

1 Visual Basic for Electronics Engineering Applications

Visual Basic for
Electronics Engineering
Applications

A Crash Course To The World’s Premier
RAD Tool.

Developing R&D test systems in no time.

2 Visual Basic for Electronics Engineering Applications

Copyright notice.

Visual Basic for Electronics Engineering Applications

The book is released as public domain. Reprint, sale or re-sale is prohibited.

Copyright 1999 – 2005 Vincent Himpe.

The author recognizes the copyrights, trademarks and registered trademarks
of all products mentioned in this book.

Initial edition 5-9-1999

Second revised edition 09-03-2002

E-mail: vincent_himpe@hotmail.com

3 Visual Basic for Electronics Engineering Applications

Index table

Copyright notice. .. 2

Index table .. 3

Visual Basic For the Research & Development LAB..19
Part I : The Basics of Visual Basic ...19

Introduction. ... 19

Conventions used in this manual .. 22

Monotype Bold ... 22

Chapter 1 : The Visual Basic Background ..23
1.1 Windows... 24

1.2 Object Oriented Programming.. 25

1.3 What OOP does for you ... 26

1.4 Overview of the definitions:... 26

Chapter 2 : Exploring the Visual Basic environment29
2.1 Starting a Visual basic project .. 29

2.2 The programming environment .. 31

2.2.1 Using The Menu-bar ... 31

2.2.2 Accessing functions with the Toolbar ... 31

2.2.3 The Object Browser (The Toolbox) .. 32

2.2.4 The project navigator... 32

2.2.5 The properties navigator.. 32

2.2.6 Form Layout Window ... 32

2.2.7 Form Viewer.. 33

2.2.8 Code Viewer.. 34

2.2.9 The Help system.. 35

Chapter 3 : The Basic Objects and Controls..37
3.1 The Form .. 37

3.2 The Controls ... 38

3.3 The Standard controls inside Visual basic.. 40

3.4 Common Controls .. 41

3.5 Common Dialog Control .. 42

3.6 Comm Control .. 42

3.7 Menu’s.. 43

3.8 Properties.. 44

3.8.1 Name ... 45

4 Visual Basic for Electronics Engineering Applications

3.8.2 Top, Left, Height, Width ... 45

3.8.3 Backcolor, ForeColor, Textcolor... 45

3.8.4 Caption and Text ... 46

3.8.5 Enabled and Visible... 46

3.8.6 Index.. 46

3.8.7 Tabindex.. 47

3.8.9 TooltipText .. 47

Chapter 4: Events and Methods ..49
4.1 Tapping into Events.. 49

4.1.1 Click (Most controls)... 50

4.1.2 DblClick (Most controls).. 50

4.1.3 KeyPress (Most controls) .. 51

4.1.4 MouseMove (Most controls) ... 51

4.1.5 Activate (Form) ... 52

4.1.6 Deactivate (Form).. 52

4.1.7 Load (Form) .. 52

4.1.8 Unload (Form)... 52

4.1.9 Change (Textbox).. 53

4.2 Methods .. 54

Chapter 5 : The Basic language itself. ..57
5.1 Variables... 59

5.1.1 Available Types in Visual Basic and how to declare them 60

5.2 Arrays ... 61

5.2.1 DIM ... 62

5.2.2 ReDim ... 63

5.2.3 Ubound .. 64

5.2.4 Lbound .. 65

5.2.5 Array.. 66

5.3 Types .. 69

5.4 Scope of Variables.. 71

5.4.1 Public / Global... 72

5.4.2 Private.. 72

5.4.3 Static .. 73

5.5 Module level scope... 73

5.6 Subroutines and Functions ... 74

5.6.1 Subroutines or Procedures... 75

5.6.2 Functions ... 75

5.7 Scope of procedures ... 76

5.8 Constants .. 76

5.9 Numerical Operators .. 79

5.10 Base conversion.. 80

5 Visual Basic for Electronics Engineering Applications

5.11 Logical Operators ... 81

5.12 Flow Control... 81

5.12.1 If then else ... 82

5.12.2 If-then-else / elseif ... 83

5.12.3 Select case ... 84

5.12.4 Loop Constructions ... 85

5.12.5 For Next... 85

5.12.6 While wend.. 86

5.12.7 Do Until ... 87

5.13 String manipulation Left$ - Right$ - Ltrim$ - Rtrim$.. 88

5.13.1 Left$.. 88

5.13.2 Right$.. 88

5.13.3 Mid$.. 88

5.13.4 Ltrim$ / Rtrim$ / Trim$... 89

5.13.5 Ucase$... 89

5.13.6 VAL and STR$.. 90

5.13.7 LEN ... 90

5.13.8 INSTR ... 91

5.14 File Manipulation (Open – Close – Print – Input).. 91

5.14.1 Basic structure to open a file. .. 92

15.4.2 Output mode .. 93

5.14.3 Append mode .. 93

5.14.4 Input mode... 94

5.14.5 Storing something in a file .. 94

5.14.6 PRINT constructions (file I/O) .. 95

5.14.6.1 Data list Style ... 95

5.14.6.2 String style.. 96

5.14.7 Reading from a file .. 96

5.14.8 Determining file end.. 97

5.14.9 File names.. 97

Chapter 6 : Creating a user interface..99
6.1 Creating The Form ... 99

6.2 Arrays of Objects and Controls .. 101

Chapter 7 : Attaching code to your form ..103
7.1 Attaching code to objects ... 103

7.2 Let’s Attach some code .. 104

Chapter 8 : Running and debugging a program ...107
8.1 Running a program... 107

8.1.1 Start , Break , Stop... 107

8.2 Debugging a program... 108

6 Visual Basic for Electronics Engineering Applications

8.3 Examining Variables .. 109

8.4 Advanced Debugging : The Watch Window.. 110

8.4.1 Window Elements ... 110

8.4.2 Add Watch command .. 111

8.4.3 Add watch dialog box.. 112

8.4.4 Quick Watch command (Shift F9)... 113

8.4.5 Quick watch dialog box... 114

8.4.6 Edit Watch command .. 115

8.4.7 Edit Watch Window .. 115

8.5 Using Breakpoints .. 116

8.6 the Debug Object.. 117

Chapter 9 : Distributing a program..119
9.1 The First steps … ... 119

9.2 Specifying the Media.. 122

Chapter 10 : Multi-module projects. ..125
10.1 Multiple Forms ... 125

10.2 Modules .. 127

10.3 Accessing items from other parts of the program... 127

10.4 Root structure analogy of a project .. 129

Chapter 11 : A couple of case studies ..131
11.1 Case Study 1 : A small Text Editor .. 133

11.1.1 Attaching Code.. 136

Case Study 2 : A Calculator ... 143

11.2.1 Designing the user interface .. 143

11.2.2 Writing Code ... 147

11.2.3 Attaching code to the user interface .. 149

Part II : ...157

The Advanced World of Visual Basic ..157

Introduction to Part II ... 157

Chapter 12 : One step beyond...159
12.1 Forms.. 159

12.2.1 Load... 159

12.2.2 Unload ... 160

12.2.3 Show.. 162

12.2.4 Hide. .. 164

12.2.5 Modal / Modeless forms .. 164

12.2.6 MDI forms ... 166

12.2 Menu’s.. 167

7 Visual Basic for Electronics Engineering Applications

12.2.1 Popup menu’s .. 167

12.2.2 Adding images to menu’s .. 169

12.3 Modifying menus from code .. 170

12.3.1 Enabling and Disabling Menu Commands .. 170

12.3.2 Displaying a Check Mark on a Menu Control... 171

12.3.3 Making Menu Controls Invisible... 172

12.3.4 Adding Menu Controls at Run Time ... 173

12.4 Special Menu features .. 173

12.4.1 WindowList ... 174

12.4.2 Negotiating menu’s ... 175

12.5 Option Selectors ... 175

12.5.1 CheckBoxes... 176

12.5.2 OptionButtons or Radio Buttons ... 176

12.5.3 Grouping Radio Buttons.. 177

12.5.4 Listboxes. .. 177

12.6 Timer objects .. 180

12.7 User entry objects ... 182

12.7.1 Textboxes .. 182

12.7.1.1 Locked and Enabled. .. 182

12.7.1.2 Keypress Event... 182

12.7.1 Combobox ... 183

12.8 Printing ... 185

12.9 Taking Advantage of the Windows95 Look .. 186

Chapter 13 : Graphics...189
13.1 Basic coordinate operations.. 189

13.1.1 CurrentX, CurrentY... 190

13.2 Drawing setup... 190

13.2.1 Drawwidth ... 190

13.2.2 Drawmode ... 191

13.2.3 DrawStyle .. 193

13.2.4 Fillcolour ... 194

13.2.5 FillStyle ... 195

13.3 Drawing primitives ... 196

13.3.1 PSet.. 196

13.3.2 Line.. 197

13.3.3 Circle ... 198

13.4 Saving and loading graphics... 200

13.4.1 Saving Graphics .. 200

13.4.2 Loading Graphics .. 202

13.5 Coordinate systems... 203

13.5.1 Scale .. 203

13.5.2 Scalemode.. 204

8 Visual Basic for Electronics Engineering Applications

13.5.3 ScaleHeight , Scalewidth... 206

13.5.4 ScaleLeft and ScaleTop... 207

Chapter 14: Communicating to the world around us......................................209
14.1 SendKeys …: a simple way of communicating.. 209

14.1.1 AppActivate... 213

14.1.2 Shell... 214

14.2 DDE : another means of inter-program communication ... 215

14.2.1 LinkMode: ... 215

14.2.2 Linktopic ... 218

14.2.2.1 Destination Control .. 219

14.2.2.2 Source Form ... 220

14.2.3 LinkItem .. 221

14.3 Serial IO : Talking to world beyond the port.. 224

14.3.1 Inserting the object .. 224

14.3.2 Portopen... 226

14.3.3 Handshaking.. 227

14.3.4 Settings .. 228

14.3.5 Outbuffersize , Inbuffersize... 229

14.3.6 OutbufferCount, Inbuffercount ... 230

14.3.7 Parityreplace .. 230

14.3.8 DTRenable... 231

14.3.9 Rthreshold ... 231

14.3.10 OnComm Event ... 232

14.3.11 Commevent.. 232

14.4 Winsock : The world is not enough …... 234

14.4.1 TCP Basics .. 235

14.4.2 UDP Basics.. 235

14.4.3 RemoteHost ... 235

14.4.4 Protocol ... 236

14.4.5 State ... 236

14.4.6 Accept.. 237

14.4.7 GetData.. 238

14.4.8 Connectionrequest ... 239

14.4.9 DataArrival .. 240

 : Some more case studies ... 241
Appendix II
Doodle : A Graphics program .. 241

Miniterm :A simple terminal .. 241

AlphaServer : A Telnet Server application... 241

LoanCalc : Using Excel from your program .. 241

Case Study 3 : Doodle A graphics program ... 243

Case Study 4 : The dataterminal... 251

9 Visual Basic for Electronics Engineering Applications

Case Study 5 : AlphaServe : A Telnet server ... 259

Case Study 6 : LoanCalc : Using Excel in your applications ... 261

Conclusion.. 263

Visual Basic For the Research & Development LAB......................................267
Part III :..267

Master Programming with Visual Basic..267

Introduction .. 267

Chapter 15: Digging into Windows. ...269
15.1 DLL’s ... 269

15.2 Accessing DLL routines ... 271

15.3 On Passing parameters to procedures and functions .. 273

15.4 API programming... 275

15.4.1 A simple API example... 276

Chapter 16 : ActiveX Control Creation...281
16.1 Creating an ActiveX Object. .. 282

16.2 Adding property’s and events... 288

16.3 What the wizard came up with … .. 298

15.6 A closer look at the final code. ... 300

Chapter 17 : Building better programs. ...305
17.1 The KISS Way.. 306

17.2 Atomic Programming ... 310

17.3 Naming objects... 312

17.3 Error handling... 313

17.3.1 The On Error Goto clause.. 314

17.3.2 The Err object .. 318

17.3.3 Resuming execution after handling the error .. 320

17.3.4 Trappable errors .. 322

17.3.5 Syntax Errors (errors against the Basic syntax)... 323

17.3.7 Runtime errors ... 323

17.3.8 Flawed Programming logic errors. .. 324

17.3.9 File handling errors ... 325

Chapter 18 : The Windows registry...327
18.1 Digging into the registry... 327

18.2 Data Mining in the registry... 329

18.2.1 GetSetting.. 329

18.2.2 SaveSetting.. 330

18.2.3 DeleteSetting ... 331

18.3 Make use of the registry ... 331

10 Visual Basic for Electronics Engineering Applications

Chapter 19 : Scripting interpreters...335
19.1 Building A simple script interpreter ... 335

19.1.1 Running the script ... 337

19.1.2 The script Parser .. 338

19.1.3 Parameter extraction. ... 341

19.2 MSScript : A real script interpreter. ... 343

19.2.1 Scripting language... 344

19.2.2 The MSscript properties .. 345

19.2.3 Script Control Methods ... 345

19.2.4 Adding code to the script engine ... 346

19.2.5 Exposing Objects... 347

Chapter 20 : Classes...349
20.1 The Class concept... 349

20.2 Creating a Class.. 350

20.3 Instantiating objects from a class.. 351

20.4 A practical example .. 352

Appendix III A couple of Case studies.. 355

Killing windows via an API call .. 355

The LED activeX control ... 355

The PassBox activeX control ... 355

MiniBasic : A program editor for MSscript ... 355

Additional Notes on the use of classes ... 355

Case Study 7 : Killing Windows via an API call ... 357

: The LED ActiveX control .. 359
Case Study 8
Case Study 9 : MiniBasic : A program environment for MSscript 367

Case Study 10 : Additional notes on the use of Classes. .. 373

Visual Basic For the Research & Development LAB......................................379
Part IV : Visual Basic for the Engineering Lab ...379

Introduction .. 379

Chapter 20 : The Computer ..381
20.1 The PC : A Historical Overview .. 381

20.2 The PC : A Hardware Description.. 382

20.3 The PC’s Input and Output Components.. 385

20.3.1 The Parallel port .. 385

20.3.2 The Serial port ... 385

20.3.3 The USB port... 387

20.3.4 FireWire Channel .. 387

20.3.5 Local Area Network (LAN) and Wide Area Network (Internet) 387

20.3.6 Field buses (CAN VAN etc).. 388

11 Visual Basic for Electronics Engineering Applications

20.3.7 The GPIB Bus ... 388

20.3.7 VXI / PXI / SCXI / Compact PCI etc 388

20.3.8 SCSI... 389

20.4 The internal buses... 391

20.4.1 ISA Bus ... 391

20.4.2 EISA Bus... 392

20.4.3 MICROCHANNEL Bus.. 392

20.4.4 VESA Bus ... 393

20.4.5 PCI... 393

20.4.6 AGP port.. 393

20.4.7 PCMCIA (PC Card) .. 394

20.4.8 I2C Bus.. 394

Chapter 21: Controlling Standard PC ports ..395
21.1 Finding the IO ports ... 395

21.1.1 The BIOS system area ... 396

21.1.2 Using DEBUG to snoop around.. 398

21.1.3 The Dump command ... 399

21.2 Hardware Access .. 400

Chapter 22 The Printerport In Detail ..403
22.1 Functional diagram... 403

22.2 Register level description ... 404

22.3 Basic operations ... 407

22.4 Bit-Banging interfaces.. 408

22.4.1 Simple line control .. 408

22.4.2 Serial protocol emulation... 409

22.5 Printerport Control Using ClassWork .. 412

22.6 Special printerport modes... 413

22.6.1 Bi-directional Parallel Ports... 413

22.6.2 The IEEE 1284 Standard ... 414

22.6.3 Extended Capabilities Port .. 418

22.6.4 Enhanced Parallel Port .. 420

Chapter 23 The Serial Port In Detail ...421
23.1 System description.. 421

23.2 Port interface .. 422

23.3 Flow Control... 422

23.3.1 Hardware Flow Control... 423

23.3.2 Software Flow Control .. 424

23.3.3 Which Flow Control Method Should I Use? ... 424

23.4 The UART.. 425

23.4.1 Basics of Asynchronous Serial Communications.. 426

12 Visual Basic for Electronics Engineering Applications

23.4.2 UARTs and the PC Serial Port .. 429

23.5 RS-232 and Other Serial Conventions ... 431

23.5.1 RS232 .. 431

23.5.2 Current Loop and Other Serial Standards.. 435

23.5.3 RS422 / RS423 .. 436

23.6 Cabling ... 437

23.5.1 Null modem cable.. 437

23.5.2 Full connection Null Modem Cable .. 438

23.6 Basic Serial Operations using MSCOMM ... 438

Chapter 24 : Plug-In boards..441
24.1 Description of the ISA bus ... 441

24.2 common interface chips.. 443

24.2.1 8255... 443

24.2.2 8253/8254.. 445

24.3 Interfacing to ISA... 446

24.3.1 Address & Data Lines ... 448

24.3.2 Utility Lines... 448

24.3.3 Bus Cycle Definition Lines ... 449

24.3.4 Bus Control Lines.. 450

24.3.5 Interrupt Request and DMA Lines .. 451

24.3.6 Basic interface schematic using 8255 I/O controller ... 451

24.3.7 Basic interface schematic using classic logic .. 453

24.3.8 Selecting an address for our card... 454

24.3.9 Accessing our board .. 456

Chapter 25: The GPIB bus. ...459
25.1 The GPIB bus structure .. 459

25.2 GPIB signals... 461

25.3 Controlling a device on GPIB .. 467

25.3.1 Initializing a GPIB system... 468

25.3.2 Exchanging data .. 468

25.3.2 EOI assertion ... 469

25.4 IEEE488.2 .. 469

25.4.1 Common Command Set... 470

25.5 SCPI ... 471

Chapter 26: Vision ..475
26.1 GPIBcore .. 477

26.1.1 GPIBcore features ... 478

26.1.2 Installing GPIBcore ... 479

26.2 GPIBcore programming guide ... 479

26.2.1 GPIB functions .. 479

13 Visual Basic for Electronics Engineering Applications

26.2.2 GPIBinit... 480

26.2.3 GPIBbye .. 480

26.2.4 GPIBopen .. 481

26.2.5 GPIBclose.. 481

26.2.6 GPIBtimeout.. 482

26.2.7 GPIBreset .. 482

26.2.8 GPIBdefer.. 483

26.2.9 GPIBsinglestep .. 483

26.2.10 GPIBtroff... 484

26.2.11 GPIBtron ... 484

26.2.12 GPIBwrite.. 485

26.2.13 GPIBread ... 485

26.2.14 GPIBfind ... 486

26.2.15 Other GPIB functions .. 486

26.3 GPIBcore I/O functions.. 487

26.3.1 OUT... 487

26.3.2 OUTW... 488

26.3.3 INP .. 488

26.3.4 INPW... 489

26.4 GPIBcore Miscellaneous support functions ... 489

26.4.1 setBIT .. 489

26.4.2 clearBIT... 490

26.4.3 flipBIT ... 490

26.4.4 swapBIT .. 491

26.4.5 BITset .. 491

26.4.6 BITclear... 492

26.4.7 swapNIBBLE .. 492

26.4.8 loNIBBLE ... 492

26.4.9 hiNIBBLE ... 493

26.4.10 SwapBYTE.. 494

26.4.11 loBYTE ... 494

26.4.12 hiBYTE ... 495

26.4.13 Delay ... 496

26.4.14 Microdelay... 496

26.4.15 SStr$.. 496

26.4.16 Bin$... 497

26.4.17 vVal ... 497

26.4.18 Logentry .. 498

26.5 Instrument and IO libraries... 498

26.6 ClassWork .. 500

26.6.1 The ClassWork concept... 500

26.6.2 The ClassWork solution .. 502

26.6.3 Programming using ClassWork... 503

14 Visual Basic for Electronics Engineering Applications

26.6.4 A Sample ClassWork program .. 504

26.6.5 Developing ClassWork Modules... 505

26.6.6 Module Header .. 505

26.6.7 Internal ClassWork variables. ... 506

26.6.8 Initialize and Terminate events.. 507

26.6.9 Address assignment ... 508

26.6.10 AssignTo assignment... 508

26.6.11 Global Lead-in code overview .. 508

26.7 General Rules for ClassWork module development .. 509

26.7.1 Properties... 510

26.7.2 Methods (Sub) ... 510

26.7.3 Methods (Function) ... 511

26.7.4 Special Cases ... 511

26.7.5 ClassWork implementation of the HP34401 driver... 512

26.8 TestBench... 514

Chapter 27 : Designing Test Programs...516
27.1 Clean code .. 516

27.1.1 Modular programming... 516

27.1.2 Documenting code... 517

27.1.3 Use indentation and camelwriting. .. 517

27.2 Accessing instruments and hardware ... 518

27.2.1 Accessing instruments ... 518

27.2.1 Accessing hardware in the computer... 518

27.3 Collecting data versus Analyzing ... 518

27.4 Creating log files .. 519

27.5 Anatomy of a well structured test-program .. 520

Chapter 28: Special Programming techniques ..522
28.1 Stream Interpreting ... 522

28.1.1 Monolithic Program... 522

28.1.2 Modular program... 524

28.1.3 Creating the stream.. 526

28.2 Report generating on a printer .. 527

28.2.1 The Printer Object ... 527

28.2.2 The Printers Collection.. 528

28.2.3 NewPage.. 528

28.2.4 EndDoc.. 529

28.2.5 Example... 529

Chapter 29: Building user interfaces. ..532
29.1 Build a splash screen and design a logo and icon... 532

29.2 Constructing the Main form. .. 534

15 Visual Basic for Electronics Engineering Applications

29.2.1 The Workplace of your program ... 534

29.2.2 Construct a Decent Menu .. 535

29.2.3 Tooltips.. 536

29.2.4 Toolbars... 537

29.3 Organizing Objects and controls. ... 537

29.4 Configuration and tool forms ... 538

29.6 Help files .. 538

Chapter 30: Some more case studies...540
SPI stack on LPT .. 540

Data export to file... 540

Building a U/I plotter using standard GPIB ... 540

Building a U/I Plotter using ClassWork ... 540

Building a U/I Plotter using TestBench.. 541

: SPI stack on LPT.. 542
Case Study 11
Case Study 12 : Data export to file... 548

Case 13 : A U/I plotter using GPIBcore operations ... 552

Case 13 : A U/I plotter using ClassWork operations.. 556

Case 13 : A U/I plotter using TestBench operations .. 558

Appendixes ..560
Appendix 1: Suggested Reading List ... 562

 : Datasheet for 8255 controller ... 565
Appendix 2
Appendix 3 : Win95io users guide ... 566

16 Visual Basic for Electronics Engineering Applications

17 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics
Engineering
Applications

Part I

The Basics of Visual Basic

18 Visual Basic for Electronics Engineering Applications

19 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics
Engineering Applications
Part I: The Basics of Visual Basic

Introduction.

Congratulations, you have decided to embark on an exciting journey: learning
Visual Basic. So: welcome to the world of Visual Basic programming.

The goal of this book is to show you how you can write your own programs
using Visual Basic. However, this is not ‘just another’ book on VB. The target
group of this book is people building test setups in R&D environments.

20 Visual Basic for Electronics Engineering Applications

The first part talks briefly over the windows environment and how it works. A
basic understanding of this is somehow required to understand the programming
techniques applied in Visual Basic. A basic explanation of how to write
programs in VB is given.

The second part explains more advanced things such as graphics manipulation,
file handling and more.

The Third part details on more advanced things like printing, multiform
projects, ActiveX and beyond. Here you will learn to extend the already vast set
of functions with those embedded inside Windows. A big deal is explained how
to make your programs communicative. Inter-program communication like DDE
is explained. Also off-system communication like serial communication and
TCP/IP is explained. These are feature often used in creating test systems that
can be managed via remote control.

The fourth part will show you how to unleash the power of Visual basic for
application in a Lab environment. You will learn how to control instruments
over GPIB / RS232, control circuitry over printer ports and even manage your
own built plug-in boards.

The fourth part will also show you a how to apply the acquired knowledge to
real-world systems. Things like controlling circuitry, emulating protocols and
more will be covered. A number of examples combining all of the explained
material will be given. A number of test setups will be given that show the
capabilities of a programming system like Visual Basic.

Now, I know that most programmers get the chills when they hear about
programming in BASIC. Some of you might remember the time of the first
home computers such as the Commodore and Apple II, and visions of line
numbers, goto’s and spaghetti code start to doom. Well this is no longer the
case. All languages evolve and so does basic. It has matured from a ‘Beginners
All Purposes Symbolic Instruction Code’ to a full-blown programming
language. The people who brought basic up (being Microsoft) have now come
up with the latest incarnation of the language. It has been chosen as one of the
standard programming language for the Windows environment.

More and more applications include a subset of the Visual Basic programming
language. Applications such as Excel, Word, and Access all include Visual
Basic for Application or VBA for short. More and more external vendors also
include this engine in their products. Software houses like Oracle, AutoDesk
(AutoCAD), Protel (PCB / Schematic / Simulation) Mathsoft (MathCAD) start

21 Visual Basic for Electronics Engineering Applications

to embed the power of Visual Basic in their products. New operating systems
like Windows 98 and Windows NT 4.0 have the VbScript language inside.

Visual Basic is in the first place a Visual programming language. In today’s
world of graphical user interfaces and windowing environments this is simply a
must. More and more users demand a simple and easy to use interface to the
software. Visual Basic enables the programmer to write just this kind of
application. The programmer himself however needs not to be deprived of these
things. Visual basic is really ‘visual’ both during development and runtime
stage.

In the back of this manual you will find a CD-ROM. It holds an electronic copy
of this manual. Besides that all source code of this manual can be found. The
schematics and board layouts for various projects can be found in a separate
directory.

Enjoy! And happy programming.

Vincent Himpe

22 Visual Basic for Electronics Engineering Applications

Conventions used in this manual

Text This is the typeset used for plain text

Bold

Bold Italic Used to introduce a new concept

Italic Denotes keystrokes. When it is between arrows it means
you have to hold it down while pressing the next letter.
Example: <ALT> F means you have to hold the ALT
down while pressing F.

Monotype Bold Denotes named variables or objects. Used for source
code

Monotype Shows source code that can be run in Visual Basic

23 Visual Basic for Electronics Engineering Applications

Chapter 1:

The Visual Basic Background

The use of today’s graphical interface based operating systems puts tremendous
strain on application programmers. They have to cope with all the stuff that is
going on inside the operating system. This calls for a big amount of knowledge
that is often hard to understand.

Visual Basic takes a different approach to programming for this kind of GUI
(Graphical User Interface) systems. It gives you an interface builder where you
no longer ‘program’ but rather draw the interface. Later on you simply attach
your code to the interface and you are ready to run. When Visual Basic or VB
for short, was released in 1987 it quickly gained universal acceptance as a
windows programming language. It became the first in a series of new
programming tools classified as Rapid Application Development systems, or
RAD for short. It also includes a programming philosophy called Object
Oriented Programming or OOP for short.

Since VB works tightly with the operating system there are some things about
the operating system that need explanation first.

24 Visual Basic for Electronics Engineering Applications

1.1 Windows

The windows environment is a graphical oriented environment. This GUI
handles any action that occurs here, like a mouse click or a keystroke.
Furthermore the operating system itself can invoke certain actions too
(interrupts, timers, serial communication etc). Whenever anything happens an
event is generated. These events can trigger other parts of the operating system
or an application running on the system. The target of the event will then take
appropriate action can reflect on what the user sees on the screen.

To inform the underlying code what exactly happened and ask what should be
done an event is generated. You could compare this to an interrupt under a
normal operating system.

The object of the action is called a control. It literally allows the user to control
the environment he is working in. There are a number of standard controls
available inside Windows. Any of these can be use inside a Visual Basic
program. Furthermore you can create your own controls, or use third party
controls.

The way a control looks and behaves is stored in its properties. These can be
considered ‘variables’ that determine the look and feel of the control on the
screen. Furthermore these properties can be changed from within the code.

Every control also has a number of methods. These are nothing else then stored
subroutines or functions. If you want to resize or move a control on the screen
you can use the MOVE method. The actual code behind this method is buried
inside the control and is control specific. For example: moving a square object is
not the same as moving a round object, but you can still do it using the move
method. The embedded code in the object (the method) will take care that it gets
performed, as it should be.

25 Visual Basic for Electronics Engineering Applications

1.2 Object Oriented Programming

Windows is also an Object Oriented environment. This means that you will have
to apply Object Oriented Programming methodology. Now what exactly is this
weird stuff?

Well we have already explained most of it. The first criterion is encapsulation.
This means that all the information about an object (properties) and the
processes performed by the object (methods) are combined inside the definition
of the object.

A real world object could be your car. You describe your car by its properties:
color, number of doors etc. Every of these is a property of the object ‘my car’.
In Windows an abject could be a button, a textbox, or a menu item. Any
primitive part of windows is considered an object. These objects live a life of
their own. They each have their properties, methods and associated events and
they know how to do their stuff. Most of all they are accessible to the VB
programmer.

As for the methods, these are the things that your car does in response of certain
actions. For instance you generate the event ‘Start Engine’ when you turn the
ignition key. If you execute the method ‘Start Engine’ the cars method handler
takes over at that time and provides instruction to the underlying system to
engage the starter motor, switch on the fuel flow, start ignition and then
disengage the starter. You don’t have to tell your engine how to start. The
method ‘Start’ of the object ‘Engine’ knows how to deal with all the low-level
stuff.

Now what is happening in this method is object related. A diesel engine has a
different way of starting then petrol driven or electric car. But since this is
encapsulated in the object, we as a user or programmer don’t need to worry
about that.

The second criterion for OOPS (Object Oriented Programming Style) is
Inheritance.

It means that one object can be based on other objects. You could define your
car as something that has four wheels, an engine, a chassis etc. Now I could
define a car that has a retractable rooftop. This new object would inherit all of

26 Visual Basic for Electronics Engineering Applications

the properties of the object ‘car’ and have one extra property. I could also
include a new method to be able to control the retractable rooftop. I don’t have
to redefine everything for my new car model.

Actually when I have given the explanation about starting the car, I already gave
a hint about this. The object ‘car’ holds another object called ‘engine’ inside. So
actually inheritance goes a bit further then simply creating derivatives. You can
create new objects containing other existing objects.

The last prerequisite is Polymorphism. This means that many objects can have
the same method, and the appropriate action is taken for the object. For example
in your programs you can print either on the screen or on the printer. Both of
these objects have a Print method. The difference is that the underlying code
will either access the video board or send data to your printer port. Compare this
to your engine. No matter whether it is a petrol, diesel or electric engine , you
simply need to call the method ‘start engine’. The encapsulated code inside the
object takes care of the rest.

1.3 What OOP does for you

The key elements of OOP with which you will be working with are re-usable
components known as Controls. You will build programs with these controls
(both standard, custom or even your own). These controls will have properties
that will determine how they look and feel and they will have methods that will
allow you to perform actions with them. The controls you will use shield you
from many of the tedious tasks of programming.

1.4 Overview of the definitions:

Controls Re-usable object that provides a visual interface
between the program and the user. Examples: button,
textbox, label etc.

An action initiated either by the user or the operating
system. Examples of events are keystrokes, mouse

i l
Communication (RS232) port.

Event

clicks, a t mer overf owing, or incoming data from a

27 Visual Basic for Electronics Engineering Applications

Methods Program code that is embedded in the definition of an

to certain events.

Object A basic element of a program, which contains
properties and methods. And responds to events.
Examples of objects are controls and forms.

Procedures Pieces of code you write to accomplish a task. The
procedures are usually written to respond to a certain
event. Most of the time they handle the occurring
event.

Properties
look and feel of the object. Examples: color, font,
position, size etc.

object. It defines how the object behaves in response

The characteristics of an object that determine the

28 Visual Basic for Electronics Engineering Applications

29 Visual Basic for Electronics Engineering Applications

Chapter 2:

Exploring the Visual Basic
environment

You might already be eager to start writing code, but let’s first have a look at the
environment.

2.1 Starting a Visual basic project

When you start up the programming language you are presented the project
dialog box.

30 Visual Basic for Electronics Engineering Applications

It lets you choose between different project styles. In the first parts I will cover
only the standard EXE style. Some other styles will be discussed later on.

Standard Exe This is the type of project you would use to
create a standard Windows based program

This is a remote automation program that

This is a remote automation library. It cannot be
run standalone, but can be called from other
applications. An example of such thing could be
a database search and retrieval tool.

properties and create your own methods.

VB application This choice runs the VB wizard that builds a
skeleton for your program based on the
answers you give to certain questions.

ADD-In This is a VB program running inside the VB
environment that interacts with your work. It
allows you to manage your work in an easier

This creates an application that can run over the
internet (you need Microsoft Internet explorer)

Document EXE
This creates an application that can run over the
internet (you need Microsoft Internet explorer)

ActiveX exe
performs tasks as part of a program.

ActiveX DLL

ActiveX Control This is a control you create. You can define its

wizard

way.

ActiveX
Document DLL

ActiveX

After you have selected the program style you enter the VB desktop. This will
be your workspace while designing, writing, debugging and compiling your
program.

31 Visual Basic for Electronics Engineering Applications

2.2 The programming environment

Wi

i
i

j
i

Code vi

i

Toolbox

Form Layout
ndow

Propert es
Nav gator

Pro ect
Nav gator

Toolbar

ewer

Form V ewer

MenuBar

The Visual basic programming environment is the workplace where you will
perform all of your program development. It neatly organizes a number of
toolbars and information panels that assist you in creating user interfaces and
writing code. It manages and allows you easy access to the entire project.

2.2.1 Using The Menu-bar

The menu-bar provides you with access to all functions that are available in the
VB environment.

As with the menus in any Windows program you can access the functions using
hotkeys. An underlined character in the item’s name indicates a hotkey. Hold
down the <ALT> key and press the underlined character.

2.2.2 Accessing functions with the Toolbar

The toolbar offers an alternative to the Menu-bar. It depicts some functions
graphically. When you navigate the mouse over the toolbar you will see
information appear in a small box just below the mouse cursor. This is called
ToolTip. This functionality can be imbedded in your programs too!

32 Visual Basic for Electronics Engineering Applications

2.2.3 The Object Browser (The Toolbox)

This part of the screen shows you which objects are available to use in your
program. There are controls that allow you to edit text, show pictures, connect
to a database or make selections. Upon creating a new project only the standard
windows objects are available. By right clicking on the panel and selecting
Customize you can insert more objects.

2.2.4 the project navigator

This part of the screen shows you the components that build your project. A
program can have more then one window (or form), additional modules (a
collection of your functions) or related files. This navigator shows you what
your program is made of. You can use it to quickly jump from one part to
another.

2.2.5 the properties navigator

This allows you to set the properties of the controls on your form. You simply
select the control using the mouse (click it) and then edit the properties to the
settings of your choice. You can call this window by pressing <F4>.

2.2.6 Form Layout Window

This window gives you an idea how your program will look at different screen
resolutions.

33 Visual Basic for Electronics Engineering Applications

2.2.7 Form Viewer

This is the real workplace for creating the user interface. It shows you the
window that makes up the user interface. Here you place controls and other
objects. To place a control simple click the desired control in the toolbox and
then draw the boundary of it on your form. You can also double click an object
in the object browser and then size it later.

34 Visual Basic for Electronics Engineering Applications

2.2.8 Code Viewer

This is the second workplace in your program. Just like the form viewer shows
the windows that make up your program, this viewer shows the underlying
code.
To see the code that is attached to a control simply double-click the control in
the form viewer. The code viewer will open up in the right place to show you
the real code behind it. At the top you can find two selectors. The left list box
allows you to select the object you want to modify. The right one allows you to
select the event you want to attach code to. In the example below the
Form_Load event will be modified.

35 Visual Basic for Electronics Engineering Applications

2.2.9 The Help system

You can call in the help system whenever you want. Simply select the item you
want help about and press F1. This works in every place of the environment.
You can select a control and press F1 for help on the control. Or you can select
a control, then select one of the properties, and then press F1 to get help about
this particular property.

Another possibility is to highlight a word inside the code window and press F1:
if it’s a basic keyword you will get more information then you bargain for.

Furthermore the code editor has real-time Help. While you are typing code the
system will show you your options for continuing your line of code. It will
correct most of the syntax errors for you. Simple typing errors like missing
quotes at the end of s string will automatically be corrected for you.

36 Visual Basic for Electronics Engineering Applications

37 Visual Basic for Electronics Engineering Applications

Chapter 3:

The Basic Objects and Controls

At the core of a Windows programs are always objects and Controls. A control
is a type of object that is visible on the user interface.

3.1 The Form

The first object you have in almost every program is a form. This is the
workspace for your entire program. Every control in your program needs to be
placed on some form. Also this is the real thing that gets started. You can add
forms at will by using the Project- Add form menu.

Your program has one and only one main form. This is the form that will be
started first. You can select this in the project setup parameters (Project / project
properties)

Just like any other object the form has properties and events. The properties
can be set using the properties navigator or programmatically. The most
important property of any object is it’s name. This name is the unique
designator used to refer to a particular object from within your code. All
references to the objects properties and/or events will be made by this name. If
you name your form Myform then you can refer to it as Myform. Suppose you
wan to change the property caption from code then you simple type

MyForm.caption = ”hello”

The click event will be known then as MyForm_Click(). All other events
can be reached in a similar way.

Note:

38 Visual Basic for Electronics Engineering Applications

When you double-click a control the code viewer will show you the default
event for the control. You have to use the event browser on top of the code
viewer to select the event you want to edit.

One of the events generated by a form is Load. This is the event that is
generated whenever your form is loaded the first time. In case of the main form
this is at the start of a program. This procedure is the right place to load user
settings etc. It’s counterpart, the Form_Unload event is called upon
termination of the program (in case of the main form) or when a form is
unloaded.

3.2 The Controls

When your form has been given a name and you have set the properties to your
taste then you can start adding controls to it. To do this, simply click one of the
controls and then draw the outline of it on your form. Just like with the Form
you can give your control a name. Let’s call it MyButton.

From now on you can access the control from code as MyButton.

Note:
Visual basic is a case-insensitive language. This means that MyButton is the
same as mybutton or MyBuTtOn. It case doesn’t matter.

To this new object MyButton you could attach code for the Click event.
Whenever you click the button that piece of code will be executed. You could
for instance change its Caption property

Sub MyButton_Click ()

39 Visual Basic for Electronics Engineering Applications

MyButton.Caption = “ You clicked me! “
End Sub

The most basic program of them all could be created as follows:

Start a new project [FILE][New Project]. Select standard executable. Now put a
label and a button on the form. Change the name of the button to ClickMe.
Similar you name the label Hello. Change the caption property of the label to
<empty>. Also change the caption of the button to ‘Say Hi’. Now if you double
click on the button you can attach the following code:

Sub ClickMe_Click ()
Hello.Caption = “Hello World“

End Sub

By hitting [F5] you can run your first program. If you click on the button it will
display the famous ‘Hello World’ in the label.

And there you have it. With physically typing one line of code (
‘Hello.Caption = ”Hello World”, all the rest was generated by the
Visual Basic environment) you have created you first object oriented, event
driven, and GUI based windows program. You have written an event handler
(Clickme_click), and controlled properties of objects.

And all of this with one line of code! How’s that for Rapid Application
development.

Of course you can do the above also with other programming languages. But it
will cost you a great deal more effort to reach the same result.

40 Visual Basic for Electronics Engineering Applications

3.3 The Standard controls inside Visual basic

Windows provides a set of universal controls that are always accessible. Any
program uses these controls. Other controls are contained in separate control
libraries.

Icon Name Function
Picture Box Allows you to display and edit graphics

images
Label
Textbox Allows you to display and edit text,

numbers and dates
Frame Provides a method for grouping other

controls.
Command Button Provides a means to activate program

functions
Check Box Displays or allows input of Boolean

choices such as Yes -No, True - False
or On - Off

Option or Radio
Button

Displays and allows a choice among
multiple items

Combo box Allows the user to select an entry from
a list or enter a new value

List Box Allows the user to select an entry
Horizontal scrollbar Allows the user to input numerical

information
Vertical scrollbar

information
Timer Provides a timed event. This can be

used to fire actions on a timed basis.
Drive List box Displays and allows a user to choose

from available disk drives in the
computer

Directory List Box
from available directories on the
computer

File List Box Displays and allows a user to choose
from the available files in the computer

Shape Displays geometric shapes on the form
Line Displays line on the form
Image Displays graphic images

Displays text

Allows the user to input numerical

Displays and allows a user to choose

41 Visual Basic for Electronics Engineering Applications

Data Control Provides a link to database files
OLE Control Provides a link to OLE servers

(ActiveX)

The above sets are the controls made available by windows. Apart from these
controls there are lots of controls that you can plug into the system. Some of
these come shipped standard with Windows, some come together with the
Visual basic language. One set of interesting controls is the CommonDialog
collection.

This is a control that allows lots of common tasks to be performed by the
system. Things like printer selection, color selection, file save and load forms
are inside this control. You don’t have to write code each time you want to give
the user a file dialog box. You simply call in this control and you’re done.

Another interesting set is the Windows Common controls. These include the
new GUI style controls. These controls work only in the new GUI on WIN32
(Win95 and NT4.0 and up).

3.4 Common Controls

Icon Name Function
UP-Down
Control allows you to changes numerical values up

and down
Animation This allows you to specify an animation

sequence. Like the flying paper when file copy
is in progress.

Slider
value.

Listview This looks like a file list-box
Treelist This displays and indexed list like in the

windows explorer
Imagelist

be used to make animations
Progressbar This can be used as a progress indicator
Statusbar A common control to make snazzy status bars
Toolbar Creating toolbars is a snap. Looks like the

menu editor.
Tabstrip Allows you to make multi-panel forms

This control ‘glues’ itself to another control. It

This allows the user to specify a numerical

This allows you to specify a list of images. Can

42 Visual Basic for Electronics Engineering Applications

To insert these controls, and others, you can click on the control toolbox with
the right mouse button. Then select Customize Toolbar. Here you will see all
available controls on your system. Simple select the ones you find interesting
and you’re off. The library that holds the Common Controls is called
Comdlg.dll. Like all components of windows it is subject to revisions. You have
to keep this in mind when you distribute your program to an end-use. Make sure
he has the same or a later version than yours. You can do this by creating a so-
called distribution-pack. (This will be explained later).

3.5 Common Dialog Control

Icon FunctionName
CommDlg Allows you to perform serial communication
control

This control gives you a set of commonly used forms. It takes away the problem
of having to reinvent the wheel all the time. Almost every program needs a file
selector anyhow. This control accesses the standard windows methods of
selecting a filer, printer, color etc.

3.6 Comm. Control

This control allows you to perform serial communications. This control is
simply put on a form and given a name. Using the properties you can select
things like baud rate and settings of the serial port. The control is invisible
during runtime. You can have up to 16 of these Comm. controls on the form.
The reason is the hard limit of the controls capabilities. It cannot handle more
then 16 ports at a time.

Icon FunctionName
Comm. Allows you to perform serial communication
control

43 Visual Basic for Electronics Engineering Applications

3.7 Menu’s

The menu on a form is a control just like any other, except that it does not
appear on the Control browser. The reason is that actually the menu is part of
the form. You cannot have more then one menu on a form.

To create or edit a menu you have to start the menu editor. Tools - Menu editor
or click on the Menu editor icon of the toolbar.

You start by typing the caption to appear on the menu bar. In the above case
&Open is typed. The ampersand (&) means that the O should have a line under
it. This will be the hotkey for the Open command. It also has the <F1> key
assigned to it (Shortcut).

The next thing you have to do is give the item a name. In the shown example it
is simply ‘open’.

44 Visual Basic for Electronics Engineering Applications

Any references to this menu item will be made by this name. So if I would like
to have a checkmark appear before it I would execute ‘open.checked =
true’.

To make multilevel menus you simply use the arrow buttons on the menu editor.
You can move items using up down or shift them to a different level using left
right.

Note:
To make a divider-line appear you have to specify a minus sign as the name for
the entry. This kind of item cannot be activated and loses all other properties.

When you are done editing you simply click Close. The menu editor then
compiles your menu and puts all controls in place on your form. Since every
entry in your menu is actually a small control you can change certain properties
of these entries. You can for instance change the checked or enabled property.
In case of an error (you forgot to give a menu item a name, or the syntax is
incorrect), you will not be able to close this window. You must first correct the
errors before you can continue.

With checked a small checkmark could be made to appear before the menu item.
You can use this to show the user which items he has selected. With the enabled
property you can disable or enable certain menu options.

3.8 Properties

Every control has properties that accurately define how it looks and feels. It
would lead us too far to explain all of them. The detailed help system inside
visual basic is far more useful to explore them. However some basic properties
need to be known. These properties exist and about 90 percent of all available
controls.

45 Visual Basic for Electronics Engineering Applications

3.8.1 Name

This is the single most important property a control can have. This property
defines the handle you will use to access the object. You should set this property
before you start writing any code for the object. The code editor will use this
properties setting to generate the procedures for you.

Note:
If you change this property when code has been written for a control you will
have to update all of you code relating to it manually!

3.8.2 Top, Left, Height, Width

These properties define the location of the control in relation to the form it is
placed on. When you move the control in the form editor you will see that they
are changed. You can also adjust them manually to create neatly aligned
controls, or you can change them from within your program at runtime to make
objects move on the screen.

3.8.3 Backcolor, ForeColor, Textcolor

With these properties you can modify how the control looks on the screen. You
can set specific colors using the color selector or you can use the DOS based
colors. Under Dos you had 16 colors available. You can still use these numbers
to specify a color. To convert these numbers to the Windows coloring scheme
there is a function called QBcolor.

When designing forms it is a very bad idea to freeze colors. The windows
design guide describes that you should use the system colors instead of forcing
your own. This can be done very easily. If you look at the color selector on the
properties bar you will see that there are 2 panels. One is holding a color chart.
The other is listing variables that refer to the system colors. You should use
these variables instead. Whenever your program starts it will retrieve the system
colors and use these for your program.

46 Visual Basic for Electronics Engineering Applications

3.8.4 Caption and Text

The settings of these variables control what is displayed on the object. In
general Caption is used for a static text display. This means the text is not
changing a lot and the user needs not to edit the text. Text is a dynamic control.
This means the user can change it, edit it.... whatever he could do with a text.

Most controls will thus have a Caption. Only Textbox, and Combobox have a
Text property (there are others but they are not part of the standard windows
control set)

3.8.5 Enabled and Visible

These properties define the active state of the control. The enabled property
defines if the control will respond to events. If set to 'false' the object is detached
from the message stream and it will do absolutely nothing. If you set it invisible
however it just disappears from the screen. It does not get detached from the
message queue.

3.8.6 Index

This specifies the objects place in a control array. If empty the control does not
belong to an array. Otherwise it determines the position in the array.

3.8.7 Tabindex

This is also an index in an array but it determines the order in which controls are
accessed .If you press the tab button you can switch from control to control.
This is useful for users that don’t have a mouse. The list is scanned in ascending
order.

47 Visual Basic for Electronics Engineering Applications

3.8.9 TooltipText

This is a handy property that allows you to enter a few words of explanation
about a control. During runtime whenever the user moves the mouse over a
control and leaves it there for a few seconds this text will be displayed just
below the mouse cursor. It gives somewhat instant help in your programs.

48 Visual Basic for Electronics Engineering Applications

49 Visual Basic for Electronics Engineering Applications

Chapter 4:

Events and Methods

As explained before, events are the driving power behind the OOP / GUI
programming style. Whenever something happens, for instance the user clicks
with the mouse, hit’s a key or a character comes in over the serial port, an event
is generated.

Now the above examples are only a small part of the possible events. Every tiny
bit of action generates events. Even the mere fact that you move the mouse
generates a stream of events.

Hitting a key alone generates 3 events. KeyDown, KeyUp and KeyPress

A simple thing like clicking the mouse can generate 4 events MouseUp,
MouseDown Click and DoubleClick. While clicking you could have moved the
mouse thus a stream of MouseMove events could have occurred.

4.1 Tapping into Events

You can tap into all of these events by using the properties browser in the code
editor.

50 Visual Basic for Electronics Engineering Applications

Every control has it’s own set of events that it can generate. The most useful
events however are very limited. It’s not until you start to do very complicated
work that you will need the other events. Actually when you edit code using the
method of double-clicking an object, the code editor will show only the most
used event. The others have to be accessed using the event browser of the Code
editor (see picture above).

4.1.1 Click (Most controls)

This is probably the most used event. Whenever the user clicks an object this
event is fired. This is the place you will attach the real code of your program.

4.1.2 DblClick (Most controls)

The same as the Click event but it gets fired only when the user double-clicks.
Important: double-clicking does not fire the Click event

51 Visual Basic for Electronics Engineering Applications

4.1.3 KeyPress (Most controls)

Whenever you hit a key the object that has the focus fires this event. It is useful
in combination with textboxes to makes masking. Suppose you want the use to
enter a number only. You could attach the following code to the KeyPress event
of the textbox

Private Sub Text1_KeyPress (KeyAscii As Integer)
Select Case Chr$(KeyAscii)
Case "0" To "9"

Text1.Text = _
Text1.Text + Chr$(KeyAscii)

Case Else

End Select

End Sub

The KeyPress returns the ASCII value of the key that was hit. So if we detect
that it lays between 0 and 9 (thus being a valid number) we allow it to go into
the textbox.

Note:
jWhenever you attach code to any of the Keypress events, the ob ect will not

handle the keyboard input for you. You are then responsible for taking
appropriate action.

4.1.4 MouseMove (Most controls)

Whenever the user moves the mouse, the object under the mouse will fire the
MouseMove event. You can use this event to retrieve the coordinates of the
mouse. This can be useful if you want to make a small drawing program.

52 Visual Basic for Electronics Engineering Applications

4.1.5 Activate (Form)

Only a Form generates these events. Whenever the user moves the focus to a
form, it will fire this event. Suppose you have a program with 4 forms. You can
only have one form active at a time. The form then becomes the new active form
will fire this event. You can use this to update status bars, or to create context
sensitive help.

4.1.6 Deactivate (Form)

This command is similar to the above. Whenever a form gets the focus, another
one must lose it. The form that looses focus is generating the Deactivate event.

4.1.7 Load (Form)

This is probably the most useful form related event. Together with the unload
event. If you are using local variable or need to load configuration or INI files
this is the place to do it.

Whenever a form gets loaded the first time it fires this event. Since in a typical
application a form only gets loaded once (during the start of the program) you
can use this event to attach your startup code.

4.1.8 Unload (Form)

Similar to the Load event, the unload event gets fired when a form is destroyed
(unloaded). Since this only happens during program termination you can use
this event to store user preferences, or form size and position into an INI file,
the registry or whatever.

This is the place where you put your program’s bailout code.

53 Visual Basic for Electronics Engineering Applications

4.1.9 Change (Textbox)

The change event gets fired whenever the contents of the textbox change. This
can be used to make terminal like programs.

Now there is one more thing about events you need to know. You can generate
them also from within code! Since an event handler is nothing else then a
subroutine you can call them from any part of your code belonging to the same
form. You cannot call them from other forms, except if you declare them public.
But declaring an event handler public should only be done in modules and it still
is considered bad behavior. It can lead to very strange program behavior.

Suppose the following: You have a couple of buttons on a toolbar that allow
you to Edit cut copy and paste text.

On your edit menu you have the same Functions, Cut Copy and Paste. Now the
question is: are you going to write the cut copy and Paste code twice? Not in
your life. The events generated by the toolbar buttons will simply generate the
events like you would have clicked on the menu bar.

Sub Cut_Click ()
‘ Cut text from textbox code …

End sub

Sub ToolbarCut_click ()
Call Cut_click ()

End sub

The First subroutine is the event handler for the Menu bar. The second Event
handler is attached to the button on the toolbar. Whenever you click the button
on the toolbar, it passes control to the event handler on the Menu bar. Done!
No additional code no nothing.

54 Visual Basic for Electronics Engineering Applications

The only pitfall in this is that you have to make sure your event handlers are not
calling each other. This will create a recursive event and blow the stack sky-
high. Result: The darned blue screen of death: A General Protection fault.

4.2 Methods

So far we have talked about objects their properties and the events they can
generate. Now, an object has one last thing that is called Methods.

The easiest way to understand them is to think of them as built in procedures.
Lets take the Move method. Almost any object supports it. Suppose you want to
move a button. You could of course change the properties Top and Left, but
that takes too much work (you have to calculate the absolute movement from
the current and the new coordinate). Well you can use the Move method.

Object.move (x, y)

This will move the object to the new coordinates. Now the underlying code for a
button is not the same for let’s say a textbox. This is the strength of Methods.
They have the same name, work on nearly all objects but are completely
different internally.

A typical other method is the Print command. In normal basic Print is a
keyword; well in VB it’s a method. You might ask why? Well simple. You can
pick an object and print to it. Like you can print to the form you can also print to
a button, or a graphics box or even to the Printer object!

The internal workings are completely different yet the action has the same
result. Except that, when printing to the form it ends up on the screen, and when
printing to a printer it ends up on paper.

Now that we have discussed the nuts and bolts of the Visual basic programming
language and the environment it works with, it’s about time we start building a
program. The next few chapters will show you how to build a user interface,
how to attach code and how to get it up and running.

Later in this course more examples will be given to detail a bit on the most used
features inside the programming language. But first something needs to be told

55 Visual Basic for Electronics Engineering Applications

about the language itself.

56 Visual Basic for Electronics Engineering Applications

57 Visual Basic for Electronics Engineering Applications

Chapter 5:

The Basic language
itself.

Before we can start writing code, we should know a little about the driving force
behind all of this: the basic language. Originally conceived by Kemeny and
Kurz in 1968 this language has often been regarded to as ‘not useful for anyone
beyond first grade’.

While true that Basic tended to lead to sloppy code, and the first interpreters
were terribly slow, today’s compilers can unleash the power of the machine. For
technical environments basic is still the Number One language. Lots of research
departments from outstanding universities solely depend on it to build the ‘
quick and dirty ‘ problem solver they needed 3 weeks ago.

Since the compiler has to generate code which deals with whatever the
programmer is cooking up, the resulting code will always be slower then a very
low level language like ‘C’ and Assembler, or more structured language like
Pascal.

However, the Visual basic compiler uses the same underlying technology as the
Visual C++ compiler from Microsoft. This means that the same code generation
process is used for both. This results in code that is heavily optimized and nearly
as fast as the code generated by the Visual C compiler.

But the true power of basic lies in the possibility to develop a program in
virtually no time. A basic program will be running and starting to do something

58 Visual Basic for Electronics Engineering Applications

while in other languages you are still deciding what variable type to use, or
checking out which library you need now.

A programming language is very similar to a human language. Before you can
learn it you need to know the vocabulary (instruction set) and grammar (syntax).
This will allow you to construct sentences (lines of code). The content of the
text written in a language (the algorithm) is a different matter however. This is
only acquired by practicing. Just like you can express something in different
ways, you can solve problems programmatically in different ways.

Computer languages differ a bit from the human languages. They are much
more organized. They need for instance ways to describe the data. So let’s talk
about that first.

59 Visual Basic for Electronics Engineering Applications

5.1 Variables

A computer language uses variables to store data. They are a symbolic name
used by the programmer to refer to data stored somewhere in memory. The
compiler will allocate the necessary storage space and map it into the computers
memory. Data comes in all sorts of colors and flavors. You can have numbers,
letters, strings etc. ... So it is logical that there are different ways to store data. In
most programming languages you have to explain to the compiler what kind of
data to store. In Visual Basic you DON’T have to!

There is only one variable type. No integer, float, double quad. Just storage
space. You need space? You got it. What do you want to store? Doesn’t matter.
How big is it? Of no importance.

Visual basic introduces the concept of a Variant.

A variant is a universal storage space. It is virtually unlimited in size
‘(16.777.216 bytes max) and can hold everything ranging from strings,
numbers, pictures to even objects.

You even don’t need to define it. Just use any name you want. In Basic it is the
compiler’s job to figure out how to store your data.

However over time the users of basic found out that if you are not careful
enough you will end up with messy code that can be very buggy. Therefore
Visual basic allows you to force yourself to program clean. You can use the
Option Explicit command in the top of a module. Then you need to declare the
variables and typecast them. This gives also some speed improvement since now
the compiler can generate much more optimized code. Also you will have more
storage space. When a variable is typecast then only the necessary amount of
memory is allocated. A variant always uses at least 16 bytes of memory, even if
it is empty.

60 Visual Basic for Electronics Engineering Applications

5.1.1 Available Types in Visual Basic and how to declare them

Char
acter

Memory
Requirement

Range of
Values

StoresType

Integer % 2 byte -32.768 to Whole numbers
32.767

Long & 4 byte Approx 2 Whole numbers
billion

Single ! 4 byte -1e-45 to Decimal numbers
3e38

Double 8 byte -5e-324 to Decimal numbers
1.8e308

Currency 8 byte -9e14 to Numbers with up
+9e14 to 15 digits left

and 4 digits right
of the decimal

String $ 1 byte + 1 Up to 65000 Text information
byte per character for
character fixed length

and up to 2
billion for
dynamics

Byte None 1 byte 0 to 255 Whole numbers
Boolean None 2 bytes True or Logical values

False
Date None 8 bytes 1/1/100 to Date and time

12/31/9999 information
Object None 4 bytes Not Pictures and OLE

applicable objects
Variant None 16 bytes + 1 Not Any of the above.

byte per applicable
character

61 Visual Basic for Electronics Engineering Applications

Typecasting a variable can be done in 2 ways. Either you declare a variable
explicit or use the typecasting character (implicit).

a$ = ”test” ‘ implicit declaration

Dim a as string
a = ”test” ‘ explicit declaration

The net result is the same. By ending the name of a variable by the typecast
character you force its type. In the second case you declare them using the As
keyword. They both have their advantages and disadvantages. It’s up to you
which one you use.

If you decide to go for the explicit method then you have to use the As keyword

Dim account As Currency
Dim a As Byte
Dim power As Boolean

There is a little difference between implicit and explicit declaration. When using
implicit declaration you add the type declaration character at the end of the
variable name. This means that from now on you must reference the variable
including the type character. Explicit declaration avoids this ,but then you can’t
immediately see what is the type of the variable. You have to look it up in the
declaration clause of the variable. It’s up to you what you want to use.

Note :
A variable name must start with a letter , the name cannot contain a period and
can be no longer then 255 characters.

5.2 Arrays

Suppose you need to have more then one variable with the same name. For
instance a table or an array. It would make programming easier if we could use

62 Visual Basic for Electronics Engineering Applications

an index to refer to a set of variables. That’s exactly what arrays are intended
for. Arrays can be created for any kind of variable. You can even create arrays
for objects (more on this later). Contrary to regular variable you need to
declare them. Regular variables you can use on the fly. However you do not
need to typecast them .

Declaring an array is done using the DIM keyword.

5.2.1 DIM

Dim myarray(5)
Dim twodimensions(5,6)
Dim ThreeD(5,10,100) as integer

The above examples are declarations for a number of arrays. The first two are
not typecast (no explicit type for them is declared) . The last one is typecast as
integer. When using big arrays it is useful to typecast them. Since arrays
typically contains lots of variables (the multiplication of all dimensions :
example a (5,10,10) contains 5*10*10 = 500 elements) it is wishful to typecast
them . Doing so will preserve a lot of memory.

If they are not typecast then they are assumed as Variant (which takes 16 byte
per item if empty). You can declare arrays of up to 255 dimensions. Don’t try
to visualize how this would look , you can’t. As a matter of fact nobody ever
does this (except maybe some mathematicians or physicists).

An array is by default Zero-Based. This means if you declare an array of 5
elements you have access to elements 0 to 4. Suppose you want to store the
years between 1900 and 2000. To conserve space you could declare an array
that stores only the last two digits. (DON’T do this ! The Y2K bug will get you
for this !). After all if you declare an array of 2000 elements you will waste the
first 1900 of them. Well visual basic allows you to change this base.

Dim years (1900 to 2000)

63 Visual Basic for Electronics Engineering Applications

Will declare an array with 100 elements. The first element will have and index
of 1900 and the last will be 2000.

Dim MyMatrix(1 To 5, 4 To 9, 3 To 5) As Double

Will create an array with specified bounds.

Arrays created in this manner are called Static arrays. You lock the amount of
memory at coding time. Equally you can create dynamic arrays

Dim myArray()

Later in the code you can re-dimension your array with the REDIM command

5.2.2 ReDim

The ReDim statement is used to size or resize a dynamic array that has already
been formally declared using a Private, Public, or Dim statement with empty
parentheses (without dimension subscripts).

You can use the ReDim statement repeatedly to change the number of elements
and dimensions in an array. However, you can't declare an array of one data
type and later use ReDim to change the array to another data type, unless the
array is contained in a Variant. If the array is contained in a Variant, the type of
the elements can be changed using an As type clause, unless you’re using the
Preserve keyword, in which case, no changes of data type are permitted.

If you use the Preserve keyword, you can resize only the last array dimension
and you can't change the number of dimensions at all. For example, if your array
has only one dimension, you can resize that dimension because it is the last and
only dimension. However, if your array has two or more dimensions, you can
change the size of only the last dimension and still preserve the contents of the
array. The following example shows how you can increase the size of the last

64 Visual Basic for Electronics Engineering Applications

dimension of a dynamic array without erasing any existing data contained in the
array.

ReDim X(10, 10, 10)

. . .

ReDim Preserve X(10, 10, 15)

Similarly, when you use Preserve, you can change the size of the array only by
changing the upper bound; changing the lower bound causes an error.

If you make an array smaller than it was, data in the eliminated elements will be
lost. If you pass an array to a procedure by reference, you can't re-dimension the
array within the procedure.

When variables are initialized, a numeric variable is initialized to 0, a variable-
length string is initialized to a zero-length string (""), and a fixed-length string is
filled with zeros. Variant variables are initialized to 'Empty'. Each element of a
user-defined type variable is initialized as if it were a separate variable. A
variable that refers to an object must be assigned an existing object using the Set
statement before it can be used. Until it is assigned an object, the declared object
variable has the special value 'Nothing', which indicates that it doesn't refer to
any particular instance of an object.

When you are writing procedures or functions that have to accept data in arrays
it is always wise to query the array for its bounds.

There are commands Ubound and Lbound that allow you to do just that

5.2.3 Ubound

Return a Long containing the largest available subscript for the indicated
dimension of an array.

Ubound (array name [, dimension])

Array name Required. Name of the array variable; follows standard

65 Visual Basic for Electronics Engineering Applications

Dimension

variable naming conventions.

Optional; Variant (Long). Whole number indicating which
dimension's upper bound is returned. Use 1 for the first
dimension, 2 for the second, and so on. If dimension is
omitted, 1 is assumed.

The Ubound function is used with the Lbound function to determine the size of
an array. Use the Lbound function to find the lower limit of an array dimension.

Ubound returns the following values for an array with these dimensions:

Dim A(1 To 100, 0 To 3, -3 To 4)

Statement Return Value

Ubound(A, 1) 100

Ubound(A, 2) 3

Ubound(A, 3) 4

5.2.4 Lbound

Returns a Long containing the smallest available subscript for the indicated
dimension of an array.

Lbound (array name [, dimension])

Array name Required. Name of the array variable; follows
standard variable naming conventions.

Dimension Optional; Variant (Long). Whole number indicating
which dimension's lower bound is returned. Use 1
for the first dimension, 2 for the second, and so on.
If dimension is omitted, 1 is assumed.

66 Visual Basic for Electronics Engineering Applications

The Lbound function is used with the Ubound function to determine the size of
an array. Use the Ubound function to find the upper limit of an array dimension.

Lbound returns the values in the following table for an array with the following
dimensions:

Dim A(1 To 100, 0 To 3, -3 To 4)

Statement Return Value

Lbound(A, 1) 1

Lbound(A, 2) 0

Lbound(A, 3) -3

The default lower bound for any dimension is either 0 or 1, depending on the
setting of the Option Base statement. The base of an array created with the
Array function is zero; it is unaffected by Option Base.

Arrays for which dimensions are set using the To clause in a Dim, Private,
Public, ReDim, or Static statement can have any integer value as a lower bound.

5.2.5 Array

Array(argument list)

The required argument list is a comma-delimited list of values that are assigned
to the elements of the array contained within the Variant. If no arguments are
specified, an array of zero length is created.

The notation used to refer to an element of an array consists of the variable
name followed by parentheses containing an index number indicating the
desired element. In the following example, the first statement creates a variable
named A as a Variant. The second statement assigns an array to variable A. The

67 Visual Basic for Electronics Engineering Applications

last statement assigns the value contained in the second array element to another
variable.

Dim A As Variant

A = Array(10,20,30)

B = A(2)

The lower bound of an array created using the Array function is determined by
the lower bound specified with the Option Base statement, unless Array is
qualified with the name of the type library (for example VBA.Array). If
qualified with the type-library name, Array is unaffected by Option Base.

Note
A Variant that is not declared as an array can still contain an array. A Variant
variable can contain an array of any type, except fixed-length strings and user-
defined types. Although a Variant containing an array is conceptually different
from an array whose elements are of type Variant, the array elements are
accessed in the same way.

68 Visual Basic for Electronics Engineering Applications

Example :

Dim MyWeek, MyDay

MyWeek = Array("Mon", "Tue", "Wed", "Thu",

"Fri", _

"Sat", "Sun")
' Assume lower bound set to 1 (using Option Base
)

MyDay = MyWeek(2) ' MyDay contains "Tue".
MyDay = MyWeek(4) ' MyDay contains "Thu".

This example uses the Array function to return a Variant containing an array.

69 Visual Basic for Electronics Engineering Applications

5.3 Types

An array can be regarded to as a simple database. If you require storing data in a
database like way you can create your own data types.

Type is used at module level to define a user-defined data type containing one
or more elements.

[Private | Public] Type varname
elementname [([subscripts])] As type

 [elementname [([subscripts])] As type]
. . .

End Type

Public
are available to all procedures in all modules in all
projects.

Private Optional. Used to declare user-defined types that
are available only within the module where the
declaration is made.

Varname Required. Name of the user-defined type; follows
standard variable naming conventions.

Elementname
type. Element names also follow standard variable
naming conventions, except that keywords can be
used.

Subscripts Optional. Dimensions of an array element. Use
only parentheses when declaring an array whose
size can change. The subscripts argument uses
the following syntax:

[lower To] upper
[,[lower To]
upper] . . .

Base’ statement controls the lower bound of an
array. The lower bound is zero if no Option Base
statement is present.

Optional. Used to declare user-defined types that

Required. Name of an element of the user-defined

When not explicitly stated in 'lower', the ‘Option

70 Visual Basic for Electronics Engineering Applications

Type Data type of the element; may be Byte, Boolean,
Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String (for

length strings), Object, Variant, another user-
defined type, or an object type.

variable-length strings), String * length (for fixed-

The Type statement can be used only at module level. Once you have declared a
user-defined type using the Type statement, you can declare a variable of that
type anywhere within the scope of the declaration. Use Dim, Private, Public,
ReDim, or Static to declare a variable of a user-defined type.

In standard modules, user-defined types are public by default. This visibility can
be changed using the Private keyword. In class modules, however, user-defined
types can only be private and the visibility can't be changed using the Public
keyword.

Line numbers and line labels aren't allowed in Type...End Type blocks.

User-defined types are often used with data records, which frequently consist of
a number of related elements of different data types.

The following example shows the use of fixed-size arrays in a user-defined
type:

Type StateData
CityCode (1 To 100) As Integer' Declare a

static array.
County As String * 30

End Type

Dim Washington(1 To 100) As StateData

In the preceding example, StateData includes the CityCode static array, and the
record Washington has the same structure as StateData.

71 Visual Basic for Electronics Engineering Applications

When you declare a fixed-size array within a user-defined type, its dimensions
must be declared with numeric literals or constants rather than variables. Also
note that the setting of the Option Base statement determines the lower bound
for arrays within user-defined types.

Type EmployeeRecord ' Create user-defined
type.

ID As Integer ' Define elements of
data type.

Name As String * 20
Address As String * 30
Phone As Long

 HireDate As Date
End Type

Sub CreateRecord()
Dim MyRecord As EmployeeRecord ' Declare

variable.
MyRecord.ID = 12003 ' Assign a value to an

element.
End Sub

This example uses the Type statement to define a user-defined data type. The
Type statement is used at the module level only.

Now I have to be honest with you. You can perfectly do this but there are far
more powerful ways to create this. Visual basic has direct access to ODBC
objects (Open Database Control). This allows you to create and manipulate
data far more efficiently then by coding everything yourself. For simple things it
might be useful and faster not to use this heavy database engine. It’s up to you
to decide on this.

5.4 Scope of Variables

Vartype.vbp

When you define a variable (read declare it using DIM or simply start using a
new variable name) it only exists locally.

72 Visual Basic for Electronics Engineering Applications

Sub Button1_click()
Dim a as Integer

End Sub

Sub Button2_click()
 Dim a as Long

End Sub

In the above examples both variables A are independent variables. They have
nothing to do with each other. When you exit a subroutine all variables are
destroyed. When you allocate them the first time then they are created and reset.
(The contents are set to zero for numbers or nothing for strings). Sometimes
you might want a variable to exist outside of your procedures.

This can be done . There are 4 ways to preserve a variable : Static , Private ,
Public and Global. Public and Global are the same. The global keyword comes
from old style basic and is maintained for compatibility reasons.

5.4.1 Public / Global

This kind of variable can be accessed anywhere in your program. It can be read
and written from any form , module , procedure and function.

5.4.2 Private

The Private variable is a variable that only exists in the current portion of code.
Only routines belonging to the same form or module as the one where the
variable has been declared can access it.

73 Visual Basic for Electronics Engineering Applications

5.4.3 Static

This is a variable that can only exist inside the function or procedure where it
has been declared . Just like a normal variable . But it will not be destroyed
upon exit of the procedure. Nobody outside the procedure can access it .

Function countup()
Static a As Integer

 countup = a
a = a + 1

End Function

If you would declare 'a' as a normal type then the function would always return
0 . Every time you call the function a storage space for 'a' is allocated , set to
zero and upon exit the storage space is freed. By declaring the variable as Static
it only gets created the first time you call the function. The next time you call
the function then the variable A and its contents still exist and their contents
have been unaltered.

5.5 Module level scope

Besides the static , public etc type variables can be bound to the code module
they live in. A Module is a physical file that contains code. Forms , BAS files
etc are all modules. A program is created from one or more of these.

Consider the following piece of code

Dim x as integer

Sub form1_load()
Dim y as integer
Y = 2
X = 5
Call addup

End sub
Sub addup()

Debug.print x+y

74 Visual Basic for Electronics Engineering Applications

End sub

VarScope.vbp

When this program is run it will always return 5. Why ? Well simple : the
variable X is defined at module level. This means it is accessible from anywhere
inside the same module. As long as you do not re-declare it you can reach it.
The variable Y is created inside the form1_load. This means it is destroyed
when exiting this part of the code. Referencing an in-existing variable will
return 0. So the net result of X+Y is 5 + 0 = 5.

5.6 Subroutines and Functions

While programming you might have developed routines that are interesting to
keep and that can be used in different portions of your programs. There is a
neat way to store them and use them from any location.

75 Visual Basic for Electronics Engineering Applications

5.6.1 Subroutines or Procedures

The simplest form is a procedure. It is a portion of code which performs a
certain action based on the inputs you feed it. It does not generate any resulting
output.

Sub DrawLine (x1,y1,x2,y2)
End Sub

The procedure can work with the passed information and does something
without returning an answer.

5.6.2 Functions

FunCall.vbp

A function is the same as a procedure but it returns a value that can be result of
the functions operation.

Function Add (alb)
 Add = a + b
End Function

The programming environment will automatically provide syntax help for any
procedures or functions in your program. It shows you while typing what a
certain procedure expects from you now. While declaring a procedure or
function you can typecast the variables that need to be passed to them , or are
returned from them..

Sub Test (a As Integer , b as Currency)
End Sub

76 Visual Basic for Electronics Engineering Applications

Function addup (a as integer , b as integer) as
integer

Addup = a + b
Debug.print a + b

End function

You can call a function without having to collect the result. You simply call it
like you would call a subroutine

Addup 2,1

In the above example would call the function but not return a value. It would
still get printed to the debug console. If I wanted the result of the function I
would call it like a function

X = addup (5,5)

5.7 Scope of procedures

ProScope.vbp

Just like variables, subroutines or functions also obey to a certain scope. You
can force this scope using the Public or Private modifiers. They cannot be made
Static.

By default you can call any routine as long as it lives inside the same module. It
is of no importance whether they are public or private. This scenario changes
when you go to multi-module programs (multiple forms and or included files).
The privately declared procedures are invisible to other modules. The public
ones are visible. This means that you can have two modules called 'addup' in
two different modules without any problem.

5.8 Constants

Storing often-used numbers in a variable makes programming easier.
Furthermore it makes modifying and reading the program a lot easier
afterwards. But it has one drawback : it eats memory. Therefore the concept of a
constant has been defined. A constant is a placeholder for information. The only

77 Visual Basic for Electronics Engineering Applications

difference is that it has no memory allocation during runtime. During
compilation VB will replace all instances of the constant name with its contents.

Just like variables you can have Public (Global) or Private constants. Constants
are declared with the CONST keyword

const version$ = “Version 1.0”
const pi = 3.1415927

You can store anything in a constant. Since it has no real substance you do not
have to specify the type. However , you have to take care when using them .

With the above constants this would yield an error :

result = pi * version ‘ multiply a number with
a string ??
version = 12 ‘ error : you cannot change a
constant

78 Visual Basic for Electronics Engineering Applications

A special kind of constant is a so-called Enumerated Constant. While it can be
used as a regular constant , it has special applications in Classes and User
created objects.

Declaring it using the ENUM keyword creates an enumerated constant.

Enum weekdays
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday =5
End Enum

You can refer to these constants simply by specifying their name.

Today = Wednesday

But what is the use then ?. Well , things change once you declare variables
based from these enumerations.

Enum weekdays
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday =5
End Enum

Dim today as weekdays

Today = wednesday

79 Visual Basic for Electronics Engineering Applications

The moment you start typing ‘Today =’ you will get a pull down list with the
possible choices. You have to think of an 'enumerate' as a way to aid you
writing code. Your constants become part of the VB programming environment.

5.9 Numerical Operators

Visual basic supports the basic numerical operators. The conversion from one
base to another is done automatically for you. The resulting number is stored
into the format of the variable used to hold the result. If you use a variant then
the number is automatically stored in the most precise format.

The order of execution obeys to the mathematical rules. You can force an
execution order by placing calculations between round brackets (). Typically it
is good programming practice to always write brackets. After all errors are
quickly made to mathematical rules. This even gets worse when applying logical
operators. After all can you tell what this results to ?

X= 5*y-7 or int (sin z)-14 /12 ‘ ???

If you change this to

 X= (((5*4)-7) or (int (sin z)-14)) / 12

It gets a lot clearer.

Operator FunctionName
+ - * / Basic math operators
^ Exponent Takes a number to the given exponent
Int Integer Strips off any digits after the decimal. It

does not perform rounding !
Abs Absolute value Removes any sign from a number
Sgn Sign Extracts the sign from a number. 1 for

positive -1 for negative and 0 for zero.
Exp Antilog Returns a number specifying e raised to

a power
Sin Sine Std trig calculation

Uses RADIANS !
Cos Cosine Std trig calculation

Uses RADIANS !
Tan Tangent Std trig calculation

Uses RADIANS !

80 Visual Basic for Electronics Engineering Applications

Atn Arctangent Std trig calculation
Uses RADIANS !

Log Logarithm Natural logarithm (e based 2.718282)
Rnd Random Generates a random positive number

between 0 and 1
Sqr Square root Takes the square root of a number

The other operators can be derived from these. The VB help system has a
complete list of thing like Sin-1 , cos-1 , Sin Hyp etc.

5.10 Base conversion

Sometimes you might feel the need to use hexadecimal or octal numbers. VB
supports these bases as well. To specify such a number you add &h or &o in
front to specify that a hex or octal number is following.

Example

X = &h3BC ‘ assigns hexadecimal 3BC to x
Y = &o701 ‘ assigns octal 701 to y.

Note :

Note :

 Visual Basic does not support the binary base !. However by including the
VISION system you have access to this number format.

Converting strings to numbers and back is also considered base conversion.
This is explained later on in the string manipulation chapter. The same rules
apply. You can also put &h or &o in your strings.

81 Visual Basic for Electronics Engineering Applications

5.11 Logical Operators

Apart from the standard mathematics operators Visual basic supports a set of
logical operators. These operators only function on integer type numbers . You
cannot use these operators on floating style numbers.

DescriptionCommand Name
NOT Invert In case of true false it inverts the

condition. In case of a number every bit is
flipped.

OR Or Standard logic operator

Output is true when one input term is true
AND And Standard logic operator

Output is true when all input terms are
true

XOR Xor Standard logic operator

Output is true if one and only one of the 2
inputs is true

EQV Equivalent Output is true if both inputs have the
same state (this is actually the XNOR
function)

IMP Implication consult the help system for more
explanation

5.12 Flow Control

So far we have seen how to store data and perform basic mathematical functions
with data. We also discovered how to group commands and expressions
together in functions and procedures and how to pass data to these constructs
and obtain results.

Besides these operations we need some way to control the flow of the program.
Some kind of – what if – construct to decide which way the program should
continue. That’s exactly what is coming next.

82 Visual Basic for Electronics Engineering Applications

5.12.1 If then else

The most basic decision routine used in Visual basic is probably the if-then-else
construction

if (condition) then
‘ if true

else
 ‘ if false

end if

Where condition is the result of an expression made up of 2 variables and a
comparing function

Operator OperationName
= Equal If the two variables contain exactly

the same data this operator will set
the condition to true

> Bigger then If the value contained in the first
variable is bigger then the value of
variable 2 then this expression will
evaluate as true

<

> =

<=
<>

smaller then

More then or
equal

Less then or equal
Different

Like the previous but now var1 is
less then var2

If the expression evaluates to true then the THEN clause will be executed. If it
does not evaluate then the ELSE clause gets executed. This construct can be
used to compare data and expressions and decide on which step to take next.

You can nest if-then-else clauses up to 255 levels deep. However , for a lot of
these case you could use the if-then-elseif-else clause.

If (x = 5) then

83 Visual Basic for Electronics Engineering Applications

If y= 2 then
Debug.print “X=5 and Y=2”

Else
Debug.print “ X=5 and y <>2”

End if
Else

Debug.print “ x <>5 . “
End if

5.12.2 If-then-else / elseif

In some cases you will have a need for a more complex decision task. You can
then use the elseif construct

if <condition1> then
<statement1>

elseif <condition2> then
<statement2>

elseif <condition3> then
 <stratement3>
else
 <default statement>
end if

In most cases however it is easier to use the Select Case construct. This
construct is explained next. However the If-Then-Else / ElseIf construct is
required if you want to process objects. Select case cannot handle conditions
resulting from object manipulation. This is a very rare condition however. It will
be discussed later on.

84 Visual Basic for Electronics Engineering Applications

5.12.3 Select case

If you need to do a lot of tests , or if a given expression can evaluate to a lot of
different results then your best option is probable the Select case clause. The
following example gives you an idea of the decision power the select case
structure has aboard.

Select case (expression or variable)
case 1

print “You typed 1”
case 2,3,4

print “You typed 2 , 3 or 4”
case 5 to 9

print “You typed something between 5
and 9”

case “A”
print “You typed A”

case “B”,”Z”
print “You typed either B or Z”

case “D” to “Y”,
print “You typed a letter between D

and Y”
case “HELLO”,”HI”,”GOOD MORNING”

print “Hello to you too”
case “BYE”,”SEEYA”

print “Goodbye , Have a nice day”
case else

 print “huh?”
end select

As you can see you can specify values or strings , and ranges of values. When
the expression or variable is checked against the Case clauses , the compiler will
scan from top to bottom. The first clause to match the comparison will be
executed. If no match is found the CASE ELSE clause will be executed.

85 Visual Basic for Electronics Engineering Applications

5.12.4 Loop Constructions

Often you will require a process to be repeated a number of times or until a
certain condition is met. This calls for LOOP constructions. There are three
basic forms of loops. One that runs a given number of times , and one that runs
until a condition is met.

5.12.5 For Next

This is the basic looping construction. You use this to execute a certain action a
given amount of times. The For-Next clause can handle all variables.

For x = 1 to 10
next x

Counts from 0 to 10

for y = 10 to 0 step -1
next y

This counts from 10 to 0

for z = -1.5 to 125 step +0.01
next z

Counts from –1.5 to 125 in steps of 0.01 : -1.5 , -1.49 , -1.48 … 124.98 , 124.99
, 125.

86 Visual Basic for Electronics Engineering Applications

Note :
It is not allowed to change the counter value from within the loop. This is a
common mistake that is often made. The construct allows you to do this.
However this can lead to system lock-ups. Programmers often use this
technique to prematurely abort the execution of the FOR loop. DON’T do
this. ! There is an Exit For statement

If you need to exit the For-Next loop prematurely then you should use the
Exit-for statement.

For x = 0 to 100000
 If x = 125 then exit for

Next x

The counter would normally run from 0 to 10000. However if it reaches
125 the Exit-for command will abort it end resume execution after the Next
x.

5.12.6 While wend

This is a looping procedure that runs as long as a certain condition is true.

The checking of the condition occurs before execution of the sequence. This
means that if the condition is already met from the beginning , the sequence will
not be executed.

While <condition>
< statements >
Wend

87 Visual Basic for Electronics Engineering Applications

If you need to abort this sequence you should use the exit-do statement.

While x <5
X=X+1
Debug.print x

Wend

The above construction will run until x = 5 and then exit. If I set x to 6 initially
the While-Wend will not be executed. The test is at the top. So X will not be
incremented to 7. This is different in the next construction

5.12.7 Do Until

This is the other looping construct in Visual basic. It is similar to the While-
Wend construct except that the testing of the condition happens at the end of the
sequence. This means that , no matter what , the sequence will always be
executed at least once.

Do
<statement>

<statement>

…

Loop until <condition>

Example :

Do
X =x +1

Loop until x >5

If I start here with x initialized to 6 then it will be incremented to 7 before it is
tested against the condition clause.

The same rule as for the While-wend applies. Never jump out of this
construction. Use the exit-do command. The problem with jumping out is that
some residual stuff is left on the stack of the program execution. The compiler

88 Visual Basic for Electronics Engineering Applications

checks for this and inserts cleanup code to work around this. However this is not
fail safe and might lead eventually to a system level crash.

5.13 String manipulation Left$ - Right$ - Ltrim$ - Rtrim$

When working with strings you will often manipulate their contents. In VB
there is a rich instruction set to manipulate strings.

Suppose a$ contains “How are you?”

5.13.1 Left$

This command takes the left n characters from a given string

T$ = Left$ (a$,3) ‘ t$ now contains “How”

5.13.2 Right$

This command takes the right n characters from a given string

t$ = Right$ (a$, 4) ‘ t$ now contains “you?”

5.13.3 Mid$

Just like it’s smaller brother Left$ and Right$ this allows to you to extract a
given amount of characters starting at an offset in a string

89 Visual Basic for Electronics Engineering Applications

a$ = “How are you ?”

t$ = Mid$ (a$, 4, 3) ‘ t$ will contain “are”

5.13.4 Ltrim$ / Rtrim$ / Trim$

These functions remove 'whitespace' at the beginning and / or end of the string.
‘whitespace’ is any non-printable character. So everything that is not a letter ,
number or punctuation mark will be removed. These functions are very useful to
manipulate user input. Or file input from an unknown origin.

A$ = LTrim$(b$)

5.13.5 Ucase$

This function converts a given string to an all-uppercase string.

A very useful combination of these functions is often the following :

 a$ = Ucase$ (Ltrim$ (Rtrim$ (a$)))

This strips off any leading and trailing ‘whitespace’ and converts it to an
uppercase only string. If you want to write a small command interpreter or
macro tool you will use this construct very often.

90 Visual Basic for Electronics Engineering Applications

5.13.6 VAL and STR$

These functions are used to convert numbers to and from string. The VAL
function extracts a number form a string. The routine stops scanning at the first
encounter of a non-number character. VAL is also capable of recognizing
scientific format numbers (-1.2 e-15) and different based numbers

print val (“10 hello”) ‘ prints 10
print val (“&h10 bye”) ‘ prints 16
print val (“-1.55 test”) ‘ prints -1.55
print val (“-1.5e-55 ok”) ‘ prints -1.5e-55

The STR$ function has the opposite effect. It converts any number to its string
style representation..

a$ = Str$(125) ‘ will return as string
containing “123”

5.13.7 LEN

While not really a string manipulation function it is used in conjunction
with these functions. LEN tells you exactly how long a string is. If it is
empty a Zero is returned.

B$ = ”HELLO”
For x = 1 to len(b$)

 Debug.print mid$(b$,x,1);” “;
next x

This will output 'H E L L O' to the debug windows. It checks how long the
string is and then will extract the character one by one , print them and send a
space behind

91 Visual Basic for Electronics Engineering Applications

5.13.8 INSTR

This is a search routine that allows you to find strings in other strings. You can
use this to search for words or special characters

X = instr(”HELLO”,”E”) ‘ will return 2

Upon execution X will contain 2. This means that an ‘E’ was found at position
2.You can also specify an offset

X = instr(”HELLO THERE”,”E”,3) ‘ will return 9

Now the result is 9 because you started searching at position 3 (the first L) and
found an E at position 9.

5.14 File Manipulation (Open – Close – Print – Input)

During your programming work you will often find yourself in a situation where
you need to store something to disk or retrieve it; The information can be all
sorts of data , whether it be numerical , text , binary or even an entire database
with linked lists , records , custom styles etc .. . Well you could have not picked
a simpler language . Basic in general is probably the only language where file
manipulation is so simple , yet at the same time so extended.

Due to the numerous things you can do with files this topic will be covered
many times over the course of this manual. In this section we will only cover
basic file manipulations.

Files are referenced to using ‘handles’. A handle is a storage space that the
computer uses to remember where the file resides physically on disk , at what
position you are reading , and what the current file status is. The handle itself
‘points’ to this information.

92 Visual Basic for Electronics Engineering Applications

A handle is specified by using the # sign followed by a number. You can use
your own numbering scheme or you can ask the system to give you a handle
.The function 'freefile' checks for a free handle , allocates it and returns it
to you.

5.14.1 Basic structure to open a file.

Open <filename> for <mode> as <handle>

where:

<Filename> is any valid filename. This can include drive / network path / path /
filename <mode> can be input, output, random, binary, append and
<handle> any handle which is not already in use.

outfile = freefile ‘ retrieves a free
handle

appfile = freefile ‘ retrieves another free
handle

myappfile = ”appfile.txt”
open “myfile.txt” for input as #100
open “myfile.out” for output as outfile
open myappfile for append as appfile

The above examples show you the basic modes of operation and the different
ways you can specify a filename and handle. The open command also has some
optional parameters that allow you to share or lock it while you are working
with it. This is useful when running files over a network (databases). You can
even specify if it is to be locked for write or read. This would lead us to far for
now.

Whenever a file has been opened it should be closed when done with. Therefore
you can use the close command. If you use CLOSE without parameters you will
close ALL handles to any file currently open. If you use 'close' with a file handle
it will close this file. If the handle does not exist it will do nothing.

93 Visual Basic for Electronics Engineering Applications

Close #1 ‘ close file with handle 1
Close ‘ close all files

15.4.2 Output mode

When you open a filename for output then 2 situations can occur : either the file
exists or it doesn’t. When it doesn’t then it will be created . If it exists it , a copy
will be made to the same name but with a .BAK extension and then the original
file will be overwritten.

Data can be written to a file using the print command in conjunction with the
handle

outfile = freefile ‘ retrieves a free
handle

open “myfile.txt” for output as outfile
 print #outfile,”HELLO”
close outfile

5.14.3 Append mode

In case you don’t want to overwrite an existing file but store more data into it
you can use the append mode. The data you send to it will be written at the end
of the current file. To store data you can again use the print method.

94 Visual Basic for Electronics Engineering Applications

open “myfile.txt” for append as #1

5.14.4 Input mode

If you want to read something from a file this is one of the possible ways to
retrieve the data. This opens a file for read.

open “myfile.txt” for input as #1

5.14.5 Storing something in a file

This is easy : just use Print to send it to the file

myfile = freefile
open “test.txt” for output as #1
print #1 , ”Hello world”

close #1

Any accepted print expression can be sent to a file.

Note :
This is the only place in visual basic where you can still use the Print
statement like it used to be implemented in regular basic. All other cases
treat Print as a method of an object. Even the DEBUG object .

Since I have not explained print yet this is a good point to do it.

95 Visual Basic for Electronics Engineering Applications

5.14.6 PRINT constructions (file I/O)

Print is a tremendously versatile command. You can send nearly anything to it
for printing. In Visual Basic you can only use the native print in combination
with files. All other print statements are actually methods of objects (textboxes ,
printers , even the Debug object).

There are two basic ways of invoking print : send it a data list , or first build a
string and then send it. The end result is the same but the execution is not. A
data list requires the compiler to move all data bit by bit to the printing code.
This takes time but does not use memory. The string-building way requires
scratch memory to build the string but is a lot faster since only the entry point to
the string is passed. Anyhow , in today’s optimizing compilers the end result is
the same.

5.14.6.1 Data list Style

Name$=”USER”

Number=1

Print #1,”Hello ”,name$,”You are my No”,number

This will output “Hello USER You are my No 1”. Strange ? No !. The
comma really means ‘move to the next tab’. If you do the following

Print #1,”Hello ”;name$;” You are my No”;number

You will get a string as you would expect it. The string printed automatically
gets a CR/LF pair appended (Carriage return Line Feed). If you want to
suppress this you simply append a semicolon at the end of the expression.

For a = 0 to 10
Print a

Next a

96 Visual Basic for Electronics Engineering Applications

Results in a list of numbers

For a = 0 to 10
Print a;

Next a

Results in “12345678910”

5.14.6.2 String style

Name$=”USER”
Number=1
Print #1,”Hello ”+name$+”You are my
No”+str$(number)

This first builds a complete string sand passes it to the print command.

Note :
You can only pass strings to this style. So you must manually convert any
numbers to strings before adding them with the + sign.

The same trick as with the 'Datalist' style applies here. By ending with a
semicolon you can omit the CR/LF insertion. Instead of using the + operator
you can now also insert the & operator. This is new in Visual Basic. The end
result is the same.

5.14.7 Reading from a file

Here you have several options but the most used will be the Line Input. This
retrieves an entire line from a file. It scans the file from the current location to
the first occurrence of a CR/LF (carriage return / line feed). There are other

97 Visual Basic for Electronics Engineering Applications

ways to retrieve data but they are used to extract records, a known amount of
bytes or binary data. These functions will be discussed later on in this book.

Open “myfile.txt” for input as #1
while not eof (1)

line input #1,a$
textbox1.text = textbox1.text +a$

+Chr$(13) +Chr$(10)

wend

close #1

The above piece of code will read an entire text file and dump it into a textbox.
Since the Line Input statement reads a line , but removes the trailing CR/LF
pair we have to add it to the textbox.

5.14.8 Determining file end

When you are reading from a file you should take care not to read beyond the
end of it. This will result in an error. There is a function EOF that returns you
whether you have reached the end of the file. The above example shows you
how to use it. Not that you can use this only in conjunction with the input mode.
If you are manipulating binary files you can read beyond the end. There you
should use the LOF operator before performing any read. More on this later on
in the book.

5.14.9 File names

Any valid windows file can be opened. Attempting to open a non-existing file
can have two outcomes. In case the mode is output it will be created. In case the
mode is input you will be stuck with a runtime error. You should especially take
care with routines that allow the user to specify a file. There are ways to detect
the validity of a filename. However ,there is a much simpler way. Simply use
the Commondialog FileOpen and FileSave to handle all of this for you. This
object is dealt with in Part II.

98 Visual Basic for Electronics Engineering Applications

99 Visual Basic for Electronics Engineering Applications

Chapter 6 :

Creating a user

interface

Lets take a look on how to make a form for our project.

6.1 Creating The Form

We start the VB environment and select standard EXE format. An empty form is
being displayed. To add control you select a control out of the Control Toolbox
and then drag the outline of it on your form.

All controls on a form take up control handle space available to the form . A
form has a handle space limited to 255 (one byte) handles. This means a form
can have a maximum of 255 controls. There are ways to extend this number .
They will be discussed in the examples later in this guide.

Note :
jIn a pro ect containing multiple forms this still means that every form can

have 255 controls.

100 Visual Basic for Electronics Engineering Applications

Lets add a button to our form and edit the properties Caption and Name of it
The Name has been set to MyButton and the caption to Go. As you can see an
ampersand (&) also denotes a hotkey , just like in the menu editor

Now lets add another object. Lets say a label . We will call the label Mylabel
and set its caption to an empty string

Now we have an object that can generate events (the Command button) , and
an object that can be used to display something. We now still need a way to give

101 Visual Basic for Electronics Engineering Applications

the user the option to terminate our program. A Windows program is not like a
classic program with a beginning and an end. The flow of a windows program is
not linear. When the program is started a lot of stuff is happening at the same
time . It's the users option to terminate it. So you need to have an explicit means
of terminating a program. We could give the user this means using another
command button , but a menu looks nicer

This menu has 3 entries. The first will show the user a message about the
program . The second entry is a divider line and the last one will allow the user
to Quit the program. We have now come to the stage where the user interface is
ready and we can start attaching code to our program.

6.2 Arrays of Objects and Controls

CTRLarray.vbp

In some cases you will have more then 255 controls. Or you might want to have
an easy indexing system using controls. A typical example is a keypad. Instead
placing 10 command-buttons on the form you can place an array of 10
command-buttons . This uses only one handle. Furthermore the attached code is
common for all controls; You have to write only one procedure to handle all
these events.

102 Visual Basic for Electronics Engineering Applications

Creating arrays of objects is easily done by drawing the first object , giving it a
name and then copying it. (<CTRL> - C / <CTRL>- V)

After you place the first copy the environment will ask you if you want to create
a control array. You answer yes. You will notice that the index property will
contain a value. This value indicates the position in an array.

For a keypad you would create a button called Keypad and give it as caption ‘0’.
This will be the item 0 in the array. Then you copy it . Since you answered yes
on the question Create a control array ‘ the newly placed object will get 1 as
index. And so on. All you have to do now is change the caption accordingly.

When you click any of the controls in the control array you will see the same
piece of code. But remark that now a parameter called index is being passed.
This indicates you which of the elements in the array really generated the event.
In case of our keypad the index relates directly to the number.

Another application of control arrays is to store labels. A typical form might
contain a lot of labels that are wasting valuable resource space. Since labels
have no use in generating events (nobody will ever do something with them
apart from reading them) it’s a good idea to store them in an array. That way
you only use one handle.

One nice thing about control arrays is that you can add or remove elements at
runtime. You can for instance add a button to the screen from within runtime.
Or you can add an item to a menu bar (provided the part of the menu has been
created as a control array).

Note :
You cannot remove the first item in a control array. Typically the first item
is set invisible and then items are added as needed with the visible flag
turned on.

The CD-ROM contains a sample project that shows you all of this
functionality.. Feel free to explore this piece of code and or use it as a reference
when creating your own programs

103 Visual Basic for Electronics Engineering Applications

Chapter 7 :

Attaching code to

your form

The events generated by user activity will invoke different parts of your
program. To specify what you want to be done you have to start writing code.
Since you are working in an event driven world the actual code writing will be
limited to what cannot be done by the system.

7.1 Attaching code to objects

To add code to an object you simple double click it. A code editor window will
open and show you the code attached to it. By default the most used event is
displayed. In case of the button this is the Click. This can be different for every
control .In case of text box the default event will be the change event. You can
select events belonging to an object using the right pull-down menus on the
code window. With the left pull-down menu you can also select an object .

104 Visual Basic for Electronics Engineering Applications

The code editor has a number of very interesting features which make
programming very easy. As you are typing code the editor evaluates what you
are typing and show online help. If you type the name of one of the objects and
put a dot behind it, the system will automatically show you a list of all the
properties and methods you can control from within code. If you are calling
functions or procedures, it will automatically show you what they expect and in
what order. This even works for your own defined procedures and functions.

The moment you reach the end of the line and press return the editor evaluates
what you just wrote and will comment if it finds any syntactical errors in your
line. this will help you already eliminate typing errors and syntax errors before
you even compile it the first time.

7.2 Let’s Attach some code

So lets attach some code. First of all we want to display the text ‘Hello World’
when we click on the Go button. To do this you simply double click the Go
button and the code viewer will present you with the correct routine.

105 Visual Basic for Electronics Engineering Applications

While you are typing the editor evaluates what you are typing and attempts to
assist you. Since we want to change a property (the Caption) of MyLabel , we
start typing Mylabel. (note the dot !) , and then the editor kicks in and shows a
list of what properties can be changed. It is sufficient to type now a few letters
of the property name until the selector bar is right. You can now select this
property by pressing the TAB button , or you can type the name completely.

106 Visual Basic for Electronics Engineering Applications

The above figure shows you the complete program. When you click the
'Aboutmenu' item (on the Menu bar) then the caption of the Mylabel object is
going to be changed into ‘My first program’. The same goes for a click on
Mybutton. Finally a click on the Quit button will terminate the execution of the
program.

Note :

Module. , easier to read and

In general the code attached to a form should only contain directly linked
subroutines or functions. If you need to define a dedicated function , store it
in a This keeps your code transparent
maintain. For more information refer to chapter 9..

Now we are ready to run and compile our first program.

107 Visual Basic for Electronics Engineering Applications

Chapter 8 :

Running and

debugging a

program

Now that you have created a user interface and attached code to it’s about time
we check if it actually does something . The VB environment allows you to run
and debug your code in an easy to use way. This chapter will detail on how to
trace and fix errors rapidly.

8.1 Running a program

To run a program you can either select the Run-Start (F5), Run-Start with full
compile (shift-F5) or the Run button on the toolbar. When you press the Run
button on the Toolbar you are actually just executing the Start command.

8.1.1 Start , Break , Stop

The difference with them is the following : When you come from the situation
where your code is not running it doesn’t really matter. Both options will

108 Visual Basic for Electronics Engineering Applications

compile your code into an exe file and launch them. The difference is when the
program aborts due to an error. If you debug your code and modify it you can
continue the run by executing the Start command. If you select the Start with
full compile your program will restart it’s run completely.

When your program is running you can halt execution by using CTRL-Break.
Or by clicking the Break button on the toolbar.

Upon Break , you will be shown your code . you can then edit and continue
running the program. This allows you to make on-the-fly modifications and see
their impact.

Note:
With break you cannot edit the user interface. Only the code can be
modified. The reason is that the control structures need to be recompiled if
you change the interface. Your code is interpreted on the fly. When you
really make an EXE then your code also is compiled into machine language

The stop button finally ends the execution. If , during the execution of your
program, a real error occurs then visual basic will halt execution and ask you
what to do.

8.2 Debugging a program

If for some reason , something goes wrong (now how did that happen ? ☺) ,
you will be presented a warning and a number of options on how to proceed.

109 Visual Basic for Electronics Engineering Applications

The runtime error-code is displayed together with a brief blurb on what the code
means.

If you select End then the execution simply halts. Pressing help will display
information about the nature of the error. The Debug button however is the most
interesting.

When you press debug the code viewer will take you immediately to the line in
your code where the error occurred. Now you are in Debug mode. Now you can
trace the flow of your program , examine variables etc.

8.3 Examining Variables

You can examine the contents of the variables and properties you access inside
the current procedure. This is useful to detect if some parameters are being
passed correctly or if you don’t misuse certain variables.

To do this just move your mouse over a variable or property and a small box
will appear below the mouse-pointer to show you what is stored in the variable.
Most problems are related to variable abuse.

110 Visual Basic for Electronics Engineering Applications

8.4 Advanced Debugging : The Watch Window

This window appears automatically when watch expressions are defined in the
project.

You can:

¾ Change the size of the column headers by dragging its border to the right to
make it larger or to the left to make it smaller.

¾ Drag a selected variable to the Immediate window or the Watch window

¾ Close the window by clicking the Close box. If the Close box is not visible,
double-click the Title bar to make the Close box visible, then click it.

8.4.1 Window Elements

also appears. Cancel a change by pressing ESC.

Expression Lists the watch expression with the Watch icon, on the left.

Value List the value of the expression at the time of the transition to
break mode. You can edit a value and then press ENTER, the
UP ARROW key, the DOWN ARROW key, TAB,
SHIFT+TAB, or click somewhere on the screen to validate the
change. If the value is illegal, the Edit field remains active and
the value is highlighted. A message box describing the error

Type Lists the expression type.

111 Visual Basic for Electronics Engineering Applications

Context Lists the context of the watch expression.

If the context of the expression isn't in scope when going to break mode, the
current value isn't displayed. You can close the window by clicking the Close
box. If the Close box is not visible, double-click the Title bar to make the Close
box visible, then click it.

8.4.2 Add Watch command

At design time or in break mode, this command displays the Add Watch dialog
box in which you enter a watch expression. The expression can be any valid
Basic expression. Watch expressions are updated in the Watch window each
time you enter break mode.

Toolbar shortcut:

112 Visual Basic for Electronics Engineering Applications

8.4.3 Add watch dialog box

Use to enter a watch expression. The expression can be a variable, a property, a
function call, or any other valid Basic expression. Watch expressions are
updated in the Watch window each time you enter break mode or after
execution of each statement in the Immediate window.

You can drag selected expressions from the Code window into the Watch
window.

Important When selecting a context for a watch expression, use the narrowest
scope that fits your needs. Selecting all procedures or all modules could slow
down execution considerably, since the expression is evaluated after execution
of each statement. Selecting a specific procedure for a context affects execution
only while the procedure is in the list of active procedure calls, which you can
see by choosing the Call Stack command on the View menu.

113 Visual Basic for Electronics Engineering Applications

Dialog Box Options :

Expression :

Displays the selected expression by default. The expression is a variable, a
property, a function call, or any other valid expression. You may enter a
different expression to evaluate.

Context:

Sets the scope of the variables watched in the expression.

¾	 Procedure :Displays the procedure name where the selected term resides
(default). Defines the procedure(s) in which the expression is evaluated.
You may select all procedures or a specific procedure context in which to
evaluate the variable.

¾	 Module : Displays the module name where the selected term resides
(default). You may select all modules or a specific module context in which
to evaluate the variable.

¾	 Project : Displays the name of the current project. Expressions can't be
evaluated in a context outside of the current project.

Watch Type Determines how Visual Basic responds to the watch
expression.

¾	 Watch Expression : Displays the watch expression and its value in the
Watch window. When you enter break mode, the value of the watch
expression is automatically updated.

¾	 Break When Value Is True : Execution automatically enters break mode
when the expression evaluates to true or is any nonzero value (not valid for
string expressions).

¾	 Break When Value Changes : Execution automatically enters break mode
when the value of expression changes within the specified context.

8.4.4 Quick Watch command (Shift F9)

114 Visual Basic for Electronics Engineering Applications

Displays the Quick Watch dialog box with the current value of the selected
expression. This is only available in break mode. Use this command to check
the current value of a variable, property, or other expression for which you have
not defined a watch expression. Select the expression from either the Code
window or the Immediate window, and then choose the Quick Watch command.
To add a watch expression based on the expression in the Quick Watch dialog
box, choose the Add button.

8.4.5 Quick watch dialog box

Displays the current value of a selected expression. This functionality is useful
when debugging your code if you want to see the current value of a variable,
property, or other expression.

Dialog Box Options

¾	 Current Context: Lists the names of the project, module, and procedure
where the watch expression resides.

¾	 Expression : Shows the selected expression.

¾	 Value: Shows the value of the selected expression. The current value isn't
displayed if the expression context isn't within a procedure listed in the
Calls dialog box.

115 Visual Basic for Electronics Engineering Applications

8.4.6 Edit Watch command

Displays the Edit Watch dialog box in which you can edit or delete a watch
expression. Available when the watch is set even if the Watch window is
hidden. Not available at run time.

 . Keyboard shortcut: CTRL+W. Toolbar shortcut:

8.4.7 Edit Watch Window

Use to delete or edit the context or type of a watch expression.

Important When selecting a context for a watch expression, use the narrowest
scope that fits your needs. Selecting all procedures or all modules could slow
down execution considerably, since the expression is evaluated after execution
of each statement. Selecting a specific procedure for a context affects execution
only while the procedure is in the list of active procedure calls.

116 Visual Basic for Electronics Engineering Applications

8.5 Using Breakpoints

Breakpoints are maybe the most important trick in the debugger’s hat. You can
set a breakpoint on any executable line of code. When , during execution , the
compiler reaches a line of code with a breakpoint set it will halt the execution.
You can then examine variables or change the flow of the program.

Note:
Breakpoints are saved into you project. When you compile code containing
breakpoints they are suppressed. Compiled code cannot be halted by
breakpoints. They only work inside the IDE of Visual Basic

You can set a breakpoint by clicking in the column before the line you want to
set it. A red dot will appear showing you a set breakpoint. Clearing it is equally
simple. Simply repeat the action. When the code is running and reaches the
breakpoint a yellow arrow will appear in front of the line where the run was
halted. You can examine variables now. You can also move the arrow down or
up. This way you can alter the program flow. Be careful however, this is tricky
stuff and might not always lead to what you intended it to.

117 Visual Basic for Electronics Engineering Applications

Note:
Breakpoints halt the tagged line. If there are multiple commands separated
by semicolons on a single line then the first of them is halted. The others
cannot be halted. In order to use breakpoints to their full extent you should
make sure only one statement per line of code is present in your program.

8.6 the Debug Object

Another way of examining data and program flow is to insert calls to the
DEBUG object. This is an embedded object of the IDE. When compiling code
this objects is made empty. This means that the calls are omitted. So the end
user will not see these messages. You can call the immediate window (debug
window) by pressing CTRL-G. You can simply print messages to debug by
referring it as debug.print “something”.

Sub Form1_load()
Debug.print “ program started”

End sub

Sub Quit_click()
Debug.print “ Bye !”
End

End sub

The contents of this immediate window are preserved even after the run of the
program is terminated. This means it can be used to track nasty bugs in bailout
code , or things that happen even before a user interface is visible.

You cannot delete text from this window while the program is running. Once it
is stopped you can select lines and use cut copy and paste commands just like
you can with any regular window.

118 Visual Basic for Electronics Engineering Applications

119 Visual Basic for Electronics Engineering Applications

Chapter 9 :

Distributing a

program

Now you have come to the point where you have program that is to your best
knowledge bug free. The last step is to make a distributable version of the
program.

9.1 The First steps …

The first step is to compile it to an executable format. Clicking on the ‘File’
menu and selecting ‘Make Executable’ in the design environment can easily do
this.

If you click this menu item the compiler will build an executable version of your
program.

You can now run this project on your computer without needing Visual basic.
However if you would like to distribute it you might run into some trouble. For
starters , you r project might use certain controls that reside in separate .VBX
.OCX or .DLL files. Sometimes it’s not always easy to figure out what exactly
is needed. Furthermore your target user might not have the correct version of the
files you use in your program.

But , don’t despair ! VB has a wizard aboard which does all of this work for you
and creates a nice set of floppy disks you can use to install your program onto

120 Visual Basic for Electronics Engineering Applications

another computer . More , it even creates a nice Setup and uninstall program
that gives an extra Pro-touch to your application.

This wizard can be found in the program group of visual basic; It will guide you
step-by-step trough the creation of the distribution kit.

For the most part of the process all you have to do is clicking the Next button .
However some pages are interesting , and will be detailed on next.

121 Visual Basic for Electronics Engineering Applications

The first step you have to do is select the program’s VBP file. It’s a good idea to
select the option ‘Rebuild the project’. This will force a clean compile of all of
your code. Furthermore you will be sure the latest changes and bindings are
installed.

Note:
Bindings are the links between your program and external modules. These
bindings contain also module version information. It’s important to
distribute the right version of the external files. Otherwise your program
might not be able to run on someone else’s computer.

In the Options section you can select the kind of operation you want to perform.
For now the standard ‘Create a setup program ‘ will do just fine. However make
sure the ‘generate Dependency File’ is switched on. This again is used for the
bindings in your program.

122 Visual Basic for Electronics Engineering Applications

9.2 Specifying the Media

The next screen allows you to specify the kind of setup you want.

If you specify floppy disk you will have to make sure to have enough empty and
formatted floppy disks at hand. A better option in that case is to specify ‘disk
directories’. This will store the contents of the floppy disks in files on your hard
disk. You can then later make the distribution floppies.

Single directory is used if you want to store everything in one huge file or want
to write a CD with the software on.

The setup wizard will now ask you where you want the distribution files to be
located. You can select any valid directory. It’s a good idea to start in an empty
directory. The wizard will not touch existing files in the directory (if any should
exist). Therefore if the directory is not empty you might end up with more files
then you bargained for.

123 Visual Basic for Electronics Engineering Applications

The next screen will allow you to add custom files. This is interesting if you
want to add ‘readme’ files or setup files to the distribution kit. These files will
be packed also and installed on the target computer.

After this you will see a list of files that the wizard thinks are necessary for your
program. You can edit this list at will. However this is not such a good idea
since you might delete files that are really necessary.

For the remainder of the work you can simply click Next all the time. At a
certain point you will see that the wizard starts gathering the required files and
will compact them. In the final stage it will compile the actual Setup.exe
program.

When all is done the only thing you have to do (depending on the output format
you selected) is send the floppies to your user , or copy the files onto floppies ,
or maybe zip them and send them over the internet.

124 Visual Basic for Electronics Engineering Applications

125 Visual Basic for Electronics Engineering Applications

Chapter 10 :

Multi-module

projects.

During your programming work situations will arise where you will need more
then one form. You might want to give the user an options or setup form , or an
about form. Sometimes your program will include also custom routines that are
not directly related to events , but are called from other routines.

In any of these cases your project will be a multi-module project. To be honest ,
nearly every project , no matter how small , will most likely turn out to be a
multi-module project.

You can add items using the Project menu. To create a form simply select 'Add
Form'. Similarly a module can be created using the Add Module item.

10.1 Multiple Forms

Remember when we discussed the basic project form , we talked about the
startup form. Typically the first form you ever draw in a project is the startup
form. Other forms remain hidden until you call them. You can call in a form
with the Show method. Similar , you can hide it using the Hide method.

126 Visual Basic for Electronics Engineering Applications

MySecondform.Show

When the form is loaded then the focus is automatically set to the new form.
This means that keyboard and mouse operations will refer to this form. You can
select a different form by clicking it. In some cases you might want to ‘lock’ the
form. This means the user can do nothing until ha closes the new form. This can
be done using the vbModal option . If you specify this option then the user can
only work with this form until it gets closed.

MySecondform.show vbModal

To ease the programming work Visual basic has also something called a
Messagebox. This is a kind of predefined simple form that you can use to
interrogate the user. A number of parameters allow you to change the look and
feel of this form

MsgBox "Hello World", vbOKOnly + vbInformation,
_

"My first Message"

This gives the following result :

127 Visual Basic for Electronics Engineering Applications

10.2 Modules

Apart from forms there are also things called modules. A module is a piece of
code that has no user interface. It generally contains variable definitions ,and
user subroutines and or functions. It provides a means to neatly organize your
own functions.

A calculator program might have a custom function called calculate which takes
in two numbers and an operator and returns the result.

Function Calculate (a, b, operator)
select case operator
case plus

result = a + b
case minus

result = a - b
end select
calculate = result

end function

A module is also the place where you define your variables and constants. You
have to consider a module as a separate process. When your application is
compiled all modules are evaluated and their definitions are created. Then the
remainder of the module is compiled to a library and linked to the other parts of
the program.

10.3 Accessing items from other parts of the program

Since every form acts like a standalone unit this also means that 2 different
forms can have a control with the same name. The controls are completely
different since they have different handles.

Suppose a 3 form project and every form has a command button to close the
form. Logically you would call every close button simply CloseForm. Now
suppose you have a routine that closes all 3 forms. You could simply invoke the
commands from this routine. The only problem is knowing which one.

128 Visual Basic for Electronics Engineering Applications

Well the answer is simple. You just specify the parent object and then the
desired object belonging to this parent. In our case the code would look like this

sub Closeall()
call form1.close_click ()
call form2.close_click ()
call form3.close_click ()

end sub

This same rule applies to procedures inside a module. Actually your own built
procedures are no different then the ones attached to objects. You have to
specify the target object using its complete denominator. You can make an
analogy between a project and a hard disk.

The hard disk is the project itself. The user interface is the root account. In the
root of the project are forms (subdirectories) . Each form contains objects
(files) . Every object on this form can contain further objects (another layer of
directories . To reach an object from any given location you have to specify the
complete search path. Objects belonging to the same level (directory) can find
each other since they reside at the same level.

The only quirk in this analogy is that in the root there can only be a special kind
of object (forms) and they can only reside there.. once you go down then you
can have directories made of other objects.

129 Visual Basic for Electronics Engineering Applications

10.4 Root structure analogy of a project

As you can see in this graphical representation even a menu is a collection of
objects. Keep in mind thought that some objects can contain others. Some
special objects like Forms and menus are ‘awkward’. These objects have a
special function. They are called parental object. This means that they form the
basis from which the operating system detaches messages. A menu bar is also an
object , but a special kind that can only be linked to a parent of the class
‘Form’.

The particularities of this matter are dealt later on where the creation of custom
objects will be discussed.

130 Visual Basic for Electronics Engineering Applications

131 Visual Basic for Electronics Engineering Applications

Chapter 11 :

A couple of case

studies

This chapter will guide you step-by-step trough the creation of a couple of small
programs. This will provide you with a better understanding on how a program
is written in Visual basic.

The first program is a small text viewer / editor. It allows you to view and edit
files.

Topics such as insertable objects and system objects , textboxes and menus will
be explained. You will see how to open , read and write , and close files.
Furthermore it makes use of some of the components built into windows like the
clipboard

The second program describes a calculator.

This will deal with arrays of controls and creating a multi-module project. It will
show you how you can heavily optimize code by creating arrays of objects and
writing your own custom functions and procedures.

132 Visual Basic for Electronics Engineering Applications

133 Visual Basic for Electronics Engineering Applications

11.1 Case Study 1 : A small Text Editor

Textedit.vbp

In this case study we will create a small text editor. Basic file manipulation ,
using the commondialog control and accessing the windows Clipboard will be
explained.

Designing the user interface

As usual we first start visual basic and create a new Standard EXE project.

Since we will make a text editor the next logical step is to put a textbox on the
form. If look to the properties of the textbox you will find something called
‘multiline’ . When you set this to true then the textbox can contain multiple lines
of text. A CRLF will force the textbox to add a new line to its contents.

134 Visual Basic for Electronics Engineering Applications

Since our edit can read files up to 32000 characters it might be a good idea if we
would have some means to scroll trough the text. Browsing trough the
properties quickly reveals the Scrollbars property. Setting this to Both displays
both a horizontal and a vertical scrollbar.

The next thing we should do is giving the user a means to load and save files.
We could go on and design our own load and save forms but , since this is
visual Basic , this already exists.

135 Visual Basic for Electronics Engineering Applications

Placing the custom control commondialog on the form gives you instant access
to such things as loading and saving files , selecting colors , selecting printers
etc.

We give this control also a name. The control position doesn’t matter . This is a
kind of control that has no GUI element attached to it. This means that when
your code starts running nothing appears. The interface of the control appears
only when you access some of its methods .

Now we should build a menu to allow the user to access the file load/save and
also to edit some text.

136 Visual Basic for Electronics Engineering Applications

To ease the editing work we attach the standard windows hotkey’s to the
controls for cut , copy and paste.

If you would run your program now you would see that you already could type
some text in the textbox . But this is of no much use since you could not save or
retrieve any document.

11.1.1 Attaching Code

The first thing to do is attach code to the Quit option on the menu. We will
simply end the execution . Enhancements could be detecting if the user has not
saved his work and display a warning that he might loose information.

137 Visual Basic for Electronics Engineering Applications

Now lets take a look into the Editing functions. The textbox control features a
property called Seltext. This property holds any text the user selects (
highlighted text). You can read and write this property. This means that , when
reading , you extract the text , and when writing , you change the selected text.

So all we need to do is store the contents of this property in a variable. Now we
could do this but then we have to define a global variable etc. And what if we
want to support copying and pasting across applications ?. Well windows has
something called the ‘clipboard’. We can use this clipboard from within visual
basic. A virtual object called clipboard exists. This object need not to be put
somewhere on your design form since it resides inside the operating system
itself

To learn more about the clipboard object it suffices to type clipboard with a dot
behind in the code window. VB will show you your options immediately.

As you can see the clipboard is a universal storage space for temporary data.
You can store and retrieve texts , images and formatting commands with it.

138 Visual Basic for Electronics Engineering Applications

The copy routine clears the clipboard , then retrieves the text the user has
selected and stores it onto the clipboard.

The Cut routine does exactly the same but afterwards sets the selected text to an
empty string. This way the text disappears.

For the paste routine we only have to extract the stored text from the clipboard
and dump it into the selected text. Now one nice thing about the Seltext property
is that , when no text is selected , the text is dumped at the current cursor
location. This means the user can insert text wherever he want by placing the
cursor there , or overwriting text by selecting it.

Now that’s done we can concentrate on loading and saving files. As explained
before we will use the commondialog control to facilitate this operation.

The control has a several methods attached to it. The ones we are concentrating
on are ShowOpen and ShowSave. Again when writing your code VB will assist
you.

139 Visual Basic for Electronics Engineering Applications

To ask the user for a filename you just call in the commondialog.showopen. The
user can then navigate his hard disk and select a file. He can also cancel this
operation

When a file has been successfully selected then the complete path and filename
is stored in the property Filename of the commondialog control.

140 Visual Basic for Electronics Engineering Applications

Private Sub openfile_Click()
dialog.ShowOpen ' show the

commondialog
On Error GoTo invalidfile ' if no file should

be selected
filename$ = dialog.filename ' retrieve the

filename
Open filename$ For Input As #1 ' open the file
Textbox.Text = "" ' clear contents of the

textbox
While Not EOF(1) ' as long as not end of

file
Line Input #1, a$
Textbox.Text = Textbox.Text + a$ + vbCrLF

Wend

invalidfile:
Close #1 ' close

the file
End Sub

When the user cancels the operation then no file has been selected and the
property filename will be empty. In this case attempting to open a non-existing
file will yield an error. Therefore we will test for errors during the execution of
the code and takes measures to solve it.

Since a commondialog is always appmodal the user cannot do something else .
He has to close the file selector first and then can continue to work.

141 Visual Basic for Electronics Engineering Applications

The final code for the entire text editor looks like this :

Private sub QuitProgram_Click()
End

End Sub

Private sub savefile_Click()
dialog.ShowSave
On Error GoTo invalidfile
filename$ = dialog.filename
Open filename$ For output As #1
Print #1,Textbox.Text

invalidfile:
Close #1

End sub

Private Sub openfile_Click()
dialog.ShowOpen ' show the

commondialog
On Error GoTo invalidfile ' if no file should

be selected
filename$ = dialog.filename ' retrieve the

filename
Open filename$ For Input As #1 ' open the file
Textbox.Text = "" ' clear contents of the

textbox
While Not EOF(1) ' as long as not end of

file
Line Input #1, a$
Textbox.Text = Textbox.Text + a$ + vbCrLF

Wend

invalidfile:
Close #1 ' close

the file
End Sub

Private Sub Cuttext_Click()
ClipBoard.Clear
ClipBoard.Settext Textbox.Seltext

 Textbox.Seltext=””
End Sub

142 Visual Basic for Electronics Engineering Applications

Private Sub CopyText_Click()
ClipBoard.Clear
ClipBoard.Settext Textbox.Seltext

End Sub

Private Sub PasteText_Click()
Textbox.Seltext=ClipBoard.Gettext

End Sub

143 Visual Basic for Electronics Engineering Applications

Case Study 2 : A Calculator

Calc.vbp

The work files for this project can also be found on the disk accompanying this
manual.

The goal of this exercise is to show you how to create arrays of controls and
how to create a project with multiple forms.

11.2.1 Designing the user interface

First of all you start up Visual basic and create a new standard exe project.

The main form is labeled ‘calculator’ and a commandbutton is created. The
command button gets as caption ‘0’ and as name Keypad.

The keypad we are about to design will be roughly divided in two sections. You
will have the numerical field that will be designed as a control array and the
other keys that are regular keys.

To create the array of objects you select the commandbutton and copy it (ctrl-c
or copy on the edit menu)

144 Visual Basic for Electronics Engineering Applications

Then you paste the object on the form by pressing ctrl-V or edit-Paste via the
menubar.

Visual basic will now ask you if you want to create a control array since you
already have an object named ‘keypad’ on your form.

You click Yes and a new control will be placed on your form . This control is an
exact copy of the original , except that it’s index property has been set to 1.

You move the object now into place and select it. Change the caption property
using the property navigator to ‘1’. Continue this until you have all the numbers
from 0 to 9. The result should look like this:

145 Visual Basic for Electronics Engineering Applications

The last placed object will have index 9.

Now we can continue placing the other control buttons. The four operators will
be called plus, minus, divide and multiply. A dot button will also be created.
The next and last 3 buttons will be the CE , C and = button. These will allow
you to correct errors and to actually execute the calculation.

CE will be named clearerror , C will be named clearall and = is called calculate.

Finally a textbox is placed on the form and named ‘display’.

The result should look somewhat like this:

146 Visual Basic for Electronics Engineering Applications

The last thing we should do is creating a small menu that allows the user to exit
the program. To do this you start the menu editor and build a small menu.

Now that we have everything in place we can start writing code for our
application.

147 Visual Basic for Electronics Engineering Applications

11.2.2 Writing Code

The first thing that needs to be done is deciding if we need any variables and or
constants. If yes they should be stored in a module.

It might be a good idea to store entered values in two variables. Also the
selected operator should be stored somewhere. To make the code readable we
will define constants for the operators. This will allow us to refer to names
instead of numbers. The code will be easier to understand later .

To do this you select the Project menu and click on ‘Add-Module” . In the
project browser you will see that an empty module has been created and
attached to your project.

In this module we will define the variables and constants discussed above.

148 Visual Basic for Electronics Engineering Applications

The variables firstnumber, secondnumber and operator have been defined as
global. This means that they can be accessed and modified from anywhere in the
program. The same goes for the operators that are stored as global constants.!.

As you type you will see again that the VB code editor will color the text. This
gives you immediate feedback on the correct syntax of your code.

Now that this is done we can start creating code for our project.

149 Visual Basic for Electronics Engineering Applications

11.2.3 Attaching code to the user interface

Let’s start with the keypad. Double click any of the buttons of the keypad. The
code editor will open up and show you the appropriate section of the program
code.

As you can see the keypad click event returns an index to show you which one
of the keys in the array of objects actually invoked the event. We will use this
index value to update the contents of the display.

All we do is simply convert the number to a string using the STR$ function.
Since the STR$ returns a string beginning with a leading space we strip off this
space using the LTRIM$ function

The dot operator will simply add a dot to the display. A point for improvement
would be to check if there is already a dot and decide whether to put it or not.
But this would take us too far from the basic programming course. Nah .. it
won’t . Since we are programming in Basic this is dead easy.

150 Visual Basic for Electronics Engineering Applications

if instr (display.text, ”.”) = 0 then
 display.text = display.text + ”.”
end if

These two functions will allow you to enter a number using the mouse and the
keypad.

So far you have written exactly 3 lines of code. Pretty neat huh ? So now lets
create the code for the operators and other buttons. To do this simply double
click any of the remaining controls and you will be able to attach the rest of the
code. For the operators we will set the variable operator to one of our constants.

Later in the real calculation part we will use these constants again to decide
what needs to be done.

The CE and C buttons do nothing else then clear the display (CE) and the
variables holding the 2 numbers and the operator (C)

The code for the other buttons will look like this :

Private Sub clear_Click()
display.Text = ""

End Sub
Private Sub clearerror_Click()

display.Text = ""

 firstnumber = 0

secondnumber = 0

operator = 0

End Sub
Private Sub divide_Click()

firstnumber = Val(display.Text)
display.Text = ""
operator = div_operator

151 Visual Basic for Electronics Engineering Applications

End Sub
Private Sub minus_Click()

firstnumber = Val(display.Text)
display.Text = ""
operator = minus_operator

End Sub
Private Sub multiply_Click()

firstnumber = Val(display.Text)
display.Text = ""
operator = mult_operator

End Sub
Private Sub plus_Click()

firstnumber = Val(display.Text)
display.Text = ""
operator = plus_operator

End Sub
Private Sub quitProgram_Click()

End
End Sub

Now for the real workhorse. The = button . This button will actually calculate
and display the result. This takes some programming logic to figure out exactly
what to do and how to do it. Fortunately there is the Select Case construction
that will help us out here

152 Visual Basic for Electronics Engineering Applications

Private Sub calculate_Click()
secondnumber = Val(display.Text)
Select Case operator
Case plus_operator

result = firstnumber + secondnumber
Case minus_operator

result = firstnumber - secondnumber
Case mult_operator

result = firstnumber * secondnumber
Case div_operator

result = firstnumber / secondnumber
End Select
display.Text = result
firstnumber = result
secondnumber = 0
operator = 0

End Sub

The last part of our work is to attach a few blurbs of code to the 2 menu items.
The about item will simply brag a bit about our program and the Quit menu will
neatly terminate our program.

When finished the complete code should look like this :

Private Sub aboutprogram_Click()
display.Text = "Calculator v1.0"

End Sub
Private Sub calculate_Click()

secondnumber = Val(display.Text)
Select Case operator
Case plus_operator

result = firstnumber + secondnumber
Case minus_operator

result = firstnumber - secondnumber
Case mult_operator

result = firstnumber * secondnumber
Case div_operator

153Visual Basic for Electronics Engineering Applications

result = firstnumber / secondnumber
End Select

display.Text = result

firstnumber = result

secondnumber = 0

operator = 0

End Sub
Private Sub clear_Click()

display.Text = ""
End Sub
Private Sub clearerror_Click()

display.Text = ""

firstnumber = 0

secondnumber = 0

operator = 0

End Sub
Private Sub divide_Click()

firstnumber = Val(display.Text)
display.Text = ""
operator = div_operator

End Sub
Private Sub dot_Click()

display.Text = display.Text + "."
End Sub
Private Sub keypad_Click(Index As Integer)

display.Text = display.Text +
LTrim$(Str$(Index))
End Sub
Private Sub minus_Click()

firstnumber = Val(display.Text)

display.Text = ""

operator = minus_operator

End Sub
Private Sub multiply_Click()

firstnumber = Val(display.Text)
display.Text = ""
operator = mult_operator

End Sub

154 Visual Basic for Electronics Engineering Applications

Private Sub plus_Click()
firstnumber = Val(display.Text)
display.Text = ""
operator = plus_operator

End Sub
Private Sub quitProgram_Click()

End
End Sub

Well that’s it. We’ve just made a calculator with only 37 lines of code , that has
a complete GUI and is entirely event driven.

155 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics
Engineering
Applications

Part II

The Advanced World of Visual Basic

156 Visual Basic for Electronics Engineering Applications

157 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics
Engineering
Applications
Part II :

The Advanced World of Visual Basic

Introduction to Part II

Well hello. You made it this far. Hope you enjoyed the first part. In this part I’ll
take you further into the nuts and bolts of VB programming.

In the first part you have seen the fundamentals of Visual Basic programming.
This course will build on the previous knowledge and dig deeper into the world
of Windows and VB programming.

158 Visual Basic for Electronics Engineering Applications

The main block of this part will explore the richness of the standard objects.
Things like Popup menus , MDI forms , Menu lists ,and Timers and more will
be explained. A section is dedicated to database manipulation and data access. I
will also show you how to embed other applications inside your programs.

The rest of this part will dig deeper in Windows and the things it is composed
of. The goal is to expose the inner workings of windows and of what use they
can be to a programmer.. Topics such as API accessing , DLL accessing will be
extensively covered.

The Last sections of this part will dig deeper into the computer. Topics such as
serial communication , and WinSock operations will be explained.

Enjoy !

159 Visual Basic for Electronics Engineering Applications

Chapter 12 :

One step beyond.

So far you have learned about objects, methods, properties and events. You
have seen what they are and touched some of the things you can do with them.
You also studied the command set of the Basic language. By this time you
probably will have written a small program yourself. Now it is time to dig a
little bit deeper in this new world ..

12.1 Forms

Lets take a closer look at the forms and what you can do with them. Typically a
program will consist of multiple forms. You should already know that you can
'show' and 'hide' a form. You can also Load and unload a form. Now what is the
real difference. The Form is typically the startup place of your program. Almost
100% of the applications have at least one form.

Typically the program begins with the form_load code of the main form. You
do not have to call this yourself. The compiler defaults to this procedure upon
executing the code. You can change this in the projects property dialog of
Visual Basic.

12.2.1 Load

160 Visual Basic for Electronics Engineering Applications

Loading a form means that windows allocated memory for the graphical part ,
the event processors , and the message queue. The moment a form is loaded it
starts consuming resources. The more controls there are on a form the more
resources will be allocated and the more time windows has to divert to it even if
the form is not being used.

When you execute the Form.Show command then windows checks if the
referred form is already loaded. If not it loads it and then shows it. If you hide a
form it only disappears from the screen. All the resources allocated to it still
remain locked.

From the above the following should be observed : if you extensively use forms
then you should take care to unload the unnecessary forms whenever you can.
Don’t simply hide them.

You don't need to use the Load statement with forms unless you want to load a
form without displaying it. Any reference to a form automatically loads it if it's
not already loaded. For example, the Show method loads a form before
displaying it. Once the form is loaded, its properties and controls can be altered
by the application, whether or not the form is actually visible. Under some
circumstances, you may want to load all your forms during initialization and
display them later as they're needed.

If you load a Form whose MDIChild property is set to True (in other words, the
child form) before loading an MDIForm, the MDIForm is automatically loaded
before the child form. MDI child forms cannot be hidden, and thus are
immediately visible after the Form_Load event procedure ends.

The standard dialog boxes produced by Visual Basic functions such as MsgBox
and InputBox do not need to be loaded, shown, or unloaded, but can simply be
invoked directly.

12.2.2 Unload

Unloads a form or control from memory.

Unload object

161 Visual Basic for Electronics Engineering Applications

The object placeholder is the name of a Form object or control array element to
unload.

Unloading a form or control may be necessary or expedient in some cases where
the memory used is needed for something else, or when you need to reset
properties to their original values.

Before a form is unloaded, the Query_Unload event procedure occurs, followed
by the Form_Unload event procedure. Setting the cancel argument to True in
either of these events prevents the form from being unloaded. For MDIForm
objects, the MDIForm object's Query_Unload event procedure occurs, followed
by the Query_Unload event procedure and Form_Unload event procedure for
each MDI child form, and finally the MDIForm object's Form_Unload event
procedure.

When a form is unloaded, all controls placed on the form at run time are no
longer accessible. Controls placed on the form at design time remain intact;
however, any run-time changes to those controls and their properties are lost
when the form is reloaded. All changes to form properties are also lost.
Accessing any controls on the form causes it to be reloaded.

Note:
When a form is unloaded, only the displayed component is unloaded. The
code associated with the form module remains in memory.

Only control array elements added to a form at run time can be unloaded with
the Unload statement. The properties of unloaded controls are reinitialized when
the controls are reloaded.

162 Visual Basic for Electronics Engineering Applications

12.2.3 Show

Shows a form or MDI form. If it is not loaded it will be loaded automatically

The Show method syntax has these parts:

Part Importance Description
Object Optional. An object expression that evaluates to an

object in the Applies To list. If object is
omitted, the form associated with the
active form module is assumed to be
object.

Style Optional. Integer that determines if the form is
modal or modeless. If style is 0, the form
is modeless; if style is 1, the form is
modal.

Ownerform Optional. 	 A string expression that specifies the
component that "owns" the form being
shown. For standard Visual Basic forms,
use the keyword Me

If the specified form isn't loaded when the Show method is invoked, Visual
Basic automatically loads it. When Show displays a modeless form, subsequent
code is executed as it's encountered. When Show displays a modal form, no
subsequent code is executed until the form is hidden or unloaded.

Note:
A form is bound to a certain mode. Typically a form is ‘modeless’ . this
means that acts just as any other from . You can however force a certain
‘mode’. You can stop windows until a particular form gets closed. This is
explained in detail later on

When Show displays a modal form, no input (keyboard or mouse click) can
occur except to objects on the modal form. The program must hide or unload a
modal form (usually in response to some user action) before input to another
form can occur. An MDIForm can't be modal.

163 Visual Basic for Electronics Engineering Applications

Although other forms in your application are disabled when a modal form is
displayed, other applications aren't. The startup form of an application is
automatically shown after its Load event is invoked. Here is an example of how
the Ownerform argument is used with the Show method:

Private Sub cmdShowResults_Click()
' Show a modal form named frmResults.
frmResults.Show vbModal, Me

End Sub

164 Visual Basic for Electronics Engineering Applications

12.2.4 Hide.

Hides an MDIForm or Form object but doesn't unload it.

object.Hide

If object is omitted, the form with the focus is assumed to be object.

When a form is hidden, it's removed from the screen and its Visible property is
set to False. A hidden form's controls aren't accessible to the user, but they are
available to the running Visual Basic application, to other processes that may be
communicating with the application through DDE, and to Timer control events.

When a form is hidden, the user can't interact with the application until all code
in the event procedure that caused the form to be hidden has finished executing.

If the form isn't loaded when the Hide method is invoked, the Hide method
loads the form but doesn't display it.

12.2.5 Modal / Modeless forms

In generic a form is Modeless. This means that it is just a window on the GUI. If
you want to create You can also create a Modal form. When a form is Modal
this means that it has the focus for input. All other forms belonging to the same
project are disabled. You can use this to notify the user of something and
waiting for a response. The user cannot deny the information since the program
stalls until he does something. Visual Basic supports the 2 types of Modal
forms. VbAppModal means that the other windows of the application are

165 Visual Basic for Electronics Engineering Applications

Idle
ions

Acti
i

i

Applicat
ve

Applicat on

Focus can
be sw tched

disabled . vbSystemModal means that all applications are disabled until the form
is hidden.

166 Visual Basic for Electronics Engineering Applications

12.2.6 MDI forms

Besides the standard look you can also create interfaces in what is called the
Multiple Document Interface or MDI.

The left part shows an MDI interface. The right part shows a standard interface.
Creating a program that does handle MDI is a bit more complex then a normal
program. Fortunately VB has a wizard that enables you to build an MDI
program very fast. To access this simply start the VB program wizard (File -
New application and select VB application wizard. In the first form specify a
MDI interface. The wizard will generate all necessary stuff for you.

167 Visual Basic for Electronics Engineering Applications

12.2 Menu’s

Let’s talk a bit more about menus. You have seen how to create them and how
to assign hotkeys to them. There is more stuff you can do with menus. Creating
a popup menu for instance, or adding items at runtime.

12.2.1 Popup menu’s

Popup.vbp

I’m sure you have seen a lot of programs that have popup menus. Generally
when you click with he right mouse button a menu of some sort pops up at the
current cursor location.

Well you can do this in Visual basic too.

object.PopupMenu menuname, flags, x, y,
boldcommand

The PopupMenu method syntax has these parts:

importance DescriptionPart
object Optional. An object expression that evaluates to

168 Visual Basic for Electronics Engineering Applications

an object in the Applies To list. If object
is omitted, the form with the focus is
assumed to be object.

Menuname Required. 	 The name of the pop-up menu to be
displayed. The specified menu must
have at least one submenu.

Flags Optional. 	 A value or constant that specifies the
location and behavior of a pop-up
menu, as described in Settings.

X Optional. 	 Specifies the x-coordinate where the
pop-up menu is displayed. If omitted,
the mouse coordinate is used.

Y Optional. 	 Specifies the y-coordinate where the
pop-up menu is displayed. If omitted,
the mouse coordinate is used.

Boldcommand Optional. 	 Specifies the name of a menu control
in the pop-up menu to display its
caption in bold text. If omitted, no
controls in the pop-up menu appear in
bold.

The settings for flags are:

Constant (location) Value Description
vbPopupMenuLeftAlign 0 (Default) The left side of the

pop-up menu is located at x.
vbPopupMenuCenterAlign 4 The pop-up menu is centered at

x.
vbPopupMenuRightAlign 8 The right side of the pop-up

menu is located at x.
Constant (behavior) Value Description
vbPopupMenuLeftButton 0 (Default) An item on the pop-up

menu reacts to a mouse click
only when you use the left
mouse button.

vbPopupMenuRightButton 2 An item on the pop-up menu
reacts to a mouse click when
you use either the right or the
left mouse button.

169 Visual Basic for Electronics Engineering Applications

Note
The flags parameter has no effect on applications running under Microsoft
Windows version 3.0 or earlier. To specify two flags, combine one constant
from each group using the Or operator.

These constants are listed in the Visual Basic (VB) object library in the Object
Browser.

You specify the unit of measure for the x and y coordinates using the
ScaleMode property. The x and y coordinates define where the pop-up is
displayed relative to the specified form. If the x and y coordinates aren't
included, the pop-up menu is displayed at the current location of the mouse
pointer.

When you display a pop-up menu, the code following the call to the popup
menu method isn't executed until the user either chooses a command from the
menu (in which case the code for that command's Click event is executed before
the code following the PopupMenu statement) or cancels the menu. In addition,
only one pop-up menu can be displayed at a time; therefore, calls to this method
are ignored if a pop-up menu is already displayed or if a pull-down menu is
open.

12.2.2 Adding images to menu’s

You might have seen already menus that contain bitmaps. This is not directly
possible from Visual basic (or from any other language for that matter). The
problem is that you manually need to write code for this. You cannot simply
hide this in some compiler option. You need to generate explicit program startup
and exit code. The icons or bitmaps need to be unloaded and destroyed upon
program exit.

However it can be done using API calls. API calls are explained in Part III. An
example will be given there on how to do this.

170 Visual Basic for Electronics Engineering Applications

12.3 Modifying menus from code

The menus you create at design time can also respond dynamically to run-time
conditions. For example, if a menu item action becomes inappropriate at some
point, you can prevent users from selecting that menu item by disabling it. In the
MDI NotePad application, for example, if the clipboard doesn't contain any text,
the Paste menu item is dimmed on the Edit menu, and users cannot select it.

You can also dynamically add menu items, if you have a menu control array.
This is described in "Adding Menu Controls at Run Time," later in this topic.

You can also program your application to use a check mark to indicate which of
several commands was last selected. For example, the Options, Toolbar menu
item from the MDI NotePad application displays a check mark if the toolbar is
displayed. Other menu control features described in this section include code
that makes a menu item visible or invisible and that adds or deletes menu items.

12.3.1 Enabling and Disabling Menu Commands

All menu controls have an Enabled property, and when this property is set to
False, the menu is disabled and does not respond to user actions. Shortcut key
access is also disabled when Enabled is set to False. A disabled menu control
appears dimmed.

For example, this statement disables the Paste menu item on the Edit menu of
the MDI NotePad application:

171 Visual Basic for Electronics Engineering Applications

mnuEditPaste.Enabled = False

Disabling a menu title in effect disables the entire menu, because the user cannot
access any menu item without first clicking the menu title. For example, the
following code would disable the Edit menu of the MDI Notepad application:

mnuEdit.Enabled = False

12.3.2 Displaying a Check Mark on a Menu Control

Using the Checked property, you can place a check mark on a menu to:

- Tell the user the status of an on/off condition. Choosing the menu command
alternately adds and removes the check mark.

- Indicate which of several modes is in effect. The Options menu of the MDI
Notepad application uses a check mark to indicate the state of the toolbar.

You create check marks in Visual Basic with the Checked property. Set the
initial value of the Checked property in the Menu Editor by selecting the check
box labeled Checked. To add or remove a check mark from a menu control at
run time, set its Checked property from code. For example:

172 Visual Basic for Electronics Engineering Applications

Private Sub mnuOptions_Click ()
' Set the state of the check mark based on
' the Visible property.
mnuOptionsToolbar.Checked =

picToolbar.Visible
End Sub

12.3.3 Making Menu Controls Invisible

In the Menu Editor, you set the initial value of the Visible property for a menu
control by selecting the check box labeled Visible. To make a menu control
visible or invisible at run time, set its Visible property from code. For example:

mnuFileArray(0).Visible = True ' Make the
control

 ‘ visible.
mnuFileArray(0).Visible = False ' Make the

control
 ‘ invisible.

When a menu control is invisible, the rest of the controls in the menu move up
to fill the empty space. If the control is on the menu bar, the rest of the controls
on the menu bar move left to fill the space.

Note Making a menu control invisible effectively disables it, because the
control is inaccessible from the menu, access or shortcut keys. If the menu title
is invisible, all the controls on that menu are unavailable.

173 Visual Basic for Electronics Engineering Applications

12.3.4 Adding Menu Controls at Run Time

A menu can grow at run time. In the image below, for example, as files are
opened in the SDI NotePad application, menu items are dynamically created to
display the path names of the most recently opened files.

You must use a control array to create a control at run time. Because the
mnuRecentFile menu control is assigned a value for the Index property at design
time, it automatically becomes an element of a control array — even though no
other elements have yet been created.

When you create mnuRecentFile(0), you actually create a separator bar that is
invisible at run time. The first time a user saves a file at run time, the separator
bar becomes visible, and the first file name is added to the menu. Each time you
save a file at run time, additional menu controls are loaded into the array,
making the menu grow.

Controls created at run time can be hidden by using the Hide method or by
setting the control's Visible property to False. If you want to remove a control in
a control array from memory, use the Unload statement.

12.4 Special Menu features

The menu system has a number of interesting features that can make life a lot
easier for the programmer.

174 Visual Basic for Electronics Engineering Applications

12.4.1 WindowList

A WindowList is a menu entry that automatically displays a list of available
windows in your program. This is only useful if you are programming MDI
interface. It allows the user to quickly jump from one window to another.

To add this to your application you simply select an entry in the menu editor and
check the WindowList checkbox.

175 Visual Basic for Electronics Engineering Applications

Note however that you can have only one WindowList in your menu bar.

12.4.2 Negotiating menu’s

When programming MDI style programs you can use a feature called
NegotiateMenus. You will find this property on any normal (non mdi-main)
form. When this is set to true the menu of the child window will be displayed on
the parent window.

12.5 Option Selectors

Option selectors are simple visual components that allow you to specify certain
selections or options. The simplest are Radio buttons and checkmarks. More
advanced selectors let you select from a list (Combobox and ListBox). Finally I
will show how to group selectors by using the Frame object.

Another type of selectors are listboxes. These allow the user to select an item
from a predefined list. Or in case of the ComboBox he can also type in an in-
existing item.

176 Visual Basic for Electronics Engineering Applications

12.5.1 Checkboxes

The checkbox is one of the simplest selectors in Windows. It allows you to turn
options on and off. A CheckBox control displays an X when selected; the X
disappears when the CheckBox is cleared. Use this control to give the user a
True/False or Yes/No option. You can use CheckBox controls in groups to
display multiple choices from which the user can select one or more. To display
text next to the CheckBox, set the Caption property. Use the Value property to
determine the state of the control—selected, cleared, or unavailable.

You can also set the value of a CheckBox programmatically with the Value
property. A value of 0 means it is not checked. A one means Checked and 2
means it is grayed out. If you set the value to 2 it will not respond to Click
actions.

12.5.2 OptionButtons or Radio Buttons

An OptionButton control displays an option that can be turned on or off.
Usually, OptionButton controls are used in an option group to display options
from which the user selects only one.

177 Visual Basic for Electronics Engineering Applications

Note :
CheckBox and OptionButton controls function similarly but with an
important difference: Any number of CheckBox controls on a form can be
selected at the same time. In contrast, only one OptionButton in a group can
be selected at any given time.

12.5.3 Grouping Radio Buttons.

You group OptionButton controls by drawing them inside a container such as a
Frame control, a PictureBox control, or a form. To group OptionButton controls
in a Frame or PictureBox, draw the Frame or PictureBox first, and then draw the
OptionButton controls inside. All OptionButton controls within the same
container act as a single group.

12.5.4 Listboxes.

There are 2 standard windows listboxes you can use to allow the user to select
something from a list. ListBox , FileListBox , DirListBox, DiskListbox are
simple list boxes. ComboBox is a more versatile ListBox variant. This
discussion will focus on the Combobox used as a plain listbox. For the full
usage Combobox read on in the next chapter.

178 Visual Basic for Electronics Engineering Applications

A ListBox control displays a list of items from which the user can select one or
more. If the number of items exceeds the number that can be displayed, a scroll
bar is automatically added to the ListBox control.

If no item is selected, the ListIndex property value is -1. The first item in the list
is ListIndex 0, and the value of the ListCount property is always one more than
the largest ListIndex value.

To add or delete items in a ListBox control, use the AddItem or RemoveItem
method. Set the List, ListCount, and ListIndex properties to enable a user to
access items in the ListBox. Alternatively, you can add items to the list by using
the List property at design time.

A FileListBox control locates and lists files in the directory specified by the
Path property at run time. Use this control to display a list of files selected by
file type. You can create dialog boxes in your application that, for example,
enable the user to select a file or group of files.

A DirListBox control displays directories and paths at run time. Use this control
to display a hierarchical list of directories. You can create dialog boxes that, for
example, enable a user to open a file from a list of files in all available
directories.

179 Visual Basic for Electronics Engineering Applications

A DriveListBox control enables a user to select a valid disk drive at run time.
Use this control to display a list of all the valid drives in a user's system. You
can create dialog boxes that enable the user to open a file from a list of files on a
disk in any available drive.

A ComboBox control combines the features of a TextBox control and a
ListBox control—users can enter information in the text box portion or select an
item from the list box portion of the control.

To add or delete items in a ComboBox control, use the AddItem or
RemoveItem method. Set the List, ListCount, and ListIndex properties to
enable a user to access items in the ComboBox. Alternatively, you can add
items to the list by using the List property at design time.

Note

of a Scroll

key once). After that, a Scroll event occurs for each press of the down
Scroll

Scroll event.

 A Scroll event will occur in a ComboBox control only when the contents
of the dropdown portion of the ComboBox are scrolled, not each time the
contents of the ComboBox change. For example, if the dropdown portion

ComboBox contains five items and the top item is highlighted, a
event will not occur until you press the down arrow six times (or the PGDN

arrow key. However, if you then press the up arrow key, a event will
not occur until you press the up arrow key six times (or the PGUP key
once). After that, each up arrow key press will result in a

180 Visual Basic for Electronics Engineering Applications

The Style property settings for the ComboBox control are:

Constant Value Description
VbComboDropDown 0 (Default) Dropdown Combo.

Includes a drop-down list and a text
box. The user can select from the list
or type in the text box.

VbComboSimple 1 Simple Combo. Includes a text box
and a list, which doesn't drop down.
The user can select from the list or
type in the text box. The size of a
Simple combo box includes both the
edit and list portions. By default, a
Simple combo box is sized so that
none of the list is displayed. Increase
the Height property to display more
of the list.

VbComboDrop­ 2 Dropdown List. This style allows
DownList selection only from the drop-down

list.

12.6 Timer objects

The Timer control allows you to generate timed events. There is no practical
limitation to the amount of timers you can have running at the same time. The
most important property of timer is the interval. It returns or sets the number of
milliseconds between calls to a Timer control's Timer event.

object.Interval [= milliseconds]

The settings for milliseconds are:

Setting Description
0 	 (Default) Disables a Timer control.
1 to 65,535 	 Sets an interval (in milliseconds) that takes effect

when a Timer control's Enabled property is set to

181 Visual Basic for Electronics Engineering Applications

True. For example, a value of 10,000 milliseconds
equals 10 seconds. The maximum, 65,535
milliseconds, is equivalent to just over 1 minute.�

You can set a Timer control's Interval property at design time or run time. When
using the Interval property, remember:

The Timer control's Enabled property determines whether the control responds
to the passage of time. Set Enabled to False to turn a Timer control off, and to
True to turn it on. When a Timer control is enabled, its countdown always starts
from the value of its Interval property setting.

182 Visual Basic for Electronics Engineering Applications

12.7 User entry objects

12.7.1 Textboxes

Textboxes can de useful to allow the user to – fill in the blanks -. In some cases
you want the user to see information but modify it only when a certain condition
is met. The textbox has two interesting properties :

12.7.1.1 Locked and Enabled.
Locked means that the textbox remains as it is. It does not become grayed out.
But the user cannot change the contents. No Change event is generated. You can
change the contents from code. Enabled means that it will become grayed out. If
this is the case you will not be able to change its contents , neither the user nor
the program code.

Other interesting features are the Multiline and Scrollbar properties. By
switching on Multiline you allow the user to type multiple lines of text. If you
also cared to set the scrollbars property to anything else then none , then
scrollbars of the selected style will automatically appear when the text no longer
fits in the visible portions of the textbox. The user can then use these to walk
trough whatever input he made in the textbox.

12.7.1.2 Keypress Event

KeyPress.VBP

This is an event generated by every keypress when the textbox has the focus. It
will return the ASCII key code. You can use this to make textboxes that behave
in a particular way.

Sample :

183 Visual Basic for Electronics Engineering Applications

Private Sub Text7_KeyPress(KeyAscii As Integer)
Static password$
If KeyAscii = 13 Then

MsgBox "Password :" + password$

Text7.Text = ""

password$ = ""

Else
password$ = password$ + Chr$(KeyAscii)
x = Len(Text7.Text)
Text7.Text = String(x, "*")
KeyAscii = Asc("*")

End If
End Sub

The above routine will react to any keypress. If enter (Carriage return = ASCII
13) is detected then a messagebox is displayed that shows the type password

If the character is not a CR then the character is added to the password. Finally
A number of stars representing the length of the typed password are printed. But
why on earth do I assign a star to the keyascii code ? Well simple. Reading the
Value returned from this routine does not prevent it from getting sent to the
textbox. Furthermore it will overwrite the first character in the textbox. So if I
set it to an asterisk it will simply overwrite the first asterisk that was already
there.

12.7.1 Combobox

I already explained the basics of a ComboBox when used as a simple listbox.
However it goes far beyond that. The user can also type something . So when
using combo-boxes you should retrieve the text property of the ComboBox. You
can then match it against whatever is in the ComboBox. If it is not in there it
means the user made a totally new selection. You can then decide to either reject
it or maybe create something new.

184 Visual Basic for Electronics Engineering Applications

A ComboBox control combines the features of a TextBox control and a ListBox
control—users can enter information in the text box portion or select an item
from the list box portion of the control.

To add or delete items in a ComboBox control, use the AddItem or RemoveItem
method. Set the List, ListCount, and ListIndex properties to enable a user to
access items in the ComboBox. Alternatively, you can add items to the list by
using the List property at design time.

Note
A Scroll event will occur in a ComboBox control only when the contents of
the dropdown portion of the ComboBox are scrolled, not each time the
contents of the ComboBox change. For example, if the dropdown portion of
a ComboBox contains five items and the top item is highlighted, a Scroll
event will not occur until you press the down arrow six times (or the PGDN
key once). After that, a Scroll event occurs for each press of the down
arrow key. However, if you then press the up arrow key, a Scroll event will
not occur until you press the up arrow key six times (or the PGUP key
once). After that, each up arrow key press will result in a Scroll event.

By modifying the Style property settings for the ComboBox you can change its
behavior. You will probable most of the time use it as Dropdown List. When
styled to this mode it is easier to work with then the Listbox.

185 Visual Basic for Electronics Engineering Applications

Possible settings are :

Constant Value Description

vbComboDropDown 0 (Default) Dropdown Combo. Includes a
drop-down list and a text box. The user can
select from the list or type in the text box.

vbComboSimple 1 Simple Combo. Includes a text box and a
list, which doesn't drop down. The user can
select from the list or type in the text box.
The size of a Simple combo box includes
both the edit and list portions. By default, a
Simple combo box is sized so that none of
the list is displayed. Increase the Height
property to display more of the list.

vbComboDrop-
DownList

2 Dropdown List. This style allows selection
only from the drop-down list.

12.8 Printing

The Printer object enables you to communicate with a system printer (initially
the default system printer).The Printers collection enables you to gather
information about all the available printers on the system.

You can use graphics methods to draw text and graphics on the Printer object.
Once the Printer object contains the output you want to print, you can use the
EndDoc method to send the output directly to the default printer for the
application.

You should check and possibly revise the layout of your forms if you print
them. If you use the PrintForm method to print a form, for example, graphical
images may be clipped at the bottom of the page and text carried over to the
next page.

186 Visual Basic for Electronics Engineering Applications

The Printers collection enables you to query the available printers so you can
specify a default printer for your application. For example, you may want to find
out which of the available printers uses a specific printer driver.

The following code searches all available printers to locate the first printer with
its page orientation set to portrait, then sets it as the default printer:

Dim X As Printer
For Each X In Printers

If X.Orientation = vbPRORPortrait Then
' Set printer as system default.

 Set Printer = X
' Stop looking for a printer.
Exit For

End If
Next

You designate one of the printers in the Printers collection as the default printer
by using the Set statement. The preceding example designates the printer
identified by the object variable X, the default printer for the application.

Note If you use the Printers collection to specify a particular printer, as in
Printers(3), you can only access properties on a read-only basis. To both read
and write the properties of an individual printer, you must first make that printer
the default printer for the application.

12.9 Taking Advantage of the Windows95 Look

WinStyle.vbp

SO far I have shown you how to use the embedded controls that windows
provides us. As you know Windows has a long history and the user interface has
changed from time to time. The Windows 95 look brought some new graphical
features. The controls available to us can often be switched from style.
Optionbuttons , RadioButtons , Comboboxes and listboxes can either adopt the
standard look or a newer Win95 look. In order to change the look there is a
property called Style.

The look differs rather drastically

187 Visual Basic for Electronics Engineering Applications

Changing the Checkbox and Optionbutton changes them to buttons that assume
depressed or unpressed states. The listbox changes by adding a checkbox in
front of an item. Using this you can make multiple selections (normally not
possible with a listbox).

Other interesting options are the features that allow you to insert images on
controls. This is a new thing that the Win95 GUI brings with it . For Win NT
user : You need Release 4 or later.

You can assign a picture to the Down position , the Disabled and to the standard
look. The standard picture (when nothing is happening or has happened with

188 Visual Basic for Electronics Engineering Applications

the control) is set with the Picture property. The properties DownPicture and
DisabledPicture allow you to set the image that should appear when they are
selected and disabled.

189 Visual Basic for Electronics Engineering Applications

Chapter 13 :

Graphics.
You can also create graphics using VB. Graphics can be drawn on almost any
control. Visual Basic supports a set of methods that allow you to create
drawings very easily. All drawing commands use an object called the Brush.
This brush is an internal windows object that determines what drawing will look
like. The brush is has a coordinate system and properties that specify color ,
style , fillstyle etc.

A number of basic statements are available to change these properties.

13.1 Basic coordinate operations

Drawing requires the use of a coordinate system of some kind. Windows
handles the translation between your coordinate system and the physical display
all by itself. The CurrentX and CurrentY parameters know the point where the
next drawing will commence. You can also use these to set a new point.

190 Visual Basic for Electronics Engineering Applications

13.1.1 CurrentX, CurrentY

Return or set the horizontal (CurrentX) or vertical (CurrentY) coordinates for
the next printing or drawing method. Not available at design time.

object.CurrentX [= x]

object.CurrentY [= y]

The CurrentX and CurrentY properties syntax have these parts:

DescriptionPart
Object An object expression that evaluates to an object in the

Applies To list.

X A number that specifies the horizontal coordinate.

Y A number that specifies the vertical coordinate.

Coordinates are measured from the upper-left corner of an object. The CurrentX
property setting is 0 at an object's left edge, and the CurrentY property setting is
0 at its top edge. Coordinates are expressed in twips, or the current unit of
measurement defined by the ScaleHeight, ScaleWidth, ScaleLeft, ScaleTop, and
ScaleMode properties.

13.2 Drawing setup

13.2.1 Drawwidth

Returns or sets the line width for output from graphics methods.

object.DrawWidth [= size]

191 Visual Basic for Electronics Engineering Applications

The DrawWidth property syntax has these parts:

DescriptionPart
Object 	 An object expression that evaluates to an object in the

Applies To list.
Size 	 A numeric expression from 1 through 32,767. This value

represents the width of the line in pixels. The default is 1; that
is, 1 pixel wide.

Increase the value of this property to increase the width of the line. If the
DrawWidth property setting is greater than 1, DrawStyle property settings 1
through 4 produce a solid line (the DrawStyle property value isn't changed).
Setting DrawWidth to 1 allows DrawStyle to produce the results shown in the
DrawStyle property table.

13.2.2 Drawmode

Returns or sets a value that determines the appearance of output from graphics
method or the appearance of a Shape or Line controls.

object.DrawMode [= number]

The DrawMode property syntax has these parts:

DescriptionPart
Object 	 An object expression that evaluates to an object in the

Applies To list.
Number 	 An integer that specifies appearance, as described in

Settings.
Settings

192 Visual Basic for Electronics Engineering Applications

The settings for number are:

Constant Setting Description
VbBlackness 1 Blackness.
VbNotMergePen 2 Not Merge Pen — Inverse of setting 15

(Merge Pen).
VbMaskNotPen 3 Mask Not Pen — Combination of the

colors common to the background color
and the inverse of the pen.

VbNotCopyPen 4 Not Copy Pen — Inverse of setting 13
(Copy Pen).

VbMaskPenNot 5 Mask Pen Not — Combination of the
colors common to both the pen and the
inverse of the display.

VbInvert 6 Invert — Inverse of the display color.
VbXorPen 7 Xor Pen — Combination of the colors in

the pen and in the display color, but not
in both.

VbNotMaskPen 8 Not Mask Pen — Inverse of setting 9
(Mask Pen).

VbMaskPen 9 Mask Pen — Combination of the colors
common to both the pen and the display.

VbNotXorPen 10 Not Xor Pen — Inverse of setting 7 (Xor
Pen).

VbNop 11 Nop — No operation — output remains
unchanged. In effect, this setting turns
drawing off.

VbMergeNotPen 12 Merge Not Pen — Combination of the
display color and the inverse of the pen
color.

VbCopyPen 13 Copy Pen (Default) — Color specified by
the ForeColor property.

VbMergePenNot 14 Merge Pen Not — Combination of the
pen color and the inverse of the display
color.

VbMergePen 15 Merge Pen — Combination of the pen
color and the display color.

VbWhiteness 16 Whiteness.

Use this property to produce visual effects with Shape or Line controls or when
drawing with the graphics methods. Visual Basic compares each pixel in the

193 Visual Basic for Electronics Engineering Applications

draw pattern to the corresponding pixel in the existing background and then
applies bit-wise operations. For example, setting 7 (Xor Pen) uses the Xor
operator to combine a draw pattern pixel with a background pixel.

The exact effect of a DrawMode setting depends on the way the color of a line
drawn at run time combines with colors already on the screen. Settings 1, 6, 7,
11, 13, and 16 yield the most predictable results.

13.2.3 DrawStyle

Returns or sets a value that determines the line style for output from graphics
methods.

object.DrawStyle [= number]

The DrawStyle property syntax has these parts:

DescriptionPart
object 	 An object expression that evaluates to an object in the

Applies To list.

number 	 An integer that specifies line style, as described in Settings.

The settings for number are:

Constant Setting Description
vbSolid 0 (Default) Solid
vbDash 1 Dash
vbDot 2 Dot
vbDashDot 3 Dash-Dot
vbDashDotDot 4 Dash-Dot-Dot
vbInvisible 5 Transparent
vbInsideSolid 6 Inside Solid

If DrawWidth is set to a value greater than 1, DrawStyle settings 1 through 4
produce a solid line (the DrawStyle property value isn't changed). If
DrawWidth is set to 1, DrawStyle produces the effect described in the
preceding table for each setting.

194 Visual Basic for Electronics Engineering Applications

13.2.4 Fillcolor

Returns or sets the color used to fill in shapes; Fill Color is also used to fill in
circles and boxes created with the Circle and Line graphics methods.

object.FillColor [= value]

The FillColor property syntax has these parts:

DescriptionPart
Object 	 An object expression that evaluates to an object in the

Applies To list.
Value 	 A value or constant that determines the fill color, as

described in Settings.
Settings

The settings for value are:

Setting Description
Normal RGB Colors set with the RGB or QBColor functions in
colors code.
System default 	 Colors specified with the system color constants in
colors 	 the Visual Basic (VB) object library in the Object

Browser. The Microsoft Windows operating

environment substitutes the user's choices, as

specified by the user's Control Panel settings.

By default, FillColor is set to 0 (Black).Except for the Form object, when the
FillStyle property is set to its default, 1 (Transparent), the FillColor setting is
ignored.

195 Visual Basic for Electronics Engineering Applications

Note
As with all color settings you can still use the old DOS style colors by
calling the Qbcolor function

13.2.5 FillStyle

Returns or sets the pattern used to fill Shape controls as well as circles and
boxes created with the Circle and Line graphics methods.

object.FillStyle [= number]

The FillStyle property syntax has these parts:

DescriptionPart
object An object expression that evaluates to an object in the

Applies To list.
number An integer that specifies the fill style, as described in

Settings.

The number settings are:

Constant Setting Description
vbFSSolid 0 Solid
vbFSTransparent 1 (Default) Transparent
vbHorizontalLine 2 Horizontal Line
vbVerticalLine 3 Vertical Line
vbUpwardDiagonal 4 Upward Diagonal
VbDownwardDiagonal 5 Downward Diagonal
VbCross 6 Cross
VbDiagonalCross 7 Diagonal Cross

When FillStyle is set to 1 (Transparent), the FillColor property is ignored,
except for the Form object.

196 Visual Basic for Electronics Engineering Applications

13.3 Drawing primitives

13.3.1 PSet

Sets a point on an object to a specified color.

object.PSet [Step] (x, y), [color]

The PSet method syntax has the following object qualifier and parts:

importance DescriptionPart
object Optional. Object expression that evaluates to an object

in the Applies To list. If object is omitted, the
Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the coordinates are
relative to the current graphics position given
by the CurrentX and CurrentY properties.

(x, y) Required. Single values indicating the horizontal (x-axis)
and vertical (y-axis) coordinates of the point to
set.

color Optional. 	 Long integer value indicating the RGB color

specified for point. If omitted, the current

ForeColor property setting is used. You can

use the RGB function or QBColor function to

specify the color.

The size of the point drawn depends on the setting of the DrawWidth property.
When DrawWidth is 1, PSet sets a single pixel to the specified color. When
DrawWidth is greater than 1, the point is centered on the specified coordinates.

The way the point is drawn depends on the setting of the DrawMode and
DrawStyle properties. When PSet executes, the CurrentX and CurrentY
properties are set to the point specified by the arguments.

To clear a single pixel with the PSet method, specify the coordinates of the
pixel and use the BackColor property setting as the color argument.

197 Visual Basic for Electronics Engineering Applications

13.3.2 Line

The Line command allows you to draw lines , boxes , filled boxes , shaded etc.

object.Line [Step] (x1, 1) [Step] (x2, y2),
[color], [B][F]

The Line method is built of following parts :

importance DescriptionPart
Object Optional. Object expression that evaluates to an object

in the Applies To list. If object is omitted, the
Form with the focus is assumed to be object.

Step Optional. Keyword specifying that the starting point
coordinates is relative to the current graphics
position given by the CurrentX and CurrentY
properties.

(x1, y1) Optional. Single values indicating the coordinates of the
starting point for the line or rectangle. The
ScaleMode property determines the unit of
measure used. If omitted, the line begins at
the position indicated by CurrentX and
CurrentY.

Step Optional. Keywords specifying that the end point
coordinates are relative to the line starting
point.

(x2, y2) Required. Single values indicating the coordinates of the
end point for the line being drawn.

Color Optional. Long integer value indicating the RGB color
used to draw the line. If omitted, the
ForeColor property setting is used. You can
use the RGB function or QBColor function to
specify the color.

B Optional. If included, causes a box to be drawn using
the coordinates to specify opposite corners of
the box.

F Optional. If the B option is used, the F option specifies
that the box is filled with the same color used
to draw the box. You cannot use F without B.
If B is used without F, the box is filled with the
current FillColor and FillStyle. The default
value for FillStyle is transparent.

198 Visual Basic for Electronics Engineering Applications

To draw connected lines, begin a subsequent line at the end point of the
previous line.

The width of the line drawn depends on the setting of the DrawWidth property.
The way a line or box is drawn on the background depends on the setting of the
DrawMode and DrawStyle properties. When Line executes, the CurrentX and
CurrentY properties are set to the end point specified by the arguments.

13.3.3 Circle

This command allows you to create circles and ellipses.

object.Circle [Step](x,
y),radius,[color,start,end, aspect]

The Circle method syntax has the following object qualifier and parts.

importance DescriptionPart
object Optional. Object expression that evaluates to an

object in the Applies To list. If object is
omitted, the Form with the focus is assumed
to be object.

Step Optional. Keyword specifying that the center of the
circle, ellipse, or arc is relative to the current
coordinates given by the CurrentX and
CurrentY properties of object.

(x, y) Required. Single values indicating the coordinates for
the center point of the circle, ellipse, or arc.
The ScaleMode property of object
determines the units of measure used.

radius Required. Single value indicating the radius of the
circle, ellipse, or arc. The ScaleMode
property of object determines the unit of
measure used.

color Optional. Long integer value indicating the RGB color
of the circle's outline. If omitted, the value
of the ForeColor property is used. You can
use the RGB function or QBColor function

199 Visual Basic for Electronics Engineering Applications

to specify the color.
start, end Optional. Single-precision values. When an arc or a

partial circle or ellipse is drawn, start and
end specify (in radians) the beginning and
end positions of the arc. The range for both
is -2 pi radians to 2 pi radians. The default
value for start is 0 radians; the default for
end is 2 * pi radians.

aspect Optional. Single-precision value indicating the aspect
ratio of the circle. The default value is 1.0,
which yields a perfect (non-elliptical) circle
on any screen.

To fill a circle, set the FillColor and FillStyle properties of the object on which
the circle or ellipse is drawn. Only a closed figure can be filled. Closed figures
include circles, ellipses, or pie slices (arcs with radius lines drawn at both ends).

When drawing a partial circle or ellipse, if start is negative, Circle draws a
radius to start, and treats the angle as positive; if end is negative, Circle draws a
radius to end and treats the angle as positive. The Circle method always draws
in a counter-clockwise (positive) direction.

The width of the line used to draw the circle, ellipse, or arc depends on the
setting of the DrawWidth property. The way the circle is drawn on the
background depends on the setting of the DrawMode and DrawStyle
properties.

When drawing pie slices, to draw a radius to angle 0 (giving a horizontal line
segment to the right), specify a very small negative value for start, rather than
zero.

You can omit an argument in the middle of the syntax, but you must include the
argument's comma before including the next argument. If you omit an optional
argument, omit the comma following the last argument you specify.

When Circle executes, the CurrentX and CurrentY properties are set to the
center point specified by the arguments.

200 Visual Basic for Electronics Engineering Applications

13.4 Saving and loading graphics

Every time you need a graphic you could of course build it from scratch. You
must be joking right ? There are functions that allow you to store and retrieve
graphics from disk.

13.4.1 Saving Graphics

So you have created a nice graphic and would like to save it. Well nothing is
simpler. Typically you use a PictureBox or an Image control to doodle on. But
you can also use other objects to draw on. As long as an object has a Picture or
Image property you can extract the graphical data from it. The problem is
extracting this data and storing it in the appropriate format. To do this there is a
function built into WINDOWS ! . After all the GUI system knows how to treat
the graphics . Visual basic gives you direct access to this via the SavePicture
procedure

SavePicture picture, stringexpression

Picture: Picture or Image control from which the graphics
file is to be created.

Stringexpression: Filename of the graphics file to save.

If a graphic was loaded from a file to the Picture property of an object, either at
design time or at run time, and it’s a bitmap, icon, metafile, or enhanced
metafile, it's saved using the same format as the original file. If it is a GIF or
JPEG file, it is saved as a bitmap file.

Graphics in an Image property are always saved as bitmap (.bmp) files
regardless of their original format. Any image that has been made with the
drawing controls can be stored in this format.

201 Visual Basic for Electronics Engineering Applications

Example

Private Sub Form_Click ()
' Declare variables.
Dim CX, CY, Limit, Radius as Integer, Msg

as String
ScaleMode = vbPixels ' Set scale to

pixels.
AutoRedraw = True ' Turn on AutoRedraw.
Width = Height ' Change width to match

height.
 CX = ScaleWidth / 2 ' Set X position.
 CY = ScaleHeight / 2 ' Set Y position.

Limit = CX ' Limit size of circles.
For Radius = 0 To Limit ' Set radius.

Circle (CX, CY), Radius, RGB(Rnd *
255, _

Rnd * 255, Rnd * 255)
DoEvents ' Yield for other processing.
Next Radius
Msg = "Choose OK to save the graphics from

this form " Msg = Msg & "to a bitmap file."
MsgBox Msg
SavePicture Image, "TEST.BMP" ' Save

picture to file.
End Sub

202 Visual Basic for Electronics Engineering Applications

13.4.2 Loading Graphics

If you can save graphics it should be equally possible to load graphics. That’s
exactly what the LoadPicture is intended for. Any object supporting the Picture
or Image property can be used as target for this operation

LoadPicture([stringexpression])

The stringexpression argument is the name of a graphics file to be loaded.

Graphics formats recognized by Visual Basic include bitmap (.bmp) files, icon
(.ico) files, run-length encoded (.rle) files, metafile (.wmf) files, enhanced
metafiles (.emf), GIF files, and JPEG (.jpg) files.

Graphics are cleared from forms, picture boxes, and image controls by assigning
LoadPicture with no argument. To load graphics for display in a PictureBox
control, Image control, or as the background of a form, the return value of
LoadPicture must be assigned to the Picture property of the object on which the
picture is displayed. For example:

Set Picture = LoadPicture("PARTY.BMP")
Set Picture1.Picture = LoadPicture("PARTY.BMP")

To assign an icon to a form, set the return value of the LoadPicture function to
the Icon property of the Form object:

Set Form1.Icon = LoadPicture("MYICON.ICO")

Icons can also be assigned to the DragIcon property of all controls except Timer
controls and Menu controls. For example:

Set Command1.DragIcon =
LoadPicture("MYICON.ICO")

Load a graphics file into the system Clipboard using LoadPicture as follows:

Clipboard.SetData LoadPicture("PARTY.BMP")

That’s it. Very easy.

203 Visual Basic for Electronics Engineering Applications

Example :

Private Sub Form_Click ()
Dim MSG as String ' Declare variables.
On Error Resume Next ' Set up error

handling.
Height = 3990
Width = 4890 ' Set height and width.
Set Picture = LoadPicture("PAPER.BMP")
' Load bitmap.
If Err Then

MSG = "Couldn't find the .BMP file."
MsgBox MSG ' Display error message.
Exit Sub ' Quit if error occurs.

End If
MSG = "Choose OK to clear the bitmap from

the form."
MsgBox MSG
Set Picture = LoadPicture() ' Clear

form.

End Sub

13.5 Coordinate systems

Bars.vbp

So far I have covered the basic drawing operations you can perform . When
making drawing you always are doing this relative to a coordinate system. I
have shown you how to specify where you want to draw in the coordinate
system , but I have not explained you how to set it up. You can impose your
own coordinate system using the Scale, ScaleMode, ScaleHeight , ScaleWidth ,
ScaleLeft and ScaleTop properties of the object you are drawing on.

13.5.1 Scale

204 Visual Basic for Electronics Engineering Applications

Defines the coordinate system for a Form, PictureBox, or Printer. Doesn't
support named arguments.

object.Scale (x1, y1) - (x2, y2)

Description

object
the Applies To list. If object is omitted, the Form object with
the focus is assumed to be object.

x1, y1
axis) and vertical (y-axis) coordinates that define the upper-left

omitted, the second set of coordinates must also be omitted.�

Part

Optional. An object expression that evaluates to an object in

Optional. Single-precision values indicating the horizontal (x­

corner of object. Parentheses must enclose the values. If

x2, y2 Optional. Single-precision values indicating the horizontal and
vertical coordinates that define the lower-right corner of object.
Parentheses must enclose the values. If omitted, the first set
of coordinates must also be omitted.

The Scale method enables you to reset the coordinate system to any scale you
choose. Scale affects the coordinate system for both run-time graphics
statements and the placement of controls. If you use Scale with no arguments
(both sets of coordinates omitted), it resets the coordinate system to twips.

You can specify scales as you please. You can also set the scale using the
ScaleLeft, ScaleHeight, ScaleWidth and ScaleTop properties. Sometimes the
plain Scale method is easier then setting each of these properties manually. It
depends on what you want to do.

13.5.2 Scalemode

Returns or sets a value indicating the unit of measurement for coordinates of an
object when using graphics methods or when positioning controls.

205 Visual Basic for Electronics Engineering Applications

object.ScaleMode [= value]

Description

object An object expression that evaluates to an object in the
Applies To list.

value
in Settings.

Part

An integer specifying the unit of measurement, as described

The possible settings for value are:

Constant Setting Description
vbUser 0 Indicates that one or more of the

ScaleHeight, ScaleWidth, ScaleLeft, and
ScaleTop properties are set to custom
values.

VbTwips 1 (Default) Twip (1440 twips per logical
inch; 567 twips per logical centimeter).

VbPoints 2 Point (72 points per logical inch).
VbPixels 3 Pixel (smallest unit of monitor or printer

resolution).
vbCharacters 4 Character (horizontal = 120 twips per unit;

vertical = 240 twips per unit).
VbInches 5 Inch.
VbMillimeters 6 Millimeter.
VbCentimeters 7 Centimeter.

Using the related ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties,
you can create a custom coordinate system with both positive and negative
coordinates. These four Scale properties interact with the ScaleMode property in
the following ways:

¾ Setting the value of any other Scale property to any value automatically sets
ScaleMode to 0. A ScaleMode of 0 is user-defined.

¾ Setting the ScaleMode property to a number greater than 0 changes
ScaleHeight and ScaleWidth to the new unit of measurement and sets

206 Visual Basic for Electronics Engineering Applications

ScaleLeft and ScaleTop to 0. The CurrentX and CurrentY property settings
change to reflect the new coordinates of the current point.

13.5.3 ScaleHeight , Scalewidth

Return or set the number of units for the horizontal (ScaleWidth) and vertical
(ScaleHeight) measurement of the interior of an object when using graphics
methods or when positioning controls. For MDIForm objects, not available at
design time and read-only at run time.

object.ScaleHeight [= value]
object.ScaleWidth [= value]

The ScaleHeight and ScaleWidth property syntaxes have these parts:

DescriptionPart

object An object expression that evaluates to an object in the Applies
To list.

value A numeric expression specifying the horizontal or vertical
measurement.

You can use these properties to create a custom coordinate scale for drawing or
printing. For example, the statement ScaleHeight = 100 changes the units of
measure of the actual interior height of the form. Instead of the height being n
current units (twips, pixels, ...), the height will be 100 user-defined units.
Therefore, a distance of 50 units is half the height/width of the object, and a
distance of 101 units will be off the object by 1 unit.

Use the ScaleMode property to define a scale based on a standard unit of
measurement, such as twips, points, pixels, characters, inches, millimeters, or
centimeters.

207 Visual Basic for Electronics Engineering Applications

Setting these properties to positive values makes coordinates increase from top
to bottom and left to right. Setting them to negative values makes coordinates
increase from bottom to top and right to left.

Using these properties and the related ScaleLeft and ScaleTop properties, you
can set up a full coordinate system with both positive and negative coordinates.
All four of these Scale properties interact with the ScaleMode property in the
following ways:

¾	 Setting any other Scale property to any value automatically sets ScaleMode
to 0. A ScaleMode of 0 is user-defined.

¾	 Setting ScaleMode to a number greater than 0 changes ScaleHeight and
ScaleWidth to the new unit of measurement and sets ScaleLeft and
ScaleTop to 0. In addition, the CurrentX and CurrentY settings change to
reflect the new coordinates of the current point.

You can also use the Scale method to set the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties in one statement.

Note
The ScaleHeight and ScaleWidth properties aren't the same as the Height
and Width properties.

For MDIForm objects, ScaleHeight and ScaleWidth refer only to the area not
covered by PictureBox controls in the form. Avoid using these properties to size
a PictureBox in the Resize event of an MDIForm.

13.5.4 ScaleLeft and ScaleTop

Return or set the horizontal (ScaleLeft) and vertical (ScaleTop) coordinates for
the left and top edges of an object when using graphics methods or when
positioning controls.

object.ScaleLeft [= value]
object.ScaleTop [= value]

The ScaleLeft and ScaleTop property syntaxes have these parts:

208 Visual Basic for Electronics Engineering Applications

Description

object An object expression that evaluates to an object in the
Applies To list.

value
coordinate. The default is 0.

Part

A numeric expression specifying the horizontal or vertical

Using these properties and the related ScaleHeight and ScaleWidth properties,
you can set up a full coordinate system with both positive and negative
coordinates. These four Scale properties interact with the ScaleMode property in
the following ways:

¾	 Setting any other Scale property to any value automatically sets ScaleMode
to 0. A ScaleMode of 0 is user-defined.

¾	 Setting the ScaleMode property to a number greater than 0 changes
ScaleHeight and ScaleWidth to the new unit of measurement and sets
ScaleLeft and ScaleTop to 0. The CurrentX and CurrentY property settings
change to reflect the new coordinates of the current point.

You can also use the Scale method to set the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties in one statement.

Note
 The ScaleLeft and ScaleTop properties aren't the same as the Left and Top
properties.

209 Visual Basic for Electronics Engineering Applications

Chapter 14:

Communicating to

the world around

us

What good is a program if it cannot communicate. Well so far we have
concentrated on communicating with the user of the program. Maybe it’s time to
have a look at what else we could possibly communicate with

14.1 SendKeys …: a simple way of communicating

Yes… you can emulate sending keystrokes to another program. This is perhaps
the simplest way of talking to other applications.. SendKeys can send one or
more keystrokes to the active window as if typed at the keyboard.

SendKeys string [, wait]

String
send.

Wait Optional. Boolean value specifying the wait mode. If

Required. String expression specifying the keystrokes to

False (default), control is returned to the procedure

210 Visual Basic for Electronics Engineering Applications

immediately after the keys are sent. If True, keystrokes
must be processed before control is returned to the
procedure.

One or more characters represent each key. To specify a single keyboard
character, use the character itself. For example, to represent the letter A, use "A"
for string. To represent more than one character, append each additional
character to the one preceding it. To represent the letters A, B, and C, use
"ABC" for string.

The plus sign (+), caret (^), percent sign (%), tilde (~), and parentheses () have
special meanings to SendKeys. To specify one of these characters, enclose it
within braces ({}). For example, to specify the plus sign, use {+}. Brackets ([])
have no special meaning to SendKeys, but you must enclose them in braces. In
other applications, brackets do have a special meaning that may be significant
when dynamic data exchange (DDE) occurs. To specify brace characters, use
{{} and {}}.

To specify characters that aren't displayed when you press a key, such as
ENTER or TAB, and keys that represent actions rather than characters, use the
codes shown in the following table :

Key Code

BACKSPACE { {BKSP}

BREAK {

CAPS LOCK {

DEL or DELETE {DELETE} or {DEL}

DOWN ARROW {DOWN}

END {END}

ENTER

ESC {ESC}

BACKSPACE}, {BS}, or

BREAK}

CAPSLOCK}

{ENTER}or ~

211 Visual Basic for Electronics Engineering Applications

HELP

HOME

INS or INSERT

LEFT ARROW

NUM LOCK

PAGE DOWN

PAGE UP

PRINT SCREEN

RIGHT ARROW

SCROLL LOCK

TAB

UP ARROW

FUNCTION KEYS (
F1.. F16)

{HELP}

{HOME}

{INSERT} or {INS}

{LEFT}

{NUMLOCK}

{PGDN}

{PGUP}

{PRTSC}

{RIGHT}

{SCROLLLOCK}

{TAB}

{UP}

{F1}{F2}{F3} … etc

To specify keys combined with any combination of the SHIFT, CTRL, and ALT
keys, precede the key code with one or more of the following codes:

Key Code

SHIFT +

CTRL ^

ALT %

212 Visual Basic for Electronics Engineering Applications

To specify that any combination of SHIFT, CTRL, and ALT should be held
down while several other keys are pressed, enclose the code for those keys in
parentheses. For example, to specify to hold down SHIFT while E and C are
pressed, use "+(EC)". To specify to hold down SHIFT while E is pressed,
followed by C without SHIFT, use "+EC".

To specify repeating keys, use the form {key number}. You must put a space
between key and number. For example, {LEFT 42} means press the LEFT
ARROW key 42 times; {h 10} means press H 10 times.

NOTE :

Sendkeys.vbp

You can't use SendKeys to send keystrokes to an application that is not
designed to run in Microsoft Windows. Sendkeys also can't send the PRINT
SCREEN key {PRTSC} to any application.

The following example uses the Shell function to run the Calculator application
included with Microsoft Windows. It uses the SendKeys statement to send
keystrokes to add some numbers, and then quit the Calculator. (To see the
example, paste it into a procedure, then run the procedure. Because AppActivate
changes the focus to the Calculator application, you can't single step through the
code.)

Dim ReturnValue, I
ReturnValue = Shell("CALC.EXE", 1) ' Run
Calculator.
AppActivate ReturnValue ' Activate the
Calculator.
For I = 1 To 100 ' Set up counting loop.

SendKeys I & "{+}", True
' Send keystrokes to Calculator

Next I ' to add each value of I.
SendKeys "=", True ' Get grand total.
SendKeys "%{F4}", True ' Send ALT+F4 to close
Calculator.

213 Visual Basic for Electronics Engineering Applications

14.1.1 AppActivate

Activates an application window.

AppActivate title[, wait]

The AppActivate statement syntax has these named arguments:

Description

Title Required. String expression specifying the title in the title
bar of the application window you want to activate. The task
ID returned by the Shell function can be used in place of title
to activate an application.

Wait Optional. Boolean value specifying whether the calling
application has the focus before activating another. If False

even if the calling application does not have the focus. If
True, the calling application waits until it has the focus, then
activates the specified application.

Part

(default), the specified application is immediately activated,

The AppActivate statement changes the focus to the named application or
window but does not affect whether it is maximized or minimized. Focus moves
from the activated application window when the user takes some action to
change the focus or close the window. Use the Shell function to start an
application and set the window style.

In determining which application to activate, title is compared to the title string
of each running application. If there is no exact match, any application whose
title string begins with title is activated. If there is more than one instance of the
application named by title, one instance is arbitrarily activated.

214 Visual Basic for Electronics Engineering Applications

14.1.2 Shell

Runs an executable program and returns a Variant (Double) representing the
program's task ID if successful, otherwise it returns zero.

Shell(pathname[,windowstyle])

pathname

windowstyle

Required; Variant (String). Name of the program to
execute and any required arguments or command-line
switches; may include directory or folder and drive.

Optional. Variant (Integer) corresponding to the style of
the window in which the program is to be run. If
windowstyle is omitted, the program is started
minimized with focus.

The windowstyle named argument can have these values:

vbHide 0 Window is hidden and focus is passed to
the hidden window.

vbNormalFocus 1 Window has focus and is restored to its
original size and position.

vbMinimizedFocus 2 Window is displayed as an icon with
focus.

vbMaximizedFocus 3 Window is maximized with focus.

vbNormalNoFocus 4 Window is restored to its most recent size
and position. The currently active window
remains active.

vbMinimizedNoFocus 6 Window is displayed as an icon. The
currently active window remains active.

215 Visual Basic for Electronics Engineering Applications

If the Shell function successfully executes the named file, it returns the task ID
of the started program. The task ID is a unique number that identifies the
running program. If the Shell function can't start the named program, an error
occurs.

Note

following the Shell function are executed.

The Shell function runs other programs asynchronously. This means that a
program started with Shell might not finish executing before the statements

14.2 DDE : another means of inter-program communication

DDE ? Never heard of ! . Well this is one of the cornerstones of Windows and
Windows programming. It allows you to send information across programs.

You can actually write programs that talk to each other. This is an interesting
feature that allows you to communicate , not only data , but also commands.
DDE can be done with virtually any windows application. Most programs
support it in one way or another. The only program is finding out the command
for that particular program.

Communicating over DDE is done via a number of commands.

First of all we need to set up the communication. This requires specifying the
application and target of the DDE conversation.

14.2.1 LinkMode:

Returns or sets the type of link used for a DDE conversation and activates the
connection as follows:

216 Visual Basic for Electronics Engineering Applications

Control Allows a destination control on a Visual Basic form to
initiate a conversation, as specified by the control's
LinkTopic and LinkItem properties.

Form Allows a destination application to initiate a conversation
with a Visual Basic source form, as specified by the
destination application's application|topic!item expression.

object.LinkMode [= number]

The LinkMode property syntax has these parts:

object An object expression that evaluates to an object in the
Applies To list.

number
described in Settings.
An integer that specifies the type of connection, as

For controls used as destinations in DDE conversations, the settings for number
are:

Constant Setting Description

vbLinkNone 0 (Default) None — No DDE interaction.

vbLinkAutomatic 1 Automatic — Destination control is
updated each time the linked data
changes.

vbLinkManual 2 Manual — {Destination control is
updated only when the LinkRequest
method is invoked.

vbLinkNotify 3 Notify — A LinkNotify event occurs
whenever the linked data changes, but
the destination control is updated only

217 Visual Basic for Electronics Engineering Applications

when the LinkRequest method is
invoked.

For forms used as sources in DDE conversations, the settings for number are:

Constant Setting Description

vbLinkNone 0 (Default) None — No DDE interaction.
No destination application can initiate a
conversation with the source form as the
topic, and no application can poke data
to the form. If LinkMode is 0 (None) at
design time, you can't change it to 1
(Source) at run time.

vbLinkSource 1 Source — Allows any Label, PictureBox,
or TextBox control on a form to supply
data to any destination application that
establishes a DDE conversation with the
form. If such a link exists, Visual Basic
automatically notifies the destination
whenever the contents of a control are
changed. In addition, a destination
application can poke data to any Label,
PictureBox, or TextBox control on the
form. If LinkMode is 1 (Source) at design
time, you can change it to 0 (None) and
back at run time.

The following conditions also apply to the LinkMode property:

Setting LinkMode to a nonzero value for a destination control causes Visual
Basic to attempt to initiate the conversation specified in the LinkTopic and
LinkItem properties. The source updates the destination control according to the
type of link specified (automatic, manual, or notify).

If a source application terminates a conversation with a Visual Basic destination
control, the value for that control's LinkMode setting changes to 0 (None).

218 Visual Basic for Electronics Engineering Applications

If you leave LinkMode for a form set to the default 0 (None) at design time, you
can't change LinkMode at run time. If you want a form to act as a source, you
must set LinkMode to 1 (Source) at design time. You can then change the value
of LinkMode at run time.

Note
Setting a permanent data link at design time with the Paste Link command
from the Edit menu also sets the LinkMode, LinkTopic, and LinkItem
properties. This creates a link that is saved with the form. Each time the
form is loaded, Visual Basic attempts to re-establish the conversation.

14.2.2 Linktopic

For a destination control :

returns or sets the source application and the topic (the fundamental
data grouping used in that application). Use LinkTopic with the
LinkItem property to specify the complete data link.

For a source form:

returns or sets the topic that the source form responds to in a DDE
conversation.

object.LinkTopic [= value]

The LinkTopic property syntax has these parts:

object An object expression that evaluates to an object in the
Applies To list.

219 Visual Basic for Electronics Engineering Applications

value A string expression specifying a DDE syntax element.

The LinkTopic property consists of a string that supplies part of the information
necessary to set up either a destination link or source link. The string you use
depends on whether you're working with a destination control or a source form.
Each string corresponds to one or more elements of standard DDE syntax,
which include application, topic, and item.

Note
While the standard definition for a DDE link includes the application, topic,
and item elements, the actual syntax used within applications for a
destination link to a source application may vary slightly.

For example, within Microsoft Excel, you use the syntax:

application|topic!item

Within Microsoft Word for Windows, you use:

application topic item

Don't use the pipe character [|] or exclamation mark [!].

Within a Visual Basic application, you use:

application|topic

The exclamation mark for topic is implicit.

14.2.2.1 Destination Control

To set LinkTopic for a destination control, use a string with the syntax
application|topic as follows:

220 Visual Basic for Electronics Engineering Applications

¾	 application is the name of the application from which data is requested,
usually the executable filename without an extension — for example,
Excel (for Microsoft Excel).

¾	 The pipe character (|, or character code 124) separates the application
from the topic.

¾	 Topic is the fundamental data grouping used in the source application
— for example, a worksheet in Microsoft Excel.

In addition, for a destination control only, you must set the related LinkItem
property to specify the item element for the link. A cell reference, such as R1C1,
corresponds to an item in a Microsoft Excel worksheet.

14.2.2.2 Source Form

To set LinkTopic for a source form, set value to an appropriate identifier for the
form. A destination application uses this string as the topic argument when
establishing a DDE link with the form. Although this string is all you need to set
LinkTopic within Visual Basic for a source form, the destination application
also needs to specify:

¾	 The application element that the destination application uses, which is
either the Visual Basic project filename without the .vbp extension (if
you're running your application in the Visual Basic development
environment) or the Visual Basic application filename without the .exe
extension (if you're running your application as a stand-alone
executable file). The EXEName property of the App object provides
this string in your Visual Basic code unless the user changed the
filename. (EXEName always returns the actual filename of the
application on disk; DDE always uses the original name that was
specified in the Project Properties dialog box.)

¾	 The item element that the destination application uses, which
corresponds to the Name property setting for the Label, PictureBox, or
TextBox control on the source form.

The following syntax is an example of a valid reference from Microsoft Excel to
a Visual Basic application acting as a source:

221 Visual Basic for Electronics Engineering Applications

=VizBasicApplication|FormN!TextBox1

You could enter this reference for a destination cell in the Microsoft Excel
formula bar.

To activate the data link set with LinkTopic, set the LinkMode property to the
appropriate nonzero value to specify the type of link you want. As a general
rule, set LinkMode after you set LinkTopic. For a destination control, changing
LinkTopic breaks an existing link and terminates the DDE conversation. For a
source form, changing LinkTopic breaks all destination links that are using that
topic. For these reasons, always set the LinkMode property to 0 before changing
LinkTopic. After changing LinkTopic for a destination control, you must set
LinkMode to 1 (Automatic), 2 (Manual), or 3 (Notify) to establish a
conversation with the new topic.

Note
Setting a permanent data link at design time with the Paste Link command
on the Edit menu also sets the LinkMode, LinkTopic, and LinkItem
properties. This creates a link that is saved with the form. Each time the
form is loaded, Visual Basic attempts to reestablish the conversation.

14.2.3 LinkItem

Returns or sets the data passed to a destination control in a DDE conversation
with another application.

object.LinkItem [= string]

222 Visual Basic for Electronics Engineering Applications

object jAn object expression that evaluates to an ob ect in the Applies
To list.

string A string expression that specifies the data to be passed to the
destination control.

This property corresponds to the item argument in the standard DDE syntax,
with application, topic, and item as arguments. To set this property, specify a
recognizable unit of data in an application as a reference — for example, a cell
reference such as "R1C1" in Microsoft Excel.

Use LinkItem in combination with the LinkTopic property to specify the
complete data link for a destination control to a source application. To activate
this link, set the LinkMode property.

You set LinkItem only for a control used as a destination. When a Visual Basic
form is a source in a DDE conversation, the name of any Label, PictureBox, or
TextBox control on the form can be the item argument in the
application|topic!item string used by the destination. For example, the following
syntax represents a valid reference from Microsoft Excel to a Visual Basic
application:

=VizBasicApplication|MyForm!TextBox1

You could enter the preceding syntax for a destination cell in the Microsoft
Excel formula bar.

A DDE control can potentially act as destination and source simultaneously,
causing an infinite loop if a destination-source pair is also a source-destination
pair with itself. For instance, a TextBox control may be both a source (through
its parent form) and destination of the same cell in Microsoft Excel. When data
in a Visual Basic TextBox changes, sending data to Microsoft Excel, the cell in
Microsoft Excel changes, sending the change to the TextBox, and so on, causing
the loop.

To avoid such loops, use related but not identical items for destination-source
and source-destination links in both directions between applications. For
example, in Microsoft Excel, use related cells (precedents or dependents) to link

223 Visual Basic for Electronics Engineering Applications

a worksheet with a Visual Basic control, avoiding use of a single item as both
destination and source. Document any application|topic pairs you establish if
you include a Paste Link command for run-time use.

Note
Setting a permanent data link at design time with the Paste Link command
from the Edit menu also sets the LinkMode, LinkTopic, and LinkItem
properties. This creates a link that is saved with the form. Each time the
form is loaded, Visual Basic attempts to re-establish the conversation.

Example

Private Sub Form_Click ()
Dim CurRow As String
Static Row ' Worksheet row number.
Row = Row + 1 ' Increment Row.
If Row = 1 Then ' First time only.

name.

LinkItem.

Automatic.
Else

LinkItem.

' Make sure the link isn't active.

Text1.LinkMode = 0

' Set the application name and topic

Text1.LinkTopic = "Excel|Sheet1"

Text1.LinkItem = "R1C1" ' Set

Text1.LinkMode = 1 ' Set LinkMode to

' Update the row in the data item.

CurRow = "R" & Row & "C1"

Text1.LinkItem = CurRow ' Set

End If
End Sub

In the example, each mouse click causes a cell in a Microsoft Excel worksheet
to update the contents of a Visual Basic TextBox control. To try this example,
start Microsoft Excel, open a new worksheet named Sheet1, and put some data
in the first column. In Visual Basic, create a form with a TextBox control. Paste
the code into the Declarations section, and then press F5 to run the program.

224 Visual Basic for Electronics Engineering Applications

That’s it for DDE. There are a lot more commands and events you can hook
into. However if you want to learn more about this I can only suggest you to
read a dedicated book about it. Check the suggested reading list for more
information.

14.3 Serial IO : Talking to world beyond the port.

This is probably the most obscure part of windows. Most people still regard to
this as a tricky thing. Well it isn’t. Windows includes a standard object called
MSCOMM that handles all the down-to-earth stuff for you. From programming
the serial interface card to handshaking and exchanging data. All you have to do
is set it up correctly

14.3.1 Inserting the object

First of all you should insert the MsComm object into your program.

225 Visual Basic for Electronics Engineering Applications

To do this right click on the object browser and select Add-Component. Then
browse for the MsComm Object. And make sure it is checked. It will then
appear on the object browser.

The image of this object looks like this :

You can put up to 16 of these in a project (Windows directly supports up to 16
Serial ports) . If you need more ports you will have to install additional drivers
into the operating system. Unfortunately there is no direct and easy way to
detect the number of serial ports in a computer system. There are some API calls
that allow you to extract the so-called system-metrics. But this leads us too far.
There are dedicated books to API programming (Check the suggested reading
list at the back of this book).

226 Visual Basic for Electronics Engineering Applications

Simple communications can be set up in a snap. All we have to do is select the
comport , specify operating parameters and open it. Done. So let’s have a look
at the most used parameters.

14.3.2 Portopen

Sets and returns the state of the communications port (open or closed). Not
available at design time.

object.PortOpen [= value]

Where value is either True or False

Setting the PortOpen property to True opens the port. Setting it to False closes
the port and clears the receive and transmit buffers. The MSComm control
automatically closes the serial port when your application is terminated.

Make sure the CommPort property is set to a valid port number before opening
the port. If the CommPort property is set to an invalid port number when you try
to open the port, the MSComm control generates error 68 (Device unavailable).

In addition, your serial port device must support the current values in the
Settings property. If the Settings property contains communications settings that
your hardware does not support, your hardware may not work correctly.

If either the DTREnable or the RTSEnable properties is set to True before the
port is opened, the properties are set to False when the port is closed. Otherwise,
the DTR and RTS lines remain in their previous state.

Note
Never ever attempt to close or open a port two times in a row. This yields
an error. You should first check the state of the port.

You can only change its state. You can’t set it to the state it already has. You
can make a construction like this

227 Visual Basic for Electronics Engineering Applications

If comport.portopen=true then
Comport.portopen=false

Else
Comport.portopen=true

End if

14.3.3 Handshaking

Sets and returns the hardware handshaking protocol.

object.Handshaking [= value]

The Handshaking property syntax has these parts:

Description
object An object expression that evaluates to an object in the

Applies To list.
value

as described in Settings.

Part

An integer expression specifying the handshaking protocol,

Setting Value Description
comNone 0 (Default) No handshaking.
comXOnXOff 1 XON/XOFF handshaking.
comRTS 2 RTS/CTS (Request To Send/Clear To

Send) handshaking.
comRTSXOnXOff 3 Both Request To Send and XON/XOFF

handshaking.

Handshaking refers to the internal communications protocol by which data is
transferred from the hardware port to the receive buffer. When a character of
data arrives at the serial port, the communications device has to move it into the
receive buffer so that your program can read it. If there is no receive buffer and
your program is expected to read every character directly from the hardware,
you will probably lose data because the characters can arrive very quickly.

228 Visual Basic for Electronics Engineering Applications

A handshaking protocol insures data is not lost due to a buffer overrun, where
data arrives at the port too quickly for the communications device to move the
data into the receive buffer.

Hardware (RTS/CTS) handshaking is done by the UART itself. But this requires
the other side to have these capabilities as well. Furthermore this requires 2
extra wires in the serial cable. Simple devices such as microcontroller boards
might not have these lines available.

Software handshaking is a protocol whereby 2 characters are reserved for
handshaking. One character XON enables transmission and the other (XOFF)
disables it. Whenever the salve is ready for data it sends XON to the master . If
its input buffer is full it sends XOFF and processes the buffer.

14.3.4 Settings

Sets and returns the baud rate, parity, data bit, and stop bit parameters.

object.Settings [= value]

If value is not valid when the port is opened, the MSComm control generates
error 380 (Invalid property value).

Value is composed of four settings and has the following format:

"BBBB,P,D,S"

Where BBBB is the baud rate, P is the parity, D is the number of data bits, and
S is the number of stop bits. The default value of value is:

"9600,N,8,1"

The following table lists the valid settings.

BBBB Setting P
setting

Databits Stopbits

Visual Basic for Electronics Engineering Applications 229

110 E Even 4 1
300 M Mark 5 1.5
600 N None 6 2
1200 O Odd 7
2400 S Space 8 (Default)
9600 (Default)
14400
19200
28800
38400
(reserved)
56000
(reserved)
128000
(reserved)
256000
(reserved)

Reserved means in this case that it depends on the speed of your computer if
you can get there or not. IF you have a UART with a buffer inside you will be
able to get these speeds. Else this setting will produce an error.

14.3.5 Outbuffersize , Inbuffersize

Sets and returns the size, in bytes, of the transmit buffer.

object.OutBufferSize = number

OutBufferSize refers to the total size of the transmit buffer. The default size is
512 bytes. Do not confuse this property with the OutBufferCount which reflects
the number of bytes currently waiting in the transmit buffer.

Note
The larger you make the transmit buffer, the less memory you have
available to your application. However, if your buffer is too small, you run
the risk of overflowing unless you use handshaking. As a general rule, start
with a buffer size of 512 bytes. If an overflow error occurs, increase the
buffer size to handle your application's transmission rate.

230 Visual Basic for Electronics Engineering Applications

14.3.6 OutbufferCount, Inbuffercount

Returns the number of characters waiting in the transmit buffer. You can also
use it to clear the transmit buffer. This property is not available at design time.

object.OutBufferCount [= value]

You can clear the transmit buffer by setting the OutBufferCount property to 0.

Note
Do not confuse the OutBufferCount property with the OutBufferSize
property which reflects the total size of the transmit buffer.

14.3.7 Parityreplace

Sets and returns the character that replaces an invalid character in the data
stream when a parity error occurs.

object.ParityReplace [= value]

Where value is a string expression representing a character, as described below.

The parity bit refers to a bit that is transmitted along with a specified number of
data bits to provide a small amount of error checking. When you use a parity bit,
the MSComm control adds up all the bits that are set (having a value of 1) in the
data and tests the sum as being odd or even (according to the parity setting used
when the port was opened).

By default, the control uses a question mark (?) character for replacing invalid
characters. Setting ParityReplace to an empty string ("") disables replacement of

231 Visual Basic for Electronics Engineering Applications

the character where the parity error occurs. The OnComm event is still fired and
the CommEvent property is set to comEventRXParity.

The ParityReplace character is used in a byte-oriented operation, and must be a
single-byte character. You can specify any ANSI character code with a value
from 0 to 255.

14.3.8 DTRenable

Determines whether to enable the Data Terminal Ready (DTR) line during
communications. Typically, the Data Terminal Ready signal is sent by a
computer to its modem to indicate that the computer is ready to accept incoming
transmission.

object.DTREnable[= value]

Where value is either True or False

When DTREnable is set to True, the Data Terminal Ready line is set to high
(on) when the port is opened, and low (off) when the port is closed. When
DTREnable is set to False, the Data Terminal Ready always remains low.

Note
When talking to a modem , in most cases setting the Data Terminal Ready
line to low hangs up the telephone.

14.3.9 Rthreshold

232 Visual Basic for Electronics Engineering Applications

Sets and returns the number of characters to receive before the MSComm
control sets the CommEvent property to comEvReceive and generates the
OnComm event.

object.Rthreshold [= value]

Setting the RThreshold property to 0 (the default) disables generating the
OnComm event when characters are received. Setting RThreshold to 1, for
example, causes the MSComm control to generate the OnComm event every
time a single character is placed in the receive buffer.

14.3.10 OnComm Event

The OnComm event is generated whenever the value of the CommEvent
property changes, indicating that either a communication event or an error
occurred.

Private Sub object_OnComm ()

The CommEvent property contains the numeric code of the actual error or event
that generated the OnComm event. Note that setting the RThreshold or
SThreshold properties to 0 disables trapping for the comEvReceive and
comEvSend events, respectively.

14.3.11 Commevent

Returns the most recent communication event or error. This property is not
available at design time and is read-only at run time.

X = object.CommEvent

Although the OnComm event is generated whenever a communication error or
event occurs, the CommEvent property holds the numeric code for that error or
event. To determine the actual error or event that caused the OnComm event,
you must reference the CommEvent property.

233 Visual Basic for Electronics Engineering Applications

The CommEvent property returns one of the following values for
communication errors or events. These constants can also be found in the Object
Library for this control.

Communication errors include the following settings:

Constant Value Description
ComEventBreak 1001 A Break signal was received.
ComEventCTSTO 1002 Clear To Send Timeout. The Clear To

Send line was low for the system
specified amount of time while trying to
transmit a character.

ComEventDSRTO 1003 Data Set Ready Timeout. The Data Set
Ready line was low for the system
specified amount of time while trying to
transmit a character.

ComEventFrame 1004 Framing Error. The hardware detected
a framing error.

ComEventOverrun 1006 Port Overrun. A character was not read
from the hardware before the next
character arrived and was lost.

ComEventCDTO 1007 Carrier Detect Timeout. The Carrier
Detect line was low for the system
specified amount of time while trying to
transmit a character. Carrier Detect is
also known as the Receive Line Signal
Detect (RLSD).

ComEventRxOver 1008 Receive Buffer Overflow. There is no
room in the receive buffer.

ComEventRxParity 1009 Parity Error. The hardware detected a
parity error.

ComEventTxFull 1010 Transmit Buffer Full. The transmit buffer
was full while trying to queue a
character.

ComEventDCB 1011 Unexpected error retrieving Device
Control Block (DCB) for the port.

Constant Value Description

Communications events include the following settings:

234 Visual Basic for Electronics Engineering Applications

ComEvSend 1 There are fewer than Sthreshold number of
characters in the transmit buffer.

ComEvReceive 2 Received Rthreshold number of
characters. This event is generated
continuously until you use the Input
property to remove the data from the
receive buffer.

ComEvCTS 3 Change in Clear To Send line.
ComEvDSR 4 Change in Data Set Ready line. This event

is only fired when DSR changes from 1 to
0.

ComEvCD 5 Change in Carrier Detect line.
ComEvRing 6 Ring detected. Some UARTs (universal

asynchronous receiver-transmitters) may
not support this event.

ComEvEOF 7 End Of File (ASCII character 26) character
received.

That’s about it concerning serial communications. A simple program is
available that allows you to send and receive character over a serial port. An in
depth hardware approach to serial programming will be handle in Part IV of this
Book.. The examples on how to make use of this powerful object will be
explained there.

14.4 Winsock : The world is not enough …

The Winsock control, invisible to the user, provides easy access to TCP and
UDP network services. Microsoft Access, Visual Basic, Visual C++, or Visual
FoxPro developers can use it. To write client or server applications you do not
need to understand the details of TCP or to call low-level Winsock APIs. By
setting properties and invoking methods of the control, you can easily connect
to a remote machine and exchange data in both directions.

235 Visual Basic for Electronics Engineering Applications

14.4.1 TCP Basics

The Transfer Control Protocol allows you to create and maintain a connection to
a remote computer. Using the connection, both computers can stream data
between themselves.

If you are creating a client application, you must know the server computer's
name or IP address (RemoteHost property), as well as the port (RemotePort
property) on which it will be "listening." Then invoke the Connect method.

If you are creating a server application, set a port (LocalPort property) on which
to listen, and invoke the Listen method. When the client computer requests a
connection, the ConnectionRequest event will occur. To complete the
connection, invoke the Accept method within the ConnectionRequest event.

Once a connection has been made, either computer can send and receive data.
To send data, invoke the SendData method. Whenever data is received, the
DataArrival event occurs. Invoke the GetData method within the DataArrival
event to retrieve the data.

14.4.2 UDP Basics

The User Datagram Protocol (UDP) is a connectionless protocol. Unlike TCP
operations, computers do not establish a connection. Also, a UDP application
can be either a client or a server.

To transmit data, first set the client computer's LocalPort property. The server
computer then needs only to set the RemoteHost to the Internet address of the
client computer, and the RemotePort property to the same port as the client
computer's LocalPort property, and invoke the SendData method to begin
sending messages. The client computer then uses the GetData method within the
DataArrival event to retrieve the sent messages.

14.4.3 RemoteHost

This returns or sets the remote machine to which a control sends or receives
data. You can either provide a host name, for example,

236 Visual Basic for Electronics Engineering Applications

"FTP://ftp.microsoft.com," or an IP address string in dotted format, such as
"100.0.1.1".

object.RemoteHost = string

When this property is specified, the URL property is updated to show the new
value. Also, if the host portion of the URL is updated, this property is also
updated to reflect the new value.

The RemoteHost property can also be changed when invoking the OpenURL or
Execute methods.

At run time, changing this value has no effect until the next connection.

14.4.4 Protocol

Returns or sets the protocol, either TCP or UDP, used by the Winsock control.

object.Protocol [=protocol]

The possible settings for protocol are:

Constant Value Description

SckTCPProtocol 0 Default. TCP protocol.

SckUDPProtocol 1 UDP protocol.

The control must be closed (using the Close method) before this property can be
reset.

14.4.5 State

Returns the state of the control, expressed as an enumerated type. Read-only and
unavailable at design time.

237 Visual Basic for Electronics Engineering Applications

X = object.State

The possible results for the State property are:

Constant Value Description

SckClosed 0 Default. Closed

SckOpen 1 Open

SckListening 2 Listening

SckConnectionPending 3 Connection pending

SckResolvingHost 4 Resolving host

SckHostResolved 5 Host resolved

SckConnecting 6 Connecting

SckConnected 7 Connected

SckClosing 8 Peer is closing the connection

SckError 9 Error

14.4.6 Accept

This is for TCP server applications only. This method is used to accept an
incoming connection when handling a ConnectionRequest event.

object.Accept requestID

The Accept method is used in the ConnectionRequest event. The
ConnectionRequest event has a corresponding argument, the RequestID
parameter that should be passed to the Accept method. An example is shown
below:

238 Visual Basic for Electronics Engineering Applications

Private Sub Winsock1_ConnectionRequest _
(ByVal requestID As Long)

' Close the connection if it is currently
open

' by testing the State property.
If Winsock1.State <> sckClosed Then

Winsock1.Close

' Pass the value of the requestID
parameter to the

' Accept method.
Winsock1.Accept requestID

End Sub

The Accept method should be used on a new control instance (other than the
one that is in the listening state.)

14.4.7 GetData

Retrieves the current block of data and stores it in a variable of type variant.

object.GetData data, [type,] [maxLen]

Data Where retrieved data will be stored after the method
returns successfully. If there is not enough data
available for requested type, data will be set to Empty.

Type Optional. Type of data to be retrieved, as shown in
Settings.

MaxLen Optional. Specifies the desired size when receiving a
byte array or a string. If this parameter is missing for
byte array or string, all available data will be retrieved.
If provided for data types other than byte array and
string, this parameter is ignored.

239 Visual Basic for Electronics Engineering Applications

Data can be returned in a type of your choice. This is accomplished by
specifying this in the Type argument. The settings for type are:

Description Constant

Byte vbByte
Integer vbInteger
Long vbLong
Single vbSingle
Double vbDouble
Currency vbCurrency
Date vbDate
Boolean vbBoolean
SCODE
String vbString

vbError

Byte Array vbArray + vbByte

It's common to use the GetData method with the DataArrival event, which
includes the totalBytes argument. If you specify a maxlen that is less than the
totalBytes argument, you will get the warning 10040 indicating that the
remaining bytes will be lost.

14.4.8 Connectionrequest

Occurs when a remote machine requests a connection.

This is for TCP server applications only. The event is activated when there is an
incoming connection request. RemoteHostIP and RemotePort properties store
the information about the client after the event is activated.

object_ConnectionRequest (requestID As Long)

The ConnectionRequest event syntax has these parts:

The requestID parameter is the incoming connection request identifier. This
argument should be passed to the Accept method on the second control instance.

240 Visual Basic for Electronics Engineering Applications

The server can decide whether or not to accept the connection. If the incoming
connection is not accepted, the peer (client) will get the Close event. Use the
Accept method (on a new control instance) to accept an incoming connection.

14.4.9 DataArrival

Occurs when new data arrives.

object_DataArrival (bytesTotal As Long)

This event will not occur if you do not retrieve all the data in one GetData call.
It is activated only when there is new data. Use the BytesReceived property to
check how much data is available at any time.

In the appendix of this part examples will be given be given on how to set up a
little Telnet server. This is a program you can log into over the internet and can
accept commands and send you data. You can use this to make a remote
controlled system that can run over the Ethernet , intranet or even the internet.

241 Visual Basic for Electronics Engineering Applications

Some more case studies

Doodle : A Graphics program

This program demonstrates the use of graphics manipulation routines. Doodle is
a simple program that allows you to draw into a PictureBox. You can save the
data to a standard BMP file. You can select to draw geometric shapes such as
draw lines ,circles ,ellipses and rectangles , or you can draw freehand. It allows
you to select colors for your drawing and specify filled or open shapes

Miniterm :A simple terminal

This program will allow us to communicate with the outside world in a simple
fashion. A number of practical things are given that will show you , besides
serial communication , how to implement some data manipulations.

AlphaServer : A Telnet Server application.

This program can be started on any machine that has a valid IP address , and is
connected into a TCP/IP network (LAN / WAN / Intranet / Internet). You can
log on to it and interrogate it. This could be a program that collects data on some
remote site , and can be accessed and controlled via remote.

LoanCalc : Using Excel from your program

242 Visual Basic for Electronics Engineering Applications

This example shows yet another way to control other programs. It will derive an
object from the ‘Excel’ program and use it to perform some calculations.
Actually it uses Excel as a ‘Server’ program to perform its task.

243 Visual Basic for Electronics Engineering Applications

Doodle.vbp

Case Study 3 : Doodle A graphics program

As with any program we start by creating a new project and adding the standard
menu. File – Save / load /quit. The necessary code to quit is written as well.

I inserted a picture box called ‘workspace‘ that will be used as the target of the
drawing operations. I created a couple of frames as well. The first frames holds
3 option buttons. They will allow me to select the kind of shape I want to draw.
In this frame is also a checkbox that allows m to select a filled shape.

The other two frames contain each an array of 16 option buttons. These will be
used to select the drawing colors

At the bottom I added a label as well. This will be used to display the cursor
coordinates during the drawing operation. As you can see the option buttons that

244 Visual Basic for Electronics Engineering Applications

allow the color selection have a strange appearance. I Set the caption to empty
and changed the backcolor to light yellow. The actual changing of the backcolor
has no particular meaning. It is just an indication for me that something will be
done with this color from within the code.

The primary code attached to this form looks like this :

Dim Sbordercolor
Dim sFillcolor

Private Sub bordercolor_Click(Index As Integer)
Sbordercolor = Index

End Sub

Private Sub colorfill_Click(Index As Integer)
sFillcolor = Index

End Sub

Private Sub Form_Load()
Dim X
For X = 0 To 15

Bordercolor(X).BackColor = QBcolor(X)
colorfill(X).BackColor = QBcolor(X)

Next X
End Sub

Private Sub quitprogram_Click()
 End

End Sub

In order to have easy access to the selected Bordercolor and fill color I created
two variables : Sbordercolor and sFillcolor. One of the option button arrays is
called Bordercolor , the other is called colorfill. Whenever I click on one of
these buttons I store the index of the clicked option button into the appropriate
variable.

245 Visual Basic for Electronics Engineering Applications

The form load routine is going to assign the colors to the radio buttons. I
perform a sweep from 0 to 15 and ask the corresponding QBcolor . That
QBcolor is then assigned to the Backcolor property of the radio button.

Finally the Quitprogram_click simply terminates execution

In order to display the coordinates I simply attach a small blurb of code to the
MouseMove event of the workspace.

Private Sub workspace_MouseMove(Button As
Integer, _

Shift As Integer, X As Single, Y As Single)

Label1.Caption = "X:" + Str$(X) + " Y:" +
Str$(Y)
End Sub

This will update the contents of the label1.caption property whenever a
MouseMove is detected on the Workspace PictureBox.

With this out of the way we can concentrate on the real drawing routines.
Depending on the selected shape in the first frame we need to decide what to do.
We can only take action if the user clicks with his mouse to point to the
coordinates of the shape he wants to draw.

Logically you would use the workspace.click event. But alas … this does
not return the coordinates where the user has clicked. So we need to attach code
to the MouseDown event. The problem is that the user needs to click twice , the
first click designates top left , and second click the bottom right corner. So I
created 3 static variables to hold this information.

Remember static variables ? No ? Okay : static variables are not destroyed upon
exiting the subroutine. So the next time I enter they are still existing , and the
data in them is still valid. Read the section about variables again.

One of them is going to be used as a Boolean. The first time the user clicks the
content will be 0. The if-then else clause will then execute the part of the code
where X and X get stored in StartX and StartY. It also turns the Firstclick to 1.

The second time the user clicks the program flow will run over the Else clause.

246 Visual Basic for Electronics Engineering Applications

Private Sub workspace_MouseDown(Button As
Integer, _

Shift As Integer, X As Single, Y As
Single)

Static firstclick
Static startx, starty

If Button = 1 Then
If firstclick = 0 Then
 ' this is the firstclick
' store the coordinates
startx = X
starty = Y

Else
‘ second click : execute

End If
‘ toggle firstclick

If firstclick = 0 Then

 firstclick = 1

Else
firstclick = 0

End If

End If

End Sub

All we need to fill in now is the code to do the drawing. This code goes into the
Else clause (‘second click : execute).

First we need to decide what the user selected as shape style.

247 Visual Basic for Electronics Engineering Applications

If drawtype(0).Value = True Then
 workspace.Line (startx, starty)-(X, Y) _

, QBColor(sbordercolor)
End If

If he selected line we are simply going to draw a line from the start coordinates
to the current coordinates with the selected border color.

In a similar way the box can be created. Except that here the user could have
selected to fill the box. Drawing a filled box with a different border color is not
directly possible. So what I am going to do is draw two boxes. One full box
with the FillColor. On top of that I am going to draw a second box with the
border color.

If drawtype(1).Value = True Then ' rectangle
‘ if required draw a filled box
If fillit.Value = 1 Then
 workspace.Line (startx, starty)-(X, Y), _

QBColor(sfillcolor), BF
End If

 ‘ draw the outline
workspace.Line (startx, starty)-(X, Y), _

QBColor(sbordercolor), B
End If

Very simple as you can see. The same is done for the circle command. Except
that here the second X coordinate will determine the radius. The circle
command does not allow you to create filled circles. So we have to be a bit
creative here. Furthermore we can’t use the x and y coordinates since we need
to specify the radius.

The radius is determined by the difference between startx and x . This can be
obtained by calculating the absolute value of Startx-x.

To create the filled image I draw a number of circles and change the radius from
1 to the maximum radius.

248 Visual Basic for Electronics Engineering Applications

If drawtype(2).Value = True Then
If fillit.Value = 1 Then

For z = 1 To Abs(startx - X)
workspace.Circle (startx, starty), z,

_
QBColor(sfillcolor)

Next z
End If
workspace.Circle (startx, starty), Abs(startx

- X)_
, QBColor(sbordercolor)

End If

The result of some doodling could look like this :

249 Visual Basic for Electronics Engineering Applications

That’s it. Now you can create simple drawings. Of course this is not like a real
drawing program but it gives you insight in simple graphics operations.

You could add now the Save command using the Savepicture method , and load
one using the Loadpicture command. But that is up to you.

250 Visual Basic for Electronics Engineering Applications

251 Visual Basic for Electronics Engineering Applications

Case Study 4 : The data terminal

MiniTerm.vbp

The basics of this program are the same as any program. A form , A menu with
a Quit entry and the usual Startup and exit code

Private Sub Form_Load()
Me.Show
DoEvents

End Sub

Private Sub quitprogram_Click()
End

End Sub

Since a terminal works accepts data from keyboard and remote site we need a
control where we can display this data. Since , during the conversation with the
other side , a lot of characters could have been sent , it might be good if there
was a scroll back buffer of some sort.

252 Visual Basic for Electronics Engineering Applications

The easiest way to accomplish this is using a textbox with Multiline and
scrollbars (both) turned on.

Next thing we are going to need is the MSComm object. Just enable this on the
control toolbar and insert it onto the form. Never mind the location on the
screen. Once the program starts running it will disappear anyhow.

Since we don’t always know who is on the other side , it would be nice if we
could select the port we want to talk to and also the baud rate setting.

The pitfall here is that , when we attempt to open a non-available port , or try to
set it to impossible parameters we get a runtime error. So we need to tackle
these. I know I have not explained you yet how to do that. For now , just ignore
this. It is explained in Part III of this book.

253 Visual Basic for Electronics Engineering Applications

To select comports I added an options menu where you can click the port and
speed. If the port is not accessible , or the speed is invalid then the values will
simply be grayed out. When the program starts I simply activate each of the
options to allow this to happen.

Private Sub comport1_Click()
‘ switch off the selected ports
comport1.Checked = True
 comport2.Checked = True
 comport3.Checked = True
 comport4.Checked = True

 ' make sure the port is closed
If rs232.PortOpen = True Then rs232.PortOpen

= False
 rs232.CommPort = 1
On Error GoTo openfailed
rs232.PortOpen = True
 comport1.Checked = True
Exit Sub

254 Visual Basic for Electronics Engineering Applications

openfailed:
comport1.Enabled = False ‘ disable menu

End Sub

The above code will treat an occurring error by graying out the appropriate
menu entry. During the startup of the program we simply call each of these
routines. This will make sure the user gets to see only the available ports. The
code for the four other comports is exactly the same except that we set the
RS232.comport clause to the appropriate port , and make sure the correct
menu entry gets checked.

Private Sub Form_Load()
Me.Show
DoEvents
comport1_Click
 comport2_Click
 comport3_Click
 comport4_Click
 comport1_Click

End Sub

Testing serial ports takes some time. Since the Form_Load gets executed before
the form actually is displayed this might give the impression that the program is
slow. So if we apply a little trick we give the user the feeling the program is fast.
By explicitly executing the Me.Show statement we force the display of the form.
Of course wee need to give Windows the time to do this, Thus we execute the
DoEvents command.

The code to control the baud rate is simply going to close the current selected
port , change the baud rate and reopen it.

255 Visual Basic for Electronics Engineering Applications

Private Sub baud2400_Click()
If rs232.PortOpen = True Then rs232.PortOpen

= False
 rs232.Settings = "2400,N,8,1"
rs232.PortOpen = True

End Sub

What we have built so far is the entire user interface and the options to allow the
user to customize the program configuration Now we have to focus on the real
communication.

The MSComm object generates an OnComm event whenever something
happens on the serial port. If we then check if it was an incoming character we
can simply read it from the buffer and send it to the textbox. This would allow
us to receive data.

Private Sub rs232_OnComm()
Select Case rs232.CommEvent

 ' Handle each event or error by placing
Case comEvReceive ' Received

RThreshold # of
' chars.

Text1.Text = Text1.Text +
rs232.Input

 rs232.Input = ""
End Select

End Sub

In order for this to work you lust not forget to set the Rthreshold to 1. This
makes sure the OnComm event gets fired for every incoming character.

To transmit data we need to check when the user types something. Now we
can’t use the Textbox.change event since it can be changed by the data

256 Visual Basic for Electronics Engineering Applications

receiving routine as well. Another problem would be that we need to extract the
last character of the entire text since that would be the last character typed . This
would involve moving a lot of data every time and make the program slow. But
we have a Keypress event. Furthermore the keypress event returns us the ASCII
code of the pressed key. So that is exactly what we need

Private Sub Text1_KeyPress(KeyAscii As Integer)
'ship the character to the comport
' here you could first do translation if

required
rs232.Output = Chr$(KeyAscii)

End Sub

Of course the presented program is a simple case. You could improve it largely
by allowing it to a CR/LF translation. Some machines (like UNIX) only use LF
to indicate a new line. PC’s require CR/LF. So you could add options to
translate this . This could be done by checking the ASCII code of the incoming
character, or keypress ,and changing the code to the appropriate code(s).

The following routine would translate an incoming LF to CR/LF

Private Sub rs232_OnComm()
Select Case rs232.CommEvent

 ' Handle each event or error by placing
Case comEvReceive ' Received

RThreshold # of
' chars.

x$ = rs232.Input
 rs232.Input = ""
If x$ = Chr$(10) Then
 Text1.Text = Text1.Text +

vbCrLf
Else

Text1.Text = Text1.Text +
rs232.Input

End If
 End Select

End Sub

257 Visual Basic for Electronics Engineering Applications

This one will send a CR/LF whenever you hit ENTER.

Private Sub Text1_KeyPress(KeyAscii As Integer)
'ship the character to the comport
If KeyAscii = 13 Then ' CR to CRLF translate

rs232.Output vbCrLf
 Else

rs232.Output = Chr$(KeyAscii)
End If

End Sub

So we managed to write a little terminal program in a matter of minutes. You
can of course extend this much further , but that is not the job of my book. I
have given you the basis of how to do serial communications and how to
respond to the events associated with it.

258 Visual Basic for Electronics Engineering Applications

259 Visual Basic for Electronics Engineering Applications

Case Study 5 : AlphaServe : A Telnet server

Aserve.vbp

The basics of this program are the same as any program. A form , A menu with
a Quit entry and a textbox that will act as a console.

In order to have access to TCP/IP we need to instantiate the MsWinsock control.
Since we are building a server we will need a public and a private object. Why
will come clear later.

In the startup code of the form we need to specify that the Public object (in this
case the Public Socket) has to listening to port 23. Port 23 is the port used for
Telnet connections. The definitions of these ports are defined in the TCP/IP
protocol.

Private Sub Form_Load
PublicSocket.Localport=23
PublicSocket.Listen

End sub

The above code will make that happen.

Next we have to attach some code to the Connectrequest event of our Public
Socket

Private Sub Publicsocket_ConnectionRequest(byval
_

requestid as long)
If privatesocket.state = sckClosed then
 Privatesocket.Localport=0
Privatesocket.Accept requestid
Privatesocket.Senddata “Hello there , _

you just logged on to me via
TCP/IP !”
End if
End Sub

260 Visual Basic for Electronics Engineering Applications

Whenever a connectionrequest is occurring we will check if the Privatesocket is
free to receive connection. If so we will pass the connection request to
Privatesocket and establish the link by sending some data.

Remember in Winsock that you are either a public listener or a connected
Talk/Listener. A public listener will accept any data coming from anyone. It can
also transmit data to anyone out there. But if two users are connected , both will
receive the data.

The private listener is set up for point to point. Only valid connected users will
get to see this.

The Publicsocket is listening to anyone transmitting on port 23. The
Privatesocket sets up a private link to your machine.

That’s it. It’s that simple.

261 Visual Basic for Electronics Engineering Applications

Case Study 6 : LoanCalc : Using Excel in your applications

Loancalc.vbp

This program demonstrates how to access functions in other programs. The
basics of this program are the same as any program. Some new concepts will be
introduced here.

The basis of the program is a couple of textboxes and a button to start the
calculation

The three textboxes are designated txtAmount , txtYears and txtInterest
respectively. The button is simply called cmdCalc.

Private Sub cmdCalc_Click()
Amount = Val(txtAmount.Text)
Years = Val(txtYears.Text)
Interest = Val(txtInterest.Text)
Payment = CalcPay(Amount, Years, Interest)
Label3.Caption = Payment

End Sub

Public Function CalcPay(Amount, Years, Interest)
Dim excel As Object
Const ExcelObject = "Excel.Application"

262 Visual Basic for Electronics Engineering Applications

Set excel = CreateObject(ExcelObject) ' grab
excel

CalcPay = excel.Pmt((Interest / 100) / 12,
Years * 12, -1 * Amount)

excel.Quit

Set excel = Nothing ' release excel
End Function

The cmsCalc routine is pretty straightforward and self-explanatory. Let’s focus
on the actual Calcpay routine. First of all we need to declare a variable to access
the external object ‘excel’ . For easiness sake let’s call it simple Excel.

The second line will assign The Excel.application to this variable. Actually what
we are doing here is obtaining a so-called ‘handle’ to excel. Once we have a
handle to an object we can manipulate it.

That is exactly what happens in line three. We access the PMT function of the
excel object. , pass it variables just like we would to any other object , and
retrieve the result.

If you no longer need the object you can simply destroy it. This normally
happens automatically. For instance if you close a form , the object contained in
the form are automatically destroyed.

Since we created the object during runtime we are responsible need to destroy
the object again. The pitfall in this case is that excel is an external program.
While it was launched automatically upon creating the handle , it is not
terminated automatically. Therefore we first ask Excel to terminate itself and
then release the handle to excel by setting the handle of the ‘excel’ variable to
Nothing.

Unfortunately not every program allows you to derive objects from it. In general
all Office product allow you to do this.

263 Visual Basic for Electronics Engineering Applications

Conclusion

This concludes Part II of this book. In the previous parts we have seen what
visual basic is and what we can do with it. Ranging from simple applications to
full-blown programs that can be communicating to the outer world.

3

Visual basic brings a vast amount of routines and procedures with it. These can
exist either inside the compiled code or externally in libraries. Microsoft ships a
lot of extra libraries with Visual basic. You can also find on the market a lot of

rd party libraries and objects to use with VB. But we have been neglecting the
biggest library of them all : The windows core itself.

In the next part we are going to dig deeper into this amazing system and explore
it. I’m also going to show you how to build your own libraries and controls.
This will even extend the capabilities even further.

Have Fun

264 Visual Basic for Electronics Engineering Applications

265 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics
Engineering
Applications

Part III

Master Programming

266 Visual Basic for Electronics Engineering Applications

267 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics Engineering
Applications
Part III :

Master Programming with Visual Basic

Introduction

So far we still have only scratched the surface of what you can do with the
Windows operating system. while VB unleashes most of it , you will sometimes
find yourself in a situation where you ask yourself : how do they do that ?. you
might have been trying to create a program that acts in a similar way as a
program you have seen. Yet it seems close to impossible to do it. Well maybe
you’re not looking in the right place. While VB brings a wealth of procedures ,
functions , routines and objects , there is a tremendous amount of stuff dormant
in any system , waiting for someone to open the can on it.

Windows itself is to be considered one huge collection of functions and routines
that you too , as a VB programmer , can exploit to your benefit. This part of the
manual will plunge intuit this matter and explain you how to take a lead start on
creating very impressive applications.

268 Visual Basic for Electronics Engineering Applications

269 Visual Basic for Electronics Engineering Applications

Chapter 15:

Digging into

Windows.

This chapter will take you deeper into the operating system. You will learn how
to exploit the embedded functions of the operating system for the benefit of
your programs

15.1 DLL’s

What are DLL’s ? Simply said : a Library of routines. The name itself
:’Dynamic Linkable Library’ might be scary at first. But really it’s nothing more
then a library you can attach to your code and use the routines in it , just as they
were your own written routines.

A DLL however is not like an ordinary program library. In a normal
programming style a library is glued or ‘linked’ into a program during compile
time. Suppose you create 50 applications using the same library and you load
them all into memory at once. You would have 50 copies of your library loaded
in your computers memory . what a waste of space. This is where the concept of
DLL kicks in. The library is not embedded into an application. It’s merely
distributed with it. Whenever an application that needs it , gets started the
operating system loads the library into memory. Any application that needs it
can use this library. Upon termination of the last application that uses one
particular library it is automatically unload.

270 Visual Basic for Electronics Engineering Applications

Well, this is all nice but what can you do with them. Well. Most Windows
programs are built out of 2 parts. A user interface and a DLL that contains the
real workings of the program. Let’s take excel as an example. The user interface
is nothing more then a data manipulator. The real calculation routines are stored
in a DLL library. This library gets referenced whenever the GUI part of excel
calls for it.

Since you can access DLL’s from VB you can use the Excel routines inside
your program directly. Why write a complex math routine or graphic display
routine if someone else already gas done this.

Actually the example of excel is poorly chosen. There is no need to access the
DLL since you can access the whole of Excel as an object.

A better example is the following.

There are some things you cannot do in VB . And I really mean Not. In a DOS
based environment you could read and write memory locations at will using
Peek and Poke. The same was true for IO operations .

Since Windows manages all of these things now , it doesn’t like you fiddling
around with them. That is the main reason why Microsoft has left these
operations out. As a matter of fact , they are gone in most programming
languages. But in assembler you are still king of the system. There you can do
whatever you want . So if you could create a routine which accesses hardware ,
compile it into a DLL and then use it in your program … . Now if only someone
would write this…. . More on this later.

VB provides a mechanism to access any DLL library. All you need to know is
the name of the library , the function name and the arguments it takes. When a
function in a DLL is a reserved keyword for basic you can use the ALIAS
statement to specify a different name for it.

You have to think of the operating system as a layered structure. Deep buried
inside it are the most low level functions. While moving to the outer layers the
operations become internally more complex but to the programmer easier to use.
VB , and any other programming language for that matter ,exposes only the top
layer of this structure directly. If you want to access the layers below you need
to do API access. Every part of the operating system resides somewhere as a
function you can access. Sometimes these DLL’s are disguised as drivers or
whatever. But you can still reach them.

271 Visual Basic for Electronics Engineering Applications

15.2 Accessing DLL routines

This is done exactly like you would create any other subroutine or procedure.
Except that now you precede the Sub or Function with the Declare keyword.
This denotes that what you are going to do now is specify an already existing
routine.

Syntax:

[Public | Private] Declare Sub name Lib
"libname" _

[Alias "aliasname"] [([arglist])]

[Public | Private] Declare Function name Lib _
"libname" [Alias "aliasname"] [([arglist])]

[As type]

Name Any valid procedure name. Note that DLL entry points
are case sensitive.

Lib Indicates that a DLL or code resource contains the
procedure being declared. The Lib clause is required for
all declarations.

Libname Name of the DLL or code resource that contains the
declared procedure.

Alias Indicates that the procedure being called has another
name in the DLL. This is useful when the external
procedure name is the same as a keyword. You can also
use Alias when a DLL procedure has the same name as

same scope. Alias is also useful if any characters in the
DLL procedure name aren't allowed by the DLL naming
convention.

Aliasname Optional. Name of the procedure in the DLL or code
resource. If the first character is not a number sign (#),
aliasname is the name of the procedure's entry point in

a public variable, constant, or any other procedure in the

272 Visual Basic for Electronics Engineering Applications

follow must indicate the ordinal number of the
procedure's entry point.

arglist
are passed to the procedure when it is called.

type Optional. Data type of the value returned by a Function
procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently

a user-defined type, or an object type.

the DLL. If (#) is the first character, all characters that

Optional. List of variables representing arguments that

supported), Date, String (variable length only), or Variant,

For Function procedures, the data type of the procedure determines the data type
it returns. You can use an As clause following arglist to specify the return type
of the function. Within arglist, you can use an As clause to specify the data type
of any of the arguments passed to the procedure. In addition to specifying any of
the standard data types, you can specify As Any in arglist to inhibit type
checking and allow any data type to be passed to the procedure.

Empty parentheses indicate that the Sub or Function procedure has no
arguments and that Visual Basic should ensure that none are passed. In the
following example, First takes no arguments. If you use arguments in a call to
First, an error occurs:

Declare Sub First Lib "MyLib" ()

If you include an argument list, the number and type of arguments are checked
each time the procedure is called. In the following example, First takes one
Long argument:

Declare Sub First Lib "MyLib" (X As Long)

273 Visual Basic for Electronics Engineering Applications

Note

;

Note

You can't have fixed-length strings in the argument list of a Declare
statement only variable-length strings can be passed to procedures. Fixed-
length strings can appear as procedure arguments, but they are converted to
variable-length strings before being passed.

The vbNullString constant is used when calling external procedures, where
the external procedure requires a string whose value is zero. This is not the
same thing as a zero-length string ("").

15.3 On Passing parameters to procedures and functions

In the previous section we have briefly seen the ByVal and Byref keywords. So
let’s take a closer look at them and what can be done with them.

First we need to understand the concept of a ‘Pointer’. This is something often
used the ‘C’ language . Most beginning programmers find this a very difficult
concept. Well it is not. The problem is that most books explain it very poorly.

Then what is pointer? Well the name really says it all. It is something that points
to something else. Suppose you I am an office clerk and you are my chief. You
come in and ask for a business report A534. As a good clerk I jump up from my
chair go to the filing cabinet , pop out the report and hand it to you. Of course
you are very pleased with my swift response and my neatly organized filing
cabinets. The next day I am not at my desk (I’m ill and at home). You come
and ask for the same report. But where is it ??? . Now if only I had given you a
reference to where it was … That is exactly a pointer.

Now this comparison is not exactly one to one. In real programming life a
pointer is the following. You can either pass a variable ByVal (By value :
content) or ByRef (By reference : pointer). Passing something ByVal means
that you will pass the contents of the variable. If I pass you the variable X
ByVal , and X = 5 then I am passing you 5.

274 Visual Basic for Electronics Engineering Applications

On the other hand if I pass it ByRef (By reference) I am passing you the
locations of where X is stored. Then you can retrieve the contents of X.

Now what good is this. Well very simple. If I pass you what is stored in the
variable you can use this data. End of line. If I pass you where it is stored , you
can retrieve it but you can also MODIFY it ! This can be very dangerous.
Typically when something goes wrong in a program , and it contains a pointer
then that is the first place to look at. Another big problem is that most
programmers , which think they fully understand pointers , use pointers
whenever they like.

A pointer is something you only use when you want to give the ‘demanding’
side the privilege to modify the contents of the location (variable) it points to.

Now there is a vary tricky part here. Unless you explicitly state that some
variable to be passed by Value it is passed by reference. The reason is that it
saves both time and memory to do this. So be careful never to change the
contents of passed variables inside a procedure unless you want to do this !.

 Where can you use this ? Simply said : Function and procedure calls that return
more then one result.

Suppose you have a Procedure called SwapVariables. This procedure will swap
the contents of two variables. You can’t do it with a function , because it can
only return you one of the two. Furthermore you would need extra storage space
to temporarily hold the data. This consumes , memory and CPU time.

If you give that function access to the passed variables you can do it.

275 Visual Basic for Electronics Engineering Applications

Sub SwapVariables (ByRef X, ByRef Y)
Dim Tmp
Tmp = Y
Y = X
X = Tmp

End sub
Sub Form1_Load()

X = 5
Y = 3
Debug.print X,Y
SwapVariables x,y
Debug.print X,Y

End sub

15.4 API programming

What is this API ?.

API is short for Application Programming Interface. It is an interface between
your applications and the computer’s operating system. In a complex system
like Windows you can’t just fiddle around with whatever you want. Low-level
stuff like disk access , screen update etc is handled by the operating system. It’s
a very bad idea to mess with these when you are not absolutely sure about what
you are doing. Windows exposes all of the underlying code trough this API.
Even the most primitive operations can be done using this interface. Not only
windows , but also every windows program , can have an API. The same goes
for windows components like network interfaces , Database engines etc.

The Windows API is a very rich set of commands (over 5000 routines) that can
enable you to perform task which are not normally possible. As explained in the
section about DLL’s , with a normal programming language you scratch only
the surface of Windows.

Explaining all of the functions in the Windows API would take a course of a
couple of months and a book a couple of thousand pages long. Someone has
done this however. The best source is the technical documentation Microsoft

276 Visual Basic for Electronics Engineering Applications

provides trough its Developers Network. This is to be considered the ‘bible’.
However , due to the very technical nature of this information it is not always
clear to understand. There is a very good book by Dan Aplleman that describes
the Windows API functions and how you can use them with Visual Basic. VB
itself has already an include file that predefines most of the API calls you can
perform inside windows.

15.4.1 A simple API example

Suppose you want to make the computer emit a simple Beep. Well duh , you
can’t. Fortunately the API of windows has this function because it needs it to
allow command.com emit beeps. When you launch a DOS window then the
beeps generated there are translated into a call to a kernel function of windows.

All you have to do is simply expose this function to VB.

Declare Function Beep& Lib "kernel32" (ByVal
defer_

As Long, ByVal depuration As Long)

And there you have it : your first DLL access ! Now you can make windows
emit simple beeps and sounds. Check out the Beepdemo.vbp file to learn more.

Note :
The Win95 platform no longer supports the parameters Frequency and
Duration. They are simply denied.

So what resides where in this huge windows library ? Actually there is more
then one library inside windows. The operating system itself is a layered
construction of processes that communicate amongst them. It is neatly organized
in chunks that have a certain , well-specified task.

Windows kernel modules

277 Visual Basic for Electronics Engineering Applications

User32.DLL

GDI32.DLL

LZ32.DLL

Kernel32.DLL Low level operating functions, Memory management,
task management, resource handling and related
operations

 Windows management, Messages, Menu’s, cursors,
carets, timers, communication etc

Graphics device interface : device output , all graphics
manipulations, display content, metafiles, coordinate
handling and font management

COMDLG32.DLL Additional stuff for common dialogs,

file compression

Extension libraries

MAPI32.DLL

NETapi32.DLL

ODBC32.DLL

COMCTL32.DLL New windows control like tree list and richtext edit

Mail interface. Allows you to read ,create and send
messages via e-mail systems

Control and accessing of networks

Open Database Connectivity Allows you to interface
with a number of common database formats.

WINMM.DLL Multimedia stuff, sound ,video etc

Most of the functions in the additional libraries are accessible via the built-in
objects and controls of visual basic. The same goes for the things contained
inside Windows. After all a simple button is contained in USER32.DLL.

To show you the power of these API calls a little example. Suppose you want to
restrict the users cursor to certain boundaries. Any idea how to do that ? . No ?
Of course not. This is against standard windows programming . But still you can
do this , after all windows calls these every time you resize the desktop of your
computer (video card resolution)

278 Visual Basic for Electronics Engineering Applications

There is a API call to Clipcursor.

DIM myrect as RECT , mypoint as POINTAPI
DIM DL&
Mypoint.x = 0
Mypoint.y = 0
Dl& = clienttoscreen&(pctcursor.hwnd,mypoint)
Meyrect.top = mypoint.y
Myrect.left = mypoint.x
Myrect.right = myrect.left +
pctcursor.scalewidth
Myrect.bottom = myrect.top +
pctcursor.scaleheight
Dl& = clipcursor&(myrect)

Now all of the above might seem mumbo-jumbo to you and to be honest it is to
most of us. API programming requires you to know a big deal on how windows
works internally. You have to know how to obtain handles, create rectangles (
not simple rectangles , a rectangle is the basic internal object that windows uses
to do graphics manipulations.

A more practical use of the windows API is to get environment information.
Suppose you want to check who is using the computer. You can do this by
asking for the name of the user who logged into the system.

279 Visual Basic for Electronics Engineering Applications

Declare Function GetUserName Lib "advapi32.dll"
Alias _

"GetUserNameA" (ByVal lpBuffer As String, _
nSize As Long) As Long

Public Sub Main()
Dim Buffer As String

 Dim BufferSize As Long
 Dim ReturnVal As Boolean
 'Create Buffer

Buffer = Space(255)

BufferSize = Len(Buffer)

ReturnVal = GetUserName(Buffer, BufferSize)

MsgBox "User name is " & UCase(Trim(Buffer))

End Sub

If you want to know more about API accessing you should read the book by
Dan Aplleman : VB5 programmers guide to the WIN95 API. This is the bible
on Windows functions. 1541 pages no-nonsense reference material. Good luck !

280 Visual Basic for Electronics Engineering Applications

281 Visual Basic for Electronics Engineering Applications

Chapter 16 :

ActiveX Control

Creation

This is a new ,catchy name to disguise OLE. Actually ActiveX is OLE. Now
that does not exactly answer the question. Then what is OLE (or ActiveX for
that matter).

It is a mechanism that allows you to ‘embed’ other programs inside you
program. OLE literally means Object Linking and Embedding.

A practical example of this is the following : When you create a document in
Microsoft Word you can embed tables inside this document. Word however
does not know how to handle a table. After all it was designed to be a word
processor , not a spreadsheet. But there is a program that masters tables : Excel.
Well that’s exactly what word is going to do. It will store the physical data ,
which it does not know how to handle inside the document. Upon opening the
document it will read as much as it can and then ship the chunks of mystery data
off to somebody else : excel. Excel will then visualize this part of the data on
screen.

This is a very practical system. After all we are not here to reinvent the wheel all
the time. Now this thing has drawbacks too. You need the other application to
be able to interpret the data. IF you would make a little VB program and
embedded excel into it (which is perfectly possible) you’d end up with a
tremendously big executable. So there is another possibility

282 Visual Basic for Electronics Engineering Applications

Programs are written in a layered way. You have the so-called core libraries.
These are the real routines that perform the operations with the data . There is an
API interface built into this. A user interface then reacts to the users command
and calls the appropriate functions. .

When doing OLE , you are actually going to bypass the User interface and talk
to the core of the system itself. This is of course a very cumbersome task. It
means browsing trough a list with thousands of calls. So this is not done very
often.

The first method (embedding the entire system , including API and all) is
called Document embedding. (or ActiveX document embedding).. The latter
method is the real Object embedding.

Now what are the ActiveX objects then. Well they are simply small programs
that are really embedded on Document style. However they are so small that you
can consider them as objects. They have properties, methods , and events.
Actually Excel could be thought of as an ActiveX object too, but since that can
be used as a standalone program it is not considered an object.

And there you have it. An ActiveX object is a program that has no real use
when used stand-alone. Consider a round button. What good would it do to
write a program that creates a round button. You could click it … and then what
?. But if you embed it into you r program you can design a nice user interface
to the worlds most astonishing program (written in VB of course ☺) .

You can , using Visual basic create your own ActiveX objects. You can compile
them into OCX files and distribute them . Even C++ programmer can use them
!. As a matter of fact any programming language for windows can call them and
use them.

16.1 Creating an ActiveX Object.

FirstCtrl.vbp

This is really quite simple. The basic process is similar to creating a regular
project.Start a new project and select ActiveX Control. You will get an empty
screen. Notice that there is no title bar or control box present.

This is typical for a control object. After all , you are going to place this on
another form , so there is no need for title bars or control boxes.

283 Visual Basic for Electronics Engineering Applications

Now you can insert standard windows objects. Take care to use only the objects
that are available inside windows. Avoid to use additional objects and or
pluggable components. It will work , but the problem is transporting your object
to other computers. You will need to transport the embedded objects as well.
Now this works fine as long as you can create a setup program for it. But since
an ActiveX object gets compiled to an Object this information is lost in the
process.

So lets add a little button (button1) and a textbox (text1).

We will attach code that displays a string into the textbox. In the Control_Load
form we assign a certain text to this string.

Dim atext$

Private Sub button1_Click()
Text1.Text = atext$

End Sub

Private Sub UserControl_Initialize()
atext$ = "Hello world"

End Sub

don’t worry each copy (or instance) has a life of it’s own.

Note:
Similar to a projects startup code (Form_Load) there is a Control_load that
marks the entry into the control. This gets executed whenever a control is
loaded. If you load multiple copies this code will execute each time. But

284 Visual Basic for Electronics Engineering Applications

The next thing we have to do now is add a project to the existing one in order to
be able to test our control. I have not told you this before but you can compile
multiple projects at once. This is called creating a group

So first rename the current project to MyHello.VBP and the control file to
MyHello.ctl.

Now let’s add a project <File><Add project>. Save this project as ctrltest.vbp
and ctrltest.frm. No finally save the project group as Myhello.grp.

First we need to make sure that the Form window for the control is closed (
minimized is NOT good). The reason for this is that a control leads a life of it’s
own. Once you insert a control it automatically starts running. As long as you
have the user interface designer is open for this control it cannot be initialized
properly.

You will notice that on the control browser there is no a new symbol. (the last
one inserted here displayed with a gray box around it). This is actually our
control. So you don’t really need to compile it first to make it run.

If we now insert this control twice we should get a screen like the following.

285 Visual Basic for Electronics Engineering Applications

Now if you hit the Run button (F5) you can try clicking on the two buttons and
you will see that you have two really independent controls. It’s that easy.

You might have noticed that you can size the control when putting it on the
form. But , alas , it does not really size. You merely ‘cut’ it .

286 Visual Basic for Electronics Engineering Applications

You can control this by attaching code to the form_resize event of your control.
Let’s force it to a fixed size. Simply attach this code to the control.

Private Sub UserControl_Resize()
UserControl.Width = 2295
UserControl.Height = 1125

End Sub

To do this: reopen the form of the control. You will now notice that the controls
already on the screen will be come grayed out with diagonal lines.

287 Visual Basic for Electronics Engineering Applications

This is your indication that the user interface designer for that control is open
and that what you see on the screen is no longer representative since the control
is under modification

After insertion you close the control design form again and you will
immediately see the control on the screen being updated.

If you try to select and size them you will see that they will jump to a fixed size
and that you cannot stretch them anymore. This is because the
Usercontrol_resize event ‘glues’ their size stuck.

The next page shows the full code of the very first control we made.

288 Visual Basic for Electronics Engineering Applications

Dim atext$

Private Sub button1_Click()
Text1.Text = atext$

End Sub

Private Sub UserControl_Initialize()
atext$ = "Hello world"

End Sub

Private Sub UserControl_Resize()
UserControl.Width = 2295
UserControl.Height = 1125

End Sub

16.2 Adding property’s and events

But what good is a control if you cannot communicate with it. As you have seen
, standard controls like buttons have properties and events. All we have made so
far is a dumb box we can insert and play with , but which is not interacting with
the programs we are writing.

So we need to add some properties and events. Visual basic has a plug in that
will assist you in doing this. You have to insert this in the Add-Ins menu.

289 Visual Basic for Electronics Engineering Applications

Start the Add-In Manager and select the Property Page and ActiveX Control
Interface Wizard. Once you have done this you can launch the ActiveX control
Interface wizard.

You will get a nice screen that you should read the first time in order to get a
better understanding of what we are going to do now.

290 Visual Basic for Electronics Engineering Applications

For now you can just click on Next. The next screen shows you the available
STANDARD properties , methods and events you can attach to your control.

291 Visual Basic for Electronics Engineering Applications

On the left side you see what is available and on the rights side you see what is
implemented for now. Since we are building a very simple control wee don’t
need these. So let’s make this list empty by clicking on the double arrow button
which points left (<<). This makes the list empty. We are only interested in a
Click event. So search for the Click event in the left listbox , select it and click
on the single arrow right (>) button.

292 Visual Basic for Electronics Engineering Applications

When that is done we can move on to the next screen: Inserting our own custom
properties, methods and events. So go ahead , click next.

293 Visual Basic for Electronics Engineering Applications

This screen shows you the display to enter your own items. So go ahead and
click New.

294 Visual Basic for Electronics Engineering Applications

Simply type the name you want to give it and the class it belongs to. In our case
this is a property called MyText. Click OK when done.

since this is all for now we click next to continue. If you would like to add more
things you could just go on here.

295 Visual Basic for Electronics Engineering Applications

The next window is the so-called Set mapping. This allows us to map the things
we selected directly to existing controls in the object.

In our case is want to map the Click event of my control to the Click event of
the button1 object in my control. This means that , whenever I click the button
the click event will be fired for my control. The user of my control can then take
action. If I would have defined a custom event I could map it as well. Mapping
is done by selecting the item of desire and specifying the object in the ‘Maps
To’ frame. When you select a control here you will be able to select the event ,
property or method in the Member list.

For now I only want to map this click event.

296 Visual Basic for Electronics Engineering Applications

So I select Button1 as the target control. And the Click event as the target
member. Finally I click on next.

297 Visual Basic for Electronics Engineering Applications

The last screen we need to fill out is the attribute definition. This allows us to
define the type of attributes of the properties defined. In our case the Mytext
property has to be set to variant. In the attribute information you can also
specify if the attributes need to be available at runtime , or design time or both.
You can also select if they have to be read, write or read/write. And you even
give them a default value.

The default value is the value that will be shown on the properties browser when
we are manipulating our control. For now we will not use that feature.

So now we can click on Finish. Finally the wizard will update the code you have
written so far with the additions you just made

298 Visual Basic for Electronics Engineering Applications

16.3 What the wizard came up with …

After completing the above process the wizard will generate all necessary code
to implement the specified events ,properties and methods. While you could do
all of this manually, it is handier and faster to let the wizard handle all of this.
But what did the wizard generate ?

Dim atext$
Const m_def_Mytext = 0
Dim m_Mytext As Variant
Event Click() 'MappingInfo=button1,button1,-
1,Click

Private Sub button1_Click()
RaiseEvent Click
Text1.Text = atext$

End Sub
Private Sub UserControl_Initialize()

atext$ = "Hello world"
End Sub
Private Sub UserControl_Resize()

UserControl.Width = 2295
UserControl.Height = 1125

End Sub
Public Property Get Mytext() As Variant

 Mytext = m_Mytext
End Property
Public Property Let Mytext(ByVal New_Mytext As
Variant)

m_Mytext = New_Mytext
PropertyChanged "Mytext"

End Property

'Initialize Properties for User Control
Private Sub UserControl_InitProperties()

m_Mytext = m_def_Mytext
End Sub
'Load property values from storage

299 Visual Basic for Electronics Engineering Applications

Private Sub UserControl_ReadProperties(PropBag
As PropertyBag)

 m_Mytext = PropBag.ReadProperty("Mytext",
m_def_Mytext)
End Sub
'Write property values to storage
Private Sub UserControl_WriteProperties _

(PropBag As PropertyBag)

Call PropBag.WriteProperty("Mytext",
m_Mytext, _

m_def_Mytext)
End Sub

Now the above piece of code will probably look very confusing. You will see
references to property bags , Get , Let etc … . What is all of this stuff you might
ask ?

The property-bag is a storage space that an object uses to store the name
references to its internal workings. The real names of the properties it allows
you to manipulate are stored there. Get and Let are functions that are called
whenever a property changes. If , during design time , you change one of the
objects properties , the Let function will be called and take appropriate action.
The same will happen if during the run of your program you change this
property. If you read the property the GET function will kick in. The availability
of these function depends directly on the parameters you have given in the ‘set
Attributes’ form of the ActiveX control interface wizard.

300 Visual Basic for Electronics Engineering Applications

15.6 A closer look at the final code.

Let’s take a look at the code generated by the wizard.

Dim atext$

'Default Property Values:

Const m_def_Mytext = 0

'Property Variables:

Dim m_Mytext As Variant

'Event Declarations:

Event Click() 'MappingInfo=button1,button1,-

1,Click

The first line of code is still the same as we wrote. Then the wizard has inserted
a constant to specify a default value for a parameter. This parameter is the
MyText. When an object initializes it cannot do this with un-initialized
variables. Then , in order to have clean code , the wizard has defined the
m_Mytext variant. M_MyText is a temporary holding pace for the data of the
MyText property.

Last it has declared the click event. This event is followed by what appears to be
remark. THIS IS NOT A REMARK !. Don’t remove this. The compiler reads
this information and will see where to map the event. Actually this is the place,
as you can see , where my Click event gets mapped to the Button1 Click event.
The default value is –1; this means the button is initially not clicked.

Private Sub button1_Click()
RaiseEvent Click

Text1.Text = atext$
End Sub

The next procedure that has been modified is the Button1_click event handler.
The wizard has inserted a line that will trigger the Click event we defined.

301 Visual Basic for Electronics Engineering Applications

RaiseEvent triggers will trigger whatever code the user of our object has
attached to our objects Click event.

Finally the wizard has inserted the necessary code that will allow the user of our
events to change and retrieve properties.

Public Property Get Mytext() As Variant
 Mytext = m_Mytext

End Property

This procedure allows the user to retrieve the Mytext property. It copies the
contents of the temporary information (m_Mytext) to the users calling code.

Public Property Let Mytext(ByVal New_Mytext As
Variant)

m_Mytext = New_Mytext
PropertyChanged "Mytext"

End Property

Same story goes here. Except now this is the code that can change the Mytext
property. Whenever the user assigns a new value to the Mytext property this
code gets executed. It sets the m_mytext variable to the new value;

The Propertychanged event is going to update the propertybag. This makes sure
that the Property browser window during design time gets updated as well.

'Initialize Properties for User Control
Private Sub UserControl_InitProperties()

m_Mytext = m_def_Mytext
End Sub

The initproperties code gets called whenever a new instance of the object gets
loaded. Just as the object_Initialize procedure initializes the user interface , this
code will initialize all variables. The final pieces of code allow windows and
visual basic to store and retrieve the settings to and from the propertybag. As

302 Visual Basic for Electronics Engineering Applications

explained above this is the placeholder that explains windows the available
properties , and their respective names , from an object.

'Load property values from storage
Private Sub UserControl_ReadProperties(PropBag _

As PropertyBag)
m_Mytext = PropBag.ReadProperty("Mytext", _

m_def_Mytext)
End Sub

'Write property values to storage
Private Sub UserControl_WriteProperties(PropBag
_

As PropertyBag)

Call PropBag.WriteProperty("Mytext", _
m_Mytext, m_def_Mytext)

End Sub

And that’s it. The only thing left is the piece of code that makes the object do
what it was intended for : sending a message to the textbox

In order to make it work fully we should now send the m_Mytext contents to the
textbox upon clicking.

Private Sub button1_Click()
RaiseEvent Click
Text1.Text = m_Mytext
‘ used to be Text1.Text = atext$

End Sub

And there you have it . A fully operational object you can use in your programs.
If you close the editors for the object you will see that the objects on the other
projects form remain grayed out; this indicates that the object has been modified
so much that the IDE cannot recover. You should select and delete the objects
and replace them with fresh copies.

303 Visual Basic for Electronics Engineering Applications

If you now look in the object browser you will see that there is a property
called MyClick. Simply type there “Yo dude”.

And if you double click on our object you will get code for the Click event.
There we attach a message box.

Private Sub Form_Load()
Myhello1.Mytext = "Yo dude"

End Sub

Private Sub Myhello1_Click()
MsgBox " You clicked me "

End Sub

And then : le moment supreme. Make it all work by hitting F5 …

Of course this is only a simple and not so useful example , but it gives you an
overview how to create your own controls. Its just as easy as creating a normal
program. We only have to launch the wizard to assist us in building the
necessary links.

Finally you can ask Visual Basic to create the OCX for the object and then you
can distribute it to anyone.

304 Visual Basic for Electronics Engineering Applications

305 Visual Basic for Electronics Engineering Applications

Chapter 17 :

Building better

programs.

What is a better program ? That strongly depends on the definition of a good
program. How can you classify a program as good ? If it is better then a bad
program. So it all comes to Bad programs. Then what are bad programs.

Well I can give you a lot of examples

¾ A program that crashes very often

¾ Eats memory and does practically nothing

¾ Is terribly slow

¾ Looks way ugly (depends strongly on personal taste)

¾ Behaves strangely some times

¾ Corrupts and wastes your data

I Think we can all agree on the above. Well except maybe the ‘Looks Way
ugly’. This depends on personal taste. And I’m not going into that one , after all
this is a book on programming , not on style.

So what can we do to make faster , smaller , more stable programs?

306 Visual Basic for Electronics Engineering Applications

The very first step is taken during coding process. Have Clean source code !
Don’t make constructions that you yourself hardly understand. Insert comments
. It doesn’t hurt and will not waste memory or speed once compiled. And most
of all adhere to the KISS principle.

17.1 The KISS Way

No , I’m not asking you to kiss your computer. KISS is the abbreviation for
‘Keep It Simple Stupid’. IT means you need to write code that is as simple to
understand as possible. Don’t write ‘complex’ things like

X=0
Doagain:
IF x < 4 then x=x+1 else x=x-1 ; If X=4 then
goto stopit _ else goto doagain
Stopit:
End

Any clue what this is doing ? Let’s have a look at this. First let’s write it out so
it becomes more clear.

X=0
Doagain:
IF X<4 then
 X=x+1

Else
X=x-1

End if
If x = 4 then

goto Stopit
Else

Goto Doagain
End if

Stopit:
End

Well at least it’s gotten a bit better. But still what does it do ? Let’s analyze.

307 Visual Basic for Electronics Engineering Applications

If X is smaller then 4 it gets incremented with one If not it is decremented with
one. Then x is compared against 4. If it is 4 we jump to the label Stopit. If not
we do it all over again. IF you think a bit more about this code then you will see
that the decrementing part never gets executed. If you start at zero the first if
then else will be executed while x is smaller then 4. When X is 3 the decision of
the If-Then else will increment X to 4 and the next If-then –else will jump to
Stopit. So X will never be decremented. We just found our first piece of DEAD
code. Dead code is code that consumes memory but does absolutely nothing. It
does not even get executed ! Now the optimizer in the compiler can catch and
eliminate dead code as long as we are talking about entire procedures or
functions that never get called. It cannot eliminate the above case of dead code.

So we could rewrite the code as follows:

X=0
Doagain:
IF X<4 then
 X=x+1
End if
If x = 4 then
goto stopit.

Else
Goto doagain

End if
Stopit:
End

If we now look again you will see that all we are doing here is incrementing X
until it reaches 4. So why not use a While Wend ?

308 Visual Basic for Electronics Engineering Applications

X=0
While x <4
X = x+1

Wend
End

Now isn’t that a whole lot more readable. ?

This demonstrates a number of basic KISS principles

¾ One line = One command

¾ Avoid Goto’s and Gosubs (except of course for error handling)

¾ Don’t write dead code

The advantage of KISS is not only easy readable code. It will run faster ,
compile to smaller EXE’s and most important. If you or someone else has to
review this program months or years from now , he will understand what it is
doing ! So by thinking a little longer about implementing a piece of code you
can save yourself a lot of time , both during execution of the program , and
during your work to maintain and update the program.

Adhering KISS rules will also lead you to using variable names with a meaning.
Instead of Simply Using X and Y you should use names that have a meaning.
After all , it has no impact on the speed of the program.

Another big point in KISS is :Don’t reinvent the wheel !. Use as much of the
existing things as possible. Don’t create every the same routines over and over
again.

So how can this be done? Well : Comment your code and partition it. This
means that you divide your program in small manageable chunks and transform
them into a routine. Then save this routine in a module. Later on , maybe in a
different project , you can simply re-use this routine over and over again. Also
make sure that the routines you write are well documented.

309 Visual Basic for Electronics Engineering Applications

If you want to create re-usable code the two things that you should adopt is
indenting your code and using CamelWriting. ..??.. Stop laughing. I’m dead
serious here.

Indenting is the process where you indent lines of code depending on where
they belong

If x=5 Then
B=4
Else
Open “myfile” for output as #1
Print #1,x
Close #1
X=0
If b= 10 then
Open “myfile” for input as #1
Line input #1,a$
B=val(a$)
Close #1
End if
End if

Well ?? Where do the ‘end ifs’ belong ? If you would indent it you could
immediately see

310 Visual Basic for Electronics Engineering Applications

If x=5 Then
 B=4

Else
Open “myfile” for output as #1
Print #1,x
Close #1
X=0

If b= 10 then
Open “myfile” for input as #1
Line input #1,a$
B=val(a$)
Close #1

End if
End if

Now you have to agree that this looks a lot more readable. You immediately see
the If ‘B=10 -then - else’ block and the main ‘If –Then Else’ block. And now
let’s take a look at CamelWriting. … Quit Laughing ! When writing Good and
clean code you create names for functions , procedure or variables that are
descriptive of their nature. Often this name will consist of more then one word.
To make these names more readable for humans you should adopt this
CamelWriting thing.

The name thisisavariable becomes more readable if you write it as
ThisIsAVariable. This style of writing , where you capitalize every first
letter of a word is known a CamelWriting.

17.2 Atomic Programming

This is a derivative of the KISS principle that dictates the following.

Break your program in the smallest possible routines. (Atoms)

Suppose you have a program that contains a number of routines that all need to

access a certain file . Depending on the procedure some will need to open it in

311 Visual Basic for Electronics Engineering Applications

read mode , some in write mode. Some routines even need to do both. So inside
these routines you will frequently open and close this file; It might be a good
idea to eliminate all these lines of code and replace them with 2 custom
procedures. OpenFile and CloseFile

Sub streamout (text$)
Open “mystream” for output as #1
Print #1,text$
Close #1

End sub
Sub Streamin (message$)

Open “mystream” for output as #1
Print #1,message$

Close #1

Open “mystream” for input as #1
Line input #1,text$

Close #1
End sub

Suppose this is a big program that uses this stream to communicate with another
program. Practically you would need to implement a lot more error handling
since the other guy might have it open .

These routines (and others) that access the stream could be floating around
anywhere. If you rewrite this to the following :

Sub streamout (text$)
OpenStream
Print #1,text$
CloseStream

End sub

312 Visual Basic for Electronics Engineering Applications

Sub Streamin (message$)
OpenStream

Print #1,message$
OpenStreamRead

Line input #1,text$
CloseStream

End sub
Sub OpenStream

Close #1
Open “mystream” for output as #1

End sub
Sub CloseStream()

Close #1
End sub
Sub OpenStreamReadmode()
Close #1

Open “mystream” for input as #1
End sub

You end up with something far more readable and maintainable. IF the file
changes or you want to implement error handling now ,you can simply modify
the OpenStream , CloseStream and OpenStreamReadmode procedures.

You don’t need to go digging in thousands of lines of code to patch all of the
open and close commands.

17.3 Naming objects

Another rule of thumb is , just like with variables , to give object and controls
meaningful names. Don’t keep the default things like button1 and button2 or
text3 and text5. Give them a real name. And even better : Precede their name
with a 3-letter abbreviation that describes their nature.

For a button you could use btnHelloWorld , the matching textbox could be
txtHelloWorld. You would then write a procedure like this

313 Visual Basic for Electronics Engineering Applications

Private sub btnHelloWorld_Click()
TxtHelloWorld.text=”Hello World”

End Sub

Years from now you will read this code and will be able to find out what it does
and what it refer to.

Note:
To find a variable declaration quickly simply right click it and select the
Definition option. The code editor will jump to the definition of the variable
or procedure. To return , right click again and select Last Position

17.3 Error handling.

Even when you have been programming perfectly clean code, and have a fully
bug free program , something can crew up. Something stupid, like running out
of disk space, can crash even the most perfect program. Fortunately there are
ways to deal with what is called ‘externally invoked errors’. System failure ,
invalid filenames and more can be intercepted and handled by writing a bit of
code.

Visual Basic has a built in object that provides an easy interface to handling
errors. All you have to do is enable it inside your code.

When developing an application and an error occurs , you get a message that
something went wrong and the debugger asks you to either terminate the
execution of jump you to the line where it occurred. Once the program is
compiled , this is no longer the case. IF an error occurs then you simply are
kicked out of execution . You will get a notification that an error of some type
has been detected.

314 Visual Basic for Electronics Engineering Applications

17.3.1 The On Error Goto clause

The enables an error-handling routine and specifies the location of the routine
within a procedure; can also be used to disable an error-handling routine. Error
handling is always done inside a routine. You have to enable an On error Goto
clause in the beginning of the routine. The target of the Goto has to be inside the
same routine.

On Error GoTo < line >

On Error Resume Next

On Error GoTo 0

The On Error statement syntax can have any of the following forms:

Statement Description

On Error GoTo line Enables the error-handling routine that starts
at line specified in the required line argument.
The line argument is any line label or line
number. If a run-time error occurs, control
branches to line, making the error handler
active. The specified line must be in the same
procedure as the On Error statement;
otherwise, a compile-time error occurs.

Next
Specifies that when a run-time error occurs,
control goes to the statement immediately
following the statement where the error
occurred where execution continues. Use this
form rather than On Error GoTo when
accessing objects.

On Error GoTo 0 Disables any enabled error handler in the
current procedure.

On Error Resume

If you don't use an On Error statement, any run-time error that occurs is fatal;
that is, an error message is displayed and execution stops. An "enabled" error
handler is one that is turned on by an On Error statement; an "active" error
handler is an enabled handler that is in the process of handling an error. If an

315 Visual Basic for Electronics Engineering Applications

error occurs while an error handler is active (between the occurrence of the error
and a Resume, Exit Sub, Exit Function, or Exit Property statement), the current
procedure's error handler can't handle the error. Control returns to the calling
procedure. If the calling procedure has an enabled error handler, it is activated
to handle the error. If the calling procedure's error handler is also active, control
passes back through previous calling procedures until an enabled, but inactive,
error handler is found. If no inactive, enabled error handler is found, the error is
fatal at the point at which it actually occurred. Each time the error handler
passes control back to a calling procedure, that procedure becomes the current
procedure. Once an error handler in any procedure handles an error, execution
resumes in the current procedure at the point designated by the Resume
statement.

Note
An error-handling routine is not a Sub procedure or Function procedure. It
is a section of code marked by a line label or line number.

Error-handling routines rely on the value in the Number property of the Err
object to determine the cause of the error. The error-handling routine should test
or save relevant property values in the Err object before any other error can
occur or before a procedure that might cause an error is called. The property
values in the Err object reflect only the most recent error. The error message
associated with Err.Number is contained in Err.Description.

On Error Resume Next causes execution to continue with the statement
immediately following the statement that caused the run-time error, or with the
statement immediately following the most recent call out of the procedure
containing the On Error Resume Next statement. This statement allows
execution to continue despite a run-time error. You can place the error-handling
routine where the error would occur, rather than transferring control to another
location within the procedure. An On Error Resume Next statement becomes
inactive when another procedure is called, so you should execute an On Error
Resume Next statement in each called routine if you want inline error handling
within that routine.

316 Visual Basic for Electronics Engineering Applications

Note

j
error (the object specified in Err.Source).

The On Error Resume Next construct may be preferable to On Error Goto
when handling errors generated during access to other objects. Checking
Err after each interaction with an object removes ambiguity about which
object was accessed by the code. You can be sure which object placed the
error code in Err.Number, as well as which ob ect originally generated the

On Error GoTo 0 disables error handling in the current procedure. It doesn't
specify line 0 as the start of the error-handling code, even if the procedure
contains a line numbered 0. Without an On Error GoTo 0 statement, an error
handler is automatically disabled when a procedure is exited.

To prevent error-handling code from running when no error has occurred, place
an Exit Sub, Exit Function, or Exit Property statement immediately before the
error-handling routine, as in the following fragment:

Sub InitializeMatrix(Var1, Var2, Var3, Var4)
On Error GoTo ErrorHandler
. . .

 Exit Sub
ErrorHandler:

. . .
 Resume Next
End Sub

Here, the error-handling code follows the Exit Sub statement and precedes the
End Sub statement to separate it from the procedure flow. Error-handling code
can be placed anywhere in a procedure.

Un-trapped errors in objects are returned to the controlling application when the
object is running as an executable file. Within the development environment,
un-trapped errors are only returned to the controlling application if the proper
options are set. See your host application's documentation for a description of
which options should be set during debugging, how to set them, and whether the
host can create classes.

317 Visual Basic for Electronics Engineering Applications

If you create an object that accesses other objects, you should try to handle
errors passed back from them un-handled. If you cannot handle such errors, map
the error code in Err.Number to one of your own errors, and then pass them
back to the caller of your object. You should specify your error by adding your
error code to the vbObjectError constant. For example, if your error code is
1052, assign it as follows:

Err.Number = vbObjectError + 1052

Note
System errors during calls to dynamic-link libraries (DLL) do not raise
exceptions and cannot be trapped with Visual Basic error trapping. When
calling DLL functions, you should check each return value for success or
failure (according to the API specifications), and in the event of a failure,
check the value in the Err object's LastDLLError property.

Example of an error handler:

Sub OnErrorStatementDemo()
On Error GoTo ErrorHandler ' Enable

error-handling
Open "TESTFILE" For Output As #1 ' Open

file
Kill "TESTFILE" ' Attempt to delete open

file.
On Error Goto 0 ' Turn off error

trapping.
On Error Resume Next ' Defer error

trapping.
 ObjectRef = GetObject("MyWord.Basic")

' Try to start nonexistent
If Err.Number = 440 Or Err.Number = 432

Then
 ' Tell user what happened.
‘ And clear the Err object.

Msg = "There was an error attempting
to _

open the Automation object!"
MsgBox Msg, , "Deferred Error Test"

318 Visual Basic for Electronics Engineering Applications

Err.Clear ' Clear Err object
fields

End If
Exit Sub ' Exit to avoid handler.

ErrorHandler: ' Error-handling routine.
Select Case Err.Number ' Evaluate error

number.
Case 55 ' "File already open"

error.
Close #1 ' Close open file.

Case Else
 ' Handle other situations
here...

End Select
Resume ' Resume execution at same

line
 ' that caused the error.
End Sub

17.3.2 The Err object

This object contains information about run-time errors. It tells you which error
happened and can also give you a description of it. You can use it to simulate
errors as well. This is very useful to test your error handlers when writing
software.

The generator of an error—Visual Basic, an object, or the Visual Basic
programmer, sets the properties of the Err object. The default property of the Err
object is Number. Because the default property can be represented by the object
name Err, earlier code written using the Err function or Err statement doesn't
have to be modified.

When a run-time error occurs, the properties of the Err object are filled with
information that uniquely identifies the error and information that can be used to
handle it. To generate a run-time error in your code, use the Raise method.

The Err object's properties are reset to zero or zero-length strings ("") after any
form of the Resume or On Error statement and after an Exit Sub, Exit Function,

319 Visual Basic for Electronics Engineering Applications

or Exit Property statement within an error-handling routine. The Clear method
can be used to explicitly reset Err.

Use the Raise method, rather than the Error statement, to generate run-time
errors for a class module. Using the Raise method in other code depends on the
richness of the information you want to return. In code that uses Error
statements instead of the Raise method to generate errors, the properties of the
Err object are assigned the following default values when Error is executed:

Property Value

Number Value specified as argument to Error statement. Can
be any valid error number.

Source Name of the current Visual Basic project.

Description A string corresponding to the return of the Error
function for the specified Number, if this string exists.
If the string doesn't exist, Description contains
"Application-defined or object-defined error".

HelpFile The fully qualified drive, path, and file name of the
Vi

HelpContext The Visual Basic Help file context ID for the error
corresponding to the Number property.

LastDLLError On 32-bit Microsoft Windows operating systems only,
contains the system error code for the last call to a

is read-only.

sual Basic Help file.

dynamic-link library (DLL). The LastDLLError property

You don't have to change existing code that uses the Err object and the Error
statement. However, using both the Err object and the Error statement can result
in unintended consequences. For example, even if you fill in properties for the
Err object, they are reset to the default values indicated in the preceding table as
soon as the Error statement is executed. Although you can still use the Error
statement to generate Visual Basic run-time errors, it is retained principally for
compatibility with existing code. Use the Err object, the Raise method, and the
Clear method for system errors and in new code, especially for class modules.

320 Visual Basic for Electronics Engineering Applications

The Err object is an intrinsic object with global scope. There is no need to create
an instance of it in your code.

Example :

This example uses the properties of the Err object in constructing an error-
message dialog box. Note that if you use the Clear method first, when you
generate a Visual Basic error with the Raise method, Visual Basic's default
values become the properties of the Err object.

Dim Msg

' If an error occurs, construct an error message

On Error Resume Next ' Defer error handling.

Err.Clear

Err.Raise 6 ' Generate an "Overflow" error.

' Check for error, then show message.

If Err.Number <> 0 Then

Msg = "Error # " & Str(Err.Number) & _
" was generated by " _
& Err.Source & Chr(13) &

Err.Description
MsgBox Msg, , "Error", Err.Helpfile,

Err.HelpContext
End If

17.3.3 Resuming execution after handling the error

The Resume clause can resume execution after an error-handling routine is
finished.

Resume [0]

Resume Next

Resume <line>

The Resume statement syntax can have any of the following forms:

321 Visual Basic for Electronics Engineering Applications

Statement Description

Resume If the error occurred in the same procedure as the error
handler, execution resumes with the statement that
caused the error. If the error occurred in a called
procedure, execution resumes at the statement that
last called out of the procedure containing the error-
handling routine.

Resume Next If the error occurred in the same procedure as the error
handler, execution resumes with the statement
immediately following the statement that caused the
error. If the error occurred in a called procedure,
execution resumes with the statement immediately
following the statement that last called out of the
procedure containing the error-handling routine (or On
Error Resume Next statement).

Resume line Execution resumes at line specified in the required line
argument. The line argument is a line label or line
number and must be in the same procedure as the
error handler.

If you use a Resume statement anywhere except in an error-handling routine, an
error occurs. The following example uses the Resume statement to end error
handling in a procedure, and then resume execution with the statement that
caused the error. Error number 55 is generated to illustrate using the Resume
statement.

322 Visual Basic for Electronics Engineering Applications

Sub ResumeStatementDemo()
On Error GoTo ErrorHandler ' Enable

error-handling

file
Open "TESTFILE" For Output As #1 ' Open

Kill "TESTFILE" ' Attempt to delete open
file.

Exit Sub ' Exit Sub to avoid error
handler.
ErrorHandler: ' Error-handling routine.

Select Case Err.Number ' Evaluate error
number.

Case 55 ' "File already open"
error.

Close #1 ' Close open file.
Case Else

 ' Handle other situations
here....

End Select
Resume ' Resume execution at same

line
' that caused the error.

End Sub

17.3.4 Trappable errors

Trappable errors can occur while an application is running. Some trappable
errors can also occur during development or compile time. You can test and
respond to trappable errors using the On Error statement and the Err object.
Unused error numbers in the range 1 – 1000 are reserved for future use by
Visual Basic.

The following sections give you an overview of errors that can occur. For ease
of use they are categorized by cause. Note that I am not going to discuss all
errors. Most of the possible error codes you will probably never get. I’m only
giving the ones that pop up once in a while.

323 Visual Basic for Electronics Engineering Applications

17.3.5 Syntax Errors (errors against the Basic syntax)

These typical occur when starting the program inside the IDE for the first time.

Code Message Explanation

3 Return without GoSub Pretty clear

5 Invalid procedure call You attempted to call a procedure
but forgot to pass some
parameters

13 Type mismatch You tried to assign data to a
variable of the wrong type like a
string to an integer.

20 Resume without error You errorhandler contains an
error !

92 For loop not initialized You have a Next without a for

35 Sub, Function, or
Property not defined

You are accessing something
which does not exist

17.3.7 Runtime errors

These occur during the run of the program. They are mostly because of flawed
programming logic , or memory problems.

324 Visual Basic for Electronics Engineering Applications

Code Message Explanation

6 Overflow The result of a calculation is too big to
store in the allocated variable, or is
simply too big to be calculated at all.

7 Out of memory Now how did that happen ?

11 Division by zero A typical calculation error. There is no
mathematical solution for dividing by
zero.

14 Out of string
space

You tried to cram more data into a too
small string.

28 Out of stack space Programming recursive stuff ?

17.3.8 Flawed Programming logic errors.

Code Message Explanation

9 Subscript out of range This occurs when trying to
access an inexistent array
element. If you defined an
array of 10 elements and try
to read or write element 11
you will get this

10 This array is fixed or
temporarily locked

You tried to Redim a static
array

16 Expression too complex Try breaking it down in
simpler parts

325 Visual Basic for Electronics Engineering Applications

17.3.9 File handling errors

These errors occur when handling files.

Code Message Explanation

52 Bad file name or number There is a problem creating
the handle

53 File not found The file does not exist

54 Bad file mode You tried to read from a file
opened for output or vice
versa

55 File already open You tried to open an already
open file

57 Device I/O error Ouch! Serious one. The
device where the file resists
is not ready. Typically for
floppy drives.

61 Disk full! Disk Space. The final frontier
… or Get a bigger disk

62 Input past end of file You tried to read beyond the
end of the file

63 Bad record number Can occur when reading
records from files

67 Too many files You attempted to store too
many files in a directory

68 Device unavailable The target where the file
exists went offline . typical

326 Visual Basic for Electronics Engineering Applications

for removable media

70 Permission denied You cant do that. The file is
in use by someone else.

71 Disk not ready A timeout on disk
operations. Can happen on
floppy drives or virtual file
drivers

74 Can't rename with different
drive

You can rename a file
across drives

75 Path/File access error The path or file does not
exist

76 Path not found The path is invalid

The above-mentioned errors are the most common. There a re a lot more
possible errors , but you should consult the on-line help for Visual Basic when
those occur.

Note
Any error occurring during the run of the executable , that is not handler
properly , is FATAL. This means bye-bye program. So start writing error
handlers.

327 Visual Basic for Electronics Engineering Applications

Chapter 18 :

The Windows

registry

You can consider this as ‘advanced digging into windows’ The registry is
probably the most obscure part of windows. Most people still regard to this as
the mythical place where Windows stores the data needed for its internal
operation. Well it’s more then that. You can use it too. Under the older
Windows version you would store configurations for your program in separate
INI files. Now you can use the Registry. However you cannot manipulate the
registry directly. The reason for this is that the registry is managed by windows
and you cannot just start changing this file. Also it is a very complex structure
where a lot of information is stored. A simple screw-up could result in a total
system crash.

Fortunately VB has a command set that allows us to store and retrieve data
using the registry.

18.1 Digging into the registry

You can have a look at the registry by launching the Regedit program. This is a
hidden program inside Windows that allows you to view and manipulate the
registry. In order start it you have to follow the following procedure :

328 Visual Basic for Electronics Engineering Applications

¾ Click on the Start button

¾ Select Run

¾ Type Regedit and click OK

This starts up the Registry editor. You will get the basic screen from Regedit

If you want to find something you need to know the keyname for the entry. The
registered user of the operating system can be found using the RegisteredOwner
key. So if you click on <Edit> <Find> and type RegisteredOwner it will jump
you to the location where this information is stored.

329 Visual Basic for Electronics Engineering Applications

As you can see , numerous other information can be found here. The question is
what can we do with it ? . Well not much really. The keys already in the registry
belong to other programs. You can check for certain keys to verify if certain
programs are installed. You could for instance create a program that requires
you to have Excel installed on the computer. During installation you could
check for the registry key for Excel. If it was not found in the registry then you
could prompt the user that your program explicitly needs excel in order to run.

18.2 Data Mining in the registry

Now that we have a basic understanding of the registry it is time to start sniffing
around. So far we have used the Regedit program, but we can do this from
Visual Basic as well.

18.2.1 GetSetting

330 Visual Basic for Electronics Engineering Applications

This returns a key setting value from an application's entry in the Windows
registry.

GetSetting(appname, section, key[, default])

Description
Appname

or project whose key setting is requested.
Section String expression containing the name of the section

where the key setting is found.
Key String expression containing the name of the key setting

to return.
Default Optional. Expression containing the value to return if no

value is set in the key setting. If omitted, default is
assumed to be a zero-length string ("").

Part
String expression containing the name of the application

If any of the items named in the GetSetting arguments do not exist, GetSetting
returns the value of default.

18.2.2 SaveSetting

Saves or creates an application entry in the Windows registry.

SaveSetting appname, section, key, setting

Description
Appname String expression containing the name of the

application or project to which the setting applies.
Section String expression containing the name of the section

where the key setting is being saved.
Key String expression containing the name of the key

setting being saved.
Setting Expression containing the value that key is being set

to.

Part

An error occurs if the key setting can’t be saved for any reason.

331 Visual Basic for Electronics Engineering Applications

18.2.3 DeleteSetting

Deletes a section or key setting from an application's entry in the Windows
registry.

DeleteSetting appname, section[, key]

Description
Appname String expression containing the name of the

application or project to which the section or key
setting applies.

Section String expression containing the name of the
section where the key setting is being deleted. If
only appname and section are provided, the
specified section is deleted along with all related
key settings.

Key Optional. String expression containing the name of
the key setting being deleted.

Part

If all arguments are provided, the specified key setting is deleted. However, the
DeleteSetting statement does nothing if the specified section or key setting does
not exist. Use this command with extreme caution. Don’t start deleting at
random or you could be faced with the blue screen of death (General protection
failure) and an inoperative computer pretty soon.

18.3 Make use of the registry

You can store your own program settings inside the registry. This can be useful
to store user settings , last accessed file lists etc. Another useful thing is the
window size and position last used. When the program is restarted later it will
always appear at the last coordinates. Since you can specify a default value it
will work even the first time the program is started.

Private Sub Form_Load()
Me.Left = GetSetting(App.Title,

"Settings", _

332 Visual Basic for Electronics Engineering Applications

"MainLeft", 1000)
Me.Top = GetSetting(App.Title,

"Settings", _
"MainTop", 1000)

Me.Width = GetSetting(App.Title,
"Settings", _

"MainWidth", 6500)
Me.Height = GetSetting(App.Title,

"Settings", _
"MainHeight", 6500)

End Sub

The above code will store the relevant information into the windows registry.

You will not that it makes use of the App object. The App object is an object
that returns relevant information about the program. You can retrieve the
application name , path to the program , check if another copy of it is running
etc. For more information about it you should check the Visual basic Help File
about the App object.

The following code takes care of saving the information upon exiting the
program. If the program is currently minimized it does not store the information.

Private Sub Form_Unload(Cancel As Integer)
Dim i As Integer
If Me.WindowState <> vbMinimized Then

SaveSetting App.Title, "Settings",
"MainLeft", _

Me.Left
SaveSetting App.Title, "Settings",

"MainTop", _
Me.Top

SaveSetting App.Title, "Settings",
"MainWidth", _

Me.Width
SaveSetting App.Title, "Settings",

"MainHeight", _
Me.Height

End If
End Sub

333 Visual Basic for Electronics Engineering Applications

One last warning might be in place here. Never ever fiddle with the Registry
when you don’t know exactly what you are doing.

When developing program that access the registry it is a good idea to make sure
you have a safe copy of the registry. To create this simply fire up the registry
editor and Select <File><Export>. Typically I call this regback.txt and put it in
the root directory of my boot disk. When something goes wrong and the registry
gets corrupted you can reinstall this safe copy. To do this you have to run the
Regedit program under DOS. There you can specify it to import this data and
recover the registry.

Note
Anything installed or modified to this registry after you took the backup
will be lost

334 Visual Basic for Electronics Engineering Applications

335 Visual Basic for Electronics Engineering Applications

Chapter 19 :

Scripting interpreters

Often you will write programs that control a system and you want to give the
user some means of further automation. You can do this by writing a script
engine or you can even give your user access to the VbScript engine . VbScript
is a real programming language not unlike Visual basic for applications (VBA
for short) that can be found in numerous Microsoft programs.

There is a difference between a scripting and a programming language. A script
runs top to bottom and has no constructs like loops , subroutines etc.

19.1 Building A simple script interpreter

When you don’t need a programming language but only want to give the user
the possibility to record a sequence of actions ,and recall them to run the
sequence again you can work with a script interpreter.

Typically the first thing you need is a place where the user can write and edit a
script. You should also provide routines to read and save scripts. You can easily
build this based on our little text editor from Part I.

336 Visual Basic for Electronics Engineering Applications

I just added a menu and a button that allows to start the execution of the code.
Also a second textbox was added. This one will act as the output window for the
script engine. Generally when people are developing scripts , things will go
wrong. So it is a good idea to store the script to a temporary file during
execution. The file gets deleted upon termination. If your program crashes you
can simply restore this file yourself, our you could make the scripting engine
smart enough to do an automatic recovery. So let’s attach some code that will
create this temporary file and recover for us.

Private Sub Form_Load()
On Error GoTo NoRecovery
Script.Text = ""
Open "tmpscript.scr" For Input As #1
Script.Text = "' Recovered script:" + vbCrLf
While Not EOF(1)

Line Input #1, a$
Script.Text = Script.Text + a$ + vbCrLf

 Wend
NoRecovery:

Close
End Sub

Upon execution of the program it attempts to open the tmpscript.scr file if this
fails we know that the previous run did not crash. If there is such a file it will be
loaded into the script window.

337 Visual Basic for Electronics Engineering Applications

19.1.1 Running the script

Private Sub Fire_Click()
tmpfile = FreeFile

 ' store script to temporary file
Open "tmpscript.scr" For Output As #tmpfile
Print #tmpfile, Script.Text
Close #tmpfile

' load and start interpreting
Open "tmpscript.scr" For Input As #tmpfile
While Not EOF(tmpfile)

' read script line by line and
interprete

Line Input #tmpfile, commandline$
' clean up the input
commandline$ = Trim$(commandline$) + "

"
‘ check for comment
If Left$(commandline$, 1) = "'" Then
Else
‘ execute command
End If

Wend

Close #tmpfile

Kill "tmpscript.scr"

End Sub

The above code is attached to the Fire button. The command Run from the menu
simply calls the Fire_Click method to invoke the execution. Upon activating the
engine the script gets written to the temporary file. Then the engine reopens the
file and , as long as the end has not been reached, reads it line by line.

This is the basis for the interpreter. The next thing we need to do is clean up the
read line so it does not contain any unwanted stuff. After all the user of the
engine might decide to modify it manually with other programs. A good point is
to remove all leading and trailing spaces , and that’s exactly what the next piece

338 Visual Basic for Electronics Engineering Applications

of code does. The script engine will analyze the code and try to extract blocks of
text. But suppose we the user has entered an empty line ! This could lead the
script engine to crash. So we will add two dummy spaces at the end of each
command. It will come clear later why exactly 2 spaces. The next thing the code
does is checking if the line begins with an apostrophe (‘). If it is the case it will
not be passed to the script engine since we defined this character as the
comment character.

Upon completion the temporary file is deleted using the KILL command. If the
script engine crashes this file will not be deleted and the recovery routine in the
Form_Load will pick it up. Now that all this preliminary work has been done we
can concentrate on the real engine : The Parser.

19.1.2 The script Parser

This is the real engine that will determine what commands and arguments , if
any , are present in the line and will invoke the appropriate code. First we need a
way to extract the command. This engine is based on following criteria

¾ one command per line

¾ unlimited amount of arguments per line

¾ commands and arguments separated by a fixed character (a space.)

¾ comment is preceded by an apostrophe (‘)

We now we need to extract the command from the command line . Since our
script language dictates that all commands and optional parameter should be
separated by a space this is quite easy

339Visual Basic for Electronics Engineering Applications

Ecmd = InStr(commandline$, " ")
cmd$ = Left$(commandline$, Ecmd)

' Now determine the string with arguments
argument$ = Right$(commandline$,
Len(commandline) - Ecmd)

' clean up the junk and convert cmd$ to
uppercase
cmd$ = trim$(UCase$(cmd$))
' now we are ready to parse the commands

Depending on what functions you want to make available you can modify the
script engine. At least you should give the user the possibility to see the script
running and that is exactly why I put the second textbox on the screen.

It would be nice if the user could manipulate this console. It would be very
useful if the user could, at least, add text to the console and clear the console

Select Case cmd$
Case "QUIT", "END", "BYE"

End
Case "CLS"

Console.Text = ""
Case "PRINT"

Console.Text = Console.Text + argument$ +
vbCrLf
End Select

A Messagebox would come in handy too. It allows the user to stop the script
temporarily

340 Visual Basic for Electronics Engineering Applications

Case "MESSAGE"
MsgBox argument$, , "Message :"

Using the same programming logic you can add instructions yourself. Since we
are using a general Select Case system as a parser it is easy to allow multiple
possibilities for one command. As you can see I already created a command that
allows you to terminate the program

Now that these basic things are out of the way we can start to implement the real
instruction set. Instruction typically requires data input of some sort. So we will
need a routine that can extract the relevant parameters from the argument$.

341 Visual Basic for Electronics Engineering Applications

19.1.3 Parameter extraction.

Depending on the command the user might have passed one or more parameters.
In order to cope with this you would have to write a routine for each possible
case. But there is an easier way. If you make a routine that can extract one
parameter at a time from the parameter string we could call it the number of
times we are expecting parameters. Furthermore the routine could warn the user
if he has forgotten one or more of them.

Function GetArgument$(ByRef argument$)
 tmp$ = Trim$(argument$)
If Len(tmp$) = 0 Then

MsgBox "Error in Script : Missing
parameter "

Else
tmp$ = tmp$ + " "

x = InStr(tmp$, " ")

' extract argument and return value

GetArgument$ = Trim$(Left$(argument$, x))

' delete argument from argument string

argument$ = Right$(argument$,

Len(argument$) - x)
End If

End Function

Let’s make two script commands ADD2 and ADD3. ADD2 will add two
arguments together. ADD3 will add three arguments. This will demonstrate the
use of the GetArgument$ function

Case "ADD2", "ADD"
a = Val(GetArgument$(argument$))
b = Val(GetArgument$(argument$))
c = b + a
entry "Result = " + Str$(c)

Case "ADD3"
a = Val(GetArgument$(argument$))
b = Val(GetArgument$(argument$))
c = Val(GetArgument$(argument$))
d = c + b + a

342 Visual Basic for Electronics Engineering Applications

entry "Result = " + Str$(d)

The Entry routine is a simple routine that can write a string to the console.

Sub entry(txt$)
Console.Text = Console.Text + txt$ + vbCrLf

End Sub

The above code demonstrates the basic creation of commands and the handling
of the arguments. However , this is by far not the end of what is possible. If you
want a routine which can take an undetermined number of arguments you could
do the following :

Case "ADDX"
While Len(Trim$(argument$)) > 0

x = x + Val(GetArgument$(argument$))
Wend
entry "Result =" + Str$(x)

To test all of the above you can try out this little script :

CLS
PRINT This is my first script
ADD2 5 6
ADD2 7 8 9
ADD3 7 8 9
PRINT the following command will produce a
SCRIPT error
ADD3 5 6
‘ The following demonstrates the ADDX command
ADDX 1 2 3 4 5 6 7 8 9
Message The system will now crash to demonstrate
recovery
crash
END

343 Visual Basic for Electronics Engineering Applications

As you can see scripting is a very powerful tool to embed in your applications It
allows you to automate frequently use tasks. When I build big test systems I
create a program that allows the user to manipulate every machine and system in
it. The sequences that need to be executed to perform the actual measurement
are not hard coded but embedded in scripts. This allows the user of the system
to modify at will , without me needing to revise the program over and over
again. More , it hides all the down-to earth stuff from the people operating the
system. They don’t need to know how to set up and acquire data from a certain
instrument. No , they simple write in the script READVOLTAGE, and the
system will control the appropriate instrument , retrieve the result and dump it to
the console.

As state before this home-built script engine is NOT a programming language.
If you need features like looping , jumps etc. , you will need a real engine.

19.2 MSScript : A real script interpreter.

Visual basic allows you to embed the MSsscript engine inside your programs.
This is a very powerful tool not unlike Visual Basic For Applications (VBA).
There is one small problem with this interpreter: It’s not installed on every
machine. Furthermore there is No help for it.

It is very well possible that you can’t try out the following. You can install the
MSScript engine from the Microsoft Windows SDK toolkit. These tools are also
available in the Professional editions of Visual Studio.

344 Visual Basic for Electronics Engineering Applications

19.2.1 Scripting language

The language used by MSscript is VbScript. However , not all functionality of
Visual Basic is embedded in VbScript.

¾ Variables :

One big difference is that here there is only the Variant data type. So
there is no need at all for the DIM command except for creating arrays.

¾ Objects :

Only objects exposed to VbScript explicitly are accessible. Besides
these VbScript only knows the ERR and dictionary objects. Dictionary
is an object that stores key and data values.

When you switch UseSafeSubset to False then you get access to additional
objects that allow you to do file manipulations. However , I strongly suggest
that you DON’T do that. Handle all file manipulations in the program where
VbScript has been embedded.

345 Visual Basic for Electronics Engineering Applications

19.2.2 The MSscript properties

Msscript has a number of properties that allow you to specify its behavior.
The most important are listed below.

j

Error

Language

Procedures

UseSafeSubset

AllowUI When set to True Msscript can display ob ects like
Messageboxes etc.

CodeObject Returns you the exposed objects

Returns the information about the scripting error

You can set this to either VBscript or Jscript (Java)

Modules Contains a collection of Modules

Contains a collection of Procedures

Timeout Allows you to specify the maximum time the script
will run before it aborts

Prevents access to security critical objects like files
and disks.

19.2.3 Script Control Methods

The following are the Methods embedded in the script control

AddObject

Eval

AddCode Allows you to send code to the script control

Allows you to expose an object to the Script
Control

Allows you to evaluate an Expression

346 Visual Basic for Electronics Engineering Applications

Run execute a subroutine

ExecuteStatement Execute a single statement

Reset reset the script engine

The Eval method is very interesting. It allows to evaluate mathematical
expressions. If you execute the following code you will get the result for the
calculation

X = ScriptControl.Eval “ Sin (1+(3/4))

The script control will return the Sinus of 1 and ¾. You can use this to evaluate
user entered mathematical expressions in your program.

19.2.4 Adding code to the script engine

This is only a matter of calling the AddCode method. This method is
automatically checking the syntax of the transmitted source code. If there is an
error you will be notified. So make sure you write an error handler. The error
handler should check the Script’s error object and not the one from the main
program

347 Visual Basic for Electronics Engineering Applications

Private Sub Sendcode_Click()
On Error GoTo scripterror
ScriptControl1.AddCode Text1.Text
Exit Sub

scripterror:
MsgBox "Error line " +

Str$(scriptcontrol1.Error.Line)_
+ Vbcrlf + “:” + scriptcontrol1.Error.Text _
+ Vbcrlf + “scriptcontrol1.Error.Description
 Scriptcontrol1.Error.Clear

End Sub

The above code will display the line number , the contents of the line , and the
description of the error.

19.2.5 Exposing Objects

You can give VbScript access to any object inside the program where you use
the VbScript. All you have to do is expose this object to VbScript. Suppose you
have a Label called Display and you want to be able to control this from the
Script

ScriptControl1.AddObject "display", Display

The above code will do the trick

In the script you can then simply write

Display.Caption=”Hello”

You can also expose functions and procedures inside your program for
activation by the script. However this is not straightforward. You need to create
a Class module and embed the functions in there. Inside the program you can
then create a new object from this class and add this to the objects exposed to

348 Visual Basic for Electronics Engineering Applications

the Script engine . This will be explained in detail in the example on VbScript in
appendix III.

349 Visual Basic for Electronics Engineering Applications

Chapter 20 :

Classes

Since we are working in an OOP environment we have to know a bit about
classes. What exactly is this concept of a Class.

20.1 The Class concept

Remember the Controls we put on a form. ? Yes ? Good ! Well these are
actually instantiated classes. Just like an Object or control has properties ,
methods and events , A class can have all of these.

So you could consider a class as an object or vice versa . The nice thing about
classes is that you can treat them as objects. You can define a new variable
based on a class. Confused ? Perfectly normal.

If you put a control on the screen, let’s say a label. You give this the name
‘Display’. Well from now on you can access the properties for this object by the
name ‘display’. You could think of this as a variable. The property ‘Caption’ is
embedded into the Object Label. This means that the variable ‘Property’
belongs to the Class ‘Label’. The same goes for the Move method. You can
apply the move method to the label. Well , the ‘Move’ method belongs to the
class ‘Label’.

Then what is the difference between Classes and Objects (controls). Simple
:Nothing. Except maybe that Classes have no visual substance (user interface on
screen) . Take for instance the Printer object. This is the perfect example of a
Class. It is not visible , has no substance yet you can activate methods , set
properties and the printer object can raise events.

350 Visual Basic for Electronics Engineering Applications

Classes are a construction to make programming more structured and augment
the manageability of large and complex programs.

20.2 Creating a Class

You start the process of creating a class by selecting Add class module from the
Project menu. This will create a new class in your project.

Once you have this you can start creating properties , methods and events.
Creating Methods is nothing else then writing Public subroutines and Functions.
Properties have to be defined using the Property command

Example :

' userfunction class

Private c_msg$ ‘ internal storage for msg$

Public Sub Dosomething()
MsgBox "I did it" + c_msg$

End Sub

Public Property Let message(msg As String)
c_message$ = msg

End Property

The above piece of code shows you how to create a method (DoSomething)
and a Property (Message). Note that for the moment you can only assign
something to the property. In order to retrieve the data from the property we
need to write a ‘Property Get’ handler.

351 Visual Basic for Electronics Engineering Applications

Public Property Get message() as variant
 Message = c_msg$

End Property

You also need to allocate storage space to hold the data assigned to a property
internally. As you should remember , once a subroutine exits the internal data is
destroyed. Therefore you need to declare a variable at module , or in this case
Class , level. You can also declare private subroutines inside your class. These
can be accessed from inside the class but are invisible to the user of the class.

Adding an Event is as easy anything else. Just write the appropriate code for it.

‘ Declare the event
Public Event YO(ByVal text as string)

‘ activate it (this should be in a procedure or
function)
RaiseEvent YO(" Yo Dude")

That’s it. You just created a class.

20.3 Instantiating objects from a class.

This is equally simple. There are two ways to do this , however only one will
unleash the full potential of the class modules.

You can either use DIM to declare a new object that will be derived from a
class. By the way that is the correct terminology to say that you want to access a
class

352 Visual Basic for Electronics Engineering Applications

Dim User as New Userclass
Dim SecondUser as New UserClass
Dim Userlist(50) as New userclass

The second method is by declaring a new variable of type Object and than
assigning it to a class.

Dim User as object
Set User = New UserClass

The difference here is that the object is not actually created with the Dim
statement. Only when it gets assigned to the Userclass then it gets created. This
conserves memory.

Note
You can instantiate as many objects from a class as you want.

20.4 A practical example

‘ Class Yelling

Private c_msg$ ‘ internal storage for msg$

Public Sub YO()
MsgBox c_msg$,, "Yo dude"
RaiseEvent Yell(" Yelling completed")

353 Visual Basic for Electronics Engineering Applications

End Sub

Public Property Let message(msg As String)
c_msg$ = msg

End Property

Public Property Get message()
message = c_msg$

End Property

Public Event Yell(ByVal text as string)

This is the end of the class

Private WithEvents shout As Yelling

Sub Form_Load ()
Set shout = New Yelling

‘ assign text to property Message
Shout.Message = “Hello World !”
‘ Activate YO method
Shout.YO

End sub

Sub shout_Yell(byval txt as string)
Debug.print txt

End sub

 And this is the end of the main code. You will notice that here I have used yet
another syntax to instantiate an object derived from the class. The reason is that
I want to attach to the events generated by the class. If I don’t explicitly specify
, using WithEvents , that I want to have access to the events , then I don’t get
them.

Furthermore if I create my object this way , Visual Basic will know all the
properties and methods of the class. This means that from then on VB will assist

354 Visual Basic for Electronics Engineering Applications

my during my code writing just as it would with any other of it’s objects. It will
display the nice listbox with all objects and properties the moment it type the
dot.

355 Visual Basic for Electronics Engineering Applications

Yet More Case studies
This section will show some examples of programs that apply the techniques
described in this part.

Killing windows via an API call

This little program shows you how to embed an API call in your program

The LED activeX control

I always wanted a simple indictor on my screen. Well here it is.

The PassBox activeX control

A simple control that allows you to enter a password , and that displays start
instead of the characters you type.

MiniBasic : A program editor for MSscript

This is the basis for a script interpreter based on VbScript. You can expose
objects AND your own procedures to the VbScript engine

Additional Notes on the use of classes

This is not a case study but a proposal for practical use of classes.

356 Visual Basic for Electronics Engineering Applications

357 Visual Basic for Electronics Engineering Applications

Case Study 7 : Killing Windows via an API call

Suppose you need to build a ‘closed’ system. A kind of setup where the user can
only fire up the computer , do his thing , and then only can shutdown the
system. It might be neat if you could do this directly from the application.

Since you can do this from the Start button of windows , it means it must be
accessible somewhere. And indeed , this is an API call just as any other.

Shutdown.bas:

Public const ForceExit = 4
Public const Logoff = 0
Public const reboot = 2
Public const Shutdown = 1
Public declare function exitwindowsex lib
“user32” _
(byval uFlags as long , Byval dwReserved as long
) as long

Main form :

The form is very simple : only one command button.

>image

Private sub Command1.click
 X = exitwindowsex (logoff,0)

End sub

If you hit the button it will log you off of your current session. If you want to
kill the operating system simply replace logoff with Forcexit.

358 Visual Basic for Electronics Engineering Applications

Ehm … Did I tell you to save before trying this ? No ! .. Oh I’m Sorry , you
were supposed to save it .☺.

359 Visual Basic for Electronics Engineering Applications

Case Study 8 : The LED ActiveX control

This example will show you how to build a simple ActiveX control. You start as
usual with a normal Project. Now you add a new project of the type ActiveX
Control.

To make our life easy I will use a shape control from the toolbar as indicator for
our led. I set the property backstyle of the control form to Transparent. This will
assure that only the shape is visible.

The shape is simply called shape1. The control should look like this :

Since I want to allow the user to size the led , I have to attach some code to the
resize event.

Private Sub UserControl_Resize()
Shape1.Left = 0
Shape1.Top = 0
Shape1.Width = UserControl.Width
 Shape1.Height = UserControl.Height

End Sub

360 Visual Basic for Electronics Engineering Applications

Whenever the size of the led changes ,the shape will size with it to fill the entire
boundary.

Since I want to start attaching some properties to the Led it’s time to fire up the
ActiveX Control Interface Wizard.

In this wizard is took the properties Shape , and Bordercolor from the standard
properties selector.

The next step that has to be done is creating additional properties. I want to
specify the OnColor and Offcolor and the value of the led. A value of 1 means
that the led will be On , and similar , 0 will be off.

361 Visual Basic for Electronics Engineering Applications

The next thing I have to do is specify which of my defined properties are
mapped to which properties of the existing objects in my control.

362 Visual Basic for Electronics Engineering Applications

As I can directly map Bordercolor and Shape to the Shape1 object , I do so.
This saves me from having to write all the code for this. For the other properties
I don’t specify anything. This mapping is done in the next screen.

363 Visual Basic for Electronics Engineering Applications

I define the Offcolor and Oncolor properties as type OLE_color . This means
that in my property window I will automatically get a color selection tool to
specify the appropriate colors. The value gets specified as type variant.

Now that all of this user interface stuff is out of the way I can click on finish and
the wizard will write all the necessary code for me.

The only thing I have to write is the piece of code that changes the color
according to the setting of the Value property. So I dig up the correct routine
and write the necessary code.

Public Property Let Value(ByVal New_Value As
Variant)

m_Value = New_Value
If m_Value = 1 Then
 Shape1.FillColor = m_OnColor
Else
Shape1.FillColor = m_Offcolor

364 Visual Basic for Electronics Engineering Applications

End If
PropertyChanged "Value"

End Property

The only lines I have to write is everything between If and End IF. That’s it .
control Ready ! This is the basic control that will perfectly perform what I
intended it to . But we can do better. I will assign a bitmap to the control . this
means that this bitmap will appear in the object browser of the Visual Basic. To
do this I select a simple bitmap and assign it to the ToolboxBitmap property of
my control form.

I can now put some of my objects on the main form of the second project in the
group. The next picture shows a screenshot of the control browser with a demo
from that contains 4 copies of my Led control

And now you think this is finished. No way. If you take a look at the Shape
property you see that it only contains a numerical field. I would like to see a
little pulldown menu there with the possible shapes on it. Enumerating a
variable can do this.

Enumerating is something I have not explained yet. IT is the process in where
you define a variable and assign it a list with possible values and a textual
description. You could for instance make a variable DayOfTheWeek. Then you

365 Visual Basic for Electronics Engineering Applications

would enumerate it as ‘1 Saturday,2 Sunday, 3 Monday … etc . Furthermore
you can set the variable to the day of the week by specifying simply the name.

If could do the following.

DayOfTheWeek = Tuesday.

If I print DayOfTheWeek it would return me 5 !.

Declaring the variable with the Enum keyword does enumerating.

Public Enum shapetypes
rectangle = 0
Square = 1
Oval = 2
Round = 3
Roundedrectangle = 4
RoundedSquare = 5

End Enum

When this is done all I have to do is change the declaration of the Shape
property. Now it is defined as Integer. When I change it to shapetypes it will be
enumerated according to that list. And presto. A fully working , professional
looking control.

So now I can make a little program with it. You can find this in the LED
directory of the CD-ROM. All the program does is generate a number of
random values and display them in bar graphs made from my LED’s.

366 Visual Basic for Electronics Engineering Applications

The program uses two control arrays. On an interval basis specified by a timer it
generates two random numbers and creates two bar graphs. The left one is an
ordinary bar graph. The right on is a Funky 3D elliptic style stacked bar graph.

Once you are satisfied with the look and feel of the control you can ask Visual
basic to compile it into an appropriate OCX file . From that moment on you can
use your control in any program as a separate object. You can even give , or
better : sell , it to third parties.

367 Visual Basic for Electronics Engineering Applications

MSscript
Case Study 9 : MiniBasic : A program environment for

This is by far not a full-fledged programming environment such as Visual basic.
But nonetheless it gives an idea on how to embed scripting into your programs.

Let’s start with the usual stuff. A form with a textbox called Script , a menu
with a File-Quit and a Run Menu. On the run menu I want to put the Run , Eval
and Main entries.

Run will execute the program , Eval will prompt me for an expression and
evaluate it , and Main will allow me to specify the startup routine for the Script
code.

Furthermore I need to insert the MSscript control as well. Since it is not loaded
into the control browser by default I have to enable it using the right click and
selecting Customize. There I will see a reference the MSscript , simply check it
and I’m up and running.

368 Visual Basic for Electronics Engineering Applications

I also inserted a simple label in order to be able to demonstrate the use of object
exposure to the script. As you can see I set the Multiline and scrollbars features
of the textbox on and already entered a piece of code into the textbox.

The next thing I need to do is write some code for the user interface.

369 Visual Basic for Electronics Engineering Applications

Private Sub Form_Load()
ScriptControl1.AddObject "display", Display
Dim userclass As Object
Set userclass = New Userfunctions
ScriptControl1.AddObject "User", userclass

End Sub

The Form_load procedure exposes the label ‘Display’ to the script engine. This
means that from now on the script engine can access all the objects properties ,
methods and events.

Since I want to give the Script engine access to some routines I have defined in
my program I create a new object of the Class Userclass and then add it to the
script engine just as I did with the label.

Private Sub runprogram_Click()
On Error GoTo scripterror
ScriptControl1.AddCode Text1.text
If Scriptmain <> "" Then

ScriptControl1.Run Scriptmain
Else
MsgBox "Specify a Main routine first " +

vbCrLf + "Doubleclick the routine and select
<Run> Set Main"

End If
Exit Sub

scripterror:
MsgBox "Error line " +

Str$(ScriptControl1.Error.Line) _
+ vbCrLf + ":" + ScriptControl1.Error.text _
+ vbCrLf + ScriptControl1.Error.Description,

vbExclamation, "Script Error !"
ScriptControl1.Error.Clear

End Sub

The RunProgram procedure will copy the contents of the textbox to the script
engine. If during the syntax check an error occurs , the error handler will
retrieve the line number , the string with the error in it and the description.

370 Visual Basic for Electronics Engineering Applications

It will also check if I have specified the startup routine. If not the program will
not be executed.

Private Sub quitfile_Click()
End

End Sub

Private Sub setmain_Click()
setmain.Caption = "MAIN :" + Text1.SelText
Scriptmain = Trim$(Text1.SelText)

End Sub

In order to be able to expose user modules a created a class called
Userfunctions. From this class I derived the Userclass object in the Form_Load.
This object is then exposed to the Vbscript engine as the User object by issuing
the AddObject method. As you can see below.

Private Sub Form_Load()
ScriptControl1.AddObject "display", Display
Dim userclass As Object
Set userclass = New Userfunctions
ScriptControl1.AddObject "User", userclass

End Sub

In this class I defined some modules that are of general use

371 Visual Basic for Electronics Engineering Applications

' userfunction class
' put here calls to expose to VBscript

Dim c_message$

Dim tmp

Public Sub Dosomething()
MsgBox "I did it" + c_message$, , "Activated

Class”
End Sub

Public Property Let message(msg As String)
c_message$ = msg

End Property

The above class contains a property message and a method Dosomething. Since
they are exposed to VbScript as the User object you can access these items as
User.DoSomething and User.Message . This code is of course expandable as far
as you want. Furthermore you could create as many extra classes as you like.
Each of these could be added to the VbScript engine as a new object.

372 Visual Basic for Electronics Engineering Applications

373 Visual Basic for Electronics Engineering Applications

Case Study 10 : Additional notes on the use of Classes.

Classes can be very useful to define high level blocks of code. The end user
need not know what exactly is going on but can work with an abstract object. It
is sufficient that he knows the properties , methods and events associated with
that class.

Suppose you have for instance you have two machines that have a similar
function but a different interface. You could define a class for each , let’s call
them Machine1 and Machine2. Both classes contain the same names for the
methods, events and properties. However , the internal code is completely
different. You could make a program that controls the machines without having
to bother with the actual code for the machines. You just use an object created
from their class. When you want to use the other machine all you have to do is
derive the object from the other class.

Example

' Class for a machine from Vtronix

Public Event Overrange()

Private C_x
Public Property Get Measure() As String

 Measure = "V = " + Str$(C_x) + " :Vtronix"
End Property

Public Property Let Range(x As String)
C_x = x
If (x > 100) Then RaiseEvent Overrange

End Property

The above class would be the definition of a imaginative machine from the
company Vtronix. This machine can be set to a certain range using the Range
property. And can return Results using the Measure property. In case of an over-
range the machine will raise the Overrange event.

374 Visual Basic for Electronics Engineering Applications

The next class defines a similar machine from the company Hvsystems

' Class for a machine from HVsystems

Public Event Overrange()

Private C_x
Public Property Get Measure() As String

 Measure = "V = " + Str$(C_x) + " :HVsystems"
End Property

Public Property Let Range(x As String)
C_x = x
If (x > 10) Then RaiseEvent Overrange

End Property

All we need to do in the program is instantiate the instruments from the proper
class.

Private WithEvents voltmeter1 As Vtronix
Private WithEvents voltmeter2 As HVsystems

Private Sub Command1_Click()
voltmeter1.Range = 100
voltmeter2.Range = 10

End Sub
Private Sub Command2_Click()

voltmeter1.Range = 10
voltmeter2.Range = 100

End Sub
Private Sub Command3_Click()

Label1.Caption = voltmeter1.Measure
Label2.Caption = voltmeter2.Measure

End Sub
Private Sub Form_Load()

Set voltmeter1 = New Vtronix
Set voltmeter2 = New HVsystems

End Sub

375 Visual Basic for Electronics Engineering Applications

Private Sub Quit_Click()
End

End Sub
Private Sub voltmeter1_overrange()

MsgBox " Voltmeter 1 in overrange "
End Sub
Private Sub voltmeter2_overrange()

MsgBox " Voltmeter 2 in overrange "
End Sub

The main form is a simple form with three buttons and 2 labels. Two of the
buttons program ranges to the instruments . The third retrieves measurements
from the machines.

While this is example is pure hypothetical , it shows clearly the use of classes to
create objects. This is exactly how the printer object works. Depending on the
printer you select the object Printer is derived from another class. If you use the
method Print it will print your piece of text to the printer. It does not matter if
this is a Laser, an inkjet or a Matrix printer. The code embedded in the class
knows how to handle this low level stuff. The user only needs to know that he
can print using the Print method of the Printer object.

This kind of class usage is implemented in the GPIB system described later on
in this book.

ClassWork is a library of transportable instrument classes. If you need access to
a machine you simply create an instance of this class by creating a new variable
of the class.

Dim Voltmeter as new HP34401
Voltmeter.address=4
Voltmeter.Range VoltsDc
Debug.print Voltmeter.Measure

These simple command will derive an instance ‘voltmeter’ from the HP34401
class, assign a GPIB address and select a range. The last command retrieves a
measurement. If tomorrow that machines is not available you can simple derive
the object from a different class.

376 Visual Basic for Electronics Engineering Applications

Dim Voltmeter as new FLUKE45

More about this later on.

377Visual Basic for Electronics Engineering Applications

 Visual Basic

For Electronics
Engineering
Applications

Part IV

Visual Basic in the Lab

378 Visual Basic for Electronics Engineering Applications

379 Visual Basic for Electronics Engineering Applications

Visual Basic

For Electronics Engineering
Applications
Part IV :

Visual Basic for the Engineering Lab

Introduction

Well hello , apparently you have made it so far . Or did you skip a lot of stuff ?.
No problem. This book was written so you could skip stuff that is of no interest
to you at this particular time and place.

Now that you have learned a big deal about the language , how to write and
compile programs , talk to other programs and wrap them up for distribution
,create objects , classes and controls and many, many, many more things , it is
time to have a look at what it Visual Basic can do in a technical environment.

When I am talking about a lab , and take my word for it : I know the Lab
Environment , this can mean anything . A chemistry lab , an electronics lab , a
physics lab , even an optics or medical lab. Forgive me if during this chapter , I
would appear biased towards the electronics lab. After all I’ve been working (

380 Visual Basic for Electronics Engineering Applications

and still am) as chief ops for a Research lab of a leading Semiconductor
company.

Typical lab work includes controlling a test setup , driving instruments and
collecting and processing data. Processing data is something we can do offline
with existing tools. Applying Visual Basic for Lab work mainly concentrates on
the application of Visual Basic programs to help use control a test setup and
acquire data for us. It can automate cyclic tasks , and collect data for us. This
data can either be written disk or exposed using other means (a Telnet server
for instance).

In order to build such setups we will need , besides the computer and visual
basic , a plethora of equipment. This can go from simple switches to complex
measurement equipment. Some of this equipment will be connected to the
computer , some might be plugged in to the computer. So , to bring the task of
automating a test setup or ‘bench’ to a good end we need to know a bit more
about the possibilities of our computer. We need to have a basic understanding
of the machine , the standard communication ports at our disposal , and the
practical things we can do with them.

381 Visual Basic for Electronics Engineering Applications

Chapter 20 :

The Computer

As this will form the core of your automated test system , we need a basic
understanding of this system

20.1 The PC : A Historical Overview

The PC was first conceived as ‘a smart input terminal’ . It was never intended to
be used as a standalone machine. When Don Estridge and his team of 13 started
this project the goal was to make a small , smart terminal that could run some
front-end software. The idea was to unload the big Mainframe computers from
the task of serving consoles.

The project was to be an open-architecture low budget kind of thing. External
companies did most of the work. They started building the PC using a S100 bus
computer board from Intel , a Monitor program previously written for a 6802
CPU from Motorola and a CP/M version for 8086 .

Starting from these parts and some experimenting a final schematic was drawn
and the monitor program was extended to become , as we know it today , the
BIOS. At that point it became clear that CP/M was not the way to go. IBM had
seen a demonstration of an operating system developed by Seattle Computer
products. Called QDOS. One of the design team members talked about this to
the young Bill Gates. This guy joined the team as an external solution provider.
It was agreed that Microsoft would port QDOS to the hardware platform of the
PC and then modify an earlier written Basic interpreter (for Tandy corporation)
to run on this platform.

382 Visual Basic for Electronics Engineering Applications

When the PC was announced in 1981 PC DOS was it’s primary operating
system. Outside market researchers pointed out that this project was doomed ! .
Who would buy a computer that was not attached to a mainframe !.

Well it looks like they were wrong . Now , almost 20 years later the situation is
the opposite : The mainframe has been moved to the museum a long time ago
.Every office holds more computing power then the average mainframe of 1981.

Besides the software the hardware has improved substantially. Where the first
machine ran PC DOS 1.0 , today’s machines run Windows / Windows NT /
UNIX and clones and every other possible operating systems. Literally millions
of applications have been developed , both commercial and shareware /
freeware.

This machine has set off what has been called ‘the computer revolution’

20.2 The PC : A Hardware Description

The original IBM-PC hardware merely consisted of some standard chips that
Intel was selling at that time . The block schematic showed the following
components :

383 Visual Basic for Electronics Engineering Applications

Timer
8253

I/O port
8255

Interrupt
8259

CPU
8086

DMA
8237

Memory Pool
I
S
A

B
U
S

Original IBM PC topology

Besides the CPU , memory and some chips to get the thing running there was
nothing else in the machine. Every PC , whether it is an original IBM-5100 from
1979 or the latest state of the art souped-up Dual Pentium-IV Xeon 2.63 GHz
with 10 Gbyte of Rambus Memory, still adheres more or less to this topology.

You will still find a 8253 Triple timer , one or two 8259 interrupt controllers
and a DMA controller of the 8237 type inside your computer. Maybe they are
no longer visible as such but they are in there somewhere. The only things that
have really changed in the PC are the speed ,and the width of the data and
address bus.

The speed of all components and ,markedly the speed of the CPU , have gone
up tremendously. Where the original machine ran at a blazing 4.77 MHz ,
today’s machines easily break the 2 GHz barrier. That is more then a 400 fold
performance !.

This has lead to the fact that new techniques had to be developed to cope
with the new speed-demons.

384 Visual Basic for Electronics Engineering Applications

Things such as second level and third level cache have been designed. , new
buses emerged (VESA Local bus , PCI) , and new communication standards
have been set forth (IRDA , PCI ,Fire wire , IEEE1394). But apart from this ,
the PC looks still the same.

A modern PC block diagram looks somewhat like this. The astonishing fact is
that you can translate this directly to a component schematic:

i i

i ial ller

l
Fl ller

ll
ll

ller

i ll

ller
ll

ISA

l

CPU

Pent um
Class

CPU
PCI Br dge

PCI
BUS

Per pher contro

Memory
Manager

Leve 2 Cache
oppy contro

Harddisk contro er 2x
Mouse contro er

Keyboard contro
ISA bridge

Ser al contro er 2 *
Printerport controller

IRDA contro
USB contro er

BUS

Memory Poo

DIMM bank 0
DIMM bank 1
DIMM bank 2

Peripherial
connectors

The entire PC has been scaled down to a mere 4 IC’s. You still have the CPU
which is now of the Pentium - Class . (Pentium / Pentium Pro / Pentium II
Pentium III all with or without MMX) . Besides this you need 3 more
components to build a computer : The memory controller. This component is a
single chip that handles all accesses from the CPU to the memory and AGP bus.
It takes care of refresh cycles , cache update , and so on. This chip is often
referred to as the ‘North Bridge’

A second chip (also known as the South Bridge)builds an interface between the
CPU and the PCI local bus. The signals coming from the PCI bridge are fed to

385 Visual Basic for Electronics Engineering Applications

the backplane connectors. For your convenience most manufacturers also put a
so-called ‘multi-io’ chip on the main board. This one contains all the peripherals
that , in the original PC , were previously on Plug-in boards.

In Pentium II or III style machines the memory controller including the cache is
contained inside the processor package. Just add memory and you are ready to
run.

20.3 The PC’s Input and Output Components

So far we have seen the parts that build a PC as we know it. All of these are
located inside the box of the computer. In order to be able to connect it to the
outside world we need a means to interface the computer. And that is exactly
what this chapter is all about.

20.3.1 The Parallel port

This is the standard parallel port that you use to connect a printer. This port is
often referred to as a Centronics interface or Printer port. The PC has the
capability to handle 3 parallel ports. While this port was mainly designed to
attach printers and plotters , you can use it for a lot of different tasks. Over time
most people have discovered the usage of this port as a general IO channel.
They use it to control attached boards and equipment. A number of professional
machines use this interface to talk to the PC and the programs running on the
computer. Items such as Device programmers (EPROM , Flash etc) ,
Emulators for microprocessors to complete measuring systems are available off
the shelf. The use of this port as IO channel will be handled later on .

20.3.2 The Serial port

The Serial port is the second port that is standard port available on any
computer. There are two different styles. You can have either the full-fledged
25-pin connector or the shrunken 9-pin connector. The port is controlled by a
UART of the 8250 / 8251 or 165x0 type. The latter has more advanced features
like transmit and receive FIFO’s. however from a programmer’s point of view
these controllers all look the same.

386 Visual Basic for Electronics Engineering Applications

Since the port holds a lot of registers and is quite complicated to control low
level , I’m not going to detail on that here and now. I will explain the things you
need to know and how you can make an interface that works reliable all the
time.

While the UART can be set to all sorts of different baud rates , parities , stop
bits , modes and so on , the only one that is really important is 9600,n,8,1 mode.
This is a typical communication mode that is most widely used to talk to devices
of all sorts.

In the PART II of this book I have already detailed about the MsComm object
that allows you to perform communication on this port. Later on in this part I
will discuss the hardware side of these channels. A standard PC can drive up to
4 serial ports . There are special plug in boards that give you access to more
channels. However these boards are costly and sometimes poorly supported.
Anyhow , the chance that you will need more then 2 ports is small.

The physical communication can take different forms. Most used is the so-called
RS232 standard. For large systems over long distance they use RS485. More
about these standards comes later.

387 Visual Basic for Electronics Engineering Applications

20.3.3 The USB port.

This is a new rising star on the PC interface domain. The reason for the
development of this bus was the quest to diminish the vast amount of cables
connected to a typical PC. Today’s computers often have the following cabling ,
A keyboard , a mouse , a printer , a modem , a network cable and a video cable.
If you have a scanner there is an additional cable required. An extra printer ? :
extra cable ! In the end you end up wit a terrible mess. USB tries to deliver the
answer to this problem. By defining a universal bus that boasts fast
communications in a network style you minimize cabling. You can lead one
cable from the PC to the printer. From the printer to the monitor. And the from
the monitor a cable to the mouse and keyboard. From the monitor you also go to
the scanner. The only point is that you need small ‘hubs’ to connect all these
cables. Fortunately these can easily be built into already existing hardware.
Monitors featuring USB often have 4 or 5 USB entry connectors. So it is easy to
connect keyboard , mouse and printer to the monitor and then go from monitor
to the PC. USB also provides transparency to the system . The driver inside the
operating system handles all low-level tasks such as assigning the addresses and
configuring the devices.

20.3.4 Fire Wire Channel

Besides the USB bus there is also FireWire. While USB is a ‘lightweight’ bus ,
FireWire has a bigger capacity. The data throughput is higher and the number of
nodes larger. Of course this brings additional overhead. At the time of writing
the debate is going on between USB and FireWire. The first machines start
appearing that have this interface and only time will tell which one will
eventually win.

20.3.5 Local Area Network (LAN) and Wide Area Network
(Internet)

Most machines now either have access vie a LAN board of some sort (Ethernet
, Thin-net , Thick-Net , ATM , FDDI , Token Ring etc ..) to the premises
network. This network links computers and peripherals together. Some

388 Visual Basic for Electronics Engineering Applications

machines , which are controlled by a computer , allow you to control them via
these channels.

From a LAN to a WAN is only a small step. Controlling applications via LAN
or internet is possible using the Winsock control. Part II of this manual gives an
explanation of the possibilities of these channels , and presents some samples.

20.3.6 Field buses (CAN VAN etc)

Besides the above-mentioned communication systems , a number of dedicated
automation buses have been set up. They are commonly used on factory floors
and start finding their way to Lab environments. A number of instrument
vendors already have equipment that can patch into these buses. The drawback
of these buses , compared with the buses presented in previous points , is that
you will need to buy an adapter card to plug into your pc. No computer vender
can deliver you a machine with this kind of channel built in.

The advantage is that these are very rugged buses that can withstand very harsh
environments. They have no problem with noise and feature a fast data
throughput and quasi real-time event handling.

20.3.7 The GPIB Bus

Many consider this the ‘golden-oldie’ of all instrumentation buses. While this
bus also requires a special adapter , this is possibly the most commonly used bus
in instrumentation systems. While very old (end 60’s) it is still regarded to as
one of the most powerful buses around. The vast throughput (10MByte /
second) and the well-documented bus (IEEE-488, IEEE488.2 and IEC625
standards) have lead to the huge success of this bus. Almost any data collecting
equipment can be delivered off-factory with this interface on board. It allows
you to connect up to 32 instruments directly onto one bus.

20.3.7 VXI / PXI / SCXI / Compact PCI etc ..

These are not really connection channels to the pc , but channels amongst
equipment. Typically systems that support these buses have embedded

389 Visual Basic for Electronics Engineering Applications

computers. This means the PC is actually built into the same basic block that
contains all the equipment. This is an emerging standard that is still growing.
The boards that support these buses start to appear on the market. However , this
is a different approach. Normally you connect your PC to a measurement setup.
In these systems , you embed the computer in the system. Your PC actually
becomes a fixed part of the setup. Where you normally plug acquisition board
into the computer , here you plug the computer in the acquisition system.

When you want to control a system with you have a number of possibilities.
You can either interface it via a standard channel like the serial port or you can
go the industrial way and use buses links like SCSI ,USB , and GPIB etc.
However , when building electronics you don’t always have the possibility to
use these buses due to the hard and software overhead.

For the quick and dirty job you only have 2 real options. Go serial (RS232) or
bit-bang your stuff on a printer port. Each of these has a number of advantages
and shortcomings.

If you can invest some more time you can use a universal IO board plugged into
your computer. Designing such a board is not that difficult , or you could simply
buy one off the shelves.

20.3.8 SCSI

SCSI (pronounced "skuzzy") is an acronym for the Small Computer System
Interface. It grew out of a proprietary interface protocol, SASI, which was
developed by Shugart Associates to connect computers to hard disk drives.
Because of these origins, SCSI bus operations are oriented for efficient use by
mass storage devices like hard disks, CD-ROMs, rewritable optical disk drives,
and tape drives; in practice, nearly all computer systems that use SCSI use it to
connect such devices. SCSI started to come into widespread use around 1984
and became the standard way to connect workstations such as the Sun-3 to disk
and tape drives. The definition of the SCSI bus and how it should operate is
defined by ANSI (American National Standards Institute). The original SCSI
standard was ratified in 1986; the current version of the standard is SCSI-2,
which was finally ratified in 1993. There is also a new version of the standard,
SCSI-3, under active development.

Since SCSI is used primarily as a connection to disk drives, you might wonder
why we re discussing it in a chapter on data communications. The answer is that
SCSI is a full-fledged peripheral bus that provides communications between a

390 Visual Basic for Electronics Engineering Applications

host computer and disk or tape drives in different enclosures (or within a single
enclosure) by means of a SCSI-bus cable. Thus, although the protocols and the
devices being interconnected are quite different, SCSI is very similar in function
to GPIB and other data communications protocols.

SCSI is the standard bus for connecting disks and tape drives in workstations
such as those from Sun and DEC and is the standard built-in expansion port on
Apple Macintosh machines as well. It's taken longer for SCSI to catch on in the
PC world, mostly due to its higher costs and software compatibility problems.
However, the proliferation of CD-ROM writers , Zip drives and Tape streamers
and the early availability of SCSI hard drives with capacities above 512MB
have brought SCSI into fairly widespread use on PCs also.

There are actually several allowed variations of SCSI that came into being with
the SCSI-2 standard; this can create considerable confusion when you're first
trying to understand how SCSI systems work. First, SCSI can use either single-
ended signaling (each bus signal is carried on a single wire) or, less commonly,
differential signaling (each signal is transmitted as a voltage difference between
two wires). Second, the SCSI-2 standard allows "Fast SCSI" to be implemented.
With Fast SCSI, data transfers take place at a maximum burst rate of 5-10
million transfers per second for blocks of data. In the original SCSI-i standard,
the maximum data transfer rate was 5 million transfers per second. Sometimes
SCSI-2 is taken to be synonymous with Fast SCSI, but this isn't necessarily the
case-Fast SCSI is an option. In any event, Fast SCSI only ensures that the burst
data rate is above 5 MHz. A Fast SCSI device could have a data transfer rate of
only 5.1 MHz.

In SCSI-l, only 1 byte at a time can be transferred over eight data lines, DBO­
DB7. However, the SCSI-2 standard also allows "Wide SCSI" to be used, with 2
bytes transferred at a time over 16 data lines. Thus, by using both Fast and Wide
SCSI, up to 20MB/sec data transfer rates can be obtained. There is also an
option in Wide SCSI for the use of 32 data lines, but the auxiliary cable required
for this is so awkward that virtually no one uses it.

Like GPIB, the SCSI bus transmits either command or data bytes on eight wires
running in parallel (or 16 wires for data if Wide SCSI is used). It's considerably
faster than GPIB, however, with data rates being anywhere from 1-20MB/sec.
Also like GPIB, there can be more than one host controller on a SCSI bus,
although this is very rare in practice. A typical SCSI bus system for a PC has a
single host, typically a SCSI card or a built-in SCSI controller in the PC. The
host is connected to one or more SCSI drives, each containing its own
embedded SCSI controller.

391 Visual Basic for Electronics Engineering Applications

Unlike simpler disk-connection standards such as IDE, SCSI devices are very
intelligent and can carry out many operations on their own.

20.4 The internal buses

Besides the already mentioned buses above , the PC has internal buses as well.
These can be used to connect hardware directly. These buses are already used to
interconnect the IO ports such as printer ports , video cards etc.. to the CPU and
memory system. Over time a number of buses have emerged and some have
disappeared again.

20.4.1 ISA Bus

The original PC as designed by IBM had an IO bus to plug in all sorts of
components. At the same time the PC was introduced , IBM released a
Technical manual describing the whole schematic of the computer and BIOS
listings. From this a number of third party developers started constructing their
own add-on and plug in boards. Unfortunately IBM never specified the so called
AT bus. To remedy this problem Intel and a number of other important players
started to specify timing and loading parameters. After some years the interface
bus gained the label ISA (Industry Standard Architecture) bus. While the bus
was originally intended to put adapters such as video cards , printer ports ,
network etc in the computer it also started to be used as IO bus for other boards.
A number of companies provide digital I/O , AD-DA boards , relay cards and
more.

Pretty soon the bus got clogged up due to the fact that there are only a limited
number of IO ranges , interrupts and DMA channels available. This and the
cumbersome configuration of all the jumpers found on these early boards
proved to be a big bottleneck.

Moreover , while the original PC had an 8-bit data-bus , the introduction of the
286 called for a 16-bit bus. At that time the designers decided to add more
interrupts and DMA channels. But that space got mapped pretty soon too.

392 Visual Basic for Electronics Engineering Applications

20.4.2 EISA Bus

An attempt was made to extend the ISA bus even further while at the same time
keeping it backward compatible with the ISA standard. A consortium lead by
Intel and Compaq began developing what would become known as EISA
(Extended Industry Standard Architecture). The main mechanical difference was
a clever design for the connector slot. To support the faster and wider data and
address buses many new control signals were added. This caused such a
hardware overhead ,which in turn is costly to develop , that the bus never caught
on.

20.4.3 MICROCHANNEL Bus

Since the ISA bus started leading a life of it’s own , and IBM lost a big market
share to third party developers , they decided to regain their position by
introducing a new IO concept. This bus featured very modern technologies such
as bus mastering , interrupt sharing etc. Unfortunately this bus had the same
problems as EISA. The hardware overhead made the overall implementation too
expensive. That and the fact that it was not hardware compatible with older
cards lead to the quite death of this bus.

393 Visual Basic for Electronics Engineering Applications

20.4.4 VESA Bus

With the introduction of new ‘Video’ hungry operating systems the bandwidth
to the video adapter became an important bottleneck. A consortium of Video
Board manufacturers called VESA (Video Electronics Standards Association)
was trying to emerge a new standard. To keep cost to a minimum they decided
to simply connect directly to the CPU’s local bus. The bus became widely used
in the last days of the 486 processors. It managed to ‘offload’ the ISA bus for a
number of bandwidth hungry tasks such as Video and hard-disk access.

20.4.5 PCI

In 1992 Intel began developing a new bus standard to interconnect peripheral
components. The original idea was to create a standard for high-speed
interconnections on a motherboard. Since recent attempts to ‘upgrade’ the
original ISA bus had failed , it was time to create a new totally new bus
architecture. The PCI bus took some of the ideas from the VESA bus and
connects directly to the processors local bus. It also took some of the advantages
of the Micro Channel bus , namely the bus-mastering technology and interrupt
sharing. Intel started integrating this bus architecture in its motherboard chipsets
and pretty soon card manufacturers started developing boards for PCI. This
computer has now evolved to the point where ISA will no longer be
implemented.

20.4.6 AGP port

Did evolution bring forth yet another bus ? Not exactly. Modern computers
boast such powerful and bandwidth hungry display cards that pretty soon PCI
proved no longer efficient. The PCI standard has a strict timing scheme that
allows no one to stretch the limits of the bus. The AGP (Advanced Graphics
Port) is not a real bus. It only supports one device and has no purpose other
then feeding data to graphics boards. You can think of it as follows ‘AGP is to
PCI what VESA was to ISA’ : a dedicated high-speed channel for Video
applications.

394 Visual Basic for Electronics Engineering Applications

20.4.7 PCMCIA (PC Card)

Several years ago , as notebooks became popular a new problem had to be
faced. How do we get add-on boards in such a tiny little box ? Two consortia ,
one in Japan (JEIDA) and on in the USA (PCMCIA) started developing a new
bus. In 1989 the PCMCIA consortium accepted the JEIDA developed connector
standard and today these two consortia work together to promote this form
factor. The official name for the bus has since then become ‘PC-Card’. A
special controller chip that bridges the PC-Card bus to the ISA or PCI bus
handles the interface.

20.4.8 I2C Bus

This bus was designed by Philips semiconductors in the early 80’s as an easy
way to interconnect integrated circuits. The Inter-Integrated Circuit (IIC or I2C)
bus was designed to get rid of address and data-buses. It is a sort of serial
communication bus that only requires two signals plus a ground. It features
multi-master operations and collision detection in hardware. While it was
originally intended to find its way in consumer electronics such as TV’s ,
Video’s and audio equipment , it now is found on computer motherboards as
well. This bus is used for system monitoring and handles tasks as battery control
, temperature control , voltage and hardware monitoring etc . Typically a small
processor (the same CPU that handles keyboard and mouse) controls this bus
and provides an interface to this I2C bus. In portable computers this bus is also
used for the touch-pad or stick that replaces the mouse.

395 Visual Basic for Electronics Engineering Applications

Chapter 21:

Controlling

Standard PC ports

When you want to control a system with you have a number of possibilities.
You can either interface it via a standard channel like the serial port or you can
go the industrial way and use buses links like SCSI ,USB , and GPIB etc.
However , when building electronics you don’t always have the possibility to
use these buses due to the hard and software overhead.

For the quick and dirty job you only have 2 real options. Go serial (RS232) or
bit-bang your stuff on a printer port. Each of these has a number of advantages
and shortcomings.

If you can invest some more time you can use a universal IO board plugged into
your computer. Designing such a board is not that difficult , or you could simply
buy one off the shelves. This chapter will detail on these boards and explain
their functionality and how to access them.

21.1 Finding the IO ports

Controlling PC I/O channels is very nice but how do you know what is available
in your particular computer and where are they mapped. There are a few rules of
thumb you can apply.

- Serial ports can be handled trough the MSComm object. For these
ports you don’t need to know where exactly they reside in your system.

396 Visual Basic for Electronics Engineering Applications

- Parallel ports can only reside on 3 possible addresses : 378 , 278 and
3BC. However most computers only have one and that is typically 378.

- IO boards can only be mapped into specific regions of the IO address
space of the PC.

You might say : This is all nice but how can I know for sure ? Well there is
really only one answer to this question : The computer knows ! Only question is
: how do I get the computer to telling me ?

21.1.1 The BIOS system area

During startup of the computer (even before the operating system boots) the
BIOS program scans all hardware. The BIOS is a library with routines to
perform I/O on your computer. It has simple routines to write text to the display
, initialize the disk array etc. In other words : it makes your computer work. This
BIOS performs a number of scans to detect the hardware present in the
computer. It stores this information not only for the user but also for itself in the
so-called BIOS data area. This is the portion of main memory on page 0 at
offset 400.

This block of data exists even under windows and windows NT. The reason is
simple :you can’t move it !. you can read and write it but you can’t move it.
Most programs need it , your operating system needs it and even the computer
hardware itself needs it. In other words: You are always able to extract data
from it.

When the BIOS has completed its task and handed over control to the bootstrap
loader it left some data in memory. This data is sometimes called the System
area or the ‘System Metrics’ Data. It is a block of 256 bytes that gives
information about the machine.

A typical page dump looks like this

-d 0040:0000 ff
0040:0000 F8 03 F8 02 E8 03 E8 02-78 03 78 02 00 00 00 00
........x.x.....
0040:0010 23 C8 00 80 02 00 30 A0-00 00 36 00 36 00 30 52
#.....0...6.6.0R

397 Visual Basic for Electronics Engineering Applications

0040:0020 30 52 20 39 32 50 35 4C-35 4C 08 0E 08 0E 08 0E 0R

92P5L5L......

0040:0030 66 21 66 21 0D 1C 30 52-3A 34 30 52 30 52 01 00

f!f!..0R:40R0R..

0040:0040 04 00 20 00 00 00 00 00-00 03 50 00 40 20 00 00 ..

.......P.@ ..

0040:0050 00 17 00 00 00 00 00 00-00 00 00 00 00 00 00 00

................

0040:0060 07 04 00 D4 03 29 30 76-07 87 1C FF 84 6F 13 00

.....)0v.....o..

0040:0070 00 00 00 00 00 02 08 00-14 14 14 3C 01 01 01 01

...........<....

0040:0080 1E 00 3E 00 31 08 00 60-09 11 0B 80 58 00 00 07

..>.1..`....X...

0040:0090 87 07 00 00 00 00 10 12-A0 00 40 00 88 FD FF FF

..........@.....

0040:00A0 00 00 00 00 00 00 00 00-2E 39 00 C0 00 00 00 00

.........9......

0040:00B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

................

0040:00C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

................

0040:00D0 00 00 00 00 00 00 00 00-00 00 00 01 00 00 00 30

...............0

0040:00E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

................

0040:00F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

................

-

Most of this stuff is irrelevant for what we do. However some very interesting
things can be found. Let’s take a look at the very first line

0040:0000 F8 03 F8 02 E8 03 E8 02-78 03 78 02 00 00 00 00
........x.x.....

This is the line we are interested in. It shows the available ports and the
addresses they are located on. The first four words specify the serial ports and
the next 3 words specify the parallel ports. The last word is undetermined. Some
machines use it for a fourth printer port but in general it is not in use.

F8 03

Note :
A port address is specified by 2 bytes in little endian coding. This means
that , in order to obtain the correct address , you have to swap the high and
low byte. Example becomes 0x03f8

From left to right we find this 0x03f8 0x02f8 0x03e8 0x 02e8 for the serial
ports and 0x0378 and 0x0278 for the parallel ports. This means on this
particular machine there are 4 serial ports and 2 parallel ports. If a port locator
contains 0x0000 it means that this port does not exist. The BIOS functions (and

398 Visual Basic for Electronics Engineering Applications

most DOS programs and) use these tables to look up the address for their
transactions. This means that , if you want to put a LPT port at a certain address
, you can plug in the board and specify the address here yourself. Any printer
routine will then be redirected to this new address.

21.1.2 Using DEBUG to snoop around

Check the BIOS data area of your computer. Easier said then done …you think.
There is a neat little tool on any PC that allows you to do exactly this job. This
tool is called DEBUG and dates back from DOS 1.2. While this is a very
powerful tool it is also a very dangerous tool. If you have no clue what a certain
DEBUG command does then you shouldn’t try it! In the best case you run the
risk of crashing the computer , and in the worst case you screw up your entire
disk while doing it.

Hopefully I haven’t scared you too much. What I am going to describe now is
harmless for your computer. The above doomsday scenario was just intended to
warn you not to experiment with commands that are not explained here.

Debug can mostly be found in the DOS or WINDOWS\COMMAND directory.
If you are running on Windows NT this might not be installed.

Let’s start it up : Open a Dos box and type Debug.

C:\>debug
-

You will get the debug prompt “-“. You are now in total control of the machine.
Feels good doesn’t it ? To display the commands at your disposal simply type ?
and press return

C:\>debug
-?
assemble
compare
dump
enter
fill
go
hex

A [address]

C range address

D [range]

E address [list]

F range list

G [=address] [addresses]

H value1 value2

399 Visual Basic for Electronics Engineering Applications

input I port

load L [address] [drive] [firstsector] [number]

move M range address

name N [pathname] [arglist]

output O port byte

proceed P [=address] [number]

quit Q

register R [register]

search S range list

trace T [=address] [value]

unassemble U [range]

write W [address] [drive] [firstsector] [number]

allocate expanded memory XA [#pages]

deallocate expanded memory XD [handle]

map expanded memory pages XM [Lpage] [Ppage]

[handle]	
display expanded memory status XS
-

As you can see , a wealth of instructions allows you to manipulate virtually
everything on your computer.

21.1.3 The Dump command

Probably one of the most important command is the D(ump) command. It
allows you to physically examine the contents of the memory

-d 0040:0
0040:0000 F8 03 F8 02 E8 03 E8 02-78 03 78 02 00 00 00 00
........x.x.....
0040:0010 23 C8 00 80 02 00 30 A0-00 00 1E 00 1E 00 75 16
#.....0.......u.
0040:0020 67 22 0D 1C 3F 32 0D 1C-0D 1C 0D 1C 64 20 20 39
g"..?2......d 9
0040:0030 30 52 30 52 34 4B 30 52-3A 34 30 52 0D 1C 01 00
0R0R4K0R:40R....
0040:0040 D6 00 20 00 00 00 00 00-00 03 50 00 40 20 00 00 ..
.......P.@ ..
0040:0050 00 31 00 00 00 00 00 00-00 00 00 00 00 00 00 00
.1..............
0040:0060 07 04 00 D4 03 29 30 76-07 87 1C 04 E3 8C 10 00
.....)0v........
0040:0070 00 00 00 00 00 02 08 00-14 14 14 3C 01 01 01 01
...........<....
-

400 Visual Basic for Electronics Engineering Applications

If you simply type ‘d 0040:0’ and hit return , this command will show you the
part of memory mentioned in the previous topic. Once you found what you need
its time to leave DEBUG . This is done by simply hitting Q and pressing Enter.

21.2 Hardware Access

What could possibly be told about this ? Well more than you would expect. All
the ports from the PC are accessible via a set of instructions residing in the
Microprocessor. The PC’s processor ahs a separate IO space that is accessed
using IN and OUT instructions. Of course we are not going to write assembler
but Visual Basic. So you would expect that there are equivalent Visual Basic
instructions to access these IO ports. Well hardware access is one of the things
that Microsoft deliberately left out of Visual Basic. Windows is not the platform
to tinker with hardware . Furthermore , playing with it requires a great deal of
knowledge about the system , and is only useful if you want to write system
drivers. Since drivers can (for the moment) only be made in 2 languages (
Assembler and C), these operations have been left out.

But sometimes someone might just need to do this kind of operations, so a
clever guy ☺ created a DLL in assembler that allows just this kind of stuff.
Now there is still a difference between programming such things in C and doing
it in assembler. When using the ‘c’ language you have to use the built in
routines of the language. These are written to be fully Windows compliant. This
means that they behave very nicely and ask permission to the system before they
access a port. Sometimes you will miss data , or simply be denied access. The
DLL mentioned here (Win95io for 32 bit or WinIO for 16 bit) is written in pure
assembler. And I for one am not polite with the system. Under normal
circumstances you cannot do the thing the DLL executes. Windows would
respond immediately with the known blue screen of death :’ this program has
executed an illegal command and will be terminated ‘ and terminate the
program. But if you temporarily kick windows out of the scene then you can do
whatever you want. There is nobody looking over your shoulder to see what you
are doing. And that is exactly what Win95io is doing. It temporarily disables
ALL interrupt processing from Windows. Since Windows is an entirely
interrupt driven system for its internal system management this means that the
entire operating systems comes to a halt. Once Windows has stopped the DLL
performs the IO required and then reinstates the interrupt controller. At that
point the operating system revives and continues where it left off. Since it was
suspended while the IO took place it knows nothing about the actual operation
and as such it does not generate this exception.

401 Visual Basic for Electronics Engineering Applications

Windows NT is a different matter. There this trick does not work since the
instructions that control the interrupt processing of the CPU run in a protected
ring. If you try to execute them the processor himself will generate the
exception. You only get access if you are a device driver to this kind of
instructions. So for the moment Win95io does NOT work on Windows NT.
However it works on windows 95/98.

Appendix A contains the Users Manual for this Win95IO DLL. You can use
this DLL free as long as you don’t sell software that makes use of it.

402 Visual Basic for Electronics Engineering Applications

403 Visual Basic for Electronics Engineering Applications

Chapter 22

The Printer port In

Detail

This port (sometimes also called the Centronics port) dates from long before
there was a PC. As the name indicates, it is a communication port mainly
intended to control an attached printer. The Centronics designation comes from
a company with the same name the has designed this kind of interface. Of
course we are not interested in its capabilities to drive a printer but more as a
universal IO channel existing on any PC.

22.1 Functional diagram

The schematic below shows the implementation of a standard printer port as can
be found in any PC.

404 Visual Basic for Electronics Engineering Applications

22.2 Register level description

The table below shows an address map of any printer port. Of course there are
today also ports known as EPP,ECP or bi-directional. Since these modes neither
are nor uniform in use nor available on every machine they will be omitted here.

405 Visual Basic for Electronics Engineering Applications

Base D7 D6 D5 D4 D3 D2 D1 D0 Output Register

9 8 7 6 5 4 3 2

Base + 1 BS AQ OP SL ER - - - Status Register

11 10 12 13 15 - - -

Base + 2 - - - IE SI IP AF ST Control Register

- - - - 17 16 14 1

A typical PC has at least one port (mostly on 0x378 , sometimes on 0x3bc
depending on where it resides). As explained in the previous chapter you can
have up to 3 printer-ports in a PC. The numbers shown above correspond to the
pin number of the 25-pole D-connector used for this kind of port.

The following table explains the meaning of the abbreviations used.

BS Busy Input
/A/Q Acknowledge Input
OP Out of Paper Input
SL Select Input
ER Error Input
IE IRQ enable Input
SI Select input Bidir
IP Initialize Printer Bidir
AF Auto Feed Bidir
ST Strobe Bidir

The Acknowledge pin is inverted inside the printer port hardware !

As you can see from the above , the printer port opens up a lot of possibilities to
control boards. However , since a printer port is part of the computer , care
should be taken not to destroy it accidentally . The following schematic shows a
typical interface that will protect the port under most circumstances. It also acts
as a buffer to clean up the signals generated by the port

406 Visual Basic for Electronics Engineering Applications

OC1
C11

1D2
2D3
3D4
4D5
5D6
6D7
7D8
8D9

1Q 19
2Q 18
3Q 17
4Q 16
5Q 15
6Q 14
7Q 13
8Q 12

1
14
2
15
3
16
4
17
5
18
6
19
7
20
8
21
9
22
10
23
11
24
12
25
13

K?

D0
D1
D2
D3
D4
D5
D6
D7

ACK

+5V

E

K

K

K

74ALS573

DB25

ERROR

BUSY
OUT OF PAPER

SELECT

GND

STROB
AUTO FEED
INITIALIZE

SELECT

4 * 10

5 * 10

5 * 220R

5 * 220R

8 * 10

The pull-up resistors are required. Most people think that this is not the case.
The deal is that the output channel of the Port is very strong in pulling lines low
but rather limited in pulling them back high. This tends to lead to not-so-clean
edges for zero to one transients. Some attached electronics can have problems
with this. So simply put them.

The above schematics also show how to make a ‘safe’ interface for all pins. In
most cases you will only use the D0 to D7 and 4 or 5 of the real input pins.
Sometimes the Strobe pin is used as well. If you want to make systems that are
transparent for printer information you should use the Strobe pin as a disable
pin. The printer accepts data when the strobe pin goes low. During that time
your hardware should not interfere with normal operations.

407 Visual Basic for Electronics Engineering Applications

22.3 Basic operations

Basically a printer port is used to control some external device such as an
EPROM programmer , IO board or other piece of electronics. You will find that
most often the port is used to create some pseudo serial interface. This
‘emulation’ is called bit banging and explained in the next topic.

To control the pins you need to make use of the INP and OUT commands of
WIN95io. For people coming from a DOS basic : these operate in exactly the
same way as under DOS basic. In the table below the mapping of the addresses
is shown once again.

Base D7 D6 D5 D4 D3 D2 D1 D0 Output Register

9 8 7 6 5 4 3 2

Base + 1 BS AQ OP SL ER - - - Status Register

11 10 12 13 15 - - -

Base + 2 - - - IE SI IP AF ST Control Register

- - - - 17 16 14 1

Suppose you want to control the lines D0 to D7. The table shows that these are
mapped onto the BASE address (which can be either 378, 278 or 3BC). So to
send the byte ‘5A’ simple do the following

Const LPTport = &h378
Out LPTport , &h5a

The status register shows the status of the 5 input pins. So to extract data
you simply execute a INP statement

Const LPTport = &h3BC
X = INP (LPTport +1)

Note in the above examples that I define a constant to access the printer port. If
you do this as a global in a module it becomes easier to modify your program to
run on different ports. You could also store the address for the printer port in a

408 Visual Basic for Electronics Engineering Applications

variable. That way you can dynamically change the address for the used port.
You could then allow the user to redirect the IO to a different port (via an
option or setup menu for instance)

Now that you have retrieved this information you can use Boolean operations
such as AND OR and NOT to isolate the bit or bits you want.

22.4 Bit-Banging interfaces

As already explained , in most case the printer port will be used to emulate some
kind of serial device interface. Typical uses are SPI , I2C , Micro Wire , and
JTAG etc. They can even be proprietary interface such as test patterns for an
integrated circuit.

While there are several approaches to bit banging only few are really interesting
and transparent .

22.4.1 Simple line control

When you simply need the printer port to act as a simple IO device the easiest
approach is to make subroutines to control each line.

Suppose you have 8 relays that must be controlled independently. The problem
is that you can only write to the output. You can’t read from it (sometimes you
can but this depends on the printer port installed in the computer. Don’t count
on this !). So whatever information was present is overwritten and lost. The
solution is to use an internal variable that holds the data to be sent out. The
contents of this variable are modified at will and then written to the output port.

Dim portdata as integer
Const LPTport = &h378

Sub RelayOn(relay)
Portdata = portdata or (2 ^ relay)

End
 Out LPTport,portdata
sub

Sub RelayOff(relay)
Portdata = portdata and (255-(2 ^ relay))

409Visual Basic for Electronics Engineering Applications

Out LPTport,portdata
End Sub

The above routines simply calculate the binary value that corresponds with
every output pin. And depending on the routine set it using an OR function or
reset it using an AND operation with the inverted pattern. Let’s take a closer
look:

Operation Output status Comment

Portdata = 82 01010010 Relays 7,5 and 2 are
currently on

RelayOn (5) 2^5 = 32 00100000 we want to set relay
6 on as well

OR on the above 01110010 The relays that were
numbers on are still on

RelayOff(5) 00100000

Inversion of this mask 11011111
(255-(2^r))

ANDing the mask with 01010010 The relay is back off
the data

This piece of source shows you simple IO operations. But there is more.

22.4.2 Serial protocol emulation

An other example might use different pins for different purposes. Let’s look at a
simple shift register. This typically consists of a data input and a clock. There
might also be a reset pin.

Suppose that reset is attached to D0 , DATA is attached to pin D2 and CLOCK
is attached to pin D5 of the printer port . the value of D0 = 1 , D2 = 4 and D5 =
32.

410 Visual Basic for Electronics Engineering Applications

Note
These values are simple binary conversions . you get the value of a pin
from the following formula: value = 2 ^ number of the bit.

Dim LPTport,LPTdata
LPTport = &h3bc
LPTdata=0
Const RESETPIN = 1 ‘ these numbers are decimal
representations
Const DATApin = 4 ‘ of the value of each pin . they
are not the
Const CLOCKpin =32 ‘ pin numbers !!

The above is the initialization code. Now there are two ways to implement
the actual code.

Example 1 : Monolithic Code

Sub transmit (pattern$)

Out lptport,reset

Out lptport,0

For x = 1

If mid$(
to
pattern$,x,1) = 1
len pattern$

then
 Out lptport,datapin
Out lptport,datapin+clockpin
Out lptport,datapin
Out lptport,0

Else
Outlptport,0
Out lptport,clockpin
Out lptport,0

End if

Next x

End Sub

The above program is actually very simple for the person writing this , but to
debug this it gets a bit more complex. And for someone who is casting his eyes
for the first time on this code it might look crazy. Now in this example it is still
fairly easy but in most cases the program is more complicated. You might need
to control some additional pins as well. The additions might look like this

Out lptport,datapin+clockpin+chipselect+notreset

411 Visual Basic for Electronics Engineering Applications

If you need to modify the protocol you will most likely have to rewrite all of
this code. The solution is to partition your code. The above routine is called a
Monolithic piece of code. This is completely against all the concepts in Object
oriented programming and should be avoided in all cases.

Example 2: Partitioned code

Sub transmit (pattern$)

ResetHi

ResetLo

For x = 1 to len (pattern$)

If mid$(pattern$,x,1) = 1 then
 DataPinHI

Else
DataPinLo

End if

Next x

End Sub

Sub ResetHi()

LPTdata = lptdata or resetpin

Out LPTport,LPTdata

End Sub
Sub ResetLo()

LPTdata = LPTdata and (255-ResetPin)

Out LPTport,LPTdata

End Sub
Sub ClockHi()

LPTdata = LPTdata or Clockpin

Out LPTport,LPTdata

End Sub
Sub ClockLo()

LPTdata = LPTdata AND (255-clockpin)

Out LPTport,LPTdata

End sub
Sub DataHi()

LPTdata = LPTdata OR datapin

Out LPTport,LPTdata

End sub
Sub DataLo()

LPTdata = LPTdata AND (255-datapin)

Out LPTport,LPTdata

End sub

412 Visual Basic for Electronics Engineering Applications

The above code is a lot longer to write but much easier to debug. You can
nearly find the timing diagram implemented as code.

22.5 Printer port Control Using ClassWork

What is ClassWork you might ask ? Well this is going to be explained a bit
further on. For now it is sufficient to know that his is a piece of software that
exposes certain hardware (Printer-ports , GPIB instruments , USB etc) as
objects. That means you can treat these devices just as if they were command
buttons or textboxes.

To uses the printer port class simply load the Printerport.cls file into your
project.

Dim lptport as new Printerport.
LPTport.address = &h378
LPTport.D0 = True
LPTport.D5 = False
LPTport.dta = 123
If LPTport.BS = true then msgbox “Pin 11 is logic
High”

413 Visual Basic for Electronics Engineering Applications

This Class allows you to control all pins of the printer port independently.
Assigning a new value to the DTA property can also change the output register.

Method
or
property

Function Implementation Type

D0 .. D7 Output pins D0 to D7
individually controllable

Sub Boolean

Dta The output pins D0 to D7
as a byte

Sub Integer

BS,AQ,O
P,SL,ER

The input pins
individually

Function Boolean

Nibble the high 4 bits of status
register scaled down

Function integer

Note
the inversion in the printer port for the AQ pin is taken into account. If the
result of function is TRUE then the corresponding pin is at logic High !.

22.6 Special printer port modes

22.6.1 Bi-directional Parallel Ports

The PC's parallel port(s) would be much more useful if it could be used as a bi­
directional port, that is, if it could transfer data in both directions. Unfortunately,
the original IBM parallel port design was only meant to be unidirectional, just
sending data out from the computer. This design was particularly unfortunate
because it would have taken no additional hardware to make the parallel port bi­
directional. In IBM's parallel port, the logic levels on the data lines can be read
in (through a 74244 tri-state buffer that implements the input function of the
data register); however, because the outputs of the 74374 used as the output of
the data register are always turned on, no data from an external source can be
put on the data lines. All you can do is read back the last byte written to the data

414 Visual Basic for Electronics Engineering Applications

register. If the 74L5374's tri-state output enable pin had been connected to the
extra bit on the interface's control register (a 6-bit 74LS174 latch), the data port
could have been programmed for external input as well as output. Nonetheless,
the standard parallel port design can be used for data input by making use of
four of the five status register input lines to input data from an external s. device
a nibble at a time. The fifth input line can be used to implement a handshake
signal. This technique is used by a number of programs that allow you to
transfer data between your desktop computer and your laptop machine by
hooking their parallel ports together. Both the cabling and the handshake signals
used are nonstandard and vary from one program to another. A good example of
this type of program is the interlink / intersvr program included in MS-DOS or
the Direct-Cable connection used by Windows 95/98.

When it introduced the PS/2, IBM made the parallel port bi-directional by
allowing the data register outputs to be turned off using bit 5 of the control
register (allowing data to be input from the parallel port if bit 5 = 1). To further
complicate the situation, IBM then introduced a more sophisticated parallel port
(called a Type 3 parallel port) on later PS/2s that allowed high speed bi­
directional data transfers using DMA. Intel also introduced a laptop computer
chip set containing what it called a Fast Mode parallel port that allowed higher
speed data transfers. However, only a fraction of PC manufacturers adopted any
of these improvements. At this writing, there are still many PCs being sold that
use the original PC unidirectional parallel-port design.

22.6.2 The IEEE 1284 Standard

In an effort to obtain some standardization in the parallel-port variations, the
IEEE has created a standard (IEEE P1284) to define five modes of parallel-port
operation that allow parallel ports on PCs and peripheral devices (printers,
scanners, modems, and so on) having differing capabilities to inter-operate with
each other. These are the possible modes of operation for a 1284-compliant
parallel port:

1. Compatibility Mode. This is the mode of operation used by the original
PC parallel-port interface. The interface operates according to the Centronics
printer interface specification with data being sent only from the PC to the
external device. The signal definitions are described earlier in this section.

2. Nibble Mode. This mode of operation was also described earlier. It
uses the status line inputs of the original PC parallel interface to implement data

415 Visual Basic for Electronics Engineering Applications

transfers from the external device to the PC. Data bytes are transmitted over
four of the status lines as two sequential 4-bit nibbles.

3. Byte Mode. This is the mode introduced on the IBM PS/2, and was
also described earlier. The improved parallel-port circuitry required to
implement this mode allows data bytes to be transmitted over the data lines from
an external device to the PC when the direction bit (bit 5) is set in the PC's
control register.

4. ECP Mode. The Extended Capabilities Port Mode allows a PC and an
external device to freely communicate back and forth with each other. Enhanced
parallel port circuitry allows the original parallel-port control lines and
handshake protocol to be redefined so that they implement an asynchronous 8­
bit bi-directional data channel using the data lines.

5. EPP Mode. The Enhanced Parallel Port Mode requires fairly complex
parallel port circuitry and uses the parallel port data lines as an 8-bit bi­
directional bus carrying both data and addresses.

The standard is defined in such a way that PCs or peripherals that utilize the
original PC parallel port interface will still work (although they can only use
Compatibility Mode and Nibble Mode). This is done by requiring that a 1284­
compliant parallel interface be in Compatibility Mode when power is turned on.
The software controlling the host interface (the PC) must then successfully
negotiate with the peripheral device to operate in any other mode.

The initial negotiation is done as follows: The host sets SLCT IN high and
AUTO FD low. If the peripheral is 1284-compliant, it must respond by setting
ERROR, SLCT, and PE high and ACK low A simple Centronics parallel port
device will never respond this way, so this is a unique signature. When the host
sees this response, it requests a new operating mode by sending a code to the
peripheral on the data lines. For example, sending a code value of 01 (by
placing the value on the data lines and pulsing the STROBE line) requests Byte
Mode. If it supports the requested mode, the peripheral responds by setting
SLCT high and driving PE low.

If the mode isn't supported, both SLCT and PE go low. The one exception to
this is Nibble Mode, for which the peripheral should respond with SLCT low.
This negative response for nibble mode allows very simple "dumb" peripheral
devices to support the 1284 standard at the lowest level of bi-directional
communications without having to examine what's on the data lines during the
mode negotiations.

416 Visual Basic for Electronics Engineering Applications

When operating in Nibble Mode, the various signal lines take on new meanings
as indicated in the table below. Data bytes can now be transferred from the
peripheral to the host in two data transfers using PtrBusy, AckDataReq, Xfiag,
and DataAvail for bits 3-0 and then bits 7-4. A high-to-low transition on the
PtrClk line serves as the strobe signal to indicate that a new nibble value is on
the lines, and a low on the HostBusy line is the handshake signal coming from
the host that indicates when the next nibble can be sent. After each pair of
nibbles is sent, the state of the DataAvail line at the time when PtrClk goes back
from low to high tells the host whether additional data bytes are available to be
sent (a low on DataAvail means more data is available).

TABLE :Signal redefinitions for the various IEEE 1284 parallel port modes.
Active low signals are indicated by a minus sign preceding the signal name.

Pin Driven
by

Centronic
s

Nibble Byte ECP EFF

2-9 Host DO-D7 DO-D7 DO-D7 DO-D7 ADO-
or AD7
periphe
ral

1 Host -Strobe HostClk HostClk HostClk -Write

14 Host -Auto FD HostBusy HostBusy HostAck -DStrb

16 Host -Init -Init -Init - -Init
Reverse
Request

17 Host -Select In 1284
Active

1284
Active

1284
Active

-AStrb

15 Periphe -Error - -DataAvail - User
ral DataAvail PeriphRe defined

quest

13 Periphe
ral

Select Xflag Xflag Xflag User
defined

12 Periphe Paper End AckDataR AckDataRe -
AckReve

User

417 Visual Basic for Electronics Engineering Applications

ral eq q rse defined

10 Periphe
ral

-Ack PtrClk PtrClk PeriphCl
k

Intr

11 Periphe
ral

Busy PtrBusy PtrBusy PeriphAc
k

-Wait

To do bi-directional communications using Nibble Mode, the host sends data to
the peripheral in Compatibility Mode and must negotiate with the peripheral to
switch into Nibble Mode each time it wants to receive one or more bytes of data
from the peripheral. The host can tell when the peripheral has no more data to
send from the DataAvail line as just described, and can then return to
Compatibility Mode (indicated by puffing l284Active low) to send more data to
the peripheral or wait for more data from the peripheral by going into an idle
phase of Nibble Mode (by setting HostBusy low). Thus, by switching back and
forth between Nibble Mode and Compatibility Mode, two-way communications
can be maintained between the PC and an external device.

In Byte Mode, data is sent from the peripheral to the host in much the same way
as for Nibble Mode, except that a byte at a time is transferred on the data lines
DO-D7. The handshake signals are used in the same way as for Nibble Mode,
except that the host briefly pulses the HostClk line low after each byte has been
sent by the peripheral to indicate that the byte was received. As was the case for
Nibble Mode, the host must switch between Compatibility Mode and Byte
Mode to implement two-way communications.

A 1284-compliant parallel interface that supports Byte Mode may also support
DMA transfer operations as specified for IBM PS/2 Type 3 parallel ports. Using
DMA transfers, entire blocks of data can be read into or written out of the
parallel interface by the DMA controller, leaving the CPU free to do other tasks.
Two more registers, an interface control register and an interface status register,
are typically used to control DMA operations. Bits in these registers are used to
enable DMA transfers, to start DMA transfer of a block of data, and to detect
when a data block I/O operation has completed. Hardware within the parallel
interface takes care of generating and detecting the STROBE and ACK
handshake signals needed to synchronize the data flow with the external device.
In order to do DMA transfers, of course, the parallel port driver software must
also program the DMA controller, as described in Section 7-8. Data transfer
rates as high as 2MB/sec can be reached using DMA transfers. To be
completely compatible with the Type 3 port, a parallel interface also needs to

418 Visual Basic for Electronics Engineering Applications

support expanded interrupt capabilities, which allow interrupts to be generated
when the state of any selected status register signal changes.

Using Nibble or Byte Mode to implement bi-directional communications works
reasonably well if the data is mostly transmitted in large blocks or if the data
flow is largely in just one direction. However, because it takes an appreciable
time to do the mode negotiation for each change in data flow direction, this
approach gives rather poor performance for general purpose communications in
which many short messages are exchanged between the host and the peripheral.

22.6.3 Extended Capabilities Port

A parallel port that supports Extended Capabilities Port (ECP) Mode offers
higher performance and better support for general-purpose bi-directional
communications. In ECP Mode, unlike Nibble and Byte modes, the interface
doesn't have to change modes when the direction of data flows between the host
and the peripheral changes. After negotiating with ECP mode, the interface is
set up for forward data transfers (that is, the host sends data to the peripheral).
Forward data transfers are coordinated using an interlocked handshake. The host
pulls HostClk (see Table above) low to indicate new data is available, and the
peripheral sets PeriphAck high to acknowledge that it sees the new data. Upon
seeing the acknowledgment, the host sets HostClk back to high, and the
peripheral completes the transfer sequence by pulling PeriphAck back low when
it's ready to accept another byte. This is virtually the same handshake used on
the SCSI bus.

Any time the external device wants to perform_reverse data transfers (that is,
send data from the peripheral to the host), it asserts PeriphRequest, and the host
will then enable reverse transfers by pulling ReverseRequest low when it is
ready to accept them. The pair of interlocked handshake signals PeriphClk and
HosrAck are used to synchronize reverse data transfers. When it wants to switch
the data flow direction back to being forward, the host sets ReverseRequest
back to high, and the peripheral acknowledges the request by setting
AckReverse high.

Parallel interfaces operating in ECP Mode also support two other advanced
features. First, the host and the peripheral can send each other commands as
well as data. For transfers in the forward direction, a byte sent to the peripheral
is interpreted as a command if HostAck is low during the transfer and as data if
HostAck is high. Thus, HostAck serves as a "ninth bit" that allow commands

419 Visual Basic for Electronics Engineering Applications

and data to be distinguished. Similarly, for transfers in the reverse direction,
PeriphAck serves as the ninth bit, which allows the host to distinguish between
commands and data sent to it.

The second advanced feature is that run-length encoding of data is supported. If
a command is sent with its most significant bit set, the low order 7 bits in the
command are interpreted as a number, N, that is the run-length count for the
next data byte sent. Thus, when the next data byte is received, the receiving port
circuitry will behave as if it had received N copies of that byte. This data
compression technique is very effective when the transmitted data is a raster
image such as that produced by a page scanner.

The most powerful and flexible 1284 parallel-port mode is Enhanced Parallel
Port (EPP) Mode. In this mode, the parallel port signal lines are completely
redefined, as shown in the table above, and controlled by the host's circuitry in a
manner similar to the lines of a computer system's bus. Thus, it's useful to think
of EPP Mode as defining a bus over which information is transferred in bus
cycles. Four types of bus cycles are defined for EPP Mode: address-write
cycles, data-write cycles, address-read cycles, and data-read cycles. The host is
always the bus master, and controls all operations. All devices attached to the
parallel port are treated in EPP Mode as consisting of one or more registers,
each of which has a register address. To send one or more bytes of data to a
particular device register, the host performs an address-write cycle to select a
particular register, and then performs data-write cycles to transfer the data. This
way of doing things differs somewhat from a typical computer bus where the
address for the data is sent during every bus cycle. In EPP Mode, it's assumed
that you will normally be transferring many bytes of data back and forth to the
same device register before switching to another address and that the added
complexity of requiring an address to be sent along with every data byte
therefore isn't needed.

The control signals used to perform the bus cycles are fairly simple. As a
example, consider an address write cycle. To begin an address write cycle, the
host places an 8-bit address on_ADO-AD7 and pulls Write (indicating that the
host is doing a write operation) and AStrb (indicating that the information on
ADO - AD7 is an address) low. The peripheral device corresponding to the
address responds by setting Wait high to indicate that it recognizes it's being
addressed and is ready to receive the address byte. Upon seeing Wait go high,
the host de-asserts AStrb. This action signals the peripheral to read and store the
byte on ADO-AD7 to use as the register address for following data cycles. The
peripheral then pulls Walt low to indicate that it's ready for a new bus cycle, and
the host ends the current bus cycle by removing the signals from ADO-AD7 and
setting Write back high.

420 Visual Basic for Electronics Engineering Applications

A data read bus cycle proceeds in much the same manner. The Dstrb and Wait
lines are the handshake signals that coordinate the data transfer, and the state of
the Write line determines whether the bus cycle is a read cycle or a write cycle.

22.6.4 Enhanced Parallel Port

In EPP Mode, the signal lines PE, Error, and SLCT used in Compatibility Mode
are left undefined and may be used as desired as peripheral status bits.

EPP Mode also allows a device to send an interrupt signal to the host by pulsing
the Intr line low. Finally, a short active low pulse on the Init line is the signal to
all attached peripheral devices to terminate EPP Mode and return to
Compatibility Mode. EPP Mode's bus-oriented operations provide some very
significant benefits. First, once a device register address has been selected, the
EPP Mode port circuitry allows subsequent data bytes to be transferred using a
single I/O instruction per byte. In particular, very high burst rates can be
achieved using string I/O instructions such as rep insb.

Typical EPP performance gives 1.5-2 MB/sec transfer rates-S to 10 times
greater than you can get from a simple Centronics parallel port. Another
advantage is that more than one parallel peripheral can be attached to a single
EPP port, with the cable being daisy chained from one device to another. EPP
Mode operation is particularly advantageous for laptop computers, which have
little space for multiple connectors on their rear panel, but often need to transfer
large volumes of data to or from external devices.

The downside of an EPP-compatible port is that the circuitry is far more
complex than for a simple parallel port and the low-level driver software is
correspondingly more complex also. Nonetheless, with the high level of circuit
integration currently available to chip manufacturers and the high volume
market for PC systems, the benefits of EPP far exceed the costs, and it's likely
that EPP will become a very well supported standard.

421 Visual Basic for Electronics Engineering Applications

Chapter 23

The Serial Port In

Detail

The Serial port is the second port which is standard available on any computer.

23.1 System description

Serial ports come in two flavors. You can have either the full-fledged 25-pin
connector or the shrunken 9-pin connector. The port is controlled by a UART of
the 8250 / 8251 or 165x0 type. The latter has more advanced features like
transmit and receive FIFO’s. However from a programmer’s point of view these
controllers all look the same(except for the FIFO’s).

Since the port holds a lot of registers and is quite complicate to control low level
, I’m not going to detail on that here and now. I will explain the things you need
to know and how you can make an interface that works reliable all the time.

While the UART can be set to all sorts of different baud-rates , parities, stop bits
, modes and so on , the only one that is really important is 9600,n,8,1 mode.
This is a typical communication mode that is most widely used to talk to devices
of all sorts.

Now what exactly does it mean. Well simple :

422 Visual Basic for Electronics Engineering Applications

9600 Baud rates measured in Bits per second
N Parity No parity. Alternative settings could be O(dd) or

E(ven)
8 Databits The number of bits transmitted at a time . Can be set

anywhere between 5 and 11
1 Stopbits Number of bits added to close the packet can be set to

1 2 or ½

You can set a port to these parameters by using the mode command from DOS..
Check out the section about the Mode command to learn more.

23.2 Port interface

A minimal serial interface needs only 3 wires . TX , RX and Ground. The
UART uses a synchronization mechanism to lock itself onto an incoming data
stream. The locking scheme is based on the transmission of a ‘Start’ bit. The
UART synchronizes it’s internal shift register to this bit and then samples in 6 7
8 or 9 bits depending on the settings.

There is a potential risk for data loss of the processor behind the UART does not
‘offload’ the data fast enough. To prevent this from happening the RS232 also
has a set of handshake lines. These lines can be used to control the interaction
between devices. However , in most applications where you connect a device to
a Serial port these lines are not used. Some programs check these lines and
simply do nothing if they don’t find them to be operative. Fortunately you can
trick the UART in believing that someone is there.

23.3 Flow Control

Computers often can send serial data faster than connected devices can receive
and process them. If this happens, data is lost. This is troublesome at least, and
fatal at worst. If possible, we should attempt to assure that this data loss doesn't
happen. That's where flow control comes into play.

If a serial device (perhaps a computer or some other device in the
communications link, like a modem) detects that data is going to overflow its
receive buffer, it can request that the sending system stop transmitting data for a
while. This gives the receiving device time to process data already received.
When the receiving device has processed some or all of the 1. data previously

423 Visual Basic for Electronics Engineering Applications

received, it can signal the sending system to continue to send data. This
signaling system is called flow control.

Flow control comes in two flavors. These are most often-called hardware and
software flow control. Sometimes hardware flow control is called out-of-band
flow control and software flow control is called in-band flow control, for
reasons that will become obvious.

23.3.1 Hardware Flow Control

A complete discussion of hardware flow control requires the introduction of two
additional terms. These terms are DTE (Data Terminal Equipment) and DCE
(Data Communications Equipment). These are old-fashioned terms that almost
serve to confuse as much as to elucidate. However, they are what we have to
work with - so work, we will.

DTE implies a terminal (or computer), and DCE implies a modem. A DTE often
connects to another DTE using an intervening DCE. Serial communications
links are not bi-directional; you can only send or receive a signal on a single
wire. DTE and DCE indicate which wires are used to send and receive signals.
Diagrams of the various connections for DTE and DCE devices are shown in
the sections on Null Modems, Cables and Adapters. Your PC and all computers,
almost always are treated as a DTE, and the following discussion will assume
that is the case.

Hardware flow control uses a separate pair of wires on the serial port to perform
the signaling between the connected devices. Most often the two signals are
called RTS (Request To Send) and CTS (Clear To Send). Occasionally DSR
(Data Set Ready) and DTR (Data Terminal Ready) are used instead of CTS and
RTS, respectively. In rare cases there is a mix of these two pairs of signals.

When a receiving DTE needs to signal the sending device that data flow should
stop, it lowers the RTS line. A DTE raises the RTS line when it is able to
receive data. Likewise, a DTE monitors the CTS line. If CTS is lowered, the
connected device is signaling that it cannot receive much more data, so the DTE
is obligated to stop sending data. When CTS is raised, the DTE can resume
sending data.

On the other hand, a DCE reverses the meaning of these control signals. If a
DCE needs to halt the flow of data, it lowers CTS. It then raises CTS to permit

424 Visual Basic for Electronics Engineering Applications

data to flow. Likewise, a DCE monitors RTS. If RTS is lowered, no data should
be sent by the DCE, while RTS high indicates that data may be sent.

23.3.2 Software Flow Control

One of the features of serial data transmission is that it requires only one wire to
send data in each direction (ignoring signal ground). However, hardware flow
control adds an additional path for each control signal. Perhaps there is another
way. There is such a way, of course. That's software flow control. When a
device needs to control the flow of data, it might be possible to define a special
data character that it can send to halt or restore the data flow. There have been a
couple of different pairs of characters defined to do this. The most common
form is called XON/XOFF. An XOFF character (also called DC3 or Device
Code 3) may be sent to signal that no more data should be sent, and XON (also
called DC 1 or Device Code I) is sent to signal that data may flow again.

Software flow control is also known as in-band flow control, because this
control acts just like other serial data; it is sent on the same signal wires as other
data. Software on each end of the path must respond appropriately to these
special characters to suspend and restart the data flow.

23.3.3 Which Flow Control Method Should I Use?

Like most simple questions, this one has no absolute answer. Both methods
have advantages and disadvantages. COMM.DRV has built-in support for both
types of flow control.

The advantage to software flow control is that it requires no extra signals to
operate. The disadvantage is that it requires software overhead to execute, so it
can be slower and less reliable than hardware flow control. More importantly
the software flow control is limited to situations where the characters that are
used are available, that is, they are not data. So, software flow control is not
appropriate when transferring binary data. In fact, one file-transfer protocol
(Kermit) goes to great lengths to allow software flow control when transferring
binary data. This results in a substantial reduction in performance.

An advantage to hardware flow control is that it is fast, because the UARTs
themselves interpret changes of state in the input signals and can generate an

425 Visual Basic for Electronics Engineering Applications

interrupt that COMM.DRV can react to immediately. Hardware flow control is
out-of-band, so it is inherently compatible with binary data. But, the extra
control signals required need special handling when it comes to using them with
data sent over the telephone system.

So, the answer is to use software flow control only if the system that you are
communicating with requires it. Otherwise, use hardware flow control. The
advantages of hardware flow control are significant, and as we will see in the
chapter on modems, there are ways to make it work over the telephone system.

23.4 The UART

A significant drawback of data communications techniques that send 8 or more
bits in parallel (such as the PC parallel port, GPIB, or SCSI) is that the cables
contain anywhere from 25-50 wires and thus are both bulky and expensive. This
can pose a severe problem, especially if the cables are long. One good solution
to cabling problems is to convert the bytes to be transmitted into a serial bit
stream and send them out on a single wire. In many cases, you can then get
away with only two wires for bi-directional communications, one for each
direction, although usually you need a ground wire connecting the two devices
as well. Serial communications also have the advantage of being very well
standardized and having widespread support on virtually all computer systems
including PCs, workstations, and minicomputers.

You would expect serial communications devices to send data at a slower rate
than parallel communications devices because they send only 1 bit at a time
instead of 8. In many cases this is true, and the serial port on a PC does indeed
send data about ten times more slowly than the parallel port. However, serial
communications can provide extremely high speed. The reason is that since you
need only a single transmitter, a receiver, and three wires for a serial link, you
can afford to use sophisticated, relatively expensive components for all these
items. This is why computer networks like Ethernet and fiber optic links give
very high performance even though they use serial bit streams.

426 Visual Basic for Electronics Engineering Applications

23.4.1 Basics of Asynchronous Serial Communications

The information in a serial bit stream is contained in its time-dependent
waveform: the bits are represented by codes that are each transmitted for a fixed
time period. The time period used to transmit each code is known as a baud
period. The word baud is used in honor of a Frenchman named Baudot, who
studied various serial encoding schemes in the 1800s.

The serial bit streams generated by PC serial ports use a very simple form of
encoding. One bit is transmitted during each baud period, with a "1" bit
represented by a TTL high voltage and a "0" bit by a TTL low voltage. Thus,
the baud rate (1/[baud period]) of a PC serial port is equal to the number of bits
per second being transmitted or received. More complex encoding where
multiple bits are transmitted during each baud period are used by modems to
send data over the phone lines.

To send information encoded this way, the transmitter and receiver clocks,
which define the baud period, must be the same frequency and be synchronized.
You'll see later how this is done. Bits are transmitted as separate groups,
typically 7 or 8 bits long, called characters. The name character is used because
each group of bits represents one letter of the alphabet when ASCII-encoded
text is being sent. Each character is sent in a frame consisting of a "0" bit called
a start bit, followed by the character itself, followed (optionally) by a parity bit,
and then a "1" bit called a stop bit. The logic low start bit tells the receiver that a
frame is starting, and the logic high stop bit denotes the end of the frame.

This approach to transmitting serial data is called asynchronous serial
communications because the receiver resynchronizes itself to the transmitter
using the start bit of each frame as discussed later in this section. New
characters can be transmitted at any time, with an arbitrary time delay between
characters. There are also synchronous serial communications protocols where
characters are sent in blocks with no framing bits surrounding them. In this
approach, the transmitter continuously transmits signals, with a special sync
character being transmitted whenever there's no real data available to transmit.
IBM mainframe computers have traditionally used such protocols, binary
synchronous communication (bi-sync) and synchronous data link control
(SDLC) for example, to connect with terminals and PCs.

427 Visual Basic for Electronics Engineering Applications

The figure above show the time-related waveform for an asynchronous
communication (a) Asynchronous serial bit stream format. Each character is
preceded by a logic low start bit, which synchronizes the receiver and
transmitter clocks. The character (5, 6, 7, or 8 bits) follows, least significant bit
first. The * indicates optional bits. An optional parity bit and one or more stop
(logic high) bits terminate the character. (b) Example of a serial bit stream for
the ASCII character "K" (4bh) using 7 bits, no parity.

Notice that the data bits within each transmitted character are sent with the least
significant bit first, each bit lasting one baud period. Serial receivers and
transmitters can be instructed to send or receive as few as 5 or as many as 8 bits
per character (but they must both agree on how many!). Often 8 bits are used so
that a character contains an entire byte.

After each character's bits are sent out, an optional parity bit may follow. The
parity bit is useful if the data line is too noisy to provide completely accurate
transmission. The parity bit, P, can be chosen to give either even or odd parity.
For even parity, P

1 if the number of is in the character is odd and P = 0 if the number of is even.
That is, P is chosen so that the number of is including P is even. For odd parity,
P is chosen so that the number of ls including P is odd. The local receiver
checks to make sure that the parity is still the same in spite of any noise picked
up by the cable. If the parity has changed, some bit has flipped its lid, and the
receiver sets a parity-error flag in its status register (which the CPU can read if it
wants to).

After the character and parity bits, the transmitter inserts one or more high stop
bits into the data stream. Basically the line must come high long enough to
allow the receiver to ready itself for the next start bit. Typically, one stop bit
suffices, although transmitters can be instructed to insert 1, 1.5, or 2 stop bits

428 Visual Basic for Electronics Engineering Applications

under program control. When no characters are being transmitted, the line
remains at the logic high level of the stop bit.

Note that at least two (1 start and 1 stop) extra bits are required to transmit
asynchronous data. So if you want to transmit whole bytes without parity (a
very common choice), you actually need to transmit 10 bits. Just as in any
business, you have to pay for overhead! A simple rule of thumb for estimating
serial data transmission speeds is to divide the baud rate by 10. However, data
compression (see Section 12-6) can increase the effective transmission rate
significantly.

The way the receiving device stays synchronized to the transmitting device so
that it can read the bits correctly deserves some comment. It's not obvious how
this can be done, since the receiver and transmitter have independent clocks that
are only nominally the same. Furthermore, the relative phases of the two clocks
can be any value whatsoever. Also, the logic level changes at the beginning of
each baud period can be shifted in time, owing to the limited bandwidth of the
carrier medium. The standard solution to this problem is to have the receiver
and transmitter use internal clocks whose frequencies are 16 times the baud rate.
Then when the leading edge of the start bit is detected, the incoming serial
waveform is sampled every 16 clock periods, starting with the eighth clock
period after the leading edge of the start bit. This ensures that the waveform is
always sampled near the middle of every baud period, making it tolerant of
small edge shifts and transmitter/receiver clock frequency differences.

The standard baud rates are: 50 (ham radio-some people can decode this speed
by ear!); 110 (yuck! it's an ancient teletype, better known as a clunk-clunk);
134.5 (ugh! it's an obsolete IBM 2741); 150 (way too slow); 300 (way too slow,
but OK for low-rate applications like credit-card verification over phone lines),
1200 (still too slow), 2400, 4800, 9600, 14,400, 19,200 (now you're talking!),
38,400, 56,000 (actually 57,600 on PCs), and the nonstandard 115,200 (not
available on the original PC). PCs, printers, and other devices often cannot
function at the highest of these rates. However, if you hook up two PCs using
the MS-DOS interlnk/intersvr pair and a serial port, you may well find that they
use 115200 baud. Using an 8-bit character with no parity and 1 stop bit, there is
a total 10 bits, so a transmission rate of 115200 baud yields a throughput of
11.5K/sec.

429 Visual Basic for Electronics Engineering Applications

23.4.2 UARTs and the PC Serial Port

Section 10-5 shows that a computer can generate many kinds of waveforms. In
particular, it can convert a byte into an asynchronous serial bit stream and send
it to some pin of a parallel port. The output bits are then buffered so that the
voltage and current levels conform to one of the conventions described in
Section 23-5, then go out to a terminal or modem. Some of the very earliest
personal computer systems, such as the Commodore 64, actually used this
software method for serial communications. The trouble is that it really ties up
the CPU and prevents the use of higher speed transmissions.

One of the earliest types of large-scale integrated (LSI) circuits was the
universal asynchronous receiver transmitter (UART, pronounced "you-art").
This special purpose chip was developed to simultaneously transmit and receive
serial data, perform the appropriate parallel/serial conversions, and insert or
check the start, stop, and parity bits used to keep the serial data synchronized. A
transmitter inside the UART converts bytes sent as 8-bit parallel data to the
UART into a standard-format serial bit stream for transmission. The circuitry
inside the UART that does this is basically just a parallel-in/serial-out shift
register. Similarly, an incoming serial bit stream is detected by a receiver inside
the UART and converted into parallel data by a serial-in/parallel-out shift
register. The resulting data bytes appear as 8-bit parallel data that can be read
out from the UART. The word asynchronous appears in the acronym UART
because it supports asynchronous serial communications, and the name
universal appears because the UALRT can work with all popular asynchronous
serial formats.

Simultaneous conversion of an incoming and an outgoing serial data stream is
called full duplex communications, which requires two separate signal lines to
carry the data. A complete connection can be implemented with three wires: one
for the outgoing data stream, one for the incoming stream, and the third for a
common ground line. In some (uncommon) situations, half duplex is sometimes
used. This allows two-way communications (hence, duplex), but only one
direction is active at a time. It's similar to using walkie-talkies, for which you
have to say "Over" when you're finished talking and want to let the other person
talk back. The advantage of half duplex is that only one data channel is required.
All UARTs provide for standard full duplex communications.

A serial port on a PC is little more than a UART that is directly connected to the
PC bus. The figure below gives an example of how a typical serial port for a PC
is constructed. Aside from a little bit of glue logic and a clock for the UART,
the only additional hardware needed to make a complete serial port adapter card
for a PC is the interface circuitry that converts the UART's TTL-level serial

430 Visual Basic for Electronics Engineering Applications

input and output signals into RS-232 signals. The UART is controlled by the PC
through a set of I/O ports that read from or write to the UART internal registers.
Once you understand how the UART used in a PC operates, you'll understand
PC serial ports.

If you actually look at a typical multifunction board containing one or more
serial ports, you may be surprised to find that there's no UART chip anywhere
in sight. The reason is that it's been buried inside a custom application specific
integrated circuit (ASIC) that contains all the circuitry for two serial ports, a
parallel port, and perhaps hard and floppy disk interfaces. Nonetheless, a clone
of one of the UARTs described in the next subsection (we hope it's a 16550) is
present inside the ASIC.

The above picture shows the block diagram for a PC serial port.

431 Visual Basic for Electronics Engineering Applications

23.5 RS-232 and Other Serial Conventions

The previous section shows how a UART converts parallel data in the computer
to and from serial bit streams. However, the TTL output of a UART like the
16550 can't be transmitted error-free over any substantial distance. The 16550's
serial output doesn't have adequate drive power and, in any event, TTL serial bit
streams can work reliably only over distances of a couple of meters due to noise
pick-up and signal distortions induced by the cabling. To send bit streams over
long distances, it's a better idea to convert TTL bit streams into some other
form. By far the most common way of doing this is to use the signaling method
specified in a standard known as Recommended Standard 232 (RS-2 32). An
alternative technique is 20 mA current loop, which is useful when extremely
long wires or very high noise immunity are needed. Current loop is briefly
discussed at the end of this section.

23.5.1 RS232

RS-232 is an Electronic Industries Association (EIA) standard that specifies the
electrical characteristics, connector requirements, and signal functions for a
serial interface. The current version of the standard, adopted in 1986, is RS-232-
D. Instead of TTL levels, the logic levels on an RS-232 line are -3 to -15 volts
for a logic 1, and +3 to +15 volts for a logic 0. ±12 volts are typically used in
PC systems. This gives a larger voltage swing as well as a zero crossing and is a
much more noise-immune signaling scheme than TTL. The signals are sent over
a cable that can be any length, provided the total capacitance of the cable is less
than 2,500 pF. The earlier versions of the standard specified a maximum cable
length of 50 feet; with high quality, low capacitance cable, this length can easily
be doubled. The serial data rate is allowed to be as high as 20K bits per second.
In practice, much higher data rates are often used (up to 115,200 bps) with good
success, provided the cable length is kept short (1 or 2 meters).

The RS-232 standard also defines a standard connector for serial
communications, namely a 25-pin D-shell connector, also known as a DB-25
connector. Like most connectors, this connector comes in two sexes, male and
female. The male version, also known as a DB-25P connector, has 25 pins
arranged in two rows. The female version, also known as a DB-255 connector,
has 25 little holes into which the pins of the male connector fit. On the original
IBM PC, the serial port connector on the back of the machine is a male.
Unfortunately, IBM also used a DB-25 connector for the parallel port output
(but female instead of male), making it easy to confuse the two.

432 Visual Basic for Electronics Engineering Applications

Somehow the writers of the RS-232 convention also managed to define signal
functions for every single pin on this 25-pin connector! The standard supports
not only the DTR, DSR, RTS, and CTS handshake lines but a host of other
signals as well, such as transmit and receiver clock and secondary copies of
RTS and CTS. Fortunately, a maximum of only ten pins are typically used, three
pins isn't uncommon, and at low data rates you might even be able to get by
with only two if you're willing to cut a few corners!

The commonly used RS-232 signals and their pin numbers are shown in the
table below. Two types of interfaces defined here: a data terminal equipment
(DTE) interface and a data communications equipment (DCE) interface. This
scheme dates back to the early days of time-sharing computers when you had a
single large mainframe computer to which you connected a terminal via a serial
interface (or if you were at some other location, you connected a terminal to a
modem and communicated over the phone lines). The intent here is that you
would always connect a DTE interface such as a terminal to a DCE interface
such as a mainframe computer or modem. As you can see from the table, the
difference between DTE and DCE interfaces is that the transmit and receive
pins, the RTS and CTS handshake signals, and the DTR and DSR handshake
signals are interchanged. This allows you to properly connect a DTE to a DCE
interface using a straight-through cable where pin 2 goes to pin 2, pin 3 to pin 3,
and so on.

RS-232 Signal Direction DTE DCE

Signal Ground 1 1

Transmit Data (TxD) Out 2 3

Receive Data (RxD) In 3 2

Request To Send (RTS) Out 4 5

Clear To Send (CTS) In 5 4

Data Terminal Ready (DTR) Out 20 6

Data Set Ready (DSR) In 6 20

Data Carrier Detect (DCD) 8 (In) 8 (Out)

Ring Indicator (RI) 22 (In) 22 (Out)

433 Visual Basic for Electronics Engineering Applications

Chassis Ground 7 7

The idea of having different DTE and DCE interfaces might have been
reasonable in the 1960s, but, unfortunately, life is not so simple in today's
world, and we often want to do things that the designers of the standard never
envisioned. Adding to the trouble is IBM's choice of serial interface type for the
PC. Being a computer, it's obviously a DCE interface, right? Wrong! In IBM's
eyes, the original PC was a terminal device, meant to be connected to a real
computer like an IBM 370 mainframe. As a result, all PCs have DTE serial
interfaces. This makes it easy to connect to a modem, since they all have DCE
interfaces, but what do you do if you want to do something crazy like
connecting two computers together by a serial link? The answer is to use a
special type of cable known as a null modem, which is wired with pin 2 on one
end connected to pin 3 on the other end, 3 connected to 2, 4 to 5, 5 to 4, 6 to 20,
20 to 6, and 7 to 7. The RI and DCD wires aren't needed. This arrangement gets
all the correct signals connected to each other. Another problem that sometimes
needs to be solved is what to do when the ends of your cable don't have the right
sex for the connection you want to make. Here you can use a device called a
gender changer, which consists of two male or two female DB-25 connectors
connected by short straight through wires.

We've often found it useful to make a female-female gender changer using null
modem wiring between the connectors. This enables you to connect the IBM
PC's serial port connector to other DTE devices like another computer using a
standard straight-through male-male cable. Because the number of possible
ways of assigning and using RS-232 lines is so large, you may want to buy a
device called an RS-232 breakout box to determine what signals go where.
Ironically, RS-232 has earned the distinction of being the most "nonstandard
standard" in electronics!

One very useful thing IBM did was to introduce a new 9-pin DB-9 male
connector for the serial port on the PC-AT. This connector is considerably
smaller than a DB-25, but still carries all the necessary signals. Its pinout has
been formalized as ETA-574 and is shown in the image below. Nearly all PC
serial interfaces now use this connector. For really tight spots, 8-pin RJ-type
telephone connectors are also popular.

434 Visual Basic for Electronics Engineering Applications

A really minimal RS-232 cable just connects up pins 2 and 3 appropriately and
depends on the built-in chassis grounds of the equipment to complete the
circuits. In fact, we've run 9600-baud communications around a house that way,
although the dedicated ground line on pin 5 should normally be connected as
well.

In order to translate the TTL signals coming from a UART like the 16550 into
RS232 signals, special driver and receiver circuitry needs to be used. The parts
used to do this in the original IBM PC and PC-AT were the 75150 dual RS-232
line driver and the 75154 quad RS-232 line receiver. The 1488 quad driver and
1489 quad receiver were also popular parts in early serial port boards. However,
the 75150 or 1488 drivers are both inconvenient to use because they require
±10-volt or ±12-volt power supplies. Newer RS-232 drivers contain built-in
circuitry to generate the - 12-volt negative supply voltage internally from +12­
volt using a voltage inverter circuit, and some versions also generate ÷10 volts
from +5 volts using an internal voltage doubler. The newer ICs also combine
drivers and receivers in a single package so that only a single chip needs to be
connected to a UART to implement an RS-232 serial port. Note that the RS-232
drivers and receivers both are inverters so that the signals on a serial cable are
inverted from their values at a UART. Thus, the handshake lines are all active
high when observed on the cable. Note also that this interface works even if the
cable doesn't connect all the handshake signals since input lines are pulled high
by the receiver circuitry if their inputs are disconnected. Many interfaces work
this way, requiring you only to connect pins 2, 3, and 5 (RxD, TxD, and signal
ground) on a DB-9 connector to make a working serial interface.

To initially check out the operation of a serial hookup, connect the TxD serial
output line on the serial connector to the RxD serial input line. Your serial port
should then act like a slow, expensive 1-byte memory-you should be able to
read back a byte that you send. If not, try connecting the UART's SOUT directly
to SIN. If the serial port still doesn't act like a memory byte, check your UART

435 Visual Basic for Electronics Engineering Applications

wiring and initialization code. Once you've gotten everything working this way,
connect up your two devices and start worrying about the handshake lines if it
doesn't work.

Here's a useful trick: you can tell whether a given pin on an RS-232 connector is
being driven by measuring its voltage with respect to the signal ground on pin 5
(or pin 7 on a 25-pin connector). The output data line (2 or 3) will have about ­
12 volts and the input data line (3 or 2) will have zero or a positive voltage. A
driven handshake line such as DTR or RTS will have about +12 volts on it.

If you don't want to use all the handshake lines in an RS-232 link or the device
on one end doesn't support the same handshake as the device on the other end,
you can dummy out various control lines. Specifically, connecting pin 7 to pin 8
on a DB-9 connector dummies out the RTS/CTS protocol; connecting pin 4 to
pin 6 dummies out the DTR/DSR protocol. You may also have to dummy out
the carrier detect line on pin 1 by connecting it to pin 4 (to make sure it's pulled
high).

23.5.2 Current Loop and Other Serial Standards

An alternative to RS-232 is 20-mA current loop, a technique from early
telegraphy. At low data rates, current loop signals can go across the country,
which is why current loop was used for the telegraph. More realistically, you
can easily run current loop at 9600 baud over a thousand feet of wire. Another
advantage of current loop is that it's normally implemented using opto-isolators,
which prevents wiring mistakes or pickup in very noisy environments from
doing any damage. Note that the digital current loop connection being discussed
here is different from the 6-20 mA current loop signaling that's widely used to
transmit analog signals in industrial environments.

436 Visual Basic for Electronics Engineering Applications

The figure above shows a current loop connection of one UART's serial output
(SOUT) line to the serial input (SIN) line of a different UART some distance
away. Both UARTs are opto-isolated from the current loop connecting path ,
which has its own power supply. The current loop supply voltage and resistor
are chosen to maintain about 20 mA flowing in the loop when the transmitter
(labeled TxD in the figure) is high. A low value yields no current flow.
Therefore, a 1 is represented by a baud period of 20-mA current flow and a 0 by
a period of no current. Two current loops of the kind shown in the figure above
are needed for full duplex operation, so four wires are required.

Ordinarily, current loop doesn't support the modem control signals DTR, DSR,
RTS and CTS, so you just tie CTS and DSR low on the UARTs. To create a
handshake, you can use the XON/XOFF protocol described in Section 23-3.
Although current loop has its place for special situations, it's not used very
often. There is no standard for the connector pinout of a current-loop connection
and it can be tricky to get a current-loop power supply connected up on one end
(not both!) of each current loop. You may also have difficulty finding a serial
port that supports current loop, although the original IBM asynchronous
communications adapter (serial port board) for the IBM PC does.

23.5.3 RS422 / RS423

In an effort to overcome some of the length and speed limitations of RS-232, the
EIA has developed several other serial communication standards. Although RS­
232 is a complete specification for a serial interface and includes both the
electrical and the mechanical (connector) specifications, the newer standards are
split into two pieces. Two new electrical standards, RS-422 and RS-423, define
only the signal levels, signal rates, cable characteristics, and set the driver and
receiver specifications. A single new mechanical standard, RS-449, defines the
connectors and pinouts to be used with RS-422 and RS-423. RS-423 defines
driver output signal levels of +4 to +6 volts for a logic 0 and -4 to -6 volts for
a logic 1. The receivers have a sensitivity of ±0.2 volts, meaning that they can
detect a logic 0 as any voltage greater than +0.2 volts, and a logic 1 as any
voltage less than -0.2 volts. RS-232 receiver sensitivities are only required to be
±3 volts. The lower drive voltage and greater receiver sensitivity allow the RS­
423 cable lengths to be up to 4000 feet at 100,000-baud data rates. RS-422 uses
differential signaling instead of the unbalanced (single-ended) signaling used for
RS-232 and RS-423. Here a driver with two outputs and a pair of wires is used
for each signal, with a voltage difference of +2 to +5 volts (for logic 0) or -2

to -5 volts (for logic 1) between the two wires being the signal. The

437 Visual Basic for Electronics Engineering Applications

maximum cable length and the receiver sensitivity are the same as for RS-423,
but the greater noise immunity of differential signaling allows the maximum
data rate to be increased to 10 mega-baud. RS-485, an enhanced version of RS­
422, extends RS-422 to use tri-state drivers and provides a mechanism for
having multiple drivers and receivers on a single cable.

The RS-422 or RS-423 electrical interface standards are meant to be used in
conjunction with a mechanical interface standard, RS-449, to implement a serial
communications link. Unfortunately, the connector that was specified for RS­
449 is a 37-pin D-type connector that is considerably bigger than the already
large RS-232 25-pin connector. Furthermore, an additional 9-pin connector and
cable is specified to implement a secondary serial channel (although this is
optional). This is such a bulky and awkward mechanical design that it's virtually
killed the use of RS-449 (along with RS-422 or RS-423) except for a few
specialized uses. RS-232 still continues to be the dominant standard. One place
where RS-422 is used is in Apple Macintosh computers. However, they don't
use the RS-449 connector. Instead, a 9-pin D-type connector was used on the
original Macintosh, with only the transmit and receive wire pairs connected up,
plus a single CTS signal wire. Starting with Apple Macintosh Ills, the connector
was changed to a circular 8-pin DIN-style connector and an additional DTR
signal line was included.

23.6 Cabling

A lot of confusion exists on how to make cables between serial devices. This
confusion is created because there are basically 2 kinds of devices (DTE and
DCE) and they have a different pinning.. When connecting a DTE (computer) to
a DCE (for example a modem) then you use a straight cable. That means you
connect pin 1 to 1 , 2 to 2 , 3 to 3 and so on. IF you want to connect 2 DTE
devices together you need what is called a null-modem cable. This name comes
from the early days of computing where modems where used to connect
computers together. If you delete the modems you get a direct connection thus
the name “null-modem'’ meaning ‘direct-but-without-modems’.

23.5.1 Null modem cable

To connect two device together you will need what is called a Null Modem
cable. This is the simplest cable to connect 2 devices.

438 Visual Basic for Electronics Engineering Applications

Pin Pin

2 - 3

3 - 2

5 - 5

1 4 6 1 4 6

7 8 7 8

If make a cable with the above pinning (9 pole D connector) , then you can
connect virtually any device to a serial port. The cable ‘emulates’ the
handshaking by connecting the appropriate lines together. Actually what
happens is that the UART sees his own signals and thinks someone else is out
there.

23.5.2 Full connection Null Modem Cable

Pin Pin

2 - 3

3 - 2

4 - 1,6

1, 6 4

5 5

7 8

8 7

The wiring given above forms a complete Serial communication link. Not only
TXD and RXD are crossed but the handshake lines as well.

23.6 Basic Serial Operations using MSCOMM

To program the serial interface you could of course start controlling the UART
directly. Fortunately , windows offers us help here under the form of
MSCOMM.DLL . This standard component of the Windows Operating system
handles all task related to serial communications. Besides initializing the UART
it also handles interrupts coming from one or more serial ports , and it
implements a software FIFO as well.

439 Visual Basic for Electronics Engineering Applications

On top of this engine is an object that allows you to interface directly to the
MSCOMM.DLL library. How to use this has been already explained in Part II
of this manual under chapter 14 item 3.

440 Visual Basic for Electronics Engineering Applications

441 Visual Basic for Electronics Engineering Applications

Chapter 24 :

Plug-In boards

Besides the usage of these standard IO channels such as printer ports and serial
ports you can always construct your own ISA or PCI card. I am not going to
deal with the PCI bus here since it is too difficult to explain in a few pages. I
Could write a book about this bus that is twice the size of this one. Furthermore
the constraints imposed by the PCI specification make it very hard to construct
this kind of board yourself. Another point is that the access of PCI devices uses
in a different manner then accessing a standard ISA board. You mostly need
special drivers for these cards and they are manufacturer supplied and card
specific. So , to control PCI boards you need to stick to whatever the board
maker delivers you.

24.1 Description of the ISA bus

In Chapter 20 I gave you an overview of the most common buses that are in
existence today. The ISA bus is one of these buses. You can find a plethora of
cards that host a variety of different functions. Besides standard computer
functions such as Floppy and hard disk controllers ,Serial ports, Printer ports ,
Video adapters and audio boards , there are indeed special boards for test and
measurement functions.

These boards cover the whole spectra of T&M , from simple Digital IO ,
multiplexers , A/D-D/A converters to complete multi-meters and even
oscilloscopes.

Complex boards such as multi-meters and oscilloscopes will again come with
vendor supplied driver software. Simple cards mostly also have these drivers but

442 Visual Basic for Electronics Engineering Applications

not necessarily for all languages. And exactly for these boards , and the boards
you might construct yourselves this chapter is important.

The graphic below shows the pinning of the standard ISA bus. A lot of these
signals are not generally used for IO board. Actually only very few signals are
used for that purpose.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

E 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

GND32 RESDRV33 +5V34
35
36 DREQ237
38
39
40 GND41
42
43
44
45
46 DREQ347
48 DREQ149
50
51
52
53
54
55
56
57 TC58
59 +5V60
61 GND62

1D7 2D6 3D5 4D4 5D3 6D2 7D1 8D0 9Y 10
11
12
13
14
15
16
17
18
19
20
21A9 22A8 23A7 24A6 25A5 26A4 27A3 28A2 29A1 30A0 31

-MEMCS16
-IOCS16
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14
-DACK0
DREQ0
-DACK5
DREQ5
-DACK6
DREQ6
-DACK7
DREQ7
+5V
-MASTER
GND

-SBH
SA23
SA22
SA21
SA20
SA19
SA18
SA17

-MEMR
-MEMW

SD8
SD9

SD10
SD11
SD12
SD13
SD14
SD15

CON AT36B

IRQ9
-5V

-12V
-0WS
+12V

-SMEMW
-SMEMR
-IOW
-IOR
-DACK3

-DACK1

-REFSH
SYSCLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
-DACK2

ALE

14.3MHZ

-IOCHCK

IOCHRD
AEN
A19
A18
A17
A16
A15
A14
A13
A12
A11
A10

CON AT62B

The picture above shows both connectors and their pinning. Describing on how
to make a full interface would go way too far for this course. However the
basics of this bus are very simple. Using the Address bus the IOR and IOW
lines a simple interface can be made. When the address of the decoder matches
the address on the data-bus the card is selected. Depending on IOR or IOW a
read or write operation is going on. During the IOR pulse the your card must be
put data on the data-bus. You can use the Rising edge of IOW to latch in data
from the data-bus.

443 Visual Basic for Electronics Engineering Applications

Address

Data

IOW

IOR

Begin of W rite cyc

Write cycle
 End of W rite cyc

Card latches in data

CPU releases Bus

Card puts data on bus

Read cycle CPU samples data

Card releases bus

CPU takes control over bus

le

le

The image shows exactly what is going on during these read and write
operations. The most important to remember is to sample in data on the rizing
edge of IOW and to put data on the bus when IOR is going low and leave it
there until IOR is going high again.

24.2 common interface chips

Before we start writing code we will take a look at some common interface
circuitry used on such cards. Understanding these will make it much easier to
unravel the inner workings of the card and write a library of for it.

 24.2.1 8255

This is probably the most widely used interface circuit around. It offers a simple
way to add 24 IO lines to a computer.

444 Visual Basic for Electronics Engineering Applications

The image above shows you what is inside the 40 pin DIL or 44 pin PLCC
package. The chip can be divided into three parts. Each part is a basic 8 bit IO
channel that be written to or read from.

The option exists to split the third channel into two parts and merge these parts
with one of the two remaining ports, thus creating 2 12 bit ports. In this mode
the extra 4 lines can be used as control lines to orchestrate data IO on the two
other ports. Port A has also true bi-directional capabilities. The complete
explanation of this chip can be found in the Datasheet appendix.

445Visual Basic for Electronics Engineering Applications

24.2.2 8253/8254

This is the most used complement to the 8255 on IO boards. This chip features
three 16 bit counters/dividers. The figure below chows you the inner parts of
this chip.

Just like with the 8255 a number of configurations are possible. Each counter
can be used independently either as frequency generator , event counter or
programmable divider. By cascading the counters you can make a 32 or 48 bit
counter/divider. The typical use for this component is measuring time intervals ,
frequencies or simple the number of times a certain event occurred.
Programming this component is pretty straightforward. More information can be
found in the datasheet appendix.

446 Visual Basic for Electronics Engineering Applications

24.3 Interfacing to ISA

Beginning about a year after IBM introduced it, other manufacturers quickly
created clones of the PC-AT, and they also incorporated the PC-AT's I/O
channel bus. PC-AT clones using this bus, which soon became known as the AT
bus, were tremendously popular. Finally in 1987, the IEEE approved an AT bus
specification that included bus timing requirements. This bus specification
defines what is now known as the Industry Standard Architecture bus, or ISA
bus for short.

Even when microcomputer systems based on higher-speed 80286 CPUs or on
even faster 386 and 486 and Pentium CPUs became available, the ISA bus was
retained so that the machines could use the thousands of different ISA bus cards
being produced by literally hundreds of manufacturers. Furthermore, in order to
avoid rendering the millions of existing ISA bus cards obsolete, the ISA bus
speed was de-coupled from the CPU speed and left at 8 MHz.

In order to understand the ISA bus, it's essential to realize that there are two
distinctly different types of ISA bus cards: 8-bit cards and 16-bit cards. Eight-bit
ISA cards only plug into the rear 62-pin primary connector and are unaware that
the additional signals of the auxiliary connector exist. This means that they see
only eight data lines and thus can only do 8-bit data transfers.

447 Visual Basic for Electronics Engineering Applications

448 Visual Basic for Electronics Engineering Applications

The above picture shows a graphic representation of the ISA connectors and the
signals present on each pin. For the purposes of pin identification on the 62-pin
primary ISA connector, the front, or component side of the edge connector (the
side of the board with components mounted on it) is called the A side, and the
back side is called the B side. Similarly, for the 36-pin auxiliary connector, the
front side of the edge connector is called the C side and the other side the D
side.

24.3.1 Address & Data Lines

While the ISA bus supports a 16MB address space, which requires 24 address
lines, we see from Table 7-7 that there are actually 27 address lines present!
These lines are divided into two sets: the 20 bits SAO-SA1 9 on the primary
ISA connector and the 7 bits LAl7-LA23 on the auxiliary connector. Thus there
are three address bits, SAl7-SAl9 and LAl7-LAl 9 that overlap in the two
sets. The reason for this overlap is that the ISA bus controller needs to be
informed early in the bus cycle whether an 8-bit or 16-bit memory access is to
be done.

24.3.2 Utility Lines

The utility lines include the various power supply voltages as well as the OSC,
RESET, and IOCHK signals. Note that while +5V is all that's needed for digital
logic, three other power supply voltages are present to power interface circuitry.
The presence of the ±12V power lines is particularly useful since many analog
devices like op amps use signal levels in the range ±1OV thus and require ±12V
power to operate. If you do need ±12V or -5V power for an I/O card, you may
need to check its current requirements against the capabilities of your PC's
power supply. Most PC power supplies are rated at about 200-250 watts, but
nearly all of this power is at +5 volts (about 20-25 amperes) and +12 volts
(about 8 amperes). There's typically only a few tenths of an ampere of current
available from the -5-volts and -12 -volts supplies. The high current available at
+12 volts is there to drive the floppy- and hard-disk spindle motors.

The OSC signal is a free-running (meaning its rising and falling edges aren't
synchronized to any other signals) square wave whose frequency is 14.31818
MHz. This ions, signal is a relic from the original IBM PC that supported a
color/graphics adapter (the CGA card) that needed a clock signal at this

449 Visual Basic for Electronics Engineering Applications

frequency. When divided by four, 7-7 14.31818 MHz gives the 3.579-MHz
color sub-carrier frequency used for NTSC color-television signals. The OSC
bus signal serves no particular purpose in current PCs.

The RESET signal is asserted by the motherboard when the PC is first powered
up or whenever a system-wide reset is done (for example, when you push the
computer's reset button). All ISA bus cards to reset their on-board devices to a
known, initialized state should use it.

The IOCHK signal is meant to be asserted by any ISA card when an
unrecoverable hardware error occurs. Examples would be a parity error in the
card's memory or the failure of some intelligent device on the card to properly
initialize the on-card circuitry. Pulling IOCHK low triggers a non-maskable
interrupt (unless setting bit 3 of port 61h to 1 has masked off the IOCHK signal.

24.3.3 Bus Cycle Definition Lines

Looking at the picture above we see that there are two memory read signals and
two memory write signals on the ISA bus. The SMEMR and SMEMW signals
were present in the 8-bit expansion bus of the IBM PC, to0. and they are
asserted whenever a memory location in the first megabyte of address space is
accessed. The other set of memory read and write lines, MEMR and MEMW,
are asserted whenever a memory location above the 1 MB boundary is accessed.
The reason for having two sets of signals is to ensure that older cards that
contain memory and only plug into the 8-bit ISA connector don't respond to
memory accesses with addresses above 1 MB. Without the extra set of lines, an
8-bit card, for example, would have no way to tell if a memory access was for
address 0a0000h or for some address xxxa0000h above 1 MB, because it only
sees address lines SAO-SA19.

The REFRESH line is asserted by the refresh circuitry when it's granted the bus
to do a memory refresh cycle. These refresh cycles normally occur every 15
microseconds. Both SMEMR and MEMR are active during the refresh cycle so
that both 8-bit and 16-bit ISA bus memory see the refresh request. The DRAM
row to refresh in each memory chip is sent on the SAn address lines during this
cycle.

450 Visual Basic for Electronics Engineering Applications

24.3.4 Bus Control Lines

The bus control lines play a central role in determining what goes on during a
given bus cycle. The time period defined by the bus clock line (BCLK)
determines the basic time intervals used during the bus cycle. In particular, bus
cycles always last an integral number of BCLK periods, and the various events
that occur during the cycle are normally discussed with reference to which clock
period they occur in. The nominal BCLK frequency is 8 MHz, corresponding to
the clock frequency of early 80286 processors. To maintain compatibility with
existing ISA cards, this clock frequency has remained constant since then,
except that many PCs push the frequency to 8.33 MHz. This strange value came
about because the first 25-MHz 386-based PCs required a double frequency 50­
MHz clock and the designers of these PCs found it convenient to derive BCLK
from the 50 MHz clock by dividing it by six to yield 8.33 MHz. While the
BCLK frequency is fixed, the BCLK phase is not. It's resynchronized by the
ISA bus controller circuitry so that its rising edge is always coincident with the
start of a new bus cycle. As a result, the phase of the BCLK signal may appear
to jitter if you try to look at it alone on an oscilloscope. The buffered address
latch enable line (BALE) goes high for about 62 nanoseconds during the first
clock period of a bus cycle to indicate that a valid address is being placed on the
address lines SAO-SA1 9 and that the LAl 7-LA23 lines (which, confusingly,
are asserted during the clock period before the start of a bus cycle) are stable
and can be decoded by the ISA board to see if it's being selected.

The I/O channel ready line (IOCHRDY) and the no wait state line (NOWS)
allow the ISA board to modify the number of wait states inserted into a bus
cycle by the ISA bus control circuitry. The board de-asserts IOCHRDY (pulls
IOCHRDY low) to indicate that it wants the bus controller to insert one or more
additional wait states into the bus cycle. NOWS, on the other hand, is asserted
by the board to indicate that the bus controller should remove the default wait
states that are normally inserted into the bus cycle. This point is discussed
further below when the ISA bus timing is presented.

The system bus-high-enable line (SBHE) is used to signal that the high byte of
the data lines (SD8-SD15) carries valid data during the current bus cycle. As
you might expect, the ISA bus controller asserts this line during 16-bit memory
or I/O transfers starting at an even address. However, SBHE is also asserted for
8-bit transfers from an odd address (SAO=1). In this case, the combination of
SBHE=0 and SAO=1 activates byte-swapping circuitry that swaps the bytes on
the low and high half of the data lines. This behavior is necessary in order to
properly perform 16-bit transfers that begin at an odd address, because the ISA

451 Visual Basic for Electronics Engineering Applications

bus controller must do such transfers as a pair of 8-bit transfers (due to the fact
that the transfer spans two memory words or two I/O ports).

The MASTER 16 line is asserted by an alternate processor such as a DMA
controller located on the ISA bus when it's been granted control of the bus (this
is done by using one of the motherboard's DMA controller channels to request
the bus). Designing a board that can take over the ISA bus as a bus master is
very difficult, and only a few manufacturers have been able to do it successfully.
When such a processor does take over the ISA bus, it should not grab the bus
for more than 15 microseconds at a time, or loss of DRAM memory contents
may result due to lack of refresh.

24.3.5 Interrupt Request and DMA Lines

The interrupt request lines are can be used to signal the CPU that data is waiting
to be processed. The DMA lines re used to initiate DMA transfers between the
card and the PC’s main memory.

24.3.6 Basic interface schematic using 8255 I/O controller

The images below show two possible ways of building an interface with an ISA
bus. First schematic uses the above described 8255 IO controller. This controller
fits directly onto any Intel CPU architecture , so it is equally fit to connect with
the PC’s ISA bus.

An 8 bit cascadable comparator (74688) checks if the board is addressed. If
address matches and the AEN line is low the Chip is selected. The RD,WR and
two lowest address bits go directly to the IO controller. Depending on the state
of these signals the controller decides what to do.

The address of the card is selected by strapping the address select inputs on the
74688 comparator to logic high or low.

Depending on the configuration sent to the IO controller various functions can
be performed. See the chapter about the 8255 for more information or consult
the datasheets in the appendixes.

452 Visual Basic for Electronics Engineering Applications

34
 4
DIO0 D0 PA0 33
 3
DIO1 D1 PA1
DIO2
DIO3
DIO4
DIO5

32
 D2 PA2
D3 PA3
D4 PA4
D5 PA5

2

31

30

29

1

40

39

5
 18
IORD RD PB0
36
 19
IOWR WR PB1
9
 20
A0 A0 PB2
8
 21
A1 A1 PB335
 22
RST RESET PB46
 23
CS PB52
 24
A10 4 P0 P=Q 19 PB6 25
A9 P1 PB76
A8 P28
 14
A7 P3 PC011
 15
A6 P4 PC113
 16
A5 P5 PC215
 17
A4 P6 PC317
 13
A3 P7 PC4 12
PC53
 11

5 Q0 PC6 10

7 Q1 PC7

9 Q2

12 Q3 8255

14 Q4

16 Q5

18 Q6

Q7

1
AEN G

A
dd

re
ss

 S
el

ec
tio

n

Po
rt

C

Po
rt

B
Po

rt
A

28
 38
DIO6 D6 PA6 27
 37
DIO7 D7 PA7

453 Visual Basic for Electronics Engineering Applications

24.3.7 Basic interface schematic using classic logic

DIO7
DIO6
DIO5
DIO4
DIO3
DIO2
DIO1
DIO0 18

17
16
15
14
13
12
11

B0
B1
B2
B3
B4
B5
B6
B7

A0
A1
A2
A3
A4
A5
A6
A7

2
3
4
5
6
7
8
9

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7

IORD
IOWR

E
DIR

19
1 GND

D
IR

EC
TI

O
NA0 74245 4A1 6A3 74005 12

11
9 13 7400

2 8A10 4 P0 P=Q 19 74001 15 READ0 10A9 P1 A Y06 2
3

P4 Y3

14 READ1
13 READ2
12 READ3

A8 P2 B Y18A7 P3 C Y211A6
A5
A4

GND

AEN

13
15
17

3
5
7
9

12
14
16
18

1

P5
P6
P7

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

G

74688

E1
E2
E3

A
B
C

E1
E2
E3

Y4
Y5
Y6
Y7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

11
10
9
7

15
14
13
12
11
10
9
7

READ4
READ5
READ6
READ7

WRITE0
WRITE1
WRITE2
WRITE3
WRITE4
WRITE5
WRITE6
WRITE7

VCC

1
A

dd
re

ss
 S

el
ec

tio
n

4
5
6

74138

1
2
3

4
5
6

74138

374002

 This schematic shows how to make a full controller yourself. It has an address
decoder similar to the one above to check the access to the card . But since there
is no smart IO controller we have to make the decoding logic yourself. Two
74138 are used to decode the lowest 3 address bits into 8 strobe lines that can be
used in our circuitry. Besides the address lines , these chips take the Card select
signal from the 74688 and the Read or Write line. By implementing the circuitry
like this one of the decoders reacts on write events and the other on read events.
The 74245 buffer is put in the circuit to minimize the load on the bus. In the
previous schematic the 8255 controller has this embedded in its system. Here we
have to put it ourselves.

Note : Take care bout the connection of A and B buses of the 74245. It seems odd but
this trick is implemented to save an additional component. If you switch A
and B buses (like you would expect) you would need to invert the output
of the last NAND gate , thus using an additional component.

The construction using the 3 NAND gates checks what kind of operation is
being performed. In case of a READ operation , it combines this with the card
select and switches the direction of the buffer , so the data flows from our
circuitry to the computer. The computer can then access the data being put on
the data lines. In case of a write the buffer is set from computer to card.

454 Visual Basic for Electronics Engineering Applications

There are numerous other possibilities to build interface circuitry for the ISA
bus. It depends on what you want to do. There are a number of books and
magazines that show you exactly how to do this.

24.3.8 Selecting an address for our card

The questions that rises now is : where can we map our board in the computer ?
Well there are a number of so called ‘experimenters area’s where you can do
this safely. But take care that nothing else is already there !. Our board is not
plug-and-play so Windows cannot detect it.

The safest area is the range 0x300 to 0x31F. It holds 32 possible addresses .
This part of the IO range is clearly marked by both the IBM manuals and the
official ISA spec as ‘experimenters area’.

Other unused regions in the IO map are set as ‘undocumented’. They can be
used but it depends on the machine.

You can check the availability of addresses by using the Windows System
Setting panel

Start – Settings – Control Panel and double-click on system

A window will open that shows the settings of your computer. Click on the tab
Device manager. This shows all devices in your computer .

455 Visual Basic for Electronics Engineering Applications

The devices are organized per functional group. You can of course double click
on each of the devices and look for the information you want but there are easier
ways to accomplish this.

To get an overview of the used interrupts , IO ranges and DMA channels you
simply have to double-click on Computer.

This opens a new windows that shows the information we seek. Select one of
the 4 options . In our case we want to see the Input / Output (I/O) information

456 Visual Basic for Electronics Engineering Applications

The above image shows part of the resources used in a computer. The
experimental range in this particular machine could be used up to the address
0x330. But don’t count on it. You should check this when installing the board in
a particular computer.

24.3.9 Accessing our board

Now that we have built a plug-in board and (hopefully) configured it correctly it
is time to have a look at how to access it from software.

You can use the same techniques as described in the section about the printer
port. After all a printer port is an IO channel that resides on the ISA bus too.

In case of the 8255 controller you can write a set of universal routines that
handle the IO operations.

457 Visual Basic for Electronics Engineering Applications

Example for 8255

Const Ioboard = &h300

Sub WritePort(portnumber,databyte)

Select case portnumber

case 0,1,2,3

out ioboard+portnumber,databyte
case else

 msgbox “Error : you attempted to access
an _

illegal port in the 8255”
End select

End Sub

Function Readport(portnumber)

Select case portnumber

case 0 to 3

Readport = inp(ioboard+portnumber)
case else

 msgbox “Error : you attempted to
access an _

illegal port in the 8255”
End select

End Function

The above 2 routines allow you direct access to any of the registers in the IO
board. Note that I use a select case construction to select the validity of the
portnumber. Doing this makes the code much more readable then using a
construction like

if ((portnumber >0) and (portnumber <4)) then …

Also if you need to filter out address 1 separately you can simple add a Case
statement.

Select case portnumber
case 0,2,3

case
 Readport = inp(ioboard+portnumber)
1
‘ accessing address 1

case else

458 Visual Basic for Electronics Engineering Applications

msgbox “Error : you attempted to
access an _

illegal port in the 8255”
End select

459 Visual Basic for Electronics Engineering Applications

Chapter 25:

The GPIB bus.

In 1965, Hewlett-Packard, a major manufacturer of electronic test instruments,
wanted to develop a means by which any of its instruments could communicate
and exchange data with any other. The method that their engineers developed
was a hardware standard and communications protocol known as the HP-IB
(Hewlett-Packard Instrumentation Bus). This bus became quite popular, and in
1975 it was adopted by the IEEE as a standard-the IEEE-488 bus, also widely
known as the general purpose instrumentation bus (GPIB). About 10 years later,
the standard was revised to resolve a number of ambiguities that were not
spelled out in the original standard. This newer version of the standard is known
as IEEE-488.2.

25.1 The GPIB bus structure

Although the GPIB interface is in fact a fairly general purpose bus, its primary
use is to connect one or more GPIB-compatible instruments to a PC, and several
thousand such GPIB products are available on the market. It allows data to be
exchanged a byte at a time among several different devices at speeds of
100K/sec to 10MB/sec . There is also an effective handshaking protocol that
synchronizes the transfers. At any given time, one device has the responsibility
of being the active bus controller, which coordinates all data transfers; there is
also a defined mechanism that allows another device to take over as the new
controller. In practice, however, a PC with an IEEE 488 card in it is nearly
always the permanent controller of the bus. The controller can assign itself and
other devices to be either talkers (devices that transmit data) or listeners

460 Visual Basic for Electronics Engineering Applications

(devices that receive data) with the restriction that only one device can talk at a

time.

A typical example of a GPIB setup is depicted in the next picture. The PC,

acting as the controller, is connected to several different devices that can be

1) listeners only

2) both talkers and listeners (at different times), or in rare cases,

3) talkers only.

FIGURE: An example of a typical GPIB (IEEE 488) interface bus
configuration. The left part of the image shows a Daisy-chain configuration
while the right part shows a star configuration.

A 16-wire cable connects the devices together, going from one device to the
next to the next. There can be up to 15 different devices on a GPIB system, and
the total cable length can be up to 20 meters long, provided the devices on it are

461 Visual Basic for Electronics Engineering Applications

spaced no more than 4 meters apart (with a 2-meter maximum spacing strongly
recommended).

The 24-pin Type 57 micro-ribbon connectors used for the GPIB have a unique
stackable design, which allows one connector to be directly plugged into the
back of another connector, as indicated in the figure. This 'stackability' also
allows you to connect devices in a star configuration with separate cables going
to each device from a single output connector on the PC's GPIB card.

To understand how a typical GPIB system works, consider an example. Suppose
you want to test a frequency doubler, (a device that phase-locks to the frequency
of a sine wave at its input and produces an output that's exactly twice the input
frequency). What we want to know is the range of input frequencies over which
the device works properly and how its operating range is affected by variations
in its power supply voltage.

After initializing the system, the controller (the GPIB card in the PC) tells the
waveform generator to set itself to the desired output frequency range and tells
the counter to set itself to the desired input frequency range.

The controller then starts the test procedure by telling the power supply to
output a given voltage, telling the waveform generator to output a sine wave of
the desired frequency and amplitude, and then commanding the counter to read
the output frequency of the device under test and send the value back to the
controller. By repeating this test procedure sequence with different values of the
power supply voltage and waveform generator frequency, the frequency-doubler
operating range can be completely tested.

For each one of the preceding actions, the controller issues commands to make a
given device (or devices) a listener so that the device can receive each message
(a control setting, a frequency value, and so on) and to make another device
(often the controller itself) be the talker that sends the message. This all sounds
great, but you might wonder how information transfers are coordinated so that
listeners having different speeds can all read messages accurately and how you
program the devices to be talkers or listeners. To answer these questions, let's
first look at the GPIB hardware and examine what the various data and control
lines are and how they operate.

25.2 GPIB signals

The 24 pin micro-ribbon carries a number of signals that together for the GPIB
bus. The GPIB has eight bi-directional data lines, DIO1-D108, three handshake

462 Visual Basic for Electronics Engineering Applications

lines, and five bus management lines. The signal names, their connector pin
numbers, the source that drives the signal, and a brief synopsis of their functions
are given in the picture below.

 It's important to note that all the GPIB signals are active low, but the IEEE-488
standard doesn't use over-scores on the signal names to indicate this. We'll
follow that convention in the section; just keep in mind that in this section, a
low on a given line means the signal is asserted (i.e., true). Signals on the data
lines are also inverted (1 = low).

463 Visual Basic for Electronics Engineering Applications

Signal Pin Controlled by Function

DIOl - D108 1-4 controller/talker

13-16 8-bit
data/command
lines

NRFD 7 Listeners Handshake line

 (Not ready for data)

NDAC 8 Listeners Handshake line

(No Data Accepted)

DAV 6 controller/talker handshake line

(Data valid)

ATN (attention) 11 controller distinguishes commands
from data

SRQ 10 any device used to request service
from the controller

(Service Request)

IFC 9 controller initializes the GPIB bus

(Interface clear)

REN 17 controller places device in remote
mode

(remote enable)

EOI 5 controller/talker marks end of message or
(with ATN) signals

(End or Identify) parallel poll by
controller

464 Visual Basic for Electronics Engineering Applications

In addition to the 16 signal wires, a GPIB cable contains several ground wires.
The three handshake signals and the bus management signals ATN, SRQ, and
IFC have their own separate ground wires that run through the cable along with
the signals as twisted pairs of wires. This helps to reduce cross-talk and noise
pickup on these key control lines. There is also a signal ground wire and a shield
ground wire. The latter is a ground for the cable shielding, which is a sheath of
fine wire braid that surrounds the entire length of the cable and shields the wires
inside from external noise sources.

A driver/receiver circuit like that shown in the figure below drives each of the
signal lines.

As shown in the figure above, the connection for every signal line on each
device must contain its own Thevenin terminator to prevent reflections on the
bus. This distributed line termination scheme is the reason why devices should
be spaced no more than 2 meters apart on the bus. Open collector drivers can be
used on all signal lines. The drawback is that the time required for a logic signal
to make a low to high transition can be significant because the cable wiring
behaves like a capacitor that must be charged up through the termination resistor
to go from low to high. Tri-state drivers provide better performance and can be
used on all lines except NRFD, NDAC, and SRQ, all of which need the wired-
OR capability of open-collector drivers. The terminator resistors also ensure that
any un-driven line is pulled up to a logic high state.

Two types of information can be transferred over the GPIB bus: commands and
data. When both the controller drives Attention (ATN) and Data Valid (DAV)
low, the byte value on DIOL-D108 represents a command to one or more
devices. Such commands enable remote operation of devices on the GPIB and
assign them to be talkers or listeners, and so on. When ATN is high and DAV is

465 Visual Basic for Electronics Engineering Applications

low, the byte value on the data bus is data. Hence, ATN is a switch that
identifies whether the data bus value is a command or data; DAV low means
what its name says-the data on DIO1-DIO8 is valid for all listeners to read.

All bus transfers-both controller commands and talker-listener data transfers-
take place using Hewlett-Packard's patented three-wire handshake. All devices
must handshake when commands (ATN low) are being sent, but only listener’s
handshake for data transmission. This allows high-speed transmission between
two fast devices even when there are much slower devices present on the same
bus. The figure below presents a timing diagram for a command followed by a
1-byte data transfer, showing how the handshake signals work.

To better understand how the handshake operates, here is the sequence of events
that occurs when the controller sends a command to the devices on the bus:

1. Before putting a new command on the bus, the controller checks to see
if the Not Ready For Data (NRFD) line is high. Any device that's not ready to
accept another data byte holds NRFD low. Thus, thanks to the open-collector
connection of the NRFD line, it can go high only when all devices are ready to
accept a new command byte.

2. The controller sets ATN low to indicate a command is being sent,
places the command code on the data lines, and, after a delay to allow the DIO
lines to settle, pulls DAV low to indicate that a valid command is present on
DIO1-D108.

3. When each device sees DAV go low, the device pulls its NRFD line
low to indicate that it knows a new byte is present, but that it hasn't yet received
and stored it.

466 Visual Basic for Electronics Engineering Applications

4. Once each device has stored the command byte, it releases the No Data
Accepted (NDAC) line to indicate that it's accepted the byte. When the slowest
device has released NDAC, this open-collector line will finally go high.

5. The controller now knows that all devices have accepted the command,
so it sets DAV high and removes the command byte from the data lines.

6. On seeing DAV go high, each device sets its NDAC line low again so
that it's in the proper state for the next data transfer.

7. When it's handled the command just received and is ready to receive
the next byte, each device releases its NRFD line. As a result, NRFD will finally
go high when the slowest device is ready.

The same sequence of events occurs when a talker sends data to one or more
listeners. The only difference is that for a data transfer the ATN line is high, and
only those devices that are currently configured to be listeners participate in the
handshake. Non-listeners do not drive the NRFD and NDAC lines.

You may be wondering why such a complex handshake is used here. The
answer is that in nearly all other bus systems such as ISA or SCSI, data is sent
from a single source to a single receiver. In a GPIB system, however, there can
be more than one listener and the three-wire system prevents multiple
acceptance of data by a fast listener while a slow one is still busy accepting the
data.

When messages (either commands or data) are sent from one GPIB device to
another, the programmer doesn't need to worry about the details of the
handshake. GPIB interfaces in instruments and GPIB controller cards for PCs
use sophisticated ASIC's (application specific integrated circuits) that constitute
a complete (or nearly so) GPIB interface on a chip. A good example of such a
chip is the National Instruments TNT4882. This 100-pin chip contains both a
complete ISA bus interface and a complete GPIB interface. You only need to
provide a 40-MHz clock signal to create a fully functional GPIB controller. The
chip appears to the PC as a set of read/write registers accessible as 16
consecutive I/O ports. Writing appropriate values into the registers allows you
to control the GPIB bus any way you want.

Normally you don't program the interface chip's registers directly either. When
you buy a GPIB card for a PC, it comes with software drivers that provide a set
of high-level functions you can call to communicate with and control the
instruments on the GPIB. Since these functions differ from one board

467 Visual Basic for Electronics Engineering Applications

manufacturer to another, they won't be discussed here. Instead, we'll continue to
look at the actual signals present on the bus.

25.3 Controlling a device on GPIB

Let's next see how each device in a GPIB system can be initialized by the
controller and then commanded to send or receive data. To permit individual
communications with the devices on a GPIB system, each device must have a 5­
bit GPIB address. This address is normally set by means of switches on the back
of a GPIB instrument or by using controls on its front panel. Any address
between 0 and 11110 (address 30) may be used, except that by convention,
address 0 is usually reserved for the controller's address. Address 31 is used for
the un-talk and un-listen commands (see next paragraph) and thus can't be used
as a device address. Note that even though there are 31 possible primary
addresses, a maximum of 15 devices (including the controller) can be attached
to the GPIB at a given time.

The 5-bit address set in the device's switches actually specifies two different
address codes that are used to assign devices to be talkers or listeners. To
command a device to be a listener on the bus, the controller sends a command
(ATN low) with the device's My Listen Address (MLA) on DIO1-D108. The
MLA is obtained by adding 20h to the 5-bit GPIB address. Similarly, a device is
commanded to be a talker by sending a command with the device's My Talk
Address (MTA) on DIO1-D108.

The MTA is obtained by adding 40h to the 5-bit address. For example, if the
device's GPIB address is 3, then sending the command 23h (or the ASCII
character '#') makes it a listener; sending the command 43h (or the ASCII
character 'C') makes it a talker. The un-listen (UNL) command 3Fh (ASCII
character '?') causes all current listeners to stop being listeners; the un-talk
(UNT) command 5th (ASCII character'') causes the current talker to stop being a
talker.

It's possible, but not very common, for devices to be extended talkers and/or
listeners. Such devices have secondary addresses that provide selective access to
sub-units within the device. The secondary address is sent as a second address
byte after the initial one, with 60h added to the physical secondary address to
distinguish it as a secondary address.

468 Visual Basic for Electronics Engineering Applications

25.3.1 Initializing a GPIB system

To initialize a GPIB system, the first thing the controller typically does is to
send the Interface Clear (IFC) command by asserting the IFC line for a few
hundred microseconds on the GPIB bus. All devices on the bus must monitor
this line and, upon seeing it go low, must immediately cease all bus activity and
go into an idle state. The controller will then usually assert the REN line. As
long as REN remains low, listeners must switch into and stay in remote mode.
In this mode, devices disable their front panel controls and allow the controller
to send them commands that change any characteristics that were previously
determined by knobs and switches on the front panel of the device. The
programmed settings will override existing front panel control settings.

Note that the interface clear and remote enable operations are usually referred to
as the transmission of Interface Clear (IFC) and Remote Enable (REN)
commands. However, IFC and REN are unlike other commands (they're called
uni-line commands) in that the DIO1-DIO8 lines aren't used and there is no
handshaking. We're just talking about asserting a single control line. In most
cases, the controller next sends a device clear (DCL) command to each device.
The DCL command places the settings of all listener's controls into a default
state determined by the manufacturer of each device. Like UNT and UNL, DCL
is one of about a dozen commands that are given by placing a value on the DIO
lines (14h for DCL) and asserting ATN. Several more of these commands are
discussed shortly in conjunction with device polling.

25.3.2 Exchanging data

The programming of specific device controls to their desired values is done by
sending device dependent messages to the device using the specific commands
that instrument understands. The format of these commands is up to the
manufacturer and can vary greatly from one device to another. They are
typically ASCII strings such as "FL1Z0R3" (FL1 = filtering on, Z0 = auto-zero
off, R3 = 1-volt range) or ":CAL:USER;RANGE 3" (CAL:USER = perform
user calibration procedure, RANGE 3 = set gain range #3). These messages are
preceded by a sequence of commands to select the talker and listener. For
example, if the controller is at GPIB address 0 and a voltmeter to be
programmed is at address 03, you can set its voltage range to 1 volt by having
the controller send the commands to Un-listen, Un-talk, set My Listen Address
= 03, set My Talk Address = 0, and finally send the ASCII characters "R3". All
of this is done by having the controller send the string of commands 3f Sf23 55

469 Visual Basic for Electronics Engineering Applications

(or equivalently the ASCII string "?# U") followed by the device dependent
message "R3". It's useful to understand that a sequence of commands can be
specified as an ASCII string since many GPIB systems are programmed using
an extended form of BASIC; in BASIC, sending an ASCII string is often the
easiest and most compact way of sending GPIB commands or messages.

25.3.2 EOI assertion

When a multi byte message such as "FL1Z0R3" is sent from a talker to a
listener, the listener needs to have some way to know when the message is
complete and the last byte has been sent. The end of message signal is given by
requiring the talker to assert the End Or Identify (EOI) line as the last byte of
the message is placed on the data lines. The reason for the EOI line's strange
name is that it's a dual purpose line. In addition to signaling the end of a
message, it's also used to initiate a parallel poll (see below). Another technique
used by some GPIB instruments is to indicate the end of message by sending an
ASCII line feed character (= Oah) as the last byte.

25.4 IEEE488.2

The original IEEE-488 standard left the codes, formats, and protocols for
device-dependent messages and other kinds of information completely up to the
device manufacturers. Furthermore, the GPIB capabilities of instruments from
different manufacturers varied greatly. Not surprisingly, the result was that
software drivers written for one instrument were incompatible with the drivers
for any other instrument, even if the instruments were quite similar. When you
bought a GPIB interface card, you needed to obtain software drivers that were
written specifically for every instrument you were going to put in the system. To
help eliminate these incompatibility problems, the IEEE-488.2 revision of the
original standard specified a set of data formats, message protocols, and
common commands that every IEEE-488.2 compliant device must adhere to.

In general, messages and information sent over the GPIB are in the form of
ASCII strings, with well-defined formats for numbers. For example, the number
20 could be sent as any of the ASCII strings "20", "20.0", or "2.0e+1". There is
also provision for sending blocks of binary data using the format #nn.<binary
data> where nn is a two-digit ASCII number giving the number of bytes of
binary data that follows. IEEE-488.2 also defines a set of standard protocols for
instrument status reporting.

470 Visual Basic for Electronics Engineering Applications

25.4.1 Common Command Set

A common command set of 39 standard commands is defined by IEEE-488.2.
All compliant devices must implement 13 of these, with 5 more being required
if certain instrument capabilities are present. The other common commands are
optional. Each of the commands is sent over the bus as an ASCII string with
ATN false, just like device-dependent messages are, and they have the form
*name, where name is a three-letter mnemonic for the common command. The
leading asterisk identifies the command as being a member of the common
command set. Two examples of such commands are ‘*CLS’ which clears an
instrument's status registers, and ‘*IDN?’, which causes the device to provide its
device identification string. The second example here is 1 of the common
command queries. The query mnemonics all end with question mark and cause
the device to transmit some requested piece of information the next time it's
made into a talker.

Command Description

*CLS Clear status command : Basically resets any errors

*ESE Standard Events Status Enable

*ESE? Standard Events Status Enable Query

*ESR? Standard Events Status register Query

*IDN? Identification Query

*OPC Operation Complete Command

*OPC? Operation Complete Query

*RST Reset command

*SRE Service request enable command

*SRE? Service request enable query

*STB? Read status byte query

*TST? Self test query

471 Visual Basic for Electronics Engineering Applications

*WAI? Wait to continue command

25.5 SCPI

At about the same time IEE488.2 was introduced a formal proposal was made to
further structure the software level of the GPIB interface. The idea was to define
a uniform command dictionary that could be understood by all instruments
implementing similar functions. This proposal was formalized into the Standard
Commands for Programmable Instruments (SCPI) document. Today , almost
every new instrument being developed follows this specification.

SCPI organizes and ordens the commands an instrument understands into
functional groups. A rich ‘keyword’ set has been developed that allows you to
design an instruction set for any kind of instrument. However due to the
complexity of modern instruments , the SCPI standard is evolving as well.

SPCI commands obey to a strict hierarchical structure. The SCPI command set
is to be seen as a tree originating at the root command and dispersing into
different branches depending on the function required. Another feature of the
SCPI specification is that parts of the command keyword can be omitted.
Everything that is specified in UPPER case is required. Everything written in
lowercase may be omitted. This allows for speed optimization over the GPIB
bus without really compromising readability.

472 Visual Basic for Electronics Engineering Applications

ion

l

SENSe TRIGger

VOLTage POWer CURRent INTernal

RANGe

RISING

RESolut

FALLING

EXTerna

UPPer AUTO

RANGe RESolution

UPPer AUTO

Each command is preceded by a colon (:) . In the above case the following
would be valid commands:

:SENSe:VOLTage:RANGe:AUTO<EOI>
:SENS:VOLT:RANG:AUTO<EOI>
:SENS:POWer:RANG:UPPer<EOI>
:TRIG:EXTernal:FALLING<EOI>

The following would be an illegal command:

:SENS:POWer:EXTernal:FALLING<EOI>

The command tree does not allow you to descend along this particular path.

The colon preceding the SCPI command forces the instrument to start at the root
level. If you don’t send a colon before a command you remain at the same level
as the last issued statement in the command.

:SENS:VOLT:RANG:AUTO<EOI>
UPPER<EOI>
AUTO<EOI>

The first command takes the instrument down to the range configuration for
sensing volts and sets it to AUTO. The second command only sends the UPPER
command. Since there is no preceding colon , the instrument stays at its current
level in the branch of the command tree. Thus actually it will execute the
command

473 Visual Basic for Electronics Engineering Applications

:SENS:VOLT:RANG:UPPER<EOI>

Due to this flexibility the amount of data that needs to be sent over GPIB can be
reduced to a minimum if you apply clever code optimization.

474 Visual Basic for Electronics Engineering Applications

475 Visual Basic for Electronics Engineering Applications

Chapter 26:

Vision
This chapter will present a collection of routines , objects , controls and classes
that together form the Visual Instrumentation Solution or Vision for short. (You
could also read it as Vincent’s Instrumentation Solution). The image below
shows you how all parts of the Vision system fit together.

476 Visual Basic for Electronics Engineering Applications

i

Pri l

GPIB

GPIB

ludi

Wi i

i

Wi

IO Li

l

Li

Dev ce under test

nterport Seria Port GPIB Board

instrument

instrument

Test interface
Inc ng custom hardware

 Computer
Hardware

DAQ board

n95IO MSComm GPIB Card dr ver

User Appl cation

n95IO

brary

GPIBcore

ClassWork
Module

TestBench
Contro

Instrument
brary

Card Driver
GPIB
Spy

GPIB-Web

As you can see the number of options at your disposal is rather high. All the low
level hardware interfacing is done using tools already described before :
MScomm for Serial port IO and Win95io for Hardware access. Besides these
two already known modules a number of other modules exist.

- GPIB card driver : this driver is supplied by the board maker. It offers an
access path to the GPIB hardware.

- Card Driver : A driver supplied by the board vendor of the IO or DAQ
board.

- GPIBcore : This library acts as the traffic controller for all GPIB
operations. It manages all operations on the GPIB bus and offers error and status
reporting via the standard debugging console of Visual Basic.

477 Visual Basic for Electronics Engineering Applications

- GPIBspy : Monitors all GPIB operations during runtime , and offers a
debugging window to take control over GPIB operations when necessary

- GPIBweb : Allows you to redirect GPIB operations via TCP/IP protocol to
anywhere in the world. This can be used not only to run but as well monitor,
control and debug test-setups remotely.

- Instrument Library : A collection of instrument specific routines that ease
the control of GPIB machines.

- IO library : A collection of routines to control plug-in data-acquisition
boards.

- ClassWork Module : A Class holding all information to control an
instrument or IO channel (Printerport , DAQ board etc). This exposes the
hardware as an object to the programmer. Instruments and IO channels can be
treated just like any other Visual Basic object.

- TestBench Control. An ActiveX control that can interface to a ClassWork
module. TestBench Offers a rapid way of adding a GUI for your instruments or
IO channels.

26.1 GPIBcore

GPIBcore is a GPIB handler for Visual Basic written in Visual Basic. It handles
basic GPIB operations in cooperation with the GPIB card driver provided with
the board manufacturer. But why not use the vendor supplied driver directly ?
Well a number of problems arise in doing that.

- The card drivers are board vendor specific.

- Initialization code is vendor dependent

- Command set is different

- Capabilities are different

The command set might be extensive and sometimes hard to understand. A lot
of card drivers contain so many routines that it becomes hard trying to
understand what function you need and when you need it. Furthermore you will

478 Visual Basic for Electronics Engineering Applications

need to understand the GPIB bus before you can talk to instruments. Not all
machines respond in a uniform manner to GPIB operations.

This is where GPIBcore kicks in. It physically isolates the card-level operations
from the programmer. At the same time it takes care o all the low-level work
related with device initialization and management. When different cards are to
be used , or when the card driver changes completely , all you have to do is
adapt the GPIBcore. The GPIBcore currently exists in 2 versions , and more will
follow.

- GPIBcore 4.5: Latest incarnation of the 16 bit GPIBcore.

- GPIBcore 5.0: First 32 bit NI compatible release.

Both releases support ALL National Instruments GPIB boards. Future releases
will handle other boards. The GPIBcore does not require nor interfere with other
software layers such as VISA, SICL or IVI.

Note : All version of GPIBcore rely on drivers supplied by the board maker.
These drivers might or might not be compatible with things like VISA,SICL or
IVI. The 16 Bit version requires DOS level board drivers to be installed that are
mapped to GPIB0. These card-drivers are supplied from the board manufacturer
and might or might not be compatible with Windows drivers from the same or
other manufacturers. To avoid porting problems : use Vision 5.0.

26.1.1 GPIBcore features

The GPIBcore uses the native Windows based card drivers. This means that
GPIBcore is compatible with other tools using GPIB as well. The GPIBcore
behaves according to the driver specification for your board. This means that , if
your driver is compliant with Windows NT that any program written with
GPIBcore will work on Win-NT as well.

GPIBcore uses the standard debug console of Visual Basic: The Immediate
Window. Once you compile your program to an executable all commands
accessing this debug console are automatically clipped. This resulting in a faster
program.

A separate debugging window is available. When you want this debugger you
simply add the form to your program and call the function VisionStart.

479 Visual Basic for Electronics Engineering Applications

26.1.2 Installing GPIBcore

Simply copy the entire directory to your hard disk. The preferred location is a
directory on the C disk called Vision or VisualGpib. There is no setup program
to be run since all modules are supplied as source code and as such need no
special installer.

26.2 GPIBcore programming guide

The core can be divided in roughly 3 parts. The real GPIB related operations ,
The Hardware IO operations (via Win95io) and the supporting functions.

26.2.1 GPIB functions

All GPIB management is handled by dedicated commands. All commands begin
with GPIB and have meaningful variable declarations to facilitate programming.

480 Visual Basic for Electronics Engineering Applications

26.2.2 GPIBinit

Syntax :

 GPIBinit

Description:

This function initializes the GPIB stream. It sets up communication with the
card vendor specific driver. Furthermore it resets the GPIB subsystem of the
computer , and unlocks all attached devices on the bus. You can close the bus
by executing a GPIBbye command. No GPIB commands are executed before
the call of this function. Therefore you should call this during the startup of your
program. Attempting to access the GPIB before this command has been
executed will show warning messages on the immediate windows of Visual
Basic. The program will neither stop nor crash.

26.2.3 GPIBbye

Syntax :

GPIBbye

Bye

Description:

By issuing this command you terminate the GPIB operations. The GPIB stream
is released in an orderly manner. All devices are brought back to local state.
Once the GPIB stream is closed all calls to GPIB functions other then GPIBinit
will simple not be executed. (No error will be generated. They simply are
ignored)

481 Visual Basic for Electronics Engineering Applications

26.2.4 GPIBopen

Syntax :

 GPIBopen <address>,[descriptor]

Example:

 GPIBopen 5

 GPIBopen 5,"Multimeter"

Description:

This command opens a channel to the device at the specified address. This
function places the machine in remote mode and initializes it as a Listener. You
can specify your own name for the instrument in the optional descriptor
variable. If you do not supply a name then GPIBopen will interrogate the
machine to find out its exact description. (not all machines support this, in
particular older machines.).

When a device has been successfully opened a brief report is generated on the
immediate window of Visual Basic. The countering command is GPIBclose.

26.2.5 GPIBclose

Syntax :

 GPIBclose <address>

Example:

 GPIBclose 5

Description:

This command will free a device from the GPIB bus. It places the machine back
to Local mode. It is good practice to close all machines before exiting the

482 Visual Basic for Electronics Engineering Applications

program. However , starting with release 2.5 of GPIBcore all slaves are
automatically closed upon program termination.

26.2.6 GPIBtimeout

Syntax :

GPIBtimeout <time in seconds>,[address]

Example:

 GPIBtimeout 1

 GPIBtimeout 30,2

Description:

This sets the timeout value for bus communications. IF a machine does not
respond within the selected timeframe an error is generated. When setting a
timeout value without specifying an address you are setting the timeout level for
the board level operations. If you want to control the instrument level timeouts
, then you need to specify the address of the device as well.

26.2.7 GPIBreset

Syntax :

GPIBreset

Description:

This command resets the GPIB board in your computer and attempts to free a
stuck bus. THIS CLOSES ALL DEVICES. This is different from the previous
versions.

483 Visual Basic for Electronics Engineering Applications

26.2.8 GPIBdefer

Syntax :

GPIBdefer <state as Boolean>,[address]

Example:

GPIBdefer True
 GPIBdefer false,22

Description:

This command defers the transport of GPIB calls. Any GPIB operations will be
emulated when GPIBdefer is set to true.. This means that the command is not
sent to the bus but simply denied. However they do show up in the console. This
allows you to check syntax of the commands you are sending. You can also use
this to write and debug code on a machine which doe not contain GPIB card.

A special case is the GPIBread function used when Deferring is switched on.
The ib$ will contain the string "-VOID-" . The value contained in ibret variable
is a random number between 0 and 100. This allows you to check the
functionality of your programs. If you specify an address then the DEFER state
is altered for the specified address only. This is called a local defer, while a
defer operation without specified address is a global defer. The local and global
states are logically OR-ed together to decide whether there is access to a
machine or not.

26.2.9 GPIBsinglestep

Syntax :

GPIBsinglestep <state as boolean>

Example:

 GPIBsinglestep True

Description:

484 Visual Basic for Electronics Engineering Applications

This functions allows you to switch to single step mode for all GPIB operations.
You can also change the mode using the console menus. This feature is useful
for tracking GPIB timing problems. Whenever a GPIBcommand has been
executed a messagebox pops up to prompt you for further action. You can
decide to take the next step , stop the program , or abort stepping and continue at
normal speed.

26.2.10 GPIBtroff

Syntax :

 GPIBtroff [address]

Example:

GPIBtroff
GPIBtroff 5

Description:

This command turns of tracing for all or one address at a time. Using this you
can eliminate the commands for the machines that you don't want to trace. By
default all addresses are traced.

26.2.11 GPIBtron

Syntax :

 GPIBtron [address]

Example:

 GPIBtron

 GPIBtron 5

Description:

485 Visual Basic for Electronics Engineering Applications

This command is the opposite for the GPIBtroff command: You can enable all
or only selected addresses to be traced.

26.2.12 GPIBwrite

Syntax :

GPIBwrite <address>, <command as string>

Example:

 GPIBwrite 5,"*RST"
 GPIBwrite 10,":FUNCTION:SINE"
 GPIBwrite 5,"H2"

Description:

This command transports commands to the machine at the designated address.
The command should be formatted as a string. If you want to send numbers to
the machine you should convert them using the str$ or sStr$ function

GPIBwrite 5,"RANGE "+sstr$(x)

26.2.13 GPIBread

Syntax :

GPIBread address,[command]

Example:

 GPIBread 5

 GPIBread 5,"RESULT?"

Description:

486 Visual Basic for Electronics Engineering Applications

This command allows you to read data from the GPIB stream. Data is returned
in 2 global variables. Ibret contains the numerical value of the returned
information. IB$ contains the whole unformatted string of data returned by the
machines. Optionally you can specify a command .this command is sent to the
target before the read is attempted. Typically you need to send some command
to the device before it returns data. By specifying this command in the
GPIBread function you avoid having to issue a GPIBwrite first. It saves some
lines of code in your program

26.2.14 GPIBfind

Syntax :

X = GPIBfind <address>

Example:

X = GPIBfind(5)

Description:

This command checks the presence of a device at the specified address. If a
device is found the functions returns TRUE else it returns FALSE

26.2.15 Other GPIB functions

- GPIBthunkwrite

- GPIBthunkread

- GPIBparse

- GPIBrespawn

- GPIBterminator

These functions have been removed in version 5.0 an upward. These functions
were required to control older instruments that did not behave 100% according

487 Visual Basic for Electronics Engineering Applications

the GPIB specification. The Core knows how to handle these internally now.
The Parse command has been removed entirely. The thunked access
(GPIBthunkread and GPIBthunkwrite) is automatically redirected to normal
Read and write operations. Accessing removed functions will result in a
message box appearing with the notification what function call was attempted.
This allows you to patch your code more easily.

26.3 GPIBcore I/O functions

The GPIBcore also provides means to interact with the PC's hardware on a low
level basis. Visual basic provides access to disk , Com ports and printers in a
standard way. However if you want to use or 'abuse' these ports in a non­
standard way you will need a means of accessing the hardware registers. This
functionality can be found in WIN95io.DLL.

This release of the core fully embeds this library into the GPIBcore.

26.3.1 OUT

Syntax :

OUT address, data

Example:

 Out &h378,88

Description:

The out command allows you to write a data-byte to a specified IO address
in the PC's IO space. This works in exactly the same way as in regular DOS
based basic languages.

NOTE be very careful where you are writing, after all you could very quickly
find yourself faced with the 'blue screen of death' if you are writing to certain
addresses.

488 Visual Basic for Electronics Engineering Applications

26.3.2 OUTW

Syntax :

OUTW address, data

Example:

 OUTW &h378,&hffff

Description:

This command is the WORD version of the OUT command. Observe here that
you can only write to EVEN addresses , and that you must have a card that
allows this to do. Typically you will need an AT card which has a 16 bit Data

bus.

NOTE: Be very careful where you are writing , the Blue screen is already

lurking behind the corner.(see also the OUT command).

26.3.3 INP

Syntax :

X = INP (address)

Example:

Result = inp(&h379)

Description:

The INP command allows you to read a data-byte from a specified IO address.
This works in exactly the same way as in regular DOS based basic languages.

NOTE Contrary to OUT and OUTW , you can read any location in the IO map
without any problem.

489 Visual Basic for Electronics Engineering Applications

26.3.4 INPW

Syntax :

X = INPW (address)

Example:

Result = inp(&h379)

Description:

This command is the WORD version of the INP command. Observe here that
you can only read from EVEN addresses , and that you must have a card that
allows this to do. Typically you will need an AT card which has a 16 bit Data

bus.

NOTE: Same story as with INP : No problem reading anywhere.

26.4 GPIBcore Miscellaneous support functions

Visual Basic does a lousy job when it comes to processing binary data. There
are no dedicated functions for this. Of course you have the basic logical
operators , but hey , you can't expect us to write logical routines every time we
need something simple.
GPIBcore now has built in functions that allow you to perform common tasks in
binary data manipulation.

26.4.1 setBIT

Syntax :

 Setbit variable,bit

Example:

X=5

Setbit x,3 ' x becomes 13

490 Visual Basic for Electronics Engineering Applications

Description:

This function will set the specified bit in any integer variable. If the variable
cannot hold the resulting number it will automatically be sized so it can hold the
data. Bits range typically from 0 to 31 (32bit numbers).

26.4.2 clearBIT

Syntax :

 clearBIT variable,bit

Example:

X=5

clearBIT x,2 ' x becomes 1

Description:

This function will RESET the specified bit in any integer variable. Bits range
typically from 0 to 31 (32bit numbers).

26.4.3 flipBIT

Syntax :

 flipBIT variable,bit

Example:

X=5

flipBIT x,1 ' x becomes 7

Description:

491 Visual Basic for Electronics Engineering Applications

This function will INVERT the specified bit in any integer variable. This allows
you to easily flip or toggle a specified bit in a variable. Bits range typically from
0 to 31 (32bit numbers).

26.4.4 swapBIT

Syntax :

swapBIT variable, bit1, bit2

Example:

X=5

swapBIT x, 2, 1 ' x becomes 3

Description:

This function will swap two bits from place. This allows you to change to bit
order of an integer. If the variable cannot hold the resulting number it will
automatically be sized so it can hold the data. Bits range typically from 0 to 31
(32bit numbers).

26.4.5 BITset

Syntax :

X = BITset (variable, bit)

Example:

X=5

X = BITset (x,2) ' returns TRUE

Description:

This function will check if a specified bit is set to 1 in a variable. Bits range
typically from 0 to 31 (32bit numbers).Result is TRUE or FALSE.

492 Visual Basic for Electronics Engineering Applications

26.4.6 BITclear

Syntax :

X = BITclear (variable, bit)

Example:

X=5

X = BITclear (x,2) ' returns FALSE

Description:

This function will check if a specified bit is RESET to 0 in a variable. Bits range
typically from 0 to 31 (32bit numbers).Result is TRUE or FALSE.

26.4.7 swapNIBBLE

Syntax :

 swapNIBBLE variable

Example:

X=&h5F

SwapNIBBLE X ' X is now &hF5

Description:

This function will swap the NIBBLE order in a BYTE. If you pass larger
numbers they will be truncated to a byte before the operation takes place..

26.4.8 loNIBBLE

Syntax :

493 Visual Basic for Electronics Engineering Applications

LoNIBBLE variable, nibble

X = loNIBBLE (variable)

Example:

X=&hf5

Y = loNIBBLE (x) ' y = 5

LoNIBBLE x, 7 ' x is no &hF7

Description:

This is a DUO function. You can either op to retrieve the LOW nibble , or
change the LOW nibble of a BYTE. By calling it like a function you retrieve the
nibble. By calling it like a SUB you set the nibble to the specified value.

26.4.9 hiNIBBLE

Syntax :

hiNIBBLE variable, nibble

X = hiNIBBLE (variable)

Example:

X=&hf5

Y = hiNIBBLE (x) ' y = &hF

hiNIBBLE x, 7 ' x is no &h75

Description:

This is a DUO function. You can either op to retrieve the HIGH nibble , or
change the HIGH nibble of a BYTE. By calling it like a function you retrieve
the nibble. By calling it like a SUB you set the nibble to the specified value.

494 Visual Basic for Electronics Engineering Applications

26.4.10 SwapBYTE

Syntax :

 SwapBYTE variable

Example:

X=&h5FF5

SwapBYTE X ' X is now &hF55F

Description:

This function will swap the BYTE order in a WORD. If you pass larger
numbers they will be truncated to a WORD before the operation takes place.

26.4.11 loBYTE

Syntax :

LoBYTE variable, byte

X = loBYTE (variable)

Example:

X=&hf55F

Y = loBYTE (x) ' y = &h5F

LoBYTE x, 7 ' x is no &hF507

Description:

This is a DUO function. You can either op to retrieve the LOW byte , or change
the LOW byte of a WORD. By calling it like a function you retrieve the BYTE.
By calling it like a SUB you set the BYTE to the specified value.

495 Visual Basic for Electronics Engineering Applications

26.4.12 hiBYTE

Syntax :

hiBYTE variable, byte

X = hiBYTE (variable)

Example:

X=&hf55F

Y = hiBYTE (x) ' y = &hF5

hiBYTE x, &h70 ' x is no &h705F

Description:

This is a DUO function. You can either op to retrieve the HIGH byte , or change
the HIGH byte of a WORD. By calling it like a function you retrieve the byte.
By calling it like a SUB you set the byte to the specified value.

496 Visual Basic for Electronics Engineering Applications

26.4.13 Delay

Syntax :

 Delay seconds

Example:

 Delay 5

Description:

This command relies on the internal system timer to provide for accurate timing
sequences. It stops program execution until the specified number of seconds has
elapsed.

26.4.14 Microdelay

Syntax :

 Microdelay milliseconds

Example:

 Microdelay 200

Description:

Same story as with the delay command except this one time milliseconds.

26.4.15 SStr$

Syntax :

497 Visual Basic for Electronics Engineering Applications

string = sstr$ (value expression)

 Example:

A$ = sstr$ (5)

 Description:

This command is similar to the str$ function already present in Visual basic.
Except that this flavor strips off the whitespace at the beginning and end of the
returned string. Useful if you have a lot of

'x$ = trim$ (str$ (something)) style stuff in your code..

26.4.16 Bin$

Syntax :

String = bin$ (value expression)

Example:

X$ = bin$ (&h55)

X$ = bin$ (99)

Description:

This command will return a string containing 0 and 1 that represents the binary

notation of an integer number. The command can handle negative numbers.

They are returned in standard 2 complements notation.

26.4.17 vVal

Syntax :

String = bin$ (value expression)

498 Visual Basic for Electronics Engineering Applications

Example:

x = vVal (&h55) ‘ x = 55h

x = vVal(&b10011001) ‘ x = 99h

This routine converts a string to a number. It operates in a similar manner as the
Val command from Visual Basic , except that it can handle binary numbers as
well.

26.4.18 Logentry

Syntax :

Logentry string

Example:

Logentry "Hello world"

Description:

This is simply a command that allows you to write information to the
console. This can be useful for debugging purposes.

26.5 Instrument and IO libraries

The GPIBcore provides the access channel to the GPIB board. But you can’t
expect us to look up the instrument functions in the users manual every time. So
a set of modules (.BAS files) has been created that provides an interface to the
most common instruments.

The construction of these modules is pretty straightforward. It’s simply a
collection of routines that allow you to control a particular instrument.

Example :

Option Explicit
' -=-
' Hewlett Packard 34401
' Digital Multimeter

499 Visual Basic for Electronics Engineering Applications

' -=-
' Winvision Instrument library
' Initial release: 27/10/98
' Written by : Vincent Himpe
'
' Modification history :
' 30 / 08 / 1999 : Verified for Winvision
Release IV V.Himpe
' -=-

Public Sub HP34401VoltsDc(address)
GPIBwrite address, ":CONF:VOLT:DC"

End Sub

Public Sub HP34401VoltsAc(address)
GPIBwrite address, ":CONF:VOLT:AC"

End Sub

Public Sub HP34401CurrentDc(address)
GPIBwrite address, ":CONF:CURR:DC"

End Sub

Public Sub HP34401CurrentAc(address)
GPIBwrite address, ":CONF:CURR:AC"

End Sub

Public Sub HP34401ohms4(address)
GPIBwrite address, ":CONF:FRES"

End Sub

Public Sub HP34401Frequency(address)
GPIBwrite address, ":CONF:FREQ"

End Sub

Public Sub HP34401Period(address)
GPIBwrite address, ":CONF:PER"

End Sub

Public Sub HP34401ohms2(address)
GPIBwrite address, ":CONF:RES"

End Sub

Public Sub HP34401Trigger(address, mode)
Select Case mode
Case 1 ' external

500 Visual Basic for Electronics Engineering Applications

GPIBwrite address, "TRIG:SOUR:IMM"
Case Else ' internal

GPIBwrite address, "TRIG:SOUR:EXT"
End Select

End Sub

Public Function hp34401measure(address)
GPIBwrite address, "INIT"
GPIBread address, "FETCH?"
hp34401measure = ibret

End Function

When writing this kind of modules it is good practice to follow the strictest
possible syntax. So please force yourself to declare every variable. Simply
specify on top the Option Explicit modifier. If you forget a declaration the
Visual Basic IDE will prompt you.

By constructing these simple well defined modules you can easily build a very
modular program. Besides that you can use the modules you or someone else
made over and over again.

26.6 ClassWork

ClassWork is a style of instrument drivers developed for use in conjunction with
VIsion. It builds on the concept of classes in Visual Basic to provide a uniform
and easy access to instrument and hardware functions. Any existing instrument
interfaces whether plug-in or GPIB based can be implemented as a ClassWork
module.

26.6.1 The ClassWork concept

A ClassWork module is the basic piece of code, consisting of procedures,
functions and variables, that together form the interface to an instrument. This
module is implemented as a class. By adhering to the concept set forth in this
manual you will easily construct your own modules and use existing modules.

The whole concept is constructed to provide a uniform and easy access channel
to T&M (test and measurement) equipment from a programmer's point of view.

501 Visual Basic for Electronics Engineering Applications

While originally conceived for Visual Basic you can imply this style on other
languages as well.

The concept is such that it is taking away some of the particularities involved
with each instrument. Not only the way in which you gain control over a device
is standardized but also some of its basic functions. For instance all power
supplies have operators that allow you to program voltage and current. For any
brand and model this function has the same name. As a result of this I can
immediately swap supplies with a different model and brand by simply
redefining the class to which a particular instrument should belong. Confused?
The example below will clear things out.

Setup 1:

Uses a machine from brand ABC model 12a.

This machine has a command to set the voltage called SV. To set the voltage to
5 volts I would be required to send 'SV5' to the machine. The machine is set to
respond to GPIB address 5.

Setup 2:

Uses a supply from brand XYZ model 99z

This command to set the voltage is OUTPUT: VOLTS. And the instrument has
a dual output. To set this instrument to 5 volts you need to provide it with a
string containing not only the voltage but also the channel. ': OUTPUT:
VOLTS: CHANNEL1: 5V'.

The machine is set to respond to GPIB address 22.

Suppose you have a program developed for case 1, and your supply
malfunctions. You want to use the supply from setup 2. The following problems
will arise:

- The supply has a different command set so you need to adapt you program.

- It has multiple channels requiring additional information to be sent.

- The GPIB addresses are different. So you need to fix these up as well

This is where ClassWork comes in.

502 Visual Basic for Electronics Engineering Applications

26.6.2 The ClassWork solution

ClassWork defines a uniform set of commands to control these supplies. Both
modules (one for each of the above described supplies) contain a function to
set the output voltage. This function will format the supplied data in a style that
can be processed by the instrument. By doing this you are abstracting the
instruments.

ClassWork is breaking multi-channel devices into independent entities. Any
device containing more then one channel is broken apart into single channel
devices. Each of these single channels is controlled independently!

ClassWork still requires the address of the machine once and only once. During
definition you set the address and the required channel, and from then on this
item becomes a true standalone object you can use throughout your program.

A nice side effect is that, while all of the above makes migration and
maintenance easier, it also provides you with easier to understand code. In the
past you accessed machines using addresses.

Sure you stored them in variables or constants, which in turn needed to be
global. But you still used to write things like:

Const supply=5
ABCvolts (supply, 5)

Or

Const supply =22
XYZvolts (supply, 1, 5)

While solving this, ClassWork goes a step further. It treats your instrument as
an object. Just like you have buttons and textboxes, you now have access to
your instruments as objects.

You now simply define your supply and assign it an address and channel

Dim Supply as new ABC
Supply.address =5
Supply.assignto =1

503 Visual Basic for Electronics Engineering Applications

If tomorrow your supply from ABC breaks down and you need to use brand
XYZ all you do is change a few words.

Dim Supply as new XYZ
Supply.address =22
Supply.assignto =1

ABC becomes XYZ and the 5 becomes a 22. Now, if in the unlikely event that
channel 1 of this XYZ would be broken too and you were forced to use the
second channel, you only change the assignto parameter and your program is
running again.

Dim Supply as new XYZ
Supply.address =22
Supply.assignto =2

26.6.3 Programming using ClassWork

Writing a program using ClassWork is just like writing any other program. The
only thing that differs is the way you approach instruments. Since ClassWork
considers instruments as objects (a ClassWork instrument is logically an object
derived from a Class) , you can reference them just like you would do with a
checkbox or a textbox.

Typically you create a new project. The next thing you do is add the GPIBcore
module to your project. You need this module always, since ClassWork objects
also use the same handler to perform GPIB I/O. So far you have done nothing
new (if you were already using the Vision system).

To load instrument libraries you now select Project - Add Class Module. The
modules are located in the ClassWork directory of the Vision installation.

You still need to write your startup and shutdown code

Private Sub Form_Load()
GPIBinit

End Sub
Private Sub Quitprogram_Click()
Bye
End

End Sub

504 Visual Basic for Electronics Engineering Applications

From now on things change. You need to derive instruments from the loaded
classes. This is done by defining a new variable as a new <instrumentclass>.

Dim Voltmeter as new HP34401
Dim Supply as new HP6624

In your startup code you add a piece of code that sets the address and assignto
parameters.

Private Sub Form_Load()
GPIBinit
Voltmeter.Address = 22
Supply.Address =3
Supply.AssignTo = 3

End Sub

Note

For single channel instruments it is not required to use the assignto parameter.
Per default this parameter is set to 1.

You will notice that the Visual Basic environment will show you a list with
possibilities you can select, just like you were using any other control. That is
exactly what is happening. Your instrument has been turned into an object.

26.6.4 A Sample ClassWork program

The program below defines 3 instruments and performs a voltage sweep while
plotting the voltage and current trough a network.

‘ REM ClassWork testprogram
Dim Voltmeter As New HP34401
Dim Currentmeter As New HP34401
Dim Supply As New HP6624

Private Sub
 GPIBinit

Form_Load()

Voltmeter.Address = 22
Currentmeter.Address = 23
Supply.Address = 5

505Visual Basic for Electronics Engineering Applications

Supply.Assignto = 3 ' we use channel 3
of the supply
End Sub
Private Sub Quitprog_Click()

Bye
End

End Sub
Private Sub sweep_Click()

For x = Val(startvalue.Text) To
Val(stopvalue.Text)

Supply.voltage = x
volts = Voltmeter.measure
Current = Currentmeter.measure
display.Text = display.Text & volts & ":"

& Current &
_ vbclf

Next x
End Sub

The initialization section is limited to establishing the GPIB link and assigning
addresses to the instruments. From then on you simply treat your instruments as
any other control.

26.6.5 Developing ClassWork Modules

Whilst ClassWork comes with a number of modules, you might need to write
some yourself. In order to maintain the functionality of ClassWork there are a
number of rules to follow.

A ClassWork module is a piece of Visual Basic code that resides in a Class.
Whatever functionality you want to implement is up to you. But, in order for a
Class to be a real ClassWork module the following thing should be in place:

26.6.6 Module Header

The ClassWork header should contain information about the library and the
instrument covered by the library. A sample header can be found below. It
marks clearly that it belongs to the ClassWork framework in the first two lines.

506 Visual Basic for Electronics Engineering Applications

Next it specifies that this library if for an HP34401 System multi meter from
Hewlett-Packard. The initial release of this particular piece of code was don on
15/11/1999 by Vincent Himpe, and some changes have been made on a later
date. More detail could be given about exactly what and why but this is at the
developer's discretion.

'***

' ClassWork Library
' Released under OpenSource Policy
'
' Instrument : HP34401 System multimeter
' Manufacturer : Hewlett Packard
'
' Initial release 15/11/1999
John.D.Designer
' Update 25/02/2000
John.D.Designer
'***

26.6.7 Internal ClassWork variables.

The next thing to do is to declare the two internal variables that are required by
ClassWork.

These can then be followed by the definition of the variables you might require.
Since all derived objects run in their own memory space they will each use their
respective copy of the variable.

Private v_address ' GPIB address for this
device
Private v_entity ' entity in multichannel
devices

v_address:

is used as an internal placeholder for the GPIB address assigned to an
object derived from the class.

507 Visual Basic for Electronics Engineering Applications

v_entity:

Is used to indicate which part of an instrument is targeted in case of a
multimodule instrument. Multimodule instruments are defined as
instruments that share the same physical GPIB port but have multiple
in or output's all behaving in the same manner. For instance: a dual or
triple channel power supply or a 10-channel multimeter.

26.6.8 Initialize and Terminate events

Class_Initialize :

Whenever an instrument is derived from the class (this happens the
moment the program executes) the initialize event will be fired.
ClassWork uses this event only to notify the user that an object has
been derived from this class. The message is being sent out using the
standard Logentry command belonging to GPIBcore.

Besides this you can implement whatever startup code might be required for
your class.

Now what is the point of sending this comment? It informs the user how many
instruments his program uses and of which type they are.

Example:

Public Sub Class_Initialize ()
Logentry "'ClassWork spawned a HP34401

instrument"
End Sub

Class_Terminate :

The Class_Terminate is fired when the object derived from the class is
destroyed. In case of a GPIB device this event is used to close the
GPIB channel and release the address.

Example:

508 Visual Basic for Electronics Engineering Applications

Private Sub Class_Terminate ()
GPIBclose v_address

End Sub

26.6.9 Address assignment

In case of a GPIB device the address property should be implemented. You are
free to implement a 'get' statement but this is not required.

Whenever the address is assigned (this can be during startup or it can also mean
a change of address) this should cause the current address to be released, and the
new address being assigned. The assigned address should be stored in the
internal variable v_address. Throughout the rest of the code you must use this
v_address when referring to your instrument

Public Property Let address (addr)
GPIBclose v_address
v_address = addr
GPIBopen v_address

End Property

26.6.10 AssignTo assignment

This function might not always be applicable to your instrument but it MUST be
implemented to maintain the highest possible level of compatibility. Simply
store the number in the internal v_entity variable. Whenever you need to refer to
a certain channel you use this v_entity variable. Again, here you are free to
supply a 'get' command but it is not required.

Public Property Let Assignto (channel)
v_entity = channel

End Property

26.6.11 Global Lead-in code overview

The whole picture looks like this:

'***

509 Visual Basic for Electronics Engineering Applications

' ClassWork Library
' Released under OpenSource Policy
'
' Instrument : HP34401 System multimeter
' Manufacturer : Hewlett Packard
'
' Initial release 15/11/1999
John.D.Designer
' Update 25/02/2000
John.D.Designer
'***

Private v_address ' GPIB address for this
device
Private v_entity ' entity in multichannel
devices
Public Sub Class_Initialize ()

Logentry "'ClassWork spawned a HP34401
instrument"
End Sub
Private Sub Class_Terminate ()

GPIBclose v_address
End Sub
Public Property Let address (addr)

GPIBclose v_address
v_address = addr
GPIBopen v_address

End Property
Public Property Let Assignto (channel)

v_entity = channel
End Property

26.7 General Rules for ClassWork module development

While the previous chapter described the required criteria to develop a
ClassWork library, this section will describe an additional framework. It is
advised to follow these guidelines to insure maximum compatibility. This
chapter will try to show you when to use a property, method or event when
creating module functions.

510 Visual Basic for Electronics Engineering Applications

26.7.1 Properties

RULE: If the item is not a real result of a primary function of the instrument, or
the item is a setup parameter that configures the common (not directly
measurement related) behavior it should be implemented as a property (using
Property Let). The data applied should be of the numerical type

(Either a number or a Boolean). The data can also be contained in an array.

Examples:

A power supply is not a real 'measurement' device. It does not really
'measure' but it supplies you with power. Sure you can read back the current
it is actually delivering, but that was not the main goal of the instrument. So
voltage and current are not real results of the instrument. To the supply the
Voltage and Current set are 'properties'. When retrieving them you can of
course really read them back and return these as result of the action.

In a multi-meter, the number of digits used does not really determine the
nature of the measurement. It has of course effect on the precision of the
measurement but it has nothing to do with the physical quantity that needs
to be measured. Selecting the physical quantity, deciding between voltages,
current, resistance is a different matter. Here you are changing the nature of
the measurement and thus the measurement related behavior of the
instrument.

26.7.2 Methods (Sub)

RULE: A Sub(routine) is used whenever you change the instruments
measurement related behavior of the measurement but don't perform an actual
measurement. The functionality desired cannot be expressed using numbers.

Examples:

Selecting physical quantities like Voltage or Current for a multimeter can
be classified under this.

The same applies to selecting a function for a Waveform generator. Here
you can implement Subroutines to specify the kind of waveform to be
generated.

511 Visual Basic for Electronics Engineering Applications

Of course you could make a list with constants defining the Voltage = 1,
Current =2 etc... But this will cause problems. Not everybody will use the
same conventions and this will then lead to code that is again not portable.

26.7.3 Methods (Function)

RULE: A Function is used whenever you retrieve a primary measurement result.
The result is a single number or Boolean value. The function can take
arguments.

Examples:

The result of a measurement performed by a multimeter. The multimeter
was previously set up with a number of digits (using a Property
construction) and an indication of the nature of the measurement
(VoltageDC using a Subroutine)

26.7.4 Special Cases

Sometimes you will run into cases where you need to perform operations that
cannot easily be catalogued as one of the above, or that return different kinds of
information than defined in the rules.

Example: Returning arrays:

This is a typical example. You retrieve a table with data representing a
waveform from an oscilloscope.

Visual basic does not allow you to return this type of data using a Function.

In this case implement it as a Subroutine and change the content of the
arguments from within the subroutine.

In all other cases, implement your functions as Subroutines (if not returning
data) or as Functions (if returning single numbers)

512 Visual Basic for Electronics Engineering Applications

26.7.5 ClassWork implementation of the HP34401 driver

'***

' ClassWork Library
' Released under OpenSource Policy
'
' Instrument : HP34401 System multimeter
' Manufacturer : Hewlett packard
'
' Initial release 15/11/1999 V.Himpe
'***

Private v_address ' GPIB address for this
device
Private v_entity ' entity in multichannel
devices

Public Sub Class_Initialize()
logentry "'Classwork spawned a HP34401

instrument"
End Sub

Public Property Let
v_address = addr

Address(addr)

GPIBopen addr
End Property

Public Property Let Assignto(channel)
v_entity = channel

End Property

Public Sub VoltsDc()
GPIBwrite v_address, ":CONF:VOLT:DC"

End Sub

Public Sub VoltsAc()
GPIBwrite v_address, ":CONF:VOLT:AC"

End Sub

Public Sub CurrentDC()
GPIBwrite v_address, ":CONF:CURR:DC"

End Sub

513 Visual Basic for Electronics Engineering Applications

Public Sub CurrentAC()
GPIBwrite v_address, ":CONF:CURR:AC"

End Sub

Public Sub ohms4()
GPIBwrite v_address, ":CONF:FRES"

End Sub

Public Sub Frequency()
GPIBwrite v_address, ":CONF:FREQ"

End Sub

Public Sub Period()
GPIBwrite v_address, ":CONF:PER"

End Sub

Public Sub ohms2()
GPIBwrite v_address, ":CONF:RES"

End Sub

Public Sub Trigger(mode)
Select Case mode
Case 1 ' external (vanachteren)

GPIBwrite v_address, "TRIG:SOUR:IMM"
Case Else ' internal

GPIBwrite v_address, "TRIG:SOUR:EXT"
End Select

End Sub

Public Function measure()

GPIBwrite v_address, "INIT"

GPIBread v_address, "FETCH?"

measure = ibret

End Function

If you compare this block of code with the implementation as a standard module
you will find a lot of similarities. Actually it is very simple to convert a standard
module to a ClassWork class Just glue on the header , change some information
and maybe clean up the code a bit. The hardest part will be deciding how to
implement a certain function. Will it be a Method (Function , Sub) , a property
or an Event. If you follow the guidelines layed out before this will not be that
hard either.

514 Visual Basic for Electronics Engineering Applications

26.8 TestBench

TestBench is an add-on to ClassWork. It provides a simple way to build control
panels for your instruments. TestBench objects are implemented as ActiveX
controls and distributed in source-code format.

A TestBench control interacts directly with a ClassWork library. The following
example shows how to link a TestBench control to an instrument. The name of
the TestBench object is DVM1.

Dim MyVoltmeter as new HP34401
Set DVM1 = Myvoltmeter

TestBench controls implement a basic set of functions commonly found in the
instruments they can be mapped to. A Testbench control works as a pass-thru
channel for the instrument controls

r
i i

l

Use
Appl cat on

Standard
Library

ClassWork
Library

ClassWork
Library

TestBench
Cont ro

GPIBcore

The above picture shows the implementation possibilities of all possible
instrument control libraries. A program using TestBench can look like the image
below

515 Visual Basic for Electronics Engineering Applications

The TestBench controls feature a similar look and feel. Of course you will not
find any special features of the instruments here. The controls are written in
such a way that they can interface with any ClassWork target.

It speaks for itself that you don’t have to try to attach the Supply control to a
multi-meter !. This will immediately lead to errors. Having the TestBench
control installed and locked to a ClassWork target does not mean that you loose
access to the ClassWork library . You can still call special functions in the
ClassWork library to set up items that the TestBench control does not handle for
you.

516 Visual Basic for Electronics Engineering Applications

Chapter 27 :

Designing Test
Programs

Writing a test program is not unlike writing an ordinary program, however there
are some differences in the construction and programming style required. The
most important thing to keep in mind is to write clean code. It doesn't hurt to
write 5 extra lines of code if it makes the program more readable. On the risk of
becoming boring I will repeat the most import standard programming techniques
here

27.1 Clean code

Make simple code. 5 simple commands are easier to understand, modify and
support then 1 complex command.

27.1.1 Modular programming.

Divide your program in functional subroutines and/or functions. Subroutines
that must be accessible everywhere throughout the program should be contained
in separate modules. Give you subroutines and functions an understandable
name. Also, when passing variables to and from subroutines, give them a
meaningful name. Remember that the Visual Basic IDE will show you the
variable names while you are writing code that calls the function or procedure.
Also where possible you should typecast your variables

Example:

517 Visual Basic for Electronics Engineering Applications

Function FindBiggestInteger (value1 as integer,value2 as integer) as integer

Function Fbi(v1,v2)

The first example shows a meaningful function name, a clean typecasting of
the two expected variables, and a typecasting for the return value. The
second line shows a crappy declaration for the same routine. While the
name FBI (Find Biggest Integer) might mean something for the original
programmer of the code , it might confuse someone who has to maintain or
alter the code.

27.1.2 Documenting code.

Wherever possible write down some information about the code you are writing.
In particular this is important if you are doing mathematical or logical
operations. It makes the code understandable for someone else or even for you.
You might find yourself wondering how on earth a certain piece of code works,
even if you wrote it yourself just weeks before. Supporting an undocumented
piece of code can be very hard. Writing documentation takes only a minimal
amount of time, it doesn't waste space in the final program and it doesn't take
away execution speed.

27.1.3 Use indentation and CamelWriting.

This is improves the overall readability of the code. It becomes clearer which
lines are contained between decision blocks of code. Also, limit the number of
commands to one per line.

Function

thisisanunreadableandlongfunctionname(x,y)

x=x+x:y=y+1:x=x/y:x=int(x/y)

thisisanunreadableandlongfunctionname=x+x/sin(x*

y)

end function

The above could be rewritten as

518 Visual Basic for Electronics Engineering Applications

Function DoSomething (x,y)
x = x+x
y = y+1
x = x/y
x = int (x/y)
DoSomething = x+x / sin (x*y)

End Function

Fortunately the Visual Basic editor helps you out using different colors for
variables , commands , and comment. It also enforces CamelWriting for its
internal function names. Besides the above mentioned items there are some
additional rules you might want to follow

27.2 Accessing instruments and hardware

In order to keep a modular program that can be maintained for a long time you
should divide it into functional units

27.2.1 Accessing instruments

Whenever you access instruments, try to use the provided function libraries (
standard libraries or ClassWork objects). IF you find yourself in the situation
when there is no ready made solution then build a library of your own. Don't
write low level code to access an instrument anywhere I your program. Instead
build the library. In future programs it might be useful , and it makes the
program far more readable.

27.2.1 Accessing hardware in the computer

The same rules as for accessing instruments can be applied here. Try to shield
the real program for the low-level work by using intermediate layers.

27.3 Collecting data versus Analyzing

The first aim of a test and measurement program is to collect data , not analyze
it. To analyze collected data there are far more powerful tools available (Excel

519 Visual Basic for Electronics Engineering Applications

,MathCAD , Mathlab etc). Therefore you should concentrate your programming
effort on just that. Store the retrieved data in log-files and post process them
later.

27.4 Creating log files

When you are writing a program to collect data , you will need a means to off-
load this data. Saving measurement data typically happens in so call ‘log-files’.
Besides the measurement data it might be interesting to store additional
information as well :

- The name of the tester
This can prove helpful . In case of any problems you can always contact
this guy for more information.

- The date and time

To do some kind of version control on test reports

- The number of the sample
In case you find bizarre results you might want to re-test this particular
devices

- The temperature at which it was tested
All electrical parameters drift over temperature. So it’s wise to know this.
Furthermore some test requires temperature sweeps.

- All initial conditions of the test
In case you find crazy data this can prove helpful to reproduce the exact
conditions of the test. This information can be of utmost importance to
recreate a certain effect in a component.

In the next chapter some special programming techniques will be described.
Amongst them is the generation of CSV files. This is a format particularly
useful to create log files. It can be read by almost any data processing program
like Excel MathCAD etc.

520 Visual Basic for Electronics Engineering Applications

27.5 Anatomy of a well structured test-program

A well structured program looks like an onion. You can peel it away layer by
layer until you reach the core : the component under test.

l

Al i

Fil

l
Dri

i l
l

User Contro Board

Instrument
driver

Measurement
gort hms

e IO

Interface
board

Contro
ver

Funct ona
contro

Interface

D.U.T

Layer 1:

At the outmost layer is the user interface and the data storage handlers.
Depending on the actions of the user and/or files (scripts !) messages will
be passed to certain measurement algorithms (U/I sweeps, level detection,
ADC measurement etc) and to the functional control routines that control
the behavior of the chip. The returned data will be displayed on the user
interface or stored to disk.

Layer 2:

Measurement Algorithms will either talk to the instrument drivers, to
collect data or setup instruments, or the control drivers to configure the chip
and or test-board. The Functional control routines will implement the
operations required to transport information to and from the chip (serial

521 Visual Basic for Electronics Engineering Applications

buses , SPI etc, test-pins). Retrieved information is delivered to the
Measurement algorithms and functional control algorithms.

Layer 3:

The instrument driver will control instruments and make them apply the
correct voltages, currents and signals to the component. The control driver
will orchestrate the operation of all hardware on the test-board and the
interface to the computer.

Layer 4:

The interface board will switch these signals to the appropriate pins of the
component. The control board (Printerport or DAQ) will apply digital
stimuli to our chip directly from the computer. All of this happens under
total control of the instrument drivers and the control drivers.

Core :

And finally we fund our component under test. This little critter will take all
of the stimuli delivered to it , process them and (hopefully) return us with
some information that then can be offloaded and presented to the user and
stored for later evaluation.

Avery module in any layer should be constructed in such a fashion takes
information from above and passes it down below. Anything coming back
from the layer below is processed and passed on to the layer above.
However , you must avoid at all times to ‘skip’ layers. The program looses
modularity and portability. Every subroutine must have an unambiguous
task. By following these rules you will have a program that has a lowest
level the hardware interface. The moment something changes there you can
update the entire project by patching that and only that layer.

522 Visual Basic for Electronics Engineering Applications

Chapter 28:

Special
Programming
techniques

During the development of test programs you will encounter some specific
problems. Most of these problems can be tackled using some logic thinking. But
some problems can be hard to find a solution for. This chapter will attempt to
clarify some of the specific problems you might struggle with when developing
your program.

28.1 Stream Interpreting

What is stream interpreting. Simply said it is the generation of a data-stream to a
target. This stream can be accompanied by a number of control signals such as a
select line and a clock or strobe line. When the output of the stream generator is
fed to an output port then we are talking about a bit-banged interface. You are in
fact manipulating bits to ‘emulate’ one interface onto another interface.

28.1.1 Monolithic Program

Let’s take an example with a shift register.

523 Visual Basic for Electronics Engineering Applications

A shift register has a clock input a reset line and a data input. We will connect
this shift register on a standard parallel port (In this case the Printerport, but it
could be an IO port of the 8255 controller on our home-built IO board as well).

The reset line will be connected to bit D0, the clock line will be attached to Bit
D1 and the data in of the shift register will be connected to D2 of the io port.

Thus we can already define some constants

Const Shift_RST = 1
Const Shift_CLK=2
Const Shift_DIN=4 ‘ bit 2 is worth the decimal
value 4

The first thing we should do is to build our stream from the supplied data. The
easiest way to do this is represent the data as a string containing 1’s and 0’s.
Fortunately the GPIBcore contains the Bin$ function.

The stream could also come from a graphical user interface for that matter.
Anyhow , for the moment the origin of the stream is of no importance.

To interprete the stream we have to make some sort of scanning algorithms that
checks the value of a certain character in the string and sets the output bits
accordingly.

Sub SendStream(stream$)
for x = 1 to len(stream$)

if mid$(stream$,x,1)=”1” then
 out Ioport,shift_din
outIOPort,Shift_Din+Shift_CLK
out Ioport,Shift_Din

else
 out Ioport,0
outIOPort,Shift_CLK
out Ioport,0

end if

next x

End Sub

The above block of code will send scan the stream independent of its length and
send out the appropriate bit. A clock pulse is generated after the update of the
Din pin as well. To reset the shift register we can simply put 2 more commands
before we start scanning the string.

524 Visual Basic for Electronics Engineering Applications

The final code would look like this:

Sub SendStream(stream$)
out Ioport,Shift_RST
out Ioport,0
for x = 1 to len(stream$)

if mid$(stream$,x,1)=”1” then
 out Ioport,shift_din
outIOPort,Shift_Din+Shift_CLK
out Ioport,Shift_Din

else
 out Ioport,0
outIOPort,Shift_CLK
out Ioport,0

end if

next x

End Sub

28.1.2 Modular program

The disadvantage of the above program is that it is one block of monolithic code
that is hard to port to different hardware. Of course you can change the pin
definition by altering the definition of the 3 constants involved , but that is not
real portability. What if you need a number of instructions control a certain pin.

Therefore you need to make your program modular. If you rewrite the above
example in the following way you will get a truly portable program. Besides the
fact that it is better portable it is also better readable. Even someone who never
programmed before or doesn’t understand the BASIC language (I can’t image
they exist) can understand this code.

Sub SendStream(stream$)
RSThi
RSTlo
for x = 1 to len(stream$)

if mid$(stream$,x,1)=”1” then
 DINhi
CLKHI
CLKLO

else
 DINlo

525Visual Basic for Electronics Engineering Applications

CLKhi
CLKlo

end if

next x

End Sub

Now all we have to do is define the routines that hook our operations to the
hardware.

Dim mask as integer

Sub RSThi

Out Ioport+1,128

End Sub

Sub RSTlo

Out Ioport+1,0

End Sub

Sub CLKhi
mask = mask or 1

End Sub

Sub CLKlo
mask = mask and (255-1)

End Sub

Sub DINhi
out ioport+2,(inp(ioport+2) or 8)

End Sub

Sub DINlo
out ioport+2,(inp(ioport+2) and (255-8))

End Sub

The above code shows that the code to handle the RST pin is changing a bit in a
certain register. The other 2 bits physically reside in another register.

The CLK pin is a physical pin on a parallel port. But we are not allowed to
change that status of the other pins , and we can’t read from the port. So we
need to declare a variable that holds the status of our IO port. Therefore the
declared variable mask. Other routines in our program may use this Mask bit as
well.

526 Visual Basic for Electronics Engineering Applications

The DIN pin belongs to a port that can be read back. There I used code that
retrieves the current setting and alter them. This is called a read-modify-write
operation.

As you can see this code is truly portable and adaptable to any situation
possible. It is sufficient to adapt the layer below the stream interpreter to port it.

28.1.3 Creating the stream

So far I’ve made the interpreter and the io routines. But where do we get the
stream ? There are a number of options : you create it by converting a value to a
binary stream using the BIN$ function in the GPIBcore. Or you can ask the user
to type the stream (duh). Or maybe you can provide him with a graphical user
interface. And the latter is exactly what I’m about to do here.

Remember the arrays of objects described in one of the very first parts of this
book ? Well that is what I am going to use. Simply make an array of
checkboxes. Each checkbox represents one bit in the stream. If you order them
logically then the element 0 will represent bit 0 , element 2 represents bit 1 and
so on.

The creation of the stream is then attached to the Click event of the array of
controls.

Sub Bitstream_Click(index as integer)
stream$=””
for x = 0 to number_of_elements

if Bitstream(x).value =1 then
 stream$=”1”+stream$

else

527Visual Basic for Electronics Engineering Applications

stream$=”0”+stream$
end if

next x

sendstream(stream$)

End Sub

And there you have it : a graphical interface to our stream interpreter. If you
now assign a meaningful name to every checkbox you have a very user friendly
program.

28.2 Report generating on a printer

Most people are afraid of creating professional reports on a printer. Sure ,
sending just text to a printer is easy , but to create a professional print-out
including graphics is a different matter … or is it ? Normally the development
of code that makes a good looking hardcopy can be cumbersome but , if you use
some tricks the job gets a whole lot easier.

The first thing to keep in mind is that the printer is treated as an object in Visual
Basic. Actually the printer is part of a collection of printers. All manipulations
you can do with the data to be printed can be performed on a form as well. That
means : making a preview is a snap. On a printer you can even program a
coordinate system !.

28.2.1 The Printer Object

The Printer object enables you to communicate with a system printer (initially
the default system printer). The Printers collection enables you to gather
information about all the available printers on the system.

Printer
Printers(index)

The index placeholder represents an integer with a range from 0 to
Printers.Count-1.

Use graphics methods to draw text and graphics on the Printer object. Once the
Printer object contains the output you want to print, you can use the EndDoc
method to send the output directly to the default printer for the application.

528 Visual Basic for Electronics Engineering Applications

You should check and possibly revise the layout of your forms if you print
them. If you use the PrintForm method to print a form, for example, graphical
images may be clipped at the bottom of the page and text carried over to the
next page.

28.2.2 The Printers Collection

The Printers collection enables you to query the available printers so you can
specify a default printer for your application. For example, you may want to find
out which of the available printers uses a specific printer driver. The following
code searches all available printers to locate the first printer with its page
orientation set to portrait, then sets it as the default printer:

Dim X As Printer

For Each X In Printers

If X.Orientation = vbPRORPortrait Then
' Set printer as system default.
Set Printer = X
' Stop looking for a printer.

 Exit For

 End If

Next

You designate one of the printers in the Printers collection as the default printer
by using the Set statement. The preceding example designates the printer
identified by the object variable X, the default printer for the application.

Note If you use the Printers collection to specify a particular printer, as in
Printers(3), you can only access properties on a read-only basis. To both read
and write the properties of an individual printer, you must first make that printer
the default printer for the application.

28.2.3 NewPage

This method ends the current page and advances to the next page on the Printer
object.

529 Visual Basic for Electronics Engineering Applications

object.NewPage

The object placeholder represents an object expression that evaluates to an
object in the Applies To list.

NewPage advances to the next printer page and resets the print position to the
upper-left corner of the new page. When invoked, NewPage increments the
Printer object's Page property by 1.

28.2.4 EndDoc

Terminates a print operation sent to the Printer object, releasing the document to
the print device or spooler.

object.EndDoc

The object placeholder represents an object expression that evaluates to an
object in the ‘Applies To’ list.

If EndDoc is invoked immediately after the NewPage method, no additional
blank page is printed.

28.2.5 Example

This example uses the EndDoc method to end a document after printing two
pages, each with a centered line of text indicating the page number. To try this
example, paste the code into the Declarations section of a form, and then press
F5 and click the form.

Private Sub Form_Click ()
Dim HWidth, HHeight, I, Msg ' Declare

variables.
On Error GoTo ErrorHandler ' Set up error

handler.
Msg = "This is printed on page"
For I = 1 To 2 ' Set up two iterations.
HWidth = Printer.TextWidth(Msg) / 2 ' Get

half width.

530 Visual Basic for Electronics Engineering Applications

HHeight = Printer.TextHeight(Msg) /2 ' Get
half height.

Printer.CurrentX = Printer.ScaleWidth / 2 -
HWidth

Printer.CurrentY = Printer.ScaleHeight / 2 -
HHeight

Printer.Print Msg & Printer.Page & "."
 ' Print.

Printer.NewPage ' Send new page.
Next I
Printer.EndDoc ' Printing is finished.
Exit Sub

ErrorHandler:
MsgBox "There was a problem printing to

your printer."
 Exit Sub
End Sub

531 Visual Basic for Electronics Engineering Applications

532 Visual Basic for Electronics Engineering Applications

Chapter 29:

Building user

interfaces.

An important point of concern is building a user interface for your test program.
Designing an intuitive easy-to-use program is not an easy job. Too many
programs are simply ‘kludged’ together into a working state and then used ‘as­
is’.

This should not be the case for your programs. By the time you have reached
this chapter you should already know a lot about the BASIC language , about
designing windows programs , controlling instruments , writing structured and
expandable programs. Ant it is exactly all of the above knowledge you will need
to create a friendly and easy-to-use interface for your program.

29.1 Build a splash screen and design a logo and icon.

No kidding! No time to be modest now. It’s okay to brag a bit about the
program . Design a catchy icon (16*16 and 32*32 bit in 16 colors) to put on
the title bar of your program. Make the same icon in a bigger format to put on a
splash screen.

533 Visual Basic for Electronics Engineering Applications

The splash screen should contain at least the name of the program , copyright
information , and a version number. You can also put some info about the
company or person who wrote it. And a nice graphic doesn’t hurt. As an
example you can take a look at splash screen from Word or Excel or even
Visual basic itself.

Graphics can mostly be downloaded from the web. To construct your graphic
you can mix several images and texts together using a program like Paint Shop
pro that can be downloaded for free from the internet.

The Splash screen is at the same time a good spot to start allocating the memory
you need , loading any data you need and initializing any instruments you need.
You can do this most easily by loading the sub-forms of your program into
memory without showing them. This will effectively allocate whatever
resources are needed.

If you have clean partitioned code you can write a subroutines that initializes the
hardware you will use , like GPIB or printer ports , to a known state as well.
When all this is done you simply pass control to the main form of the program
and unload the splash screen.

Sub Splash_load()
DoEvents ‘ Make sure we are being shown !

534 Visual Basic for Electronics Engineering Applications

load frm_MainForm
’ update a statusbox here
label1.caption =”Loading forms …”
DoEvents
load frm_Setup
DoEvents
load frm_ExtraForm1
DoEvents
load frm_EveryOtherForm
label1.caption =”Initializing system”
DoEvents
InitializeSystem
DoEvents
mainform.show
DoEvents

Me.hide

End Sub

The above block of code does all of this and shows some status information to
the user as well. Make sure you don’t forget the DoEvents statement between
every load command. This allows Windows the necessary time to handle its
internal management. Some of this time is used to manage the just loaded form.

Besides giving your program a professional look it also speeds up the perceived
speed of your program.

29.2 Constructing the Main form.

The main form is the most important piece of your program. You should think
about the way you want to organize it. After all this is the place that the user
will be looking at most.

29.2.1 The Workplace of your program

A good main form is designed as a switchboard. You have all the things you use
the most in front of you. All extra information is hidden in additional screens.
Remove any superfluous information from the screen and into sub-forms.

Depending on the time you have to write the program you could implement
'dockable' toolbars and other fancy stuff but this is not a must for a good

535 Visual Basic for Electronics Engineering Applications

program. Sometimes too many gizmo’s can be annoying too. After all a test
program is bound to be used by technical minded people , and they don’t care
about funky colors (well … most of them that is) .

A nice to have thing is a status bar. Show the date and time and a single line of
info. This gives your program that little ‘extra’ touch and doesn’t cost much.
The info-line can be used to tell the user something about what he is doing or
going to do.

29.2.2 Construct a Decent Menu

A decent menu should have a clean layout. Sort the items on a mane per
category. File operations should be put under the File menu , Tools under a
Tools menu and Help under a Help menu. The golden rule here is : Keep it
logical. Wherever possible , try to assign hotkeys. It makes the program
friendlier and it doesn’t cost you a single line of code. The VB compiler takes

536 Visual Basic for Electronics Engineering Applications

care of the hotkeys. Look at standard windows programs to add hotkeys to your
menus.

Images on menus can look cool but take too much time to implement. It’s better
to construct a separate toolbar than embedding the icons in the menu itself.

29.2.3 Tooltips

Try to put some meaningful information in the ToolTipText property of the
controls on the screen. It’s not a lot of work but can provide that extra bit of
information to the user when he needs it. This can literally save you a bunch of
calls for support from your user. And it does not require you writing any code.

537 Visual Basic for Electronics Engineering Applications

29.2.4 Toolbars

A toolbar can be a very handy thing. A single icon might mean more then a
thousand words. But a superfluous toolbar will scare the user as well. Put only
the real tools on the toolbar, and provide additional information using the
ToolTipText property of the toolbar control. The icons on the toolbar should
have a clear meaning. Don’t put the symbol for Cut (scissors) if you are going
to use it to paste text. Sounds pretty obvious ? Yes in this case. But what about
things like Print and Print setup ? The answer is simple:

A toolbar contains only single-action objects. A printer setup button is out of
place on a toolbar. Every button should perform an action that needs no further
information form the user. No pop-up boxes or fly-outs. Just plain and simple
one-click does it all actions. Typical examples are:

Save current file, Print current file, Cut, Copy, Paste, Undo, Redo, Help, Run,
Stop, Break, Continue etc.

Things that are totally out of place on, a toolbar :

Color selectors, printer selectors, setup screens for part of the program.

Furthermore the toolbar should remain constant throughout the use of the
program. That means that no parts of it should suddenly loose functionality.

29.3 Organizing Objects and controls.

The visual appearance of a program is heavily depending on the arranging of
objects and controls. To make your life as a programmer easier you should
frequently use the frame object. Group all items that belong together on a frame.
Then start constructing sub frames on this frame and rearrange the objects
again. You can dynamically show and hide frames and sub-frames. This avoids
having to pop-up smaller windows all the time and it keeps the desktop orderly.

Other parts of your program should be where the user expects them Toolbars at
the top , just below the menu , Status bars at the bottom. And in between the m
the central working area of your program. Try to keep your layout style as

538 Visual Basic for Electronics Engineering Applications

consistent as possible with what is commonly used in any Windows based
program.

29.4 Configuration and tool forms

Whenever you want to provide extra forms to allow the setup of several
parameters , try to be as specific as possible. Don’t make one huge form. Break
it down into small chunks of information, but at the same time avoid 500
different setup forms. The best way is to make a separate setup form that
contains a tab-strip. Depending on the actual stuff the user wants to configure he
can click on one of the tabs and then perform the setup for that section. A
typical example would be the following :

29.6 Help files

Whenever possible construct a help file for your program. This involves writing
some text in a specified format and running it through a so called Help-
Compiler. The details about this process are a bit too extensive for this manual
but can be found in the on-line help of Visual Basic.

For most of the test programs developed the use of ToolTipText is far more
useful. When you feel additional help is required then you always have a pop-up
box display some more text.

539 Visual Basic for Electronics Engineering Applications

540 Visual Basic for Electronics Engineering Applications

Chapter 30:

Some more case
studies

SPI stack on LPT

This sample shows a practical implementation of stream generation on a printer
port. It shows both methods , one functional and on graphical.

Data export to file

Formatting data in an orderly way is not always easy. A sample application that
formats and writes data to CSVfiles (Excel format)

Building a U/I plotter using standard GPIB

A sample that builds a simple curve-tracer using standard GPIB calls and
instrument libraries

Building a U/I Plotter using ClassWork

A sample that builds the same curve-tracer but now using ClassWork libraries

541 Visual Basic for Electronics Engineering Applications

Building a U/I Plotter using TestBench

The same sample all over again but now using a TestBench front panel for
ClassWork.

542 Visual Basic for Electronics Engineering Applications

Case Study 11 : SPI stack on LPT

A typical operation you might perform is to shift data in and out of a
component. Most likely you will use a printer port for this purpose , since it is
standard property on any computer. You could as well implement this stack for
a custom IO board or ready made IO board. The only layer you would have to
adapt is the hardware access.

If we follow the rules of a good structured program we will begin by writing the
low level interface code that will glue all routines to our hardware.

The SPI bus defines 4 pins :

- SCK : Serial Clock

- CS : Chip Select

- DO : data to the chip

- DI : data from the chip.

The SPI bus uses a strict sequencing diagram that tells us that , in order to
talk to a component , we should have the clock line low and then take the
chip select line low.

543 Visual Basic for Electronics Engineering Applications

CS

DI

DO

SCK

Start Stop
DO Valid

DI valid

Write cycle Read cycle

The above diagram shows us the timing information of the SPI bus on every
consecutive clock pulse (1 rising and one falling edge) the chip will take in or
send out data. Data is taken in and sent out on the rising edge . The outgoing
data remains valid during the time that the SCK pin is HI. To terminate a
transaction you leave the SCK line low and then make CS high.

In our example we will use bits D0 to D2 as output and the BS bit as input.
There are a number of ways you can implement the transport routines. Check
out chapter 28 for more information. In this example I will use the ClassWork
library that controls printer ports

Dim LPT1 as New PrinterPort

LPT1.port= &h378

Sub SCKhi

lpt1.D0 = True

End Sub

Sub SCKlo

lpt1.D0 = False
End Sub

Sub Cshi

lpt1.D1 = True
End Sub

Sub Cslo

lpt1.D1 = False

544 Visual Basic for Electronics Engineering Applications

End Sub

Sub Dohi

lpt1.D2 = True

End Sub

Sub Dolo

lpt1.D2 = False

End Sub

Function SampleDI

sampledi = LPT1.BS

End function

In case you don’t want to use this approach you always ‘bit-bang’ using 'AND'
and 'OR' operations. Next step is to create some higher level routines that
perform simple tasks.

Sub OpensPI

Cshi

SCKlo

Dolo

CSlo

End Sub

Sub CloseSPI

SCKlo

Dolo

CShi

End Sub

The above routines generate the timing diagram required to initiate transport and
terminate transport. Now all we need are the effective transport routines. Since
our routines can be used on several data-lengths we might want to make them
adaptive.

545 Visual Basic for Electronics Engineering Applications

Sub SendData (dta$)

For x = 1 to len(dta$)

if mid$(dta$,x,1)=”1” then

 DOhi

else
 DOlo

end if
SCKhi ‘ clockpulse generation
SCKlo

Next x
End Sub

The above routine will always transit an amount of bits equal to the number of
characters in the DTA$.

The final routine is the one retrieving data from the SPI bus. It accepts the
number of bits desired.

Sub ReceiveData(number_of_bits)

y$=””

for x = 1 to number_fo_bits

if SampleSPI=true then
 y$=y$+”1”

else
 Y$=y$+”0”

End if

next x

End Sub

The final functions will implement the entire SPI frame now. Our final chip
could accept a 5 bit address and 8 bit datastream and would then return 4 bits of
status information.

Function SPI(address$,dta$)

OpenSPI

senddata address$

senddata dta$

SPI = receivedata (4)

closeSPI

End Sub

546 Visual Basic for Electronics Engineering Applications

The above function would effectively accomplish this entire data exchange
protocol. Furthermore ,due to the layered architecture of our library ,it can be
maintained and adapted very easily to different hardware platforms. The only
things that need to be changed are the routines that glue the SPI stack to the
hardware. If we don’t want to use the ClassWork library then we simply call
other functions from somewhere else , or we implement our own logic there.
The entire stack is expandable in all directions: to the user level , to the
hardware level and in the functionality level.

The next step might be the construction of a graphical control of the bits you are
sending. The easiest way is to create an array of objects that can be set to 1 or
zero. Best would be to simple put a number of checkboxes on the screen. When
you create these as an array then you can assign the element 0 to bit 0 , element
1 to bit 1 etc. Need more bits ? Put more check boxes. Since all checkboxes will
fire the same piece of code the construction of the transport mechanism is
simple

Sub SPIcheckbox_click(index as integer)
tmp$=””
for x = 0 to 7 ‘ amount of checkboxes

if SPIcheckbox(x).value=1 then
 tmp$=tmp$+”1”

else
 tmp$=tmp$+”0”

end if

next x

OpenSPI
Senddata(tmp$)
CloseSPI

End Sub

And presto ! Instant user access to the entire SPI stream without limiting the
adaptability of the code.

547 Visual Basic for Electronics Engineering Applications

548 Visual Basic for Electronics Engineering Applications

Case Study 12 : Data export to file

Most test programs will collect data and have the need to store it somewhere.
You can of course develop your own file format but , it might be more
interesting if you could use some standard format supported by a lot of
programs. Question is , what format ?.

There is one format recognized by almost any data processing program that is
even readable for humans : the CSV format or Comma Separated Values format.
If you give the filename the extension CSV then these programs will know
exactly how to treat these files , and import them in a consistent way into their
internal format. Nice side effect is that the file remains readable by your
programs as well as by any text viewer too. You could even edit it manually if
you would.

Structure of CSV files

<entry>,<entry>,<entry>,<entry>,<entry>[CR LF]
<entry>[CR LF]
<entry>,<entry>,<entry>,<entry>,<entry>[CR LF]
<entry>,<entry>,<entry>,<entry>[CR LF]
<entry>,<entry>,[CR LF]
<entry>,<entry>,,<entry>[CR LF]

The above syntax shows you immediately all you need to know. Every line
contains a number of entries separated by a comma and terminated with a [CR
LF] (carriage return-line feed &h13 &h10) pair. The CR-LF you will get
automatically if you simply use the print command without terminator (, or ;) to
write to a file. So there are no pitfalls there. It is even allowed to have a comma
without and entry followed by CR-LF or even two commas without anything in
between. Note that for maximum compatibility it is wise to put at least a space
in between.

To the CSV import filter the comma means nothing else as ‘go to the next
column. The data contained in an entry field can be numeric , alpha or
alphanumeric. If an entry contains a valid number (1 , 1.2 1.2E+122 , -1.12e-99
) and nothing else then this , then it will be correctly imported as a number. If
there is any other information in the entry then it will be interpreted as text.

549 Visual Basic for Electronics Engineering Applications

This means that the following CSV file :

10.2 , volts , 3.12,Amps[CR LF]
11.5 Volts,12.7 Amps [CR LF]

will be read as a

10.2 Volts

11.5 Volts 12.7 Amps

Lets look at an example files

This , Is , A , Text [CR LF]
This,is,a,text,too , [CR LF]
This,,is , , also,, valid,,[CR LF]
1,2,1.23,a,b,c[CR LF]

When imported this will look like the following :

This Is A Text

This is a text too

This is also valid

1 2 1.23 a b c

Not that trailing commas without text will be stripped from the import. (Some

older tools don’t do this correctly , but it doesn’t matter anyway)

Generating CSV files.

The following piece of code might make life very easy for you

Dim CSVfilename$ ‘ holder for the filename

Sub CSVtext (txt$)

x = freefile

550 Visual Basic for Electronics Engineering Applications

Open CSVfilename$ for append as #x

Close
print #1,txt$ +”,”;
c

End sub

Sub CSVnumber (number)
x = freefile
Open CSVfilename$ for append as #x

Close
print #1,str$(number) +”,” ;
c

End sub

Sub CSVnewline
x = freefile
Open CSVfilename$ for append as #x

Close
print #1,””
c

End Sub

You simply put the target filename in the variable CSVfilename$. To add
entries you use the subroutines CSVtext and CSVnumber. To terminate a line
you simply call CSVnewline.

551 Visual Basic for Electronics Engineering Applications

552 Visual Basic for Electronics Engineering Applications

Case 13 : A U/I plotter using GPIBcore operations

This little program will perform a voltage sweep and measure the current trough
a load. The resulting data will be stored in an array for later processing.

The first thing we need to do is find out the addresses of our instruments and
store them int the program. Next thing is to write the GPIB code to initialize the
bus and open the instruments. It is a good practice to close the GPIB bus upon
exit , so a small blurb of code will be attached to a Quitprogram menu entry as
well.

Const PSU =5

Const DVM =22

Sub Form_load()

GPIBinit

GPIBopen PSU

GPIBopen DVM

End Sub

Sub Quitprogram

bye

end

End sub

The next thing we need to do is create a form that holds entry fields for the start,
stop and step value of the voltage sweep. The textboxes will be called
respectively STARTval, STOPval and STEPval. Also a textbox called report
will be used to output the logged data. And finally we need a button to trigger
all of this action.

553 Visual Basic for Electronics Engineering Applications

Now we need to know the commands to set the voltage of the supply. Note that
these commands are instrument dependent and need to be looked up in the user
manual of the instrument

Powersupply : “VSET <channel>: <V.vvv>”

Multimeter : “RANGE:CURRENT DC” and ”MEASURE?”

In our case we are going to use channel 1 of the power supply so we need to
send it the string ‘VSET 1:’ followed by the desired voltage . Now that we have
this information we can write the main loop of the program.

Sub Sweep_click()
gpibwrite DVM,”RANGE:CURRENT DC”
for x = val(startval.text) to

val(stopval.text) _

step val(stepval.text)

gpibwrite PSU,”VSET 1:“+str$(x)
GPIBread DVM,”MEASURE?”
report.text=report.text +str$(x)+” /

“+str$(ibret)
next x

End Sub

554 Visual Basic for Electronics Engineering Applications

The net result is a program that plots exactly what we want to a textbox. Now
it’s up to you to write file IO or even a graphic charter using an Mschart object ,
or even your own charter using graphics operations..

Of course in the above example we could have used some of the modules
existing for those instruments

Suppose we have a module for a multi-meter (say a HP34401) loaded. The
sweep routine could then look like this :

Sub Sweep_click()

HP34401CurrentDC dvm

for x = val(startval.text) to

val(stopval.text) _
step val(stepval.text)

gpibwrite PSU,”VSET 1:“+str$(x)
HP34401Measure
report.text=report.text +str$(x)+” /

“+str$(ibret)

next x

End Sub

As you can see the dedicate calls have been replaced by calls to functions and
subroutines in the Library for the instrument.

555 Visual Basic for Electronics Engineering Applications

556 Visual Basic for Electronics Engineering Applications

Case 14 : A U/I plotter using ClassWork operations

This little program will perform exactly the same function as the previous
example , except that this time it will use the ClassWork libraries to handle the
instruments

The User interface looks exactly the same but most of the code changes

Lets take a loot at the system startup code:

Dim PSU as new HP6624 ‘ Create an object of
class HP6624
Dim DVM as new HP34401 ‘ Create object from
HP34401 class

Sub Form_load()
GPIBinit
PSU.address = 5 ‘ address of the supply
PSU.Assignto = 1 ‘ use first channel of this

supply
DVM.address = 22 ‘ address of the DVM
DVM.CurrentDC ‘ select Current DC range

End Sub

Sub Quitprogram

bye

end

End sub

As you can see the initialization block looks a bit different. All of the settings
for the instrument are done here. The address has been assigned , the
appropriate channel for the supply has been selected and the range for the multi­
meter has been specified.

 Now it’s time to have a look at our sweep function :

Sub Sweep_click()
for x = val(startval.text) to

val(stopval.text) _
step val(stepval.text)

557Visual Basic for Electronics Engineering Applications

PSU.Voltage x
value = DVM.Measure
report.text=report.text +str$(x)+” /

“+str$(value)

next x

End Sub

You can see that the way to approach the instruments is exactly like you
approach any other object in your program. That is the idea behind ClassWork :
it exposes the instruments as objects to your program.

558 Visual Basic for Electronics Engineering Applications

Case 13 : A U/I plotter using TestBench operations

This last example shows you how to add TestBench controls to your program.
The code is the same as the previous example with a minor difference in the
startup section. But let’s take a look at the screen first:

The controls for our program have been moved to a little panel. So nothing
special there. In fact it is not necessary to move them to a panel but it looks
more consistent with the TestBench controls. Next to the panel are the two
inserted TestBench controls: One for the power supply and one for he multi­
meter. The power supply has been named PSU and the multi-meter has gotten
the name DVM.

Of course now we have to use different names for our supply and multi-meter
when we derive them from ClassWork objects.

Dim MyPSU as new HP6624 ‘ Create an object of
class HP6624
Dim MyDVM as new HP34401 ‘ Create object from
HP34401 class

Sub Form_load()
GPIBinit
MyPSU.address = 5 ‘ address of the supply

559 Visual Basic for Electronics Engineering Applications

MyPSU.Assignto = 1 ‘ use first channel of
this supply

MyDVM.address = 22 ‘ address of the DVM
MyDVM.CurrentDC ‘ select Current DC range

Set DVM.Target = MyDVM ‘ TestBench link to
ClassWork

Set PSU.Target = MyPSU ‘ TestBench link to
ClassWork
End Sub

Sub Quitprogram

bye

end

End sub

The reason I changed the name of the ClassWork objects is so that I don’t have
to rename anything else in my project. All calls will now be done to the
TestBench controls which in turn will pass them to the ClassWork object , that
will talk to GPIBcore , which will perform the GPIB I/O until all returning data
has been handed back to TestBench.

Sounds complicated ? No it’s simple logic applied to a very modular program.

560 Visual Basic for Electronics Engineering Applications

Appendixes

Appendix 1 : Suggested Reading List

Appendix 2 : Datasheet for 8255 controller

Appendix 3 : Win95io users guide

561 Visual Basic for Electronics Engineering Applications

562 Visual Basic for Electronics Engineering Applications

Appendix 1: Suggested Reading List

The Programmers PC Sourcebook Second edition by Thom Hogan
Microsoft Press ISBN1-55615-321-X

This book is a collection of listings and tables describing every nook and
cranny of the IBM PC . From hardware bus connectors to single bit
memory location. It even details on the Windows memory usage. The
Bible of PC register and memory maps

PC Intern 4 by Michael Tisher
Easy Computing ISBN 09-5157-027-3

Reference book that explains the little known regions of the PC. This
provides a good in depth knowledge on how the machine works. This
tells the story behind all the registers and interrupts that you can find in
the PC sourcebook.

PC Intern 5 by Michael Tisher and Bruno Jennrich
Easy Computing ISBN 90-5167-079-6

While this is the successor of PC intern 4 you really can’t live without the
old book. This book details more on the Windows environment. A lot of
material has vanished (it is still included on the CD ROM that comes
with the book) . But when you are on the job it’s easier to have NR 4
altogether.

Inside the PC by Peter Norton
Sams Publishing ISBN 0-672-30624-7

A good book that provides a lot of background information about the PC.
Includes a lot of sample programs and questionnaires that allow you to
evaluate yourself on your knowledge.

The PC inside out by Murray Sargent and Richard L Shoemaker
Addison Wesley ISBN 0-201-62646-2

563 Visual Basic for Electronics Engineering Applications

Provides not only the workings of the PC but gives a crash course on
electronics as well. A great book if you’re into building your own
hardware to fit in to , or attach to the PC. Comes with a nice debugging
tool.

The Undocumented PC by Frank van Gilluwe
Addison Wesley No longer available.

This turns the PC inside out and reveals a lot of hidden and little known
stuff about the PC. It takes you into uncharted terrain . It details on bugs
in BIOS and chip sets. It even points out the BUGS in the CPU’s . The
accompanying disk contains the most powerful disassembler :
SOURCER. This is the only tool that every programmer wants ,but will
not ask for it. Because he doesn’t want you to know that it exists .

A Must for a die-hard assembler programmer

564 Visual Basic for Electronics Engineering Applications

Undocumented DOS by Frank van Gilluwe
Addison Wesley No longer available.

While the other book by this guy turns the PC upside down , this book
explores DOS .Every nook and cranny of the operating system is
explored and many chapters go into uncharted space. All the secrets
that nobody wants to reveal are finally exposed in this book.

A Must for a die-hard assembler programmer

The IBM PC / AT technical Manual
IBM press :PC/AT Technical manual

This book contains all the schematics , BIOS listings ports mapping and
everything else about the original PC XT and PC AT. It is the SPEC of
the PC. Unfortunately it is not easy to obtain. You have to be a certified
IBM developer to get this.

565 Visual Basic for Electronics Engineering Applications

Appendix 2 : Datasheet for 8255 controller

566 Visual Basic for Electronics Engineering Applications

Appendix 3 : Win95io users guide

567 Visual Basic for Electronics Engineering Applications

	Front Cover
	Copyright Notice
	Table of Contents
	The Basics of Visual Basic (Part I)
	Ch 1 - The Visual Basic Background
	Ch1.1 Windows
	Ch1.2 Object Oriented Programming
	Ch1.3 What OOP does for you
	Ch1.4 Overview of the Definitions

	Ch 2 - Exploring the Visual Basic Environment
	Ch2.1 Starting a Visual Basic Project
	Ch2.2 The programming environment

	Ch 3 - The Basic Objects and Controls
	Ch3.1 The Form
	Ch3.2 The controls
	Ch3.3 The standard controls in Visual Basic
	Ch3.4 Common Controls
	Ch3.5 Common Dialog control
	Ch3.6 Communication control
	Ch3.7 Menu's
	Ch3.8 Properties

	Ch 4 - Events and Methods
	Ch4.1 Tapping into Events
	Ch4.2 Methods

	Ch 5 - The Basic Language itself
	Ch5.1 Variables
	Ch 5.2 Arrays
	Ch 5.3 Types
	Ch 5.4 Scope of variables
	Ch 5.5 Module level scope
	Ch 5.6 Subroutines and Functions
	Ch 5.7 Scope of procedures
	Ch 5.8 constants
	Ch 5.9 Numerical Operators
	Ch 5.10 Base conversion
	Ch 5.11 Logical Operators
	Ch 5.12 Flow control
	Ch 5.13 string manipulation
	Ch 5.14 File manipulation

	Ch 6 - Creating a user interface
	Ch 6.1 Creating the Form
	Ch 6.2 Arrays of Objects and Controls

	Ch 7 - Attaching code
	Ch 7.1 Attaching code to Objects
	Ch 7.2 Let's attach some code

	Ch 8 - Running and Debugging a program
	Ch 8.1 running a program
	Ch 8.2 Debugging a program
	Ch 8.3 Examining Variables
	Ch 8.4 Advanced debugging : the watch window
	Ch 8.5 Using breakpoints
	Ch 8.6 the debug object

	Ch 9 - Distributing a program
	Ch 9.1 The first steps
	Ch 9.2 specifying the media

	Ch 10 - Multimodule projects
	Ch 10.1 Multiple Forms
	Ch 10.2 Modules
	Ch 10.3 Accessing items from other parts
	Ch 10.4 Root structure of a project

	Ch 11 - A couple of Case studies
	Study 1 : A small text editor
	Study 2 : A Calculator

	The Advanced World of Visual Basic (PART II)
	Ch 12 - One Step Beyond
	Ch 12.1 Forms
	Ch 12.2 Menu's
	Ch 12.3 Modifying Menus from code
	Ch 12.4 Special menu features
	Ch 12.5 Option selectors
	Ch 12.6 Timer objects
	Ch 12.7 User entry objects
	Ch 12.8 Printing
	Ch 12.9 Taking advantag of the windows look

	Ch 13 - Graphics
	Ch 13.1 Basic coordinate operations
	Ch 13.2 Drawing setup
	Ch 13.3 Drawing primitives
	Ch 13.4 Saving and loading graphics
	Ch 13.5 Coordinate systems

	Ch 14 - Communicating to the world around us
	Ch 14.1 Sendkeys
	Ch 14.2 DDE : Dynamic Data exchange
	Ch 14.3 Serial Communication
	Ch 14.4 Winsock : Ethernet control

	More case studies
	Study 3 : Doodle, a drawing program
	Study 4 : Data terminal for serial communication
	Study 5 : alphaserve : a TELNET server
	Study 6 : Talking to Excel

	Master Programming (PART III)
	Ch 15 - Digging into Windows
	Ch 15.1 DLL's
	Ch 15.2 Accesing DLL routines
	Ch 15.3 on passing parameters ...
	Ch 15.4 API programming

	Ch 16 - ActiveX control creation
	Ch 16.1 Creating an activeX object
	Ch 16.2 Adding proprty's and events
	Ch 16.3 What the Wizard came up with
	Ch 16.4 A closer look to the final code

	Ch 17 - Building Better programs
	Ch 17.1 The KISS way
	Ch 17.2 atomic Programming
	Ch 17.3 Naming objects
	Ch 17.3 Error handling

	Ch 18 - The Windows Registry
	Ch 18.1 Digging into the registry
	Ch 18.2 Data mining in the registry
	Ch 18.3 Make use of the registry

	Ch 19 - scripting interpreters
	Ch 19.1 Building a simple scripting interpreter
	Ch 19.2 MSScript : a real script interpreter

	Ch 20 - Classes
	Ch 20.1 The Class concept
	Ch 20.2 Creating a Class
	Ch 20.3 Instantiating objects from a class
	Ch 20.4 a practical example

	Yet more case studies
	Study 7 : Killing Windows with API calls
	Study 8 : The LED ActiveX control
	Study 9 : MiniBasic, a program environment for MSscript
	Study 10 : Additional notes on the use of Classs

	Visual Basic in the Lab (PART IV)
	Ch 20 - The computer
	Ch 20.1 The PC a historical overview
	Ch 20.2 The PC a hardware description
	Ch 20.3 The PC's input and output components
	Ch 20.4 The Internal Buses

	Ch 21 - Controlling the standard PC ports
	Ch 21.1 Finding the IO ports
	Ch 21.2 Hardware access

	Ch 22 - The Printer port in detail
	Ch 22.1 Functional Diagram
	Ch 22.2 Register Level Description
	Ch 22.3 Basic operation
	Ch 22.4 Bitbanging interfaces
	Ch 22.5 Printport Classwork
	Ch 22.6 special printport modes

	Ch 23 - The serial port in detail
	Ch 23.1 System description
	Ch 23.2 Port interface
	Ch 23.3 Flow control
	Ch 23.4 The UART
	Ch 23.5 RS232
	Ch 23.6 Cabling
	Ch 23.6 Basic Serial Operations

	Ch 24 - Plug in boards
	Ch 24.1 Description of the ISA bus
	CH 24.2 Common interface chips
	Ch 24.3 interfacing to ISA

	Ch 25 GPIB
	Ch 25.1 THe GPIB bus structure
	Ch 25.2 GPIB signals
	Ch 25.3 controlling a device on GPIB
	Ch 25.4 IEEE488.2
	Ch25.5 SCPI

	Ch 26 - VISION : an instrumentation system
	Ch 26.1 GPIBcore
	Ch 26.1 GPIBcore functions
	Ch 26.2 GPIBcore I/O functions
	Ch 26.3 GPIBcore Miscellaneous support functions
	Ch 26.5 Instrument and I/O libraries
	Ch 26.6 CLASSwork
	Ch 26.7 General rules for CLASSwork module development
	Ch 26.8 TestBench

	Ch 27 - Designing Test programs
	Ch 27.1 Clean code
	Ch 27.2 accessing instruments
	Ch 27.3 Collecting versus analysing
	Ch 27.4 creating log files
	Ch 27.4 anatomy of a well structured test program

	Ch 28 - special programming techniques
	Ch 28.1 stream interpreting
	Ch 28.1 report generation on a printer

	Ch 29 - Building user interfaces
	Ch 29.1 building splash screens
	Ch 29.2 Constructing the main form
	Ch 29.3 organising objects and controls
	Ch 29.4 configuration and tool forms
	Ch 29.5 Help files

	Ch 30 : some more case studies
	Study 11 : Building a U/I plotter using Testbench
	Study 12 : an SPI interface on LPT
	Study 13 : Export to file
	Study 14 : U/I plotter using GPIBcore

	Back cover

