jubilee
TFTFTFTFTTTFFFT
...

Answer Sheet (int numQuestions)

Create responses as an array of numQuestions characters

Class Name: GradeExams Superclass: Object Subclasses:

Responsibilities Collaborations

Prepare files for input

Prepare files for otput FilerWriter, PrintWriter

FileReader, BufferedReader

Get key AnswerSheet

Process exams

Close files

AnswerSheet

None

CASE STUDY 505

Because the name is only printed exactly as it was read in, we do not need to use the
class Name; we can just read the line and store it into a string field, name. We can read the
line containing the T’s and F’s into a string and type cast them to an array of char using
the String method toCharArray.

In a by-hand algorithm, we would hold the student answers next to the key and
compare them, position by position.The operational verb is “compare.”To grade a
student’s answer, the operation must compare its ordered collections of T’s and F’s with
the ordered collection of T’s and F’s of the key.The return value is the number of places
where the values match.

Responsibility Algorithms for GradeExams (the driver) The responsibilities for the driver
include the preparation of the files and reading in the number of questions, which are
concrete steps.The responsibility “Get Key” is concrete as well: We simply instantiate
an AnswerSheet object and apply “Input Name and Answers” to it.The work is in the
“Process Exams” responsibility.There must be a loop that applies “Input Name and
Answers” to an AnswerSheet object and tells it to compare itself to the key, returning
the number of correct answers.The name and the number of correct answers are then
written on the output file.The name “Input Name and Answers” is too long; let’s simply
call this method input.

Process exams

studentSheet = new AnswerSheet
while more exams

studentSheet.input(inFile)
numberCorrect = studentSheet.numOfMatches(key)
Write studentSheet.knowName() + “: number correct ”

+ numberCorrect

int numOfMatches(AnswerSheet answer)

Set numCorrect to 0
for counter going from 0 through key.length-1

if (key[counter] == answer[counter])
Increment numCorrect

return numCorrect

Know name

return name

Input name and answers (BufferedReader inFile)

Set name to inFile.readLine()
Set responses to inFile.readLine().toCharArray()

CASE STUDY
506

How do we know whether there are more exams? Reading is done within the input
method, so checking for the end of the data must be done there as well. If input of the
line containing the name returns null, then the line with the T’s and F’s should not be
read. How does the input method let the driver know when the end of file has been
reached? We must add an additional Boolean method to the class AnswerSheet that
returns true if there is more data, and false otherwise. Here is the revised algorithm for
the input method and the algorithm for the moreData method.

//**
// This class provides a name object and an array of T’s and F’s
// representing answers on a true/false test.
//**

package grader;
import java.io.*;
public class AnswerSheet
{
private char[] responses; // Contains T’s and F’s
private int numItems; // Number of questions
private String name;
public AnswerSheet(int numQuestions) // Constructor
{
responses = new char[numQuestions];
numItems = numQuestions;

}
public void input(BufferedReader inFile) throws IOException
// Name and sequence of T’s and F’s are read
{
name = inFile.readLine();
if (name != null)

responses = inFile.readLine().toCharArray();
}

Boolean moreData()

return name != null

input (BufferedReader inFile) Revised

Set name to inFile.readLine()
if (name != null)
Set responses to inFile.readLine().toCharArray()

CASE STUDY 507

public int numOfMatches(AnswerSheet key)
// Return the number of matches between key and student
// answer
{
int numCorrect = 0;
for (int counter = 0; counter < responses.length; counter++)
if (responses[counter] == key.responses[counter])
numCorrect++;

return numCorrect;
}
public String knowName()
// Knowledge responsibility
{
return name;

}
public boolean moreData()
{
return name != null;

}
}

//**
// This class is a driver that creates a key and a student
// answer sheet. The answer sheet is compared with the key
// and the number correct is printed following the name.
//**

import grader.*;
import java.io.*;
public class GradeExams
{

public static void main(String[] args) throws IOException
{
BufferedReader inFile;
PrintWriter outFile;

inFile = new BufferedReader(new FileReader(“Exams”));
outFile = new PrintWriter(new FileWriter(“Results”));

AnswerSheet key;
AnswerSheet studentSheet;
int numItems;

numItems = Integer.parseInt(inFile.readLine());

CASE STUDY
508

// Instantiate the key and student sheet objects
key = new AnswerSheet(numItems);
studentSheet = new AnswerSheet(numItems);

// Read values into the key and student answer sheet objects
key.input(inFile);
studentSheet.input(inFile);

while (studentSheet.moreData())
// Compare student answer sheets to the key and print
// results until end of file
{
outFile.println(studentSheet.knowName() + “: number correct “ +
studentSheet.numOfMatches(key));

studentSheet.input(inFile);
}

inFile.close();
outFile.close();

}
}

Testing: This application has one class and a driver. In the past we have used the word
“driver” to refer to a simple application class that is used to test a method. Here we are
using it in its other context: the main class in an object-oriented design. The driver in
this Case Study is class GradeExams, the class that contains the main method. Actually,
these two definitions are not dissimilar. In both cases, the driver starts the process. In a
regular application, the driver implements the top-level algorithm, which might start
any process. In a test driver, the process is always the same because its role is strictly
to test one or more methods.

Does this mean that we need to design a test driver for this application and import
class GradeExams? No, quite the contrary. We can let GradeExams test itself by
carefully choosing our data sets. That is, we can use a black-box testing strategy.

There are three kinds of input to the application: an integer that specifies the num-
ber of questions, a sequence of T’s and F’s that represent the key and a student’s
answers, and a string that represents a student’s name. For the moment, let’s assume
that the data are correct on the file, and instead concentrate on the main processing:
the comparison of the key and a student exam. The following cases come immediately
to mind.

1. the key and the student responses match completely (all are correct)

2. the key and the student responses do not match at all (all are wrong)

3. the key and the student responses partially match (some are correct)

CASE STUDY 509

Depending on the number of questions, there could be thousands of cases in the third
category. How many do we have to try to convince ourselves that the application is cor-
rect? The end cases here would be that they agree in the first and last positions, they
do not agree in the first and last position, they agree somewhere in the middle, and
they disagree somewhere in the middle.

As the algorithm is not dependent on the number of questions, let’s use 5 questions
for our test cases.

Provided our input is correct, if the implemented test plan produces the expected
results, we should be fairly confident that the application is correct. Provided our input is
correct? We have not built any error checking into these classes. This omission is a seri-
ous flaw in our design. The Case Study Follow-Up questions at the end of this chapter
ask you to make these classes more robust by adding error checking. The results of this
test plan are shown here.

Test # Reason for Test Input Expected Output

1

2

3

4

Initial input

All correct

(Also tests same in
first and last
position)

All wrong

(also tests different in
first and last
position)

Partially correct

Test ending condition

5
Answer Key

TTTTT

Jones

TTTTT

Janet Jerome

FFFFF

Jeff Jubilee

TFTFT

eof on data
file

file

Joe Jones:

number correct 5

Janet Jerome:

number correct 0

Jeff Jubilee:

number correct 3

application ends

510 | One-Dimensional Arrays

10.8 Testing and Debugging

The most common error in processing arrays is an out-of-bounds array index.That is, the
application attempts to access a component by using an index that is either less than zero
or greater than the array size minus one. For example, given the declarations

String[] line = new String[100];
int counter;

the following for statement would print the 100 elements of the line array and then try
to print a one hundred first value—the value that resides in memory immediately be-
yond the end of the array:

for (counter = 0; counter <= line.length; counter++)
outfile.println(line[counter]);

This error is easy to detect, because your application will halt with an
ArrayIndexOutOfBoundsException.The loop test should be counter < line.length.You won’t al-
ways use a simple for statement when accessing arrays,however.Suppose we read data into
the line array in another part of the application. Let’s use a while statement that reads to the
end of the file:

counter = 0;
inString = infile.readLine();
while (inString != null)
{
line[counter] = inString;
counter++;
inString = infile.readLine();

}

This code seems reasonable enough, but what if the input file has more than 100 lines?
After the one-hundredth line is read and stored into the array, the loop executes one more
time and the ArrayIndexOutOfBoundsException is thrown, causing the application to crash.

The moral is this: When processing arrays, pay special attention to the design of loop
termination conditions.Always ask yourself if the loop could possibly keep running after
the last array component has been processed.

Whenever an array index goes out of bounds, your first suspicion should be a loop that
fails to terminate properly.The second thing to check for is array access involving an in-
dex that is based on an input value or a calculation.When an array index is input as data,
a data validation check is an absolute necessity.

As we have demonstrated in many examples in the last several chapters, it is possible
to combine data structures in various ways: classes whose components are objects, classes

10.8 T e s t i n g a n d D e b u g g i n g | 511

whose components are arrays, arrays whose components are objects, arrays whose com-
ponents are strings, and so forth.When we use arrays of objects, confusion can arise about
precisely where to place the operators for array element selection ([]) and class field se-
lection (.).

To summarize the correct placement of these operators, let’s use a StudentRec class
where the data fields are defined as follows:

class StudentRec
{
String stuName; // Student's name
float gpa; // Student's grade point average
int[] examScores = new int[4]; // There are four exams
char courseGrade; // A, B, C, D, or F
...

}

If we declare a variable of type StudentRec and an array of type StudentRec

StudentRec student = new StudentRec();
StudentRec[] members = new StudentRec[100];

the following chart shows how to access the fields of student. Recall that the dot opera-
tor is a binary (two-operand) operator; its left operand is a class variable or class name,
and its right operand is a field.The [] operator is a unary (one-operand) operator; it comes
immediately after an expression denoting an array:

Expression Item Denoted Meaning

student

student.stuName

student.gpa

student.examScores

student.examScores[0]

student.examScores[4]

student.courseGrade

members[0]

members[0].stuName

members[0].gpa

members[0].examScores

members[0].examScores[1]

A StudentRec object

A string

A real number

An array of int

An integer

Crash!! Index out of range

A character

A StudentRec object

A string

A real number

An array of int

An integer

A single student

A name

A GPA

The first exam score

The first student

The name of the first student

The GPA of the first student

The exam scores for the first
student

The second score for the first
student

512 | One-Dimensional Arrays

Testing and Debugging Hints

1. When an individual component of a one-dimensional array is accessed, the
index must be within the range 0 through the array size minus 1. Attempting
to use an index value outside this range will cause your application to crash.

2. The individual components of an array are themselves variables of the com-
ponent type. When values are stored into an array, they should either be of
the component type or be explicitly converted to the component type; other-
wise, implicit type conversion occurs.

3. As with all of Java’s composite data types, declaring an array variable and in-
stantiating the array object are separate steps. We omit the size of a one-
dimensional array in its declaration but must specify it when the array object
is instantiated.

4. When an array is an argument, the reference to the array object is passed to
the method.The method cannot change the reference, but it can change the
elements in the array.

5. An individual array component can be passed as an argument. If the compo-
nent is of a reference type, the method can change the referenced object if it
is a mutable object. If the component is of an atomic type, the method cannot
change it.

6. Although an object of a reference type passed as an argument can be changed
if the type is mutable, it is poor programming style to do so.

7. We use subarray processing to process array components when the actual
number of data items is not known until the application begins executing.
The length field of the array object contains the number of slots in the array;
the number of data values stored into the array may differ.

8. When methods perform subarray processing on a one-dimensional array, the
array name and the number of data items actually stored in the array should
be encapsulated together into a class.

9. When a one-dimensional array is instantiated without an initializer list, each
of the values is automatically initialized to its default value.

10. A one-dimensional array is an object, so a reference to it may be set to null.

11. When processing the components in a one-dimensional array, we use a loop
that begins at zero and stops when the counter is equal to the length field as-
sociated with the array object.

513

Summary

The one-dimensional array is a homogeneous data structure that gives a name to a
sequential group of like components. Each component is accessed by its relative po-
sition within the group (rather than by its name, as in a class), and each component
is a variable of the component type.To access a particular component, we give the
name of the array and an index that specifies which component of the group we
want.The index can be an expression of any integral type except long, as long as it
evaluates to an integer ranging from 0 through the array size minus 1. Array compo-
nents can be accessed in random order directly, or they can be accessed sequentially
by stepping through the index values one at a time.

Quick Check

1. Declare and instantiate a one-dimensional array named quizAnswer that
contains 12 components indexed by the integers 0 through 11.The component
type is boolean. (pp. 486–488)

2. Given the declarations

final int SIZE = 30;

char[] firstName = new char[SIZE];

a. Write an assignment statement that stores ‘A’ into the first component of
the array firstName. (pp. 488–490)

b. Write an output statement that prints the value of the fourteenth
component of the array firstName. (pp. 488–490)

c. Write a for statement that fills the array firstName with blanks. (p. 491)

3. Declare and instantiate a five-element one-dimensional int array named
oddNums, using an initializer list that contains the first five odd integers, starting
with 1. (p. 488)

4. Give the heading for a public void method named someFunc, where someFunc has
a single parameter: a one-dimensional float array called values. (pp. 500–501)

5. Given the declaration

studentRec[] gradeBook = new studentRec[150];

where StudentRec is the class defined on page 511 in this chapter, do the
following:

a. Write an assignment statement that records the fact that the tenth student
has a grade point average of 3.25. (p. 500)

b. Write an assignment statement that records the fact that the fourth student
scored 78 on the third exam. (p. 500)

514

6. Given the declarations in Question 2 and the following code fragment, which reads
characters into the array firstName until a blank is encountered, write a for
statement that prints out the portion of the array that is filled with input data. (p.
000)

n = 0;

line = infile.readLine();

letter = line.charAt(n);

while (letter != ' ')

{

firstName[n] = letter;

n++;

letter = line.charAt(n);

}

Answers

1. boolean[] quizAnswer = new boolean[12];
2. a. firstName[0] = 'A'; b.outFile.println(firstName[13]);

c. for (int index = 0; index < firstName.length; index++)
firstName[index] = ' ';

3. int[] oddNums = {1, 3, 5, 7, 9};
4. public void someFunc(float[] values)
5. a. gradeBook[9].gpa = 3.25; b. gradeBook[3].examScores[2] = 78;
6. for (int index = 0; index < n; index++)

outFile.print(firstName[index]);

Exam Preparation Exercises

1. Every component in an array must have the same type, and the number of
components is fixed at creation time. (True or False?)

2. The components of an array must be of a primitive type. (True or False?)

3. Declare and instantiate one-dimensional arrays according to the following de-
scriptions.

a. A 24-element float array

b. A 500-element int array

c. A 50-element double-precision floating-point array

d. A 10-element char array

4. Write a code fragment to perform the following tasks:

a. Declare a constant named CLASS_SIZE representing the number of

515

students in a class.

b. Declare a one-dimensional array quizAvg whose components will contain
floating-point quiz score averages.

c. Instantiate the array with size CLASS_SIZE.

5. Write a code fragment to do the following tasks:

a. Declare a one-dimensional int array named birdSightings.

b. Instantiate the array with 20 components.

6. Given the declarations

final int SIZE = 100;

int[] count = new int[SIZE];

write code fragments to perform the following tasks:

a. Set count to all zeros.

b. Read values into the array.

c. Sum the values in the array.

7. What is the output of the following code fragment? The input data for the code
are given below it.

int[] a = new int[100];

int[] b = new int[100];

int j;

int m;

int sumA = 0;

int sumB = 0;

int sumDiff = 0;

m = Integer.parseInt(inFile.readLine());

for (j = 0; j < m; j++)

{

a[j] = Integer.parseInt(inFile.readLine());

b[j] = Integer.parseInt(inFile.readLine());

sumA = sumA + a[j];

sumB = sumB + b[j];

sumDiff = sumDiff + (a[j] – b[j]);

}

516

for (j = m – 1; j >= 0; j--)

outFile.println(a[j] + " " + b[j] + " " + (a[j] – b[j]));

outFile.println();

outFile.println(sumA + " " + sumB + " " + sumDiff);

Data

5
11
15
19
14
4
2
17
6
1
3

8. A person wrote the following code fragment, intending to print 10 20 30 40:

int[] arr = {10, 20, 30, 40};

int index;

for (index = 1; index <= 4; index++)

outFile.println(" " + arr[index]);

Instead, the application halted with an exception. Explain the reason for this
output.

9. Given the declarations

int[] sample = new int[8];

int i;

int k;

show the contents of the array sample after the following code segment
executes. Use a question mark to indicate any undefined values in the array.

for (k = 0; k < 8; k++)

sample[k] = 10 – k;

10. Using the declarations and array contents of Exercise 9, show the contents of
the array sample after the following code segment executes.

for (i = 0; i < 8; i++)

if (i <= 3)

sample[i] = 1;

else

sample[i] = –1;

517

11. Using the declarations and array contents of Exercise 9 and the new values
stored in Exercise 10, show the contents of the array sample after the following
code segment executes.

for (k = 0; k < 8; k++)

if (k % 2 == 0)

sample[k] = k;

else

sample[k] = k + 100;

12. What are the two basic differences between a class and an array?

13. If an array is passed as an argument, can the method change the array?

14. For each of the following descriptions of data, determine which general type of
data structure (array of primitive values, class, array of class objects, class con-
taining class objects) is appropriate.

a. A payroll entry with a name, address, and pay rate

b. A person’s address

c. An inventory entry for a part

d. A list of addresses

e. A list of hourly temperatures

f. A list of passengers on an airliner, including names, addresses, fare classes,
and seat assignments

g. A departmental telephone directory with last name and extension number

15. What happens in Java if you try to access an element that is outside the extent
of the array?

16. To what are the array components initialized when you instantiate an array
using new?

17. To what are the array components initialized when you instantiate an array
using an initializer list?

Programming Warm-Up Exercises

Use the following declarations in Exercises 1–7.You may declare any other variables
that you need.

public class Grades

{

final int NUM_STUDENTS = 100; // Number of students

518

boolean[] failing = new boolean[NUM_STUDENTS];

boolean[] passing = new boolean[NUM_STUDENTS];

int[] score = new int[NUM_STUDENTS];

}

1. Write a Java instance method that initializes all components of failing to
false.

2. Write a Java instance method that sets the components of failing to true
wherever the corresponding value in score is less than 60.

3. Write a Java instance method that sets the components of passing to true wher-
ever the corresponding value in score is greater than or equal to 60.

4. Write a Java value-returning instance method passTally that reports how many
components in passing are true.

5. Write a Java value-returning instance method error that returns true if any cor-
responding components in passing and failing are the same.

6. Write a Java value-returning instance method that takes an integer grade as a
parameter and that reports how many values in score are greater than or equal
to grade.

7. Write a Java instance method that reverses the order of the components in
score; that is, score[0] goes into score[score.length – 1], score[1] goes into
score[score.length – 2], and so on.

8. Write a code segment to read in a set of part numbers and associated unit
costs, separated by blanks. Use an array of class objects with two members,
number and cost, to represent each pair of input values. Assume the end-of-file
condition terminates the input.

Programming Problems

1. The local baseball team is computerizing its records.The team has 20 players,
identified by the numbers 1 through 20.Their batting records are coded in a file.
Each line in the file contains four numbers: the player’s identification number and
the number of hits, walks, and outs he or she made in a particular game. Here is a
sample:

3 2 1 1

This example indicates that during a game, player number 3 was at bat four
times and made two hits, one walk, and one out. For each player, there are sev-
eral lines in the file.To compute each player’s batting average, one adds the
player’s total number of hits and divides by the total number of times at bat. A

519

walk does not count as either a hit or an at-bat when the batting average is be-
ing calculated.

Design and implement an application that prints a table showing each
player’s identification number, batting average, and number of walks. (Be care-
ful: The players’ identification numbers are 1 through 20, but Java array indexes
start at 0.)

2. Design, implement, and test a class that calculates the mean and standard de-
viation of integers stored in a file.The output should be of type float and
should be properly labeled.The formula for calculating the mean of a series of
integers is to add all the numbers, then divide by the number of integers.
Expressed in mathematical terms, the mean X� of N numbers X1, X2, . . . XN is

To calculate the standard deviation of a series of integers, subtract the mean
from each integer (you may get a negative number) and square the result, add
the squared differences, divide by the number of integers minus 1, then take
the square root of the result. Expressed in mathematical terms, the standard
deviation S is

The methods of the class that access the input data should take a file as a
parameter.

3. A local bank is gearing up for a big advertising campaign and would like to see
how long its customers are waiting for service at its drive-up windows. Several
employees have been asked to keep accurate records for the 24-hour drive-up
service.The collected information, which is read from a file, consists of the
time the customer arrived in hours, minutes, and seconds; the time the
customer actually was served; and the teller’s ID number. Design and
implement a class with the following responsibilities:

a. Reads in the wait data.

b. Computes the wait time in seconds.

c. Calculates the mean, standard deviation (defined in Programming Problem
2), and range.

d. Prints a single-page summary showing the values calculated in part (c).

S

X X

N

i
i

N

=

−()
−

=
∑ 2

1
1

X

X

N

i
i

N

= =
∑

1

520

Input

The first data line contains a title.

The remaining lines each contain a teller ID, an arrival time, and a service time.
The times are broken up into integer hours, minutes, and seconds according to a
24-hour clock.

Processing

Calculate the mean and the standard deviation.

Locate the shortest wait time and the longest wait time for any number of
records up to 100.

Output

The input data (echo print).

The title.

The following values, all properly labeled: number of records, mean, standard
deviation, and range (minimum and maximum).

4. Your history professor has so many students in her class that she has trouble
determining how well the class does on exams. She has discovered that you are
a computer whiz and has asked you to write an application to perform some
simple statistical analyses on exam scores.Your application must work for any
class size up to 100.

Write and test a computer application that does the following:

a. Reads the test grades from the file inData.

b. Calculates the class mean, standard deviation (defined in Programming
Problem 2), and percentage of the test scores falling in the ranges < 10,
10–19, 20–29, 30–39, . . . , 80–89, and ≥ 90.

c. Prints a summary showing the mean, the standard deviation, and a
histogram of the percentage distribution of test scores.

Input

The first data line contains the number of exams to be analyzed and a title for
the report.

The remaining lines have 10 test scores on each line until the last line, and 1–10
scores on the last line.The scores are all integers.

Output

The input data as they are read.

A report consisting of the title that was read from the data, the number of
scores, the mean, the standard deviation (all clearly labeled), and the
histogram.

5. Write an application that, within an event loop, reads an apartment number
and the number of occupants in the apartment.The apartment number serves
as an index into an array of apartments.The components in the array
represent the number of people who live in the apartment. Use the data struc-
ture described in this chapter. Use window input, and when the user presses
the Quit button print the number of people in the building, the average number
of people per apartment, the number of apartments with above-average occu-
pancy, and the number with below-average occupancy.

Case Study Follow-Up

1. The exam-grading application contains no error checking.

a. What happens if a letter other than a T or F is entered in the key?

b. What happens if a letter other than a T or F is entered for a student?

c. It is easy to include a check that each input value is a T or F, but what should
the application do if an error occurs?

2. Redesign and rewrite the exam-grading application to incorporate error check-
ing based on the answers in Exercise 1. Use an exception class.

3. Using the solution of reading the sequence of T’s and F’s as a string means that
the user doesn’t really have to enter the number of questions. Why? Because
the array created from the string also has a length field. Rewrite this
application so as to take advantage of this information.

521

Knowledge Goals
• To understand the list abstraction and basic list operations

• To know how to use a key to establish the order of a sorted list

• To recognize the difference between an array and a list

• To understand how to use an array to represent a list

• To understand the role of abstract classes

• To understand the principle of “divide and conquer” as expressed in the
binary search algorithm

• To understand the role of the Comparable interface

Skill Goals
To be able to:

• Insert an item into a list

• Delete an item from a list

• Search for an item in a list

• Define a class that extends an abstract class

• Sort the items in a list into ascending or descending order

• Build a list in sorted order

• Search for an item in a sorted list using a linear search

• Search for an item using a binary search

• Use Java’s Comparable interface

Array-Based Lists

1979
Cellular phone
systems are
developed and
tested in Tokyo and
Chicago

1980
IBM chooses to use
PC-DOS, an
operating system
created by the little-
known company
Microsoft, for its
new PC

1980
Jean Ichbiah is
instrumental in the
development of the
programming
language Ada,
released on
December 10, 1980,
the anniversary of
Ada Lovelace’s
birthday

1980
Based on his
program Vulcan,
Wayne Ratliff
develops dBase II,
the original PC
database program

1981
IBM creates a PC
and does not patent
the architecture,
leaving the door
open for competition

1982
Columbia Data
Products develops
its own PC, modeled
after IBM’s

11
C H A P T E R

the array, a structured reference type that holds
a collection of components of the same type or class.Typically, a one-di-
mensional array holds a list of items.We all know intuitively what a “list”
is; in our everyday lives we use lists all the time—grocery lists, lists of
things to do, lists of addresses, lists of party guests. In computer appli-
cations, lists are very useful and popular ways to organize the data. In this
chapter, we examine algorithms that build and manipulate a list imple-
mented using a one-dimensional array to hold the items.

Chapter 10 introduced

1982
AutoCAD, a
computer-assisted
design software
package, is released
by Autodesk

1982
John Warnock and
Charles Geschke
found Adobe
Systems Inc., and
develop software to
improve the relation-
ship between the PC
and the printer

1982
Time magazine
selects the computer
as its “Man of the
Year” signifying the
incredible growing
impact of computer
technology on
society

1982
Commercial e-mail
service is up and
running in 25 cities

1983
Lotus 1-2-3, one of
the most important
early applications
for the IBM PC,
integrates graphics
with the
spreadsheet, like
VisiCalc did for the
Apple II.

1983
DARPA (Defense
Advanced Research
Projects Agency)
makes TCP/IP the
primary Internet
protocol, setting the
framework for a
globally connected
network

524 | Array-Based Lists

1At the implementation level, a relationship also exists between the elements, but the physical rela-
tionship may not be the same as the logical one.

11.1 Lists

From a logical point of view, a list is a homogeneous collection of elements, with a linear re-

lationship between elements. Here linear means that, at the logical level, every element in
the list except the first one has a unique predecessor, and every element except
the last one has a unique successor.1 The number of items in the list, which we call
the length of the list, is a property of a list.That is, every list has a length.

Lists can be unsorted—their elements may be placed into the list in no partic-
ular order—or they can be sorted in a variety of ways. For instance, a list of num-
bers can be sorted by value, a list of strings can be sorted alphabetically, and a list
of addresses could be sorted by ZIP code. When the elements in a sorted list are
of composite types, one of the members of the structure, called the key member,
determines their logical (and often physical) order. For example, a list of students
on a class roll can be sorted alphabetically by name or numerically by student
identification number. In the first case, the name is the key; in the second case,
the identification number is the key. (See Figure 11.1.)

If a list cannot contain items with duplicate keys, we say that it has unique keys.
(See Figure 11.2.) This chapter deals with both unsorted lists and lists of elements
with unique keys, sorted from smallest to largest key value.The items on the list
can be of any type, atomic or composite. In the following discussion, “item,” “ele-
ment,” and “component” are synonyms; they refer to what is stored in the list.

Ziggle001

Jones204

Applebee317

Worton801

Gomez901

Sorted by ID#

Applebee317

Gomez901

Jones204

Worton801

Ziggle001

Sorted by name

rollroll

Figure 11.1 List Sorted by Two Different Keys

Linear relationship Every ele-
ment except the first has a
unique predecessor, and every
element except the last has a
unique successor

Length The number of items
in a list; it can vary over time

Unsorted list A list in which
data items are placed in no par-
ticular order with respect to
their content; the only relation-
ships between data elements
consist of the list predecessor
and successor relationships

Sorted list A list whose prede-
cessor and successor
relationships are determined by
the content of the keys of the
items in the list; a semantic rela-
tionship exists among the keys
of the items in the list

Key A member of a class
whose value is used to
determine the logical and/or
physical order of the items in a
list

11.2 L i s t C l a s s | 525

Figure 11.2 List with Duplicate Keys and List with Unique Keys

11.2 List Class

In this section, we will design and implement a general-purpose class that rep-
resents a list of items. Let’s think in terms of a to-do list. Before we begin to brain-
storm, however, we must ask an important question: For whom are we designing
the class? We may be designing it for ourselves to keep in our library of classes.
We may be designing it for others to use in a team project. When we create a
class, the software that uses it is called the client of the class. In our discussion,
we will use the terms client and user interchangeably, as we sometimes think of
them as referring to the people writing the software that uses the class, rather than
the software itself.

Brainstorming the List Class

Because we are designing a general-purpose class, our brainstorming must be more specu-
lative. We don’t have a specific problem to solve; we have to think in terms of what we cur-
rently do with our to-do lists as well as what other things we might like to do if we could.
Ideally, we will start with an empty list each morning and add things to it.As we accomplish
a task on the list, we will cross it off.We will check whether an item is already on the list.We
will check whether we can add one more item to the list. We will check whether the list is
empty (we wish!). We will go through the list one item at a time.

Let’s translate these observations into responsibilities for the list, in the form of a CRC
card. Notice that constructors are obvious because they are prefaced by “create,” and ob-
servers have a “returns” shown. Likewise, the choice of identifier for transformers gives their
type away: insert and delete. Note that this is our first experience with an iterator.

Client Software that declares
and manipulates objects of a
particular class

526 | Array-Based Lists

CRC Card

Although we have designed our CRC card for a to-do list, the responsibilities outlined remain
valid for any kind of list. For example, if we are creating a list of people to invite to a wedding,
all of these operations are valid. We add names to the list, check whether a name is already
on the list, count the names on the list, check whether the list is full (that is, the length is equal
to the number of invitations bought), delete names, and review the names one at a time.

To make the rest of the discussion more concrete, let’s first assume that the items on the
list are strings. Later, we will see how the items can be made even more general.

Refining the Responsibilities

Let’s go back through the responsibilities, refining them, and converting them into method
headings. Because we are designing a general-purpose class, we do not have any specific sce-
narios that we can use. Instead,we will consider a variety of simplified scenarios that exemplify
how we believe the class may be employed. Because the class is intended for widespread use,
we should pay special attention to the documentation right from the design stage.

The observers, testing for full and empty, returning the number of items, and checking
whether an item is in the list, need no further discussion. Here are their method headings:

Class Name: List Superclass: Object Subclasses:

Responsibilities Collaborations

Create itself (maxItems) None

Is list full? None

 return boolean

Is list empty? None

 return boolean

Know length

Delete from list (item)

None

 return int

None

Set up for iteration None

Know next item None

 return boolean

Insert into list (item) None

Is an item in the list? None

11.2 L i s t C l a s s | 527

public boolean isFull()
// Returns true if no room to add a component; false otherwise

public boolean isEmpty()
// Returns true if no components in the list; false otherwise

public int length()
// Returns the number of components in the list

public boolean isThere(String item)
// Returns true if item is in the list; false otherwise

In designing the transformers, we must make some decisions. For example, do we allow
duplicates in our list? This choice has implications for deleting items as well as inserting
items. If we allow duplicates, what do we mean by “removing an item”? Do we delete just one
copy or all of them? Because this chapter focuses on algorithms, for now we just make a de-
cision and design our algorithms to fit. We will examine the effects of other choices in the
exercises.

Let’s allow only one copy of an item in the list. This decision means that deleting an
item just removes one copy. However, do we assume that the item to be removed is in the
list? Is it an error if it is not? Or does the delete operation mean “delete, if there”? Let’s use
the last meaning.

We now incorporate these decisions into the documentation for the method headings.

public void insert(String item)
// Adds item to the list
// Assumption: item is not already in the list

public void delete(String item)
// item is removed from the list if present

The iterator allows the user to see each item in the list one at a time. Let’s call the method
that implements the “Know next item” responsibility getNextItem. The list must keep track
of the next item to return when the iterator is called. It does so with a state variable that
records the position of the next item to be returned.The constructor initializes this position
to 0, and it is incremented in getNextItem.The client can use the length of the list to control
a loop, asking to see each item in turn. As a precaution, we should reset the current position
after accessing the last item. In an actual application, we might need a transformer iterator
that goes through the list applying an operation to each item; for our general discussion
here, we simply provide an observer iterator.

What happens if a user inserts or deletes an item in the middle of an iteration? Nothing
good, you can be sure! Adding and deleting items changes the length of the list, invalidat-
ing the termination condition of our iteration-counting loop. Depending on whether an ad-
dition or deletion occurs before or after the iteration point, our iteration loop could end up
skipping or repeating items.

528 | Array-Based Lists

We have several choices in how we handle this possibly dangerous situation.The list can
throw an exception, reset the current position when inserting or deleting, or disallow trans-
former operations while an iteration is taking place. We choose the latter option here by
way of an assumption in the documentation. In case the user wants to restart an iteration,
let’s provide a resetList method that reinitializes the current position.

public void resetList()
// The current position is reset

public String getNextItem()
// Assumption: No transformers are called during the iteration

Before moving on to the implementation phase, let’s consider how we might use
getNextItem. Suppose the client code wants to print out the items in the list. The client ap-
plication cannot directly access the list items, but it can use getNextItem to iterate through
the list.The following code fragment prints the string values in list:

String next;
for (int index = 1; index <= list.length(); index++)
{
next = list.getNextItem(); // Get an item
System.out.println(next + " is still in the list");

}

Now is also the time to review the CRC card and see whether we need to add any re-
sponsibilities. For example, do we need to provide an equals test? If we want to perform a deep
comparison of two lists, we must provide equals; however, comparing lists is not a particu-
larly useful operation, and we can provide the client with the tools needed to write a com-
parison operation if necessary. In fact, here is the algorithm to compare two lists. It determines
whether the lengths match; if they do, it iterates through the lists checking whether corre-
sponding items are the same.

isDuplicate

if lengths are not the same
return false

else
Set counter to 1
Set same to true
Set limit to length of first list
while they are still the same AND counter is less than or equal to limit
Set next1 to next item in the first list
Set next2 to next item in the second list
Set same to result of seeing if next1.compareTo(next2) is 0
Increment counter

return same

11.2 L i s t C l a s s | 529

We can implement this algorithm without having to know anything about the list. We
just use the instance methods supplied in the interface.

public boolean isDuplicate(List list1, List list2)
// Returns true if the lists are identical
{
if (list1.length() != list2.length())
// Number of items is not the same
return false;

else
{
String next1; // An item from list1
String next2; // An item from list2
int counter = 1; // Loop control variable
boolean same = true; // True if lists are equal
int limit = list1.length(); // Number of items in list
list1.resetList(); // Set up for iteration
list2.resetList();
while (same && counter <= limit)
{
next1 = list1.getNextItem(); // Get an item from list1
next2 = list2.getNextItem(); // Get an item from list2
same = next1.compareTo(next2) == 0;
counter++;

}
}
return same;

}

This method was included in the following driver, which was run twice with two different
versions of list1.dat.We can write this driver without knowing anything about the list’s im-
plementation. All we have to do is import the package list, where the class List is stored.

import list.*;
import java.io.*;
public class ListDriver
{
public static void main(String[] args) throws IOException
{
BufferedReader inFile;
BufferedReader inFile2;
inFile = new BufferedReader(new FileReader("list1.dat"));
inFile2 = new BufferedReader(new FileReader("list2.dat"));

// Instantiate the lists
List list1 = new List(20);

530 | Array-Based Lists

List list2 = new List(20);
String line; // Used for reading input

// Read values and insert into lists
line = inFile.readLine();
while (line != null)
{
list1.insert(line);
line = inFile.readLine();

}

line = inFile2.readLine();
while (line != null)
{
list2.insert(line);
line = inFile2.readLine();

}

if (isDuplicate(list1, list2))
System.out.println("Lists are the same.");

else
System.out.println("Lists are not the same.");

inFile.close();
inFile2.close();

}
public boolean isDuplicate(List list1, List list2)
// Returns true if the lists are identical
{ ... }

}

11.2 L i s t C l a s s | 531

Result from the first run:

Lists are the same.

Result from the second run:

Lists are not the same.

Internal Data Representation

How will we represent the items in the list? An array of strings is the obvious answer. What
other data fields do we need? We have to keep track of the number of items in our list, and
we need a state variable that tells us where we are in the list during an iteration.

public class List
{
// Data fields
protected String[] listItems; // Array to hold list items
protected int numItems; // Number of items in the list
protected int currentPos; // State variable for iteration
...

}

In Chapter 10, we introduced the concept of subarray processing.At that time, we pointed
out that every Java array object has a final field called length that contains the number of com-
ponents defined for the array object.The literature for lists uses the identifier “length” to re-
fer to the number of items that have been put into the list. Faced with this ambiguity in
terminology, we still talk about the length of the list, but we refer to the field that contains
the number of items in the list as numItems.

It is very important to understand the distinction made between the array object that con-
tains the list items and the list itself.The array object is listItems[0]..listItems[listItems.length
– 1]; the items in the list are listItems[0]..listItems[numItems – 1]. Figure 11.3 illustrates this
distinction. In the figure,six items have been stored into the list,which was created with the fol-
lowing statement:

List myList = new List(10);

For simplicity, the figure shows the list items as integers rather than strings.

Responsibility Algorithms for Class List
As Figure 11.3 shows, the list exists in the array elements listItems[0] through
listItems[numItems – 1]. To create an empty list, it is sufficient to set the numItems field to 0.
We do not need to store any special values into the data array to make the list empty, because
the list algorithms process only those values stored in listItems[0] through listItems[numItems
– 1]. We will explain why currentPos is set to 0 when we look more closely at the iterator.

532 | Array-Based Lists

myList

listItems[0] 23

45

65

?

?

6

0

listItems[1]

listItems[numItems-1]

listItems[listItems.lenth-1]

numItems

currentPos

listItems

list

array

Figure 11.3 An Instance of Class List

public List(int maxItems)
// Instantiates an empty list object with room for maxItems items
{
numItems = 0;
listItems = new String[maxItems];
currentPos = 0;

}

Should the class provide a default constructor? Let’s do so as a precaution.

11.2 L i s t C l a s s | 533

public List()
// Instantiates an empty list object with room for 100 items
{
numItems = 0;
listItems = new String[100];
currentPos = 0;

}

The observers isFull, isEmpty, and length are very straightforward. Each is only one line
long, as is so often the case in methods within the object-oriented paradigm.

public boolean isFull()
// Returns true if no room to add a component; false otherwise
{
return (listItems.length == numItems);

}

public boolean isEmpty()
// Returns true if no components in the list; false otherwise
{
return (numItems == 0);

}

public int length()
// Returns the number of components in the list
{
return numItems;

}

We have one more observer to implement: isThere. Because isThere is an instance method,
it has direct access to the items in the list.We just loop through the items in the list looking
for the one specified in the parameter list. The loop ends when we find the matching item
or have looked at all items in the list. Our loop expression has two conditions: The index is
within the list, and the corresponding list item is not equal to the one for which we are
searching.After exiting the loop, we return the assertion that the index is still within the list.
If this assertion is true, then the search item was found.

We can code this algorithm directly into Java, using the compareTo method of String.

isThere

Set index to 0
while more to examine and item not found
Increment index

return (index is within the list)

534 | Array-Based Lists

public boolean isThere(String item)
// Returns true if item is in the list; false otherwise
{
int index = 0;
while (index < numItems && listItems[index].compareTo(item) != 0)
index++;

return (index < numItems);
}

This algorithm is called a sequential or linear search because we start at the beginning of
the list and look at each item in sequence. We halt the search as soon as we find the item
we are seeking (or when we reach the end of the list, concluding that the desired item is not
found in the list).

We can use this algorithm in any application requiring a list search. In the form shown,
it searches a list of String components, but the algorithm works for any class that has a
compareTo method.

Let’s look again at the heading for the operation that puts an item into the list.

public void insert(String item)
// Adds item to the list
// Assumption: item is not already in the list

Does anything in the documentation say where each new item should go? No, this is an un-
sorted list.Where we put each new item is up to the implementer. In this case, let’s put each
new item in the easiest place to reach: the next free slot in the array.Therefore, we can store
a new item into listItems[numItems] and then increment numItems.

This algorithm brings up a question: Do we need to check whether the list has room for
the new item? We have two choices. The insert method can test numItems against
listItems.length and throw an exception if there isn’t room, or we can let the client code make
the test before calling insert. Our documentation is incomplete because it does not specify
what occurs in this situation. Let’s test for isFull and leave the list unchanged if the list is
full.The client can check before the call if he or she wishes to do something else in this sit-
uation.

This algorithm is so simple, we just go directly to code.

public void insert(String item)
// If the list is not full, puts item in the last position in the
// list; otherwise list is unchanged.
{
if (!isFull())
{
listItems[numItems] = item;
numItems++;

}
}

Deleting a component from a list consists of two parts: finding the item and removing it
from the list.We can use the same algorithm we used for isThere to look for the item.We know

11.2 L i s t C l a s s | 535

from the documentation that the item may or may not be in the list. If we find it, how do we re-
move it? We shift each item that comes after the one being deleted forward by one array slot.

public void delete(String item)
// Removes item from the list if it is there
// Implements "delete if there" semantics
{
int index = 0;
boolean found = false;
while (index < numItems && !found)
{
if (listItems[index].compareTo(item) == 0)
found = true;

else
index++;

}
if (found)
{
for (int count = index; count < numItems-1; count++)
listItems[count] = listItems[count+1];

numItems--;
}

}

The resetList method is analogous to the open operation for a file in which the file
pointer is positioned at the beginning of the file, so that the first input operation accesses
the first component of the file. Each successive call to an input operation gets the next item
in the file. Therefore resetList must initialize currentPos to the first item in the list. Where
is the first item in an array-based list? In position 0.The getNextItem operation is analogous

shiftUp

(index is the location of the item to be deleted)
Set listItems[index] to listItems[index + 1]
Set listItems[index + 1] to listItems[index + 2]
.
.
.
Set listItems[numItems – 2] to listItems[numItems – 1]

delete

Set index to location of item to be deleted if found
if found
Shift remainder of list up
Decrement numItems

536 | Array-Based Lists

to an input operation; it accesses the current item and then increments currentPos. When
currentPos reaches numItems, we reset it to 0.

We mentioned earlier that we need to keep the client from performing deletions and in-
sertions during an iteration. Let’s review how methods within a class might interact to
change the state of the list and thus cause problems. In Chapter 5, we discussed the concept
of state and mutable and immutable objects. Clearly, a List object is a mutable object, because
transformer methods are defined for it. resetList changes the state variable currentPos. in-
sert and delete change not only the contents of the list structure, but also the state variable
numItems. Likewise, getNextItem changes the internal state of currentPos.

We need to monitor the interactions of these transformers carefully. If currentPos is reset
during successive calls to getNextItem, the iteration just begins again. If insert or delete is in-
voked during an iteration,however,several things could happen.For example,currentPos could
now be greater than numItems, causing getNextItem to send back an item no longer in the list.To
solve this problem of interacting transformers, we have chosen to place a precondition on the
method getNextItem: No transformer methods have been called since the last call to getNextItem.

public void resetList()
// The iteration is initialized by setting currentPos to 0
{
currentPos = 0;

}

public String getNextItem()
// Returns the item at the currentPos position; resets
// current position to first item after the last item is returned
// Assumption: no transformers have been invoked since last call
{
String next = listItems[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return next;
}

Both of the methods change currentPos. Shouldn’t we consider them to be transformers?
We could certainly argue that they are, but their intention is to set up an iteration through the
items in the list, returning one item at a time to the client.

Test Plan

The documentation for the methods in the class List determines the tests necessary for a
black-box testing strategy.The code of the methods indicates a need for a clear-box testing
strategy.Thus, to test the List class implementation, we use a combination of black-box and
clear-box strategies. We first test the constructor by seeing whether the list is empty (in
which case a call to length returns 0).

11.2 L i s t C l a s s | 537

The methods length, insert, and delete must be tested together. That is, we insert
several items and check the length; we delete several items and check the length. How do
we know that the insert and delete operations work correctly? We must write an auxil-
iary method printList that iterates through the list using length and getNextItem to print
out the values. We call printList to check the status of the list after a series of insertions
and deletions. To test the isFull operation, we must test it when the list is full and when
it is not. We must also call insert when the list is full to confirm that the list remains
unchanged.

Do we need to test any special cases for delete and isThere? We look first at the end
cases.What are the end cases in a list? The item is in the first position in the list, the item is
in the last position in the list, and the item is the only one in the list.We must verify that delete
can correctly delete items in these positions. We must check that isThere can find items in
these same positions and correctly determine that values are not in the list.

These observations are summarized in the following test plan. The tests are shown in
the order in which they should be performed.

Operation to Be Tested and

Description of Action Input Values Expected Output Observed Output

Constructor (4)

print length

insert

insert four items and print

insert item and print

isThere

isThere susy and print whether found

isThere mary and print whether found

isThere ann and print whether found

isThere betty and print whether found

isFull

invoke (list is full)

delete ann and invoke

delete

print

delete betty and print

delete mary and print

delete john and print

isEmpty

mary, john, ann, betty

sarah

0

mary, john, ann, betty

mary, john, ann, betty

item is not found

item is found

item is found

item is found

list is full

list is not full

mary, john, betty

mary, john

john

(empty)

yes

538 | Array-Based Lists

But what about testing length, resetList, and getNextItem? They do not appear explicitly
in the test plan, but they are tested each time we call the auxiliary method printList to
print the contents of the list.We do, however, have to add one test involving the iterator: We
must print out length items to test whether the current position is reset after the last item
is returned.

To implement this test plan, we must construct a test driver that carries out the tasks
outlined in the first column of the preceding plan. We might make the test plan be a doc-
ument separate from the driver, with the last column filled in and initialed by a person run-
ning the application and observing the screen output. Alternatively, we might incorporate
the test plan into the driver as comments and have the output go to a file. The key to
properly testing any software lies in the plan: It must be carefully thought out and it must
be written.

Here is the output from a test driver that implements this test plan:

11.3 S o r t i n g t h e L i s t I t e m s | 539

11.3 Sorting the List Items

getNextItem presents the items to the user in the order in which they were inserted. Depending
on how we are using the list, sometimes we might want to rearrange the list components into
a certain order before an iteration. For example, if the list holds names for wed-
ding invitations, we might want to see the names in alphabetic order. Arranging
list items into order is a very common operation and is known in software ter-
minology as sorting.

If you were given a sheet of paper with a column of 20 names on it and were
asked to write them in ascending order, you would probably do the following:

1. Make a pass through the list, looking for the lowest name (the one that
comes first alphabetically).

2. Write it on the paper in a second column.

3. Cross the name off the original list.

4. Repeat the process, always looking for the lowest name remaining in the orig-
inal list.

5. Stop when all names have been crossed off.

We could implement this algorithm as client code, using getNextItem to go through the
list searching for the lowest value.When we found it, we could insert it into another list and
delete it from the original. However, we would need two lists—one to hold the original list
and a second to hold the sorted list. In addition, the client would have destroyed the origi-
nal list. If the list is large, we might not have enough memory to maintain two copies, even
if one is empty. A better solution is to derive a class from List that has a sort method that
rearranges the values in the list. Because the data fields in List are declared protected, we
can inherit them. By accessing the values directly within the list, we can avoid maintaining
two lists.

Let’s call our derived class ListWithSort.

Responsibility Algorithms for Class ListWithSort
The constructor takes the maximum number of items and calls List’s constructor. None of
the other methods needs to be overridden.

Class Name: ListWithSort Superclass: List Subclasses:

Responsibilities Collaborations

Create itself (maxItems) super

Sort the items in the list String

Sorting Arranging the compo-
nents of a list into order (for in-
stance, words into alphabetical
order or numbers into ascend-
ing or descending order)

540 | Array-Based Lists

Going back to our by-hand algorithm, we can search listItems for the smallest value, but
how do we “cross off” a list component? We could simulate crossing off a value by replacing
it with null. In this way, we set the value of the crossed-off item to something that doesn’t
interfere with the processing of the rest of the components. However, a slight variation of our
hand-done algorithm allows us to sort the components in place.We do not have to use a sec-
ond list; we can, instead, put a value into its proper place in the list by having it swap places
with the component currently in that list position.

We can state the algorithm as follows: We search for the smallest value in the array
holding the items and exchange it with the component in the first position in the array.
We search for the next-smallest value in the array and exchange it with the component in
the second position in the array. This process continues until all components are in their
proper places.

Figure 11.4 illustrates how this algorithm works.
Observe that we perform numItems – 1 passes through the list because count runs from

0 through numItems – 2.The loop does not need to be executed when count equals numItems –
1 because the last value, listItems[numItems – 1], is in its proper place after the preceding com-
ponents have been sorted.

This algorithm, known as the straight selection sort, belongs to a class of sorts called se-
lection sorts. Many types of sorting algorithms exist. Selection sorts are characterized by
finding the smallest (or largest) value left in the unsorted portion at each iteration and swap-
ping it with the value indexed by the iteration counter. Swapping the contents of two vari-
ables requires a temporary variable so that no values are lost (see Figure 11.5).

selectSort

for count going from 0 through numItems – 2
Find the minimum value in listItems[count]..listItems[numItems – 1]
Swap minimum value with listItems[count]

judy[0]
susy[1]
betty[2]
sarah[3]
ann[4]
june

ann

susy

betty

sarah
judy

june

ann

betty

susy

sarah
judy

june

ann

betty

judy

sarah
susy

june

ann

betty

judy

june
susy

sarah

ann

betty

judy

june
sarah

susy[5]

Figure 11.4 Straight Selection Sort

11.3 S o r t i n g t h e L i s t I t e m s | 541

Class ListWithSort
We are now ready to code our derived class. In the documentation, we need to include a
note stating that the alphabetic order may be lost with future insertions.

public class ListWithSort extends List
{
// The items in the list can be rearranged into ascending order
// This order is not preserved in future insertions

public ListWithSort()
{ // Default constructor
super();

}

public ListWithSort(int maxItems)
{ // Constructor
super(maxItems);

}

public void selectSort()
// Arranges list items in ascending order;
// selection sort algorithm is used

 Contents of

 y goes into x
 Contents of

 x goes into temp

Contents of temp
goes into y

x

y temp

12

3

Figure 11.5 Swapping the Contents of Two Variables, x and y

542 | Array-Based Lists

{
String temp; // Temporary variable
int passCount; // Loop control variable for outer loop
int searchIndex; // Loop control variable for inner loop
int minIndex; // Index of minimum so far

for (passCount = 0; passCount < numItems – 1; passCount++)
{
minIndex = passCount;
// Find the index of the smallest component
// in listItems[passCount]..listItems[numItems – 1]
for (searchIndex = passCount + 1; searchIndex < numItems; searchIndex++)
if (listItems[searchIndex].compareTo(listItems[minIndex]) < 0)
minIndex = searchIndex;

// Swap listItems[minIndex] and listItems[passCount]
temp = listItems[minIndex];
listItems[minIndex] = listItems[passCount];
listItems[passCount] = temp;

}
}

}

With each pass through the outer loop in selectSort, we look for the minimum value in
the rest of the array (listItems[passCount] through listItems[numItems – 1]). Therefore,
minIndex is initialized to passCount and the inner loop runs from searchIndex equal to passCount
+ 1 through numItems – 1. Upon exit from the inner loop, minIndex contains the position of the
smallest value. (Because the if statement is the only statement in the loop, we do not have
to enclose it in a block.)

This method may swap a component with itself, which occurs if no value in the re-
maining list is smaller than listItems[passCount]. We could avoid this unnecessary swap by
checking whether minIndex is equal to passCount. Because this comparison would occur in every
iteration of the outer loop, it is more efficient not to check for this possibility and just to
swap something with itself occasionally. For example, if our list contains 10,000 elements,
then making this comparison adds 10,000 operations to the execution of the loop, yet we
might save just a few dozen unnecessary swap operations as a result. Table 11.1 shows an
input file and the results of sorting the file.

This algorithm sorts the components into ascending order. To sort them into descend-
ing order, we must scan for the maximum value instead of the minimum value. Simply chang-
ing the test in the inner loop from “less than” to “greater than” accomplishes this goal. Of

11.4 S o r t e d L i s t | 543

Table 11.1 File Sorting

Original File Sorted File

red black

blue blue

yellow brown

brown crimson

black green

pink orange

green pink

orange red

white rose

violet violet

crimson white

rose yellow

course, in this case minIndex would no longer be an appropriate identifier and should be
changed to maxIndex.

11.4 Sorted List

ListWithSort does not provide the user with a true sorted list class. That is, the insert and
delete algorithms do not preserve ordering by value.The insert operation places a new item
at the end of the list, regardless of its value.After selectSort has been executed, the list items
remain in sorted order only until the next insertion or deletion takes place. Of course, the
client could sort the list after every insertion, but this technique is inefficient. Let’s now look
at a sorted list design in which all the list operations cooperate to preserve the sorted order
of the list components.

Brainstorming the Sorted List

The design for the class List says nothing about the order of its items. If we want to keep the
list items in sorted order, we need to specify this criterion. Let’s go back to the CRC card de-
sign for List and indicate that we want the list to be sorted.

544 | Array-Based Lists

The first thing we notice is that the observers do not change.They remain the same whether
the list is sorted by value or not.The transformers insert and delete and the iterator now have
additional constraints, however. Rather than designing an entirely new class, we can derive
SortedList from List, overriding those methods whose implementations need changing.

Class Name: SortedList Superclass: List Subclasses:

Responsibilities Collaborations

Create itself (maxItems) None

Insert into list (item), keeping the list sorted String

Delete from list (item), keeping the list sorted String

Look at each item in sorted order String

Class Name: List Superclass: Object Subclasses:

Responsibilities Collaborations

Create itself (maxItems) None

Is list full? None

 return boolean

Is list empty? None

 return boolean

Know length

Delete from list (item), keeping list sorted

None

 return int

None

Set up for iteration None

Know next item in sorted order None

 return boolean

Insert into list (item), keeping list sorted None

Is an item in the list? None

11.4 S o r t e d L i s t | 545

Initial state of list
The state of the list after adding the highlighted item to the
initial list in the appropriate position to keep the list sorted

Gomez

Gomez

1 item

0 items

2 items

Applebee

Gomez

Gomez

Ziggle

Gomez

Norton

Applebee

Gomez

Norton

Gomez

Jones

Norton

Gomez

Norton

Ziggle

Figure 11.6 Inserting Items into a List So That Ordering Is Preserved

Responsibility Algorithms for Class SortedList
Let’s look first at insert. Figure 11.6 illustrates how it should work.

The first item inserted into the list can go into the first position. Because there is only
one item, the list is sorted. If a second item being inserted is less than the first item, the first
item must be moved into the second position and the new item put into the first position.
If the second item is larger, it goes into the second position. If we add a third item that is
smaller than the first item, the other two items shift down by one and the third item goes
into the first position. If the third item is greater than the first item but less than the second,
the second shifts down and the third item goes into the second position. If the third item is
greater than the second item, it goes into the third position.

To generalize, we start at the beginning of the list and scan until we find an item
greater than the one we are inserting. We shift that item and the rest of the items in the
list down by one position to make room for the new item. The new item goes in the list at
that point.

546 | Array-Based Lists

Assuming that index is the place where item is to be inserted, the algorithm for shifting
the remainder of the list down is as follows:

This algorithm is illustrated in Figure 11.7.
This algorithm is based on how we would accomplish the task by hand. Often, such an

adaptation is the best way to solve a problem. However, in this case, further thought reveals
a slightly better approach. Notice that we search from the front of the list (people always do),
and we shift down from the end of the list upward. We can, in fact, combine the searching
and shifting operations by beginning at the end of the list.

If item is the new item to be inserted,we can compare item to the value in listItems[numItems
– 1]. If item is less, we put listItems[numItems – 1] into listItems[numItems] and compare item to
the value in listItems[numItems – 2].This process continues until we find the place where item
is greater than or equal to the list item.We then store itemdirectly after it.Here is the algorithm:

insert (revised)

if (list is not full)
Set index to numItems – 1
while index >= 0 && (item.compareTo(listItems[index]) < 0)
Set listItems[index + 1] to listItems[index]
Decrement index

Set listItems[index + 1] to item
Increment numItems

shiftDown

Set listItems[numItems] to listItems[numItems – 1]
Set listItems[numItems – 1] to listItems[numItems – 2]
.
.
.
Set listItems[index + 1] to listItems[index]

insert

if (list is not full)
while place not found AND more places to look
if item > current item in the list
Increment current position

else
Place found

Shift remainder of the list down
Insert item
Increment numItems

11.4 S o r t e d L i s t | 547

june june

susy

susy sarah bobby judy

june

sarah

susy

bobby

june

sarah

susy

bobby

judy

june

sarah

susy

Put susy
at end
of the
list.

Move susy
down and
insert sarah.

Move susy,
sarah and june
down and
insert bobby.

Move susy,
sarah and june
down and
insert judy.

Insert june

Figure 11.7 Inserting into a Sorted List

Notice that this algorithm works even if the list is empty.When the list is empty, numItems
is 0 and the body of the while loop is not entered. Thus item is stored into listItems[0], and
numItems is incremented to 1. Does the algorithm work if item is the smallest value? What about
the largest value? Let’s see. If item is the smallest value, the loop body executes numItems
times and index is �1. Thus item is stored into position 0, where it belongs. If item is the
largest value, the loop body is not entered. The value of index remains numItems � 1, so item
is stored into listItems[numItems], where it belongs.

Are you surprised that the general case also takes care of the special cases? This situa-
tion does not happen all the time, but it occurs sufficiently often that it is good programming
practice to start with the general case. If we begin with the special cases, we may still gen-
erate a correct solution, but we may not realize that we don’t need to handle the special
cases separately.Thus we have this guideline: Begin with the general case, then treat as spe-
cial cases only those situations that the general case does not handle correctly.

The methods delete and getNextItem must maintain the sorted order—but they already
do! An item is deleted by removing it and shifting all of the items larger than the one deleted
up by one position; getNextItem merely returns a copy of an item—it does not change an
item. Only insert needs to be overridden in the derived class SortedList.

package list;
public class SortedList extends List
{

548 | Array-Based Lists

public SortedList()
{
super();

}
public SortedList(int maxItems)
{
super(maxItems);

}
public void insert(String item)
// If the list is not full, puts item in its proper place in
// the list; otherwise list is unchanged
// Assumption: item is not already in the list
{
if (!isFull())
{
int index = numItems – 1; // Loop control variable
while (index >= 0 && (item.compareTo(listItems[index]) < 0))
{ // Find insertion point
listItems[index+1] = listItems[index];
index--;

}
listItems[index+1] = item; // Insert item
numItems++; // Increment number of items

}
}

}

Test Plan

We can use the same test plan for the sorted list that we used for the unsorted version.The
only difference is that in the expected output, the list items should appear in sorted order.
Alternatively, we could use the same input file that was used to test ListWithSort to test
SortedList.

11.5 The List Class Hierarchy and Abstract Classes

We have created a hierarchy with the class List at the top and two derived classes. We can
visualize this hierarchy as follows:

List

ListWithSort SortedList

11.5 T h e L i s t C l a s s H i e r a r c h y a n d A b s t r a c t C l a s s e s | 549

ListWithSort is a List. SortedList is a List. ListWithSort is not a SortedList, and SortedList is
not a ListWithSort.

We could have organized the hierarchy using an abstract class. Recall from Chapter 7 that
an abstract class is a class that is headed by the word abstract and leaves one or more meth-
ods incomplete. We cannot instantiate an abstract class. Rather, another class must extend
the abstract class and implement all of the abstract methods. In the preceding example, we
could have implemented the observers and iterator in the abstract class and left the imple-
mentation of the transformers to the derived class. Then the unsorted and sorted versions
of the list could both inherit from the abstract class.The documentation for the classes would
be as follows:

public abstract class List
{
public List()
public List(int maxItems)
public boolean isFull()
public boolean isEmpty()
public int length()
public boolean isThere(String item)
public void resetList()
public String getNextItem()
public abstract void delete(String item)
public abstract void insert(String item)

}

public class UnsortedList extends List
{
public UnsortedList()
public UnsortedList(int maxItems)
public void delete(String item)
public void insert(String item)

}

public class SortedList extends List
{
public SortedList()
public SortedList(int maxItems)
public void delete(String item)
public void insert(String item)

}

public class ListWithSort extends UnsortedList
{
public ListWithSort()
public ListWithSort(int maxItems)
public void selectSort()

}

550 | Array-Based Lists

Under these conditions, the class hierarchy would look like this:

11.6 Searching

In our SortedList class, we overrode the insert method—the only method that we had to
rewrite to keep the list in sorted order. However, if the list is already sorted, we can perform
a more efficient search. In this section, we look at two searching algorithms that depend on
the list items being in sorted order.

Sequential Search

The isThere algorithm assumes that the list to be searched is unsorted.A drawback to search-
ing an unsorted list is that we must scan the entire list to discover that the search item is not
present. Think what it would be like if your city telephone book contained people’s names
in random rather than alphabetical order.To look up Marcus Anthony’s phone number, you
would have to start with the first name in the phone book and scan sequentially, page after
page, until you found it. In the worst case, you might examine tens of thousands of names,
only to find out that Marcus’s name is not in the book.

Of course, telephone books are alphabetized, and the alphabetical ordering makes
searching easier. If Marcus Anthony’s name is not in the book, you can discover this fact
quickly by starting with the A’s and stopping the search as soon as you pass the place where
his name should be. Although the sequential search algorithm in isThere works in a sorted
list, we can make the algorithm more efficient by taking advantage of the fact that the items
are sorted.

How does searching in a sorted list differ from searching in an unordered list? When
we search for an item in an unsorted list, we won’t discover that the item is missing un-
til we reach the end of the list. If the list is already sorted, we know that an item is miss-

List

SortedListUnsortedList

ListWithSort

11.6 S e a r c h i n g | 551

ing when we pass the place where it should be in the list. For example, if a list contains
the values

and we are looking for judy, we need simply compare judy with becca, bobby, and june to know
that judy is not in the list.

If the search item is greater than the current list component, we move on to the next com-
ponent. If the item is equal to the current component, we have found the desired element.
If the item is less than the current component, then we know that it is not in the list. In
either of the last two cases, we stop looking. In our original algorithm, the loop conditions
stated that the index was within the list and the corresponding list item was not the one
sought. In this algorithm, the second condition must be that the item being sought is less than
the corresponding list item. However, determining whether the item is found is a little more
complex. We must first assert that the index is within the list and, if that is true, assert that
the search item is equal to the corresponding list item.

Why can’t we just test whether item is equal to listItems[index] after we exit the loop?
This strategy works in all cases but one: if item is larger than the last element in the list. In
that case, we would exit the loop with index equal to numItems.Trying to access listItems[in-
dex] would then cause the code to crash with an “index out of range” error.Therefore, we must
check the value of index first.

isThere (in a sorted list)

Set index to 0
while index is within the list AND item is greater than listItems[index]
Increment index

return (index is within the list AND item is equal to listItems[index])

becca

bobby

june

phil

robert

tomas

552 | Array-Based Lists

public boolean isThere(String item)
// Returns true if item is in the list; false otherwise
// Assumption: List items are in ascending order
{
int index = 0;
while (index < numItems

&& item.compareTo(listItems[index]) > 0)
index++;

return (index < numItems && item.compareTo(listItems[index]) == 0);
}

On average, searching a sorted list in this way takes the same number of iterations to find
an item as searching an unsorted list. The advantage of this new algorithm is that we find
out sooner if an item is missing.Thus it is slightly more efficient. Another search algorithm
exists that works only on a sorted list, but it is more complex: a binary search. However, the
extra complexity is worth the trouble.

Binary Search

The binary search algorithm on a sorted list is considerably faster both for finding an item
and for discovering that an item is missing. A binary search is based on the principle of suc-
cessive approximation. The algorithm divides the list in half (divides by 2—that’s why it’s
called a binary search) and decides which half to look in next. Division of the selected por-
tion of the list is repeated until the item is found or it is determined that the item is not pres-
ent in the list.

This method is analogous to the way in which we look up a name in a phone book (or word
in a dictionary).We open the phone book in the middle and compare the desired name with
one on the page that we turned to. If the name we’re seeking comes before this name, we con-
tinue our search in the left-hand section of the phone book. Otherwise, we continue in the
right-hand section of the phone book. We repeat this process until we find the name. If it is
not present, we realize that either we have misspelled the name or our phone book isn’t
complete. See Figure 11.8.

With this approach, we start with the whole list (indexes 0 through numItems – 1) and com-
pare our search value to the middle list item. If the search item is less than the middle list
item, we continue the search in the first half of the list. If the search item is greater than the
middle list item, we continue the search in the second half of the list. Otherwise, we have
found a match. We keep comparing and redefining the part of the list in which to look (the
search area) until we find the item or the search area is empty.

Let’s write the algorithm bounding the search area by the indexes first and last. See
Figure 11.9.

11.6 S e a r c h i n g | 553

(A-M)

(A-G)

(D-G)(A-C)

Figure 11.8 A Binary Search of the Phone Book

Binary Search

Set first to 0
Set last to numItems – 1
Set found to false
while search area is not empty and !found
Set middle to (first + last) divided by 2
if (item is equal to listItems[middle])
Set found to true

else if (item is less than listItems[middle])
Set last to middle – 1 // look in first half

else
Set first to middle + 1 // look in last half

554 | Array-Based Lists

[first]
listItems
[middle] [last]

item

? ?

Figure 11.9 Binary Search

This algorithm should make sense. With each comparison, at best, we find the item for
which we are searching; at worst, we eliminate half of the remaining list from consideration.
Before coding this algorithm, we need to determine when the search area is empty. If the
search area is between listItems[first] and listItems[last], then the area is empty if last
is less than first.

Let’s do a walk-through of the binary search algorithm.The item we are searching for is
"bat". Figure 11.10a shows the values of first, last, and middle during the first iteration. In
this iteration, "bat" is compared with "dog", the value in listItems[middle]. Because "bat" is
less than (comes before) "dog", last becomes middle – 1 and first stays the same. Figure 11.10b
shows the situation during the second iteration.This time, "bat" is compared with "chicken",
the value in listItems[middle]. Because "bat" is less than (comes before) "chicken", last be-
comes middle – 1 and first again stays the same.

In the third iteration (Figure 11.10c), middle and first are both 0.The item "bat" is com-
pared with "ant", the item in listItems[middle]. Because "bat" is greater than (comes after)
"ant", first becomes middle + 1. In the fourth iteration (Figure 11.10d), first, last, and mid-
dle are all the same.Again, "bat" is compared with the item in listItems[middle]. Because "bat"
is less than "cat", last becomes middle – 1. Now that last is less than first, the process
stops; found is false.

The binary search is the most complex algorithm that we have examined so far. Table
11.2 shows first, last, middle, and listItems[middle] for searches for the items "fish", "snake",
and "zebra", using the same data as in the previous example. Examine the results in this table
carefully.

Notice in the table that whether we searched for "fish", "snake", or "zebra", the loop never
executed more than four times.It never executes more than four times in a list of 11 components

11.6 S e a r c h i n g | 555

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

first

middle

last

First iteration
bat < dog

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first

middle

last

Second iteration
bat < chicken

(a) (b)

(c) (d)

bat cannot be
in this part
of the list

bat cannot be
in this part
of the list

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first and middle

last

Third iteration
bat > ant

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first, last,
and middle

Fourth iteration
bat < cat

bat cannot be
in this part
of the list

Figure 11.10 Walk-through of Binary Search Algorithm

556 | Array-Based Lists

item : fish
 First
 Second
 Third

item : snake
 First
 Second
 Third
 Fourth

item : zebra
 First
 Second
 Third
 Fourth
 Fifth

Iteration

10
10
7

10
10
10
10

10
10
10
10
10

last

0
6
6

0
6
9
10

0
6
9
10
11

first

5
8
6

5
8
9
10

5
8
9
10

middle

found is true

found is true

last < first

Terminating
Condition

dog
horse
fish

dog
horse
rat
snake

dog
horse
rat
snake

listItems[middle]

Table 11.2 Binary Searching

Average Number of Iterations

Length Sequential Search Binary Search

10 5.5 2.9

100 50.5 5.8

1,000 500.5 9.0

10,000 5000.5 12.0

becausethe list iscut inhalfeachtimethroughthe loop.Thefollowingtablecomparesasequential
search and a binary search in terms of the average number of iterations needed to find an item:

If the binary search is so much faster, why not use it all the time? It certainly is faster in
terms of the number of times through the loop, but it requires more computations within the
binary search loop than in the other search algorithms.Thus, if the number of components
in the list is small (say, less than 20), the sequential search algorithms are faster because they
perform less work at each iteration. As the number of components in the list increases, the
binary search algorithm becomes relatively more efficient.

Here is the code for isThere that uses the binary search algorithm:

public boolean isThere(String item)
// Returns true if item is in the list; false otherwise
// Binary search algorithm is used
// Assumption: List items are in ascending order

11.6 S e a r c h i n g | 557

{
int first = 0; // Lowest position in search area
int last = numItems-1; // Highest position in search area
int middle; // Middle position in search area
boolean found = false;
while (last >= first && !found)
{
middle = (first + last)/2;
if (item.compareTo(listItems[middle]) == 0)
found = true;

else if (item.compareTo(listItems[middle]) < 0)
// item not in listItems[middle]..listItems[last]
last = middle – 1;

else
// item not in listItems[first]..listItems[middle]
first = middle + 1;

}
return found;

}

Complexity of Searching and Sorting
We introduced Big-O notation in Chapter 9 as a way of comparing the work done by different al-
gorithms. Let’s apply it to the algorithms that we’ve developed in this chapter and see how they
compare with each other. In each algorithm, we start with a list containing some number of
items, N.

In the worst case, the isThere sequential-search method scans all N components to locate an
item.That is, it requires N steps to execute. On average, isThere takes roughly N/2 steps to find
an item; however, recall that in Big-O notation, we ignore constant factors (as well as lower-
order terms).Thus the method isThere is an order N—that is, an O(N)—algorithm.

What about the algorithm we presented for a sequential search in a sorted list? The number
of iterations is decreased for the case in which the item is missing from the list. However, we
have simply taken a case that would require N steps and reduced its time, on average, to N/2
steps.Therefore, this algorithm is also O(N).

Now consider isThere when we use the binary search algorithm. In the worst case, it
eliminates half of the remaining list components on each iteration.Thus the worst-case number
of iterations equals the number of times N must be divided by 2 to eliminate all but one value.
This number is computed by taking the logarithm, base 2, of N (written log2N). Here are some ex-
amples of log2N for different values of N:

558 | Array-Based Lists

N Log2N

2 1

4 2

8 3

16 4

32 5

1024 10

32,768 15

1,048,576 20

33,554,432 25

1,073,741,824 30

As you can see, for a list of more than 1 billion values, the binary search algorithm takes only
30 iterations. It is definitely the best choice for searching large lists. Algorithms such as the
binary search algorithm are said to be of logarithmic order.

Now let’s turn to sorting.The method selectSort contains nested for loops.The total number
of iterations is the product of the iterations performed by the two loops.The outer loop executes
N � 1 times.The inner loop also starts out executing N � 1 times, but steadily decreases until it
performs just one iteration: The inner loop executes N/2 iterations.The total number of iterations
is thus

Ignoring the constant factor and lower-order term, this is N2 iterations, and selectSort is an
O(N 2) algorithm. Whereas isThere, when coded using the binary search algorithm, takes only 30
iterations to search a sorted array of 1 billion values, putting the array into order takes
selectSort approximately 1 billion times 1 billion iterations!

Our insert algorithm for a sorted list forms the basis for an insertion sort, in which values are
inserted into a sorted list as they are input. On average, insert must shift down half of the val-
ues (N/2) in the list; thus, it is an O(N) algorithm. If we call insert for each input value, we
execute an O(N) algorithm N times; therefore, an insertion sort is an O(N2) algorithm.

Is every sorting algorithm O(N2)? Most of the simpler ones are, but O(N � log2N) sorting algo-
rithms exist. Algorithms that are O(N � log2N) are much closer in performance to O(N)
algorithms than are O(N2) algorithms. For example, if N is 1 million, then an O(N2) algorithm
takes 1 million times 1 million (1 trillion) iterations, but an O(N � log2N) algorithm takes only 20
million iterations—that is, it is 20 times slower than the O(N) algorithm but 50,000 times faster
than the O(N2) algorithm.

(N – 1) � N
��

2

11.7 G e n e r i c L i s t s | 559

11.7 Generic Lists

In generic lists, the operations are defined, but the types of the objects on the list are not.
Although we called the components of our lists “items,” they are actually Strings. Is it possible
to construct a truly general-purpose list where the items can be of any type? For example,
could we have a list of Name objects as defined in Chapter 4 or a list of Address objects as defined
in Chapter 6? Yes, we can. All we have to do is declare the objects on the list to be Comparable.
What is Comparable? It’s a Java interface. Let’s see how we can use it to make our lists generic.

Comparable Interface

In Chapter 5, we defined the Java construct interface as a model for a class that specifies the
constants (final fields) and instance methods that must be present in a class that implements
the interface. The Comparable interface is part of the standard Java class library. Any class
that implements this interface must implement the method compareTo.This method compares
two objects and returns an integer that determines the relative ordering of the two objects
(the instance to which it is applied and the method’s parameter).

intValue = item.compareTo(listItems[index]);

intValue is negative if item comes before listItems[index], is 0 if they are equal, and is posi-
tive if item comes after listItems[index].We have used this method to compare strings in the
classes designed in this chapter because the String class implements the Comparable interface.

To make our List class as generic as possible,we replace Stringwith Comparable throughout
the class.As a consequence, any object of a class that implements the Comparable interface can
be passed as an argument to insert,delete,or isThere. In addition,the type of the array elements
must be declared as implementing Comparable and getNextItem must return a value of type
Comparable. Here is the complete abstract class List:

public abstract class List
{
protected Comparable[] listItems; // Array to hold list items
protected int numItems; // Number of items in the list
protected int currentPos; // State variable for iteration

public List(int maxItems)
// Instantiates an empty list object with room for maxItems items
{
numItems = 0;
listItems = new Comparable[maxItems];
currentPos = 0;

}

public List()
// Instantiates an empty list object with room for 100 items

560 | Array-Based Lists

{
numItems = 0;
listItems = new Comparable[100];
currentPos = 0;

}

public boolean isFull()
// Returns true if there is no room for another component;
// false otherwise
{
return (listItems.length == numItems);

}

public boolean isEmpty()
// Returns true if there are no components in the list;
// false otherwise
{
return (numItems == 0);

}

public int length()
// Returns the number of components in the list
{
return numItems;

}

public abstract boolean isThere(Comparable item);
// Returns true if item is in the list; false otherwise

// Transformers
public abstract void insert(Comparable item);
// If list is not full, inserts item into the list;
// otherwise list is unchanged
// Assumption: item is not already in the list

public abstract void delete(Comparable item);
// Removes item from the list if it is there

// Iterator pair
public void resetList() // Prepare for iteration
{
currentPos = 0;

}
public Comparable getNextItem()
// Returns the item at the currentPos position; resets current
// position to first item after the last item is returned
// Assumption: no transformers have been invoked since last call

11.7 G e n e r i c L i s t s | 561

{
Comparable next = listItems[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return next;
}

}

Notice that we have made the isThere method be abstract.This way, the derived class can
determine which searching algorithm to use.

Polymorphism

We have discussed polymorphism several times, as it is a major feature of object-oriented
programming. In a hierarchy of classes, polymorphism enables us to override a method name
with a different implementation in a derived class. Thus multiple forms of a given method
can appear within the hierarchy (literally, polymorphism means having multiple forms).

The Java compiler decides which form of a polymorphic instance method to use by look-
ing at the class of its associated instance. For example, if compareTo is associated with a String
variable, then the version of compareTo defined in the class String is called.

Thus far, this is all straightforward. But consider the case where we apply compareTo to
an object that has been passed as a parameter declared to be Comparable.The abstract insert
method that we defined in the last section is precisely the example we have in mind.

public abstract void insert(Comparable item);

An instance of any class that implements Comparable can be passed as an argument to
this parameter.The class of the argument object determines which form of compareTo is ac-
tually called within insert. At compile time, however, the Java compiler does not have any
way to determine the class of the argument object. Instead, it must insert Bytecode that
identifies the argument’s class at run time and then calls the appropriate method.
Programming language designers call this approach dynamic binding. When the
compiler can identify the appropriate form of the method to use, it is called static

binding.
The practical implication of dynamic binding is that it allows us to define a

generic List class that works with items that are of any class that implements
Comparable.Whenever a method in the List class needs to compare two items, the
appropriate form of compareTo is called—even when the class of the items isn’t
known until run time.

The other practical implication of dynamic binding is that it is slower than
static binding. With static binding, the JVM transfers control directly to the appropriate
method. In dynamic binding, the JVM must first identify the class of the object and then
look up the address of the associated method before transferring control to it.

Dynamic binding
Determining at run time which
form of a polymorphic method
to call

Static binding Determining at
compile time which form of a
polymorphic method to call

CASE STUDY
562

MERGING ADDRESS BOOKS

Problem: In earlier chapters we created an electronic address book in which each entry
contains a name, an address, a phone number, and a birthday. We have stored the
entries on a file of objects.The electronic address book has been so successful that we
have shared it with others. Now we want to combine the entries from two address
books and print address labels in alphabetical order. If the same name appears in both
address books, the appropriate label should be printed only once. We also want to save
the combined address books.

Brainstorming: The processing seems very straightforward. We create a new address
book object made up of all the entries in both address books, removing duplicate
entries along the way.The combined address book must then be sorted and labels
printed on a text file. In addition to the classes involved in the class Entry, we have
three instances of an object file (two input and one output), a text file, and a driver:

Filtering: To this point, we have been working with files.The restriction that the list of
labels be alphabetized may lead to a different solution. We could read the two files of
entries and store them into two SortedList objects.Then we could merge the two lists
and the output would be sorted. Let’s revise our list of classes:

Determining Responsibilities: This problem is somewhat different in that all of the
responsibilities are in the driver, and they are clearly spelled out in the problem
description. At this point, we switch from an object-oriented view and look at the tasks

ObjectInputStream

ObjectOutputStream

PrintWriter

SortedList

Driver

ObjectInputStream

ObjectOutputStream

PrintWriter

Driver

CASE STUDY 563

outlined in the problem statement. By using SortedList objects, we have already taken
care of sorting the output: We will create the addresses in sorted order.

Responsibility Algorithms: The first two responsibilities are concrete.The next two
responsibilities are identical except for the name of the SortedList object and the file
name. Let’s set up this processing as a helper method called “Generate lists”.

The fifth responsibility poses a greater challenge. When faced with a complex prob-
lem, a good strategy is to consider how you might solve the problem by hand (that is, to
look for things that are familiar). One algorithm might be to take the first name on the
first list, write it to the new list, and search the second list to see if it is found there. If
the name is present, it would be a duplicate, so we would cross it off the second list.
When we finish going through the first list, we then add to the new list all of the names
that remain on the second list. For each item on the first list, we must search the entire
second list.

This by-hand algorithm serves as a good model for a computer solution. Because the
lists are ordered alphabetically, however, a more efficient algorithm is possible. Let’s

Generate lists(SortedList list, ObjectInputStream inFile)

Set more data to true
while more data
try
Read an entry from inFile
list.insert(entry)

catch EOFException
Set more data to false

Class Name: LabelDriver Superclass: Object Subclasses:

Responsibilities Collaborations

Prepare files for input ObjectInputStream

Prepare files for output PrintWriter ObjectOutputStream

Read first file into SortedList SortedList

Read second file into SortedList SortedList

Merge two lists into third SortedList SortedList

Print labels PrintWriter

Write combined file ObjectOutputStream

CASE STUDY
564

pretend that the names are on index cards in two stacks rather than in two lists. If we
pick up the first card in each stack and compare them, three possibilities arise:

1. The name on the first stack comes alphabetically before the name on the
second stack.

2. The name on the second stack comes alphabetically before the name on the
first stack.

3. The names are the same.

If the name on the first stack comes first, we would put the card in the output stack
face down. If the name on the second stack comes first, we would put that card in the
output stack face down. If the names are the same, we would put one of the cards on
the output stack face down and tear up the other card.The stack from which the card
was removed now has a new card on the top (or both stacks have new cards on top),
and we repeat the comparing process.This algorithm allows us to look at only one
name from each list at a time, so we do not search the second list.

“Picking up the first card in each stack” is equivalent to examining the name from the
first entry in each list. “Compare them” is a call to the Name class method compareTo. Recall
that compareTo returns a negative value if the object comes before the parameter, zero if
the two are the same, and a positive value if the parameter comes before the object.

“Put a card on the output stack face down” translates into inserting the entry into
the combined list. “Tear up” translates into not processing the entry. “New card” trans-
lates into getting the next entry.

What halts the processing? In our by-hand algorithm, we stopped comparing names
when one or both of the stacks became empty. A stack is “empty” when one or both
lists run out of entries. Because we know how many items are in each list, we can count
how many times we get a new item from each list and stop when we have accessed the
last one in one of the lists. One list may run out of entries before the other, in which
case those remaining entries must be inserted into the result.

Merge

Set up for processing firstList
Set up for processing secondList
while moreData1 AND moreData2
Set compareResult to 'firstEntry comes before secondEntry'
if compareResult < 0
Put firstEntry in resultList

else if compareResult > 0
Put secondEntry in resultList

else
Process both entries

if moreData1
Insert rest of firstList into resultList

else if moreData2
Insert rest of secondList into resultList

CASE STUDY 565

Put secondEntry in resultList

resultList.insert(secondEntry)
if secondCount equals secondLimit
Set moreData2 to false

else
Set secondEntry to next item in secondList
secondCount++

Put firstEntry in resultList

resultList.insert(firstEntry)
if firstCount equals firstLimit
Set moreData1 to false

else
Set firstEntry to next item in firstList
firstCount++

firstEntry comes before secondEntry

compareResult =
firstEntry.knowName().compareTo(secondEntry.knowName())

Set up for processing secondList

Reset secondList
Set secondEntry to next entry in secondList
Set secondCount to 1
Set secondLimit to length of secondList
Set moreData2 to secondCount <= secondLimit

Set up for processing firstList

Reset firstList
Set firstEntry to next entry in firstList
Set firstCount to 1
Set firstLimit to length of firstList
Set moreData1 to firstCount <= firstLimit

CASE STUDY
566

This algorithm is by far the most complex we have examined to date.You are well
advised to study it until you completely understand it.The merging of two ordered lists
is one of those familiar algorithms that appears in many different places. For example,
the union of two sets is calculated in exactly the same way.

Now we must simply examine the “Print labels” and “Write combined file” responsi-
bilities. We have all the entries in alphabetical order in resultList. We can use a for loop
to iterate through the list, printing out the address labels. We can also use a for loop to
write out the entries in resultList. In fact, as both these responsibilities require for
loops to process the combined list of entries, we can combine the processing into the
same loop.

//***
// This application merges two address books into one and
// prints out address labels.
//***

Insert rest of secondList into resultList

while secondCount <= secondLimit
resultList.insert(secondEntry)
secondCount++
if secondCount <= secondLimit
Set secondEntry to next entry in secondList

Insert rest of firstList into resultList

while firstCount <= firstLimit
resultList.insert(firstEntry)
firstCount++
if firstCount <= firstLimit
Set firstEntry to next entry in firstList

Process both entries

resultList.insert(firstEntry)
if firstCount equals firstLimit
Set moreData1 to false

else
Set firstEntry to next entry in firstList
firstCount++

if secondCount equals secondLimit
Set moreData2 to false

else
Set secondEntry to next item in secondList
secondCount++

CASE STUDY 567

import java.io.*;
import addressBook.*;
import list.*;

public class MergeBooks
{
public static void main(String[] args) throws IOException
{
// Declare files and lists
ObjectInputStream firstFile;
ObjectInputStream secondFile;
ObjectOutputStream outFile;
PrintWriter labelFile;
SortedList firstList; // First list of entries
SortedList secondList; // Second list of entries
SortedList resultList; // Combined list of entries

// Declare an entry for each list
EntryPlus firstEntry;
EntryPlus secondEntry;
EntryPlus resultEntry;

// Declare a counter for each list
int firstCount;
int secondCount;

boolean moreData1; // More data in firstList
boolean moreData2; // More data in secondList

// Declare variables for the number of entries in each list
int firstLimit;
int secondLimit;
int resultLimit;

int compareResult; // Result from a comparison

// Prepare files
firstFile = new ObjectInputStream(new FileInputStream("adBook1.dat"));
secondFile = new ObjectInputStream(new FileInputStream("adBook2.dat"));
outFile = new ObjectOutputStream(new FileOutputStream("adBook3.dat"));
labelFile = new PrintWriter(new FileWriter("labels.out"));

// Create the two lists of entries
firstList = new SortedList();
secondList = new SortedList();

CASE STUDY
568

try
{
generateLists(firstFile, firstList);
generateLists(secondFile, secondList);

}
catch(ClassNotFoundException except)
{
System.out.println("problems reading in objects");

}

// Set up for processing first list
firstList.resetList();
firstEntry = firstList.getNextItem();
firstCount = 1;
firstLimit = firstList.length();
moreData1 = firstCount <= firstLimit;

// Set up for processing second list
secondList.resetList();
secondEntry = secondList.getNextItem();
secondCount = 1;
secondLimit = secondList.length();
moreData2 = secondCount <= secondLimit;

resultList = new SortedList(200); // Instantiate combined list
// Merge loop
while (moreData1 && moreData2)
{
compareResult = firstEntry.knowName().compareTo(secondEntry.knowName());
if (compareResult < 0) // firstEntry comes first
{
resultList.insert(firstEntry);
if (firstCount == firstLimit)
moreData1 = false;

else
{
firstEntry = firstList.getNextItem();
firstCount++;

}
}
else if (compareResult > 0) // secondEntry comes first
{
resultList.insert(secondEntry);
if (secondCount == secondLimit)
moreData2 = false;

CASE STUDY 569

else
{
secondEntry = secondList.getNextItem();
secondCount++;

}
}
else // Duplicates
{
resultList.insert(firstEntry);
if (firstCount == firstLimit)
moreData1 = false;

else
{
firstEntry = firstList.getNextItem();
firstCount++;

}
if (secondCount == secondLimit)
moreData2 = false;

else
{
secondEntry = secondList.getNextItem();
secondCount++;

}
}

}

// Loops to add remaining entries to combined list
if (moreData1)
while (firstCount <= firstLimit)
{
resultList.insert(firstEntry);
firstCount++;
if (firstCount <= firstLimit)
firstEntry = firstList.getNextItem();

}
else if (moreData2)
while (secondCount <= secondLimit)
{
resultList.insert(secondEntry);
secondCount++;
if (secondCount <= secondLimit)
secondEntry = secondList.getNextItem();

}

// Print labels and write combined file
resultList.resetList();
resultLimit = resultList.length();
for (int counter = 1; counter <= resultLimit; counter++)

CASE STUDY
570

{
Address resultAddress;
resultEntry = resultList.getNextItem(); // Get an entry
outFile.writeObject(resultEntry); // Write the entry
resultAddress = resultEntry.knowAddress();
labelFile.println(resultEntry.knowName().full());
labelFile.println(resultAddress.knowStreet());
labelFile.println(resultAddress.knowCity() + ","
+ resultAddress.knowState() + " " + resultAddress.knowZip());

labelFile.println();
}

// Close files and exit
firstFile.close();
secondFile.close();
outFile.close();
labelFile.close();
}

static void generateLists(ObjectInputStream inFile, SortedList list)
throws IOException, ClassNotFoundException

{
EntryPlus entry;
boolean moreData = true;
while(moreData)
{
try
{
entry = (EntryPlus)inFile.readObject();
list.insert(entry);

}
catch(EOFException except)
{
moreData = false;

}
}

}

}

Because EntryPlus does not implement Comparable, we need to change our List class
to call the compareTo method associated with the Name field in an item. We can access this
field using the knowName method for the EntryPlus object. Of course, sortedList was also
written to use String items, and must be changed so that items are EntryPlus objects.

Testing MergeBooks required that we write a small program to enable us to create
data files and another program to view the name fields in the files. When you work
with files of serialized objects it is often necessary to write such helper programs as

CASE STUDY 571

part of the testing process. Recall that serialized object files cannot be viewed or
created with an editor.

Here are the names for the entries on files adBook1.dat and adBook2.dat:

Here are the name fields from file adBook3.dat and the labels printed on file
labels.out:

11.8 Testing and Debugging

We have written a test plan for the unsorted list and the sorted list. However, we have not
tested the sortmethod that was used in the class ListWithSort.The method selectSort takes
an array of items and rearranges the items so that they are in ascending order. If we write
a black-box testing plan, which end cases should we test in addition to the general case?
These cases fall into two categories, based on the length of the list of items and on the or-
der of the items in the original list:

572 | Array-Based Lists

1. The list is empty.

2. The list contains one item.

3. The list contains more than one item.

4. The list contains the maximum number of items.

5. The list is already sorted in ascending order.

6. The list is already sorted in descending order.

We leave it as an exercise to convert this list into a complete test plan.

Testing and Debugging Hints

1. Review the testing and debugging hints from Chapter 10.

2. When the objects on the list are of simple types, their type names must be on
the parameter lists for isThere, insert, and delete.

3. When the objects on the list are of composite types, use Comparable in the pa-
rameter lists for the class name.

4. Verify that any argument to a list method with a Comparable parameter
belongs to a class that has implemented the Comparable interface.

5. Be careful: arguments of primitive types cannot be passed to a method whose
parameter implements the Comparable interface.

6. Test general-purpose methods outside the context of a particular application,
using a test driver.

7. Choose test data carefully so that you test all end conditions and some condi-
tions in the middle. End conditions reach the limits of the structure used to
store them. For example, a list test plan should include test data in which the
number of components is 0, 1, and the array size, as well as somewhere in
between.

Summary

This chapter provided practice in working with lists, where the items on the list are
stored in a one-dimensional array. We examined algorithms that insert, delete, and
search data stored in an array-based unsorted list, and we wrote methods to imple-
ment these algorithms. We also examined an algorithm that takes the array in which
the list items are stored and sorts them into ascending order.

We examined several search algorithms: sequential search in an unsorted list, se-
quential search in a sorted list, and binary search.The sequential search in an

573

unsorted list compares each item in the list to the one being searched for. All items
must be examined before it can be determined that the search item is not present in
the list.The sequential search in a sorted list can determine that the search item is
not in the list when it passes the place where the item belongs.The binary search
looks for the search item in the middle of the list. If it is not there, then the search
continues in the half where the item should be.This process continues to cut the
search area in half until either the item is found or the search area is empty.

We also examined the insertion algorithm that keeps the items in the list sorted
by value. We generalized the list in an abstract class called List, leaving the insert,
delete, and isThere methods abstract. Finally, we demonstrated the use of the
Comparable interface as a way to make the list items generic.

Quick Check

1. What is the difference between a list and an array? (pp. 523–524)

2. If the list is unsorted, does it matter where a new item is inserted? (p. 543)

3. The following code fragment implements the “delete, if it’s there” meaning for
the delete operation in an unsorted list. Change it so that the other meaning is
implemented; that is, there is an assumption that the item is in the list.
(pp. 525–536)

while (index < numItems && !found)
{
if (listItems[index].compareTo(item) == 0)
found = true;

else
index++;

}
if (found)
{
for (int count = index; count < numItems-1; count++)
listItems[count] = listItems[count+1];

numItems--;
}

4. In a sequential search of an unsorted array containing 1,000 values, what is the
average number of loop iterations required to find a value? What is the
maximum number of iterations? (pp. 557–558)

5. The following code fragment sorts list items into ascending order. Change it to
sort into descending order. (pp. 542–543)

for (passCount = 0; passCount < numItems; passCount++)
{

minIndex = passCount;

574

for (searchIndex = passCount + 1; searchIndex < numItems;

searchIndex++)

if (listItems[searchIndex].compareTo(listItems[minIndex]) < 0)

minIndex = searchIndex;

temp = listItems[minIndex]; // Swap

listItems[minIndex] = listItems[passCount];

listItems[passCount] = temp;

}

6. Describe how the insert operation can be used to build a sorted list from
unsorted input data. (pp. 545–548)

7. Describe the basic principle behind the binary search algorithm. (pp. 552–557)

Answers

1. A list is a variable-sized structured data type; an array is a built-in type often used to implement a list.
2. No.
3. index = 0;

while (listItems[index].compareTo(item) != 0)
index++;

for (int count = index; count < numItems-1; count++)
listItems[count] = listItems[count+1];

numItems--;
4. The average number is 500.5 iterations.The maximum is 1,000 iterations. 5. The only required change is to
replace the < 0 with > 0 in the inner loop. As a matter of style, the name minIndex should be changed to
maxIndex. 6. The list initially has a length of 0. Each time a value is read, insert adds the value to the list in its
correct position. When all the data values have been read, they are in the array in sorted order. 7. The binary
search takes advantage of sorted list values, looking at a component in the middle of the list and deciding
whether the search value precedes or follows the midpoint.The search is then repeated on the appropriate
half, quarter, eighth, and so on, of the list until the value is located.

Exam Preparation Exercises

1. A binary search can be applied to integers as well as to objects. Suppose the fol-
lowing values are stored in an array in ascending order:

28 45 97 103 107 162 196 202 257

Applying the binary search algorithm to this array, search for the following val-
ues and indicate how many comparisons are required to either find the
number or find that it is not present in the list.

a. 28

b. 32

c. 196

d. 194

575

2. Repeat Exercise 1, applying the algorithm for a sequential search in a sorted
list.

3. The following values are stored in an array in ascending order:

29 57 63 72 79 83 96 104 114 136

Apply the binary search algorithm looking for 114 in this list, and trace the val-
ues of first, last, and middle. Indicate any undefined values with a U.

4. A binary search is always a better choice than a sequential search. (True or
False?)

5. If resetList initializes currentPos to �1 rather than 0, what corresponding
change would have to be made in getNextItem?

6. We have said that arrays are homogeneous structures, yet Java implements
them with an associated integer. Explain.

7. Why does the outer loop of the sorting method run from 0 through numItems – 2
rather than numItems – 1?

8. A method that returns the number of days in a month is an example of (a) a
constructor, (b) an observer, (c) an iterator, or (d) a transformer.

9. A method that adds a constant to the salary of everyone in a list is an example
of (a) a constructor, (b) an observer, (c) an iterator, or (d) a transformer.

10. A method that stores values into a list is an example of (a) a constructor, (b) an
observer, (c) an iterator, or (d) a transformer.

11. What Java construct is implemented using the keyword implements?

12. What kind of class cannot be instantiated?

13. Which interface contains the method compareTo? What does compareTo return?

14. The class List assumes that no duplicate items appear in the list.

a. Which method algorithms would have to be changed to allow duplicates?

b. Would there still be options for the delete operation? Explain.

Programming Warm-Up Exercises

1. Complete the implementation of UnsortedList as a class derived from the
abstract class List.

2. Complete the implementation of ListWithSort as a class derived from
UnsortedList.

3. Derive a subclass of UnsortedList that has the following additional methods.

a. A value-returning instance method named occurrences that receives a single
parameter, item, and returns the number of times item occurs in the list.

576

b. A Boolean instance method named greaterFound that receives a single argu-
ment, item, and searches the list for a value greater than item. If such a value
is found, the method returns true; otherwise, it returns false.

c. An instance method named component that returns a component of the list
given a position number (pos).The position number must be within the
range 0 through numItems – 1.

d. A copy constructor for the List class that takes an argument that specifies
how much to expand the array holding the items. Implement the copy
constructor by creating a larger array and copying all of the items in the list
into the new array.

4. Complete the implementation of SortedList as a class derived from the abstract
class List.

5. Derive a subclass of SortedList that has the additional methods outlined in
Programming Warm-Up Exercise 3.

6. Write a Java Boolean method named exclusive that takes three arguments:
item, list1, and list2 (both of class List as defined in this chapter).The method
returns true if item is present in either list1 or list2 but not both.

7. The insert method in the class SortedList inserts items into the list in ascend-
ing order. Derive a new class from List that sorts the items into descending
order.

8. Exam Preparation Exercise 14 asked you to examine the implication of a list
with duplicates.

a. Design an abstract class ListWithDuplicates that allows duplicate keys.

b. How does your design differ from List?

c. Implement your design where the items are unsorted and delete deletes all
of the duplicate items.

d. Implement your design where the items are sorted and delete deletes all of
the duplicate items.

e. Did you use a binary search in part (d)? If not, why not?

9. Rewrite the method insert in the class SortedList so that it implements the
first insertion algorithm discussed for sorted lists.That is, the place where the
item should be inserted is found by searching from the beginning of the list.
When the place is found, all of the items from the insertion point to the end of
the list shift down by one position.

577

Programming Problems

1. A company wants to know the percentages of total sales and total expenses
attributable to each salesperson. Each person has a pair of data lines.The first
line contains his or her name, with the last name coming first.The second line
contains his or her sales (int) and expenses (float). Write an application that
produces a report with a header line containing the total sales and total
expenses. Follow this header with a table containing each salesperson’s name,
percentage of total sales, and percentage of total expenses, sorted by the sales-
person’s name. Use one of the list classes developed in this chapter to
implement your solution.

2. Only authorized shareholders are allowed to attend a stockholders’ meeting.
Write an application to read a person’s name from the keyboard, check it
against a list of shareholders, and print a message on the screen saying
whether the person may attend the meeting.The list of shareholders is in a file
called owners, with one name per line, in the following format: first name,
blank, last name. Use the end-of-file condition to stop reading the file.The
maximum number of shareholders is 1,000.

As a stockholder enters the meeting, he or she enters his or her name. If the
name does not appear on the list, the code should repeat the instructions on
how to enter the name and then tell the user to try again. A message saying
that the person may not enter should be printed only after he or she has been
given a second chance to enter the name.

3. Enhance the application in Problem 2 as follows:

a. Print a report file showing the number of stockholders at the time of the
meeting, the number present at the meeting, and the number of people who
tried to enter but were denied permission to attend.

b. Follow this summary report with a list of the names of the stockholders,
with either Present or Absent after each name.

4. An advertising company wants to send a letter to its clients announcing a new
fee schedule.The clients’ names appear on several different lists in the
company.The various lists are merged to form one file, called clients, but the
company does not want to send a letter twice to anyone.

Write an application that removes any names appearing on the list more
than once. Each data line contains a four-digit code number, followed by a
blank, and then the client’s name. For example, Amalgamated Steel is listed as

0231 Amalgamated Steel

Your code should output each client’s code and name, but no duplicates should
be printed. Use one of the list classes developed in this chapter to implement
your solution.

Case Study Follow-Up

1. What changes would be required for the application MergeBooks to:

a. Count the number of names on the first file?

b. Count the number of names on the second file?

c. Count the number of names on the combined file?

d. Print these counts on the screen using System.out?

578

2. Develop data files to test the three cases outlined in the Case Study.

3. Change the application so that the resulting address book and printed labels
contain only those entries that appear in both address books.

4. Change the application so that the resulting address book and printed labels
contain only those entries that appear in the first address book but not the
second.

579

Knowledge Goals
• To understand the role of a two-dimensional array in representing a table

with rows and columns

• To know how floating-point numbers are represented in the computer

• To know how the limited numeric precision of the computer can affect
calculations

• To understand the relationship between an array and a matrix

• To understand how a two-dimensional array is constructed as an array of arrays

Skill Goals
To be able to:

• Declare a two-dimensional array

• Perform fundamental operations on a two-dimensional array:

• Access a component of the array

• Initialize the array

• Print the values in the array

• Process the array by rows

• Process the array by columns

• Declare a two-dimensional array as a parameter

• Declare and process a multidimensional array

• Use the class DecimalFormat to format output

Multidimensional
Arrays and Numeric
Computation

1983
Bjarne Stroustrup
works on the
development of the
programming
language C++ at
AT&T Bell Labs

1984
Apple introduces its
32-bit Macintosh
computer through a
famous Orwellian-
themed advertising
campaign that
premiers during the
Super Bowl

1984
Sony and Philips
introduce the CD-
ROM, a new means
of storing digital
data that far
exceeds the floppy
disk’s potential

1984
The Last Starfighter
revolutionizes the
use of
supercomputer-
generated graphics
in movies, and the
term “cyberspace” is
coined by William
Gibson

1984
Intel’s 16-bit 80286
chip, created in
1982, will be
installed in 15
million PCs within
6 years

1985
The Cray 2 and
Thinking Machines’
parallel processor
Connection Machine
take speed to a new
level: 1 billion
operations per
second

12
C H A P T E R

we choose to hold a collection of data objects play an
important role in the design process. In the last two chapters, we dis-
cussed the one-dimensional array and its use in problems where the log-
ical representation of the data is a list of objects. The choice of data
structure directly affects the design, because it determines the algo-
rithms used to process the data objects. For example, if the data items are
stored in sorted order within the array, we can apply a binary search al-
gorithm to them rather than a linear search.

In many problems, however, the relationships between data items are
more complex than can be represented in a simple list. For example, we
need a more sophisticated data structure when simulating board games
(such as chess,Tic-Tac-Toe, or Scrabble), computer graphics (where points
on the screen are arranged as a two-dimensional object), or matrix op-
erations in mathematics. In this chapter we examine the two-dimen-
sional array, which is useful when we need to organize data in two
dimensions. We usually call these dimensions rows and columns.

In addition, we extend the definition of an array to allow arrays with
any number of dimensions, called multidimensional arrays. Each dimen-
sion represents a different feature of the data objects in the structure. For
example, we might use a three-dimensional array to store objects repre-
senting sales figures by (1) store number, (2) month, and (3) item number.

Finally, we take a closer look at the limitations of the computer in do-
ing calculations, noting how these limitations can cause numerical errors
and how we can avoid such errors.This discussion relates directly to the
Case Study, in which we examine arrays as implementation structures for
two mathematical objects, vector and matrix.

The structures that

1985
Microsoft releases
Windows 1.0. It is
their first in a series
of widely-used
operating systems

1985
Intel introduces the
80386, a 32-bit
processing chip with
on-chip memory
management

1985
Paul Brainard
creates PageMaker,
and launches the
world of PC desktop
publishing

1986
The Cray XMP
supercomputer
executes 713 million
floating-point
calculations per
second

1988
Microprocessor
speeds reach 17
million instructions
per second with
Motorola’s 88000
chip

1988
Robert Morris Jr.
releases a worm
program into the
Internet,
demonstrating the
need for greater
network security

582 | Multidimensional Arrays and Numeric Computation

12.1 Two-Dimensional Arrays

A one-dimensional array is used to represent items in a list or a sequence of values. A two-

dimensional array is used to represent items in a table with rows and columns, provided each
item in the table is of the same type or class.We access a component in a two-di-
mensional array by specifying the row and column indexes of the item in the ar-
ray.This task is a familiar one. For example, if you want to find a street on a map,
you look up the street name on the back of the map to find the coordinates of the
street, usually a number and a letter. The number specifies a row, and the letter
specifies a column.You find the street where the row and column intersect.

Figure 12.1 shows a two-dimensional array with 100 rows and 9 columns.The
rows are accessed by an integer ranging from 0 through 99; the columns are ac-
cessed by an integer ranging from 0 through 8. Each component is accessed by a
row–column pair—for example, (0, 5).

Array Declaration and Instantiation

We declare a two-dimensional array variable in exactly the same way that we declare a one-
dimensional array variable, except that we use two pairs of brackets. Likewise, we instanti-
ate a two-dimensional array object in exactly the same way, except that we must specify sizes
for two dimensions. Below is the syntax template for declaring an array with two dimensions:

Two-dimensional array A col-
lection of components, all of the
same type, structured in two di-
mensions. Each component is
accessed by a pair of indexes
that represent the component’s
position in each dimension.

alpha

[0]

[0]

[1]

[2]

[3]

[98]

[99]

[1] [2] [3] [4] [5] [6] [7] [8]

Row 0, column 5

Row 98, column 2

Figure 12.1 alpha Array

12.1 T w o - D i m e n s i o n a l A r r a y s | 583

Column
number

Row
number

The first two lines of the following code fragment would create the two-dimensional ar-
ray shown in Figure 12.1, where the data in the table are floating-point numbers.

double[][] alpha;
alpha = new double[100][9];
String[][] beta;
beta = new String[10][10];

The first dimension specifies the number of rows, and the second dimension specifies
the number of columns. Once the two-dimensional array has been created, alpha.length and
beta.length give the number of rows in each array.

Accessing Individual Components

To access an individual component of the alpha array, we use two expressions (one for each
dimension) to specify its position.We place each expression in its own pair of brackets next
to the name of the array:

alpha[0][5] = 36.4;

The syntax template for accessing a two-dimensional array component follows:

As with one-dimensional arrays, each index expression must result in an integer value be-
tween 0 and the number of slots in that dimension minus one.

Let’s look now at some examples. Here is the declaration of a two-dimensional array with
364 integer components (52 � 7 = 364):

int[][] hiTemp;
hiTemp = new int[52][7];

Here hiTemp is an array with 52 rows and 7 columns. Each place in the array (each component)
can contain an int value. Our intention is that the array hold high temperatures for each day

Array-Name [Index-Expression] [Index-Expression]

Two-Dimensional-Array-Component-Access

Data-Type[][] Array-Name;

Two-Dimensional-Array-Declaration

584 | Multidimensional Arrays and Numeric Computation

hiTemp

[0]

[0]

[1]

[2]

[51]

[1] [2] [5]

hiTemp[2] [6]

//Print temperture values
// for 3rd week (row 2)

for (day = 0; day < 7; day++)
 outFile.printin(hiTemp[2] [day]);

Figure 12.2 hiTemp Array

in a year. Each row represents one of the 52 weeks in a year, and each column represents one
of the 7 days in a week. (To keep the example simple, we ignore the fact that there are 365—
and sometimes 366—days in a year.) The expression hiTemp[2][6] refers to the int value in the
third row (row 2) and the seventh column (column 6). Semantically, hiTemp[2][6] is the tem-
perature for the seventh day of the third week. The code fragment shown in Figure 12.2
would print the temperature values for the third week.

To obtain the number of columns in a row of an array, we access the length field for the
specific row. For example, the statement

midYear = hiTemp[26].length;

stores the length of row 26 of the array hiTemp, which is 7, into the int variable midYear.

Using Initializer Lists

Just as we can create a one-dimensional array with a list of values, so we can create a two-
dimensional array with a list of a list of values. For example, the following statement in-
stantiates a two-dimensional array of baseball hits. This array represents the hits for a
five-day period for your four favorite baseball players.

int[][] hits = {{2, 1, 0, 3, 2},
{1, 1, 2, 3, 4},
{1, 0, 0, 0, 0},
{0, 1, 2, 1, 1}};

As in the case of a one-dimensional array, you do not use new with an initializer list. Now what
would happen if one of your favorite players went into a slump, and the manager gave him
a rest for a few days? How could you represent that scenario in your array? Suppose that the
third player sat out three games. Here is how you would represent this situation:

12.1 T w o - D i m e n s i o n a l A r r a y s | 585

int[][] hits = {{2, 1, 0, 3, 2},
{1, 1, 2, 3, 4},
{1, 0},
{0, 1, 2, 1, 1}};

The third row in the table would have only two columns, not five like the others. In such a
ragged array, the lengths of the rows are not all the same. In fact, we could instantiate the same
ragged array as follows:

int[][] hits;
hits = new int[4][];
hits[0] = new int[5];
hits[1] = new int[5];
hits[2] = new int[2];
hits[3] = new int[5];

If we then access the lengths of rows 1 and 2 with the code

one = hits[1].length;
two = hits[2].length;

we would find that variable one has been assigned a value of 5 and variable two contains 2.
The moral here is that in Java, each row of a two-dimensional array is itself a one-di-

mensional array. Many programming languages directly support two-dimensional arrays; Java
doesn’t. In Java, a two-dimensional array is an array of references to array objects. Because
of the way that Java handles two-dimensional arrays, the drawings in Figures 12.1 and 12.2
are not quite accurate. Figure 12.3 shows how Java actually implements the array hiTemp.

hiTemp

[0]

[0]

[1]

[2]

[51]

[1] [2] [6]

Figure 12.3 Java Implementation of hiTemp Array

586 | Multidimensional Arrays and Numeric Computation

From the Java programmer’s perspective, however, the two views are synonymous in the
majority of applications.We typically instantiate arrays with the same number of columns in
every row,rarely creating a ragged array.For this reason,we continue to use the stylized version.

12.2 Processing Two-Dimensional Arrays

Processing data in a two-dimensional array generally means accessing the array in one of
four patterns: randomly, along rows, along columns, or throughout the entire array. Each of
these strategies may also involve subarray processing.

The simplest way to access a component is to look directly in a given location. For ex-
ample, a user might enter map coordinates that we use as indexes into an array of street
names to access the desired name at those coordinates.This process is referred to as random
access because the user may enter any set of coordinates at random.

In many cases, we might want to perform an operation on all the elements of a particu-
lar row or column in an array. Consider the hiTemp array defined previously, in which the rows
represent weeks of the year and the columns represent days of the week. If we wanted the
average high temperature for a given week, we would sum the values in that row and divide
by 7. If we wanted the average for a given day of the week, we would sum the values in that
column and divide by 52.The former case is access by row; the latter case is access by column.

Now suppose that we want to determine the average high temperature for the year.We
must access every element in the array, sum them, and divide by 364. In this case, the order
of access—by row or by column—is not important. (The same is true when we initialize
every element of an array to some constant, such as �1.) This approach involves access
throughout the array.

Sometimes, however, we must access every array element in a particular order, either by
rows or by columns. For example, if we wanted the average high temperature for every week,
we would run through the entire array, taking each row in turn. However, if we wanted the
average high temperature for each day of the week, we would run through the array one
column at a time.

Let’s take a closer look at these patterns of access by considering three common exam-
ples of array processing:

1. Sum the rows.

2. Sum the columns.

3. Initialize the array to all zeros (or some special value).

In the following discussion, we use the generic identifiers row and col, rather than prob-
lem-dependent identifiers, and look at each algorithm in terms of generalized two-dimen-
sional array processing.The array that we use is declared and instantiated by the following
statement:

int[][] data = new int[50][30]; // A two-dimensional array

In the following discussion we assume that data contains valid information.

12.2 P r o c e s s i n g T w o - D i m e n s i o n a l A r r a y s | 587

Sum the Rows

Suppose we want to sum row number 3 (the fourth row) in the array and print the result.We
can do this easily with a for loop:

int total = 0;
for (int col = 0; col < data[3].length; col++)
total = total + data[3][col];

outFile.println("Row sum: " + total);

This for loop runs through each column of data, while keeping the row index fixed at 3. Every
value in row 3 is added to total.

Now suppose we want to sum and print two rows—row 2 and row 3.We can use a nested
loop and make the row index be a variable:

for (int row = 2; row <= 3; row++)
{
int total = 0;
for (int col = 0; col < data[row].length; col++)
total = total + data[row][col];

outFile.println("Row sum: " + total);
}

The outer loop controls the rows, and the inner loop controls the columns. For each value of
row, every column is processed; then the outer loop moves to the next row. In the first itera-
tion of the outer loop, row is held at 2 and col goes from 0 through data[2].length.Therefore,
the array is accessed in the following order:

data[2][0] [2][1] [2][2] [2][3] ... [2][29]

In the second iteration of the outer loop, row is incremented to 3, and the array is accessed
as follows:

data[3][0] [3][1] [3][2] [3][3] ... [3][29]

We can generalize this row processing to run through every row of the array by having
the outer loop run from 0 through data.length-1. However, if we want to access only part of
the array (subarray processing), given variables declared as

int rowsFilled; // Data is in 0..rowsFilled – 1
int colsFilled; // Data is in 0..colsFilled – 1

then we write the code fragment as follows:

for (int row = 0; row < rowsFilled; row++)
{

588 | Multidimensional Arrays and Numeric Computation

data

[0]

[0]

[1]

[2]

[rowsFilled–1]

[data.length–1]

[1] [2]

[colsFilled–1] [data[i].length–6]

Figure 12.4 Subarray Processing by Row.

// Array is not ragged
total = 0;
for (int col = 0; col < colsFilled; col++)
total = total + data[row][col];

outFile.println("Row sum: " + total);
}

This is an example of subarray processing by row. Figure 12.4 illustrates subarray process-
ing by row.

Sum the Columns

Suppose we want to sum and print each column.The code to perform this task follows.Again,
we have generalized the code to sum only the portion of the array that contains valid data.

for (int col = 0; col < colsFilled; col++)
{
// Array is not ragged
total = 0;
for (int row = 0; row < rowsFilled; row++)
total = total + data[row][col];

outFile.println("Column sum: " + total);
}

12.2 P r o c e s s i n g T w o - D i m e n s i o n a l A r r a y s | 589

data

[0]

[0]

[1]

[2]

[rowsFilled–1]

[data.length–1]

[1] [2]

[colsFilled–1] [data[i].length–6]

Figure 12.5 Subarray Processing by Column.

In this case, the outer loop controls the column, and the inner loop controls the row. All the
components in the first column are accessed and summed before the outer loop index
changes and the components in the second column are accessed. Figure 12.5 illustrates sub-
array processing by column.

Initialize the Array

Instantiating an array with initializer lists is impractical if the array is large. For a 100-row
by 100-column array, you don’t want to list 10,000 values. If the values are all different, you
should store them into a file and input them into the array at run time. If the values are all
the same, the usual approach employs nested for loops and an assignment statement. Here
is a general-purpose code segment that sets every item in the array to �1:

for (int row = 0; row < data.length; row++)
for (int col = 0; col < data[row].length; col++)
data[row][col] = –1;

In this case, we initialized the array a row at a time, but we could just as easily have run
through each column instead.The order doesn’t matter as long as we access every element.

Almost all processing of data stored in a two-dimensional array involves either pro-
cessing by row or processing by column.The looping patterns for row processing and column
processing are so useful that we summarize them next.To make them more general, we use
minRow for the first row number and minCol for the first column number. Remember that row

590 | Multidimensional Arrays and Numeric Computation

processing has the row index in the outer loop, and column processing has the column in-
dex in the outer loop.

Row Processing

for (int row = minRow; row < rowsFilled; row++)
for (int col = minCol; col < colsFilled; col++)

// Whatever processing is required

Column Processing

for (int col = minCol; col < colsFilled; col++)
for (int row = minRow; row < rowsFilled; row++)

// Whatever processing is required

Two-Dimensional Arrays and Methods

A two-dimensional array can be a parameter in a method, and it can be the return value type
for a method. The syntax and semantics are identical to those for one-dimensional arrays
except we use an additional pair of brackets. Let’s enclose the array initialization code frag-
ment within a method:

void initialize(int[][] data)
// Set every cell in data to -1
{
for (int row = 0; row < data.length; row++)
for (int col = 0; col < data[row].length; col++)
data[row][col] = -1;

}

Because Java has a field associated with each array that contains the number of slots de-
fined for the array, we do not have to pass this information as a parameter as we do in many
other languages.This ability is a consequence of the object orientation of the language.The
array is an object and the information about the object is encapsulated with it.

As an example of a value-returning method, let’s design one that returns a copy of the
array passed as a parameter. All the information we need to instantiate the new array is
present in the array passed as a parameter. We just instantiate it and copy in the values.

int[][] copy(int[][] data)
// Returns a deep copy of data, assuming data is not ragged
{
int[][] copyData = new int[data.length] [data[0].length];
for (int row = 0; row < data.length; row++)
for (int col = 0; col < data[row].length; col++)
copyData[row][col] = data[row][col];

return copyData;
}

12.3 M u l t i d i m e n s i o n a l A r r a y s | 591

12.3 Multidimensional Arrays

Java does not place a limit on the number of dimensions that an array can have.
We can generalize our definition of an array to cover all cases.

You might have guessed that you can have as many dimensions as you want.
How many should you use in a particular case? As many as there are features that
describe the components in the array.

Take, for example, a chain of department stores. Monthly sales figures must
be kept for each item by store. There are three important pieces of information
about each item: the month in which it was sold, the store from which it was
purchased, and the item number.We can declare an array to summarize this data
as follows:

int[][][] sales; // Declare array of sales figures
// First dimension represents number of stores;
// second dimension represents months;
// third dimension represents items
sales = new int[100][12][10]; // Instantiate array

Figure 12.6 provides a graphic representation of the sales array.
The number of components in sales is 12,000 (10 � 12 � 100). If sales fig-

ures are available only for January through June, then half of the array is empty.
If we want to process the data in the array, we must use subarray processing.
The following code fragment sums and prints the total number of each item sold
this year to date by all stores:

int currentMonth = 6; // Range: 1..12

for (int item = 0; item < sales[0][0].length; item++)
{
numberSold = 0;
for (int store = 0; store < sales.length; store++)
for (int month = 0; month < currentMonth; month++)
numberSold = numberSold + sales[store][month][item];

outFile.println("Item # " + item + " Sales to date = "
+ numberSold);

}

Because item controls the outer for loop, we are summing each item’s sales by month and
store. If we want to find the total sales for each store, we use store to control the outer for
loop, summing that location’s sales by month and item with the inner loops.

int currentMonth = 6;

for (int store = 0; store < sales.length; store++)

Array A collection of compo-
nents, all of the same type,
ordered on N dimensions (N >=
1). Each component is accessed
by N indexes, each of which rep-
resents the component’s posi-
tion within that dimension.

ite
ms

st
or

es

months

Figure 12.6 sales Array

592 | Multidimensional Arrays and Numeric Computation

{
numberSold = 0;
for (int item = 0; item < sales[0][0].length; item++)
for (int month = 0; month < currentMonth; month++)
numberSold = numberSold + sales[store][month][item];

outFile.println("Store # " + store + " Sales to date = "
+ numberSold);

}

It takes two loops to access each component in a two-dimensional array; it takes three
loops to access each component in a three-dimensional array.The task to be accomplished
determines which index controls the outer loop, the middle loop, and the inner loop. If we
want to calculate monthly sales by store, month controls the outer loop and store controls the
middle loop. If we want to calculate monthly sales by item, month controls the outer loop
and item controls the middle loop.

A multidimensional array can be a parameter and can serve as the return type of a
method. Just be sure that you have as many pairs of brackets as you have dimensions fol-
lowing the type or class name.

12.4 Vector Class

We cannot end our discussion of arrays without mentioning a class that is available in the
java.util package: the Vector class.The Vector class offers functionality similar to that of the
one-dimensional array. In fact, the array is the underlying implementation structure used
in this class. In contrast to an array, however, a vector can grow and shrink; its size is not fixed
for its lifetime.The Vector class provides methods to manipulate items at specified index po-
sitions. In many ways, the vector resembles the general-purpose list classes that we de-
signed in Chapter 11. We explore the Vector class in more detail in the exercises.

12.5 Floating-Point Numbers

We have used floating-point numbers off and on since we introduced them in Chapter 2, but
we have not examined them in depth. Floating-point numbers have special properties when
used on the computer. Thus far, we’ve tended to ignore these properties, but now it’s time
to consider them in detail.

Representation of Floating-Point Numbers

As we know, Java represents numbers in the binary number system and its different nu-
meric types use different numbers of bits.To simplify the following discussion, let’s assume
that we have a computer in which each memory location is the same size and is divided into
a sign plus five decimal digits.When we define a variable or constant, the location assigned
to it consists of five digits and a sign. When we define an integral variable or constant, the
interpretation of the number stored in that place is straightforward.When we define a float-

12.5 F l o a t i n g - P o i n t N u m b e r s | 593

ing-point variable or constant, the number stored there has both a whole-number part and
a fractional part, so we must code it to represent both parts.

Let’s see what such coded numbers might look like. The range of whole numbers we
can represent with five digits is �99,999 through +99,999:

Our precision (the number of digits we can represent) is five digits, and
each number within that range can be represented exactly.

What happens if we allow one of those digits (the leftmost one, for ex-
ample) to represent an exponent?

Then +82345 represents the number +2345 � 108. The range of numbers we now can
represent is much larger:

�9999 � 109 through 9999 � 109

or

�9,999,000,000,000 through +9,999,000,000,000

However, our precision is now only four digits; that is, only four-digit
numbers can be represented exactly in our system. What happens to num-
bers with more digits? The four leftmost digits are represented correctly, and
the rightmost digits, or least significant digits, are lost (assumed to be 0).
Figure 12.7 shows the result. Note that 1,000,000 can be represented exactly
but �4,932,416 cannot, because our coding scheme limits us to four significant

digits.

To extend our coding scheme to represent floating-point numbers, we
must be able to represent negative exponents. Examples are

7394 � 10�2 = 73.94

and

22 � 10�4 = .0022

Exponent

+ 8 2 3 4 5

–99999 through +99999

Largest positive number

Largest negative number

Zero

+ 9 9 9 9 9

– 9 9 9 9 9

+ 0 0 0 0 0

Precision The maximum num-
ber of significant digits

Significant digits Those digits
from the first nonzero digit on
the left to the last nonzero digit
on the right (plus any 0 digits
that are exact)

594 | Multidimensional Arrays and Numeric Computation

+ 1 9 9 9 9

NUMBER POWER OF TEN
NOTATION CODED REPRESENTATION VALUE

+99,999

–999,999

+1,000,000

–4,932,416

+99,999

–999,999

+1,000,000

–4,932,416

+9999 × 101

–9999 × 102

–1000 × 103

–4932 × 103

Sign Exp

– 2 9 9 9 9

Sign Exp

+ 3 1 0 0 0

Sign Exp

– 3 4 9 3 2

Sign Exp

Figure 12.7 Coding Using Positive Exponents

9 9+ + 9 9

9 9– + 9 9

0 0+ – 9 0

0 0– – 9 0

9

9

1

1

Sign Exp

Sign of
number

Sign of
exponent

Largest positive number: +9999 109

Largest negative number: –9999 109

Smallest positive number: +1 10–9

Smallest negative number: –1 10–9

Figure 12.8 Coding Using Positive and Negative Exponents

Because our scheme does not include a sign for the exponent, let’s change it slightly.The ex-
isting sign becomes the sign of the exponent, and we add a sign to the far left to represent
the sign of the number itself (see Figure 12.8).

We can now represent all the numbers between �9999 � 109 and 9999 � 109 accurately
to four digits.Adding negative exponents to our scheme allows us to represent fractional num-
bers as small as 1 � 10�9.

Figure 12.9 shows how we would encode some floating-point numbers. Note that our pre-
cision remains four digits.The numbers 0.1032, �5.406, and 1,000,000 can be represented ex-
actly.The number 476.0321, however, has seven significant digits but is represented as 476.0;

12.5 F l o a t i n g - P o i n t N u m b e r s | 595

0 3+ – 4 1

4 0– – 3 5

0 0– – 6 3

7 6+ – 1 4

2

6

0

0

Sign Exp

+1032 10–40.1032 0.1032

–5406 10–3–5.4060 –5.406

–3000 10–6–0.003 –0.0030

+4760 10–1476.0321 476.0

NUMBER POWER OF TEN
NOTATION

CODED REPRESENTATION VALUE

Figure 12.9 Coding of Some Floating-point Numbers

the 321 cannot be represented in our system. (Some computers, including all JVMs, perform
rounding rather than simple truncation when discarding excess digits. Using our assumption
of four significant digits, rounding would store 476.0321 as 476.0 but would store 476.0823 as
476.1. We continue our discussion assuming simple truncation rather than rounding.)

Arithmetic with Floating-Point Numbers

When we use integer arithmetic, our results are exact. Floating-point arithmetic, however,
is seldom exact.To understand why, let’s add three floating-point numbers x, y, and z using
our coding scheme.

First we add x to y, and then we add z to the result. Next, we perform the operations in
a different order, first adding y to z, and then adding x to that result. The associative law of
arithmetic says that the two answers should be the same—but are they? Let’s use the fol-
lowing values for x, y, and z:

x = �1324 � 103 y = 1325 � 103 z = 5424 � 100

Here is the result of adding z to the sum of x and y:

(x) –1324 � 103

(y) 1325 � 103

1 � 103 � 1000 � 100

(x�y) 1000 � 100

(z) 5424 � 100

6424 � 100 ← (x�y)�z

596 | Multidimensional Arrays and Numeric Computation

Here is the result of adding x to the sum of y and z:

(y) 1325000 � 100

(z) 5424 � 100

1330424 � 100 = 1330 � 103 (truncated to four digits)

(y�z) 1330 � 103

(x) –1324 � 103

6 � 103 = 6000 � 100 ← x + (y + z)

These two answers are the same in the thousands place but are different there-
after.This discrepancy results from a representational error.

Representational error makes it unwise to use a floating-point variable as a
loop control variable. Because precision may be lost in calculations involving float-
ing-point numbers, it is difficult to predict when (or even if) a loop control variable
of type float (or double) will equal the termination value.As a consequence,a count-
controlled loop with a floating-point control variable can behave unpredictably.

Also because of representational errors, you should never compare floating-
point numbers for exact equality. Rarely are two floating-point numbers exactly

equal, and thus you should compare them only for near equality. If the difference between the
two numbers is less than some acceptable small value,you can consider them equal for the pur-
poses of the given problem.

Implementation of Floating-Point Numbers in the Computer

All computers limit the precision of floating-point numbers, although modern machines
use binary rather than decimal arithmetic. In our representation, we used only five digits to
simplify the examples. In fact, some computers really are limited to only four or five digits
of precision. Other systems provide 6 significant digits, 15 significant digits, and 19 signifi-
cant digits, respectively, for three sizes of floating-point types.We have shown only a single-
digit exponent, but most systems allow two digits for the smaller floating-point type and up
to four-digit exponents for a longer type.

Some languages leave the range and precision of floating-point types to each individual
compiler. Java, however, states the range and precision in the language specification in the
following formula:

s � m � 2e

where s is +1 or �1, m is a positive integer less than 224, and e is between �126 and 127, in-
clusive, for values of type float. For values of type double, m is less than 253 and e is between
�1,022 and 1,023. No, we don’t expect you to calculate this value. Each Java numeric class (such
as Integer or Double) provides two constants, MAX_VALUE and MIN_VALUE that contain those
values..

When you declare a floating-point variable, part of the memory location contains the
exponent, and the number itself (called the mantissa) is assumed to be in the balance of the

Representational error An
arithmetic error that occurs
when the precision of the true
result of an arithmetic operation
is greater than the precision of
the machine

12.5 F l o a t i n g - P o i n t N u m b e r s | 597

location.The name “floating-point” refers to the concept that the decimal point is allowed to
float (move to different positions as necessary). In our coding scheme, every number is stored
as four digits, with the leftmost digit being nonzero and the exponent adjusted accordingly.
Numbers in this form are said to be normalized. For example, the number 1,000,000 is stored as

and 0.1032 is stored as

Normalization provides the maximum precision possible.
In Java, values of type float use 32 bits with an approximate range of �3.4E+38 to 3.4E+38

with 6 significant digits. Values of type double use 64 bits with an approximate range of
�1.7E+308 to 1.7E+308 with 15 significant digits.

Model Numbers Any real number that can be represented exactly as a floating-point number
in the computer is called a model number. A real number whose value cannot be represented
exactly is approximated by the model number closest to it. In our system with four digits of
precision, 0.3021 is a model number.The values 0.3021409, 0.3021222, and 0.30209999999 are
examples of real numbers that are represented in the computer by the same model number.
The following table shows all of the model numbers for an even simpler floating-point sys-
tem that has one digit in the mantissa, no sign (all mantissas are positive or zero), and an
exponent that can be �1, 0, or 1.

0.0 � 10�1 0.0 � 100 0.0 � 10�1

0.1 � 10�1 0.1 � 100 0.1 � 10�1

0.2 � 10�1 0.2 � 100 0.2 � 10�1

0.3 � 10�1 0.3 � 100 0.3 � 10�1

0.4 � 10�1 0.4 � 100 0.4 � 10�1

0.5 � 10�1 0.5 � 100 0.5 � 10�1

0.6 � 10�1 0.6 � 100 0.6 � 10�1

0.7 � 10�1 0.7 � 100 0.7 � 10�1

0.8 � 10�1 0.8 � 100 0.8 � 10�1

0.9 � 10�1 0.9 � 100 0.9 � 10�1

The difference between a real number and the model number that represents it is a
form of representational error called rounding error. We can measure rounding error in two

0 3+ + 4 1 2

0 0+ + 3 1 0

598 | Multidimensional Arrays and Numeric Computation

0.01 to 0.09

0.1
0.2

0.5
0 1 2 3 4 5 6 7 8 9

Figure 12.10 A Graphical Representation of Model Numbers

ways. The absolute error is the difference between the real number and the model number.
For example, the absolute error in representing 0.3021409 by the model number 0.3021 is
0.0000409.The relative error is the absolute error divided by the real number; it is sometimes
stated as a percentage. For example, 0.0000409 divided by 0.3021409 is 0.000135, or 0.0135%.

The maximum absolute error depends on the model interval—the difference between two
adjacent model numbers. In our example, the interval between 0.3021 and 0.3022 is 0.0001.
The maximum absolute error in this system, for this interval, is less than 0.0001.Adding dig-
its of precision decreases the model interval (and thus the maximum absolute error).

The model interval is not a fixed number, but rather varies with the exponent.To see why
the interval varies,consider that the interval between 3021.0 and 3022.0 is 1.0,which is 104 times
larger than the interval between 0.3021 and 0.3022.This makes sense, because 3021.0 is simply
0.3021 times 104.As a consequence, a change in the exponents of adjacent model numbers has
an equivalent effect on the size of the interval between them.Stated in practical terms,we give
up significant digits in the fractional part to represent numbers with large integer parts. Figure
12.10 illustrates this idea by graphing all of the model numbers listed in the preceding table.

We also can use the relative and absolute error to measure the rounding error resulting from
calculations.For example,suppose we multiply 1.0005 by 1,000.The correct result is 1,000.5,but
because of rounding error, our four-digit computer produces 1,000.0 as its result.The absolute
error of the computed result is 0.5, and the relative error is 0.05%. Now suppose we multiply
100,050.0 by 1000.The correct result is 100,050,000, but the computer produces 100,000,000 as
its result. If we look at the relative error, it remains a modest 0.05%, but the absolute error has
grown to 50,000.This example is another case in which we change the size of the model interval.

Whether it is more important to consider the absolute error or the relative error de-
pends on the situation. It is unacceptable for an audit of a company to discover a $50,000 ac-
counting error; the fact that the relative error is only 0.05% is not important. On the other
hand, a 0.05% relative error is acceptable in representing prehistoric dates because the er-
ror in measurement techniques increases with age. That is, if we are talking about a date
roughly 10,000 years ago, an absolute error of 5 years is acceptable; if the date is 100,000,000
years ago, then an absolute error of 50,000 years is equally acceptable.

Comparing Floating-Point Numbers Earlier, we cautioned against comparing floating-point numbers
for exact equality. Our exploration of representational errors in this chapter reveals why cal-
culations may not produce the expected results even though it appears that they should. In

12.5 F l o a t i n g - P o i n t N u m b e r s | 599

Chapter 4, we wrote an expression that compares two floating-point variables r and s for near
equality using the floating-point absolute-value method Math.abs:

Math.abs(r – s) < 0.00001

From our discussion of model numbers, you now can recognize that the constant 0.00001 in
this expression represents a maximum absolute error.We can generalize this expression as

Math.abs(r – s) < ERROR_TERM

where ERROR_TERM is a value that must be determined for each programming problem.
What if we want to compare floating-point numbers with a relative error measure? We

must multiply the error term by the value in the problem to which the error is relative. For
example, if we want to test whether r and s are “equal” within 0.05% of s, we write the fol-
lowing expression:

Math.abs(r – s) < 0.0005 * s

Keep in mind that the choice of the acceptable error and the determination of whether
it should be absolute or relative depends on the particular problem at hand.The error terms
we have shown in our example expressions are completely arbitrary and may not be ap-
propriate for most problems. In solving a problem that involves the comparison of floating-
point numbers, you typically want to keep the error term as small as possible. Sometimes
the choice is specified in the problem description or is reasonably obvious. Some cases re-
quire careful analysis of both the mathematics of the problem and the representational lim-
its of the particular computer. Such analyses fall within the domain of a branch of
mathematics called numerical analysis and are beyond the scope of this text.

Underflow and Overflow In addition to representational errors, we must watch out for two other
problems in floating-point arithmetic: underflow and overflow.

Underflow is the condition that arises when the value of a calculation is too small to be
represented. Going back to our decimal representation, let’s look at a calculation involving
small numbers:

We cannot represent this value in our scheme because the exponent �13 is too small; our
minimum is �9. One way to resolve this problem is to set the result of the calculation to 0.0.
Obviously, any answer depending on this calculation will not be exact.

Overflow is a more serious problem because we have no logical recourse available when
it occurs. For example, the result of the calculation

4210 � 10�8

� 2000 � 10�8

8420000 � 10�16 = 8420 � 10�13

600 | Multidimensional Arrays and Numeric Computation

cannot be stored in our system, so what should we do?To be consistent with our response to
underflow,we could set the result to 9999 � 109 (the maximum representable value in this case).
Yet this strategy seems intuitively wrong.The alternative is to stop with an error message.

In Java, if an overflow occurs, the result is set to a special value called a signed infinity. If
an underflow occurs, the result is set to a signed zero. No exception is thrown in either case.

Although here we are discussing problems with floating-point numbers,note that integer
numbers can also overflow both negatively and positively.All implementations of Java ignore
integer overflow and underflow.To see how your system handles this situation, try adding 1 to
a bytevariable that has been set to 127 and adding �1 to a bytevariable that has been set to �128.

Sometimes you can avoid overflow by arranging computations carefully. Suppose you
want to know how many different five-card poker hands can be dealt from a deck of cards.
Here we are looking for the number of combinations of 52 cards taken 5 at a time. The stan-
dard mathematical formula for the number of combinations of n things taken r at a time is

We could write a method factorial and place this formula in an assignment statement:

hands = factorial(52) / (factorial(5) * factorial(47));

The only problem is that 52! is a very large number (approximately 8.0658 � 1067), as is
47! (approximately 2.5862 � 1059). Both of these numbers are well beyond the capacity of
the JVM to represent exactly (52! requires 68 digits of precision). Even though we can repre-
sent them as floating-point numbers, most of the precision will be lost. By rearranging the
calculations, however, we can achieve an exact result with any integral type with nine or more
digits of precision (with int in Java). How? Consider that most of the multiplications in com-
puting 52! are canceled when the product is divided by 47!

52

5 47
52 51 50 49 48 47 46 45 44

5 4 3 2 1 47 46 45 44

!

! !×
= × × × × × × × × ×

× × × ×() × × × × ×()
K

K

n

r n r

!
! !−()

9999 � 109

� 1000 � 109

9999000 � 1018 = 9999 � 1021

12.5 F l o a t i n g - P o i n t N u m b e r s | 601

So, we really have to compute only

hands = 52 * 51 * 50 * 49 * 48 / factorial(5);

which means the numerator is 311,875,200 and the denominator is 120. If we have nine or
more digits of precision, we get an exact answer: 2,598,960 poker hands.

Cancellation Error Another type of error that can happen with floating-point numbers is a can-
cellation error, a form of representational error that occurs when we add or subtract numbers
of widely differing magnitudes. Let’s look at an example:

(1 + 0.00001234 � 1) = 0.00001234

The laws of arithmetic say this equation should be true. But is it true if the computer does
the arithmetic?

To four digits, the sum is 1,000 � 10�3. Now the computer subtracts 1:

The result is 0, not .00001234.
Sometimes you can avoid adding two floating-point numbers that are drastically different

in size by carefully arranging the calculations. Suppose a problem requires many small float-
ing-point numbers to be added to one large floating-point number. The result will be more
accurate if the code first sums the smaller numbers to obtain a larger number and then adds
the sum to the large number.

1000 � 10�3

�1000 � 10�3

0

100000000 � 10�8

� 1234 � 10�8

100001234 � 10�8

602 | Multidimensional Arrays and Numeric Computation

Choosing a Numeric Data Type
A first encounter with all the numeric data types of Java may leave you feeling a bit overwhelmed.
To help in choosing an alternative, you may even feel tempted to toss a coin.You should resist this
temptation, because each data type exists for a reason. Here are some guidelines:

1. In general, int is preferable.

As a rule, you should use floating-point types only when absolutely necessary—that is,
when you definitely need fractional values. Not only is floating-point arithmetic subject
to representational errors, but it is also significantly slower than integer arithmetic on
most computers.

For ordinary integer data, use int instead of byte or short. It’s easy to make overflow er-
rors with these smaller data types.

2. Use long only if the range of int values is too restrictive. Compared to int, the long type
requires twice as much memory space.

3. The default floating-point type in Java is double. It should be used unless you are certain
that a problem can be solved with the lower precision of the float type.

By following these guidelines, you’ll find that the simple types you use most often are int
and double, along with char for character data and boolean for Boolean data. Only rarely do you
need the longer or shorter variations of these fundamental types.

12.6 Decimal Format Type

To give more precise control over the formatting of numbers, Java provides a class called
DecimalFormat that is part of a package called java.text.The DecimalFormat class allows us to
create patterns that can be used to format numbers for output.These patterns take the form
of strings, which are made up of characters that represent the parts of a formatted number.
For example, the pattern

"###,###"

indicates that a number should be formatted with a maximum of six decimal digits. When
the number contains more than three digits, a comma should be used to separate the thou-
sands from the rest of the number.

We must follow four steps to use DecimalFormat patterns to format numbers:

1. import java.text.*;

12.6 D e c i m a l F o r m a t T y p e | 603

Practical Implications of Limited Precision
A discussion of representational, overflow, underflow, and cancellation errors may seem purely ac-
ademic. In fact, these errors have serious practical implications in many problems.We close this
offer three examples illustrating how limited precision can have costly or even disastrous effects.

During the Mercury space program, several of the spacecraft splashed down a considerable
distance from their computed landing points. Each mishap delayed the recovery of the space-
craft and the astronaut, putting both in some danger. Eventually, the problem was traced to an
imprecise representation of the Earth’s rotation period in the code that calculated the landing
point.

As part of the construction of a hydroelectric dam, a long set of high-tension cables had to
be constructed to link the dam to the nearest power distribution point.The cables were to be
several miles long, and each one was to be a continuous unit. (Because of the high power
output from the dam, shorter cables couldn’t be spliced together.) The cables were constructed
at great expense and strung between the two points. It turned out that they were too short,
however, so another set had to be manufactured.The problem was traced to errors of precision
in calculating the length of the catenary curve (the curve that a cable forms when hanging be-
tween two points).

An audit of a bank turned up a mysterious account with a large amount of money in it.The
account was traced to an unscrupulous programmer who had used limited precision to his ad-
vantage.The bank computed interest on its accounts to a precision of a tenth of a cent.The
tenths of cents were not added to the customers’ accounts, so the programmer had the extra
tenths for all the accounts summed and deposited into an account in his name. Because the
bank had thousands of accounts, these tiny amounts added up to a large amount of money.
And because the rest of the bank’s applications did not use as much precision in their calcula-
tions, the scheme went undetected for many months.

The moral of this discussion is twofold: (1) The results of floating-point calculations are of-
ten imprecise, and these errors can have serious consequences; and (2) if you are working with
extremely large numbers or extremely small numbers, you need more information than this
book provides and should consult a numerical analysis text.

2. Declare a variable of type DecimalFormat for each number format we wish to use.

3. For each format, create an object of class DecimalFormat that contains the pattern.

4. Format a number using the format method of one of the DecimalFormat objects.

Let’s examine each of these steps in turn.You are already familiar with writing import dec-
larations, so all you need to do for the first step is to remember to put the declaration at the

604 | Multidimensional Arrays and Numeric Computation

beginning of your code. Declaring variable of class DecimalFormat is done in the same way as
declaring other kinds of object variables. For example:

DecimalFormat dollar; // Format for dollar amounts
DecimalFormat percent; // Format for percentages

The third step involves using new and the DecimalFormat constructor to create a value we
can assign to the variable.The call to the constructor contains the string representing the pat-
tern.The following statements associate patterns with each of the variables declared above.
In these patterns, the # sign and 0 represent the places that digits should be placed. Other
characters ($, comma, period, %) are to be inserted directly into the formatted number. A 0
indicates a digit that is requred (a 0 is to be inserted if the number doesn’t have a nonzero
digit in that place), and # is for optional digits..

dollar = new DecimalFormat("$###,##0.00");
percent = new DecimalFormat("##0.00%");

The last step is to format the number using a method called format, which is a value-re-
turning method associated with each of the DecimalFormat objects.The format method takes
as its parameter a numerical value and returns a value of type String that contains the for-
matted number. For example, if we write

out.add(new JLabel(dollar.format(2893.6723));
out.add(new JLabel(percent.format(0.142));

then labels are added to the content pane called out, which contain strings of the form

$2,893.67 and 14.20%

The first string matches the format pattern associated with dollar. Note that the use of the
% sign in the percent pattern causes the value to be multiplied by 100 before it is formatted.

See Appendix E for more information on writing the patterns themselves.

CASE STUDY 605

MATRIX MANIPULATION

Problem: Many mathematical problems, such as rotations in graphics, require the addi-
tion, subtraction, and multiplication of two matrices. Design and implement a general-
purpose Matrix class that provides the operations addition, subtraction, and
multiplication for real matrices.

Brainstorming: We are not asked to solve a problem in this Case Study; rather, we are
asked to produce a class for the library. We have to create a test driver to be sure the
class works properly, but we do not need to deliver it to the client.Thus our usual
pattern of object-oriented problem solving is not appropriate here.

Background: You reach for your algebra book to refresh your memory on what matrices
are and how matrix addition, subtraction, and multiplication work.You find that a ma-
trix is just like an array data type—well, not exactly. A matrix is a mathematical object;
an array is a structured data type. A more accurate statement is that an array is a
perfect structure to implement a matrix.

Before we start to design the user interface for the Matrix class, we review what the
operations on matrices mean.To add two matrices, you add the values in the
corresponding positions: result[i][j] = A[i][j] + B[i][j].To subtract one matrix from
another, you subtract the values in the corresponding positions: result[i][j] = A[i][j] �
B[i][j]. A + B and A � B are only defined on matrices with the same dimensions.

Matrix multiplication is slightly more complex. If matrix E is the result of
multiplying matrices C and D, then

E[i][j] = C[i][1]*D[1][j] + C[i][2]*D[2][j] + . . . + C[i][n]*D[n][j].

Why didn’t we use the same matrices, A and B, for multiplication that we used for addi-
tion and subtraction? Well, matrices A and B cannot be multiplied. Look carefully at the
formula: The first row of C is multiplied item by item by the first column of D and the
values summed.Therefore, the number of columns in C must be equal to the number of
rows in D. Here is an example:

A = 5
2
1
1
2

0
1
1
2
3

1
3
0
3
1

4
2
0
4
0

B = 1
2
1
0
0

1
1
2
0
0

1
0
4
4
1

2
3
1
5
1

A + B = 6
4
2
1
2

1
2
3
2
3

2
3
4
7
2

6
5
1
9
1

A – B = 4
0
0
1
2

–1
0

–1
2
3

0
3

–4
–1
0

2
–1
–1
–1
–1

CASE STUDY
606

The sum obtained by multiplying a row by a column is called the dot product. Another
way of stating multiplications is that

E[i][j] = dot product of row i and column j

Now that we understand the semantics of the operations, we are ready to determine
the responsibilities

Scenarios: If we were the users of the class, what facilities would we need? First, of
course, we would need to create the matrix itself, by telling it how many rows and
columns there should be. Next, we would need a way to put values into the slots of the
matrix. We would probably want to print out the matrix after it is constructed to
confirm that the values are correct. At that point, we would be ready to apply one of the
binary operations—say, addition. We would send the message to one matrix to add
itself to the matrix in the message parameter and return the result to us. We would fol-
low the same process for subtraction and multiplication.

Are there any states of the matrix object we might want to know about? Well, it
might be useful to view the value at a particular matrix position, so let’s add that task
to the list of responsibilities. We also might want to access the number of rows and
columns in a matrix.

What about error conditions? Matrix addition and subtraction require that the
matrices have the same dimensions, and matrix multiplication requires that the num-
ber of columns in the first matrix equal the number of rows in the second matrix. It
makes sense for the matrix that is told to perform an operation to confirm that the op-
eration is legal before complying with the request. If the operation is not legal, the ma-
trix can throw an exception.

CRC Card: We can summarize our observations in a CRC card:

C = 1
0
1

2
2
1

3
1
0

4
3
0

D = 1
0
2
4

1
1
3
2

C * D = 23
14
1

20
11
2

CASE STUDY 607

Internal Data Representation: Earlier, we said that an array is the ideal implementation
structure for a matrix. In many languages, we would have to include the number of
rows and number of columns as data fields in the Matrix class. Java, however, provides
them automatically as instance variables in the array object. Let’s represent the
numeric values in the matrices as double; this strategy allows us to handle the largest
range of values.

public class Matrix
{
// Private data field
private double[][] matrix;
. . .

}

Class Name: Matrix Superclass: Object Subclasses:

Responsibilities Collaborations

Create itself (rows, columns) None

Know value at (row, col) None

 return double

Know number of rows None

 return int

Know number of columns

 return Matrix

None

 return int

Subtract (two) from self None

 return Matrix

Multiply self times (two) None

 return Matrix

Print (outFile) PrintWriter

Add self to (two) None

Set a value at (row, col, value) None

CASE STUDY
608

Responsibility Algorithms: To create the matrix, we need a constructor that takes the
number of rows and the number of columns as parameters and creates the array.

public Matrix(int rows, int columns)
// Create empty matrix
{
matrix = new double[rows][columns];

}

Now that we know the internal structure is an array, we can give the client an alter-
native constructor that takes the array of values as data rather than having to input
one value at a time.This constructor makes a shallow copy of the array. Case Study
Follow-up Exercise 5 asks you to rewrite this constructor to make a deep copy.

public Matrix(double[][] data)
// Stores the reference argument into matrix
{
matrix = data;

}

The next method simply asks the object to return a copy of an item at a particular
slot in the array.

public double knowValueAt(int row, int col)
// Returns the value at matrix[row][col]
{
return matrix[row][col];

}

The next two observer methods return the number of rows and the number of
columns. Because Java implements a two-dimensional array as an array of references
to arrays and each one-dimensional array object has an instance variable that contains
the number of slots in the array, we have direct access to this information.The length
field of the two-dimensional array gives the number of rows; the length of each row
gives the number of columns in that row. We do not need to worry about ragged arrays
because of the way that we have implemented the constructor.

public int knowRows()
// Returns the number of rows in matrix
{
return matrix.length;

}

public int knowColumns()
// Returns the number of columns in matrix

CASE STUDY 609

{
return matrix[0].length;

}

The main transformer method takes a value and a row and column number.The
value is stored into the matrix at the [row][column] position.

public void setValue(double dataItem, int row, int col)
// Sets matrix[row][col] to dataItem
{
matrix[row][col] = dataItem;

}

The remaining observer is printMatrix.We want to print the matrix by row.We have a
pattern that we can follow exactly from our general discussion about arrays. Because we
don’t know how many columns the matrix has, we should print a blank line between rows.

public void printMatrix(PrintWriter outFile)
// Prints matrix on outFile by row
{
for (int row = 0; row < matrix.length; row++)
{
for (int col = 0; col < matrix[0].length; col++)

outFile.print(matrix[row][col] + " ");
outFile.println();
outFile.println();

}
}

The last three methods lie at the heart of this problem: adding, subtracting, and mul-
tiplying matrices. One matrix is the one to which the method is applied and the other
matrix is a parameter.

Each of these steps is concrete. Determining if the addition is legal is a matter of
checking the dimensions of matrix against the dimensions of the parameter.The string
that goes with the exception can simply state that the addition is not legal.

add(two)

if the addition is not legal
throw MatException

else
Create result matrix with the same dimensions as matrix
for row going from 0 through matrix.length – 1
for col going from 0 through matrix[0].length – 1
Set result[row][col] to matrix[row][col] + two.matrix[row][col]

return result

610 | Multidimensional Arrays and Numeric Computation

public Matrix add(Matrix two) throws MatException
// Returns the sum of matrix and two.matrix
{
if (matrix.length != two.matrix.length ||

matrix[0].length != two.matrix[0].length)
throw new MatException("Illegal matrix add.");

else
{
Matrix result = new Matrix(matrix.length, matrix[0].length);
for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < matrix[0].length; col++)
{
result.matrix[row][col] = matrix[row][col] +

two.matrix[row][col];
}

return result;
}

}

public Matrix sub(Matrix two) throws MatException
// Returns two.matrix subtracted from matrix
{
if (matrix.length != two.matrix.length ||

matrix[0].length != two.matrix[0].length)
throw new MatException("Illegal matrix subtract.");

else
{
Matrix result = new Matrix(matrix.length, matrix[0].length);
for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < matrix[0].length; col++)
{
result.matrix[row][col] = matrix[row][col] -

two.matrix[row][col];
}

return result;
}

}

sub(two)

if the subtraction is not legal
throw MatException

else
Create result matrix with the same dimensions as matrix
for row going from 0 through matrix.length – 1
for col going from 0 through matrix[0].length – 1

Set result[row][col] to matrix[row][col] � two.matrix[row][col]
return result

[(H1L)] | 611

Let’s make dotProduct be a helper function.

public Matrix multiply(Matrix two) throws MatException
// Returns matrix times two.matrix
{
if (matrix[0].length != two.matrix.length)
throw new MatException("Illegal matrix multiplication.");

else
{
Matrix result =
new Matrix(matrix.length, two.matrix[0].length);

for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < two.matrix[0].length; col++)
{
result.matrix[row][col] = dotProduct(row,col,two);

}
return result;

}
}

private double dotProduct(int row, int col, Matrix two)
// Returns the dot product of row of matrix and column of two.matrix
{
double total = 0;
for (int index = 0; index < two.matrix.length; index++)
total = total + matrix[row][index]*two.matrix[index][col];

return total;
}

dotProduct(row, col, two)

Set total to 0
for index going from 0 through number of rows of two
Set total to matrix[row][index] * two.matrix[index][col]+ total

multiply (two)

if multiplication is not legal
throw MatException

else
Create result matrix with number of rows in matrix and number of columns in
two.matrix

for row going from 0 through matrix.length � 1
for col going from 0 through two.matrix[0].length � 1

Set result[row][col] to dot product of row of matrix
and col of two.matrix

CASE STUDY
612

Before we collect these methods into a complete class, have we forgotten anything?
The class has two constructors, three knowledge methods, a transformer that sets a
value in a specified row and column—but what happens if the specified row and
column are not within the bounds of the matrix? The class should check for this error
and throw an exception. What about the binary matrix operations? We know that these
numeric operations can cause underflow and overflow. If underflow occurs, the values
are automatically set to zero; if overflow occurs, the values are set to signed infinity. In
the case of overflow, the operation should throw an exception.The Double class has a
boolean class method called isInfinite that we can use to determine if overflow has oc-
curred. In the following class, overflow is checked, but the other error conditions are left
to a Case Study Follow-Up exercise.

//**
// Class MatException is thrown from class Matrix
// under certain error conditions.
//**

package matrix;
public class MatException extends Exception
{

public MatException()
{
super();

}

public MatException(String message)
{
super(message);

}
}

//**
// This class provides a basic matrix object. There are two
// constructors, one transformer, three knowledge methods, a
// print, and three binary operations. Certain errors are
// checked and MatException is thrown if they arise.
//**
package matrix;
import java.io.*;

public class Matrix
{
// Private data field
private double[][] matrix;

public Matrix(int rows, int columns)

CASE STUDY 613

// Creates empty matrix
{
matrix = new double[rows][columns];

}

public Matrix(double [][] data)
// Stores the reference argument into matrix
{
matrix = data;

}

public double knowValueAt(int row, int col)
// Returns the value at matrix[row][col]
{
return matrix[row][col];

}

public int knowRows()
// Returns the number of rows in matrix
{
return matrix.length;

}

public int knowColumns()
// Returns the number of columns in matrix
{
return matrix[0].length;

}

public void setValue(double dataItem, int row, int col)
// Sets matrix[row][col] to dataItem
{
matrix[row][col] = dataItem;

}

public void printMatrix(PrintWriter outFile)
// Writes matrix on outFile by row
{
for (int row = 0; row < matrix.length; row++)
{
for (int col = 0; col < matrix[0].length; col++)
outFile.print(matrix[row][col] + " ");

outFile.println();
outFile.println();

}
}

CASE STUDY
614

public Matrix add(Matrix two) throws MatException
// Returns the sum of matrix and two.matrix
// Throws MatException if the matrices cannot be added
// or overflow occurs
{
if (matrix.length != two.matrix.length ||

matrix[0].length != two.matrix[0].length)
throw new MatException("Illegal matrix add.");

else
{
Matrix result =
new Matrix(matrix.length, matrix[0].length);

for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < matrix[0].length; col++)
{
result.matrix[row][col] = matrix[row][col] +
two.matrix[row][col];

if (Double.isInfinite(result.matrix[row][col]))
throw new MatException("Addition overflow");

}
return result;

}
}

public Matrix sub(Matrix two) throws MatException
// Returns two.matrtix subtracted from matrix
// Throws MatException if the matrices cannot be subtracted
// or overflow occurs
{
if (matrix.length != two.matrix.length ||

matrix[0].length != two.matrix[0].length)
throw new MatException("Illegal matrix subtract.");

else
{
Matrix result =
new Matrix(matrix.length, matrix[0].length);

for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < matrix[0].length; col++)
{
result.matrix[row][col] =
matrix[row][col] – two.matrix[row][col];

if (Double.isInfinite(result.matrix[row][col]))
throw new MatException("Subtraction overflow");

}

CASE STUDY 615

return result;
}

}

public Matrix multiply(Matrix two) throws MatException
// Returns matrix times two.matrix
// Throws MatException if the matrices cannot be multiplied
// or overflow occurs
{
if (matrix[0].length != two.matrix.length)
throw new MatException("Illegal matrix multiplication.");

else
{
Matrix result =
new Matrix(matrix.length, two.matrix[0].length);

for (int row = 0; row < matrix.length; row++)
for (int col = 0; col < two.matrix[0].length; col++)
{
result.matrix[row][col] = dotProduct(row,col,two);
if (Double.isInfinite(result.matrix[row][col]))
throw new MatException("Multiplication overflow");

}
return result;

}
}

private double dotProduct(int row, int col, Matrix two)
// Returns the dot product of row of matrix and column of two.matrix
{
double total = 0;
for (int index = 0; index < two.matrix.length; index++)
total = total + matrix[row][index]*two.matrix[index][col];

return total;
}

}

Testing: Because the branching statements only check for errors and throw exceptions
if they occur, a clear- or white-box testing strategy is appropriate.The end cases for ad-
dition and subtraction would be for sizes of one by one and something larger. For multi-
plication, the outer dimensions should be one and the inner dimensions should be
something else, and the inner dimensions should be one and the outer dimensions
should be something else.Then the error conditions must all be checked. A fuller test
plan is left as a Case Study Follow-Up exercise.

CASE STUDY
616

Shown below is a test driver that carries out the addition, subtraction, and
multiplication operations.

//***
// Class MatrixDriver is a test driver for class Matrix. The four
// matrices that are defined are those used in the Background
// section of the Case Study. The same operations are performed.
// One additional operation is performed: An illegal multiply
// operation is requested and an exception is thrown.
//***
import matrix.*;
import java.io.*;

public class MatrixDriver
{
public static void main(String[] args) throws IOException
{
PrintWriter outFile;
outFile = new PrintWriter(new FileWriter("Matrix.out"));

Matrix result;
int row, col;
// Set up arrays and instantiate four objects of class Matrix
double[][] data1 =

{{5.0, 0.0, 1.0, 4.0},
{2.0, 1.0, 3.0, 2.0},
{1.0, 1.0, 0.0, 0.0},
{1.0, 2.0, 3.0, 4.0},
{2.0, 3.0, 1.0, 0.0}};

double[][] data2 =
{{1.0, 1.0, 1.0, 2.0},
{2.0, 1.0, 0.0, 3.0},
{1.0, 2.0, 4.0, 1.0},
{0.0, 0.0, 4.0, 5.0},
{0.0, 0.0, 1.0, 1.0}};

double[][] data3 =
{{1.0, 2.0, 3.0, 4.0},
{0.0, 2.0, 1.0, 3.0},
{1.0, 1.0, 0.0, 0.0}};

double[][] data4 =
{{1.0, 1.0},
{0.0, 1.0},
{2.0, 3.0},
{4.0, 2.0}};

CASE STUDY 617

Matrix one = new Matrix(data1);
Matrix two = new Matrix(data2);
Matrix three = new Matrix(data3);
Matrix four = new Matrix(data4);

try
{
outFile.println("Matrix one:");
one.printMatrix(outFile);

outFile.println("Matrix two:");
two.printMatrix(outFile);

outFile.println("Result of adding one and two:");
result = one.add(two);
result.printMatrix(outFile);

outFile.println("Result of subtracting two from one:");
result = one.sub(two);
result.printMatrix(outFile);

outFile.println("Matrix three:");
three.printMatrix(outFile);

outFile.println("Matrix four:");
four.printMatrix(outFile);

outFile.println("Result of multiplying three by four:");
result = three.multiply(four);
result.printMatrix(outFile);

outFile.println("Result of multiplying four by three:");
result = four.multiply(three);

}
catch(MatException except)
{
outFile.println(except.getMessage());

}

CASE STUDY
618

outFile.close();
}

}

Output from partial test of class Matrix:

12.7 T e s t i n g a n d D e b u g g i n g | 619

12.7 Testing and Debugging

Errors with multidimensional arrays usually fall into two major categories: index ex-
pressions that are out of order and index range errors. We have been very careful to use
an array object’s own length value in loop expressions so as to minimize range errors.
However, inadvertent switching of indexes can cause index range errors.

Take a look at the code for dotProduct.What happens if we reverse the indexes in the
following statement?

total = total + matrix[row][index]*two.matrix[index][col];

That is, what happens if we code the statement as follows?

total = total + matrix[index][row]*two.matrix[col][index]; // Wrong

If the first matrix is a 3 � 5 and the second is a 5 � 2, index goes from 0 through 4 while
row and col remain at 0. matrix[0][0] and two.matrix[0][0] are accessed; then matrix[1][0]
and two.matrix[0][1] are accessed; then matrix[2][0] and two.matrix[0][2] are accessed.
This last access causes an ArrayIndexOutOfBoundsException to be thrown: two.matrix[0][2]
doesn’t exist.

How can you avoid such errors? This question has no simple answer.You just have to
be careful and thoroughly test your code.

Testing and Debugging Hints

1. With multidimensional arrays, use the proper number of indexes when refer-
encing an array component, and make sure the indexes are in the correct or-
der.

2. In loops that process multidimensional arrays, double-check the upper and
lower bounds on each index variable to verify that they are correct for that di-
mension of the array.

3. When declaring a multidimensional array as a parameter, confirm that you
have the proper number of brackets beside the type on the parameter list.

4. When passing an array object as an argument, be sure that it has the same
number of dimensions as the parameter of the method to which it is being
passed.

620 | Multidimensional Arrays and Numeric Computation

5. Be wary of representational, cancellation, overflow, and underflow errors. If
possible, try to arrange calculations in your code to keep floating-point num-
bers from becoming too large or too small.

6. If your code increases the value of a positive integer and the result suddenly
becomes a negative number, suspect integer overflow.

7. Avoid mixing data types in expressions, assignment operations, argument
passing, and the return of a method value. If you must mix types, explicit type
casts can prevent unwelcome surprises caused by implicit type conversion.

621

Summary

Two-dimensional arrays are useful for processing information that is represented
naturally in tabular form. Processing data in two-dimensional arrays usually takes
one of two forms: processing by row or processing by column. Java implements a
two-dimensional array as an array of references to one-dimensional arrays.
Associated with each two-dimensional array is a final instance variable length that
contains the number of rows. Associated with each row of the table is a final
instance variable length that contains the number of items in the row (the column
length).The number of items in a row is usually the same for each row, but does not
need to be. If the rows are uneven, the array is called a ragged array.

A multidimensional array is a collection of like components that are ordered on
more than two dimensions. Each component is accessed by a set of indexes, one for
each dimension, that represents the component’s position on the various
dimensions. Each index may be thought of as describing a feature of a given array
component.

The floating-point types built into the Java language are float and double.
Floating-point numbers are represented in the computer with a fraction and an
exponent.This representation permits numbers that are much larger or much
smaller than those that can be represented with the integral types. Floating-point
representation also allows us to perform calculations on numbers with fractional
parts.

Using floating-point numbers in arithmetic calculations does have some
drawbacks. Representational errors, for example, can affect the accuracy of compu-
tations. When using floating-point numbers, keep in mind that if two numbers are
vastly different from each other in size, adding or subtracting them can produce the
wrong answer. Remember, also, that the computer has a limited range of numbers
that it can represent. If your code tries to compute a value that is too large or too
small, it may result in unusual or unexpected values.

The class DecimalFormat provides methods that allow the user to specify the
appearance of numeric output.

Quick Check

1. Declare a two-dimensional array named plan, and create an array object with 30
rows and 10 columns.The component type of the array is float. (pp. 582–583)

2. Given the array created in Question 1, answer the following questions.

a. Assign the value 27.3 to the component in row 13, column 7 of the array plan
from Question 1. (pp. 583–584)

b. We can use nested for loops to sum the values in each row of the array plan.
What range of values would the outer for loop count through to do this?
(pp. 587–589)

622

c. We can use nested for loops to sum the values in each column of the array
plan. What range of values would the outer for loop count through to do
this? (pp. 588–589)

d. Write a code fragment that initializes the array plan to all 1s. (pp. 589–590)

e. Write a code fragment that prints the contents of the array plan, one row per
line of output. (pp. 589–590)

3. Suppose the array plan is passed as an argument to a method in which the cor-
responding parameter is named someArray. What would the declaration of
someArray look like in the parameter list? (p. 590)

4. Given the declarations

final int SIZE = 10;

char[][][][] quick = new char[SIZE][SIZE][SIZE][SIZE-1];

a. How many components does the array quick contain? (pp. 591–592)

b. Write a code fragment that fills the array quick with blanks. (pp. 591–592)

5. Why is it inappropriate to use a variable of a floating-point type as a loop con-
trol variable? (pp. 595–596)

6. If a computer has four digits of precision, what would be the result of the
following addition operation? (pp. 595–596)

400400.000 + 199.9

7. Given that the pattern "$#,##0.00" has been stored into the object referenced
by the DecimalFormat variable num, what is the result of each of the following
calls to format? (pp. 602–604)

num.format(39144932.109)

num.format(–27.0)

8. What pattern would you use to display a numerical value as a percentage with
three leading blanks, at least one digit in the integer part, and exactly two frac-
tional digits? (pp. 602–604)

Answers

1. float[][] plan;
plan = new float[30][10];

2. a. plan[13][7] = 27.3;
b. for (row = 0; row < 30; row++)
c. for (col = 0; col < 10; col++)
d. for (row = 0; row < 30; row++)

for (col = 0; col < 10; col++)
plan[row][col] = 1.0;

e. for (row = 0; row < 30; row++)
{
for (col = 0; col < 10; col++)
outFile.print(plan[row][col]);

outFile.println();
}

623

3. float[][] someArray
4. a. Nine thousand (10 � 10 � 10 � 9)

b. for (dim1 = 0; dim1 < SIZE; dim1++)
for (dim2 = 0; dim2 < SIZE; dim2++)
for (dim3 = 0; dim3 < SIZE; dim3++)
for (dim4 = 0; dim4 < SIZE – 1; dim4++)
quick[dim1][dim2][dim3][dim4] = ’ ';

5. Representational errors can cause the loop termination condition to be evaluated with unpredictable
results.

6. 400500.000 (actually, 4.005E+5)
7. $39,144,932.11 $–27.00
8. " #0.00%"

Exam Preparation Exercises

1. Given the declarations

final int NUM_SCHOOLS = 10;

final int NUM_SPORTS = 3;

int[][] kidsInSports = new int[NUM_SCHOOLS][NUM_SPORTS];

double[][] costOfSports = new double[NUM_SPORTS][NUM_SCHOOLS];

answer the following questions:

a. What is the number of rows in kidsInSports?

b. What is the number of columns in kidsInSports?

c. What is the number of rows in costOfSports?

d. What is the number of columns in costOfSports?

e. How many components does kidsInSports have?

f. How many components does costOfSports have?

g. What kind of processing (row or column) would be needed to total the
amount of money spent on each sport?

h. What kind of processing (row or column) would be needed to total the num-
ber of children participating in sports at a particular school?

2. Given the following code segments, draw the arrays and their contents after
the code is executed. Indicate any undefined values with the letter U.

a. int[][] exampleA;

exampleA = new int[4][3];

int i, j;

for (i = 0; i < 4; i++)

for (j = 0; j < 3; j++)

exampleA[i][j] = i * j;

624

b. int[][] exampleB;

exampleB = new int[4][3];

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

exampleB[i][j] = (i + j) % 3;

c. int[][] exampleC;

exampleC = new int[8][2];

int i, j;

exampleC[7][0] = 4;

exampleC[7][1] = 5;

for (i = 0; i < 7; i++)

{

exampleC[i][0] = 2;

exampleC[i][1] = 3;

}

3. a. Define an int variable teamType and an int variable resultType.

b. Define a two-dimensional array variable outcome.

c. This array will be used to keep track of the wins and losses for a baseball
season. teamType represents the classes: freshman (0), sophomore (1), junior
(2), and senior (3). resultType represents the outcome for the team: won (0),
tied (1), or lost (2). Instantiate an array object for the variable outcome.

d. Write a code fragment that increases the number of freshman wins by 1.

e. Write a code fragment that determines which class won the most games.

f. Write a code fragment that determines the total number of wins for all
classes.

4. The number of rows in the array must be specified on the parameter list of a
method that takes the array as a parameter. (True or False?)

5. Declare and instantiate the two-dimensional arrays described below.

a. An array with five rows and six columns that contains boolean values

b. An array, indexed from 0 through 39 and 0 through 199, that contains double val-
ues

c. An array, indexed from 0 through 3 and 0 through 2, that contains char
values

625

6. A logging operation keeps records of 37 loggers’ monthly production for
purposes of analysis, using the following array structure:

final int NUM_LOGGERS = 37;

int[][] logsCut; // Logs cut per logger per month
logsCut = new int[NUM_LOGGERS][12];
int monthlyHigh;
int monthlyTotal;
int yearlyTotal;
int high;
int month;
int bestMonth;
int logger;
int bestLogger;
a. The following statement assigns the January log total for logger number 7 to

monthlyTotal. (True or False?)

monthlyTotal = logsCut[7][0];

b. The following statements compute the yearly total for logger number 11.
(True or False?)

yearlyTotal = 0;

for (month = 0; month < NUM_LOGGERS; month++)

yearlyTotal = yearlyTotal + logsCut[month][10];

c. The following statements find the best logger (most logs cut) in March.
(True or False?)

monthlyHigh = 0;

for (logger = 0; logger < NUM_LOGGERS; logger++)

if (logsCut[logger][2] > monthlyHigh)

{

bestLogger = logger;

monthlyHigh = logsCut[logger][2];

}

d. The following statements find the logger with the highest monthly produc-
tion and the logger’s best month. (True or False?)

high = –1;

for (month = 0; month < 12; month++)

for (logger = 0; logger < NUM_LOGGERS; logger++)

if (logsCut[logger][month] > high)

626

{

high = logsCut[logger][month];

bestLogger = logger;

bestMonth = month;

}

7. Declare and instantiate the double arrays described below.

a. A three-dimensional array in which the first dimension is indexed from 0
through 9, the second dimension is indexed from 0 through 6 representing
the days of the week, and the third dimension is indexed from 0 through 20

b. A four-dimensional array in which the first two dimensions are indexed
from 0 through 49, and the third and fourth have 20 and 30 slots,
respectively

8. If a system supports 10 digits of precision for floating-point numbers, what are
the results of the following computations?

a. 1.4E+12 + 100.0

b. 4.2E–8 + 100.0

c. 3.2E–5 + 3.2E+5

9. Define the following terms:

a. mantissa

b. exponent

c. representational error

d. significant digits

e. overflow

10. Show precisely the output of the following Java application. Use a to indicate
each blank.

import java.awt.*;

import java.text.*;

import javax.swing.*;

public class ExamPrep

{

public static void main(String args[])

{

DecimalFormat decimal;

DecimalFormat integral;

JFrame dataFrame; // User interface frame

627

Container dataPane; // Content pane

dataFrame = new JFrame();

dataPane = dataFrame.getContentPane();

dataFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

dataFrame.setSize(450, 75);

dataPane.setLayout(new GridLayout(2,1));

decimal = new DecimalFormat("#0.0");

integral = new DecimalFormat("#0");

String ch;

int n;

double y;

ch = "A";

dataPane.add(new JLabel(ch));

ch = "B";

dataPane.add(new JLabel(ch));

n = 413;

y = 21.8;

dataPane.add(new JLabel(integral.format(n) + " is the value of n"));

dataPane.add(new JLabel(decimal.format(y) + " is the value of y"));

dataFrame.setVisible(true);

}

}

11. Given that x is a double variable and x = 2314.3827, show the output of each pair
of statements below. Use a to indicate each blank.

a. num = new DecimalFormat("#0.00");

out.add(new JLabel("x is " + num.format(x)));

b. num = new DecimalFormat("#,##0.00");

out.add(new JLabel("x is " + num.format(x)));

c. num = new DecimalFormat("0.0");

out.add(new JLabel("x is " + num.format(x)));

d. num = new DecimalFormat("#,##0.000");

out.add(new JLabel("x is " + num.format(x)));

628

Programming Warm-Up Exercises

1. Using the declarations in Exam Preparation Exercise 1, write code fragments
to do the following tasks. Assume sport 0 is football, 1 is basketball, and 2 is
volleyball.

a. Determine which school spent the most money on football.

b. Determine which sport the last school spent the most money on.

c. Determine which school had the most students playing basketball.

d. Determine in which sport the third school had the most students participat-
ing.

e. Determine the total amount spent by all the schools on volleyball.

f. Determine the total number of students who played any sport. (Assume that
each student played only one sport.)

g. Determine which school had the most students participating in sports.

h. Determine which was the most popular sport in terms of money spent.

i. Determine which was the most popular sport in terms of student participa-
tion.

2. Examine the following documentation of a class:

public class TwoDimensions

{

// Private data

private int[][] data;

private int rowsUsed; // Number of rows that contain data

private int columnsUsed; // Number of columns that contain data

// Methods

public TwoDimensions(int maxRows, int maxColumns)

// Constructor: creates a maxRows x maxColumns array

public void inputData(BufferedReader inFile)

// Reads data into the array

// Data are on the file as follows:

// First line: number of rows (rowsUsed)

// Second line: number of columns (columnsUsed)

// Data are stored one value per line in row order.

// That is, the first columnsUsed values go into row 0; the

// next columnsUsed values go into row 1; etc.

public void print(PrintWriter outFile)

// Prints the values in the array on outFile, one row per line

629

public int maxInRow(int row)

// Returns the maximum value in the specified row

public int maxInCol(int column)

// Returns the maximum value in the specified column

public int maxInArray()

// Returns the maximum value in the entire array

public int sum()

// Returns the sum of the values in the array

public int sumInRow(int row)

// Returns the sum of the values in the specified row

public int sumInCol(int column)

// Returns the sum of the values in the specified column

public boolean allPlus()

// Returns true if all the values are positive; false otherwise

a. Write the code for the constructor TwoDimensions.

b. Write the code for the method inputData.

c. Write the code for the method print.

d. Write the code for the method maxInRow.

e. Write the code for the method maxInCol.

f. Write the code for the method maxInArray.

g. Write the code for the method sum.

h. Write the code for the method sumInRow.

i. Write the code for the method sumInCol.

j. Write the code for the method allPlus.

3. Write a code segment that finds the largest value in a two-dimensional double
array of 50 rows and 50 columns.

4. Given the following declarations

final int NUM_DEPTS = 100;

final int NUM_STORES = 10;

final int NUM_MONTHS = 12;

a. Declare an array variable sales that will be indexed by the number of depart-
ments, number of stores, and number of months and that contains double
values.

b. Instantiate an array object for the variable sales.

c. What values do the components in the array have after it is created?

630

d. Write a code segment to calculate the sum of the sales for January.

e. Write a code segment to calculate the sum of the sales for store 2.

f. Write a code segment to calculate the sum of the sales for department 33.

5. In an application you are writing, a double variable beta potentially contains a
very large number. Before multiplying beta by 100.0, you want the code to test
whether it is safe to do so. Write an if statement that tests for a possible
overflow before multiplying by 100.0. Specifically, if the multiplication would
lead to overflow, print a message and don’t perform the multiplication; other-
wise, go ahead with the multiplication.

6. The Vector class in java.util provides functionality very similar to that offered
by an array. In fact, the underlying data structure is an array.The advantage of a
Vector is that it can grow and shrink; the disadvantage is that this capability is
time-consuming.To grow beyond the initial size requires the system to create a
larger array and move the objects into it. Listed below are some of the useful
methods in the Vector class and the corresponding array operations.

Method Array Equivalent/Explanation

Vector myVector; Object[] myVector;
myVector = new Vector(10); myVector = new Object[10];
myVector.setElementAt(item, 9); myVector[9] = item;
item = myVector.elementAt(5); item = myVector[5];
myVector.addElement(item); myVector[numItems] = item;

numItems++;
myVector.size() Returns the number of items in myVector
myVector.capacity() myVector.length
a. Run an experiment to determine how many slots are added to a Vector

object when you add one more item than you originally stated should be in
the vector.

b. Make a table like the one shown in this exercise showing five other useful
methods in the class.

Programming Problems

1. Write an application that plays Tic-Tac-Toe. Represent the board as a 3 � 3
character array.The array is initialized to blanks, and each player is asked in
turn to input a position.The first player’s position is marked on the board with
an O, and the second player’s position is marked with an X. Continue the
process until a player wins or the game is a draw.To win, a player must have
three marks in a row, in a column, or on a diagonal. A draw occurs when the
board is full and no one has won.

631

Each player’s position should be input as indexes into the Tic-Tac-Toe
board—that is, a row number, a space, and a column number. Make the applica-
tion user-friendly.

After each game, print out a diagram of the board showing the ending posi-
tions. Keep a count of the number of games each player has won and the num-
ber of draws. Before the beginning of each game, ask each player if he or she
wishes to continue. If either player wishes to quit, print out the statistics and
stop. Use buttons as appropriate.

2. Photos taken in space by the Galileo spacecraft are sent back to earth as a
stream of numbers. Each number represents a level of brightness. A large num-
ber represents a high brightness level, and a small number represents a low
level.Your job is to take a matrix (a two-dimensional array) of these numbers
and print it as a picture.

One approach to generating a picture is to print a dark character (such as a
$) when the brightness level is low, and to print a light character (such as a
blank or a period) when the level is high. Unfortunately, errors in transmission
sometimes occur.Your photo-generation code should first attempt to find and
correct these errors. Assume a value is in error if it differs by more than 1 from
each of its four neighboring values. Correct the erroneous value by giving it the
average of its neighboring values, rounded to the nearest integer.

Example:

5 The 2 would be regarded as an error and

4 2 5 would be given a corrected value of 5.

5

Note that you must process values on the corners or boundaries of the matrix
differently than the values on the interior.Your application should print an im-
age of the uncorrected picture and then an image of the corrected picture.

3. The following diagram represents an island surrounded by water (shaded area).

Starting position
of mouse

Bridge

Bridge

Water

A mouse in this position
has not yet escaped.

632

Two bridges lead out of the island. A mouse is placed on the green square.
Write an application to make the mouse take a walk across the island.The
mouse is allowed to travel one square at a time, either horizontally or
vertically. A random number from 1 through 4 should be used to decide which
direction the mouse is to take.The mouse drowns when he hits the water; he
escapes when he enters a bridge.

You may generate a random number up to 100 times. If the mouse does not
find his way by the hundredth try, he will die of starvation. In that case, restart
the mouse in a reinitialized array and repeat the whole process. Count the
number of times he escapes, drowns, and starves.

Input

First input line—the size of the array, including border of water and bridges
(not larger than 20 � 20)

Next N input lines—the rows of the two-dimensional array, where the positions
containing negative numbers represent the water, the positions in the edge
containing a 0 represent the bridges, the position containing a 1 represents the
starting position of the mouse, and all other positions contain 0s

Output

A line stating whether the mouse escaped, drowned, or starved

A line showing the mouse’s starting position and the position of the two
bridges

A map showing the frequency of the mouse’s visits to each position

You should print these items (double-spaced between trips) for each trip by the
mouse.

4. In competitive diving, each diver makes three dives of varying degrees of diffi-
culty. Nine judges score each dive from 0 through 10 in steps of 0.5.The total
score is obtained by discarding the lowest and highest of the judges’ scores,
adding the remaining scores, and then multiplying the scores by the degree of
difficulty.The divers take turns, and when the competition is finished, they are
ranked according to score. Write an application to calculate the outcome of a
competition, using the following input and output specifications.

Input

Number of divers

Diver’s name (ten characters), difficulty (double), and judges’ ratings (nine
doubles)

633

There is a line of data for each diver for each dive. All the data for Dive 1 are
grouped together, then all the data for Dive 2, then all the data for Dive 3.

Output

The input data, echo-printed in tabular form with appropriate headings—for
example, Name, Difficulty, Judge’s number (1–9)

A table that contains the following information:

Name Dive 1 Dive 2 Dive 3 Total

where Name is the diver’s name; Dive 1, Dive 2, and Dive 3 are the total points
received for a single dive; and Total is the overall total

5. You are to test what happens when overflow occurs. Write a simple application
that does the following tasks:

Calculate the factorial of an integer number

Embed the factorial in a loop that goes from 1 to 100

Print out the result of each factorial within the loop

Run your application with the factorial calculated using each of the integer
types. Record the results of each run.

Redo the experiment taking the factorial of a real number. Record the
results of each run.

Write a report describing what you learned about overflow and Java.

6. Extend the class UnsortedList so that the insert method creates a new array
that is twice the size of the current one when the list is full and moves the ele-
ments into it.Test your new class.

Case Study Follow-Up

1. There are no checks for row and column parameters being in bounds in the
Matrix Manipulation Case Study. List the methods where this error might
occur.

2. Implement checks for the out-of-bounds error described in Exercise 1 and
recode the solution.

3. Design and implement a test plan for the class Matrix as modified in Exercise 2.

4. The java.math package contains the BigInteger and BigDecimal classes, which al-
low you to work with arbitrary-size and arbitrary-precision integers and float-
ing-point values. How would you have to change the class Matrix to define the
operations using BigInteger rather than double?

5. Write a derived class of Matrix that overrides the constructor which takes an
array as a parameter.The new version of the constructor should make a deep
copy of the array rather than a shallow copy.

Knowledge Goals
• To understand the concept of a recursive definition

• To understand the difference between iteration and recursion

• To understand when recursion is appropriate

Skill Goals
To be able to:

• Identify the base cases and the general case in a recursive definition

• Identify the size of the problem, that aspect that must decrease

• Write a recursive algorithm for a problem involving only simple variables

• Write a recursive algorithm for a problem involving structured variables

Recursion

1989
Tim Berners-Lee
proposes his idea
for the World Wide
Web, an internet-
based hypermedia
initiative for global
information sharing

1989
Intel releases its
latest microchip, the
80486, which
contains 1.2 million
transistors

1990
The launching of
Windows 3.0
furthers the legal
debate between
Microsoft and
Apple; the operating
system has a
marked
resemblance to the
Macintosh’s
operating system

1990
Intel releases the
i486 with its built-
in math coprocessor
and the iPSC/860.
Motorola introduces
the 68040 with its
on-chip floating
point unit

1990
Berners-Lee
develops the first
web-client and
server, the prototype
for the WWW,
which uses URLs,
HTML, and HTTP

1992
The widely
publicized computer
virus Michelangelo
is expected to
destroy 1 of 4 hard
drives on March 6th,
but proves to have
little effect

13
C H A P T E R

any method can call another method.A method can even call it-
self! When a method calls itself, it makes a recursive call. The word recur-
sive means “having the characteristic of coming up again, or repeating.”
In this case, a method call is repeated by the method itself. Recursion is
a powerful technique that can be used in place of iteration
(looping).

Recursive solutions are generally less efficient than it-
erative solutions to the same problem.However, some prob-
lems lend themselves to simple,elegant, recursive solutions
and are exceedingly cumbersome to solve iteratively. Some
programming languages,such as early versions of FORTRAN,
BASIC,and COBOL,do not support recursion.Other languages
are especially oriented to recursive algorithms—LISP, for example. Java
lets us take our choice:We can implement both iterative and recursive al-
gorithms.

Our examples are broken into two groups: problems that use only
simple variables and problems that use structured variables. If you are
studying recursion before reading Chapter 10 on structured data types,
then cover only the first set of examples and leave the rest until you have
completed Chapters 10 through 12.

Rather than examine one large Case Study at the end of the chapter,
we solve several small problems using recursion throughout the chapter.

In Java,

1992
The first 64-bit chip
is introduced by
DEC

1993
Apple Computer
announces the
Newton, a personal
digital assistant
(PDA) with
handwriting
recognition
capabilities

1993
Intel introduces the
Pentium Chip

1994
Jim Clark and Marc
Andreesen create
Netscape
Communications
(their first browser),
contributing to a
growing population
of web surfers

1995
Toy Story is
produced from the
Pixar division of
Disney and is the
first full-length
computer-generated
feature film. It
receives rave
reviews

1995
Sun Microsystems
introduces the
object-oriented
programming
language Java™

Recursive call A method call
in which the method being
called is the same as the one
making the call

636 | Recursion

13.1 What Is Recursion?

You may have seen a set of gaily painted Russian dolls that fit inside one another. Inside the
first doll is a smaller doll, inside of which is an even smaller doll, inside of which is yet a
smaller doll, and so on. A recursive algorithm is like such a set of Russian dolls. It repro-
duces itself with smaller and smaller examples of itself until a solution is found—that is, un-
til no more dolls remain. The recursive algorithm is implemented by using a method that
makes recursive calls to itself.

Power Function Definition

Let’s examine a method that calculates the result of raising an integer to a positive power.
If x is an integer and n is a positive integer, then

xn = x * x * x * x * . . . * x

n times

We could also write this formula as

xn = x * (x * x * x * . . . * x)

n � 1 times

or even as

xn = x * x * (x * x * . . . * x)

n � 2 times

In fact, we can write the formula most concisely as

xn = x * xn�1

This definition of xn is a classic recursive definition—that is, a definition given
in terms of a smaller version of itself.

xn is defined in terms of multiplying x times xn�1. How is xn�1 defined? Why,
as x * xn�2, of course! And xn�2 is x * xn�3; xn�3 is x * xn�4; and so on. In this exam-
ple, “in terms of smaller versions of itself” means that the exponent is decre-
mented each time.

When does the process stop? When we reach a case for which we know the
answer without resorting to a recursive definition. In this example, it is the case

Recursive definition A defini-
tion in which something is de-
fined in terms of smaller
versions of itself

13.1 W h a t I s R e c u r s i o n ? | 637

where n equals 1: x1 is x. The case (or cases) for which an answer is explicitly
known is called the base case. The case for which the solution is expressed in
terms of a smaller version of itself is called the recursive or general case. A recursive

algorithm expresses the solution in terms of a call to itself, a recursive call. A re-
cursive algorithm must terminate; that is, it must have a base case.

Power Function Implementation

We use an if statement to determine which case is being executed. The following
method implements the power function with the general case and the base case
marked in the comments.

public static int power(int x, int n)
// Returns x raised to the power n
// Assumption: x is a valid integer and n is greater than 0
// Note: Large exponents may result in integer overflow
{
if (n == 1)
return x; // Base case

else
return x * power(x, n – 1); // Recursive call

}

We can think of each recursive call to power as creating a com-
pletely new copy of the method, each having its own copies of the
parameters x and n.The value of x remains the same for each ver-
sion of power, but the value of n decreases by 1 for each call until
it becomes 1.

Let’s trace the execution of this recursive method, with the fol-
lowing initial call:

xToN = power(2, 3);

We will use a new format to trace recursive routines: We num-
ber the calls and then discuss what is happening in paragraph
form. This trace is also summarized in Figure 13.1, where each
box represents a call to the power method. The values for the pa-
rameters for that call are shown in each box. Refer to the figure
while you work through the trace in paragraph form.

Call 1: power is called with the number equal to 2 and the ex-
ponent equal to 3. Within power, the parameters x and n are ini-
tialized to 2 and 3, respectively. Because n is not equal to 1, power is called recursively with x
and n � 1 as arguments. Execution of Call 1 pauses until an answer is sent back from this re-
cursive call.

Base case The case for which
the solution can be stated non-
recursively

General case The case for
which the solution is expressed
in terms of a smaller version of
itself; also known as the recursive
case

Recursive algorithm A solu-
tion that is expressed in terms of
(1) smaller instances of itself and
(2) a base case

power(2,3)

Call 1:

Call 2:

Call 3:

Returns 8.

Returns 4.

Returns 2.

x n
2 3

x n
2 2

x n
2 1

Figure 13.1 Execution of power(2, 3)

638 | Recursion

Call 2: x is equal to 2 and n is equal to 2. Because n is not equal to 1, the method power is
called again, this time with x and n � 1 as arguments. Execution of Call 2 pauses until an an-
swer is sent back from this recursive call.

Call 3: x is equal to 2 and n is equal to 1. Because n equals 1, the value of x is returned.This
call to the method has finished executing, and the method return value (which is 2) is passed
back to the place in the statement from which the call was made in Call 2.

Call 2:This call to the method can now complete the statement that contained the recursive
call because the recursive call has returned. Call 3’s return value (which is 2) is multiplied by
x.This call to the method has finished executing, and the method return value (which is 4) is
passed back to the place in the statement from which the call was made in Call 1.

Call 1: This call to the method can now complete the statement that contained the recur-
sive call because the recursive call has returned. Call 2’s return value (which is 4) is multiplied
by x.This call to the method has finished executing, and the method return value (which is 8)
is passed back to the place in the statement from which the call was made. Because the first

call (the nonrecursive call) has now completed,8 is the final value of the method power.
What happens if no base case exists? We have infinite recursion, the recursive

equivalent of an infinite loop. For example, if the condition

if (n == 1)

were omitted, power would be called over and over again forever. Infinite recursion
also occurs if we call power with n less than or equal to 0.

In actuality, recursive calls can’t go on forever. Here’s why. When we call a method, ei-
ther recursively or nonrecursively, the computer system creates temporary storage for the
parameters and the method’s (automatic) local variables.This temporary storage is a region
of memory called the run-time stack. When the method returns, its parameters and local
variables are released from the run-time stack.With infinite recursion, the recursive method
calls never return. Each time the method calls itself, a little more of the run-time stack is used
to store the new copies of the variables. Eventually, the memory space on the stack runs
out. At that point, the program crashes with an error message such as “RUN-TIME STACK
OVERFLOW” (or the application may simply freeze).

13.2 More Examples with Simple Variables

For some people, thinking recursively is intuitive; for others, it is a mysterious process verg-
ing on the supernatural. The objective of the rest of this chapter is to demystify the recur-
sive process by working through a collection of examples.

Calculating the Factorial Function

Let’s look at another example: calculating a factorial.The factorial of a number n (written n!)
is n multiplied by n � 1, n � 2, n � 3, and so on. Another way of expressing a factorial is

n! = n * (n � 1)!

This expression looks like a recursive definition.The term (n � 1)! is a smaller instance
of n!—that is, it takes one less multiplication to calculate (n � 1)! than it does to calculate n!

Infinite recursion The situa-
tion in which a method calls it-
self over and over endlessly

13.2 M o r e E x a m p l e s w i t h S i m p l e V a r i a b l e s | 639

If we can find a base case, we can write a recursive algorithm. Fortunately, we don’t have to
look too far: 0! is defined in mathematics to be 1.

We can code this algorithm directly as follows:

public static int factorial(int number)
// Returns the factorial of number
// Assumption: number is greater than or equal to 0
// Note: Large values of number may cause integer overflow
{
if (number == 0)
return 1; // Base case

else
return number * factorial(number – 1); // General case

}

Let’s trace this method with an original number of 4.
Call 1: number is 4. Because number is not 0, the else branch is taken.The return statement

cannot be completed until the recursive call to factorial with number – 1 as the argument has
been completed.

Call 2: number is 3. Because number is not 0, the else branch is taken.The return statement
cannot be completed until the recursive call to factorial with number – 1 as the argument has
been completed.

Call 3: number is 2. Because number is not 0, the else branch is taken.The return statement
cannot be completed until the recursive call to factorial with number – 1 as the argument has
been completed.

Call 4: number is 1. Because number is not 0, the else branch is taken.The return statement
cannot be completed until the recursive call to factorial with number – 1 as the argument has
been completed.

Call 5: number is 0. Because number equals 0, this call to the method returns, sending back
1 as the result.

Call 4:The return statement in this copy can now be completed.The value to be returned
is number (which is 1) times 1.This call to the method returns, sending back 1 as the result.

Call 3:The return statement in this copy can now be completed.The value to be returned
is number (which is 2) times 1.This call to the method returns, sending back 2 as the result.

Call 2:The return statement in this copy can now be completed.The value to be returned
is number (which is 3) times 2.This call to the method returns, sending back 6 as the result.

Call 1:The return statement in this copy can now be completed.The value to be returned
is number (which is 4) times 6.This call to the method returns, sending back 24 as the result.

factorial(number)

if number is 0
return 1

else
return number * factorial(number – 1)

640 | Recursion

Because this is the last of the calls to factorial, the recur-
sive process ends.The value 24 is returned as the final value
of the call to factorial with an argument of 4.

Figure 13.2 summarizes the execution of the factorial
method with an argument of 4.

Let’s organize what we have done in the preceding ex-
amples into an outline for writing recursive algorithms:

1. Understand the problem. (We threw this task in
for good measure; it is always the first step.)

2. Determine the base case(s). A base case is one to
which you know the answer. It does not involve
any further recursion.

3. Determine the recursive case(s). A recursive case
is one in which you can express the solution in
terms of a smaller version of itself.

We have used the factorial and power algorithms to
demonstrate recursion because they are easy to visualize.
In practice, we would never want to calculate either of these
values using the recursive solution. That is, in both cases,
the iterative solutions are simpler and much more efficient

because starting a new iteration of a loop is a faster operation than calling a method. Let’s
compare the code for the iterative and recursive versions of the factorial problem.

Iterative Solution Recursive Solution

public static int factorial(int number) public static int factorial(int number)
{ {
int factor;
int count;

factor = 1; if (number == 0)
for (count = 2; count <= number; count++) return 1;
factor = factor * count; else

return factor; return number * factorial(number – 1);
} }

The iterative version has two local variables, whereas the recursive version has none. A
recursive method usually includes fewer local variables than does an iterative method.Also,
the iterative version always has a loop, whereas the recursive version always has a selection

factorial(4)

Call 1:

Call 2:

Call 3:

Call 4:

Call 5:

Returns 24.

Returns 6.

Returns 2.

Returns 1.

Returns 1.

n
4

n
3

n
2

n
1

n
0

Figure 13.2 Execution of factorial(4)

13.2 M o r e E x a m p l e s w i t h S i m p l e V a r i a b l e s | 641

statement—either an if or a switch.A branching structure serves as the main control structure
in a recursive method; a looping structure is the main control structure in an iterative method.

Converting Decimal Integers to Binary Numbers

You enter integer data in decimal form, and the computer converts these decimal numbers
to binary form for use within a program. Do you know how decimal integers are converted
to binary numbers? The algorithm for this conversion follows:

1. Take the decimal number and divide it by 2.

2. Make the remainder the rightmost digit in the answer.

3. Replace the original dividend with the quotient.

4. Repeat, placing each new remainder to the left of the previous one.

5. Stop when the quotient is 0.

This algorithm is clearly meant for a calculator and paper and pencil. Certainly, we can-
not implement expressions such as “to the left of” in Java as yet. Let’s do an example—con-
vert 42 from base–10 to base–2—to get a feel for the algorithm before we try to write a
computer solution. Remember, the quotient in one step becomes the dividend in the next step.

The answer is the sequence of remainders from last to first.Therefore, the decimal num-
ber 42 is 101010 in binary.

Step 1

21
2)42

4
2
2
0

Step 3

5
2)10

10
0

Step 5

1
2)2

2
0

← Quotient

← Remainder

← Quotient

← Remainder

← Quotient

← Remainder

Step 2

10
2)21

22
1
0
1

Step 4

2
2)5

4
1

Step 6

0
2)1

0
1

← Quotient

← Remainder

← Quotient

← Remainder

← Quotient

← Remainder

642 | Recursion

It looks as though we can implement the solution to the problem with a straightfor-
ward iterative algorithm. Each remainder is obtained from the remainder operation (% in
Java), and each quotient is the result of the / operation.

Let’s do a walk-through to test this algorithm.

Number Remainder

42 0

21 1

10 0

5 1

2 0

1 1

(remainder from step 1 2 3 4 5 6)

Answer: 0 1 0 1 0 1

The answer is backwards! An iterative solution (using only simple variables) doesn’t
work. We need to print the last remainder first. The first remainder should be printed only
after the rest of the remainders have been calculated and printed.

In our example, we should print 42 % 2 after (42 / 2) % 2 has been printed. This, in turn,
means that we should print (42 / 2) % 2 after ((42 / 2) / 2) % 2 has been printed. Now our so-
lution begins to look like a recursive definition. We can summarize by saying that, for any
given number, we should print number % 2 after (number / 2) % 2 has been printed.

What is the base case? We know the answer when number is zero: We have finished and
have nothing left to do. What is the recursive case? Convert number divided by 2. When this
conversion is complete, print the remainder of number divided by 2 (number % 2).This solution
leads to the following algorithm:

If number is 0, we have called convert as many times as necessary and can begin printing the
answer.The base case occurs when we do nothing.The recursive solution to this problem is
encoded in the following convert method.

convert (number)

if number > 0
convert(number / 2)
Print number % 2

convert(number)

while number > 0
Set remainder to number % 2
Print remainder
Set number to number / 2

13.2 M o r e E x a m p l e s w i t h S i m p l e V a r i a b l e s | 643

public static void convert(int number)
// Converts number to binary and prints it
// Assumption: number >= 0
{
if (number > 0)
{
convert(number / 2); // Recursive call
outFile.print(number % 2);

}
// Empty else clause is the base case

}

Let’s do a code walk-through of convert(10). We pick up our original example at step 3,
where the dividend is 10.

Call 1: convert is called with an argument of 10. Because number is not equal to 0, the then
clause is executed. Execution pauses until the recursive call to convert with an argument of
(number / 2) has completed.

Call 2: number is 5. Because number is not equal to 0, execution of this call pauses until the
recursive call with an argument of (number / 2) has completed.

Call 3: number is 2. Because number is not equal to 0, execution of this call pauses until the
recursive call with an argument of (number / 2) has completed.

Call 4: number is 1. Because number is not equal to 0, execution of this call pauses until the
recursive call with an argument of (number / 2) has completed.

Call 5: number is 0. Execution of this call to convert is complete. Control returns to the pre-
ceding call.

Call 4: Execution of this call resumes with the
statement following the recursive call to convert.
The value of number % 2 (which is 1) is printed.
Execution of this call is complete.

Call 3: Execution of this call resumes with the
statement following the recursive call to convert.
The value of number % 2 (which is 0) is printed.
Execution of this call is complete.

Call 2: Execution of this call resumes with the
statement following the recursive call to convert.
The value of number % 2 (which is 1) is printed.
Execution of this call is complete.

Call 1: Execution of this call resumes with the
statement following the recursive call to convert.
The value of number % 2 (which is 0) is printed.
Execution of this call is complete. Because this is
the nonrecursive call, execution resumes with the
statement immediately following the original call.

Figure 13.3 shows the execution of the convert
method with the values of the parameters.

convert(10)

Call 1:

Call 2:

Call 3:

Call 4:

Call 5:

Prints 0.

Prints 1.

Prints 0.

Prints 1.

number
10

number
5

number
2

number
1

number
0

Figure 13.3 Execution of convert(10)

644 | Recursion

Next, we examine a more complicated problem—one in which the recursive solution is
not immediately apparent.

Towers of Hanoi

One of your first toys may have been a board with three pegs holding colored circles of dif-
ferent diameters. If so, you probably spent countless hours moving the circles from one peg
to another. If we put some constraints on how the circles or discs can be moved, we have an
adult game called the Towers of Hanoi.

When the game begins, all the circles are on the first peg in order by size, with the small-
est on the top.The object of the game is to move the circles, one at a time, to the third peg.The
catch is that a circle cannot be placed on top of one that is smaller in diameter.We can use the
middle peg as an auxiliary peg, but it must be empty at the beginning and end of the game.

To get a feel for how this problem might be resolved, let’s look at some sketches of what
the configuration must be at certain points if a solution is possible.We use four circles or discs.
The beginning configuration is

To move the largest circle (circle 4) to peg 3, we must move the three smaller circles to peg
2.Then we can move circle 4 into its final place:

Let’s assume we can do this. Now, to move the next largest circle (circle 3) into place, we
must move the two circles on top of it onto an auxiliary peg (peg 1, in this case):

To get circle 2 into place, we must move circle 1 to another peg, freeing circle 2 to be moved
to its place on peg 3:

32
1

1 2 3 1 2 3

4 4
3

2
1

3
2
1

1 2 3 1 2 3

4 43
2
1

4
3
2
1

1 2 3

13.2 M o r e E x a m p l e s w i t h S i m p l e V a r i a b l e s | 645

The last circle (circle 1) can now be moved into its final place, and we are finished:

This algorithm certainly sounds simple; surely, there must be more to it! But this solution
really is all there is.

Let’s write a recursive method that implements this algorithm. We can’t actually move
discs, of course, but we can print out a message to do so. Notice that the beginning peg, the
ending peg, and the auxiliary peg keep changing during the algorithm.To make the algorithm
easier to follow, we call the pegs beginPeg, endPeg, and auxPeg.These three pegs, along with the
number of circles on the beginning peg, are the parameters of the method.

We have the recursive (general) case, but what about a base case? How do we know
when to stop the recursive process? The clue lies in the expression “Get n circles moved.”
If we don’t have any circles to move, we don’t have anything to do. We are finished with
that stage.Therefore, when the number of circles equals 0, we do nothing (that is, we sim-
ply return).

public static void doTowers(
int circleCount, // Number of circles to move
int beginPeg, // Peg containing circles to move
int auxPeg, // Peg holding circles temporarily
int endPeg) // Peg receiving circles being moved

// Moves are written on file outFile
{
if (circleCount > 0)
{
// Move n – 1 circles from beginning peg to auxiliary peg

Get n Circles Moved from Peg 1 to Peg 3

Get n – 1 circles moved from peg 1 to peg 2
Move nth circle from peg 1 to peg 3
Get n – 1 circles moved from peg 2 to peg 3

1

1 2 3 1 2 3

4 4
3
2
1

3
2

2 1

1 2 3 1 2 3

4 4
3
2

1
3

646 | Recursion

doTowers(circleCount – 1, beginPeg, endPeg, auxPeg);
outFile.println("Move circle from peg " + beginPeg

+ " to peg " + endPeg);
// Move n – 1 circles from auxiliary peg to ending peg
doTowers(circleCount – 1, auxPeg, beginPeg, endPeg);

}
}

It’s difficult to believe that such a simple algorithm actually works, but we can prove it.
We enclose the method within a driver class that invokes the doTowers method. Output state-
ments have been added so that we can see the values of the arguments with each recursive
call. Because two recursive calls are made within the method, we have indicated which re-
cursive statement issued the call.

// Driver class for doTowers method
// Reads the number of circles from a file and calls doTowers
import java.io.*; // File types

public class Towers
{
public static void main(String[] args) throws IOException
{
// Prepare files
PrintWriter outFile; // Output data file
BufferedReader inFile; // Input data file
inFile = new BufferedReader(new InputStreamReader(System.in));
outFile = new PrintWriter(new FileWriter("recursion.out "));
int circleCount; // Number of circles on starting peg
System.out.println("Input the number of circles: ");
circleCount = Integer.parseInt(inFile.readLine());
outFile.println("Input number of circles: " + circleCount);
outFile.println("OUTPUT WITH " + circleCount + " CIRCLES");
outFile.print("From original: ");
doTowers(circleCount, 1, 2, 3);
infile.close();
outFile.close();

}

13.2 M o r e E x a m p l e s w i t h S i m p l e V a r i a b l e s | 647

public static void doTowers(
int circleCount, // Number of circles to move
int beginPeg, // Peg containing circles to move
int auxPeg, // Peg holding circles temporarily
int endPeg) // Peg receiving circles being moved

// Moves are written on file outFile.
// This recursive method moves circleCount circles from beginPeg
// to endPeg. All but one of the circles are moved from beginPeg
// to auxPeg, then the last circle is moved from beginPeg to
// endPeg, and then the circles are moved from auxPeg to endPeg.
// The subgoals of moving circles to and from auxPeg involve recursion.
{
outFile.println("#circles: " + circleCount + " Begin: " +
beginPeg + " Auxil: " + auxPeg + " End: " + endPeg);

if (circleCount > 0)
{
// Move n – 1 circles from beginning peg to auxiliary peg
outFile.print("From first: ");
doTowers(circleCount-1, beginPeg, endPeg, auxPeg);

outFile.println("Move circle " + circleCount + " from peg "
+ beginPeg + " to peg " + endPeg);

// Move n – 1 circles from auxiliary peg to ending peg
outFile.print("From second: ");
doTowers(circleCount – 1, auxPeg, beginPeg, endPeg);

}
}

}

The output from a run with three circles follows. “Original” means that the parameters
listed beside it are from the nonrecursive call, which is the first call to doTowers. “From first”
means that the parameters listed are for a call issued from the first recursive statement.“From
second”means that the parameters listed are for a call issued from the second recursive state-
ment. Notice that a call cannot be issued from the second recursive statement until the pre-
ceding call from the first recursive statement has completed its execution.

648 | Recursion

13.3 Recursive Algorithms with Structured Variables

In our definition of a recursive algorithm, we identified two cases: the recursive (or general)
case and the base case for which an answer can be expressed nonrecursively. In the general
case for all our algorithms so far, we expressed one argument in terms of a smaller value each
time.When we use structured variables, however, we often state the recursive case in terms
of a smaller structure rather than a smaller value; the base case occurs when there are no
values left to process in the structure.

Printing the Values in an Array

Let’s write a recursive algorithm for printing the contents of a one-dimensional array of n el-
ements to show what we mean. What is the base case? We have no elements left to print.
What is the general case? We print the item in the first position in the array, and print the
rest of the items.

The recursive case is to print the values in an array that is one element “smaller”; that
is, the size of the array decreases by 1 with each recursive call. The base case occurs when
the size of the array becomes 0—that is, when we have no more elements left to print.

Our arguments must include the index of the first element (the one to be printed). How
do we know when no more elements are left to print (that is, when the size of the array to
be printed is 0)? We have printed the last element in the array when the index of the next

Print Array

if more elements
Print the item in the first position
Print the rest of the array

13.3 R e c u r s i v e A l g o r i t h m s w i t h S t r u c t u r e d V a r i a b l e s | 649

element to be printed is beyond the index of the last element in the array. Therefore, we
must pass the index of the last array element as an argument.We call the indexes first and
last. When first is greater than last, we are finished.The name of the array is data.

public static void print(
int[] data, // Array to be printed
int first, // Index of first element
int last) // Index of last element

// Prints an array
{
if (first <= last)
{ // Recursive case
outFile.println(data[first]+ " ");
printArray(data, first + 1, last);

}
// Empty else clause is the base case

}

Here is a code walk-through of the method call

print(data, 0, 4);

using the pictured array.

Call 1: first is 0 and last is 4. Because first is less than last, the value in data[first]
(which is 23) is printed. Execution of this call pauses while the array from first + 1 through
last is printed.

Call 2: first is 1 and last is 4. Because first is less than last, the value in data[first]
(which is 44) is printed. Execution of this call pauses while the array from first + 1 through
last is printed.

Call 3: first is 2 and last is 4. Because first is less than last, the value in data[first]
(which is 52) is printed. Execution of this call pauses while the array from first + 1 through
last is printed.

Call 4: first is 3 and last is 4. Because first is less than last, the value in data[first]
(which is 61) is printed. Execution of this call pauses while the array from first + 1 through
last is printed.

Call 5: first is 4 and last is 4. Because first is equal to last, the value in data[first]
(which is 77) is printed. Execution of this call pauses while the array from first + 1 through
last is printed.

23[0]
44[1]
52[2]
61[3]
77[4]

data

650 | Recursion

Call 6: first is 5 and last is 4. Because first is greater than last, the execution
of this call is complete. Control returns to the preceding call.

Call 5: Execution of this call is complete. Control returns to the preceding call.
Calls 4, 3, 2, and 1: Each execution is completed in turn, and control returns to

the preceding call.
Notice that once the deepest call (the call with the highest number) was reached,

each of the calls before it returned without doing anything. When no statements
execute after the return from the recursive call to the method, the recursion is known

as tail recursion. Tail recursion often indicates that we could solve the problem more easily us-
ing iteration.We used a recursive solution in the array example because it made the recursive
process easy to visualize; in practice, an array should be printed iteratively.

Figure 13.4 shows the execution of the print method with the values of the parameters
for each call. Notice that the array becomes smaller with each recursive call (data[first]

Tail recursion A recursive al-
gorithm in which no statements
execute after the return from
the recursive call

Call 1:

Call 2:

Call 3:

Call 4:

Call 5:

Call 6:

first
0

last
4

first
1

last
4

first
2

last
4

first
3

last
4

first
4

last
4

first
5

last
4

data[0]
is
printed.

data[1]
is
printed.

data[2]
is
printed.

data[3]
is
printed.

data[4]
is
printed.

print(data, 0, 4)

data, which is the array, is not shown in the boxes.

Figure 13.4 Execution of print(data, 0, 4)

13.4 R e c u r s i o n o r I t e r a t i o n ? | 651

through data[last]). If we want to print the array elements in reverse order recursively, we
simply swap the two statements within the if statement.

Binary Search

Do you remember the binary search in Chapter 11? Here is the description of the algorithm:
“The algorithm divides the list in half (divides by 2—that’s why it’s called a binary search) and
decides which half to look in next. Division of the selected portion of the list is repeated un-
til the item is found or it is determined that the item is not in the list.” There is something
inherently recursive about this description.

Although the method that we wrote in Chapter 11 was iterative, it really is a recursive al-
gorithm.The solution is expressed in terms of smaller versions of the original problem: If the
answer isn’t found in the middle position, perform a binary search (a recursive call) to search
the appropriate half of the list (a smaller problem). In the iterative version, we kept track of
the bounds of the current search area with two local variables, first and last. In the recur-
sive version, we call the method with these two values as arguments. We must call the re-
cursive binary search method from the isThere method of the SortedList class rather than
writing it as part of that method.

private boolean binIsThere(int first, int last, int item)
// Returns true if item is in the list
{
if (first > last) // Base case 1
return false;

else
{
int midPoint;
midPoint = (first + last) / 2;
if (item < listItems[midPoint])
return binIsThere(first, midPoint-1, item);

else if (item == listItems[midPoint])
return true; // Base case 2

else
return binIsThere(midPoint+1, last, item);

}
}

public boolean isThere(int item)
// Returns true if item is in the list
{
return binIsThere(0, numItems-1, item);

}

13.4 Recursion or Iteration?

Recursion and iteration are alternative ways of expressing repetition in an algorithm.When
iterative control structures are used, processes are made to repeat by embedding code in a

652 | Recursion

looping structure such as a while, for, or do. In recursion, a process is made to repeat by hav-
ing a method call itself. A selection statement controls the repeated calls.

Which is better to use—recursion or iteration? This question has no simple answer.The
choice usually depends on two issues: efficiency and the nature of the problem at hand.

Historically, the quest for efficiency, in terms of both execution speed and memory us-
age, has favored iteration over recursion. Each time a recursive call is made, the system must
allocate stack space for all parameters and local variables. The overhead involved in any
method call is time-consuming. On early, slow computers with limited memory capacity, re-
cursive algorithms were visibly—sometimes painfully—slower than the iterative versions.
On modern, fast computers, however, the overhead associated with recursion is often so
small that the increase in computation time is almost unnoticeable to the user. Except in cases
where efficiency is absolutely critical, then, the choice between recursion and iteration more
often depends on the second issue—the nature of the problem at hand.

Consider the factorial and power algorithms discussed earlier in the chapter. In both cases,
iterative solutions were obvious and easy to devise.We imposed recursive solutions on these prob-
lems merely to demonstrate how recursion works.As a rule of thumb, if an iterative solution is
more obvious or easier to understand, use it; it is probably more efficient. For other problems,
the recursive solution is more obvious or easier to devise, such as theTowers of Hanoi problem.
(It turns out that the Towers of Hanoi problem is surprisingly difficult to solve using iteration.)
Computer science students should be aware of the power of recursion. If the definition of a
problem is inherently recursive, then a recursive solution should certainly be considered.

13.5 Testing and Debugging

Recursion is a powerful technique when used correctly. Improperly used, it can result in
errors that are difficult to diagnose.The best way to debug a recursive algorithm is to con-
struct it correctly in the first place. To be realistic, however, we give a few hints about
where to look if an error crops up.

Testing and Debugging Hints

1. Be sure a base case exists. If there is no base case, the algorithm will continue
to issue recursive calls until all memory has been used. Each time the method
is called, either recursively or nonrecursively, stack space is allocated for the
parameters and local variables. If no base case is available to end the
recursive calls, the run-time stack eventually overflows. An error message
such as “STACK OVERFLOW ERROR” indicates that the base case is missing.

2. Be sure you have not used a while structure.The basic structure in a recursive
algorithm is the if statement. At least two cases must be provided: the recur-
sive case and the base case. If the base case does nothing, the else clause is
omitted.The selection structure, however, must be present. If a while

S u m m a r y | 653

statement is used in a recursive algorithm, it usually should not contain a re-
cursive call.

3. Use your system’s debugger program (or use debug output statements) to
trace a series of recursive calls. Inspecting the values of parameters and local
variables often helps to locate errors in a recursive algorithm.

Summary

A recursive algorithm is expressed in terms of a smaller instance of itself. It must in-
clude a recursive (or general) case, for which the algorithm is expressed in terms of
itself, and a base case, for which the algorithm is expressed in nonrecursive terms.

In many recursive problems, the smaller instance refers to a numeric argument
that is reduced with each call. In other problems, the smaller instance refers to the
size of the data structure being manipulated. In the base case, the size of the
problem (value or structure) reaches a point for which an explicit answer is known.

In the conversion of decimal integers to binary numbers, the size of the problem
is the number to be converted. When it is 0, the conversion is finished. In the Towers
of Hanoi game, the size of the problem is the number of discs to be moved. When
only one is left on the beginning peg, it can be moved to its final destination.

In the example of printing an array using recursion, the size of the problem is the
size of the array being printed. When the array size reaches 1, the solution is known.
In the binary search algorithm, the size of the problem is the size of the search area.
There are two base cases in this algorithm: (1) when the search item is found and (2)
when the search area becomes empty and you know that the search value is not
there.

Quick Check

1. What is the essential ingredient in a recursive definition? (pp. 636–637)

2. What distinguishes the base case from the recursive case in a recursive
algorithm? (pp. 636–637)

3. What is the size of the problem in the recursive power algorithm? (pp. 636–638)

4. What is the base case in the Towers of Hanoi algorithm? (pp. 644–648)

654

5. In working with simple variables, the recursive case is often stated in terms of
a smaller value. What is typical of the recursive case in working with
structured variables? (pp. 648–651)

6. Which control structures are used to implement recursion? (pp. 651–652)

7. Which control structures are used to implement iteration? (pp. 651–652)

8. In the binary search algorithm, what is the base case? (p. 651)

9. Which of the algorithms presented in this chapter are better implemented us-
ing iteration? (pp. 651–652)

Answers

1. The essential ingredient in a recursive definition is the repetition of the problem in terms of a smaller ver-
sion of itself. 2. The base case is the simplest case—that is, the case for which the solution can be stated non-
recursively. 3. The size of the problem is the power to which the number is taken. It is decreased by one in
each call. 4. There are no more circles left to move. 5. It is often stated in terms of a smaller structure.
6. Selection 7. Looping 8. The search area is empty or the item is found. 9. Factorial, power, printing values in
an array

Exam Preparation Exercises

1. Recursion is an example of

a. Selection

b. A data structure

c. Repetition

d. Data-flow programming

2. A void method can be recursive, but a value-returning method cannot. (True or
False?)

3. When a method is called recursively, the arguments and local variables of the
calling version are saved until its execution resumes. (True or False?)

4. Given the recursive formula F(N) = �F(N � 2), with a base case of F(0) = 1, what
are the values of F(4), F(6), and F(5)? (If any of the values are undefined, say so.)

5. What algorithm error(s) leads to infinite recursion?

6. What control structure appears most commonly in a recursive method?

7. If you develop a recursive algorithm that employs tail recursion, what should
you consider?

8. A recursive algorithm depends on making something smaller. When the algo-
rithm works on a data structure, what may become smaller?

a. Distance from a position in the structure

b. The data structure

c. The number of variables in the recursive method

9. What is the name of the memory area used by the computer system to store a
method’s parameters and local variables?

655

10. Given the following input:

15

23

21

19

What is the output of the following method?

public void printNums()

{

int n;

String line;

line = inFile.readLine();

if (line != null) // If not EOF ...

{

n = Integer.parseInt(line);

outFile.print(n + " ");

printNums();

outFile.print(n + " ");

}

}

Programming Warm-Up Exercises

1. Write a Java value-returning method that implements the recursive formula
f(n) = f(n � 1) + f(n � 2) with base cases of f(0) = 1 and f(1) = 1.

2. Add whatever is necessary to fix the following method so that func(3) equals
10.

public static int func(int n)

{

return func(n – 1) + 3;

}

3. Rewrite the following printSquares method using recursion.

public static void printSquares()

{

int count;

for (count = 1; count <= 10; count++)

outFile.println(count + " " + count * count);

}

656

4. Modify the factorial method discussed in this chapter to print its parameter
and returned value indented two spaces for each level of call to the method.
The call factorial(3) should produce the following output on System.out:

3

2

1

0

1

1

2

6

5. Write a recursive value-returning method that sums the integers from 1
through n.

6. Rewrite the following method so that it is recursive.

public static void printSqRoots(int n)

{

int i;

for (i = n; i > 0; i--)

outFile.println(i + " " + Math.sqrt((double)i));

}

7. The print method discussed in this chapter prints the contents of an array from
first element to last.Write a recursive method that prints from last element to
first.

8. Write an isThere method that takes an array as a parameter and performs a re-
cursive linear search.

9. Rewrite the power method using another base case.

10. Rewrite the power method using the following formula.

if n == 0, return 1

if n == 1, return x

if n is even, return power(x*x, n/2)

else return x*power(x, n–1)

657

Programming Problems

1. Use recursion to solve the following problem.

A palindrome is a string of characters that reads the same forward and
backward. Write a program that reads in strings of characters and determines if
each string is a palindrome. Each string appears on a separate input line. Echo-
print each string, followed by “Is a palindrome” if the string is a palindrome or
“Is not a palindrome” if the string is not a palindrome. For example, given the
input string

Able was I, ere I saw Elba.
the program should print “Is a palindrome.” In determining whether a string is
a palindrome, consider uppercase and lowercase letters to be the same and ig-
nore punctuation characters.

2. Write a program to place eight queens on a chessboard in such a way that no
queen attacks any other queen.This classic problem lends itself well to a recur-
sive solution. Represent the chessboard as an 8 � 8 Boolean array. If a square is
occupied by a queen, the value is true; otherwise, the value is false.The status
of the chessboard when all eight queens have been placed is the solution.

3. A maze is to be represented by a 10 � 10 array of characters: P (for path), H (for
hedge), or E (for Exit).The maze has one exit. Write a program to determine if it
is possible to exit the maze from a given starting point.You may move
vertically or horizontally in any direction to a square that contains P; you may
not move to a square that contains H. If you move into a square that contains E,
you have exited.

The input data consists of two parts: the maze and a series of starting
points.The maze is entered as 10 lines of 10 characters (P, H, and E). Each
succeeding line contains a pair of integers that represents a starting point (that
is, row and column numbers). Continue processing entry points until end-of-
file occurs.

Knowledge Goals
• To understand the differing roles of applications and applets

• To understand how a browser operates

• To understand the role of HTML

Skill Goals
To be able to:

• Write an applet to perform a simple task

• Embed Bytecode within a Web page

• Construct a simple HTML Web page that executes an applet

Applets

1995
E-commerce sites
Ebay and
Amazon.com open,
forecasting a
revolution in the
way goods are
bought and sold

1995
Microsoft releases
the Windows 95
operating system
and sells 600,000
units in the first
month

1997
In a legendary
match, IBM’s Deep
Blue computer
defeats Garry
Kasparov, the world
champion chess
player

1999
Membership to the
Internet Service
Provider AOL
exceeds 20 million,
signifying an
explosion of
personal computer
use for the Internet

1999
Shawn Fanning,
while at
Northeastern
University, founds
Napster. The easy
trading of music in
MP3 format raises
copyright issues

2000
The Y2K crisis costs
millions to fix, yet
the new millennium
was ushered in with
few glitches

14
C H A P T E R

we have written all of our programs as Java applica-
tions.That is, we have written a class that contains a method called main
that acts as the driver for whatever set of responsibilities our objects
support. Java provides a second type of program called an applet. As its
name implies, it is intended to be a small application that doesn’t stand
on its own but rather is run in a Web browser.

From an educational viewpoint, we have presented only applications
to this point because they enable us to use all of Java’s features. They
also do not require the use of a browser or a separate program (called an
applet viewer) to run compiled code. Now that you are comfortable with
Java, we end this book with a chapter on applets. We describe what they
are, how to write them, and how to run them.

So far in this text,

2000
The dot-com
business model
proves faulty, start-
up companies fail,
tech stock
plummets, and the
dot-com bubble
bursts

2000
Judge rules that
Microsoft is a
monopoly and is in
violation of anti-
trust laws.
Microsoft appeals.

2000
The Human
Genome Project
completes a draft of
the DNA sequence
for humans

2001
Dell Computer
Corporation
becomes the leading
global maker of
computer systems,
targeting both PC
owners and
businesses

2002
Hitachi’s super-
computer, Earth
Simulator, at 40
trillion operations
per second, performs
5-times faster than
the former leading
supercomputer,
IBM’s ASCI White

2002
Microsoft releases
the .NET
development
environment
partially in
response to the
success of Java

660 | Applets

1Later versions of Java ease this restriction to allow special cases of file access when a user permits it.

14.1 What Is an Applet?

Applets are a kind of mini-application designed to be distributed along with Web pages and
run under a browser or applet viewer. They are used as elements of Web pages. Most Web
browsers include a special JVM that can execute the Bytecode version of an applet.When the
browser encounters a link to an applet Bytecode file, it copies the file into memory and calls
its JVM to execute the Bytecode.

The browser’s ability to execute applets enables us to create Web pages that are as so-
phisticated as almost any program we can write in Java.We say “almost” because applets are
subject to certain limitations that do not apply to Java applications. For example, you would
not want your browser to run an applet that destroys the files on your computer.Thus applets
are prohibited from accessing files.1 Likewise, an applet cannot send messages to other com-
puters from your computer (except the one from which it was loaded). These security re-
strictions are included in Java to prevent the creation of harmful applets by malicious
programmers.

Applets differ from applications in several ways:

� An applet doesn’t have a main method. It is much more like a windowing
component than a stand-alone application.

� An applet is not invoked in the same fashion as an application. Instead, it is
embedded within an HTML document. HTML is the language used to create Web
pages. We describe HTML briefly later in this chapter.

� Applets are subjected to more security constraints than an application because
they are distributed over the Web.

� Applets are not in control of their own execution.They simply respond when told
to do so by the browser or viewer.

Because of the way that applets are executed, they do not have constructors. Instead, the
operations that we would normally place into a constructor (such as initializing fields or
setting up the user interface) should be written in the applet’s init method.When a browser
first downloads an applet, its JVM executes this method. In this chapter we use the init
method not only to serve as a constructor but also to play the role of main in an application.
It contains the main block of code that begins the work of the applet.

Whereas all applications are usually derived implicitly from Object, applets must be ex-
plicitly derived from the Applet or JApplet class, both of which are descendants of the class
Container. These classes contain additional methods called start, stop, and destroy that are
used with more sophisticated applets that employ features of Java not covered in this text.
For example, if an applet is showing a graphics animation, we may want it to stop when the
user moves to a different Web page and resume (start) when the user returns to the page with
the applet.

14.2 H o w D o Yo u W r i t e a n A p p l e t ? | 661

In Chapter 8, you learned how to create GUIs using the swing
package. Swing is a GUI toolkit provided as a core part of the Java
2 platform. It is not a new set of tools, but rather an enhancement
of the AWT toolkit that was used on previous platforms. Many of
the Swing classes that you used in Chapter 8 have the letter “J” in
front of them: JButton,JLabel, and JTextField.The “J”distinguishes
the class from the AWT class of the same name. Both AWT and
Swing support applets. Figure 14.1 shows the inheritance hier-
archy. As you can see, the JApplet class is derived from Applet.

In our applications, we had to instantiate a JFrame into whose
content pane we added our user interface components. Because
an applet is itself a container, we simply call methods such as add
and setLayout directly. Thus writing applets is easier than writ-
ing applications with frames.

14.2 How Do You Write an Applet?

We demonstrate how to write an applet through the use of two
previous examples.The first is the factorial function, which orig-
inally did not use a GUI, and the second is the calculator appli-
cation, which did use such an interface.

Factorial

Let’s consider how to write an applet in the context of a specific problem. In Chapter 13, we
wrote the factorial function.What we didn’t mention there is that the factorial of a number
becomes very large very fast. Let’s write an applet that lets us enter a number and then dis-
plays the factorial of that number.This process continues until the user closes the window
in the browser. Thus an event loop is set up, allowing the user to continue to enter a value
for which the factorial is computed.

We display the code for the applet and intersperse discussion of this code at the differ-
ent parts. Note that we are removing the “J” from in front of the class names of the window
components.That is, we are presenting AWT applets rather than Swing applets.The reason
for doing so is that many older browsers are not set up to accept Swing applets, and those
that are can still run AWT applets.

// Applet FactInt on file FactInt.java computes the factorial of
// its input and stores it in a variable of type int, which is
// displayed on the screen.

import java.applet.Applet;
import java.awt.*; // Supplies user interface classes
import java.awt.event.*; // Supplies event classes

AWT

Swing

Object

Component

Container

Panel

Applet

JApplet

Figure 14.1 Applet Inheritance Hierarchy for AWT
and Swing

662 | Applets

public class FactInt extends Applet implements ActionListener
{
public void actionPerformed(ActionEvent event)
// Event handler method
{
int value;
value = Integer.parseInt(inputField.getText());
inputField.setText("");
outLabel.setText(value + " factorial is " + factorial(value));

}

The main heading is just like that of an application, except the phrase extends Applet imple-
ments ActionListener follows the class name.This phrase tells the compiler that we are work-
ing with an applet and not an application: Our class is derived from Applet.This applet also
implements the ActionListener interface, so we should expect a publicmethod actionPerformed
to be part of the class.The event handler takes a string as input, converts it to an integer value,
resets the text field to the empty string, and invokes the factorial function within the out-
put statement.The factorial function that follows is identical to the one from Chapter 13.

private int factorial(int n)
// Assumption: n is not negative
{
if (n == 0)
return 1; // Base case

else
return (n * factorial(n-1)); // General case

}

The next sections of code set up a button, a label, and a text input field.

// Set up a button, label, and input field
private TextField inputField;
private Label label;
private Label outLabel;
private Button button;

In an application, the method where execution begins is main. In an applet, execution be-
gins in the init method.The initializations that are carried out in main in an application are
carried out in init in an applet.

public void init()
{
// Instantiate components
label = new Label("Enter an integer; click Enter.");
outLabel = new Label("Answer");
button = new Button("Enter");
button.addActionListener(this);

14.2 H o w D o Yo u W r i t e a n A p p l e t ? | 663

inputField = new TextField("Value here");

// Add components
add(label);
add(inputField);
add(button);
add(outLabel);

// Specify a layout manager for the window
setLayout(new GridLayout(4,1));

}
}

Here is a series of screen shots showing the initial window and the results from various
input values.

664 | Applets

To stop execution, the user closes on the applet window (or browser window).
See what we mean about the factorial becoming very large very fast? 16! is 10 digits. 17!

cannot possibly be a negative number. What happened? The result was too large to store in
an integer variable, so overflow occurred.The JVM just kept going with a “garbage” value for
the number, which in this case was displayed as a negative number.

Calculator

Now let’s look at a little more complex example. In Chapter 8, we created a calculator that
performs addition and subtraction. Let’s convert it into an applet. Look back at that program
as you read through this code. As before, we embed textual comments at important places.

import java.applet.Applet; // Applet class
import java.awt.event.*; // Event-handling classes
import java.awt.*; // User interface classes

The outer public class both extends the class Applet and implements the ActionListener
interface.Thus Calculator2 is its own listener class.This fact is reflected here in the heading
and in the code where this is the argument for the addActionListener method. Notice that

14.2 H o w D o Yo u W r i t e a n A p p l e t ? | 665

within the event handler, the code is enclosed within a try-catch statement that handles nu-
meric input errors.

import java.applet.Applet; // Applet class
import java.awt.event.*; // Event handling classes
import java.awt.*; // Uer interface classes

public class Calculator2 extends Applet implements ActionListener
{
public void actionPerformed(ActionEvent event)
//Handles events from the buttons in the applet
{
double secondOperand; // Holds input value
String whichButton; // Holds the button's name
// Get the operand, checking for numeric format error
try
{
secondOperand = Double.parseDouble(inputField.getText());

}
catch (NumberFormatException except)
{
secondOperand = 0.0; // If error, set to zero

}

whichButton = event.getActionCommand(); // Get the button's name

if (whichButton.equals("+")) // When the name is "+"
result = result + secondOperand; // add the operand

else if (whichButton.equals("-")) // When the name is "-"
result = result – secondOperand; // subtract operand

else
result = 0.0; // Clear result to zero

register.setText("" + result); // Display result
inputField.setText(""); // Clear input

}

Because we are extending Applet rather than JApplet, the J’s have all been removed from
class names in the following declarations.

private TextField inputField; // Data field
private Label register; // Result shown on screen
private double result; // Keeps current value

public void init()
{
Label resultLabel; // Indicates output area

666 | Applets

Label entryLabel; // Label for input field
Button add;
Button subtract;
Button clear;
result = 0.0;

// Instantiate labels and initialize input field
resultLabel = new Label("Result:");
register = new Label("0.0", Label.RIGHT);
entryLabel = new Label("Enter #:");
inputField = new TextField("", 10);

Notice that no Frame (or JFrame) items have been declared or instantiated. The applet
already has its own window.

// Instantiate button objects
add = new Button("+");
subtract = new Button("-");
clear = new Button("Clear");

// Register the button listener with the buttons
add.addActionListener(this);
subtract.addActionListener(this);
clear.addActionListener(this);

// Add interface elements to applet window
setLayout(new GridLayout(4,2)); // Set the layout manager
add(resultLabel);
add(register);
add(entryLabel);
add(inputField);
add(add);
add(subtract);
add(clear);

}
}

Here is how this applet appears on the screen.

14.3 H o w D o Yo u R u n a n A p p l e t ? | 667

14.3 How Do You Run an Applet?

As we said earlier, the applet must be run within a Web browser or an applet viewer. The
browser recognizes a link to a Bytecode file and the JVM within the browser executes the code.
Most Java systems provide an applet viewer that runs the Bytecode version of
the applet so that you can see the results. Although each system is different,
there is usually an HTML file associated with each applet that gives the name of
the compiled class to the viewer. The name of the class is typically the name of
the public class with a .class extension. Remember that the JVM executes
Bytecode, not Java code or machine language code.

Let’s first review a few fundamental facts about Web browsers. We will then
look at HTML, the language in which Web pages are written.

Web Browsers

The terms Internet and Web are often used as synonyms, but they are not. The
Internet is a network. A network is a collection of computing devices connected so
that they can communicate and share resources.A local area network (LAN) is a net-
work that connects a small number of nodes in a close geographic area.A wide area

network (WAN) is a network that connects two or more local area networks. The
Internet is a wide area network that spans the planet. In contrast, the Web is an in-
frastructure of information and the network software used to access it.

A Web page is a document that contains or references various kinds of data
as well as contains links to other Web pages. Web pages are referenced by their
Uniform Resource Locator (URL), such as http://www.jbpub.com. When you access a

Network A collection of con-
nected computing devices that
communicate and share
resources

Local area network (LAN) A
network in a close geographic
area

Wide area network (WAN) A
network that connects two or
more local area networks

Internet A wide area network
that spans the planet

Web An infrastructure of infor-
mation and the network
software used to access it

Uniform Resource Locator
(URL) The address of a Web
page on the Internet

668 | Applets

Web page in your browser by entering a URL, the browser goes to that page and brings a copy
back to you.Thus the expression “visit a Web page” is somewhat misleading.Your browser ac-
tually visits the other site and brings back a copy for you to view. If the Web page contains a
link to an applet, the code is brought to your browser and run on your browser’s JVM.

HTML

Both browsers and applet viewers read Web pages. To create or build Web pages,
we use the Hypertext Markup Language (HTML).The term hypertext means that the in-
formation is not organized linearly, like a book. Instead, links to other information
are embedded within the text so that the viewer can jump from one place to an-
other as needed within the text. These days, a more accurate term would be hy-
permedia, because Web pages deal with many types of information in addition to
text, including images, audio, and video.

The term markup language means that the primary elements of the language
take the form of tags that we insert into a document to annotate the information
stored there. In the case of HTML, the tags indicate how the information should be
displayed. It’s as if you took a printed document and marked it up with extra nota-
tion to specify other details, as shown in Figure 14.2.

boldface
center

Submitted by Justin Parker

First of all, our thanks go out to the following sponsors for their
support of the conference and its supplemental activities.

Allied Interactive
Sybernetics, Inc.
Dynamic Solutions of New Jersey

make these bullets

The conference was a great success. It ran a full four days, including
workshops and special sessions. Subjective feedback from conference
attendees was largely positive, and financially the revenues resulted
in a surplus of over $10,000.

European Conference on Expert Systems

Final Report

Figure 14.2 A Marked-up Document

Hypertext Markup Language
(HTML) The language used to
create or build Web pages

Markup language A language
that uses tags to annotate the
information in a document

Tag The syntactic element in a
markup language that indicates
how information should be dis-
played

14.3 H o w D o Yo u R u n a n A p p l e t ? | 669

Factorial

Figure 14.3 shows the HTML document that has the link to the Bytecode version of FactInt.
Although this chapter will not try to teach you HTML, we do want to point out the features

that cause the execution of the applet.Tags are enclosed in angled brackets and are not case-sen-
sitive. Most of them come in pairs, with the second or closing tag preceded by a “/”. At the be-
ginning and the end of the document,you will see <HTML> ... </HTML>; at the beginning and the
end of the title,you will see<TITLE> ... </TITLE>.The body of the HTML code is enclosed in<BODY>
... </BODY>. <H1> ... </H1> indicates that the information between the tags is a type 1 head-
ing, and <P> ... </P> encloses a paragraph.<HR> inserts a horizontal rule (line) and has no end-
ing tag.

The following HTML code runs the applet:

<APPLET code = "FactInt.class" width=250 height=150></APPLET>

Between <APPLET and </APPLET> lie the keywords that cause the applet to be executed.The JVM
starts executing the Bytecode at the file FactInt.class.The applet is in an event loop that keeps
executing as long as the browser remains on the Web page containing the applet.

Figure 14.3 An HTML Document That Causes the Applet FactInt to be Executed

<HTML>

<HEAD>

<TITLE>Factorial Labs</TITLE>

</HEAD>

<BODY>

<H1>Factorial with Int Result</H1>

<P>Enter increasing values beginning with 0 and record the results of the factorial of

your input. At some point, the answer will seem strange. Record what seems strange about

the answer and return to the previous page. </P>

<P><HR></P>

<P><APPLET code = "FactInt.class" width=250 height=150></APPLET></P>

</BODY>

</HTML>

670 | Applets

Calculator

We ran the calculator applet within a viewer provided by our particular Java system. Figure
14.4 shows the .html file that was automatically generated by our Java system when the cal-
culator applet was compiled.

Although this HTML document is a little different, the important element is: the applet
tag with the name of the file with a .class extension. Notice the two-stage process:

1. Compile the Java code into Bytecode.

2. Create an HTML document with a link to the Bytecode file in the Web page.

Figure 14.4 .html file for running the calculator applet

<title>Calculator2.class</title>

<hr>

<applet codebase="Java Classes" code="Calculator2.class" width=200 height=200>

</applet>

<hr>

The source.

SEARCHING EXPERIMENTS

Problem Write an applet that lets the user experiment with looking for items in a list
and trying to determine which searching algorithm is being used.The number of com-
parisons is a metric that is often employed to measure searching efficiency, so the
applet should display the number of comparisons performed in determining whether
the value was present in the list.

Background In Chapter 11, three searching algorithms were presented and discussed:
a sequential search in a sorted list, a sequential search in an unsorted list, and a binary
search. A sequential search begins by looking at the first item in the list and continues
looking at each successive item until it finds the item or reaches the end of the list. A
sequential search in a sorted list can recognize when the search has reached the place
where the item would be if it were present and thus can stop at that point. A binary
search assumes that the list items are sorted; it begins looking in the middle of the list
and successively throws away half of the list with each comparison until it finds the
item or there is nowhere else to look.

Brainstorming The problem doesn’t state which of the three algorithms is used.We can
wait to decide that later, because the primary processing does not depend on the
algorithm.The classes in this solution are found in the problem statement: a list of
items, an item, and a counter to keep track of the number of comparisons. Because the
applet runs from a web page, we know that the input and output will be from the GUI
components on the screen.Thus we must have an input text field and an output label.
Where there is an input text field, a button is always lurking nearby.

Scenarios The user enters an item, and the applet reports whether the item is in the list
and how many comparisons were required to make that determination.Where there is a
button, there is a listener and an event loop.What actions must be executed within the
event handler? The item must be read, the list must be searched, and the results must be
given to the user.The user may input another item or quit the process by closing the
applet window (if an applet viewer is being used) or going to another Web page.

What must the applet do to set up this situation within the event handler? For one
thing, it must generate a list to be searched. Because the problem statement says

List

Item

GUI components (label, textfield, button)

Applet

CASE STUDY 671

CASE STUDY
672

nothing about the types of items in the list, let’s make them be integers. We can then
use a random-number generator to create the items in the list.

Responsibility Algorithms The first responsibility, preparing the GUI components, is
very straightforward. We need an input label, an output label, a text field, and a button.
Generating the list requires a little more thought.The CRC card says that this operation
collaborates with the class Random.This Java class supplies a method that generates a
random number. We can call this method to give us an integer, say, between 0 and 999.
Here is how the method works:

Random rand = new Random();
value = Math.abs(rand.nextInt()) % 1000;

The first line initializes the random-number generator. Each time it is called, the
nextInt method returns a random number within the range of the int data type.The
Math.abs method converts the result to a nonnegative integer, and the % 1000 limits the
values to three digits. Random is in java.util.

Which list ADT shall we use? Does the list need to be sorted? It must be sorted only
if we decide to use the searches that require a sorted list. Abstraction lets us write the
primary algorithms without having to decide right away. What size shall we make the
list? Let’s set a constant SIZE to be 100.This way it would be easy to change later.

Generate values

for counter going from 1 to SIZE
Generate random number
Insert number into list

Class Name: Search Superclass: Applet Subclasses:

Responsibilities Collaborations

Prepare GUI components Label, TextField, Button

Generate list values Random

Get an item

Search the list (item) List

 return boolean

Report results

CASE STUDY 673

The next three responsibilities are within the event handler and can be grouped to-
gether.

Have we forgotten anything? Yes—how are we going to count the number of compar-
isons? We can derive a class from one of the list classes and have it override the isThere
method. Before we do that, let’s spend a minute thinking about the processing that we
need to do. We don’t delete an item, and we don’t use any of the observers. In fact, we
aren’t really dealing with a list at all, because the number of items is a constant. It
would be much more efficient to just generate the random numbers directly into an ar-
ray, and then write an isThere method that searches the array and counts the number
of comparisons. We can borrow the code from one of our list classes. We use the linear
search because the array items are not in sorted order.

We have to make count be a field in the applet class. We need two outputs from our
isThere method (found and count), yet the return statement can only return one value.

Is there (item)

Set location to 0
Set found to false
Set count to 0
Set moreToSearch to (location less than SIZE)
while moreToSearch and !found
Increment count
if item equals values[location]
Set found to true

else
Increment location
Set moreToSearch to (location less than SIZE)

return found

Generate list (revised)

for counter going from 0 to SIZE – 1
values[counter] = Math.abs(rand.nextInt()) % 1000

Event handler

Get item
Search list for item
if found
Write item, " is in list found with ", count, " comparisons"

else
Write item, " is not in list, determined with ", count, " comparisons"

CASE STUDY
674

Therefore, we must make count be a field that other methods can access. Here is the
code for our applet, followed by a picture showing execution by the applet viewer:

//***
// This applet prompts a user to input an integer value and
// reports if the value is in a list and how many comparisons
// it took to make that determination.
//***
import java.applet.Applet;
import java.awt.*; // Supplies user interface classes
import java.awt.event.*; // Supplies event classes
import java.util.*; // Supplies Random class

public class Search extends Applet implements ActionListener
{

private int[] values; // Values to be searched
private int count = 0; // Comparison count
private final int SIZE = 100; // Size of the array

// Event handler method
public void actionPerformed(ActionEvent event)
{
int value;
value = Integer.parseInt(inputField.getText());
inputField.setText("");
if (isThere(value))
outLabel.setText(value + " is in list found with "
+ count + " comparisons");

else
outLabel.setText(value + " is not in list determined with "
+ count + " comparisons");

}

private boolean isThere (int item)
// Returns true if the item is in the array;
// otherwise, returns false
{
boolean moreToSearch;
int location = 0;
boolean found = false;
count = 0;
moreToSearch = (location < SIZE);

CASE STUDY 675

while (moreToSearch && !found)
{
count++;
if (item == values[location])
found = true;

else
{
location++;
moreToSearch = (location < SIZE);

}
}
return found;

}

private void generateValues(int size)
// Initializes the values array with random integers
// from 0 to 999
{
values = new int[size];
Random rand = new Random();
for (int index = 0; index < size; index++)
values[index] = Math.abs(rand.nextInt()) % 1000;

}

private static TextField inputField;
private static Label label;
private static Label outLabel;
private static Button button;

public void init()
{
// Instantiate the GUI components
label = new Label("Enter a value between 0 and 999; click Enter.");
outLabel = new Label("Results");
button = new Button("Enter");
inputField = new TextField("Value here");

// Finish processing GUI components
button.addActionListener(this);
add(label);
add(inputField);

CASE STUDY
676

add(button);
add(outLabel);

// Generate the array of integers
generateValues(SIZE);
setLayout(new GridLayout(4,1));

}
}

14.4 Testing and Debugging

Testing an applet is much like testing an application. Because an applet is usually much
smaller, however, there is less code to test. In contrast, the steps involved in getting an ap-
plet to run are more involved because you have to set up a Web page.

Testing and Debugging Hints

1. Be sure that all of your initialization is within the init method.

2. An applet is often its own event listener. In such a case, confirm that the
addActionListener method has this as its argument.

3. The spelling of the file name in the viewer or Web page must be identical to
the name of the file containing the Bytecode version of the applet.

677

Summary

A Java application must have a method named main, and the included classes should
all have constructors. A Java applet, on the other hand, is a class derived from the
class Applet that implements ActionListener; here, the class is its own listener, and
initializations are done within the init method. Most applets are in event loops that
continue running until the applet window is closed or you exit the Web page within
which the applet is embedded.

The link to the Bytecode version of the applet is found within a Web page. An exam-
ple of HTML code that provides the link is <APPLET code = "FactInt.class" width=250
height=150></APPLET>. Using the keyword code followed by the equals sign and a file
name with a .class extension says to execute the Bytecode stored in that file.

Quick Check

1. How do applications and applets differ in terms of how they are used?
(pp. 660–661)

2. How does a Web page get loaded into your browser? (pp. 667–668)

3. What is HTML used for? (pp. 668–669)

4. In an applet class heading, what phrase must follow the applet class name?
(pp. 661–667)

5. How is an applet linked within a Web page? (pp. 668–669)

6. What is the meaning of the .class extension? (p. 667)

Answers

1. An application is a stand-alone program that solves a problem. An applet is a small piece of code that
runs under a browser.

2. When you enter a URL into your browser, the browser goes to that place and brings back a copy of what is
there for you to see, including any applets to which it links.

3. HTML is the language used to write Web pages.
4. extends Applet implements ActionListener
5. <APPLET code = "AppletName.class" ... ></APPLET> links the applet whose Bytecode is stored in the file

AppletName.class into the Web page.
6. .class means that the file contains the Bytecode version of an applet.

Exam Preparation Exercises

1. Name four ways in which applets differ from applications.

2. Because applets do not have constructors, where are their initializations
carried out?

678

3. Because applets do not have a main method, where does execution begin?

4. From which class must your applet be derived?

5. Why do we not need to instantiate a Frame or JFrame with an applet?

6. Why do you not need to append an object name to add components to the win-
dow?

7. What happens when an int variable overflows in Java?

8. What distinguishes a Swing component from an AWT component?

9. How do you run an applet?

10. What is HTML?

11. What is a markup language?

12. What is a tag?

13. What is the HTML tag that encloses a Web page?

14. What does <P> ... </P> enclose?

15. Distinguish between the Internet and the Web.

16. Describe what happens when you enter a URL in your browser.

17. Distinguish between a LAN and a WAN.

Programming Warm-Up Exercises

1. Write the Java statement that provides access to the Applet class.

2. Write the class heading for an applet class named Sorts.

3. For the applet of Exercise 2, write the statements that declare, instantiate, and
place a text field into the window.

4. For the applet of Exercise 2, write the statements that declare, instantiate, and
place into the window a label with the phrase: “Enter a real number between
0.0 and 1.99”.

5. For the applet of Exercise 2, write the statements that declare, instantiate, and
place a button object into the window.

6. Write the statement that registers a listener with the button of Exercise 5.

7. For the applet of Exercise 2, write the statement that sets the layout of the win-
dow.

8. Write the HTML tags that must appear in a Web page to execute the following
applets:

a. Sorts

b. Search

c. Calculator

679

9. Write the HTML statements that create the following title: Now is the time!

10. Write the HTML tag(s) to place a horizontal rule on the page.

11. What HTML symbols enclose a paragraph?

Programming Problems

1. Write an applet that calculates the factorial of a number using byte arithmetic.
That is, the input value is a byte, and the value returned by the factorial
function is a byte. Execute your applet by inputting increasing values beginning
with 0. What is the largest factorial value that can be calculated? What
happens when you enter a larger value?

2. Write an applet that calculates the factorial of a number using short
arithmetic.That is, the input value is a short, and the value returned by the fac-
torial function is a short. Execute your applet by inputting increasing values be-
ginning with 0. What is the largest factorial value that can be calculated? What
happens when you enter a larger value?

3. Write an applet that calculates the factorial of a number using long arithmetic.
That is, the input value is a long, and the value returned by the factorial
function is a long. Execute your applet by inputting increasing values beginning
with 15. What is the largest factorial value that can be calculated? What
happens when you enter a larger value?

4. Write an applet that calculates the factorial of a number using float
arithmetic.That is, the input value is a float, and the value returned by the fac-
torial function is a float. Execute your applet by inputting increasing values be-
ginning with 50. What is the largest factorial value that can be calculated?
What happens when you enter a larger value?

5. Write an applet that calculates the factorial of a number using double
arithmetic.That is, the input value is a double, and the value returned by the
factorial function is a double. Execute your applet by inputting increasing
values beginning with 100. What is the largest factorial value that can be calcu-
lated? What happens when you enter a larger value?

6. Write an applet that counts the number of comparisons required to sort a list
of integers using the selection sort algorithm. Have the user enter the size of
the list, and report back the number of comparisons. Run your applet five times
and record the size of the list and the number of comparisons required. Relate
your findings to the discussion of Big-O complexity in Chapter 11.

Case Study Follow-Up

1. Rather than having the number of elements be a constant, ask the user to
input the number of elements to be searched.

2. Create another applet exactly like the altered version of Search in Case Study
Follow-Up Exercise 1, but replace the linear search with a linear search in a
sorted list. Don’t forget to sort the values before you search.

680

3. Create another applet exactly like the one in Exercise 2, but replace the linear
search with a binary search. Be sure to sort the values before you search.

4. The output from each applet should give the user enough information to deter-
mine which search algorithm is being used. After the user runs the applet for a
number of times, have the user enter which of the three algorithms he or she
thinks is being used. If the answer is correct, congratulate the user; otherwise,
suggest that he or she run the applet again at another time.

681

682

Appendix A

Java Reserved Words
These words appear in red when used in this book.

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
extends
false
final
finally
float
for
goto
if
implements
import
instanceof
int

interface
long
native
new
null
package
private
protected
public
return
short
static
strictfp

super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

683

Appendix B

Operator Precedence
In the following table, the operators are grouped by precedence level (hightest to lowest), and
a horizontal line separates each precedence level from the next.

Precedence (highest to lowest)

Operator Assoc.* Operand Type(s) Operation Performed

. LR object, member object member access
[] LR array, int array element access
(args) LR method, arglist method invocation
++, -- LR variable post-increment, decrement

++, -- RL variable pre-increment, decrement
+, - RL number unary plus, unary minus
~ RL integer bitwise complement
! RL boolean boolean NOT

new RL class, arglist object creation
(type) RL type, any cast (type conversion)

*, /, % LR number, number multiplication, division, remainder

+, - LR number, number addition, subtraction
+ LR string, any string concatenation

<< LR integer, integer left shift
>> LR integer, integer right shift with sign extension
>>> LR integer, integer right shift with zero extension

<, <= LR number, number less than, less than or equal
>, >= LR number, number greater than, greater than or equal
instanceof LR reference, type type comparison

== LR primitive, primitive equal (have identical values)
!= LR primitive, primitive not equal (have different values)
== LR reference, reference equal (refer to the same object)
!= LR reference, reference not equal (refer to different objects)

& LR integer, integer bitwise AND
& LR boolean, boolean boolean AND

^ LR integer, integer bitwise XOR
^ LR boolean, boolean boolean XOR

684

Precedence (highest to lowest)

Operator Assoc.* Operand Type(s) Operation Performed

| LR integer, integer bitwise OR
| LR boolean, boolean boolean OR

&& LR boolean, boolean conditional AND
(short-circuit evaluation)

|| LR boolean, boolean conditional OR
(short-circuit evaluation)

?: RL boolean, any, any conditional (ternary) operator

= RL variable, any assignment
*=, /=, %=, +=, -=, <<=,
>>=, >>>=, &=, ^=, |= RL variable, any assignment with operation

*LR means left-to-right associativity; RL means right-to-left associativity.

685

Appendix C

Primitive Data Types

Type Value Stored Default Value Size Range of Values

char Unicode character Character code 0 16 bits 0 to 65535
byte Integer value 0 8 bits �128 to 127
short Integer value 0 16 bits �32768 to 32767
int Integer value 0 32 bits �2147483648 to 2147483647
long Integer value 0 64 bits �9223372036854775808 to

9223372036854775807
float Real value 0.0 32 bits �1.4E-45 to

�3.4028235E+38
double Real value 0.0 64 bits �4.9E-324 to

�1.7976931348623157E+308
boolean true or false false 1 bit NA

686

Appendix D

ASCII Subset of Unicode
The following chart shows the ordering of characters in the ASCII (American Standard Code
for Information Interchange) subset of Unicode. The internal representation for each char-
acter is shown in decimal. For example, the letter A is represented internally as the integer
65.The space (blank) character is denoted by a “�”.

Right ASCII
Left Digit

Digit(s) 0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT
1 LF VT FF CR SO SI DLE DC1 DC2 DC3
2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS
3 RS US � ! “ # $ % & ´
4 () * + , – . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ` a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ DEL

Codes 00–31 and 127 are the following nonprintable control characters:

NUL Null character VT Vertical tab SYN Synchronous idle
SOH Start of header FF Form feed ETB End of transmitted block
STX Start of text CR Carriage return CAN Cancel
ETX End of text SO Shift out EM End of medium
EOT End of transmission SI Shift in SUB Substitute
ENQ Enquiry DLE Data link escape ESC Escape
ACK Acknowledge DC1 Device control one FS File separator
BEL Bell character (beep) DC2 Device control two GS Group separator
BS Back space DC3 Device control three RS Record separator
HT Horizontal tab DC4 Device control four US Unit separator
LF Line feed NAK Negative acknowledge DEL Delete

687

Appendix E

Decimal Format Type*
To give more precise control over the formatting of numbers, Java provides a class called
DecimalFormat that is part of a package called java.text.The DecimalFormat class allows us to
create patterns that can be used to format numbers for output.These patterns are in the form
of strings, made up of characters that represent the parts of a formatted number. For example,
the pattern

"###,###"

indicates that a number should be formatted with up to six decimal digits, and when there
are more than three digits in the number, a comma should be used to separate the thousands
from the rest of the number.

There are four steps we must follow to use DecimalFormat patterns to format numbers:

� import java.text.*;

� Declare a variable of type DecimalFormat for each number format we wish to use.

� For each variable, instantiate a DecimalFormat object that contains the pattern.

� Format each number using the format method associated with each of the
DecimalFormat class.

Let’s examine each of these steps in turn.You are familiar with writing import declarations,
so all you need to do for the first step is remember to put the declaration at the start of your
program. Declaring variables of type DecimalFormat is done in the same way as declaring
variables of type String or JFrame. For example:

DecimalFormat dollar; // Format for dollar amounts
DecimalFormat percent; // Format for percentages
DecimalFormat accounting; // Format for negative values in ()

The third step involves using new and the DecimalFormat constructor to create an object whose
address we can assign to the variable. The call to the constructor contains the string repre-
senting the pattern. Here are statements that associate patterns with each of the variables
declared previously. Don’t be concerned yet with trying to interpret the specific patterns
shown; we explain them shortly.

dollar = new DecimalFormat("$###,##0.00");
percent = new DecimalFormat("##0.00%");
accounting = new DecimalFormat("$###,##0.00;($###,##0.00)");

*This appendix repeats and expands upon the discussion in Chapter 12.

688

The last step is to format the number using a method called format, which is a value-returning
method associated with each of the DecimalFormat objects.The format method takes as its pa-
rameter a numerical value and returns a value of type String that contains the formatted
number. For example, if we write

out.add(new JLabel(dollar.format(2893.67)));

then a label is added to the content pane called out, which contains a string of the form

$2,893.67

Now that we have seen the process for using patterns to format numeric values, let’s look
at how to write the patterns themselves.The following table shows the characters that can
appear in a pattern string and their meanings.

Now we can interpret the patterns we associate with the DecimalFormat variables. The
pattern we gave to dollar is "$###,##0.00", which means the number should have a decimal
point with at least two fractional digits and one digit in the integer part.When the integer part
has more than three digits, use a comma as a separator.The number should start with a dol-
lar sign to the left of the first digit.

Character Meaning

0 Display one digit here. If no digit is present in this place, display a zero.
Display one digit here. If no digit is present in this place, display nothing

here (not even a blank).

, If there are digits on both sides of this place, insert a comma to separate
them.The comma is only meaningful in the integer part of the pattern (the
part to the left of the decimal point).

. Put the decimal point here. If the pattern doesn’t have any digit symbols
(0 or #) to the right of the period, and the number doesn’t have a fractional
part, don’t insert the decimal point.

% When used anywhere to the right of the rightmost digit in the pattern, this
indicates that the number is a percentage. Multiply it by 100 before display-
ing it, and put the % sign here.

; The pattern to the left of ; is for nonnegative numbers.The pattern to the
right is for negative numbers.

' The character following is one of the special pattern characters, but should
be printed literally (For example, use '# to show a # in the formatted
number.)

other Anything else is inserted exactly as it appears.

689

We use the pattern "##0.00%" to tell format that the number is a percentage that should
first be multiplied by 100.After that, it is formatted with fractional digits and at least two digits
in the integer part.The percent sign is to be placed to the right of the last digit.

The third pattern, "$###,##0.00;($###,##0.00)", is the most complex of the three, but is
really just a minor variation on the dollar format.The semicolon indicates that the pattern
on the left, which is the same as the pattern we gave to dollar, is to be used when the num-
ber is nonnegative. The pattern on the right (the same pattern but in parentheses) is to be
used when the number is negative.

Here is a code segment that shows the definition and use of these patterns. Note that we
are also using JLabel.RIGHT to align the numbers to the right within their labels.

dollar = new DecimalFormat("$###,##0.00");
percent = new DecimalFormat("##0.00%");
accounting = new DecimalFormat("$###,##0.00;($###,##0.00)");

out.add(new JLabel(dollar.format(2893.67), JLabel.RIGHT));
out.add(new JLabel(dollar.format(–2893.67), JLabel.RIGHT));
out.add(new JLabel(dollar.format(4312893.6), JLabel.RIGHT));
out.add(new JLabel(dollar.format(0), JLabel.RIGHT));
out.add(new JLabel(percent.format(0.23679), JLabel.RIGHT));
out.add(new JLabel(percent.format(1), JLabel.RIGHT));
out.add(new JLabel(accounting.format(2893.67), JLabel.RIGHT));
out.add(new JLabel(accounting.format(–2893.67), JLabel.RIGHT));

Let’s take a closer look at each of the labels in this frame. The first label demonstrates
what happens when a positive floating-point value is formatted with the dollar format. Only
as many digits are used as are necessary, and the dollar sign is immediately adjacent to the

690

leftmost digit. The second label shows the result of formatting a negative number. The for-
mat is the same as in the first case, but a minus sign precedes the dollar sign.

The third label is an example of formatting a number with more digits than the pattern
specifies. Notice that the pattern is expanded to fit. The separation between the decimal
point (or the rightmost digit, in the case of an integer) and the comma closest to it are used
as a guide to the placement of additional commas. In this case, the comma is three places
to the left of the decimal point, so additional commas are inserted every three places.We can’t
split up the fractional part of a number with a separator character such as a comma or
period. If you try to use a comma in the fractional part, it simply ends up being pushed to the
right end of the number. It is also interesting to compare the value in the code segment with
the value displayed—this is a perfect example of what we said earlier about the kind of
minor inaccuracies you often encounter with floating-point numbers!

The fourth label demonstrates that an integer value can be formatted to look like a float-
ing-point value. It also shows that placing a zero in the pattern forces a zero to appear in the
resulting string when there is no corresponding digit in the number.

The fifth label shows the use of the percent format. Notice that the value is multiplied
by 100 before it is formatted.This example also shows that when there are more digits of pre-
cision in the fractional part than in the pattern, it is not expanded to show the additional
fractional digits.The sixth label shows the application of the percent format to an integer.

The last two labels in the frame demonstrate the use of the pattern we associated with
accounting. When the number is nonnegative, it is formatted normally, and when it is nega-
tive, it is enclosed in parentheses. Using two different patterns separated by a semicolon sup-
presses the automatic insertion of the minus sign and allows us to use other characters to
indicate that the number is negative.As a safeguard, however, if we mistakenly use the same
pattern on both sides of the semicolon, format ignores the semicolon and reverts to using the
minus sign.

DecimalFormat gives us a powerful mechanism to format numbers in the patterns we
typically use in our programs. However, it has some limitations. For example, when printing
a dollar amount on a check, it is typical to fill the extra space around the number with as-
terisks or dashes to prevent tampering. DecimalFormat doesn’t enable us to do this directly.
However, because the format method returns its value as a string, we can store a formatted
number into a String object and then use string operations to further refine its formatting.

Suppose we write the assignments

dollar = new DecimalFormat("###,##0.00");
value = 8239.41;

then the expression

dollar.format(value)

has the value "8,239.41". Further suppose that we want to display this in a fixed space of thir-
teen character positions, where the first character is the dollar sign and the spaces between
the dollar sign and the first digit are filled with stars: "$****8,239.41". If the number has

691

more digits, fewer stars are needed, and if it has fewer digits then more stars must be con-
catenated.The number of stars to add is

12 – dollar.format(value).length

because the dollar sign takes up one of the thirteen character positions.The maximum value
of this expression is 8, because the format requires at least three decimal digits and a deci-
mal point.Thus, if we use a string constant called STARS that contains eight stars, we can write

STARS.substring(0, 12 – dollar.format(value).length)

to get a string with the proper number of stars. All we have left to do is to concatenate the
pieces to form the desired string.

"$" + STARS.substring(0, 12 – dollar.format(value).length) + dollar.format(value)

Look closely at this expression to be certain that you understand how it works. Many pro-
gramming problems require that output values be precisely formatted. In such cases, you may
need to use complex combinations of the string operations that Java provides. Breaking an
output format into its component pieces and deciding how to format each piece before con-
catenating them together is a common strategy for dealing with this complexity.

692

Appendix F

Program Style, Formatting, and Documentation
Useful programs have very long lifetimes, during which they must be modified and updated.
Good style and documentation are essential if another programmer is to understand and work
with your program.

General Guidelines
Style is of benefit only for a human reader of your programs—differences in style make no
difference to the computer. Good style includes the use of meaningful identifiers, comments,
and indentation of control structures, all of which help others to understand and work with
your program. Perhaps the most important aspect of program style is consistency. If the
style within a program is not consistent, it then becomes misleading and confusing.

Comments
Comments are extra information included to make a program easier to understand. You
should include a comment anywhere the code is difficult to understand. However, don’t
overcomment. Too many comments in a program can obscure the code and be a source of
distraction.

In our style, there are four basic types of comments: headers, declarations, in-line, and
sidebar.

Header comments appear at the top of a class, method, or package and should include your
name, the date that the code was written, and its purpose. It is also useful to include sections
describing the input, output, and assumptions that form the basis for the design of the code.
The header comments serve as the reader’s introduction to your program. Here is an ex-
ample:

// This method computes the sidereal time for a given date and solar time
//
// Written by: Your Name
//
// Date completed: 4/8/03
//
// Input: java.util.calendar object for the date and solar time
//
// Output: a java.util.calendar object containing the corresponding
// sidereal time
//
// Assumptions: Solar time is specified for a longitude of 0 degrees

693

Declaration comments accompany the field declarations in a class.Anywhere that an iden-
tifier is declared, it is helpful to include a comment that explains its purpose. For example:

// Class constants
static final String FIRST = "Herman"; // Person’s first name
static final String LAST = "Herrmann"; // Person’s last name
static final char MIDDLE = 'G'; // Person’s middle initial
// Instance variables
JFrame outputDisplay; // Output frame
String firstLast; // Name in first-last format
String lastFirst; // Name in last-first format
int studentCount; // Number of students
int sumOfScores; // Sum of their scores
long sumOfSquares; // Sum of squared scores
double average; // Average of the scores
float deviation; // Standard deviation of scores
char grade; // Student’s letter grade
String stuName; // Student’s name

Notice that aligning the comments gives the code a neater appearance and is less distracting.
In-line comments are used to break long sections of code into shorter, more comprehensi-

ble fragments. It is generally a good idea to surround in-line comments with blank lines to
make them stand out. In this text we save space by printing the in-line comments in color
rather than using blank lines. Some editors also color comments automatically, which makes
it easier to spot them on the screen. However, blank lines are still helpful because code is of-
ten printed on paper in black and white. Here is an example:

// Instantiate labels and input field

resultLabel = new JLabel("Result:");
register = new JLabel("0.0", Label.RIGHT);
entryLabel = new JLabel("Enter #:");
inputField = new JTextField("", 10);

//Instantiate button objects

add = new JButton("+");
subtract = new JButton("-");
clear = new JButton("Clear");

// Register the button listeners

add.addActionListener(operation);
subtract.addActionListener(operation);
clear.addActionListener(clearOperation);

694

Even if comments aren’t needed, blank lines can be inserted wherever there is a logical break
in the code that you would like to emphasize.

Sidebar comments appear to the right of executable statements and are used to shed light
on the purpose of the statement. Sidebar comments are often just pseudocode statements
from your responsibility algorithms. If a complicated Java statement requires some expla-
nations, the pseudocode statement should be written to its right. For example:

while ((line = dataFile.readLine()) != null) // Get a line if not EOF

Because the page of a textbook has a fixed width, it is sometimes difficult to fit a sidebar com-
ment next to a long line of code. In those cases, we place the sidebar comment before the
statement to which it refers. Most computer screens can now display more characters on a
line than fit across a page, so this situation is less common in practice. However, if lines of
code become too long, they are hard to read. It is then better to place the sidebar comment
before the line of code.

In addition to the four main types of comments that we have discussed, there are some
miscellaneous comments that we should mention. Although we do not do this in the text,
to conserve space, we recommend that classes and methods be separated in a compilation
unit file by a row of asterisks.

//***

Programmers also sometimes place a comment after the right brace of a block to indicate
which control structure the block belongs to.This is especially helpful in a package file where
there may be multiple classes. Indicating where a class or long method ends helps readers
keep track of where they are looking in scanning the code.

return noCorrect;
}

} // End of class TheKey

Identifiers
The most important consideration in choosing a name for a field or method is that the name
convey as much information as possible about what the field is or what the method does.
The name should also be readable in the context in which it is used. For example, the following
names convey the same information, but one is more readable than the other:

datOfInvc invoiceDate

Although an identifier may be a series of words, very long identifiers can become quite te-
dious and can make the program harder to read. The best approach to designing an identi-
fier is to try writing out different names until you reach an acceptable compromise—and then
write an especially informative declaration comment next to the declaration.

695

Formatting Lines and Expressions
Java allows you to break a long statement in the middle and continue onto the next line.The
split can occur at any point where it would be possible to insert spaces without affecting the
behavior of the code. When a line is so long that it must be split, it’s important to choose a
breaking point that is logical and reasonable. Compare the readability of the following code
fragments:

outFile.println(" for a radius of " + radius + " the diameter of the cir"
+ "cle is " + diameter);

outFile.println(" for a radius of " + radius +
" the diameter of the circle is " + diameter);

When writing expressions, keep in mind that spaces improve readability. Usually you
should include one space on either side of the == operator as well as most other operators.
Occasionally, spaces are left out to emphasize the order in which operations are performed.
Here are some examples:

if (x+y > y+z)
maximum = x + y;

else
maximum = y + z;

hypotenuse = Math.sqrt(a*a + b*b);

Indentation
The purpose of indenting statements in a program is to provide visual cues to the reader and
to make the program easier to debug.When a program is properly indented, the way the state-
ments are grouped is immediately obvious. Compare the following two program fragments:

while (count <= 10)
{
num = Integer.parseInt(in.readLine());
if (num == 0)
{
count++;
num = 1;
}
out.println(num);
out.println(count);
}

696

while (count <= 10)
{

num = Integer.parseInt(in.readLine());
if (num == 0)
{
count++;
num = 1;

}
out.println(num);
out.println(count);

}

As a basic rule in this text, each nested or lower level item is indented by two spaces.
Exceptions to this rule are parameter declarations and statements that are split across two
or more lines. Indenting by two spaces is a matter of personal preference. Some people pre-
fer to indent by more spaces.

In this text, we prefer to place the braces on separate lines so that it is easy to scan down
the left edge of a block of code and find them. Placing them on separate lines also reminds
us to consider whether the beginning or the end of a block would benefit from an in-line com-
ment and automatically gives us a place to write one.This is just one style of placement, and
you will encounter other styles as you examine code written by other programmers.

697

As we noted at the beginning of this appendix, the most important aspect of code for-
matting is consistency.You may frequently find it necessary to adopt the style of another pro-
grammer in order to update his or her code in a consistent manner. Even when you believe
your own favorite style to be superior, resist the temptation to mix your style with a differ-
ent, existing style.The mixture is likely to be more confusing than either style alone.

698

Abstract A modifier of a class field that indicates it is incomplete and must be
fully defined in a derived class

Abstract step A step for which some implementation details remain unspecified
Abstraction The separation of the logical properties of an object from its imple-

mentation
Access modifiers Reserved words in Java that specify where a class, method, or

field may be accessed
Algorithm Instructions for solving a problem in a finite amount of time using a

finite amount of data
Anonymous object An object that is instantiated but not assigned to an identi-

fier and, therefore, lacks a name
Argument An expression used for communicating values to a method
Arithmetic/logic unit (ALU) The component of the central processing unit that

performs arithmetic and logical operations
Array A collection of components, all of the same type, ordered on N dimensions

(N>=1). Each component is accessed by N indexes, each of which represents
the component’s position within that dimension

Assembler A program that translates an assembly language program into
machine code

Assembly language A low-level programming language in which a mnemonic
represents each machine language instruction for a particular computer

Assignment expression A Java expression with (1) a value and (2) the side effect
of storing the expression value into a memory location

Assignment statement A statement that stores the value of an expression into
a variable

Asynchronous Not occurring at the same moment in time as some specific op-
eration of the computer; not synchronized with the computer’s actions

Atomic (simple) elements Elements that have no component parts
Auxiliary storage device A device that stores data in encoded form outside the

computer’s main memory
Base address The memory address of the first element of an array
Base case The case for which the solution can be stated non-recursively
Binary operator An operator that has two operands
Button A component that can be added to a frame and that fires an event (called

a button event) when the user clicks it with the mouse
Bytecode A standard machine language into which Java source code is compiled
Call A statement that causes a method to be executed; in Java we call a method

by writing its name, followed by a list of arguments enclosed in parentheses
Caught exception An exception in Java that must either be caught with a catch

statement or explicitly thrown to the next level
Central processing unit (CPU) The part of the computer that executes the

instructions (object code) stored in memory; made up of the arithmetic/logic
unit and the control unit

Character stream file A file that is stored as a sequence of characters
Class A description of the representation of a specific kind of object, in terms of

data and operational behaviors
Class A definition for an object or an application in Java
Class field A field that belongs to a class rather than its object instances; identi-

fied as such with the modifier

699

Class method A method that belongs to a class rather than its object instances;
identified as such with the modifier

Client Software that declares and manipulates objects of a particular class
Code Instructions for a computer that are written in a programming language
Collaboration An interaction between objects in which one object requests that

another object carry out one of its responsibilities
Compiler A program that translates code written in a high-level language into

machine code
Complexity A measure of the effort expended by the computer in performing a

computation, relative to the size of the computation
Composite data type A data type that allows a collection of values to be associ-

ated with an identifier of that type
Computer A programmable device that can store, retrieve, and process data
Computer program Instructions defining a set of objects and orchestrating their

interactions to solve a problem
Computer programming The process of specifying objects and the ways in

which those objects interact to solve a problem
Concrete step A step for which the implementation details are fully specified
Constructor An operation that creates a new instance of a class
Container class A class into which you can add other elements
Control abstraction The separation of the logical properties of the operations on

an object from their implementation
Control structure A statement used to alter the normally sequential flow of con-

trol
Control unit The component of the central processing unit that controls the ac-

tions of the other components so that instructions (the object code) execute
in the correct sequence

Copy constructor An operation that creates a new instance of a class by copying
an existing instance, possibly altering some or all of its state in the process

Count-controlled loop A loop that executes a specified number of times
Data Information in a form that a computer can use
Data abstraction The separation of the logical representation of an object’s

range of values from their implementation
Data structure The implementation of a composite data field in an abstract data

type
Data type The specification in a programming language of how information is

represented in the computer as data and the set of operations that can be ap-
plied to it

Declaration A statement that associates an identifier with a field, a method, a
class, or a package so that the programmer can refer to that item by name

Deep copy An operation that copies one class instance to another, using
observer methods as necessary to eliminate nested references and copy only
the simple types to which they refer; the result is that two instances do not
contain any duplicate references

Derived A class that is created as an extension of another class in the hierarchy
Deserializing Translating a serialized stream of bytes back into the original ob-

ject
Desk checking Tracing an execution of a design or code on paper

700

Dialog A technique of user interface in which the user enters data and then per-
forms a separate action (such as clicking a button) when the entered values
are ready to be processed by the application

Direct execution The process by which a computer performs the actions speci-
fied in a machine language program

Documentation The written text and comments that make an application easier
for others to understand, use, and modify

Dynamic binding Determining at run time which form of a polymorphic
method to call

Editor An interactive program used to create and modify source programs or
data

Encapsulation Designing a class so that its implementation is protected from
the actions of external code except through the formal interface

Evaluate To compute a new value by performing a specified set of operations on
given values

Event counter A variable that is incremented each time a particular event occurs
Event counter An action, such as a mouse click, that takes place asynchronously

with respect to the execution of the application
Event handling the process of responding to events
Event listener An object that contains event handler methods
Event loop Repeating an action in response to repeated events
Event source An object that generates events
Event-controlled loop A loop that terminates when something happens inside

the loop body to signal that the loop should be exited
Exception An unusual condition that is indicated by a method using a throw

statement; the method’s caller must either catch the exception or explicitly
throw it to the next level

Exception handler A section of code that is executed when a particular
exception occurs. In Java, an exception handler appears within a clause of a
try-catch-finally control structure

Execution trace Going through the code with actual values, recording the state
of the variables

Expression An arrangement of identifiers, literals, and operators that can be
evaluated to compute a value of a given type

Expression statement A statement formed by appending a semicolon to an as-
signment expression, an increment expression, or a decrement expression

Field A named place in memory that holds a data object; a component of a
frame in which the user can type a value; the user must first place the cursor
in the field by clicking inside the field

File A named area in a secondary storage that is used to hold a collection of
data; the collection of data itself

Firing an event An event source generates an event
Flow of control The order in which the computer executes statements
Functional decomposition A technique for developing software in which the

problem is divided into more easily handled subproblems, the solutions to
which create a solution to the overall problem

701

General case The case for which the solution is expressed in terms of a smaller
version of itself; also known as the recursive case

Hardware The physical components of a computer
Hide To provide a field in a derived class that has the same name as a field in its

superclass; to provide a class method that has the same form of heading as a
class method in its superclass.The field or class method is said to hide the
corresponding component of the superclass

Hypertext Markup Language (HTML) The language used to create or build Web
pages

Identifier A name associated with a package, class, method, or field and used to
refer to that element

Immutable object An object whose state cannot be changed once it is created
Implementation (in Java) A class containing the definitions of the methods

specified in an interface
Infinite recursion The situation in which a method calls itself over and over

endlessly
Information Any knowledge that can be communicated
Inherit To acquire a field or method from a superclass
Inheritance A mechanism that enables us to define a new class by adapting the

definition of an existing class; a mechanism by which one class acquires the
properties - the data fields and methods - of another class

Input/output (I/O) devices The parts of the computer that accept data to be
processed (input) and present the results of that processing (output)

Inspection A verification method in which one member of a team reads the
code or design line-by-line and the other team members point out errors

Instantiate To create an object based on the description supplied by a class
Interactive system A system that supports direct communication between the

user and the computer
Interface A connecting link at a shared boundary that allows independent

systems to meet and act on or communicate with each other
Interface (in Java) A model for a class that specifies the fields and methods that

must be present in a class that implements the interface
Internet A wide area network that spans the planet
Interpretation The translation, while a program is running, of nonmachine-lan-

guage instructions (such as Bytecode) into executable operations
Iteration An individual pass through, or repetition of, the body of a loop
Iteration counter A counter variable that is incremented in each iteration of a

loop
Iterator An operation that allows us to process - one at a time - all of the compo-

nents in an object
Key A member of a class whose value is used to determine the logical and/or

physical order of the items in a list
Layout manager A class that automatically manages the placement of display

elements within a content pane on the screen
Length The number of items in a list; it can vary over time
Linear relationship Every element except the first has a unique predecessor,

and every element except the last has a unique successor

702

Literal value Any constant value written in Java
Local Area Network (LAN) A network in a close geographic area
Loop A control structure that causes a statement or group of statements to be

executed repeatedly
Loop entry The point at which the flow of control reaches the first statement in-

side a loop
Loop exit The point at which the repetition of the loop body ends and control

passes to the first statement following the loop
Loop test The point at which the while expression is evaluated and the decision

is made either to begin a new iteration or to skip to the statement
immediately following the loop

Machine language The language, made up of binary-coded instructions, that is
used directly by the computer

Markup language A language that uses tags to annotate the information in a
document

Member A field or method within a class
Memory unit Internal data storage in a computer
Metalanguage A language that is used to write the syntax rules for another lan-

guage
Method A subprogram in Java
Mixed type expressions An expression that contains operands of different data

types; also called a mixed mode expression
Modifiability The property of an encapsulated class definition that allows the

implementation to be changed without having an effect on code that uses it
(except in terms of speed or memory space)

Module A self-contained collection of steps that solves a problem or
subproblem; it can contain both concrete and abstract steps

Mutable Object An object whose state can be changed after it is created
Named constant (symbolic constant) A location in memory, referenced by an

identifier, that contains a data value that cannot be changed
Narrowing conversion A type conversion that may result in a loss of some infor-

mation, as in converting a value of type double to type float
Network A collection of connected computing devices that communicate and

share resources
Object A collection of data values and associated operations
Object code A machine language version of a source code
Object-oriented design A technique for developing software in which the solution

is expressed in terms of objects - self-contained entities composed of data and
operations on that data that interact by sending messages to one another

Observer An operation that allows us to observe the state of an object without
changing it

One-dimensional array A structured collection of components, all of the same
type, that is given a single name. Each component (array element) is accessed
by an index that indicates the component’s position within the collection

Operating system A set of programs that manages all of the computer’s
resources

703

Ordinal data type A data type in which each value (except the first) has a unique
predecessor and each value (except the last) has a unique successor

Out-of-bounds array index An index value that is either less than zero or
greater than the array size minus one

Overloading The repeated use of a method name with a different signature
Override To provide an instance method in a derived class that has the same

form of heading as an instance method in its superclass. The method in the
derived class redefines (overrides) the method in its superclass. We cannot
override class methods

Package A collection of related classes
Package A named collection of object classes in Java that can be imported by a

program
Peripheral device An input, output, or auxiliary storage device attached to a

computer
Pixel An abbreviation of “picture elements”; the individual dots that make up an

image on a display screen
Polymorphic An operation that has multiple meanings depending on the class

of object to which it is bound
Precision The maximum number of significant digits
Programming Developing instructions for carrying out a task involving a set of

objects
Programming language A set of rules, symbols, and special words used to con-

struct a computer program
Public interface The members of a class that can be accessed outside of the

class, together with the modes of access that are specified by other modifiers
Recursive algorithm A solution that is expressed in terms of (1) smaller

instances of itself and (2) a base case
Recursive call A method call in which the method being called is the same as

the one making the call
Recursive definition A definition in which something is defined in terms of

smaller versions of itself
Registering a listener Adding a listener to an event source’s list of interested lis-

teners
Representational error An arithmetic error that occurs when the precision of the

true result of an arithmetic operation is greater than the precision of the machine
Reserved word A word that has special meaning in Java; it cannot be used as a

programmer-defined identifier
Responsibility An action that an implementation of an object must be capable

of performing
Reuse The ability to import a class into code that uses it without additional

modification to either the class or the user code; the ability to extend the defi-
nition of a class

Scalar data type A data type in which the values are ordered and each value is
atomic (indivisible)

Scope of access (scope) The region of program code where it is legal to reference
(use) an identifier

704

Scope rules The rules that determine where in a program an identifier may be
referenced, given the point where the identifier is declared and its specific ac-
cess modifiers

Self-documenting code Program code containing meaningful identifiers as well
as judiciously used clarifying comments

Semantics The set of rules that determines the meaning of instructions written
in a programming language

Serializing Translating an object into a stream of bytes
Shadowing A scope rule specifying that a local identifier declaration blocks ac-

cess to an identifier declared with the same name outside of the block
containing the local declaration

Shallow copy An operation that copies a source class instance to a destination
class instance, simply copying all references so that the destination instance
contains duplicate references to values that are also referred to by the source

Short-circuit (conditional) evaluation Evaluation of a logical expression in left-
to-right order with evaluation stopping as soon as the final Boolean value can
be determined

Signature The distinguishing features of a method heading; the combination of
the method name with the number and type(s) of its parameters in their
given order

Significant digits Those digits from the first nonzero digit on the left to the last
nonzero digit on the right (plus any 0 digits that are exact)

Software Computer programs; the set of all programs available on a computer
Software engineering The application of traditional engineering methodologies

and techniques to the development of software
Software piracy The unauthorized copying of software for either personal use or

use by others
Sorted list A list whose predecessor and successor relationships are determined

by the content of the keys of the items in the list; a semantic relationship ex-
ists among the keys of the items in the list

Sorting Arranging the components of a list into order (for instance, words into
alphabetical order or numbers into ascending or descending order)

Source code Instructions written in a high-level programming language
Standard (built-in) type A data type that is automatically available for use in

every Java program
State The information stored in an object at any given time
Static binding Determining at compile time which form of a polymorphic

method to call
Strongly typed A property of a programming language in which the language al-

lows variables to contain only values of the specified type or class
Structured data type An organized collection of components; the organization

determines the means used to access individual components
Subclass A class that is derived from another class (its superclass)
Superclass A class that is extended by one or more derived classes (its

subclasses)
Switch expression The expression whose value determines which switch label is

selected. It must be an integer type other than long

705

Syntax The formal rules governing how valid instructions are written in a
programming language

Tag The syntactic element in a markup language that indicates how
information should be displayed

Tail recursion A recursive algorithm in which no statements execute after the
return from the recursive call

Termination condition The condition that causes a loop to be exited
Test plan A document that specifies how an application is to be tested
Test plan implementation Using the test cases specified in a test plan to verify

that an application outputs the predicted results
Transformer A method that changes the state of a mutable object
Transformer An operation that changes the internal state of an object
Two-dimensional array A collection of components, all of the same type, struc-

tured in two dimensions. Each component is accessed by a pair of indexes
that present the component’s position in each dimension

Type casting The explicit conversion of a value from one data type to another
Type conversion The implicit (automatic) conversion of a value from one data

type to another
Unary operator An operator that has just one operand
Uncaught exception An exception in Java that can optionally be caught or

allowed to propagate automatically to the next level
Uniform Resource Locator (URL) The address of a web page on the Internet
Unsorted list A list in which data items are placed in no particular order with re-

spect to their content; the only relationships between data elements consist
of the list predecessor and successor relationship

Unstructured data type A collection of components that are not organized with
respect to one another

Value-returning method A method that is called from within an expression and
returns a value that can be used in the expression

Variable A location in memory, referenced by an identifier, that contains a data
value that can be changed

Virtual machine A program that makes one computer act like another
Virus Code that replicates itself, often with the goal of spreading to other

computers without authorization, and possibly with the intent of doing harm
Void method A method that is called as a separate statement; when it returns,

processing continues with the next statement
Walk-through A verification method in which a team performs a manual simu-

lation of the code or design
Web An infrastructure of information and the network software used to access

it
Wide Area Network (WAN) A network that connects two or more local area net-

works
Widening conversion A type conversion that does not result in a loss of

information

706

Chapter 1 Exam Preparation Exercises

1. The steps keep repeating forever, because there is no way for the algorithm to
stop. (Also, it is a poor algorithm because the last action is lathering—you
wouldn’t want to leave the lather in your hair.) Corrected algorithm:

3. In the following recipe for chocolate pound cake, the statements that are
branches, loops, or subalgorithm references are marked.

7. Means-ends analysis

9. Look for things that are familiar

Preheat the oven to 350 degrees
Line the bottom of a 9-inch tube pan with wax paper
Sift 2 3/4 c flour, 3/4 t cream of tartar, 1/2 t baking soda, 1 1/2 t salt, and

1 3/4 c sugar into a large bowl
Add 1 c shortening to the bowl
If [BRANCH] using butter, margarine, or lard, then

add 2/3 c milk to the bowl,
else

(for other shortenings) add 1 c minus 2 T of milk to the bowl
Add 1 t vanilla to the mixture in the bowl
If [BRANCH] mixing with a spoon, then

see [SUBALGORITHM REFERENCE] the instructions in the introduction to the
chapter on cakes,

else
(for electric mixers) beat the contents of the bowl for 2 minutes at medium
speed, scraping the bowl and beaters as needed

Add 3 eggs plus 1 extra egg yolk to the bowl
Melt 3 squares of unsweetened chocolate and add it to the mixture in the bowl
Beat the mixture for 1 minute at medium speed
Pour the batter into the tube pan
Put the pan into the oven and bake for 1 hour and 10 minutes
Perform [SUBALGORITHM REFERENCE] the test for doneness described in the

introduction to the chapter on cakes
Repeat [LOOP] the test once each minute until the cake is done
Remove the pan from the oven and allow the cake to cool for 2 hours
Follow [SUBALGORITHM REFERENCE] the instructions for removing the cake from the

pan, given in the introduction to the chapter on cakes
Sprinkle powdered sugar over the cracks on top of the cake just before serving

1. Wet hair
2. Lather
3. Rinse
4. Repeat Steps 2 and 3 once

707

Chapter 1 Programming Warm-Up Exercises

1. Each student will come up with a different answer for this problem, depending on
where he or she finds the recipe and how the cookbook is written. A correct
answer would identify most or all of the nouns in the problem as objects—for ex-
ample, individual ingredients, bowls, tube pan, and oven. Loops in recipes are of-
ten things like “Beat the mixture 300 strokes” or “sift the mixture three times.”
Many angel food cake recipes specify different actions to take when cooking at a
high altitude, which provides an example of a branch. Choosing to add an
optional ingredient is another case of a branch. Some recipes include a
complicated series of steps that are set off from the rest of the process or that are
simply divided into stages such as preparing different mixtures.These represent
candidates for subprograms. Each step or group of steps in the recipe should thus
be identified as a sequence, branch, loop, or subprogram.

2. Each student will come up with a different answer for this problem, depending on
what type of appliance he or she chooses. A correct answer would identify most
or all of the nouns in the directions as objects. For example, setting the time and
date on a computer would probably involve working with a window that has
boxes for data values and buttons. Each text box and button would be an object.
There might be check boxes where you could set an option to be on or off. Such
checks would correspond to branching statements.There might be instructions to
click an arrow repeatedly to set a data value, which would correspond to a looping
statement. A button that brings up a separate window might represent a subpro-
gram, depending on what action clicking the button might generate. Each instruc-
tion should correspond to a sequence, branch, loop, or subprogram.

Chapter 2 Exam Preparation Exercises

2. Dwits

a. XYZ Invalid—must end with 1, 2, or 3

b. 123 Invalid—must start with X,Y, or Z

c. Xl Valid

d. 23Y Invalid—must start with X,Y, or Z

e. XY12 Valid

f. Y2Y Invalid—must end with 1, 2, or 3

g. ZY2 Valid

h. XY23Xl Valid

5. False; reserved words cannot be used as variable names.

9. Only one character can be stored into a variable of type char.

12. True; a literal string can be assigned to a variable of type String.

15. This program may be corrected in several ways. Here is one correct version:

public class LotsOfErrors

708

{
public static void main(String[] args)
{
final String FIRST = "Martin";
final String MID = "Luther";
final String LAST = "King";
String name;
name = FIRST + ' ' + MID + ' ' + LAST + " Jr.";
System.out.println(name);

}
}

20. ”Sending a message” means telling a method to apply itself to the object or class
to which it is attached—that is, invoking a method.

22. An application

25. The name of a constructor must be identical to the name of the class. Because we
begin class names with uppercase letters, the constructor must also begin with an
uppercase letter.

Chapter 2 Programming Warm-Up Exercises

2. System.out.println("The moon ");
System.out.println("is ");
System.out.println("blue.");

4. System.out.println("Make: " + make);
System.out.println("Model: " + model);
System.out.println("Color: " + color);
System.out.println("Plate type: " + plateType);
System.out.println("Classification: " + classification);

5. //**
// PrintName application
// This program prints a name in two different formats
//**
public class PrintName
{
public static void main(String[] args) throws IOException
{
String FIRST = "Herman"; // Person's first name
String LAST = "Herrmann"; // Person's last name
String MIDDLE = "G"; // Person's middle initial
String firstLast; // Name in first-last format
String lastFirst; // Name in last-first format
String firstInitialLast // Name in first, initial, last format
BufferedReader in; // Input stream for strings
in = new BufferedReader (new InputStreamReader(System.in));
System.out.print("Enter first name: "); // Prompt for first name

709

first = in.readLine(); // Get first name
System.out.print("Enter last name: "); // Prompt for last name
last = in.readLine(); // Get last name
System.out.print("Enter middle initial: "); // Prompt for middle initial
middle = in.readLine(); // Get middle initial
firstLast = first + " " + last; // Generate first format
System.out.println("Name in first-last format is " + firstLast);
lastFirst = last + ", " + first + ", "; // Generate second format
System.out.println("Name in last-first-initial format is " +

lastFirst + middle + ".");
firstInitialLast = first + " " + middle + ". " + last;
System.out.println("Name in first-initial-last format is " +

firstInitialLast):
}

}

8. public class Date
{
String month; // Month in string form
String year; // Year in string form
String day; // Day in string form

public Date(String newMonth, String newYear, String newDay)
{ // Constructor

month = newMonth;
year = newYear;
day = newDay;

}

public String monthDayYear() // Returns mm/dd/yyyy format
{
return month + "/" + day + "/" + year;

}

public String yearMonthDay() // Returns yyy-mm-dd format
{
return year + "-" + month + "-" + day;

}
} // End of Date class

Chapter 3 Exam Preparation Exercises

2. a. 27

b. 13

c. 5

710

d. 0

e. 3

f. 8

g. 3

5. a. a = 5b = 2

b. Sum:52

c. Sum: 52

d. 2 feet

7.

10. a. 26

b. reparation

c. 0

d. 15

e. 15

f. 15

Chapter 3 Programming Warm-Up Exercises

2. int sum;
sum = n*(n+1)/2;

4. a. Math.abs(i)

b. Math.abs(n)

c. Math.abs(x + y)

d. Math.abs(x) + Math.abs(y)

e. Math.pow(x, 3.0)/(x + y)

f. Math.sqrt(Math.pow(x, 6.0) + Math.pow(y, 5.0))

g. Math.pow((x + Math.sqrt(y)), 7.0)

7. This is a laboratory exercise for the student, but it requires that appropriate docu-
mentation be added.

// Programming Assignment 2
// William T. Verts
// June 27, 2003
// This application computes the cost per ounce given a total
// cost and a weight expressed in pounds and ounces.

public class WarmUp2
{
public static void main(String[] args)
{
final int TOT_COST = 1376; // Total cost

y b b ac= − + −2 4

711

final int POUNDS = 10; // Weight in pounds
final int OUNCES = 12; // Additional ounces
int totOz; // Total weight in ounces
double uCost; // Computed cost per ounce
// Calculations
totOz = 16 * POUNDS;
totOz = totOz + OUNCES;
uCost = TOT_COST / totOz;
System.out.println("Cost per unit: " + uCost);

}
}

8. //***
// Rectangle application
// This application finds the perimeter and the area
// of a rectangle, given the length and width
//***
public class Rectangle
{
public static void main(String[] args)
{
double length; // Length of the rectangle
double width; // Width of the rectangle
double perimeter; // Perimeter of the rectangle
double area; // Area of the rectangle

length = 10.7;
width = 5.2;
perimeter = length * 2.0 + width * 2.0; // Calculate perimeter
area = length * width; // Calculate area
// Print perimeter
System.out.println("The perimeter of a rectangle with length " +
length + " and width " + width + " is " + perimeter);

// Print area
System.out.println("The area of the rectangle is " + area);

}
}

11. //**
// This application computes the sum and product of two integers
//**
public class SumProd
{
public static void main(String[] args)
{
final int INT2 = 8;
final int INT1 = 20;

712

System.out.println("The sum of " + INT1 + " and "
+ INT2 + " is " + (INT1+INT2));

System.out.println("Their product is " + (INT1*INT2));
}

}

Chapter 4 Exam Preparation Exercises

1. A control structure changes the sequential execution of the statements in a
program.

2. A logical expression is an expression made up of logical values and operations.
The logical values may take the form of relational operators applied to numeric
values.

7. a. xyxy

b. The value of x is 3

c. 376z

(Despite the indentation, the final output statement is not part of the else
clause.)

10. a. x < y && y <= z

b. x > 0 && y > 0 && z > 0

c. x != y && x != z

d. x == y && x == z

14. if (typeA || typeB)
{
if (typeA && typeB)
System.out.print("Type AB");

}
else
System.out.print("Type O");

15.

Data Set ch1, ch2, ch3 Expected Output

Set 1 A, A, A All initials are the same.
Set 2 A, A, B First two are the same.
Set 3 B, A, A Last two are the same.
Set 4 A, B, A First and last are the same.
Set 5 A, B, C All initials are different.

713

18. a. The String class provides methods that can be used to compare two strings.

b.

Method Name Argument Returns English Description

equals String boolean Returns true if the two strings are equal,
false otherwise.

equalsIgnoreCase String boolean Returns true if the two strings are equal,
ignoring case of letters; false otherwise.

compareTo String int Returns 0: the two strings are equal.
Returns <0: object’s string comes before
argument’s string.
Returns >0: object’s string comes after
argument’s string.

toUpperCase none String Returns object’s string in all uppercase
letters.

toLowerCase none String Returns object’s string in all lowercase
letters.

Chapter 4 Programming Warm-Up Exercises

4. if (pageNumber % 2 == 0)
leftPage = true;

We have to use the if form here because the problem does not say to set leftPage
to false if pageNumber is odd.

5. if (i > j)
if (i > k)
biggest = i;

else
biggest = k;

else
if (j > k)
biggest = j;

else
biggest = k;

or

biggest = i;
if (j > biggest)
biggest = j;

if (k > biggest)
biggest = k;

7. if (age > 64)
System.out.print("Senior voter");

else if (age < 18)
System.out.print("Under age");

else System.out.print("Regular voter");

714

9. // This is a nonsense program segment
if (a > 0)
if (a < 20)
{
System.out.print("A is in range.");
b = 5;

}
else
{
System.out.print("A is too large.");
b = 3;

}
else
System.out.print("A is too small.");

System.out.print("All done.")
11. discriminant = b * b - 4.0 * a * c;

if (discriminant < 0.0)
System.out.println("No real roots.");

else
{

root1 = (-b - discriminant) / (2.0 * a);
root2 = (-b + discriminant) / (2.0 * a);

}

Chapter 5 Exam Preparation Exercises

1.

4. It skips the next 1,000 characters in the file. If EOF is reached first, an exception is
thrown.

7. Loops are segments of code that are repeated from zero to many times as long as
an expression is true. Branches are segments of code that may be executed zero or
one time, depending on the value of an expression.

9. number = 1;
while (number < 11)
{
out.println(number);
number++;

}

Import the library package java.io.*
Declare a file variable
Instantiate the file object and assign its address to the file variable
Use methods associated with the file object to read or write
Call a method to close the file

715

13. a. The output is BCDE.

b. inLine = inFile.readLine();
count = 0;
while (count < inLine.length())
{
outFile.print(inLine.charAt(count));
count++;

}
outFile.println();

14. Yes, this code segment needs a priming read.

datum = inFile.readLine();
while (datum != null)
{
letter = datum.charAt(0);
count = 0;
while (count < datum.length())
{
outFile.print(letter);
count++;
letter = datum.charAt(count);

}
outFile.println();
datum = inFile.readLine();
outFile.println("Another line read...");

}
18. Written

20. a. Count-controlled and event-controlled.

b. A count-controlled loop executes a predetermined number of times. An event-
controlled loop executes as long as an event is true and exits the loop when the
event becomes false.

c. The loop runs forever (or until the program is manually terminated by the op-
erating system).

d. The loop runs forever (or until the program is manually terminated by the op-
erating system).

e. Sentinel-controlled, end-of-file-controlled, and flag-controlled.

22. a. An assignment expression is an expression containing an assignment
operator.

b. ((line = dataFile.readLine())!=null)

716

Chapter 5 Programming Warm-Up Exercises

5. W
88
This is a string.

7. line = fileInBuf.readLine();
fileOutPr.println();
fileOutPr.println(line);
fileOutPr.println();

9. dangerous = false;
while (!dangerous)
{
pressure = Float.parseFloat(inFile.readLine());
if (pressure > 510.0)
dangerous = true;

}

or

dangerous = false;
while (!dangerous)
{
pressure = Float.parseFloat(inFile.readLine());
dangerous = (pressure > 510.0);

}
11. count28 = 0;

loopCount = 1;
while (loopCount <= 100)
{
number = Integer.parseInt(inFile.readLine());
if (number == 28)
count28++;

loopCount++;
}

13. count = 0;
sum = 0;
scoreLine = scoreFile.readLine();
while (scoreLine != null)
{
score = Integer.parseInt(scoreLine);
sum = sum + score;
count++;
scoreLine = scoreFile.readLine();

}
if (count > 0)
average = (float)sum / (float)count;

717

16. count++;
if (count == 13)
count = 0;

or

count = (count+1) % 13;
18. hour = 1;

tenMinute = 0;
am = true;
done = false;
while (!done)
{
timeOut.print(hour + ":");
timeOut.print(tenMinute + "0");
if (am)
timeOut.println(" A.M.");

else
timeOut.println(" P.M.");

tenMinute++;
if (tenMinute > 5)
{
tenMinute = 0;
hour++;
if (hour == 13)
hour = 1;

else if (hour == 12)
am = !am;

}
done = (hour == 1 && tenMinute == 0 && am);

}
20. String fpString;

int places;
int position;
float fpNumber;

fpString = String.valueOf(fpNumber);
position = fpString.indexOf(".");
fpString = fpString.substring(0, Math.min(position + 5, fpString.length()));
places = (fpString.substring(position + 1, fpString.length())).length();
while (places < 4)
{
fpString = fpString + "0";
places++;

}
outFile.println(fpString);

718

Chapter 6 Exam Preparation Exercises

1. Object-oriented design focuses on the data objects in the problem; functional de-
composition focuses on the tasks in the problem.

4. Class method

6. The public interface of a class consists of the members of a class that can be
accessed outside of the class, together with the modes of access that are specified
by other modifiers.

7. To protect the class members from being accessed directly by a client application

13. The goal of brainstorming is to come up with a potential list of classes.

16. Built-in or library classes may be identified during the brainstorming phase. We
do not need to make CRC cards for them or the classes removed during the filter-
ing phase.

19. When a class has no unfilled responsibilities, it becomes inactive.

22. To indicate that a class is just a variation, the original class is listed as the super-
class.

25. Absolutely

28. A computer virus is code that replicates itself, often with the goal of spreading to
other computers without authorization, and possibly with the intent of doing
harm.

30. Self-documenting code is application code containing meaningful identifiers as
well as judiciously used clarifying comments.

31. a. A compilation unit is made up of optional package and import statements and
a class declaration(s).

b. No

c. In a file

d A file containing a compilation unit is named by the public class with a .java
extension.

e. Yes

719

Chapter 6 Programming Warm-Up Exercises

1.

3.

Class Name: Book Superclass: Subclasses:

Responsibilities Collaborations

Create Book (title, author, call numbrr) None

Know title None

 return String

Know author None

 return Name

Know call number None

 return String

Class Name: Car Superclass: Subclasses:

Responsibilities Collaborations

Create Car (make, model, color, license) None

NoneKnow make

 return String

Know model None

 return String

Know color None

 return String

Know license None

 return String

720

6.

7.

9. There are actually only two classes in the proposed list in Exercise 8 in addition to
the file: “Participant” and “Time.” All of the other classes listed in Exercise 8 can be
represented as primitive types. However, there does need to be a “User Interface,”
which will be represented by the driver.

Class Name: MilkProduced Superclass: Cow Subclasses:

Responsibilities Collaborations

Create MilkProduced (name, ID number,

birth date, recent calving date)

None

Set milk amount (quantity)

Average is None

 return double

Total output is None

 return double

Set total to zero None

Class Name: Cow Superclass: Subclasses:

Responsibilities Collaborations

Create Cow (name, ID number, birth date,

recent calving date)

None

NoneKnow name

 return Name

Know ID number None

 return String

Know birth date None

 return Date

Know calving date None

 return Date

721

10. Here is a CRC card for the participant class of Exercise 9:

12. What happens if:

a name to be processed doesn’t exist?

a participant wants to quit the program?

the user wants to determine who has the fastest jogging time?

the user wants to determine who has the best long-jump distance?

the user wants to determine who has the highest bench-press weight?

the user wants to determine who has the most improved jogging time?
long-jump record? bench-press weight?

15. All the compilation units of a package must be kept in one directory with the
same name as the package.

Chapter 7 Exam Preparation Exercises

1. a. Internal scope and external scope

b. No. Internal scope does not depend on the access modifiers.

c. Internal scope refers to the scope within a class. Any identifier declared in a
class can be used anywhere within the class.

d. You can’t use a class variable to initialize another variable before it has been
defined. A local identifier shadows a class member with the same name.

e. Shadowing is a scope rule that specifies that a local identifier has precedence
over a class identifier with the same name.

f. Yes.

Class Name: Participant Superclass: Subclasses:

Responsibilities Collaborations

Create Participant (name, weight, jog, jump, bench) None

Set current statistics (weight, jog, jump, bench) Name

Know weight None

 return double

Know jog None

 return Time

 return double

Know jump None

Know bench None

 return double

722

4. a. Protected members

b. They are automatically part of the interface.

9. Data fields and methods that are public or protected

12. The method in the derived class overrides the method in the superclass.

15. No, you cannot remove a member, but you can hide it by covering it with a mem-
ber of the same name.

16.

Situation Hiding Overriding Overloading Shadowing

A class method has the same X
name and signature as a
superclass method.

An instance method has the X
same name and signature as a
superclass instance method.

A class has two methods with X
the same name but different
signatures.

A field in a derived class has X
the same name as a field in its
superclass.

An instance method has the X
same name but a different
signature than a superclass
instance method.

A method declares a variable X
with the samename as a field
in the class.

A method has a parameter X
with the same name as a
field in the class.

Chapter 7 Programming Warm-Up Exercises

2. public class MyName extends YourName
{
int myField; // myField is an instance field

public MyName(int myField) // Constructor with a parameter
// that shadows the instance field

{
this.myField = myField; // Assign the parameter to

// the instance field
}

}

723

4. a. public class SomeClass

b. public static void someMethod()

c. static int someMethod()

d. private static int someMethod()

e. protected static char someMethod()

6. public class SomeClass
{
int var; // Class member
final int CONST = 3; // Class member CONST
public void someMethod(int param)
{
int var; // Local variable
var = param * CONST;
final int const = 10;
var = 5; // Local variable
System.out.println("" + this.var); // Class member

}
}

8. The code segment is not correct because the signatures are not distinct.

public int someMethod() // someMethod
public void someMethod() // someMethod
public double someMethod() // someMethod
public double someMethod(int a) // someMethod, int
public double someMethod(String a) // someMethod, String
public double someMethod(int a, int b) // someMethod, int, int

Chapter 8 Exam Preparation Exercises

2. Cost is
300
Price is 30Cost is 300
Grade A costs
300

4. a. 26

b. reparation

c. 0

9. No. We just instantiate a JPanel object.

13. Nothing appears on the screen.

724

14. Declare a variable of the JButton class, instantiate a JButton object and assign its
address to the variable, and add the object to the frame’s content pane using the
add method.

17. Classes that implement the ActionListener interface must have an actionPerformed
method with an ActionEvent parameter.

20. There is a default event handler provided for the window closing.

Chapter 8 Programming Warm-Up Exercises

2. a. ButtonHandler action;
JButton enter;
JButton quit;

b. enter = new JButton("Enter");
quit = new JButton("Quit");
action = new ButtonHandler();

c. outPane.add(enter);
outPane.add(quit);

d. enter.addActionListener(action);
quit.addActionListener(action);

e. String name;
name = event.getActionCommand();

f. private class ButtonHandler implements ActionListener
{

public void actionPerformed(ActionEvent event)
{
String name;
name = event.getActionCommand();
if (name.equals("Enter"))
out.add(new JLabel("Enter was pressed."));

else if (name.equals("Quit"))
out.add(new JLabel("Quit was pressed."));

else
out.add(new JLabel("An unexpected event occurred.")):

}
}

5. a. JFrame exampleFrame;
JLabel exampleLabel;
JTextField exampleField;
static JButton exampleButton;
container outPane;

725

b. private static class ExampleClass implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
exampleValue = exampleField.getText();
exampleField.setText("");

}
}

c. exampleButton.addActionListener(exampleHandler);

d. private class Example2Class implements ActionListener
{
public void actionPerformed(ActionEvent event)
{
exampleLabel.setText(exampleField.getText());

}
}

6. exampleField.setText("2000");

8. JLabel promptLabel;
JLabel countLabel;
JLabel averageLabel;
JTextField inField;
JButton button;
int count;
int total;

12. JPanel myPanel;
myPanel = new JPanel();
myPanel.setLayout(new FlowLayout());
myPanel.add(new JLabel("one"));
myPanel.add(new JLabel("two"));
myPanel.add(new JLabel("three"));

Chapter 9 Exam Preparation Exercises

1. Use a try-catch statement.

4. False

6. A switch expression is the expression in a switch statement whose value
determines which case label is selected.

A pretest loop is a loop in which the test occurs before the body of the loop. If the
loop expression is false, the loop body is not executed.

A posttest loop is a loop in which the test occurs after the loop body.The body of a
posttest loop always executes at least once.

726

10. switch (n)
{
case 3 : alpha++;

break;
case 7 : beta++;

break;
case 10: gamma++;

break;
}

15. Nothing is printed. A for loop is a pretest loop.

17. ********* *********
******** ********
******* *******
****** ******
***** *****
**** ****
*** ***
** **
* *

19. a. expression

b. expression

c. expression statement

d. expression

Chapter 9 Programming Warm-Up Exercises

1. a. MyException anException;

b. public class MyException extends Exception
{

public MyException()
{
super();

}
public MyException(String message)
{
super(message);

}
}

c. throw new MyException("Error somewhere.");

4. switch (grade)
{
case 'A' : sum = sum + 4;

break;

727

case 'B' : sum = sum + 3;
break;

case 'C' : sum = sum + 2;
break;

case 'D' : sum++;
break;

case 'F' : outData.println("Student is on probation");
break;

default : outData.println("Invalid letter grade");
break; // Not required

}
6. response = Integer.parseInt(inData.readLine());

if (response >= 0 && response <= 127)
do
{
response = Integer.parseInt(inData.readLine());

} while (response >= 0 && response <= 127);
10. k = 9;

do
{
outData.println(k + " " + 3 * k);
k++;

} while (k <= 21);
11. public int power(int base, int exponent)

// Return base raised to the exponent power
{
int powerValue = 1;
for (int i = 1; i <= exponent; i++)
powerValue = powerValue * base;

return powerValue;
}

Chapter 10 Exam Preparation Exercises

3. a. float[] floatArray = new float[24];

b. int[] intArray = new int[500];

c. double[] doubleArray = new double[50];

d. char[] charArray = new char[10];

6.

a. Because the array is of type int, the values are automatically set to 0 by the
constructor.

b. for (int index = 0; index < count.length; count++)
count[index] =
Integer.parseInt(inFile.readLine());

728

c. int sum = 0;
for (int index = 0; index < count.length; count++)
sum = sum + count[index];

9.

11.

14. a. class containing class objects

b. class

c. class

d. array of class objects

e. array of primitive values

f. array of class objects containing class objects

g. array of class objects

16. The default value of the component type

Chapter 10 Programming Warm-Up Exercises

2. public void setFailing()
{
for (int index = 0; index < failing.length; index++)
if (score[index] < 60)
failing[index] = true;

}
3. public void setPassing()

{
for (int index = 0; index < passing.length; index++)
if (score[index] >= 60)
passing[index] = true;

}
6. public int scoreCt(int grade)

{
int count = 0;
for (int index = 0; index < score.length; index++)
if (score[index] >= grade)
count++;

return count;
}

[0] [1] [2] [3] [4] [5] [6] [7]

0 101 2 103 4 105 6 107

[0] [1] [2] [3] [4] [5] [6] [7]

10 9 8 7 6 5 4 3

729

7. public void reverse()
{
int tempScore;
int halfLength = score.length/2;
for (int index = 0; index < halfLength; index++)
{
tempScore = score[index];
score[index] = score[score.length - (index + 1)];
score[score.length - (index + 1)] = tempScore;

}
}

8. public class Parts
{
int number;
double cost;
Parts(int howMany, double howMuch)
{
number = howMany;
cost = howMuch;

}
}
.
.
Parts[] inventory = new Parts[100];
String inLine;
int index;
int number;
double cost;
int count = 0;
// File has been declared and instantiated
while ((inLine = inFile.readLine()) != null)
{
index = inLine.indexOf(' '); // Find position of blank

number = Integer.parseInt(inLine.substring(0, index)); // Extract a number

// Remove the first part of the string
inLine = inLine.substring(index+1, inLine.length());
cost = Double.parseDouble(inLine);
inventory[count] = new Parts(number, cost);
count++;

}

730

Chapter 11 Exam Preparation Exercises

2. a. 1

b. 2

c. 7

d. 7

3.

item first last middle Result

114 0 9 4

5 9 7

8 9 8 found is true

6. At the logical level, an array is a homogeneous data type. Java implements an array
object with an extra integer variable that contains the number of cells in the array.

9. An iterator/transformer

13. The Comparable interface has only one method, compareTo, that returns a value less
than 0 if the object comes before the parameter, 0 if the object and the parameter
are equal, and a value greater than 0 if the parameter comes first.

14. a. If the class allows duplicates and no constraints restrict where the duplicates
can be placed, then only the delete operation needs to be changed. If the
implementation is sorted, a requirement might state that the duplicate item
must be placed before or after the last copy inserted. In such a case, the insert
operation might need to be altered.

b. There would still be options for the delete operation. If there are duplicates,
does delete mean “delete the first one found,” “delete the last one inserted,” or
“delete all copies”?

Chapter 11 Programming Warm-Up Exercises

1. public class UnsortedList extends List
{
public UnsortedList()
{
super();

}
public UnsortedList(int maxItems)
{
super(maxItems);

}
public boolean isThere(String item)
// Return true if item is in the list

731

{
int index = 0;
while (index < numItems && listItems[index].compareTo(item) != 0)
index++;

return (index < numItems);
}
public void insert(String item)
// If the list is not full, put item in the last position in the list;
// otherwise, list is unchanged
{
if (!isFull())
{
listItems[numItems] = item;
numItems++;

}
}
public void delete(String item)
// Remove item from the list if it is there
{
int index = 0;
boolean found = false;
while (index < numItems && !found)
{
if (listItems[index].compareTo(item)== 0)
found = true;

else
index++;

}
if (found)
{
for (int count = index; count < numItems-1; count++)
listItems[count] = listItems[count+1];

numItems--;
}

}
}

2. public class ListWithSort extends UnsortedList
{
// Allows the items in the list to be rearranged into ascending order.
// This order is not preserved in future insertions.

732

public ListWithSort()
{
super();

}

public ListWithSort(int maxItems)
{
super(maxItems);

}

public void selectSort()
// Arrange list items into ascending order;
// selection sort algorithm is used.
{
String temp; // Temporary variable
int passCount; // Loop control variable for outer loop
int searchIndex; // Loop control variable for inner loop
int minIndex; // Index of minimum so far

for (passCount = 0; passCount < numItems - 1; passCount++)
{
minIndex = passCount;
// Find the index of the smallest component
// in listItems[passCount]..listItems[numItems - 1]
for (searchIndex = passCount + 1; searchIndex < numItems;

searchIndex++)
if (listItems[searchIndex].compareTo(listItems[minIndex]) < 0)
minIndex = searchIndex;

// Swap listItems[minIndex] and listItems[passCount]

temp = listItems[minIndex];
listItems[minIndex] = listItems[passCount];
listItems[passCount] = temp;

}
}

}
8. a. public abstract class ListWithDuplicates

{
protected String[] listItems; // Array to hold list items
protected int numItems; // Number of items in the list
protected int currentPos; // State variable for iteration

733

public ListWithDuplicates()
// Instantiate an empty list object with room for 100 items
{
numItems = 0;
listItems = new String[100];
currentPos = 0;

}

public ListWithDuplicates(int maxItems)
// Instantiate an empty list object with room for
// maxItems items
{
numItems = 0;
listItems = new String[maxItems];
currentPos = 0;

}

public boolean isFull()
// Return true if there is not room for another component;
// false otherwise
{
return (listItems.length == numItems);

}

public boolean isEmpty()
// Return true if there are no components in the list;
// false otherwise
{
return (numItems == 0);

}

public int length()
// Return the number of components in the list
{
return numItems;

}
public abstract boolean isThere(String item);
// Return true if item is in the list

// Transformers
public abstract void insert(String item);
// If the list is not full, insert item into the list;
// otherwise, list is unchanged

734

public abstract void delete(String item);

public void resetList() // Prepare for iteration
{
currentPos = 0;

}

public String getNextItem() // Return an unvisited item
{
String next = listItems[currentPos];
if (currentPos == numItems-1)
currentPos = 0;

else
currentPos++;

return next;
}

}
b. The only design changes are in the name of the class and the documentation

on the insert method.

c. public class UnsortedListWithDuplicates extends ListWithDuplicates
{
public UnsortedListWithDuplicates()
{
super();

}
public UnsortedListWithDuplicates(int maxItems)
{
super(maxItems);

}
public boolean isThere(String item)
// Return true if item is in the list
{
int index = 0;
while (index < numItems && listItems[index].compareTo(item) != 0)

index++;
return (index < numItems);

}

public void insert(String item)
// If the list is not full, put item in the last position in the list;
// otherwise, list is unchanged

735

{
if (!isFull())
{
listItems[numItems] = item;
numItems++;

}
}
public void delete(String item)
// Remove all copies of item from the list
{
int index = 0;
while (index < numItems)
{
if (listItems[index].compareTo(item) == 0)
{
for (int count = index; count < numItems-1; count++)
listItems[count] = listItems[count+1];
numItems--;

}
else
index++;

}
}

}
d. Only the insert and delete operations are shown because they are the only

ones that would change with respect to part c.

public void insert(String item)
// If the list is not full, put item in its proper position in
// the list; otherwise, list is unchanged
{
if (!isFull())
{
int index = numItems - 1; // Loop control variable
while (index >= 0 && (item.compareTo(listItems[index]) < 0))
{
listItems[index+1] = listItems[index]; // Find insertion point
index--;

}
listItems[index+1] = item; // Insert item
numItems++; // Increment number of items

}
}
public void delete(String item)

736

// Remove all copies of item from the list
{
int index = 0;
while (index < numItems && item.compareTo(listItems[index]) <= 0)
{
if (listItems[index].compareTo(item) == 0)
{
for (int count = index; count < numItems-1; count++)
listItems[count] = listItems[count+1];
numItems--;

}
else
index++;

}
}

e. If a binary search is used to find the item to delete, you do not know whether
the one found is the first duplicate, the last duplicate, or one in the middle.The
method would have to search both before and after the item to look for
duplicate copies. It is easier to use a linear search.

9. public void insert(String item)
// If the list is not full, put item in its proper position in the
// list; otherwise, list is unchanged
{
boolean placeFound = false;
int index = 0;
if (!isFull())
{
while (!placeFound && index < numItems)
if (item.compareTo(listItems[index]) > 0)
index++;

else
placeFound = true;

for (int count = numItems; count > index; count--)
listItems[count] = listItems[count - 1];

listItems[index] = item;
numItems++;

}
}

737

Chapter 12 Exam Preparation Exercises

2. a. col 0 1 2

row

0 0 0 0

1 0 1 2

2 0 2 4

3 0 3 6

b. col 0 1 2

row

0 0 1 2

1 1 2 0

2 2 0 1

3 U U U

c. col 0 1

row

0 2 3

1 2 3

2 2 3

3 2 3

4 2 3

5 2 3

6 2 3

7 4 5

5. a. boolean[][] myArray = new boolean[5][6];

b. double[][] MyArray = new double[40][200];

c. char[][] myArray = new char[4][3];

8. a. 1.4E+12

b. 100.0

c. 3.2E+5

9. a. The mantissa is the part of the floating-point number that contains the
representable significant digits.

b. The exponent is the part of the floating-point number that determines where
the decimal point is placed relative to the mantissa.

c. Representational error is an arithmetic error that occurs when the precision of
the true result of an arithmetic operation is greater than the precision of the
machine.

d. Significant digits are those digits from the first nonzero digit on the left to the
last nonzero digit on the right (plus any zero digits that are exact).

738

e. Overflow is the condition that occurs when the result of a calculation is greater
than the maximum number that can be represented in the computer.

11. a. x is 2314.38

b. x is 2,314.38

c. x is 2314.4

d. x is 2,314.383

Chapter 12 Programming Warm-Up Exercises

1. final int NUM_SCHOOLS = 10;
final int NUM_SPORTS = 3;
// row/column 0 is football; row/column 1 is basketball;
// row/column 2 is volleyball
int[][] kidsInSports = new int[NUM_SCHOOLS][NUM_SPORTS];
double[][] costOfSports = new double[NUM_SPORTS][NUM_SCHOOLS];
a. int mostSoFar = 0;

for (int column = 1; column < NUM_SCHOOLS; column++)
if (costOfSports[0][column] > costOfSports[0][mostSoFar])
mostSoFar = column;

// mostSoFar is the school that spent the most on football
b. int whichSport = 0;

int last = NUM_SCHOOLS - 1;
for (int row = 1; row < NUM_SPORTS; row++)
if (costOfSports[row][last] > costOfSports[whichSport][last])
whichSport = row;

// whichSport contains the sport that the last school spent the
// most on

c. int mostStudents = 0;
for (int row = 1; row < NUM_SCHOOLS; row++);
if (kidsInSports[row][1] > kidsInSports[mostStudents][1])
mostStudents = row;

// mostStudents is the school with the most students playing
// basketball

d. int whichSport = 0;
for (int column = 1; column < NUM_SPORTS; column++)
if (kidsInSports[2][column] > kidsInSports[2][whichSport])
whichSport = column;

// whichSport is the sport that the third school has the most
// students in

e. int sum = 0;
for (int column = 0; column < NUM_SCHOOLS; column++)
sum = sum + costOfSports[2][column];

// sum contains the total amount spent on volleyball

739

f. int totalKids = 0;
int bestSchool = 0;
for (int row = 0; row < NUM_SCHOOLS; row++)
for(int column = 0; column < NUM_SPORTS; column++)
totalKids = totalKids + kidsInSports[row][col];

// totalKids contains the total of all the kids in sports
g. int bestTotal= 0;

int bestSchool = 0;
for (int row = 0; row < NUM_SCHOOLS; row++)
{
int totalKids = 0;
for (int column = 0; column < NUM_SPORTS; column++)
totalKids= totalKids + kidsInSports[row][column];

if (totalKids > bestTotal)
{
bestTotal = totalKids;
bestSchool = row;

}
}
// bestSchool contains the number of the school with the
// most kids participating in sports

h. double bestTotal = 0.0;
int bestSport;
for (int row = 0; row < NUM_SPORTS; row++)
{
double totalMoney = 0.0;
for (int column = 0; column < NUM_SCHOOLS; column++)
totalMoney = totalMoney + costOfSports[row][column];

if (totalMoney > bestTotal)
{
bestTotal = totalMoney;
bestSport = row;

}
}
// bestSport contains the most popular sport in terms of
// money spent

i. int numberOfKids = 0;
int bestSport = 0;
for (int column = 0; column < NUM_SPORTS; COLUMN++)
{
int totalKids = 0;
for (int row = 0; row < NUM_SCHOOLS; row++)
totalKids = totalKids + kidsInSports[row][column];

740

if (totalKids > numberOfKids)
{
numberOfKids = totalKids;
bestSport = column;

}
// bestSport contains the sport in which the most students
// participated

}
4. Given the following declarations:

final int NUM_DEPTS = 100;
final int NUM_STORES = 10;
final int NUM_MONTHS = 12;
a. double[][][] sales;
b. sales = new double[NUM_DEPTS][NUM_STORES][NUM_MONTHS];
c. 0.0 (double)
d. sum = 0.0;

for (int depts = 0; depts < NUM_DEPTS; depts++)
for (int stores = 0; stores < NUM_STORES; stores++)

sum = sum + sales[depts][stores][0];
// sum contains the sum of the sales for January

e. sum = 0.0;
for (int depts = 0; depts < NUM_DEPTS; depts++)
for (int months = 0; months < NUM_MONTHS; months++)

sum = sum + sales[depts][1][months];
// sum contains the sum of the sales for store 2

f. sum = 0.0;
for (int stores = 0; stores < NUM_STORES; stores++)
for (int months = 0; months < NUM_MONTHS; months++)

sum = sum + sales[32][stores][months];
// sum contains the sum of the sales for department 33

Chapter 13 Exam Preparation Exercises

1. c. repetition

4. F(4) = 1, F(6) = –1, and F(5) is undefined

6. if is the control structure used most often in recursion.

9. Run-time stack

741

Chapter 13 Programming Warm-Up Exercises

1. public static int f(int n)
{
if (n == 0 || n == 1)
return 1;

else
return f(n - 1) + f(n - 2);

}
4. public static int factorial(int n, int level)

{
int tempFactorial;
int loopCount;
for (loopCount = 1; loopCount <= level; loopCount++)
System.out.print(" ");

System.out.println(n);
if (n == 0)
tempFactorial = 1;

else
tempFactorial = n * factorial(n - 1, level + 1);

for (loopCount = 1; loopCount <= level; loopCount++)
System.out.print(" ");

System.out.println(tempFactorial);
return tempFactorial;

}
6. public static void printSqRoots(int n)

{
if (n > 0)
{
outFile.println(n + " " + Math.sqrt((double)n));
printSqRoots(n - 1);

}
}

7. public static void print(
int[] data, // Array to be printed
int first, // Index of first element
int last) // Index of last element
// Print an array

742

{
if (first <= last)
{ // Recursive case
outFile.println(data[last]+ " ");
print(data, first, last - 1);

}
// Empty else clause is the base case

}
9. public static int power(int x, int n)

// Returns x raised to the power n
// Assumption: x is a valid integer and n is greater
// than or equal to 0
// Note: Large exponents may result in integer overflow
{
if (n == 0)
return 1; // Base case

else
return x * power(x, n - 1); // Recursive call

}

Chapter 14 Exam Preparation Exercises

1. An applet doesn’t have a main method. An applet is not invoked in the same fash-
ion as an application. Applets are subjected to more security constraints than an
application because they are distributed over the Web. Applets are not in control
of their own execution.

4. Applet class

6. The add method is not applied to a pane object in the case of an applet.

9. The applet must be run within a Web browser or an applet viewer.The browser
recognizes a link to a Bytecode file, and the JVM within the browser executes the
code.

12. A tag is the syntactic element in a markup language that indicates how informa-
tion should be displayed.

15. The Internet is a wide area network that spans the planet, while the Web is an in-
frastructure of information and the network software used to access it.Thus the
Internet is the hardware and the Web makes it usable by providing the
appropriate software.

17. A LAN is a local area network of nodes in a close geographic area. A WAN is a net-
work made up of two or more other networks.

743

Chapter 14 Programming Warm-Up Exercises

3. TextField myField;
myField = new TextField("My data");
add(myField);

8. a. <APPLET code = "Sorts.class" width=250 height=150></APPLET>

b. <APPLET code = "Search.class" width=250 height=150></APPLET>

c. <APPLET code = "Calculator.class" width=250 height=150></APPLET>

10. <HR>

11. <P></P>

744

Note: Italicized page locators indicate
figures/tables.

A

Abacus, 2, 496
Absolute error, 598
Absolute value, 120
Abstract, 333
Abstract class, 333

derived class and extension of,
365

and List class, 548–550
Abstraction, 177, 178, 179–183, 242, 286,

292, 672
control, 179
data, 179
levels of, 12

abstract modifier, 335
Abstract steps, 287
Access modifiers, 52, 273, 294, 345
ACM. See Association for Computing

Machinery
ActionEvent class, 388
ActionEvent value, 421
ActionHandler class, 403, 405, 406
ActionListener class, 387, 388, 677
ActionListener interface, 420, 421, 662
actionPerformed method, 387, 389, 409, 416,

417
Ada, 11, 95, 271, 522
addActionListener method, 387, 388, 389,

420, 421
and Calculator2 class, 665
with this as argument for, 665, 676

Adding machine, 40
add instance method, and labels, 380
Addition operator (+), 108, 141
add method, 397

button added to frame and, 386, 387
and JLabel object, 380
user interface objects added to content

pane with, 421
Address book case study, 304–313

brainstorming for, 304
filtering for, 304–305
responsibilities for, 305–307

responsibility algorithms for, 308–309
Address book extension case study,

359–364
brainstorming for, 359
library search for, 360
responsibilities for, 359–360
responsibility algorithms for, 361–362

Address books merging case study,
562–570

brainstorming for, 562
filtering for, 562
responsibilities for, 563
responsibility algorithms for, 563–566

Address class, 132, 307, 309–310, 436
CRC card for, 331

AddressDr class, 311–313
Addresses

base, 499
memory cell, 20
of memory locations and values

storage, 100, 101
Address object, 436, 437
Address object hierarchy, 332
Adelman, Leonard, 479
Adobe Systems Inc., founding of, 523
Aggregate array operations, 491–493
Aiken, Howard, 98
Algol, 113
Algorithms, 6, 7, 22, 29, 33, 270. See also

Responsibility algorithms
analysis of, 452–455
binary search, 651–653
and data structure, 483
design of, 23
and functional decomposition, 285, 287
and internal data representation, 291
for knowledge responsibilities, 293
recursive, 636, 637, 640, 651
searching, 671
sorting, 540

Algorithm walk-through, 197, 254, 280
Allen, Paul, 478
Alpha, 110
alpha array, 582, 583
alpha.length, 583
Alphanumeric characters, 480

745

Alto personal computer, 431
ALU. See Arithmetic/logic unit
Amazon.com, 658
Ambiguity, avoiding, 42
American National Standards Institute,

324
American Standard Code for Information

Interchange (ASCII), 9, 48
code, 324
and Unicode character set, 157

Analogy
on inheritance, 326
solving by, 25, 34, 291

Analysis, 270
of algorithms, 452–455

Analysis and specification, in problem-
solving phase, 6

Analytical Engine, 3, 338
Anderson, Harlan, 268
AND operation, and short-circuit evalua-

tion, 163
AND operator (&&), 161, 164, 481
Andreesen, Marc, 635
angle array, 487

with values, 489
Angled brackets (<>), HTML tags within,

669
Anonymous objects, 69
AnswerSheet class, 504–505, 506
AOL, 658
Apostrophes (‘), characters enclosed in, 49
Apple Computer Inc., 580

founding of, 478
legal debate between Microsoft and, 634
Macintosh introduced by, 580
Newton PDA introduced by, 635

Apple I computer, creation of, 478
Apple II computer, as standard for

personal computers, 478
Applet class, 660, 662, 677
Applets, 6n.2, 658–679

applications contrasted with, 660
running, 667–670
for searching experiments case study,

671
writing, 661–667

Applet viewer, 660, 667, 668
Application code, entering, 75–76
Application development, object-oriented

programming and, 134
Applications, 6, 20, 255, 270

applets contrasted with, 660
arrays in, 493–497
and compilation, 194
compiling/running, 77
construction of, 70–75
debugging, 255
and file I/O, 213
with multiple class files, 131–134
testing, 193, 252
understanding before changing, 129

AreaCodeInvalidException, 437
args string, 72, 499
Arguments, 65, 242, 482

passing array components as, 512
passing array objects as, 618

Arithmetic, with floating-point numbers,
594–597

ArithmeticException, 433, 434, 468
Arithmetic expressions, 141, 155

avoidance of mixing data types in, 115,
117–118

comparing values of, 158
Arithmetic/logic unit, 20, 21, 34
Arithmetic operations, 16, 21, 480
Arithmetic operators, 108–111, 448

order of precedence for, 165
precedence rules with, 114–115

Arpanet, 374
Array components, 486

accessing, 488–490, 513
Array elements, 486
Array element selection, correct

placement of operators for, 511
ArrayExample class, 483–484, 485
Array indexes, out-of-bound, 490–491
ArrayIndexOutOfBoundsException, 491, 510
ArrayName, 486
Array processing

examples of, 586
initialize the array, 586, 589–590
special kinds of, 501

746

Array processing (continued)
sum the columns, 588–589
sum the rows, 586, 587–588

Arrays, 72, 482, 605
aggregate operations, 491–493
assignment of, 492
base address of, 499
classes differentiated from, 485
creating, 486–488
declaring, 486
declaring/creating with initializer list,

488
examples of declaring and processing,

493–497
generalized definition of, 591
and methods, 500–501
of objects, 497–500
one-dimensional, 483–493
as parameters, 512
partially filled, 499
printing using recursion, 653
of strings, 497–499
values printed in, 648–651

Array structure type, 479
Array variables

array name with no brackets as, 498
comparison of, 492
declaring, 512
instantiating, 512

Arrows, in syntax diagram, 44
Artificial intelligence, 211, 268, 338, 375
ASCI White supercomputer, 659
ASCII. See American Standard Code for

Information Interchange
Ask questions step, in problem-solving,

23–24
Assembler, 11
Assembly languages, 10, 11, 12
Assertions, 154, 161

evaluating, 155
reversing meaning of, 162

Assignment, 60–61
difference between mathematical

equality and, 110
Assignment expression, 256, 448
Assignment operations, 480
Assignment operator (=), 60, 88, 140, 228,

448, 480

combined, 449, 450
note on confusion between relational

operator and, 158
and order of precedence, 165
and precedence rules, 457
same variables on both sides of, 110

Assignment statements, 60, 70, 86, 140,
228

and avoidance of mixing data types in,
115–116

and variable declarations, 108
Association, of operators, 165
Association for Computing Machinery, 443
Associative law of arithmetic, 595
Associativity, 114

and operator precedence, 456, 458
Asterisk (*)

and comments, 64
in declarations, 52

Asynchronous, meaning of, 385
Asynchronous control, 16, 18, 34, 385
Atanasoff, John Vincent, 99, 431
Atari, 430
Atlas Missile, 211
Atomic components, 486
Atomic data types, 480–481, 482
Atomic (simple) elements, 481
Atomic types, and base address, 499
AT&T Bell Labs, 113, 580
Audio, 668
AutoCAD, 523
Autodisk, 523
Automatic type conversion, 141
Auxiliary storage devices, 20, 21, 34, 212
Average income by gender case study,

246–251
AWT, inheritance hierarchy for, 661
AWT applets, 661
awt class, 661
Awt package, layout managers in, 379
awt toolkit, 661

B

Babbage, Charles, 3, 338, 339
Backslash, escape sequence for (\”), 53
Backup copies, 77
Backus, John, 43, 211
Backus-Naur Form, 43

747

Backward slash (\), 50
Bad data, testing for, 196
Bank audit, limited precision and, 603
Base address, 499

of gourmetBurgers, 501
Base case, 637, 642, 648, 653

checking on existence of, 652
determining, 640
and Towers of Hanoi, 645

Base-2 (or binary) number system, 9
Base-10 (or decimal) number system, 9
BASIC, 113, 324, 635
Batch processing, 131
Batch systems, 22
BCPL (Basic Combined Programming

Language), 113
Bell, Alexander Graham, 40
Bell Labs, 98, 153, 268, 324, 375
Bemer, Bob, 324
Benedicks, Manson, 41
Berners-Lee,Tim, 634
Berry, Cliff, 99
beta, 255
beta.length, 583
Big-O notation, 454

and searching and sorting, 557–558
Binary coding schemes, 10
Binary digital computer, 98
Binary numbers, 34

decimal integers converted to, 641–644,
653

Binary number system, 592
floating-point values approximated in,

106
Binary operators, 108, 161
Binary representation of data, 9–10
Binary search, 571, 572, 651, 671

number of iterations and sequential
search compared with, 556

of phone book, 552, 553
Binary search algorithm, 581, 651, 653

and Big-O notation, 557
walk-through of, 554, 555, 556

Binary searching, 552–557
Bits, 9

in integral types, 103, 104
Bitwise operators, 449, 451
Black-box testing, 192, 508, 536

B language, 113
Blank lines, 124, 127, 141
Blocks, 75, 79, 87, 88, 169–170

and braces, 171
indentation of, 74

“Blue box,” 431
BNF. See Backus-Naur Form
Body, of loops, 221, 222, 223, 466
Boole, George, 3, 164, 338
Boolean algebra, 164, 338
Boolean AND (&), 451
Boolean data, 602
Boolean EXCLUSIVE OR (^), 451
Boolean expressions, 155, 163, 223

parentheses for overriding order of
evaluation in, 165

testing for null in, 217
Boolean flag, 232
Boolean full evaluation operators,

449
boolean operands, 451
Boolean operators, 161
Boolean OR (?), 451
boolean reserved word, 155, 156
boolean type, 156, 242, 446, 481, 602

and arrays, 488
and declaring variables, 155

Boolean values, 481
Boolean variables, 156, 164
BoxAddress class, CRC cards for, 330, 332
Braces, 173

and blocks, 170, 171
body of method enclosed in, 123
in class declarations, 52
and dangling else, 177
and if statement, 196
and initializing arrays, 488
matching, 87
and meaning/execution of application,

74
meaning of ellipsis (...) between, 132

Bracket ([]) operator, after expressions de-
noting arrays, 511

Brackets
and array declarations, 486, 487
in component access syntax, 500
and multidimensional arrays, 619–620
and two-dimensional arrays, 582, 590

748

Brainstorming, 285, 315
for address book case study, 304
in address book extension case study,

359
for address books merging case study,

562
for calculator case study, 412
for grading true/false tests case study,

502
identifying initial classes through,

277–278
for List class, 525
for matrix manipulation case study, 605
for monthly rainfall averages case

study, 459
for rainfall amounts case study, 402
for searching experiments case study,

671
for SortedList class, 543–544

Branches, 18, 252
conditional, 193
multiway, 174, 175
testing application/method with, 191,

192
two-way, 431

Branching, 154
Branching control structure, 155
Branching statements, checking

conditions in, 197
Bravo, 431
break statements, 431, 439, 440, 441

omitting those inside of switch
statements, 442

in switch statements, 468
Bricklin, Dan, 479
Browsers, 635, 659, 660, 668, 669
BufferedReader class, 69, 88, 100, 138, 254,

255, 273, 355, 358, 432
in display a name in multiple formats

case study, 83
and java.io, 213
readLine method in, 68, 217, 256
relationship between FileReader and,

214
and skip method, 218

BufferedReader object, 69, 130, 141, 158
BufferedReader variable, 73

Bugs, 34, 191, 193
origin of word for, 152, 443

Building-block approach, 27, 275
in problem-solving, 27
in rainfall amounts case study, 405

Building blocks, 34
Built-in types, 47–50
Bureau of Ordnance Computation Project

(Harvard University), 443
Burroughs, William S., 40
Bushnell, Nolan, 430
BusinessPhone class, 352

CRC card for, 349
Button event listener

creating and registering, 387–390
declaration of, 420

Button events, multiple, 409–411
Button handler, 389
ButtonHandler class, 388–389, 391–392
ButtonHandler object, declaring, instan-

tiating and registering with button,
392

Buttons, 385, 420, 672
adding to frames, 386, 391
classes for, 333
creating, 385–387
frame with two, 409
and input text fields, 671

Byron, Anna Isabella (Annabella), 338
Byron, Augusta Ada See Lovelace, Ada
Byron, Lord George Gordon, 338
Bytecode, 12, 13, 14, 34, 158, 194, 341, 561,

669, 676, 677
and applets, 660, 667
compilation/execution of JVM

combined with
compilation/execution of, 16

files, 294
Bytes, 9, 68, 480
byte type, 103, 105, 163, 439, 480

index expressions as, 489
switch expression and, 467

C

C, 113, 430
C#, 271
C++, 11, 14, 113, 271, 480, 490, 580

749

CAD design. See Computer-aided design
program

Calculating,Tabulating, and Recording
Company (CTR), establishment
of, 41. See also IBM

Calculations, performing with
expressions, 108

Calculator applet, .html file for running of,
670

Calculator case study, 412–419
brainstorming for, 412
filtering for, 412
responsibility algorithms for, 414–417
scenarios for, 413–414

Calculator class, 414, 416, 417–419
CRC card for, 413

Calculators
early, 2
first hand-held, 325
Pascal’s inventions, 121

Calculator2 class
applet written for, 665–666
screen shot for, 667

Calculus of probabilities, 121
Calendar class, in java.util package, 360
Calling a method, 79–80

throwing an exception to be caught in,
436

Call to method, 65–66
Cambridge Mathematical Journal, 164
Cancellation errors, 601–603, 620
Capek, Karl, 41
Capitalization, 48

and adding button to frame, 387
of classes, 100
of constructors, 69
of identifiers, 59
and indexOf method, 126

Case constants, of switch statement, 467
Case labels, 439, 440, 441, 467
case reserved word, 440
Case-sensitivity, 48, 86. See also

Capitalization
Case studies

address book, 304–313
average income by gender, 246–251
extending the address book, 359–364

grading true/false tests, 502–509
matrix manipulation, 605–619
merging address books, 562–570
monthly rainfall averages, 459–466
name displayed in multiple formats,

83–86
party planning/preparation, 30–32
searching experiments, 671–676
simple calculator, 412–419
small company payroll, 135–139
totaling rainfall amounts, 402–409
warning notices, 184–190

Cast operation, 116, 481
Casts, 116n.1
catch block, in try-catch, 433
catch clause, 433, 434, 438
Catching an exception, 432, 436, 467
Catenary curve, 603
Caught exceptions, 231
CDC 6600, 325
CD-ROM, introduction of, 580
CD-ROM drive, 22
Cells, 49
Cellular phone systems, 522
Central processing unit, 21, 34
Character counts example, for

declaring/processing arrays, 495–497
Character data, 602
Character sets, 48, 480
Character stream file object, effect of call-

ing constructor for, 215
Character stream files, 214
char literal, 86
char type, 48–50, 106, 439, 602

index expressions as, 489
switch expression and, 467

char[] type, 488, 499
char value, 54, 127, 482
Chess matches, 658
Chief architect, 300
Circle class, 340
Clark, Jim, 635
Class code, separating, 141
class composite type, 482
class construct, 100, 269
Class declaration

abstract keyword in, 335

750

Class declaration (continued)
for compilation unit, 295
syntax template for, 337

Class(es), 6, 19, 34, 46, 50–54, 99
arrays differentiated from, 485
as composite data types, 482
declaring in compilation unit, 295
definition of, 271
derived, 333
and encapsulation, 177, 197
example of in Java, 141
exception, 437–438
filtering, 278–280
frames and importing of, 376
in general sense, 51
as Java construct, 51
from Java library, 25
in Java sense, 271
layering of for Java input, 68
member of, 273
with object-oriented programming lan-

guage, 27, 271
in packages, 294, 315, 316
private member of, 345
public data fields declared in, 290
user, 78
variables, objects, and, 272

Classes, Responsibilities, and
Collaborations (CRC), 275

.class extension, 677
and calculator applet, 670
public class with, 667

Class fields, 80, 81, 123
Class field selection, correct placement of

operators for, 511
Class headings, 72
Class hierarchy

and CRC card design process, 328
reading, 333–337

Class identifiers, 348
Class interface design, 289–290
Class members, four levels of access for,

343
Class methods, 80–81, 87, 88, 122, 123, 273,

367
class names used with, 140
hiding and, 365

Class modifiers, 46, 52

Class names, 79, 140
ClassNotFoundException, 357, 366, 433
Class objects, 497
Class variables, instantiating instances of,

87
Clear-box (or white-box) testing, 192

and class List, 536
for matrix manipulation case study, 614

Clear button, 414, 417
ClearHandler class, CRC card for, 414
Client, of class, 525
CLOS, 271
close method, 218, 256
COBOL, 113, 268, 443, 635
Code, 8, 270, 314

comments added to, 64
efficiency of, 174
entering, 75–76
errors in, 276
interpretation of, 14
named constants used instead of liter-

als in, 107
plagiarism of, 302
self-documenting, 299
separating data from, 67
steps for frame used for output in Java,

376
Code clarity, and explicit type casts, 117
Code coverage, 192
Code formatting, 124, 140, 141, 299, 316
Code inspection, 191
code keyword, 677
Code trace, 240
Code walk-through, 191, 254, 643
Coding, 9, 34

of some floating-point numbers, 595
using positive and negative exponents,

594
using positive exponents, 594

Coding errors, understanding before
changing, 129

Coding the algorithm, 8
Coercions, 116n.1
col identifier, 586
Collaborations, 275, 284, 285, 314, 316
Collating sequence, 50
Collosus calculating device, invention of,

99

751

Colmerauer, Alain, 430
Color television, experimentation with, 98
Columbia Data Products, 522
Column heading, 384
Column processing, and initializing the

array, 589, 590
Columns, 581

and GridLayout, 382, 383, 384
processing by, 621
subarray processing by, 589
in two-dimensional arrays, 582, 583

Combinatorial analysis, 121
Combined assignment operators, 449, 450
Commas

and initializing arrays, 488
searching for, 236–237
in for statement, 446

Commenting out a piece of code, 255
Comments, 50, 58, 70, 299

adding to code, 64
and declarations, 56
delimiting, 87

Commodore, 478
Common Business Oriented Language. See

COBOL
CompanyAddress class, 337

CRC card for, 331
Comparable interface, 571, 572

and generic lists, 559–561
Comparable parameter, 571
compareArrays method, 493
compareTo method, 159, 160, 533, 534, 559
Compilation

relationship to interpretation and exe-
cution, 14–15

tests performed during, 194
Compilation units, 295, 299, 316

packages with multiple, 296
and superclasses, 365

Compiler, 11, 34, 77
and code formatting, 124
and file searching, 131
and floating-point literals, 105
and metalanguages, 44
responsibilities of, 194

Compile-time errors
arithmetic operations applied to

character data and, 480

and index expressions of type long, 489
Complexity

and internal data representation, 291
of searching and sorting, 557–558

Complexity expression, 455
Complexity of algorithm, 452, 455
Component access method, 500
Component class, 333
Components

accessing in multidimensional arrays,
621

accessing in two-dimensional arrays,
582, 583–584

array name with brackets as, 498
sorting in ascending/descending order,

542
Composite data types, 481, 482, 512
Composite object, class of, 482
Composite types, 571
Compound arithmetic expressions,

114–120
precedence rules for, 114–115
type conversion and type casting with,

115–120
Compound expressions, 108
Compound statements, 169–170
Computer

limitations of in doing calculations, 581
modern, 431
as Time magazine’s “Man of the Year,”

523
Computer-aided design program, 326
Computer-aided design systems, early,

325
Computer-entertainment industry, 430
Computer graphics, 581
Computer mouse, invention of, 325
Computer program, 5
Computer programming, 5, 33
Computer resources, ethical use of,

302–303
Computers, 33, 276

basic components of, 20
as chess match winners, 658
floating-point numbers implemented

in, 596–601
operations performed by, 15
parts of, 34

752

Computers (continued)
programming with, 4

Computer science, founders of, 164
Computer Science Education of the

Association for Computing
Machinery, Special Interest Group for,
443

Computer Sciences Man of the Year
award, 443

Computer/user interface, 23, 34
Computer viruses, 634
Computing profession, ethics and respon-

sibilities in, 301–303
Concatenation, 61–63, 86
Concatenation operator (+), 129

and string conversion, 118–120
Concrete steps, 287
Conditional branches, 193
Conditional evaluation, 163
Conditional operator (?:), 449, 456
Conic sections, 121
Connection Machine, 580
Consistency

with braces, 171
and error detection, 178

Constant declarations
comments added to, 58
syntax template for, 57

ConstantExpression, 439, 440
Constant(s), 56–58, 70, 88, 108, 156, 290

index as, 490
and index expressions, 489
order of definition with, 341

Constant time, 454
Constant time complexity, 453
Constructor methods, 68, 69
Constructors, 80, 81, 83, 88, 288, 289, 291,

335, 367
in derived classes, 346, 347
effect of calling for character stream file

object, 215
Constructs, 42
Container class, 333, 335, 380, 660
Container object, 401, 421
Container variables, declaring, 376
Content pane, 405, 421

field added to, 397
for frame, 377

getting, 278
and layout, 378
output added to, 380

continue statement, 431
Continuous values, discrete values versus,

481
Contributions to Computer Science

Education Award, 443
Control abstraction, 179, 180
Control Data Corporation, 325
Control signals, 21
Control structures, 16, 18, 154, 482

looping, 221
nested, 173, 236
of programming languages, 17
selecting, 175, 186

Control unit, 20, 21, 34
convert method, 642
Convert (10), code walk-through of, 643
Copy constructors, 288, 352–353
Copy machines, 269
Copyright

laws, 301
Napster and, 658

CopyString class, 399–400, 410
Count, 221, 230

as local variable in applet class, 673
scope of, 447

Count-controlled loops, 223–225, 233, 234,
254, 256

and do statement, 444
with floating-point control variables,

596
and looping statement choices, 448
nested, 238
and for statement, 445, 468
testing, 252, 253

Counters, 224, 256
Counting, 229–231, 235, 256, 257
Counting operation, in income by gender

case study, 251
CPUs. See Central processing units
Crashes, avoiding, 231
Cray, Seymour, 325
Cray 2 parallel processor, 580
Cray XP supercomputer, 581
CRC card design process, 277–285

brainstorming, 277–278

753

determining responsibilities, 280–284
filtering, 278–280
and inheritance, 285

CRC cards, 269, 274, 299, 315, 325
for Address class, 307, 331
for AddressDr class, 307
blank, 279
for BoxAddress class, 330, 332
for BusinessPhone class, 349
for Calculator class, 413
for ClearHandler class, 414
for CompanyAddress class, 331
creating, 278
for DataSetException class, 460
for Date class, 359
and derived class implementation, 346
for Entry class, 283, 306
for EntryPlus class, 361
for GradeExams class, 504
for HomeAddress class, 329, 332
with initial responsibilities, 280, 281
for LabelDriver class, 563
for List class, 526, 543, 544
for Matrix class, 605
for NumericHandler class, 414
for Phone class, 289
for PlusDriver class, 361
for Rainfall class, 404, 460
for Search class, 672
for SortedList class, 544
for Spectrum class, 290
for Station class, 404
and testing and debugging, 314
for WorkAddress class, 331

CRC card technique, 276
Cubic formula, 454
Cubic time, 454
currentPos, 531, 535, 536
Cyberspace, coinage of word for, 580
Cycloid curve, 121

D

Dahl, Ole-Johan, 325
Dangling else, 176–177
DARPA. See Defense Advanced Research

Projects Agency
Dartmouth College, 211
Data, 4, 5, 15, 34, 255, 271

binary representation of, 9–10
entering using fields in frame, 394–395
internal representation of, 291–292
privacy of, 302
reading in event handler, 398–401
separating from code, 67
storage and retrieval of, 16

Data abstraction, 179
Data coverage, 192
Data entry fields

classes for, 333
creating, 396–397
Java field distinct from, 394, 395

Data entry process, 396
dataFile, read line from, 241
dataLine, 217
dataPane, 387, 401
Data Processing Management Association,

443
Data representation, for grading true/false

tests case study, 504
DataSetException class, 459, 462, 463

CRC card for, 460
dataSize, 487
Data storage, 49
Data structure, 483
DataType, 486
Data types, 19, 79

atomic, 480–481
avoiding mixing of, 115, 117–118, 620
built-in, 47–50
composite, 481–482
of ConstantExpression, 439
in Java, 479, 480
mixing in comparisons, 157
ordinal, 481
scalar, 481
structured, 482
unstructured, 482

Data validation checks, 510
Data values, 227, 480
Date class, 81, 291

CRC card for, 359
Date object, 179, 291
Dates, and Julian day, 179, 180
dBase II, 522
Debugger application, and loop testing,

253

754

Debugger program, 255, 653
Debugging, 8, 316. See also Testing and de-

bugging
away from computer, 129
process, 77
recursive algorithms, 652

Debug output statements, 255
Decimal (base-10) numbers, 105
DecimalFormat class, 603, 621
DecimalFormat patterns, steps for using to

format numbers, 602–603
Decimal format type, 602–604
Decimal integers, converting to binary

numbers, 641–644, 653
Decision, 18
Declaration initialization expressions,

assignment statements distinct
from, 340

Declarations, 16, 54, 70, 79
for arrays, 486
for one-dimensional arrays, 484
for two-dimensional arrays, 582
and value-returning class method, 123

Declarations for numeric types, 106–108
named constant, 106
variable, 107–108

Declaring a variable, 55
Decrement operation (--), 141
Decrement operators (--), 111, 112, 448,

449, 450
Decrement statement, 112
Deep Blue computer (IBM), winner in

world championship chess match,
658

Deep comparisons
of arrays, 493
of lists, 528

Deep copy, definition of, 353
Deep copying, 354
Deep test, 491
Default labels, 439, 440, 442
Default value, 395
Defense Advanced Research Projects

Agency, 523
delete method, 525, 572

and sorted list, 547
and SortedList class, 544

testing, 537
delete operation, 543
Deleting

components from lists, 534–535
list items, 527, 528

Dell Computer Corporation, 659
DeMorgan, Augustus, 338
DeMorgan’s law, 162n.2
DerivedClass class, 343
Derived classes, 333, 367

class members accessed from, 342
constructors in, 347
syntax for, 337, 339

Derived class implementation, 346–352
accessing overridden and hidden meth-

ods and fields, 349
constructors in derived classes, 347
example of, 349–352
overloading and method signatures,

347–349
Descartes, René, 121
Deserializing, 355
Design, 177, 270

and data structure, 483, 581
errors in, 77
flow of control in, 233–235
hierarchies in, 326
of loops, 233
and nested loops, 239, 241–242, 257
and process within loop, 235
structured, 285
and test plan, 193
top-down, 285

Desk checking, 190, 191
destroy method, and applets, 660
Devol, Georg, 269
Dialog, 395
Difference Engine, 338, 339
Differential calculus, 121
Digital computers, background of, 164
Digital Electronics Company, 269
Digital Equipment Corporation, 443

formation of, 268
64–bit chip introduced by, 635

Digits
numbers starting with, 106
syntax template for, 45

755

Dijkstra, Edsger, 374
Diode vacuum tube, 40
Direct execution of code, 14
Directories

classes in same, 132
multifile packages stored in, 315

Discrete values, continuous values versus,
481

Disk drives, 21
Disks, 212
Display screens, 65

for editor, 76
dispose method, 411, 421
Divide and conquer step, 27, 34, 178

in party planning/preparation case
study, 30

in problem-solving, 26
Division, by zero, 140, 169
Division operator (/), 141
Divisors, 110, 169, 170
do, 431
Documentation, 9, 299, 316
Dollar sign ($), 43, 45, 47
do loops, 467, 468

nesting, 446
testing, 466

do statement, 442, 444–445, 448
Dot.com business model, 659
Dot matrix printers, early, 479
Dot notation, and accessing fields of class,

488
Dot operator, 511
doTowers method, 646, 647
Dot product, 606
Dots

between braces, 296
in compound statements, 224
in file names, 215
in identifier definition, 45
and string comparison, 158

Double class, 273, 612
Double object, 274
Double.parseDouble method, 420
Double quotes

within literal strings, 86
String literals beginning/ending with, 86
strings enclosed in, 53, 56

double type, 99, 105, 130, 141, 242, 480, 621
and declarations, 106
and numeric data types, 602
and significant digits, 597

double values, 105, 273
Doubly nested loops, 242, 454
do-while statement, 444
Driver application classes, 314
Drivers, 32, 84

for GradeExams application, 508
purpose of, 314

DrPhone.out, results of, 352
Duplicate keys, lists with, 524, 525
DVD-ROM drive, 22
Dynamic binding, 561

E

Earth Simulator, 659
Ebay, 658
EBCDIC, 480
Eccles, Will, 41
Echo printing, 70
Eckert, J. Presper, 152, 431
Eckert-Mauchly Computer Corporation,

443
E-commerce sites, 658
Edison,Thomas, 40
Editor, 22, 34, 75, 212, 213, 214

display screen for, 76
EDVAC (Electronic Discrete Variable

Automatic Computer
Efficiency), 152, 210
and internal representation, 291
and readability, 174

Eiffel, 271
Electric typewriter, introduction of, 98
Electronic-digital computer, early model

of, 99
Electronic trigger circuit, 41
“Eliza,” 324
Ellipses (...)

between braces indicating code for
class, 132

in code for frameExample class, 380,
381

else clause, 196, 652
else reserved word, 168

756

E-mail
first commercial service for, 478
growth in commercial services for, 523
initial use of, 375

Employee class, 136, 137–138
Employee class responsibility algorithms,

in small company payroll case study,
136

Employee.java, Employee class stored in,
136

Empty lists, 531, 547
Empty sets, 164
Empty stacks, 564
Empty strings, 53, 120, 228
Encapsulated implementation, exposed

implementation versus, 178
Encapsulation, 82, 177–179, 197, 290, 291,

337, 339, 345
and external scope, 343
and packages, 294

Encryption, 302
Encryption algorithms, RSA, 479
End-of-file, 212, 213, 232, 256
End-of-file controlled loops, 225, 227–229,

233, 234, 235, 256
count-controlled loops nested in, 238
in income by gender case study, 251

End-of-line, 214, 216, 217
Engelbart, Douglas, 325
English statements, changing into logical

expressions, 166
ENIAC, 431

construction of, 99
unveiling of, 152

Enter button, 411
Entry class, 305–306, 310–311
EntryPlus class, 362

CRC card for, 361
EOF. See End-of-file
EOF-controlled loops. See End-of-file con-

trolled loops
Epson, 479
Equality. See also Near equality

arrays tested for, 491
comparing floating-point types for, 196
floating-point numbers and comparing

for, 597
names compared for, 181

note on comparing floating-point num-
bers for, 167

Equality of strings, testing, 161
Equality operator (==), 158
equalsIgnore Case method, 161
equals method, 228
Equals sign (=), and assignment operators,

448
Equals test, 528
Equal to operator (==), 156
Equivalent expressions, 162
Error messages, 86, 110, 154
Errors, 33, 34, 191, 193, 197

and break statement in case
alternative, 442

cancellation, 601–602
in code, 276
compiler and reporting of, 194
and floating-point numbers, 167
and IBM OS/360 development, 300
in method calls, 432
and multidimensional arrays, 618
and nonnumeric data entry, 409
out-of-bounds, 490, 491
in recursive algorithms, 653
representational, 596
rounding, 597
scope-related, 342
and substring method, 128
in syntax, 42, 49, 77
and try-catch, 434
understanding before changing, 129,

140
from unintentional mixing of types, 116
and use of equality and inequality oper-

ators, 158
and use of exceptions, 438

Escape sequence, 49
for backslash, 53

Ethics, in computing profession, 301–303
Evaluate, 60
Evaluating the assertion, 155
Evaluation, short-circuit, 163
Event class, 413
Event-controlled loops, 223, 225–229, 256

end-of-file controlled loops, 225,
227–229

and looping statement choices, 448

757

sentinel-controlled loops, 225–227
testing, 253–254

Event counter, 233, 256
Event handlers, 385, 398

extending in CopyString class, 410
reading data in, 398–401

Event handling, 385, 386
button creation, 385–387
creating/registering button event

listener, 387–390
event loops, 393–394
example of, 390–393

Event listeners, 385
creating, 387–390
registering, 387–390, 420, 421

Event loops, 393, 394, 395, 421
Event source, 385, 389–390, 420
Events, 223, 385
Exception classes, 437–438
Exception handler, 432
Exception-handling mechanism, 432–438

exception classes, 437–438
generating an exception with throw,

435–437
three parts to, 432
try-catch-finally statement, 432–435

Exception objects, 437
Exceptions, 72, 130

catching/forwarding, 467
and testing, 466
throwing, 467, 468

Executable statement, 74
Executing applications, 20
Executing programs, 8
Execution

compilation related to, 14–15
tests performed during, 194

Execution trace, 191, 197
Exit condition, and event loop, 394, 420
exit method, 411
EXIT_ON_CLOSE, 378
Explicit casting, 196
Explicit type casting, 118, 157
Explicit type casts, 117, 140, 619
Exponential class algorithms, 455
Exponents, for floating-point values, 105
Exposed implementation, encapsulated

implementation versus, 178

Expressions, 60, 70
with arithmetic operators and their val-

ues, 109–110
avoid mixing integer and floating-point

values in, 140
calculations performed with, 108
equivalent, 162
and for statement, 447
index as, 490
mixing types within, 141
relational, 156

Expression statement, 450
extends clause, 337, 346
Extensibility, 19
External access, levels of, 367
External documentation, 299
External representation, 339
External scope, 342–345, 367
External scope rules, 345

F

FactInt applet, HTML document causing
execution of, 669

FactInt class, screen shots for, 663, 664
Factorial class algorithms, 455
Factorial function

applet written for, 661–664
calculating, 638–641

factorial method, execution of, 640
Factorial problem, code comparison for it-

erative and recursive versions of,
640–641

False assertions, 154
false value

and boolean data type, 155, 156
and if-else form, 168
and logical expressions, 197

Fanning, Shawn, 658
Fear of starting, 28–29
Federal Information Processing Standard,

374
Fermat, Pierre de, 121
Fetch-execute cycle, 21
Field, 47, 420
FieldContents, 398
Field declarations, 54–59, 64, 71, 74, 75, 273
Fields, 50, 54, 58–59, 70, 73, 88, 274

in frame and data entry, 394–395

758

Fields (continued)
frames and declaration of, 376
using, 397–398

File identifier, declaring, 214
File input and output, 212–220

example application using files, 219–220
files, 212–213
using files, 213–219

FileInputStream, 358, 365
File objects

instantiating, 215–216
methods associated with, 216–218

File-oriented applications, 22
FileOutputStream, 358, 365
File pointers, 212, 215, 216, 218
FileReader class, 213, 254, 255, 355

relationship between BufferedReader
and, 214

FileReader constructor, 432
Files, 76, 212–219, 256
File sorting, 542, 543
File storage, disks used for, 212
File variables, declaring, 256
FileWriter class, 213, 218, 254, 255, 355

relationship between PrintWriter, 214
FileWriter object, 359
Films, computer-generated, 635
Filtering, 278–280, 285, 315

for address book case study, 304–305
for address books merging case study,

562
for calculator case study, 412
for grading true/false tests case study,

502
for monthly rainfall averages case

study, 459
for rainfall amounts case study, 402

Final fields, 273
Finally block, in try-catch-finally, 435
finally clause, 433, 435
final member, 273
final modifier, 57, 58, 73, 273
Firing an event, 385
Flag-controlled loops, 232, 234–235, 254
Flags, 232
Flag variables, change in, 256
Fleming, John A., 40
Flip-flop switching circuit, 41

Floating-point accuracy, 167
Floating-point arithmetic,

representational errors with, 602
Floating-point division (/), 108, 109, 118
Floating-point literals, examples of,

105–106
Floating-point numbers, 592–602

arithmetic with, 594–596
coding of, 595
comparing, 598–599
computers and limiting of precision of,

596
implementation of in computer,

596–603
note on comparison of for equality, 167
representation of, 592–595

Floating-point operands, and
increment/decrement operators, 112

Floating-point remainder operation, 109
Floating-point representation, 621
Floating-point types, 106, 141, 480, 621

and arrays, 488
relational operators with, 167
and significant digits, 596

Floating-point values, 105, 110, 141
rounding off, 116
storage of, 115

Floating-point variables, and representa-
tional errors, 595

float type, 99, 105, 106, 130, 480, 602, 619
float value, 105
Floppy disk, IBM introduces 8 inch version

of, 375
FlowLayout manager, 379, 382
Flow of control, 154, 211, 236

for calculating pay, 169
designing, 233–235
in example switch statement, 439
for if, 172
of if-else, 168
and if statement, 167
through switch statement, 440
while and do, 445
for while statement, 222

Fluid dynamics, 121
for loop

nested, 446
and sum the rows, 587

759

testing, 466
for looping statement, 431
format method, 602
Formatting, code, 124, 140, 141, 299, 316
Formatting output, 382–384

GridLayout used for tabular output,
382–384

text alignment within JLabels, 384
Forrester, Jay, 153
for statement, 445–447

and do loop, 467
guidelines for choosing, 448

FORTRAN, 113, 635
Fortran compiler, 211
Fortran II, 113
Fortran IV, 113
Fortran 77, 113
Fortran 90, 113
Forward slash (/), 50
Fractional part, in floating-point numbers,

105
Frame classes, instantiation of and specify-

ing properties of, 377–379
Frames, 376–382

buttons added to, 386
content pane for, 377
entering data using fields in, 394–395
frame visible on screen, 380–382
import classes and declare fields, 376
instantiating frame classes, 377–379
output added to content pane, 380
size specification for, 378
with two buttons, 409

Frankston, Bob, 479
Free format, 124
FreezeBoil application, 111
FreezeBoil class, 111
Full evaluation, 163
Functional decomposition, 270, 285–288,

315, 316
in calculator case study, 415

G

Galileo, 121
Gates, Bill, 478
GE ERMA, 269
Gender class, 246, 247
gender.dat, 246

Gender object, 246, 248
General Electric, 269
General (or recursive) case, 547, 637, 645,

648, 653
General solution (algorithm), in problem-

solving phase, 6
GenerateLists method, 563
Generic lists, 559–561, 572

and Comparable interface, 559–561
and polymorphism, 561

Geschke, Charles, 523
getActionCommand method, 410, 421
getContentPane method, 421
getMessage method, 434, 435, 438
getNextItem method, 527, 528, 536, 537, 539

and sorted list, 547
testing, 538

getNextItem operation, 535
getText method, 395, 398, 420, 421
getUIClassID, 336, 337
Gibson, William, 578
Gosling, James, 113
gourmetBurgers, 501
gourmetBurgers array, 495
grade, and switch statement, 440, 441
GradeExams class, 507

CRC card for, 504
Grading true/false tests case study,

502–509
Graphical user interfaces, 65, 113, 333, 375,

421, 661
Greater than operator (>), 156
Greater than or equal to operator (>=), 156
GregorianCalendar class, 179, 360
Grid, with centered headings in first row,

384
Grid layout, with five rows and two

columns, 383
GridLayout manager, 382–384
groceryItems array, 498
Grouping order, 114
Grove, Andy, 374
GUI programming, 421
GUIs. See Graphical user interfaces

H

Hand-held calculators, 430
Hand trace, 191

760

Hardware, 22, 34
Harvard University, Bureau of Ordnance

Computation Project at, 443
Headings, 88

of classes, 46, 52
for columns, 384
for value-returning method, 82

Helper methods, 80, 81, 88, 124
Heterogeneous types, classes as, 485
Hewlett, Bill, 99
Hewlett-Packard, establishment of, 99
Hidden class members, this used for

accessing, 341–342
Hidden methods/fields, accessing, 349
Hiding, 326, 336, 339, 365, 367

and overloading, 348, 349
Hierarchical solution tree, 286
Hierarchy

address object, 332
of component objects above JTextField,

333
design, 327
of floor types, 327
List class, 548–550

High-level design stage, 191
High-level programming languages, 11, 33,

113
with applications compiled on different

systems, 13
early, 153

High-Performance Fortran, 113
hiTemp array, 583, 584, 586

Java implementation of, 585
Hollerith, Herman, 40
HomeAddress class, CRC cards for, 329, 332
Homogeneous data structures, 485, 513
Hopper, Grace Murray, 152, 210, 443
HouseCost application, 124
HTML. See Hypertext Markup Language
HTML documents

applets embedded within, 660
applet FactInt execution and, 669

HTML files, and applets, 667
HTTP, 634
Human Genome Project, 659
Hydroelectric dam project, limited preci-

sion and, 601
Hyperexponential class algorithms, 455

Hypermedia, 668
Hypertext, 668
Hypertext Markup Language, 634, 668–669,

677
Hyphens, 293

I

IBM
computer-aided design system

developed by, 325
and 8 inch version of floppy disk, 375
naming of, 41
OS/360 developed by, 300
PC-DOS chosen by, 522

IBM 601 punch-card machine, 98
IBM 650 Magnetic Drum Calculator, 210
IBM 701, 210
IBM 704, 268
IBM 7030, 269
Ichbiah, Jean, 522
Identifiers, 43, 46–47, 70, 79, 87, 299

capitalization of, 59
components of classes accessed via, 485
declaring, 54, 86
Java, 45
literal strings and, 62
meaningful, readable, 48
overloading, 347
package, 294, 295
syntax diagram for defining, 44
valid/invalid, 47

if-else form, of if statement, 168–169
If-else-if control structure, 174, 175, 410,

441
if-else statement, 197, 431

flow of control, 168
if form, 170–173
i486, Intel’s release of, 634
if reserved word, 168
if statement(s), 153, 167–173, 175, 176, 196,

197, 221, 431, 542
and cases, 637
comparison of while and, 222
and recursive algorithms, 652
and blocks, 169–170
if-else form, 168–169
if form, 170–173
nested, 173–177, 236

761

If-then-else-if structure, 468
if-(then) statement, 431
Images, 668
Immutable classes, 243
Immutable objects, 242, 243, 257, 290, 352,

536
Implementation

differences in, 8
in Java, 387

Implementation phase, 5, 6, 50, 190, 197,
270, 271, 284

Implementing a test plan, 193
implements clause, 356, 388
implements Serializable clause, 388
Implicit type coercion, 619
Implicit type conversion, 117, 157, 512
import declaration, 46, 52, 72, 88, 140,

602–603
and compilation units, 295, 296

import keyword, 52
Incomes class, 248, 250
Incrementation operator (++), 224
Incrementing loop control variable, 223,

224
Increment operators (++), 111, 112, 141,

448, 449, 450
Increment statement, 112
Indentation, 141

for blocks, 74
and code formatting, 124
and dangling else, 177
and if form, 172, 173
and if statement, 168
with nested if statements, 174, 175

Indexes
and array components, 513
as constant, a variable, and an arbitrary

expression, 490
and multidimensional arrays, 620, 621
and printing values in array, 648, 649
with semantic content, 501

IndexExpression, 489
Index expressions, and two-dimensional

arrays, 583
indexOf method, 126–127, 129, 216
Index values, 484, 512, 513
Inequality (!=), 158, 181
infile.dat, 219

Infinite loops, 7, 225, 233, 254, 447
Infinite recursion, 638
Infinity, 480
Infinity value, 110, 169
Information, 5
Information hiding, 292
Inherit, and protected access, 343, 344
Inheritance, 25, 285, 325, 326, 336, 337, 367

analogy on, 326
and object-oriented design process,

328–333
Inheritance hierarchy, for AWT and Swing,

661
Init, and for statement, 446, 447
Initialization, 589–590, 662
Initializer, 488
Initializer expressions, 63
Initializer lists

arrays declared/created with, 488
and two-dimensional arrays, 584–586

Initializing loop control variable, 223
Initial responsibilities, 280

CRC card with, 281
init method, 660, 662, 676, 677
Input, 67–70, 70

devices, 15, 20, 21, 22, 34
if-else statements and validity of, 169
labels, 672

inputField, 397
Input file, and editor, 214
Input/output (I/O)

devices, 21, 22
interactive, 70
noninteractive, 131, 255

InputStream class, 68
InputStream object, 68
InputStreamReader class, 68, 88, 100, 213
InputStreamReader object, 69
inputStr, 444
Input strings, converting to numeric

value, 140
Input text fields, and buttons, 671
insert algorithm, and Big-O notation, 558
Inserting, list items, 527, 528
Insertion algorithm, 572
insert constructor, 544
insert method, 525, 572

and lists, 534

762

insert method (continued)
and SortedList class, 546
testing, 537

insert operation, 543
Inspection, 191
Inspection reports, 191
Instance fields, 80, 99, 243
Instance identifiers, 348
Instance methods, 80, 87, 88, 122, 123, 273,

292, 367, 559
with JTextField object, 397
object names used with, 140
overriding and, 365
polymorphic, 561

instanceof operator, 449
Instantiation, 19, 20, 51, 86

of arrays, 486–487
of arrays with initializer lists, 488
of file objects, 215–216
of file variables, 256
of two-dimensional arrays, 590

Instructions, 34
Integer class, 130
Integer division (/), 108, 109, 118, 293, 480

watching out for, 140
by zero, 433

Integer literals, cautionary note about, 105
Integer numbers, 480
Integer operands, and

increment/decrement operators, 112
Integer overflow, 104, 409, 619

checking for, 197
and underflow, 599

Integer.parseInt method, 420
Integer part, in floating-point numbers,

105
Integer values, 103, 115
IntegralExpression, 439
Integral (or integer) types, 103–105, 141
Integrated circuits, 268

debut of in computers, 374
Intel Corporation

80286 chip released by, 580
80386 chip released by, 581
80486 chip released by, 634
establishment of, 374

Intel 4004 microprocessor created at,
375

Interactive input/output, 70, 131
Interactive system, 22
interface construct, 273, 559
Interfaces, 22, 482

in Java, 387
public, 273
user/computer, 23, 34

Internal data representation, 290, 291–292,
339, 346, 483

for List class, 531
for matrix manipulation case study, 607

Internal documentation, 299
Internal scope, 340–342, 367

name precedence, 341–342
order of definition, 340–341

International Business Machines. See IBM
Internet, 13, 113, 667

first worm program released into, 581
precursor to, 374
and TCP/IP, 523

Internet Service Providers, 658
Interpretation, compilation related to,

14–15
Interpretation of code, 14
IntExpression, 486, 487
int literal, 140
int type, 99, 103, 104, 105, 130, 141, 163,

242, 439, 480
and declarations, 106
index expressions as, 489
and numeric data types, 602
switch expression and, 467

intValue, 559
int variable, floating-point values stored

in, 140
Invalid assignment statements, 60
Invalid identifiers, 47
Investigation of the Laws of Thought, An

(Boole), 3, 164
Invoking a method, 66
IOException, 72, 73, 138, 218, 231, 254, 433,

434, 462, 468
iPSC/860, Intel’s release of, 634
isEmpty method, testing, 537

763

isEmpty observer, 533
isFull observer, 533
isFull operation, testing, 537
isInfinite method, 610
isThere algorithm, 550, 556–557
isThere method, 572, 673

and Big-O notation, 557
of SortedListADT class, 651
testing, 537

isThere observer, 533
Iteration, 223, 635

rearranging list components before, 539
recursion versus, 651–652

Iteration counter, 230, 234, 241, 256, 447
Iteration loop, 527
Iterations, binary search compared with

sequential and average number of,
556

Iterative solution
and converting decimal integers to

binary numbers, 642
for factorial problem, 640, 641

Iterator, 288, 291, 292, 525, 531
and List class, 525, 527
and SortedList class, 544
testing, 538

J

Jacquard’s Loom, 2
Jansenism, 121
Japan, transistor computer introduced by,

268
Japplet class, applets derived from, 660
Java, 11, 16, 18, 19, 34, 65, 271, 635

additional operators in, 449, 468
arithmetic operations applied to

character data in, 481
built-in types in, 47–50
as case-sensitive language, 48, 86
comment forms in, 64
comparison and case-conversion meth-

ods in, 159
composite objects in, 482
data types in, 479, 480
external scope rules in, 345
frame used for output in, 376

hiTemp array implemented in, 591
integer number types in, 480
integral types in, 104
interface construct in, 273
introduction of, 635
as metalanguage, 87
naming files in, 131
operator precedence in, 165, 456, 457,

458
origins of, 113
portability with, 12, 13
reserved words in, 47
strings in, 53
as strongly typed language, 55

Java application, 88
syntax template for, 46

java.awt.event, ActionListener in, 392
Java compiler, 22, 77

and file searching, 131
and polymorphism, 561
and String literals storage, 158

Java data types, overview of, 100–103
javadoc program, 64, 87
.java extension, 87
Java field, data entry field distinct from,

394, 395
java.io package, 72, 78, 138, 213, 254, 256,

355
java.lang.Math, 122
Java Library, 25, 29, 46, 275, 285, 468

classes and built-in numeric types in,
130

Comparable interface in, 559
search for Date class in, 360

Java operators, additional, 448, 449,
450–451

java package, application classes within,
52

Java programs elements, 42, 45–70
assignment and expressions, 59–63
built-in types, 47–50
classes and objects, 50–54
comments to code, 64
declarations, 54
field declarations, 54–59
identifiers, 46–47

764

Java programs elements (continued)
input, 67–70
interactive input and output, 70
output, 64–67
syntax and semantics, 42
syntax templates, 42, 45–46

java.text, DecimalFormat class in, 602
Java2 platform, 661
java.util.Date, 179
java.util package, 344

Date class in, 360
Random class in, 672
Vector class in, 592

Java Virtual Machine, 13, 14, 15, 22, 34, 72,
132, 231, 256, 341, 467, 664

applications executed by, 77
Bytecode executed by, 660, 667, 669
Bytecode produced by Java Compiler for

running on machines with, 14
compilation/execution of Bytecode

combined with
compilation/execution of, 16

and data storage, 49
and dispose method, 411
and event handling, 395
and exception objects, 437
and generating exception with throw,

435, 436
and instantiating file objects, 215
IOException forwarded to, 432
rounding performed by, 595
and static/dynamic binding, 561
variable declaration initializations by,

340
JButton class, 385, 386, 421, 661

and calculator case study, 413
and Station class, 403

JButton declaration, example of, 386
JButton object, instantiating, 386
JComponent class, 333, 335, 336, 337
JFrame class, 376, 421, 661

and calculator case study, 413
JFrame field, value assigned to, 377
JFrame object, dispose method and, 411
JFrame variable, declaring, 376
JLabel.CENTER, 384
JLabel class, 380, 661

and calculator case study, 413
and Station class, 403

JLabel constructor, 397
JLabel.LEFT, 384
JLabel.RIGHT, 384
JLabels, 421

JTextField contrasted with, 397
text alignment within, 384

Jobs, Steve, 478
Jordan, F. W., 41
JPanel class, 405, 421
JTextComponent, 334, 335
JTextField class, 334, 335, 336, 337, 421, 661

and calculator case study, 413
data entry field as object of, 397
hierarchy of component objects, 333
JLabel contrasted with, 397
signatures and constructors in, 347
and Station class, 403

JTextField object, 397
Julian day, 179, 180, 207, 291, 343
Julian day formula, 292
JVM. See Java Virtual Machine

K

Kaissa, 431
Kasparov, Garry, 658
Kay, Alan, 430
Kemeny, John, 324
Kepler, Johannes, 121
Keyboards, 21, 22
Key member, 524
Keypunch, 40
Kilby, Jack, 268, 325
Knowledge responsibilities, 280

in address book case study, 306
algorithms for, 293

Kurtz,Thomas, 324

L

LabelDriver class, CRC card for, 563
Label object, creating with new, 397
Labels, 420

for frames, 380, 382, 383, 391
LAN. See Local area network
Lardner, Dionysius, 338
Large-scale integration, 431

765

Laser printers, initial, 478
Last Starfighter, 580
Layout manager, 378–379, 405, 420
LCD. See Liquid crystal display
Left-side operands, evaluation of, 458
Length, of list, 524, 531
length field, 512, 531
length items, testing, 538
length method, 126, 129

testing, 537, 538
length observer, 533
length variable, 491, 501, 621
Less than operator (<), 156, 491
Less than or equal to operator (<=), 156,

491
Letters, syntax template for, 45
Library catalog system, 25
Linear expressions, 453
Linear relationship, 524
Linear search, 534
Linear time, 454
Linear time complexity, 453
lineCount, 236
Liquid crystal display, 21
Lisp, 113, 268, 635
List class, 525–538, 543, 572

brainstorming for, 525
CRC card for, 526, 543, 544
hierarchy and abstract classes, 548–550
instance of, 532
internal data representation for, 531
refining responsibilities for, 526–531
responsibility algorithms for, 531–536
test plan for, 536–538

listData, 540
Listener, registering with event source,

389–390
Listener class, for Calculator2 class, 665
List items, sorting, 539–543
List object, 536
Lists, 524, 571

array object containing list items
distinct from, 531

with duplicate keys and with unique
keys, 525

ordering preserved when inserting
items into, 545

sorting by two different keys, 524
ListWithSort class, 541–543

responsibility algorithms for, 539–540
Literal constants, 105
Literals, 481

floating-point, 105–106
named constants used instead of, 107

Literal strings, 62
double quotes within, 86
in concatenation expression, 62

Literal value, 57
Local area network, 667
Local identifier

lifetime of, 345
scope of, 341

Local to method, fields declared inside
methods as, 73

Logarithmic order, 558
Logarithmic-time algorithms, 455
Logging off, 77
Logging on, 75
Logical expressions, 155–163, 195, 197

English statements changed into, 166
short-circuit evaluation of, 163

Logical operations, 21
Logical (or Boolean) operators, 161–163,

448, 451, 481
order of precedence for, 165

Logical order, 221
Logic errors, 77, 194
long type, 99, 103, 104, 105, 106, 130, 163,

480, 602
Long words, 9
Look for familiar things step, in problem-

solving, 24–25, 291
Loop, 34, 221
Loop control variable, 223, 224, 256
loopCount, 224
Loop entry, 223
Loop execution, phases of, 223
Loop exit, 223, 236
Looping, 220–242, 635

count-controlled loops, 223–225
designing nested loops, 239, 241–242
designing process within loop, 235
design of loops, 233
event-controlled loops, 225–229

766

Looping (continued)
and flow of control design, 233–235
general pattern of simple nested loop,

237–239
loop exit, 236
nested loops, 236–237
phases of loop execution, 223
subtasks, 229–233
and while statement, 221–222, 223

Looping control structures, 221
Looping statements, guidelines for choos-

ing, 448
Looping subtasks, 229–233

counting, 229–231
summing, 231–233

Loops, 18
for accessing components in three-

dimensional arrays, 592
for accessing components in two-

dimensional arrays, 592
and algorithms, 452
designing, 233, 235
doubly nested, 242
ending, 394
with multidimensional arrays, 619
parts of, 393
test plans and, 252–254
triply nested, 242

Loop termination conditions, and arrays
processing, 510

Loop test, 223
Loop-testing strategy, 252
Lotus 1–2–3, 523
Lovelace, Ada, 3, 338–339, 522
Lovelace, Lord William, 339
Lowercase letters, 59

in ASCII subset of Unicode character
set, 157

in Java, 48
and string comparison, 159

Low-level design stage, 191

M

Machine language (or machine code), 10,
12, 13, 34

Macintosh computer, 479

introduction of, 580
Magnetic drum memory, introduction of,

152
Magnetic tape drives, 21, 22
MailList class, 132
main method, 51, 70, 78, 88, 659, 677

application with, 71
and calculator case study, 414, 415
and ClassNotFoundException, 366
throws clause of, 357
and throws IOException clause, 365

Maintenance phase, 6–9, 34
Manchester Mark I computer, 153
Mantissa, 596, 597
Marconi, Guglielmo, 40
Marked-up document, 668
Mark I, 443
Mark II, 443
Mark III, 443
Markup language, 668
Masterson, Earl, 210
MatException class, 612
Math.abs method, 122, 293, 672
Math class, 120, 130
Mathematical Analysis of Logic, The (Boole),

164
Mathematical equality, difference

between assignment and, 110
Math methods, 122
Math.min, 128
Math.random method, 123
Math.sqrt, 122
Matrices, 605
Matrix addition, 605, 606
Matrix class, 605, 612–615

CRC card for, 607
MatrixDriver class, 616–618
Matrix manipulation case study, 605–618

brainstorming for, 605
internal data representation for, 607
responsibility algorithms for, 608–612
scenarios for, 606
testing for, 615–618

Matrix multiplication, 605, 606
Matrix object, 581
Matrix operations, 581

767

Matrix subtraction, 605, 606
Mauchly, John, 152, 153, 431
Maximum value, and file sorting, 542
MAX_VALUE, 596
McCarthy, John, 211, 268
Means-ends analysis, 26, 34, 68, 291

in party planning/preparation case
study, 30

in problem-solving, 25–26
in warning notices case study, 185

Member, of class, 273
Memory

data storage in, 49
sequential, 497

Memory addresses, and primitive values
storage, 100

Memory cells, 20, 49, 451
Memory location, 20

and floating-point numbers, 592
and floating-point variable

declarations, 596
Memory unit, 20, 34
Menabrea, Luigi, 338
Mental blocks: fear of starting, 28–29
Mercury space program, limited precision

and, 603
MergeBooks class, 567–570
Merging solutions step, in problem-

solving, 27–28
Merryman, Jerry, 325
Messages, 270, 275
Metalanguages, 42, 43–44, 87
Method calls, 32, 70, 79–80, 153, 432
Method declarations, 71, 88, 273
Method heading, 79
Method invocations, 79–80
Methods, 18, 46, 50, 51, 54, 70, 79–82, 88, 99,

274
and arrays, 500–501
calling, 65–66
responsibilities as, 292–294
and two-dimensional arrays, 590

Method signatures, 347, 348, 365
Michelangelo computer virus, 634
Microchips, history behind, 41
Microsoft, 478, 522

and anti-trust laws, 659
legal debate between Apple and, 634
.NET development environment

released by, 659
Windows 1.0 released by, 581
Windows 3.0 released by, 634
Windows 95 released by, 658

Minimum complete coverage, 192
Minimum value, and file sorting, 542
minIndex, 542
Minus sign (–), before integer values, 103
MIN_VALUE, 596
MIT, Artificial Intelligence Department at,

211
Mixed-case letters, and string

comparison, 160
Mixed type (or mixed mode) expressions,

117
Mnemonic instructions, 11
Model interval, 598
“Model K” prototype, 99
Model numbers, 597–598

graphical representation of, 598
Modem data phone, 268
Modes of access, 273
Modifiability, 178
Modification, 8
Modifiers class, syntax diagram for, 51
Modular programming, 285
Modula series of languages, 113
Modules, 316

definition, 287
writing, 287–288

Modulus operator (%), 108, 109, 232, 480
Monthly rainfall averages case study,

459–466
brainstorming for, 459
filtering for, 459
responsibility algorithms for, 461–463
scenarios for,460

Moore, Gordon, 374
Moore School of Electrical Engineering

(University of Pennsylvania),
99, 152

Morris, Robert, Jr., 581
Morse, Samuel F. B., 3

768

Motorola, 591
68000 chip introduced by, 479
68040 introduced by, 634

Mouse, 21, 22, 325
MP3 format, 658
Multidimensional arrays, 581, 591–592

declaring as parameters, 620
errors with, 619

Multiple button events, handling, 409–411,
421

Multiple class files, applications with,
131–134

Multiple compilation units, packages
with, 296

Multiplication operator (*), 108, 141
Multiply defined identifier, 447
Multiway branches, 174, 175, 438
Multiway branching structures,

implementing, 442
Multiway selection statement, switch

statement as, 468
Murray, Grace Brewster. See Hopper, Grace

Murray
Music, Napster and, 658
Mutable objects, 242, 243, 257, 536
myChar, declaring, 55
Mystic hexagram, 121
myString, 128
myString.charAt(3), 482

N

Name class, 83, 86, 132, 133–134, 138, 177,
180, 271, 291, 357

declaring/instantiating array of
elements of, 500

new, 180, 181–183, 187–188
Named constant declarations, 106
Named constants, 57, 107
Name displayed in multiple formats case

study, 82–86
NameDriver application, 84–85, 177
Name implements Serializable class,

355–356
Name.java, 132
Name object, 358
Name precedence, 367

with internal scope, 341–342

this keyword used for overcoming,
341–342

Naming files, 131
Naming program elements, in Java, 46–47
NaN. See Not a number value
Napier, John, 2
“Napier’s Bones,” 2
Napster, 658
Narrowing conversions, 116
National Electrical Signaling Company, 41
National Medal of Technology, 443
Naur, Peter, 43
Naval Data Automation Command, 443
Near equality

floating-point numbers and comparing
for, 596

testing floating-point numbers for, 167
Negative exponents, coding using positive

exponents and, 594
Nested control structure, 173
Nested if control structure, 185
Nested if statements, 173–177

and dangling else, 176–177
Nested if structure, difference between se-

quence of if statements and, 175
Nested loops, 236–237

data-dependent loops with, 453
design of, 239, 241–242, 257
doubly, 242
general pattern of simple, 237–239
triply, 242

.NET development environment,
Microsoft’s release of, 659

Netscape Communications, 635
Network, 667
Neumann, John, 152
new, 50, 68, 87, 88, 272

and array creation, 486
button instantiated with, 409
and DecimalFormat constructor, 604
and instantiation of arrays, 488
Label object created with, 397

NewNameDriver application, 134
Newton PDA, Apple’s release of, 635
nextInt method, 672
Nobel, Dan, 152
Noninteractive input/output, 131, 255

769

Nonterminal symbol, 43, 44
Normalization, and precision, 597
Not a number (NaN) value, 110
notDone flag, 232
Not equal to operator (!=), 156
NOT operator (!), 161, 162, 164, 481
Nouns, 277, 402
Noyce, Robert, 374
null, 256, 488

and one-dimensional arrays, 512
testing for in Boolean expression, 217

NullPointerException, 228
null statement (;), 74, 171
null String, 228
num, 110
Number Format Error message, 130
NumberFormatException, 230, 231, 416, 420,

433, 462, 468
Number, and event loops, 393
Numbers, incorrectly formed, 140
Numerical analysis, 164, 598
Numerical data, input of, 141
Numerical errors, avoiding, 581
Numeric data types, 103–106, 141

choosing, 602
floating-point types, 106
integral types, 103–105

NumericHandler class, 416
CRC card for, 414

Numeric types
declarations for, 106–108
predefined classes corresponding to

built-in, 130
Numeric values, 155

converting input string to, 140
string conversion of, 118, 130

numItems, 531, 534, 540, 547
Nygaard, Kristen, 325

O

Oak language, 113
Object-based design, 27
Object class, 285, 333, 335, 336, 357, 367
Object code, 11, 194
ObjectExpression, 435
ObjectFileRead class, 357

screen output from, 358

Object files, 367
ObjectFileWrite class, 356–357
ObjectInputStream class, 355, 358, 367

constructors for, 365
writeObject applied to, 357

Object names, with instance methods, 140
Object-oriented design, 269, 270, 274–277,

314, 325, 336
goal of, 139
and inheritance, 328–333

Object-oriented implementation, 289–294
class interface design, 289–290
internal data representation, 291–292
responsibilities as methods, 292–294

Object-oriented languages, 46, 367
Object-oriented problem solving, 29, 34,

50, 275–276
Object-oriented programming, 84, 113

application development simplified
with, 134

and encapsulation, 177
overview of, 4–9
and polymorphism, 561

Object-oriented programming languages,
18–20, 271

classes with, 27
early, 325

ObjectOutputStream class, 355, 358, 361, 365,
367

ObjectOutputStream object, 359
Object-Pascal, 271
Objects, 5, 19, 26, 33, 34, 50, 270, 275, 315,

335
anonymous, 69
arrays of, 497–500, 500
assignment of primitive types versus, 63
assignment of to variables, 100, 101, 102
changing through any of its references,

102
classes, variables, and, 272
data abstraction of, 290
definition of, 271
general sense of, 51
identification of in problem, 274
identifying classes of in problem, 277
instantiating, 87
in Java, 51

770

Objects (continued)
objects within, 54
output and input of, 354–358, 367
and public interface, 274
state of, 257
writing and reading, 354

Object type, 333
Object types, 50
Observers, 136, 288, 289, 290, 291

and List class, 526–527
for rainfall amounts case study, 402
and SortedList class, 544

Occupancy rates example, for
declaring/processing arrays, 493–494

occupants array, 494
Octal (base-8) numbers

int literals starting with zero as, 140
and literal constants beginning with

zero, 105
“Off-by-one” syndrome, 254
Olsen, Kenneth, 268
Olsen, Stan, 268
One-dimensional arrays, 483–493, 513,

571, 581, 582
accessing individual components of,

512
definition of, 486
instantiating, 512
processing components in, 512

OnTyme, 478
OOD. See Object-oriented design
Operands, grouping of operators with, 458
Operating system, 22, 34, 72
Operations, 155
Operations on matrices, 603
Operator precedence, 456, 457, 458
Operators, 108, 468

different effects with those similar in
appearance, 195

precedence of, 165–166
relational, 156–158

Ordered lists
merging of, 566
sequential searching in, 671

Order of definition, with internal scope,
340–341

Order of evaluation

changing, 114–115
and string conversion, 120

Order of magnitude, 454
Ordinal data types, 481
OR operation, and short-circuit

evaluation, 163
OR operator (??), 161, 164, 481
otherObj, 345
otherObj.someInt, 345
outfile.dat, 219
Out-of-bounds array indexes, 490–491, 510
Out-of-bounds error, 490, 491
Output, 64–67, 70

adding to content pane, 380
devices, 15, 20, 21, 34
viewing with editor, 214

outputFrame, 377, 378
Output labels, 672

classes for, 333
outputPane method, 379
Overflow, 599, 600, 603, 620

and matrix manipulation case study,
612

Overloading, 347, 365, 367
and overriding, 348, 349

Overridden methods/fields, accessing, 349
Overriding, 326, 336, 339, 365, 367

and overloading, 348, 349

P

Package access, 132
package keyword, 294
Packages, 19, 46, 78, 294–299, 316

classes in, 315, 316
example of, 297–299
with multiple compilation units, 296
syntax for, 294–295

package statements, 316
Packard, Dave, 99
Parameter passing analogy, 244–245
Parameters, 242, 501
Parameter types, and signature of

method, 348
Parentheses

assignment expressions within, 229
data type names within, 116
matching, 87

771

method parameters between, 72, 79
as operator, 448
and order of evaluation, 114–115, 120
for overriding order of evaluation in

Boolean expressions, 165
for overriding precedence rules, 141
pairing of, 166, 195–196
for statement parts within, 467
strings within, 66

parseDouble method, 135, 273
parseInt method, 230, 231
parse method, 140, 409
Partial (or sub) array processing, 501
Party planning/preparation case study,

30–32
Pascal, 113, 375, 480, 496
Pascal, Blaise, 2, 121, 496
Pascal, Etienne, 121
Pascalene, 2
Pascal’s box, 121
Pascal’s law, 121
Pascal’s theorem, 121
Pascal’s triangle, 121
passCount, 542
Passwords, 75
Payroll application, 138, 139, 154, 177
Payroll class, 138, 139
Payroll program, possible data entry frame

for, 395
PC-DOS, 522
PDA. See Personal digital assistant
PDP-1, 269
Pentium chip, introduction of, 635
Period (.), 141, 273
Peripheral devices, 21
Personal computers, history behind, 478,

522
Personal digital assistant, 635
PET personal computer, 478
Philips, 580
Phone book, binary search of, 552, 553
Phone class, 290, 293, 314, 352

CRC card for, 289, 291
extension of by BusinessPhone class, 349,

350
test plan for, 297

phoneOut file, 298

Physical order, 221
Piracy, software, 301–302
Pixels, 378
Plagiarism, 302
PL/1, 113
PlusDriver class, 363–364

CRC card for, 361
Plus operator (+), with concatenation, 61
Plus sign, and concatenation of strings, 88
Pointing devices, 21
Polymorphism, 337, 561
Polynomial expressions, 455
Polynomial time, 455
Polynomial-time algorithms, 455
Pong video game, 430
Portable (or machine-independent) code,

12
Position, array components accessed by,

485, 513
Positive exponents

coding using, 593
coding using negative exponents and,

594
Postfix operators, 112
Post-incrementation, 450, 451
Power function definition, 636–637
Power function implementation, 637–638
power method, 637, 638
Precedence of operators, 165–166
Precedence rules, 114–115, 119, 140, 141
Precision, 593, 596, 600

of floating-point types, 596
practical implications with limitations

of, 603
Predefined exceptions, 436
Prefix operators, 112
Pre-incrementation, 450, 451
Priming read, 226, 234, 239, 248, 256

and sentinel-controlled loops, 254
and while solution, 444

Primitive types, 100, 101, 479, 480, 488
assignment of versus objects, 63
and Comparable interface, 571
components as, 501
passing as argument to parameter, 243
passing of, 243

Printers, 65

772

printList method, 537, 538
println method, 66, 67, 70, 79, 88, 216, 256,

273
printMatrix, 607
print method, 66, 67, 79, 88, 216, 256

execution of, 650
PrintName application, 71, 74, 82–86,

381–382
PrintName class, 381–382, 499
PrintStream class, 102
PrintWriter class, 213, 216, 255, 355, 358

relationship between FileWriter and,
214

Privacy, of data, 302
private access, 343, 345, 365, 367
private keyword, 295
private member, 273
private modifier, 52, 56, 72, 73, 124, 273,

345, 388
Problem solving, 33, 275–276
Problem-solving phase, 5, 6, 50, 190, 270,

271
testing design in, 197
time involved in, 288

Problem-solving techniques, 22–29, 34
ask questions, 23–24
building-block approach, 27
divide and conquer, 26
and fear of starting, 28–29
look for things that are familiar, 24–25
means-ends analysis, 25–26
merging solutions, 27–28
object-oriented, 29
solve by analogy, 25

Programmers, 5
Programming

description of, 4–5
at many scales, 300
modular, 285

Programming in the large, 300
Programming in the small, 300
Programming languages, 7–8, 34

basic control structures of, 17
character treatment by, 480
instructions written in, 15–20
Tower of Babel period of, 113

Programming practices, general and spe-
cial cases guidelines, 547

Programming process
implementation phase, 5, 6
maintenance phase, 6–9
problem-solving phase, 5, 6

Programming teams
brainstorming by, 277–278
walk-throughs and code inspections by,

191
Programs, 20

executing, 8
writing, 5–9

Project director, 300
Prolog, 430
Prompting message, 420
protected access, 343, 365, 367
protected field, 367
protected modifier, 333, 344
Provincial Letters (Pascal), 121
Pseudocode, 288, 299
public access, 343, 365, 367
public class

and applets, 667
and compilation unit, 316
name of in compilation unit, 296

public field, 367
public field values, 290
Public interface, 273

object and, 274
Public-key cryptosystems, 479
public keyword, 295
public member, 273
public modifier, 52, 56, 72, 73, 273, 388
Purdue University, computer science

department established at, 269

Q

Quadratic formula, 454
Quadratic time, 454
Qualified names, 343
QUOTED EXPECTED message, 53
Quotes, character and string literals in,

106
QWERTY typewriter keyboard, 3

R

Ragged arrays, 585, 586, 621
Rainfall amounts case study, 402–409

brainstorming for, 402

773

filtering for, 402
responsibility algorithms for, 404–406
scenarios for, 402–404

Rainfall application, 411, 465
RainFall class, 408, 459, 463–465

CRC card for, 404, 460
RAM. See Random access memory
RAMAC (random-access method of

accounting and control), 211
Random access memory, 20n.5
Random class, 672
Random-number generator, 672
Range, of floating-point types, 595
Ratliff, Wayne, 522
Readability, 141, 173, 299, 316

and code formatting, 124
and efficiency, 174
and named constants used instead of

literals, 107
and parentheses, 165
and side effects, 451
and style, 75

Reader class, 68
Reader object, 68
Readers, and inspections, 191
readLine method, 68, 69, 70, 256, 498

and end-of-file controlled loops, 227
and EOL mark, 217

readObject method, 356, 366
ClassNotFoundException thrown by, 357
of ObjectInputStream class, 355

Read/write head, 21
Real numbers, 480, 481, 598
Recursion, 635, 636–638

description of, 636
examples with simple variables,

638–644
infinite, 638
iteration versus, 651–652
and power function definition, 636–637
and power function implementation,

637–638
power of, 652
tail, 650

Recursive algorithms, 636, 637, 640, 651,
653

debugging, 652
with structured variables, 648–651

Recursive binary search method, 651
Recursive calls, 635, 636, 638, 652

and debugger program, 653
and Towers of Hanoi, 646

Recursive case, 642, 648, 652, 653
determining, 640
and Towers of Hanoi, 645

Recursive definition, 636
Recursive solutions, 635, 652

and converting decimal integers to
binary numbers, 642

for factorial problem, 640, 641
Reference type parameter

effect of assigning new value to, 244
effect of changing fields of, 245

Reference types, 100, 101, 479, 480
arrays in Java as, 486, 487
array type as, 499
assignment for, 491
and base address, 499
components as, 501
passing of, 243

Registering the listener, 385
Relational expressions, 156, 160
Relational operations, 480
Relational operators, 156–158, 193, 448,

456, 480
combining with logical operators, 161
for comparing values of arithmetic ex-

pressions, 158
with floating-point types, 167
note on confusion between assignment

operator and, 158
order of precedence for, 165

Relative error, 598
Reliable application, 252
Remainder (%), 141
remove method, 401, 421
Representational errors, 596, 597, 603, 620,

621
and cancellation errors, 601
with floating-point arithmetic, 602

Reserved words, 47, 86, 87, 273
Reset button, 411
resetList method, 535, 536, 538
Responsibilities, 179, 275, 284, 285, 314,

315, 333
for address book case study, 305–307

774

Responsibilities (continued)
for address book extension case study,

359–360
for address books merging case study,

563
categories of, 288
in computing profession, 301–303
determining, 280–284
initial, 280
knowledge, 280
for List class, 526–531
as methods, 292–294
in party planning/preparation case

study, 30–31
of Phone class as methods, 293
of Station object, 403

Responsibility algorithms, 269, 314
for Address and Entry, 309
for address book extension case study,

361
for address books merging case study,

563–566
for AddressDr, 308
for AnswerSheet in grading true/false

tests case study, 504–505
for calculator case study, 414–417
for GradeExams in grading true/false tests

case study, 505–506
for List class, 531–536
for ListWithSort class, 539–540
for matrix manipulation case study,

608–612
for monthly rainfall averages case

study, 461–463
for rainfall amounts case study, 404–405
for searching experiments case study,

672–674
for SortedList class, 545–548

resultList, 566
return statement, 123
Reusability, 177, 184, 197
Reuse, 178
Reverse apostrophes, 86
Rickover, Hyman, 443
Right-side operands, evaluation of, 458
RISC microprocessors (Motorola’s 88000

series), 581

Ritchie, Dennis, 113, 375, 430
Rivest, Ron, 479
Robinson, J. A., 325
Robots

coinage of word for, 41
early, 269

Role-playing, in scenario walk-through,
280–284

Rounding, 595
Rounding errors, 597, 598
row identifier, 586
Row processing, 589, 590, 621
Rows, 581

and GridLayout, 382, 383
subarray processing by, 588
in two-dimensional arrays, 582, 585

RSA, introduction of, 479
Rules of precedence, 165
Running applications, 20
Run-time stack, 638
Run-time stack overflow, 638
Russell, Steve, 324

S

SAGE. See Semi-Automatic Ground
Environment

sales array, 591
Sales figures example, for

declaring/processing arrays, 494–495
Scalar data types, 481
Scenarios, 270, 277, 284, 285, 314, 315

for calculator case study, 413–414
for grading true/false tests case study,

503
for matrix manipulation case study, 606
for monthly rainfall averages case

study, 460
for rainfall amounts case study, 402–404
for searching experiments case study,

671–672
subsequent, 284

Scenario walk-through, 280–282, 284, 314,
315

Scientific (E) notation, literals of type dou-
ble written in, 141

Scientific notation, and floating-point val-
ues, 105

775

Scope of access, 339–345
external scope, 339, 342–345
internal scope, 339, 340–342

Scope rules, 339, 340, 367
Screens, 21, 22

frame made visible on, 380–382
frame permanently removed from, 411

Search class
code for applet for, 674–676
CRC card for, 672

searchIndex, 542
Searching, 550–557, 571

binary, 552–557
complexity of, 557–558
sequential, 550–552

Searching algorithms, 671
Searching experiments case study,

671–676
brainstorming for, 671
responsibility algorithms for, 672–674
scenarios for, 671–672

Secondary storage devices, 21
Security

and applets, 660
and the Internet, 581

Selection, 16, 34, 154
Selection control structure, 18, 155, 186
Selection sorts, 540
selectSort method, 540, 543, 558, 570
Self-documenting code, 299
Semantic content, indexes with, 501
Semantic errors, 194, 195
Semantics, 42, 87, 339
Semi-Automatic Ground Environment,

324
Semicolons (;), 169

declarations ending with, 52
in expression statement, 450
field declarations ending with, 79
and infinite loops, 254
lack of after right brace of block, 170
and null statement, 74
in package syntax, 295
for statement parts separated by,

467
statements ending with, 87
for terminating statements, 124

Sentinel-controlled loops, 225–227, 233,
234, 254, 256

Sentinel values, 225, 226, 227, 253, 256
Sequence of statements, else clause

turned into, 170
Sequences, 16, 18, 34
Sequential control, 154
Sequential memory, 497
Sequential searching, 534, 550–552, 571,

572, 671
number of iterations and binary search

compared with, 556
in ordered lists, 671

Sequential-search method, and Big-O no-
tation, 557

Serializable interface, 366, 367
Serializing, 355
setDefaultCloseOperation, 378
setLayout method, 379, 383
setSize method, 378
setText, 395, 397–398, 421
setVisible method, 387, 398
setVisible (true), for frame visibility on

screen, 380, 421
Shakey mobile robot, 375
Shallow assignment, 491
Shallow copy, definition of, 353
Shallow copying, 353
Shallow test, 491
Shamir, Adi, 479
Shickard, Wilhelm, 121
ShiftDown, and SortedList class, 546
Sholes, Christopher, 3
Short-circuit (conditional) evaluation, 163
Short Order Code, 153
short type, 103, 105, 163, 439, 480

index expressions as, 489
switch expression and, 467

Short words, 9
Side effects

in assignment expression, 448
and readability, 451
unnecessary, 458

Signatures, 347, 348, 365, 367
Significant digits, 593, 596, 597, 598
Signs, numbers starting with, 106
Silicon transistors, 210

776

Simonyi, Charles, 431
SimpleButton class, 390–391, 392–393
Simple elements, 481
Simula, 325
Single quotes (‘)

characters enclosed in, 49
char literal beginning/ending with, 86
single characters enclosed in, 56

“Sketch of the Analytical Engine,The”
(Lovelace), 338

skip method, 218
Slashes, in file names, 215
Slide rule, invention of, 2
Small company payroll case study,

135–139
Smalltalk, 271, 430
Software, 22, 34,

design strategies, 270
testing, 538

Software engineering, 276–277, 300, 374
Software engineering tips

documentation, 299
English statements changed into logical

expressions, 166
named constants used instead of liter-

als, 107
numeric data type choices, 602
understanding before changing, 129

Software life cycle, 277
Software piracy, 301–302
Solution tree, 287
Solve by analogy step, in problem-solving,

25, 291
someClass class, 341, 342, 343, 344
someInt, 345
someObj, 345
someObj.someInt, 345
Sony, 578
SortedListADT class, isThere method of,

651
SortedList class, 543–548

brainstorming for, 543–544
responsibility algorithms for, 545–548
test plan for, 548

SortedList objects, 563
Sorted lists, 524, 672

binary search algorithm on, 552
inserting into, 547

searching in, 550, 552
sequential searching in, 571, 572

Sorting
complexity of, 557–558
list items, 539–543

Sorting algorithms, 540
Source code, 11, 34
Spaces, 141
Spacewar!, 324
Special cases, 547
Spectrum class, CRC cards for, 290
Spreadsheets, 479
Sputnik I, launch of, 211
sqrt method, 122
Square brackets

and array declarations, 486, 487
and arrays, 484

Square roots, 120, 122
Stack overflow error, 652
Standard (or built-in) types, 48
Stanford University, computer science de-

partment established at, 269
start method, and applets, 660
State, 243

of object, 257
Statement, 75, 79

syntax template for, 74
Static binding, 561
static constant, 290
static member, 273
static modifier, 80, 141, 273, 388
static reserved word, 123
Station class, 403, 406–407

CRC card for, 404
Station object, 403, 411
Stepwise refinement, 285
Stibitz, George, 99
stop method, and applets, 660
Storage

data, 49
of multifile packages, 315

Straight selection sort, 540
String class, 19, 50, 53, 61, 86, 88, 256, 482,

499
String comparison, 196
String concatenation operator (+), 448
String constants, 62
String conversion, 118–120

777

String data type, 126
String expressions, 61–63, 110
String literals, 158, 488
String objects, 228, 243
String operations, code segment using,

129
Strings, 53

arrays of, 497–499
comparing, 158–161
converting to numericvalues, 130
testing equality of, 161

String-to-numeric type conversion meth-
ods, 130

String type, 106, 128, 129
changing value of parameter of, 243, 244

String variables, 73, 86, 158
Strongly typed language, Java as, 55
Stroustrup, Bjarne, 113, 580
Structured data type, 482
Structured design, 285
Structured variables, recursive algorithms

with, 648–651
student, accessing fields of, 511
Student class, 188
Student object, 188, 189
StudentStatus class, 189–190
Style. See also Software engineering tips;

Syntax
braces and blocks, 171
and changing value of parameter, 501
consistent, 141
and readability, 75
and reference types passed as

arguments, 512
Subarray processing, 501, 512, 531

by column, 589
by row, 588

Subclasses, 275, 277, 278, 279, 287, 325,
332. See also Superclasses

definition of, 330
implementing responsibilities of,

346
and inheritance, 285
of Phone, 333
and protected members, 344

Subexpressions, 163, 458
Subproblems, 286, 316
Subprograms, 18, 34, 50

substring method, 128–129
Subtasks, 24
Subtraction operator (–), 108, 117, 141
Summing, 231–233, 235, 257
Summing operation, in income by gender

case study, 251
sumSales method, 500, 501
Sum the columns, in two-dimensional ar-

rays, 586, 588–589
Sum the rows, in two-dimensional arrays,

586, 587–588
Sun Microsystems, 113

Java introduced by, 635
Superclass constructors, 365
Superclasses, 278, 285, 287, 325, 332, 337.

See also Subclasses
calling constructors in, 347
definition of, 330
extending, 365
extends and, 346
and hiding, 336
private member of, 345
protected field of, 344

Supercomputers, 325, 580, 581, 659
super(), 365
super keyword, 349, 367
Swapping, 540

contents of two variables, x and y, 541
Swing applets, 661
swing package, 376

inheritance hierarchy for, 661
Switch expression, 438
switch statement, 431, 438–442, 440

and break statement placement, 467
double-checking long, 467
flow of control in example for, 439
as multiway selection statement, 468
omitting break statements inside of,

442
testing applications with, 466

Symbolic constant, 57
Symbolic logic, 164
Symbols, 480

for additional Java operators, 449
for logical operators, 161
and metalanguages, 43

Synonyms, avoiding use of, 102
Syntactic errors, 194, 195

778

Syntax, 42, 87, 271, 339. See also Style
for component access, 500
for conditional operator, 456
for declaring array variable, 487
derived class, 337, 339
for packages, 294–295
for return statement, 82
for throw statement, 435
for writing objects, 355–358

Syntax diagrams, 43–44
for class Modifiers, 51
for compilation unit, 295
for import declarations, 52
for try-catch-finally statement, 432

Syntax errors, 42, 49, 77, 440
Syntax templates, 42, 44, 45–46, 87

for array component access, 488, 591
for array declaration, 486
for assignment statement, 60
for block, 73
for call statement, 65, 80
for class declaration, 337
for constant declaration, 57
for declaring array with two

dimensions, 582–583
for declaring void method, 71
for do statement, 442
for for statement, 446
for if-else, 169
for if-else form, 168
for if form of if statement, 172
for instantiating array, 486
for Java application, 46
for statement, 74
for switch statement, 439
for variable declaration, 55
for while statement, 221

System class, 100, 411
System.in, 67, 68, 135, 211, 213
System.out, 67, 79, 102, 211, 216
System.out.print, 70
System software, 22, 34

T

Tabular output, GridLayout used for,
382–384

Tabulating Machine, 40
Tags, 668, 669

Tail recursion, 650
Tasks, 270
TCP/IP, 523
Teams

brainstorming by, 277–278
development by, 191

Telephone, invention of, 40
Television, history behind, 98
Telstar communications satellite, 324
Temperature range, and nested if, 175–176
Terminal symbols, 43
Termination condition, 223, 233, 236, 447
Test driver, for test plan of class List, 538
TestDrPhone class, 350–351
Testers, 191
Testing

for GradeExams application, 508–509
for matrix manipulation case study,

615–618
in problem-solving and

implementation phases, 190
for Rainfall application, 465–466

Testing and debugging, 512, 619–620
and applets, 676
for Calculator application, 420
and CRC card process, 314
of do and for loops, 466
hints, 86–87, 140, 195–197, 254–255,

314–315, 365–366, 420, 467, 571,
652–653, 676

loop-testing strategy, 252
and multidimensional arrays, 619
and out-of-bounds array index, 510
process, 195
and recursion, 652
and sort method, 570
steps, 33
strategies, 190–193
test plans with loops, 252–254

TestPhone class, 297, 298
TestPhone.java, 298
Test plans, 193, 196, 197, 314

implementation of, 193
for List class, 536–538
and loops, 252–254
for Phone class, 297, 298
for SortedList class, 548

Test runs, 192

779

Tests, in implementation phase, 6
testScore array, 487
TestScore objects, 293
Texas Instruments, 210, 268, 325
Text, alignment of in JLabels, 384
TextField, 420
then clause, 168
Thinking Machines, 580
32–bit architecture, 479
this keyword, 365, 367

as argument for addActionListener, 665,
676

for overcoming name precedence,
341–342

for referring to class declaration, 349
Thomas Arithmometer, 2
Thomson, Kenneth, 375
Threads, 18n.4
Throwable class, 435
Throwable type, 435
Throwing an exception, 72–73, 467, 468
throws clause, 72, 73, 87, 357
throws IOException clause, 256, 365
throw statement, 435–437, 468
toCharArray, 499
toLowerCase method, 158, 159, 160, 161
Tomlinson, Ray, 375
Top-down design, 285
Torricelli, Evangelista, 121
toUpperCase method, 158, 159, 160, 161
Tower of Babel period, of programming

languages, 113
Towers of Hanoi, 644–648, 652
Toy Story, 635
Tracing execution, 254
Trailer value, 225
Transformers, 244, 288, 291, 292, 527, 536
Transistor computer, 268
Transistors, 153, 210
Treatise on Differential Equations (Boole), 164
Treatise on the Calculus of Finite Differences

(Boole), 164
Tree structure, 286
Triply nested loops, 242
True assertions, 154
true value

and boolean data type, 155
and if-else form, 168

and logical expressions, 197
try block, in try-catch, 433, 434
try-catch-finally statement, 432–435
try-catch statement, 433–435
try statement, 433, 434
Turing, Alan, 99, 153
“Turing Machine,” 99
Turing Test of machine intelligence, 153
Two-dimensional arrays, 581, 582–586, 621

accessing components in, 583–584
declaration and instantiation of,

582–583
definition of, 582
initializer lists used in, 584–586
initializing, 589–590
and methods, 590
processing, 586–590

Two slashes (//), comments beginning
with, 64

Two-way branch, 431
TX-80 printer, 479
Type casting, 116, 118
Type cast operations, 141
Type cast operator, 448
Type casts, 141, 358, 366
Type conversion, 115–116, 118, 141
Typing errors, 194

U

Unary minus operator (–), 108
Unary operators, 108, 112, 141, 161, 511

and precedence rules, 457, 458
Unary plus operator (+), 108, 109
Uncaught exceptions, 231
Underflow, 599, 600, 603, 612, 620
Underscore (_), 43, 45, 47, 59, 106
Unicode, 9, 48, 50
Unicode character set, 355, 480

ASCII subset of, 157
string comparison and collating

sequence in, 160
Unification, 325
Uniform Record Locator, 634, 667
“Unimates,” 269
Union of two sets, and merging of two or-

dered lists, 566
Uniprinter, 210
Unique keys, lists with, 524, 525

780

UNIVAC I, 443
UNIVAC (Universal Automatic Computer),

153, 210
Universal set, 164
Unix, 72, 375
Unordered lists, sequential searching in,

671
Unsorted lists, 524, 534

searching, 550, 552
sequential searching in, 571

Unstructured data type, 482
Update, and for statement, 446, 447
Uppercase letters, 59

in ASCII subset of Unicode character
set, 157

in Java, 48
and string comparison, 159

Upward compatibility, 113
URL. See Uniform Record Locator
U.S. Army Ordnance Corps, 152
U.S. Department of Defense, Arpanet com-

missioned by, 374
U.S. National Medal of Technology, 375
U.S. Navy, 443
UseFile class, 219–220
User classes, 78
User/computer interface, 23, 34
User-defined packages, bundling related

classes into, 138
User interface, 269
User names, 75

V

Valid assignment statements, 60–61
Valid identifiers, 47
valueOf method, 216, 499
Value-returning class methods, 122–124,

141
Value-returning instance methods, 158
Value-returning math methods, 99
Value-returning methods, 70, 71, 81–82,

140, 243
in name displayed in multiple formats

case study, 83, 84
observers as, 292
and two-dimensional arrays, 590

Values

angle array with, 489
in assignment statement, 448
in atomic data types, 482
comparing those of different types, 196
in composite data types, 482
storing in arrays, 512
and syntax errors, 440
two-dimensional arrays with list of, 590

Van Tassel, James, 325
Variable declarations, 107–108

comments added to, 58
syntax template for, 55

Variable identifier, 55
Variables, 54–56, 70, 88, 108

boolean, 156
classes, objects, and, 272
declaring of type boolean, 155
index as, 490
loop control, 223, 224

Variable value, 55
VAX 11/780, 479
Vector class, 592
Vector object, 581
Verify, in problem-solving phase, 6
Video, 668
Video display, 21
Video games, early, 324
Virtual machine, 15
Viruses, 303, 634
VisiCalc, 479, 523
Visual Basic, 11
Visual Basic.NET, 271
VMS operating system, 479
void method, 70, 71, 179
void reserved word, 82
Von Neumann, John, 497
Vulcan, 522

W

“Walkie-Talkie,” invention of, 152
Walk-throughs, 191, 197

of binary search algorithm, 554, 555, 556
WAN. See Wide area network
Warning notices case study, 184–190
Warnock, John, 523
Watson,T.J., 41
Web. See World Wide Web

781

Web browsers, 659, 667–668
Web pages, 660, 667, 668, 669, 677
Weizenbaum, Joseph, 324
while condition, 226
while expression, 256
while loop, 393, 444–445, 468, 498
while statement, 221–222, 229, 256

comparison of if and, 222
and do loop, 467
guidelines for choosing, 448
loops using, 223
nested, 236
and out-of-bounds array index, 510

while structure, 652
Whirlwind computer, 153
White-box (or clear-box) testing, 192, 614
Whole numbers, 480
Wide area network, 667
Widening conversion, 116
Windows, 65

in Java, 375
Wireless communication, 40
Wirth, Niklaus, 375
Women, at IBM, 98
Word processing, 479
Word processors, 430
Words, 9
Wordstar program, 479
Work

and algorithms, 452, 454, 455

and constant time, 453
WorkAddress class, CRC card for, 328, 331
World Computer Chess Tournament, ini-

tial, 431
World Wide Web (the Web), 13, 667
Worms, 581
Wozniak, Steve, 431, 478
writeObject method, 355, 356, 357
Writing modules, 287–288
WYSIWYG (What You See Is What You

Get) program, 431

X

Xerox, 269, 431
Xerox Palo Alto Research Center, 65

Y

Y2K problem, 374, 658
YYMMDD standard, date setting and, 374

Z

Zero
division by, 140, 169
and GridLayout constructor, 383
integer division by, 110, 433
literal constants beginning with, 105

ZipCodeInvalidException, 436, 437, 438
ZIP codes, 436, 437
Zuse, Konrad, 98

782

We would like to thank the following people and organizations who generously contributed
the photographs and images found in our Timeline. We also thank the IEEE Computing
Society for publishing their Timeline of Computing History, which proved a valuable resource
as we created a chronology of significant events and developments in the history of computer
technology.

Chapter 1
Abacus – Getty Images/ PhotoDisk 2003
Typewriter – Getty Images/ PhotoDisk 2003

Chapter 2
Herman Hollerith Tabulating Machine – IBM Corporate Archives
Punched Card – Courtesy of Douglas W. Jones at the University of Iowa
Computer Chip – Getty Images/ PhotoDisk 2003
1924 IBM Logo – IBM Corporate Archives

Chapter 3
Television – Getty Images/ PhotoDisk 2003
Service Technicians – IBM Corporate Archives
George Stibitz – Lucent Technologies Inc. / Bell Labs
ENIAC – U.S. Army Photo

Chapter 4
EDVAC – U.S. Army Photo
Grace Murray Hopper (also appears on page 443) – Naval Historical Center
World’s First Transistor – Lucent Technologies Inc. / Bell Labs
UNIVAC Computer Console – Lawrence Livermore National Laboratory

Chapter 5
EDVAC – U.S. Army Photo
First Silicon Transistor – Courtesy of Texas Instruments
Dartmouth College – © Trustees of Dartmouth College
Sputnik I – NASA Photo

Chapter 6
Integrated Circuit – Courtesy of Texas Instruments
John McCarthy – Courtesy of Stanford University
Xerox Copier – Courtesy of Xerox. Reprinted with Permission
IBM 7030 – IBM Corporate Archives

Chapter 7
Telstar Communications Satellite – IBM Corporate Archives
Bob Bemer – Courtesy of Bob Bemer
Englebart’s Mouse – Courtesy of Bootstrap Institute
Electronic Calculator – Courtesy of Texas Instruments

783

Chapter 8
Edsger Dijkstra – Courtesy of The University of Texas at Austin
Grove, Noyce, and Moore – Courtesy of Intel Corporation, Reprinted with Permission
Unix Creators – Lucent Technologies Inc. / Bell Labs.
Microprocessor – Getty Images/ PhotoDisk 2003

Chapter 9
Pong Image - Pong Image provided by www.atarimuseum.com
Vincent Atanasoff – Courtesy Iowa State University
Chess - Getty Images/ PhotoDisk 2003

Chapter 10
Original Apple II - 1978- Photo courtesy of Apple Computer, Inc.
PET Commodore Computer – Courtesy of the Commodore History Web Site,

www.commodore.ca
Key - Getty Images/ PhotoDisk 2003
Dan Bricklin – Louis Fabian Bachrach / Dan Bricklin

Chapter 11
Cell Phone - Getty Images/ PhotoDisk 2003
IBM PC – IBM Corporate Archives
John Warnock and Charles Geschke – Courtesy of Adobe Systems, Inc. Reprinted with

permission

Chapter 12
CD-ROM - Getty Images/ PhotoDisk 2003
Intel 286 Microprocessor – Courtesy of Intel Corporation, Reprinted with Permission
Intel 386 Microprocessor – Courtesy of Intel Corporation, Reprinted with Permission
Seymour Cray – Courtesy of Cray Inc.

Chapter 13
Tim Berners-Lee – Photo Courtesy of Donna Coveney, MIT
Intel Pentium Chip – Courtesy of Intel Corporation, Reprinted with Permission
Java Logo - Java, and the Java Coffee Cup Logo are trademarks or registered

trademarks of Sun Microsystems, Inc. in the U.S. and other countries, and are
used under permission

Chapter 14
.COM – Credit AbleStock
Kasparov and Deep Blue – Courtesy of IBM
.COM – Credit AbleStock
Earth Simulator – Courtesy of the Earth Simulator Center

784

Sun Microsystems, Inc.
Binary Code License Agreement

READ THE TERMS OF THIS AGREEMENT AND ANY PROVIDED SUPPLEMENTAL LICENSE TERMS
(COLLECTIVELY “AGREEMENT”) CAREFULLY BEFORE OPENING THE SOFTWARE MEDIA PACK-
AGE, YOU AGREE TO THE TERMS OF THIS AGREEMENT. INDICATE YOUR ACCEPTANCE OF
THESE TERMS BY SELECTING THE “ACCEPT” BUTTON AT THE END OF THIS AGREEMENT. IF
YOU DO NOT AGREE TO ALL THESE TERMS, PROMPTLY RETURN THE UNUSED SOFTWARE TO
YOUR PLACE OF PURCHASE, OR IF THE SOFTWARE IS ACCESSED ELECTRONICALLY, SELECT
THE “DECLINE” BUTTON AT THE END OF THIS AGREEMENT.

1. LICENSE TO USE. Sun grants you a non-exclusive and non-transferable license for the in-
ternal use only of the accompanying software and documentation and any error corrections
provided by Sun (collectively “Software”), by the number of users and the class of computer
hardware for which the corresponding fee has been paid.

2. RESTRICTIONS Software is confidential and copyrighted.Title to Software and all associ-
ated intellectual property rights is retained by Sun and/or its licensors. Except as specifically
authorized in any Supplemental License Terms, you may not make copies of Software, other
than a single copy of Software for archival purposes. Unless enforcement is prohibited by ap-
plicable law, you may not modify, decompile, or reverse engineer Software. Software is not
designed or intended for use in the design, construction, operation or maintenance of any
nuclear facility. Sun disclaims any express or implied warranty of fitness for such uses. No
right, title or interest in or to any trademark, service mark, logo or trade name of Sun or its
licensors is granted under this Agreement.

3. LIMITED WARRANTY. Sun warrants to you that for a period of ninety (90) days from the
date of purchase, as evidenced by a copy of the receipt, the media on which Software is fur-
nished (if any) will be free of defects in materials and workmanship under normal use.
Except for the foregoing, Software is provided “AS IS”. Your exclusive remedy and Sun’s en-
tire liability under this limited warranty will be at Sun’s option to replace Software media or
refund the fee paid for Software.

4. DISCLAIMER OF WARRANTY. UNLESS SPECIFIED IN THIS AGREEMENT, ALL EXPRESS OR
IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-IN-
FRINGEMENT ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT THESE DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

785

5. LIMITATION OF LIABILITY.TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL
SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR SPE-
CIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO THE USE OF
OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. In no event will Sun’s liability to you, whether in contract, tort (including
negligence), or otherwise, exceed the amount paid by you for Software under this Agreement.
The foregoing limitations will apply even if the above stated warranty fails of its essential
purpose.

6. Termination. This Agreement is effective until terminated. You may terminate this
Agreement at any time by destroying all copies of Software.This Agreement will terminate
immediately without notice from Sun if you fail to comply with any provision of this
Agreement. Upon Termination, you must destroy all copies of Software.

7. Export Regulations.All Software and technical data delivered under this Agreement are sub-
ject to US export control laws and may be subject to export or import regulations in other
countries.You agree to comply strictly with all such laws and regulations and acknowledge
that you have the responsibility to obtain such licenses to export, re-export, or import as may
be required after delivery to you.

8. U.S. Government Restricted Rights. If Software is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the
Government’s rights in Software and accompanying documentation will be only as set forth
in this Agreement; this is in accordance with 48 CFR 227.7201 through 227.7202-4 (for
Department of Defense (DOD) acquisitions) and with 48 CFR 2.101 and 12.212 (for non-DOD
acquisitions).

9. Governing Law.Any action related to this Agreement will be governed by California law and
controlling U.S. federal law. No choice of law rules of any jurisdiction will apply.

10. Severability. If any provision of this Agreement is held to be unenforceable, this Agreement
will remain in effect with the provision omitted, unless omission would frustrate the intent
of the parties, in which case this Agreement will immediately terminate.

11. Integration.This Agreement is the entire agreement between you and Sun relating to its
subject matter. It supersedes all prior or contemporaneous oral or written communications,
proposals, representations and warranties and prevails over any conflicting or additional
terms of any quote, order, acknowledgment, or other communication between the parties re-
lating to its subject matter during the term of this Agreement. No modification of this
Agreement will be binding, unless in writing and signed by an authorized representative of
each party.

786

Java Naming and Directory Interface (TM), Version 1.1

SUPPLEMENTAL LICENSE TERMS

These supplemental terms (“Supplement”) add to the terms of the Binary Code License
Agreement (collectively the “Agreement”). Capitalized terms not defined herein shall have
the same meanings ascribed to them in the Agreement. The Supplement terms shall su-
persede any inconsistent or conflicting terms in the Agreement, either above or contained
within the Software.

1. License to Distribute.You are granted a royalty-free right to reproduce and distribute the
Software provided that you: (i) distribute the Software complete and unmodified, provided
that the Software is distributed with your Java applet or application (“Program”); (ii) do not
distribute additional software intended to replace any component(s) of the Software; (iii) do
not remove or alter the Agreement, any proprietary legends or notices contained in the
Software; (iv) only distribute the Software under terms no less protective of Sun than this
Agreement; (v) may not create, or authorize your licensees to create additional classes, in-
terfaces, or subpackages that are contained in the “java”, “javax”, or “sun” packages or sim-
ilar as specified by Sun in any class file naming convention; (vi) agree to indemnify, hold
harmless, and defend Sun and its licensors from and against any claims or lawsuits, in-
cluding attorneys’ fees, that arise or result from the use or distribution of the Program.

2.Trademarks and Logos.You acknowledge as between you and Sun that Sun owns the Java
trademark and all Java-related trademarks, logos and icons including the Coffee Cup and Duke
(“Java Marks”) and agrees to comply with the Java Trademark Guidelines at http://java.sun.
com/trademarks.html.

For inquiries please contact: Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California
94303

787

BORLAND-AUTHORIZED TEXTBOOK PUBLISHER LICENSE STATEMENT AND LIMITED
WARRANTY FOR TITLES

IMPORTANT – READ CAREFULLY
This license statement and limited warranty constitutes a legal agreement (“License
Agreement”) for the software product (“Software”) identified above (including any software,
media, and accompanying on-line or printed documentation supplied by Borland) between
you (either as an individual or a single entity), the Book Publisher from whom you received
the Software (“Publisher”), and Borland® Software Corporation. (“Borland”).

BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE,YOU AGREE TO BE BOUND
BY ALL OF THE TERMS AND CONDITIONS OF THE LICENSE AGREEMENT. If you are the orig-
inal purchaser of the Software and you do not agree with the terms and conditions of the
License Agreement, promptly return the unused Software to the place from which you ob-
tained it for a full refund.

Upon your acceptance of the terms and conditions of the License Agreement, Borland grants
you the right to use the Software solely for educational or training purposes. No rights are
granted for deploying or distributing applications created with the Software.

This Software is owned by Borland or its suppliers and is protected by copyright law and in-
ternational copyright treaty. Therefore, you must treat this Software like any other copy-
righted material (e.g., a book), except that you may either make one copy of the Software solely
for backup or archival purposes or transfer the Software to a single hard disk provided you
keep the original solely for backup or archival purposes.

You may transfer the Software and documentation on a permanent basis provided you re-
tain no copies and the recipient agrees to the terms of the License Agreement. Except as pro-
vided in the License Agreement, you may not transfer, rent, lease, lend, copy, modify, translate,
sublicense, time-share or electronically transmit or receive the Software, media or docu-
mentation. You acknowledge that the Software in source code form remains a confidential
trade secret of Borland and/or its suppliers and therefore you agree not to modify the Software
or attempt to reverse engineer, decompile, or disassemble the Software, except and only to
the extent that such activity is expressly permitted by applicable law notwithstanding this
limitation.

Though Borland does not offer technical support for the Software, we welcome your feed-
back.

This Software is subject to U.S. Commerce Department export restrictions, and is intended
for use in the country into which Borland sold it (or in the EEC, if sold into the EEC).

788

LIMITED WARRANTY
The Publisher warrants that the Software media will be free from physical defects in mate-
rials and workmanship for a period of ninety (90) days from the date of receipt. Any implied
warranties on the Software media are limited to ninety (90) days. Some states/jurisdictions
do not allow limitations on duration of an implied warranty, so the above limitation may not
apply to you.

The Publisher’s, Borland’s, and the Publisher’s or Borland’s suppliers’ entire liability and your
exclusive remedy shall be, at the Publisher’s or Borland’s option, either (a) return of the price
paid, or (b) repair or replacement of the Software media that does not meet the Limited
Warranty and which is returned to the Publisher with a copy of your receipt. This Limited
Warranty is void if failure of the Software has resulted from accident, abuse, or misapplica-
tion. Any replacement Software will be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer. Outside the United States, neither these reme-
dies nor any product support services offered are available without proof of purchase from
an authorized non-U.S. source.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,THE PUBLISHER, INPRISE,AND
THE PUBLISHER’S OR BORLAND’S SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND CON-
DITIONS, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT,WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAIL-
URE TO PROVIDE SUPPORT SERVICES.THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE/JURISDICTION TO STATE/JU-
RISDICTION.

LIMITATION OF LIABILITY
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE PUB-
LISHER, INPRISE, OR THE PUBLISHER’S OR INPRISE’S SUPPLIERS BE LIABLE FOR ANY SPE-
CIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUP-
TION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT
OF THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF INPRISE HAS BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES. IN ANY CASE, INPRISE’S ENTIRE LIABILITY UNDER ANY PRO-
VISION OF THIS LICENSE AGREEMENT SHALL BE LIMITED TO THE GREATER OF THE AMOUNT
ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR U.S. $25. BECAUSE SOME STATES
AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE
ABOVE LIMITATION MAY NOT APPLY TO YOU.

HIGH RISK ACTIVITIES
The Software is not fault-tolerant and is not designed, manufactured or intended for use or
resale as on-line control equipment in hazardous environments requiring fail-safe per-
formance, such as in the operation of nuclear facilities, aircraft navigation or communica-

789

tion systems, air traffic control, direct life support machines, or weapons systems, in which
the failure of the Software could lead directly to death, personal injury, or severe physical or
environmental damage (“High Risk Activities”). The Publisher, Borland, and their suppliers
specifically disclaim any express or implied warranty of fitness for High Risk Activities.

U.S. GOVERNMENT RESTRICTED RIGHTS
The Software and documentation are provided with RESTRICTED RIGHTS. Use, duplication,
or disclosure by the Government is subject to restrictions as set forth in subparagraphs
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013
or subparagraphs (c)(1) and (2) of the Commercial Computer Software-Restricted Rights at
48 CFR 52.227-19, as applicable.

GENERAL PROVISIONS.
This License Agreement may only be modified in writing signed by you and an authorized
officer of Borland. If any provision of this License Agreement is found void or unenforceable,
the remainder will remain valid and enforceable according to its terms. If any remedy pro-
vided is determined to have failed for its essential purpose, all limitations of liability and ex-
clusions of damages set forth in the Limited Warranty shall remain in effect.

This License Agreement shall be construed, interpreted and governed by the laws of the
State of California, U.S.A. This License Agreement gives you specific legal rights; you may have
others which vary from state to state and from country to country. Borland reserves all
rights not specifically granted in this License Agreement.

	Programming and Problem Solving with Java
	Cover

	Contents
	Preface
	Chapter 1 Introduction to Object-Oriented Programming
	1.1 Overview of Object-Oriented Programming
	What Is Programming?
	How Do We Write a Program?

	1.2 How Is Java Code Converted into a Form That a Computer Can Use?
	1.3 How Does Interpreting Code Differ from Executing It?
	1.4 How Is Compilation Related to Interpretation and Execution?
	1.5 What Kinds of Instructions Can Be Written in a Programming Language?
	Object-Oriented Programming Languages

	1.6 What's Inside the Computer?
	1.7 Problem-Solving Techniques
	Ask Questions
	Look for Things That Are Familiar
	Solve by Analogy
	Means-Ends Analysis
	Divide and Conquer
	The Building-Block Approach
	Merging Solutions
	Mental Blocks: The Fear of Starting
	Object-Oriented Problem Solving
	Case Study: Party Planning
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 2 Java Syntax and Semantics,Classes,and Objects
	2.1 The Elements of Java Programs
	Syntax and Semantics
	Syntax Templates
	Naming Program Elements: Identifiers
	Built-in Types in Java
	Classes and Objects
	Defining Terms: Declarations
	Field Declarations
	Assignment and Expressions
	Beyond Minimalism: Adding Comments to Code
	Output
	Input
	Interactive Input and Output

	2.2 Application Construction
	Blocks

	2.3 Application Entry, Correction, and Execution
	Entering Application Code
	Compiling and Running an Application
	Finishing Up

	2.4 Classes and Methods
	User Classes
	Methods
	Case Study: Display a Name in Multiple Formats

	2.5 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 3 Arithmetic Expressions
	3.1 Overview of Java Data Types
	3.2 Numeric Data Types
	Integral Types
	Floating-Point Types

	3.3 Declarations for Numeric Types
	Named Constant Declarations
	Variable Declarations

	3.4 Simple Arithmetic Expressions
	Arithmetic Operators
	Increment and Decrement Operators

	3.5 Compound Arithmetic Expressions
	Precedence Rules
	Type Conversion and Type Casting

	3.6 Additional Mathematical Methods
	3.7 Value-Returning Class Methods
	3.8 Additional String Operations
	The length Method
	The indexOf Method
	The substring Method
	Converting Strings to Numeric Values
	Noninteractive Input/Output

	3.9 Applications with Multiple Class Files
	Case Study: Small Company Payroll

	3.10 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 4 Selection and Encapsulation
	4.1 Flow of Control
	Selection

	4.2 Conditions and Logical Expressions
	The boolean Data Type
	Logical Expressions
	Precedence of Operators
	Relational Operators with Floating-Point Types

	4.3 The if Statement
	The if-else Form
	Blocks (Compound Statements)
	The if Form

	4.4 Nested if Statements
	The Dangling else

	4.5 Encapsulation
	4.6 Abstraction
	Data and Control Abstraction
	Case Study: Warning Notices

	4.7 Testing and Debugging
	Testing Strategies
	The Test Plan
	Tests Performed Automatically During Compilation and Execution
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 5 File Objects and Looping Statements
	5.1 File Input and Output
	Files
	Using Files
	An Example Application Using Files

	5.2 Looping
	The while Statement
	Phases of Loop Execution
	Loops Using the while Statement
	Count-Controlled Loops
	Event-Controlled Loops
	Looping Subtasks
	How to Design Loops
	Designing the Flow of Control
	Designing the Process Within the Loop
	The Loop Exit
	Nested Loops
	General Pattern
	Designing Nested Loops

	5.3 Mutable and Immutable Objects
	A Parameter-Passing Analogy
	Case Study: Average Income By Gender

	5.4 Testing and Debugging
	Loop-Testing Strategy
	Test Plans Involving Loops
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 6 Object-Oriented Software Design and Implementation
	6.1 Software Design Strategies
	6.2 Objects and Classes Revisited
	6.3 Object-Oriented Design
	Object-Oriented Problem Solving
	Software Engineering

	6.4 The CRC Card Design Process
	Identifying the Initial Classes Through Brainstorming
	Filtering
	Determining Responsibilities
	Inheritance

	6.5 Functional Decomposition
	Writing Modules

	6.6 Object-Oriented Implementation
	Class Interface Design
	Internal Data Representation
	Responsibilities as Methods

	6.7 Packages
	Package Syntax
	Packages with Multiple Compilation Units
	Package Example

	6.8 Ethics and Responsibilities in the Computing Profession
	Software Piracy
	Privacy of Data
	Use of Computer Resources
	Case Study: Address Book

	6.9 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 7 Inheritance,Polymorphism,and Scope
	7.1 Inheritance
	An Analogy

	7.2 Inheritance and the Object-Oriented Design Process
	7.3 How to Read a Class Hierarchy
	Overriding
	Hiding
	Polymorphism

	7.4 Derived Class Syntax
	7.5 Scope of Access
	Internal Scope
	External Scope

	7.6 Implementing a Derived Class
	Constructors in Derived Classes
	Overloading and Method Signatures
	Accessing Overridden and Hidden Methods and Fields
	A Concrete Example

	7.7 Copy Constructors
	7.8 Output and Input of Objects
	Case Study: Extending the Address Book

	7.9 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problem
	Case Study Follow-Up

	Chapter 8 Event-Driven Input and Output
	8.1 Frames
	Import Classes and Declare Fields
	Instantiate Frame Objects and Specify Some of Their Properties
	Add Output to the Content Pane
	Make the Frame Visible on the Screen

	8.2 Formatting Output
	Using GridLayout for Tabular Output
	Alignment of Text Within Jlabels

	8.3 Event Handling
	Creating a Button
	Creating and Registering a Button Event Listener
	An Event-Handling Example
	Event Loops

	8.4 Entering Data Using Fields in a Frame
	8.5 Creating a Data Entry Field
	8.6 Using a Field
	8.7 Reading Data in an Event Handler
	Case Study: Totaling Rainfall Amounts

	8.8 Handling Multiple Button Events
	Case Study: A Simple Calculator

	8.9 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 9 Exceptions and Additional Control Structures
	9.1 Exception-Handling Mechanism
	The try-catch-finally Statement
	Generating an Exception with throw
	Exception Classes

	9.2 Additional Control Statements
	The switch Statement
	The do Statement
	The for Statement
	Guidelines for Choosing a Looping Statement

	9.3 Additional Java Operators
	Assignment Operators and Assignment Expressions
	Increment and Decrement Operators
	Bitwise Operators
	The ?: Operator
	Operator Precedence
	Case Study: Monthly Rainfall Averages

	9.4 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 10 One-Dimensional Arrays
	10.1 Atomic Data Types
	10.2 Composite Data Types
	10.3 One-Dimensional Arrays
	Declaring an Array
	Creating an Array
	Declaring and Creating an Array with an Initializer List
	Accessing Individual Components
	Out-of-Bounds Array Indexes
	Aggregate Array Operations

	10.4 Examples of Declaring and Processing Arrays
	Occupancy Rates
	Sales Figures
	Character Counts

	10.5 Arrays of Objects
	Arrays of Strings
	Arrays of User-Defined Objects

	10.6 Arrays and Methods
	10.7 Special Kinds of Array Processing
	Partial (or Sub) Array Processing
	Indexes with Semantic Content
	Case Study: Grading True/False Tests

	10.8 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 11 Array-Based Lists
	11.1 Lists
	11.2 List Class
	Brainstorming the List Class
	CRC Card
	Refining the Responsibilities
	Internal Data Representation
	Responsibility Algorithms for Class List
	Test Plan

	11.3 Sorting the List Items
	Responsibility Algorithms for Class ListWithSort
	Class ListWithSort

	11.4 Sorted List
	Brainstorming the Sorted List
	Responsibility Algorithms for Class SortedList
	Test Plan

	11.5 The List Class Hierarchy and Abstract Classes
	11.6 Searching
	Sequential Search
	Binary Search

	11.7 Generic Lists
	Comparable Interface
	Polymorphism
	Case Study: Merging Address Books

	11.8 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 12 Multidimensional Arrays and Numeric Computation
	12.1 Two-Dimensional Arrays
	Array Declaration and Instantiation
	Accessing Individual Components
	Using Initializer Lists

	12.2 Processing Two-Dimensional Arrays
	Sum the Rows
	Sum to Columns
	Initialize the Array
	Two-Dimensional Arrays and Methods

	12.3 Multidimensional Arrays
	12.4 Vector Class
	12.5 Floating-Point Numbers
	Representation of Floating-Point Numbers
	Arithmetic with Floating-Point Numbers
	Implementation of Floating-Point Numbers in the Computer

	12.6 Decimal Format Type
	Case Study: Matrix Manipulation

	12.7 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Chapter 13 Recursion
	13.1 What Is Recursion?
	Power Function Definition
	Power Function Implementation

	13.2 More Examples with Simple Variables
	Calculating the Factorial Function
	Converting Decimal Integers to Binary Numbers
	Towers of Hanoi

	13.3 Recursive Algorithms with Structured Variables
	Printing the Values in an Array
	Binary Search

	13.4 Recursion or Iteration?
	13.5 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises

	Chapter 14 Applets
	14.1 What Is an Applet?
	14.2 How Do You Write an Applet?
	Factorial
	Calculator

	14.3 How Do You Run an Applet?
	Web Browsers
	HTML
	Factorial
	Calculator
	Case Study: Searching Experiments

	14.4 Testing and Debugging
	Summary
	Quick Check
	Exam Preparation Exercises
	Programming Warm-Up Exercises
	Programming Problems
	Case Study Follow-Up

	Appendixes
	Glossary
	Answers
	Index
	Team DDU

