

Fundamentals Application Design
Applications
Accessories

Introduction to MSVB Introduction
Introduction to the Main
Menu

Introduction to Methods Visual Control Addition Contextual Menus

Dynamic Control Creation Selecting a Control
Characteristics of Menu
Items

 Moving a Control
 Control Alignment
 Resizing Controls

Studio Windows
Functions and
Procedures

Exception Handling

The Toolbox Message Box Error Handling

The Properties Window Input Box
Introduction
Exceptions

to

.NET Support for
Exceptions

Techniques of Using
Exceptions

 File Processing

Fundamentals Details Serialization
Introduction File Information Binary
Writing to a Stream File System Information SOAP
Reading From a Stream Directories
Exception Handling

Introduction to Microsoft Visual Basic

Microsoft Visual Basic Fundamentals

Startup

Microsoft Visual Basic is a programming
environment used to create

 (GUI) for the
 family of . It usually

ships either by itself or as part of
. To follow these lessons, you must have

installed either Microsoft Visual Basic 2005
Express Edition, Microsoft Visual Basic 2005
Professional, or Microsoft Visual Studio 2005
(Professional). To get Microsoft Visual Basic 2005
Express Edition, you can download it free from
the Microsoft web site. After downloading it, you
can install it.

From now on, unless specified otherwise, we will use the expressions "Microsoft Visual Basic" or
"Visual Basic" to refer to Microsoft Visual Basic 2005.

After installing it, to use Microsoft Visual Basic, you must launch. To launch Microsoft Visual
Basic 2005 Express Edition, you can click Start -> (All) Programs -> Microsoft Visual Basic
2005 Expression Edition. If you are using Microsoft Visual Studio 2005 Professional, to start it,
on the task bar, you can click Start -> (All) Programs -> Microsoft Visual Studio 2005 ->
Microsoft Visual Studio 2005:

Microsoft Visual Basic presents itself as a series of tools used to assist you in creating computer

The Microsoft Visual Basic Interface

graphical user
interface applications Microsoft
Windows operating systems

Microsoft Visual
Studio

Page 1 of 2Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction1.htm

programs. As a normal Windows application, it starts on top with a menu and some toolbars. It
is also equipped with various windows, considered as tools, you will be using. Most of these
tools are available or are functional only if you have primarily created or opened a project.

To launch Microsoft Visual Basic:
If are using Microsoft Visual Basic 2005 Express Edition, on the taskbar, click Start -> (All)
Programs -> Microsoft Visual Basic 2005 Express Edition
If you are using Microsoft Visual Studio 2005, on the task bar, click Start -> (All) Programs
-> Microsoft Visual Studio 2005 -> Microsoft Visual Studio 2005

Practical Learning: Starting Microsoft Visual Basic

Distance Learning
Courses
UK University
Qualifications Browse and
Apply Online Today
www.rdi.co.uk/Distance_Learning

Visual Basic 6.0 Codes
Find Solutions for your
Business. Free Reports,
Info & Registration!
www.KnowledgeStorm.com

Free Movie Preview API
100000 videos with
metadata to make widgets,
gadgets and applications
InternetVideoArchive.com

Free SQL Server Tips
MS SQL Server Tips &
Techniques Solve SQL
problems fast and free
www.mssqltips.com

Introduction to Fieldbus
Free online courses make
learning fieldbus easy and
convenient - 24/7
www.PlantWebUniversity.com

www windev com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Next

Page 2 of 2Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction1.htm

Introduction to Microsoft Visual Basic

The Studio Windows

The Toolbars

A toolbar is an object made of buttons. These
buttons provide the same features you would get
from the (main) menu, only faster. Under the
main menu, the is equipped with the
Standard toolbar. By default, the Standard
toolbar is positioned under the main menu but
you can position it anywhere else on the IDE. To
move a toolbar, position the mouse on the dotted
line on its left section. The mouse pointer will
change into a cross:

www manashosting com Ads by Google

Then click and drag away from that position:

In the same way, you can position the toolbar anywhere on the screen. You can also attach or
"dock" it to one of the four sides of the IDE. When a toolbar is not docked to one side of the
IDE, it is said to float. When a toolbar is floating, you can resize it by dragging one of its
borders. If a toolbar is floating, to put it back to its previous position, you can double-click its
title bar.

By default, when you start Microsoft , it is equipped with one toolbar: Standard. To
get more toolbars, on the main menu, you can click View -> Toolbars and click the toolbar of
your choice. You can also right-click any available toolbar or the main menu. This displays a list
of all the available toolbars. Those that are currently opened have a check mark next to them.

A toolbar is equipped with buttons that could be unfamiliar. Just looking at one is not obvious.
To know what a button is used for, you can position the mouse on top of it. A will come
up and display for a few seconds.

In our lessons, each button on any toolbar will be named after its tool tip. This means that, if a
tool tip displays "Hungry", its button will be called the Hungry button. If a tool tip displays
"Save All", its button will be called the Save All button. If you are asked to click a button,
position your mouse on different buttons until one displays the referred to name.

Some buttons present an arrow on their right side. This arrow represents a menu. Here is an
example:

IDE

Visual Studio

tool tip

Page 1 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction2.htm

Like the menu, the toolbars can be customized. To customize the Standard toolbar by adding
buttons to it, you can right-click anything on the main menu or the toolbar and click
Customize... On the Customize dialog box, you can click the Commands tab. In the Categories
list, you can click a category, such as Debug. In the Commands list, you can click and drag an
item, position it somewhere in the Standard toolbar, and release the mouse. Here is an
example:

When you have finished, you can click the Close button on the Customize dialog box

The is the first wide area that appears when comes up. The
section displays a title as Recent Projects. At any time, to display the Start Page:

You can click its tab on the left side just under the Standard toolbar

On the main menu, you can click View -> Other Windows -> Start Page

On the main menu, you can click Windows -> Start Page

If you have just installed Microsoft Visual Studio or have not previously opened a project, the
Recent Projects section would be empty. Here is an example:

The Start Page

Start Page Microsoft Visual Studio

Page 2 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction2.htm

Once you start creating and using projects, they display in the Recent Projects section by their
names.

The middle section allows you to check new articles from and partners directly from
Visual Studio 2005 through an .

When you start or open a project, Microsoft Visual makes some windows available.
These are the most regularly used windows. If you think that one of them is not regularly used
in your types of assignments, you can remove it from the screen. To hide a window:

You can click its Close button

You can click its title bar and click Hide

All of the windows you can use are listed in the View menu. Therefore, if a window is not
displaying, you can click View on the main menu and click a window of your choice.

When creating your , you will use a set of windows that each accomplishes a
specific purpose. Some windows are represented with an icon but hide the rest of the body. To
display such a window, you can position the mouse on it. This would expand the window:

If you expand a window, it would display a title bar with two buttons. One is called Auto Hide
and the other is the classic Close button:

Showing and Closing a Window

 Hiding a Window

WPF Dockable Windows
Add rich window
management including
MDI and 3D to your apps
www.divelements.co.uk

Free Windows XP IE
Skins
Excite Your Internet
Explorer with Crawler
Toolbar Skins. Free!
www.CrawlerTools.com

Shell Control Pack
Windows Explorer controls
for Delphi, VCL, ActiveX
and .NET!
www.plasmatech.com

New Address Bar for IE
Stop wasting browser
space for search bars.
Free IE toolbar.
www.quero.at

Toolbar
Let The Experts Help. Live
Support 100% Free Of
Charge.
www.Fixya.com/Toolbar

Microsoft
Internet connection

Studio 2005

Auto

applications

Page 3 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction2.htm

If you expand a window but find out you don't need at that position, you can just move the
mouse away from it. The window would return to its previous state. Based on this functionality,
if you are with a window and move the mouse away from it, it would retract. If you
need it again, you would have to reopen it using the same technique. If you are going to work
with a certain window for a while, you can keep it open even if you move the mouse away. To
do this, you can click the Auto Hide button. If clicked, the Auto Hide button changes from
pointing left to pointing down .

By default, installs some windows to the left and some others to the right of
the screen. You can change this arrangement if you want. To do this, expand a window, then
click its title bar and start dragging. When you do this, the screen would display 5 buttons: one
to each side and one in the middle:

To position a window on one side of the screen, drag it title bar to one of the four buttons on
the sides.

You can dock a window only if it is dockable. To make sure that a window is dockable, you can
right-click its title bar and click Dockable:

Dockable Windows

working

Visual Studio 2005

Page 4 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction2.htm

If you don't want the window to be dockable, you can right-click its title bar and click Floating.

Most of the windows you will use are positioned on one side of the screen. If you want, you can
have a window that stays on top of other window but cannot be "glued" to one side. Such a
window is said to float. To float a window, drag its title bar and release it somewhere in the
middle of the screen but not on one of the previously mentioned button because, while
dragging, if you release the mouse on one of the buttons, and if the window is dockable, it
would assume the position of where you released the mouse.

If you don't want a window to be dockable and you only want it to float, right-click its title bar
and click Floating.

Instead of accessing a window from one side of the screen or from its sharing an area with
another window, you can make it display a tab. To do this, drag its title bar and release the
mouse when its gets to the middle button that displays some tabs:

When a window is tabbed, you cannot drag its tab to position it on one side of the screen. If
you want to remove it from its tabbing position, first right-click its tab and click either Floating
or Dockable.

You can make two or more windows share one side of the screen or to share an area. To do
this, drag its title bar to the window whose area you want to share, then position the mouse on
the middle button and release it.

Floating Windows

Tabbing a Window

 Windows

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Next

Coupling

Page 5 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction2.htm

Introduction to Microsoft Visual Basic

A Project

Introduction

To create a computer program, also called an
application, you create a series of files and group
them in an ensemble called a project. This
contains various modules, files, assemblies (or
libraries), and resource files.

A typical application consists of more than one
module and can even be as complex as you want.
To make it faster and a little easier to graphically
create an application, you would need a good
functioning environment like Microsoft

. Using it, you can create a new project or
you can open an existing one.

Creating a Project

www manashosting com Ads by Google

To create a Visual Basic project, you can display the New Project dialog box. To open the New
Project dialog box:

On the Start Page, on the right side of Project, click Create...

If you are using Microsoft Visual Basic 2005 Express Edition, on the main menu, you can
click File -> New Project... If you are using Microsoft Visual Basic 2005 Professional, on the
main menu, you can click File -> New -> Project...

On the Standard toolbar, you can click the New Project button

You can press Ctrl + Shift + N

In the New Project dialog box, select Visual Basic Projects, select the type of project, give it a
name, specify its directory, and click OK.

1. On the main menu, click File -> New Project or File -> New -> Project...

2. In the Templates section, click Console Application

3. In the Name edit box, type Exercise1

Practical Learning: Creating a Project

Visual
Basic

Page 1 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

4. Accept the name in the Location text box and click OK. This creates a new project

The instructions created for a Visual Basic project are written in plain English in a language
easily recognizable to the human eye. After creating the file(s) of a project, you would compile
the project to get an executable that becomes ready to be distributed to your users.

To compile and execute a project in one step, on the main menu, you can click Debug -> Start
Without Debugging. Although there are other techniques or details in compiling (or debugging)
and executing a project, for now, this is the only technique we will use until further notice.

1. To execute the application, on the main menu, click Build -> Build Exercise1

2. To execute the application, on the Standard toolbar, click the Start Debugging button

As opposed to creating a new project, you can open a project that either you or someone else
created. To open an existing project:

On the Start Page, on the right side of Project, click Open...

If you are using Microsoft Visual Basic 2005 Express Edition, on the main menu, you can
click File -> Open Project... If you are using Microsoft Visual Basic 2005 Professional, on
the main menu, you can click File -> Open -> Project...

You can press Ctrl + Shift + O

This action would display the Open Project dialog box. This allows you to select a project and
open it.

Microsoft Visual Basic is a programming environment that allows you to create various types of
applications. In our lessons, we will mostly create graphical applications, also called Windows
applications or Windows Forms applications.

A Windows application primarily appears as a rectangular object that occupies a portion of the
screen. This type of object is under the management of the operating system,

. Based on the functionality of Microsoft Windows, for an application to become useful,
it must be opened. An application must have an entry point. On a C/C++ application, this entry
point is a function called main. On a Win32 application, this entry point is a function called
WinMain. In the Visual Basic language, this entry point is a function named Main.

1. To create a new application, on the main menu, click File -> New Project or File -> New ->

Compiling and Executing a Project

Practical Learning: Executing a Project

Opening a Project

Overview of GUI Applications

Introduction

Practical Learning: Starting a GUI Application

Microsoft
Windows

Page 2 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

Project...

2. In the Project Types list, expand Visual Basic and click Windows.
In the Templates section, click Empty Project

3. In the Name edit box, type Exercise2 and click OK

4. On the main menu, click Project -> Add New Item...

5. In the Templates list, click Module

6. Change the Name to Exercise

7. Click Add

8. Change the contents of the file as follows:

Although you can directly create a graphical application when starting your project, if you had
created a console application, you can still easily transform it into a Forms application:

The most required action consists of changing some characteristics of the project. To take
care of this, on the main menu, you can click Project -> ProjectName Properties... and then
change the value of the Output Type combo box to Windows Application

Before or after setting the Output Type to Windows Application, you can create a form

1. On the main menu, click Project -> Exercise2 Properties...

2. On the left side, make sure Application is selected.
In the right section, click the arrow of the Output Type combo box and select Windows
Application

Module Exercise

 Function Main() As Integer
 Return 0
 End Function

End Module

Windows Application Configuration

Practical Learning: Configuring a Windows Application

Page 3 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

3. Save and close the window

Windows Forms is a technique of creating computer applications based on the common
language runtime (CLR). It offers a series of objects called Windows Controls or simply,
controls. These controls are already created in the .NET Framework through various .
Application programming consists of taking advantage of these controls and customizing them
for a particular application. To exploit these controls and other features of the .NET Framework,
there are various types of applications you can create, including graphical applications
(Windows Application), web-based applications (.NET Web Application), console applications
(Console Application), etc.

The objects used in a Windows application are stored in libraries also called assemblies. As
normal libraries, these assemblies have the extension .dll (which stands for dynamic link
library). In order to use one of these objects, you must know the name of the assembly in
which it is stored. Then you must add a reference to that assembly in your application.

To add a reference to an assembly, on the main menu, you can click Project -> Add
Reference... You can also right-click the name of the project in the Solution Explorer and click
Add Reference... Any of these actions would display the Add Reference dialog box from where
you can click the reference, click Select and click OK. If you don't see the reference you are
looking for, you can locate it on another drive or directory using the Browse button.

There are two broad categories of objects used in a Windows Forms application: the forms and
the controls. A form is the most fundamental object used on an application. It is a rectangular
object that uses part of the computer to represent an application. A form is based on
the Form class that is defined in the System.Windows.Forms namespace created in the
System.Windows.Forms.dll assembly. Every GUI application you will create starts with a
form. There are various techniques you can use to get a form in your application:

You can programmatically and manually create a form

You can inherit a form from the Form class

You can create a form based on another form that either you or someone else created
already, etc.

The primary means of getting a form into an application consists of deriving one from the Form
class.

1. To add a reference to the assembly in which the Form class is defined, on the main menu,
click Project -> Add Reference...

2. In the Add Reference dialog box, click the .NET tab if necessary and scroll down in the list

3. Click System

4. Press and hold Ctrl

5. Click System.Windows.Forms

Forms Fundamentals

Practical Learning: Deriving a Form From the Form Class

www.manashosting.com
Ads by Google

classes

ASP

desktop

Page 4 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

6. Click OK

7. To inherit a form from the Form class, change the file as follows:

8. Save the file

The form is the object that gives presence to an application. Once you have created the
(primary) form of your application, you can get it ready to display on the screen. This is taken
care of by the Application class equipped to start an application, process its messages or
other related issues, and stop the application.

The Application class provides the overloaded Run() method that can be used to start a
program. One of the versions of this method takes a form as argument. This form must be the
first, main or primary form of your application; it will be the first to display when the
application comes up.

1. To prepare the for starting, change the Main() method as follows:

Imports System.Windows.Forms

Module Exercise

 Public Class
 Inherits Form

 End Class

 Function Main() As Integer
 Return 0
 End Function

End Module

The Application Class

Practical Learning: Using the Application Class

Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 End Class

 Function Main() As Integer

 'Instantiate an Program object
 Dim frmStart As Starter

Starter

application

Page 5 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

2. Test the application

3. Close it by clicking its system Close button and return to your programming
environment

Besides the windows and functionalities we reviewed earlier, when you work on a project, there
are other features that become available.

The Server Explorer is an accessory that allows you to access databases without
using the physical and without opening Microsoft SQL Server:

The items of this window display in a tree. To expand a node, you can click its + button. To
collapse it, click its - button.

The Solution Explorer is a window that displays the file names and other items used in your
project:

The items of this window display in a tree. To expand a node, you can click its + button. To
collapse it, click its - button. To explore an item, you can double-click it. The result depends on

 ' Allocate memory for the object, using the new operator
 frmStart = New Starter

 ' Call the Run() static method of the Application
 ' and pass it the instance of the class to display
 Application.Run(frmStart)

 Return 0
 End Function

End Module

The Project Interface

Introduction

The Server Explorer

The Solution Explorer

SQL Server
server

Page 6 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

the item you double-clicked.

The Solution Explorer can be used to create a new class, a new folder, or a reference. To
perform any of these operations, you can right-click a folder node such as the name of the
project, position the mouse on Add and select the desired operation. You can also perform any
of these operations from the Project category of the main menu.

Besides adding new items to the project, you can also use the Solution Explorer to build the
project or change its properties. If you add one or more other project(s) to the current one,
one of the projects must be set as the default. That project would be the first to come up when
the user opens the application. By default, the first project created is set as the default. If you
have more than one project, to set the default, right-click the name of the desired project in
Solution Explorer and click Set As StartUp Project.

The Solution Explorer also you to rename or delete some of the items that belong to your
project.

1. To start a new project, on the main menu, click File -> New -> Project...

2. In the Templates list, click Empty Project and change the Name to Exercise3

3. Click OK

4. On the main menu, click Project -> Exercise3 Properties...

5. In the left frame, make sure Application is selected.
In the right frame, click the arrow of the Output Type combo box and select Windows
Application

6. If the Solution Explorer is not visible, on the main menu, click View -> Solution Explorer.
In the Solution Explorer, right-click Exercise3 and click Add Windows Form...

7. In the Templates list, make sure Windows Form is selected.
Set the Name to Exercise and click Add

The Class View displays the various classes used by your project, including their ancestry. The
items of the Class View an organized as a tree list with the name of the project on top:

The Class View shares some of its functionality with the Solution Explorer. This means that you
can use it to build a project or to add new class.

While the Solution Explorer displays the items that are currently being used by your project,
the Class View allows you to explore the classes used in your applications, including their
dependencies. For example, sometimes you will be using a control of the of the .NET
Framework and you may wonder from what class that control is derived. The Class View, rather
than the Solution Explorer, can quickly provide this information. To find it out, expand the class
by clicking its + button.

1. If the Class View is not visible, on the main menu, click View -> Class View.
In the Class View, expand the Exercise3 node if necessary.
Right-click the name of the project Exercise3 -> Add -> Class...

2. In the Templates list, make sure Class is selected. Change the Name to Central and click
Add

Practical Learning: Using the Solution Explorer

The Class View

Practical Learning: Using the Class View

Page 7 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Next

Page 8 of 8Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction3.htm

Introduction to Microsoft Visual Basic

The Code Editor

Introduction

There are two main ways you will manipulate an
object of your application, visually or using code.
In future sections, we will explore details of
visually designing a control. Code of an
application is ASCII text-based, written in plain
English and readable to human eyes. For an
application, you can use any text editor to write
your code but one of Visual Studio's main
strengths is the code editor. It is very intuitive.

The Code Editor is a window specially designed
for code writing.

Visual Basic Code Library
Open Source Code Snippet Library. Free
Community for Developers.
www.daniweb.com/code

Free UML 2 Design Tool
Visually develop applications with 13 UML 2
Diagrams, ERD, BPM & More!
www.visual-paradigm.com

The Code Editor is divided in 4 sections:

1. Change the file as follows:

2. Execute the application to see the new form

Although all languages of the Visual Studio programming environment share the Code
Editor, once you have started a type of application, the Code Editor is adapted to the
language you are using. Its parser (a program used internally to analyze your code)
behaves according to the language of your choice. The features and behaviors of the
Code Editor are also different, depending on your language.

Practical Learning: Introducing the Code Editor

Imports System.Windows.Forms

Public Class Central

 Public Shared Function main() As Integer

 Application.Run(New Exercise)
 Return 0

 End Function
End Class

Page 1 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction4.htm

3. To create a new class, on the main menu, click Project -> Add Class...

4. Set the Name to Circle and click Add

The top section of the Code Editor displays tabs of property pages. Each tab represents a file.
To add a new file to the project, on the main menu, you can click

File -> New -> File...

Project -> Add New Item...

Once in the Add New Item dialog box, in the Templates section, click the type of file you want
to create, type a name in the Name text box, and press Enter. After the file has been created,
it is represented by a tab in the top section of the Code Editor. In the same way, you can add
as many files as you judge them necessary. To access a tab:

You can click its name in the Tabs Bar

On the main menu, you can click Window and click the name of the desired tab

By default, the tabs display in the order their files were created or added to the project, from
left to right. If you don't like that arrangement, click and drag its tab either left or right beyond
the next tab

1. To create a new class, on the main menu, click Project -> Add Class...

2. Set the Name to Square and click Add

3. To create a new class, on the main menu, click Project -> Add Class...

4. Set the Name to Triangle and click Add

5. To access the Circle tab, on the main menu, click Window -> Circle.vb

6. Change the file as follows:

The Tabs Bar

Practical Learning: Introducing the Code Editor

Public Class Circle
 Private rad As Double

 Public Property Radius() As Double
 Get
 Return rad
 End Get
 Set(ByVal value As Double)
 rad = value
 End Set
 End Property

 Public ReadOnly Property Area() As Double
 Get
 Return rad * rad * Math.PI
 End Get
 End Property
End Class

Public Class Sphere
 Inherits Circle
 Public Overloads ReadOnly Property Area() As Double
 Get
 Return 4 * Radius * Radius * Math.PI
 End Get
 End Property
End Class

Public Class Cylinder
 Inherits Circle

 Private hgt As Double

 Public Property Height() As Double
 Get
 Return hgt
 End Get
 Set(ByVal value As Double)
 hgt = value
 End Set
 End Property
End Class

Page 2 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction4.htm

7. To access another tab, in tabs section, click Triangle.vb

8. Change the file as follows:

9. Save all

The top-left section of the Code Editor displays a combo box named Class Name. As its name
indicates, this combo box holds a list of the classes (and structures) that are created in the
current file. You can display the list if you click the arrow of the combo box:

Each item of the Class Name combo box displays the name of its type associated with its parent
as implemented in the code.

1. Click the Circle tab

2. In the Class Name combo box, select Circle

The top-right section of the Code Editor displays a combo box named Members. The Members
combo box holds a list of the members of classes. The content of the Members combo box
depends on the item that is currently selected in the Class Name combo box. This means that,
before accessing the members of a particular class, you must first select that class in the Class
Name combo box. Then, when you click the arrow of the Method Name combo box, the
members of only that class display:

Public Class Triangle
 Private bas As Double
 Private hgt As Double

 Public Property Base() As Double
 Get
 Return bas
 End Get
 Set(ByVal value As Double)
 bas = value
 End Set
 End Property

 Public Property Height() As Double
 Get
 Return hgt
 End Get
 Set(ByVal value As Double)
 hgt = value
 End Set
 End Property
End Class

Public Class Kite

End Class

The Class Name Combo Box

Practical Learning: Using the Types Combo Box

The Method Name Combo Box

Ads by Google

ASP.NET
OLAP Control

Want give a Web

app OLAP
functions? Easy with
RadarCube! DBMS

or MSAS.

www.radar-soft.com

Page 3 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction4.htm

If you select an item from the Method Name combo box, the Code Editor jumps to that
members and positions the cursor to the left of the member.

1. In the Method Name combo box, select Area

2. Press the up arrow key and add a Diameter property as follows:

3. Save all

Code is written in a wide area with a white background. This is the area you use the keyboard
to insert code with common readable characters. The Code Editor uses some colors to
differentiate categories of words or lines of text. The colors used are highly customizable. To
change the colors, on the main menu, you can click Tools -> Options... In the Options dialog
box, in the Environment section, click Fonts and Colors. To set the color of a category, in the
Display Items section, click the category. In the Item Foreground combo box, select the desired
color. If you want the words of the category to have a colored background, click the arrow of
the Item Background combo box and select one:

Practical Learning: Using the Method Name Combo Box

Public Class Circle
 Private rad As Double

 Public Property Radius() As Double
 Get
 Return rad
 End Get
 Set(ByVal value As Double)
 rad = value
 End Set
 End Property

 Public ReadOnly Property Diameter()
 Get
 Return rad * 2
 End Get
 End Property

 Public ReadOnly Property Area() As Double
 Get
 Return rad * rad * Math.PI
 End Get
 End Property
End Class

. . . No Change

Code Colors

Page 4 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction4.htm

In both cases, the combo boxes display a fixed list of colors. If you want more colors, you can
click a Custom button to display the Color dialog box that allows you to "create" a color.

www windev com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Home

Page 5 of 5Introduction to Microsoft Visual Basic

6/27/2008http://www.functionx.com/vb/fundamentals/introduction4.htm

Fundamentals of Controls Methods

Introduction

A method is a procedure created as a member of
a class. Methods are used to access or
manipulate the characteristics of an object or a
variable. There are mainly two categories of
methods you will use in your classes:

If you are using a control such as one of
those provided by the Toolbox, you can call
any of its public methods. The requirements
of such a method depend on the class being
used

If none of the existing methods can perform
your desired task, you can add a method to a
class

Windows Forms Controls
A range of rich robust winforms controls to enrich
your .net apps
www.divelements.co.uk

Gold Exploration Company
Over 35 Gold & Base Metal Projects Controls 2
Inferred Resources
www.eagleplains.com

As you should know already, every class has a fundamental method called a default
constructor. Every control of the .NET Framework is based on a class that has a default
constructor and most of those classes have only one constructor: the default. The default
constructor allows you to instantiate the class without necessarily initializing it. To use it, you
must know the name of the control you want to use since each control bears the same name as
its class. Here is an example:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class WinControls
 Inherits Form

 Private btnReset As Button

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 btnReset = New Button()

 End Sub

 Public Shared Function Main() As Integer

 Application.Run(New WinControls())
 Return 0

 End Function

 End Class

End Module

If you are not planning to use a control straight from the .NET Framework, you can also create
your own class that is derived from the class of the control, as we have mentioned in previous
lessons.

As mentioned in the previous lesson, after instantiating a control, it is available but the user
cannot see. Each control that acts as a parent of another control has a property called
Controls. This property, which is a ControlCollection type, is equipped with an Add()
method. If you want to display the new control to the user, you should pass it to the

Control's Construction and Destruction

Page 1 of 3Fundamentals of Controls Methods

6/27/2008http://www.functionx.com/vb/fundamentals/methods.htm

Control.Controls.Add() method. Here is an example:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class WinControls
 Inherits Form

 Private btnReset As Button

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 btnReset = New Button()

 Controls.Add(btnReset)
 End Sub

 Public Shared Function Main() As Integer

 Application.Run(New WinControls())
 Return 0

 End Function

 End Class

End Module

This displays the control to the user.

After using a control, it must be destroyed. Another detail of Windows controls is that they use
or consume computer resources during their lifetime. When the controls are not used anymore,
such as when their application closes, these resources should be freed and given back to the
operating system to make them available to other controls. This task can be performed using
the Dispose() method to the Control class, which can then be overridden by its child controls.
The syntax of the Control.Dispose() method is:

Protected Overrides Sub Dispose(disposing As Boolean)

This method takes one argument, disposing, that indicates how the resources would be
released. If this argument is passed with a False value, only the unmanaged resources would
be released. If it is passed as True, then both managed and unmanaged resources would be
released.

The Windows controls available from the .NET Framework and that we will user in our lessons.
They are equipped with various methods ready to be used. Of course, no library can surely
provide every single type of method that every programmer would use. For this reason, it will
not be unusual that you need a method that is not available for a control you are using. In the
same way, when you create a Windows Application that is based on a Form class, you will
likely need a method that is not defined in the Form class. In this case, you can create your
own and new method.

A method is created like a normal procedure. If you want to add it to a form, you can open the
Code Editor and write your procedure outside of any existing procedure. Here is an example:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class WinControls
 Inherits Form

 Private btnReset As Button

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

Creating New Methods

www.manashosting.com
Ads by Google

Page 2 of 3Fundamentals of Controls Methods

6/27/2008http://www.functionx.com/vb/fundamentals/methods.htm

 Public Sub InitializeComponent()
 btnReset = New Button()
 btnReset.Text = "Reset"
 btnReset.Location = New Point(20, 20)

 Controls.Add(btnReset)
 End Sub

 Private Function CalculateRectangleArea(ByVal Recto As Rectangle) As Double
 Return Recto.Width * Recto.Height
 End Function

 Public Shared Function Main() As Integer

 Application.Run(New WinControls())
 Return 0

 End Function

 End Class

End Module

In the same way, if you derive a class from one of the existing classes because you want to get
a custom control from it, you can declare a new method as you see fit and use it appropriately.

Probably the best way is to let the Code Editor insert the new method based on your
specifications. To do that, in the Class View, first expand the name of the project. Then, right-
click the name of the class where you want to add a new method, position the mouse on Add,
and click Add Method. This would open the C# Method Wizard dialog box you can fill out and
click Finish. After the method's body has been defined you

Among all the languages of the .NET Framework and Microsoft Visual Studio, Visual Basic has
the largest and the most impressive library of functions. There are so many of these functions,
we cannot review them here.

Microsoft Visual Basic Functions

Home Copyright © 2008 FunctionX, Inc.

Page 3 of 3Fundamentals of Controls Methods

6/27/2008http://www.functionx.com/vb/fundamentals/methods.htm

Dynamic Control Creation

Introduction

The objects used in a Windows application are
defined in various assemblies. To add one of
these controls to your application, you must first
know the name of its class. With this information,
you can declare a variable of its class. For
example, a command button is an object of type
Button that is based on the Button class. The
Button class is defined in the
System.Windows.Forms namespace of the
System.Windows.Forms.dll assembly. Based
on this, to create a button, you can create a
variable of type Button. Here is an example:

Windows Forms Controls
A range of rich robust winforms controls to enrich your .net
apps
www.divelements.co.uk

Motor Control Tutorials
Free Web Tutorials from Galil, The World Leader in Motor
Control.
www.Galilmc.com

GT Group
Global Manufacturers of Exhaust Brakes & EGR's for Diesel
Engines
www.gtpp.co.uk

ACN Nuclear Medicine
BMD devices, Dexa devices for osteoporosis and nuclear
medicine
www.acn.it

Imports System
Imports System.Windows.Forms

Module Exercise

 Public Class Exercise
 Inherits Form

 Private btnSubmit As Button

 Public Sub New()

 End Sub

 Public Shared Function Main() As Integer

 Application.Run(New Exercise())
 Return 0

 End Function
 End Class
End Module

After declaring the variable, you can use the New operator to allocate memory for it:

Public Sub New()
 btnSubmit = New Button()

End Sub

This is also referred to as dynamically creating a control. After declaring the variable and
allocating memory for it, the control is available but does not have a host, which makes it
invisible. A control must be positioned on a container, like a form. The Form class itself
contains a member variable named Controls. This member holds a list of the objects that are
placed on the form. To specify that a control you have instantiated must be positioned on a
form, the Controls member has a method named Add. Therefore, to make an object part of
the form, pass its variable to the Add() method. Here is an example:

Imports System
Imports System.Windows.Forms

Module Exercise

 Public Class Exercise
 Inherits Form

 Private btnSubmit As Button

 Public Sub New()
 btnSubmit = New Button()
 Controls.Add(btnSubmit)

Page 1 of 4Dynamic Control Creation

6/27/2008http://www.functionx.com/vb/fundamentals/dyncontrol.htm

 End Sub

 Public Shared Function Main() As Integer

 Application.Run(New Exercise())
 Return 0

 End Function
 End Class
End Module

This makes it possible for the control to appear on the form when the form displays to the
user:

The two techniques of visual addition of objects and dynamic creation are the most used to add
Windows controls to an application. The Windows controls are also called components.

Because there can be many controls used in a program, instead of using the constructor to
initialize them, the Visual Studio standards recommend that you create a sub procedure called
InitializeComponent to initialize the various objects used in your application. Then simply call
that method from the constructor of your form. This would be done as follows:

Imports System
Imports System.Windows.Forms

Module Exercise

 Public Class Exercise
 Inherits Form

 Private btnSubmit As Button

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 btnSubmit = New Button()
 Controls.Add(btnSubmit)

 End Sub

 Public Shared Function Main() As Integer

 Application.Run(New Exercise())
 Return 0

 End Function
 End Class
End Module

Notice that the control is created in the InitializeComponent() method.

Starting in Microsoft Visual Basic 2005, and probably getting close to C++, you can use two
files to create and use a form. Each file would hold a partial definition of the class. As done in a

Initializing the Components

Using a Partial Class

Page 2 of 4Dynamic Control Creation

6/27/2008http://www.functionx.com/vb/fundamentals/dyncontrol.htm

header file of a C++ application, the first file in VBasic would hold the variable or control
declarations. While in C++ a header file holds the same name (but different extensions) as its
corresponding source file, because VBasic does not have the concepts of header and source file,
each file must have a different name. In Microsoft Visual Basic, the name of the first file of a
form starts with the name of the form, followed by a period, followed by Designer, followed by
a period, and followed by the vb extension.

As you add and remove components on an application, you need a way to count them to keep
track of what components, and how many of them, your application is using. To assist you with
this, the .NET Framework provides a class named Container. This class is defined in the
ComponentModel namespace that is itself part of the System namespace. To use a variable
of this class in your application, declare a variable of type Container. Because no other part of
the application is interested in this variable, you should declare it private. This can be done as
follows:

Imports System
Imports System.Windows.Forms

Module Exercise

 Public Class Exercise
 Partial Public Class Exercise
 Inherits Form

 Private btnSubmit As Button

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 btnSubmit = New Button()

 Controls.Add(btnSubmit)
 End Sub

 End Class

 Public Shared Function Main() As Integer

 Application.Run(New Exercise())
 Return 0

 End Function

 End Class
End Module

After this declaration, the compiler can keep track of the components that are part of the form.

If you are using a .NET Framework control, you must know the name of the class on which the
control is based (and each control is based on a particular class). If you have examined the
types of classes available but none implements the behavior you need, you can first locate one
that is close to the behavior you are looking for, then use it as a base to derive a new class.

To derive a class from an existing control, you can use your knowledge of inheritance. Here is
an example:

Public Class Numeric
 Inherits System.Windows.Forms.TextBox

End Class

If you want to perform some early initialization to customize your new control, you can declare
a constructor. Here is an example:

Public Class Numeric
 Inherits System.Windows.Forms.TextBox

 Public Sub New()

 End Sub
End Class

Components Tracking on an Application

Control Derivation

Motor Control Tutorials
Free Web Tutorials from
Galil, The World Leader in
Motor Control.
www.Galilmc.com

ACN Nuclear Medicine
BMD devices, Dexa
devices for osteoporosis
and nuclear medicine
www.acn.it

Custom Magnets
Search Thousands of
Catalogs for Custom
Magnets
www.globalspec.com

Optimux Controls
Leading Technologies for
Control. Cost-Effective
Industrial Valves.
www.optimuxcontrols.com

Free SQL Server Tips
MS SQL Server Tips &
Techniques Solve SQL
problems fast and free
www.mssqltips.com

Page 3 of 4Dynamic Control Creation

6/27/2008http://www.functionx.com/vb/fundamentals/dyncontrol.htm

Besides the constructor, in your class, you can add the fields and methods as you see fit. You
can also use it to globally set a value for a variable of the parent class. Once the control is
ready, you can dynamically use it like any other control. Here is an example:

Imports System
Imports System.Windows.Forms

Module Exercise

 Public Class Numeric
 Inherits System.Windows.Forms.TextBox

 Public Sub New()

 End Sub
 End Class

 Public Class Exercise
 Partial Public Class Exercise
 Inherits Form

 Private btnSubmit As Numeric

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 btnSubmit = New Numeric()

 Controls.Add(btnSubmit)
 End Sub

 End Class

 Public Shared Function Main() As Integer

 Application.Run(New Exercise())
 Return 0

 End Function

 End Class
End Module

This produce:

www dotnetcharting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Home

Page 4 of 4Dynamic Control Creation

6/27/2008http://www.functionx.com/vb/fundamentals/dyncontrol.htm

Graphical Applications Fundamentals

The Client Area

On a form, the client area is the body of the form
without the title bar, its borders and other
sections we have not mentioned yet such as the
menu, scroll bars, etc:

Server Applications
Get Updates About AMD Partnerships, Upcoming
Events & More. Get Info.
www.amd.com/businesssolutions

application recognition
Identify Applications with Nbar. Free Trial Version.
Download Now !
www.netflowanalyzer.com/nbar

Free Mashup Composer
Taking Web 2.0 Apps to the Next Level w/
Mashups - Try It Free!
Serena.com/Mashups

Besides the form, every control also has a client area. The role of the client area is to specify
the bounding section where the control can be accessed by other controls positioned on it.
Based on this, a control can be visible only within the client area of its parent. Not all controls
can be parent.

Application programming primarily consists of adding objects to your project. Some of these
objects are what the users of your use to interact with the computer. As the

, one of your jobs will consist of selecting the necessary objects, adding
them to your application, and then configuring their behavior. There are various ways you can
get a control into your application. If you are using Notepad or a to add the objects,
you can write code. If you are using Microsoft , you can visually select an object
and add it.

To create your applications, there are two settings you will be using. If a control is displaying
on the screen and you are designing it, this is referred to as design time. This means that you
have the ability to manipulate the control. You can visually set the control’s appearance, its
location, its size, and other necessary or available characteristics. The design view is usually
the most used and the easiest because you can glance at a control, have a realistic display of it
and configure its properties. The visual design is the technique that allows you to visually add a
control and manipulate its display. This is the most common, the most regularly used, and the
easiest technique.

The other technique you will be using to control a window is with code, writing the program.
This is done by typing commands or instructions using the keyboard. This is considered, or
referred to, as run time. This is the only way you can control an object’s behavior while the
user is interacting with the and your program.

Design and Run Times

Optimize Your Grid
Develop, Run and Manage
Your Grid Using Platform
Computing Products
www.platform.com/Products

Free Mashup Composer
Optimize Web 2.0 App
Productivity w/ Mashups -
Try our Free Mashups
Serena.com/Mashups

Replacement Pipe
Saddles
Available 24x7,
Replacement Pipe Saddles
for all your needs
www.pipingtech.com/products

Visual Basic Code
Library
Open Source Code
Snippet Library. Free
Community for
Developers.
www.daniweb.com/code

Free Movie Preview API
100000 videos with
metadata to make widgets,
gadgets and applications
InternetVideoArchive.com

application
application developer

text editor
Visual Basic

computer

Page 1 of 2Graphical Applications Fundamentals

6/27/2008http://www.functionx.com/vb/appdesign/introduction1.htm

Home Copyright © 2008 FunctionX, Inc. Next

Page 2 of 2Graphical Applications Fundamentals

6/27/2008http://www.functionx.com/vb/appdesign/introduction1.htm

Application Design

Visual Control Addition

Introduction

To add a control to your application, you can
select it from the Toolbox and click the desired
area on the form. Once added, the control is
positioned where your mouse landed. In the
same way, you can add other controls as you
judge them necessary for your application. Here
is an example of a few controls added to a form:

www sensorsystems it Ads by Google

Alternatively, to add a control, you can also double-click it from the Toolbox and it would be
added to the top-left section of the form.

If you want to add a certain control many times, before selecting it on the Toolbox, press and
hold Ctrl. Then click it in the Toolbox. This permanently selects the control. Every time you click
the form, the control would be added. Once you have added the desired number of this control,
on the Toolbox, click the Pointer button to dismiss the control.

1. Start Microsoft Visual Basic

2. To create a new application, on the main menu, click File -> New Project...

3. In the Templates list, click Windows Application

4. Set the Name to DesignPractice1 and click OK

5. On the main menu, click View -> Toolbox.
Position the mouse on the Toolbox word and wait for the Toolbox to expand

6. Click the Label button and position the mouse on the form

Practical Learning: Using the Toolbox

Page 1 of 3Application Desisgn: Visual Control Addition

6/27/2008http://www.functionx.com/vb/appdesign/introduction2.htm

7. Click the form

8. Click the middle of the form to select it (the form)

9. To add another control, position the mouse again on the Toolbox word until the Toolbox has
expanded

10. Find and double-click the TextBox button

11. To use a hidden area of the form, position the mouse on the Toolbox word. When the
Toolbox has expanded, click the Auto Hide button

12. On the Toolbox, click the TreeView button and click the left section of the form

13. After using the Toolbox, to hide it, click the Auto Hide button

14. To execute the application, on the main menu, click Debug -> Start Without Debugging

15. After using it, close the form and return to your programming environment

We mentioned earlier how you could add a control many times. An alternative is to copy a
control. To do this, on the form:

Right-click the control and click Copy. Right-click another area of the form and click Paste

Click (once) the control you want to copy

Press and hold Ctrl. Then drag the selected control to another area of the form. The mouse
cursor would display a + plus indicating that the control is being duplicated:

Once you get to another area of the form, release the mouse and Ctrl

You can use these two techniques to copy a group of controls.

Copying a Control

www.manashosting.com
Ads by Google

Page 2 of 3Application Desisgn: Visual Control Addition

6/27/2008http://www.functionx.com/vb/appdesign/introduction2.htm

Previous Copyright © 2008 FunctionX, Inc. Next

Page 3 of 3Application Desisgn: Visual Control Addition

6/27/2008http://www.functionx.com/vb/appdesign/introduction2.htm

Application Design

Selecting a Control

When designing an application, you will
manipulate the windows controls on a form. After
adding a control to a form, before performing any
operation on that control, you must first select it.
You can also manipulate many controls at the
same time. To do that, you will have to select all
those controls.

Introduction

www manashosting com Ads by Google

To select one control on the form, you can simply click it. A control that is selected indicates
this by displaying 8 small squares, also called handles, around it. Between these handles, the
control is surrounded by dotted rectangles. In the following picture, the selected rectangle
displays 8 small squares around its shape:

After selecting a control, you can manipulate it or change its characteristics, also called
properties.

To select more than one control on the form, click the first. Press and hold either Shift or Ctrl.
Then click each of the desired controls on the form. If you click a control that should not be
selected, click it again. After selecting the group of controls, release either Shift or Ctrl that you
were holding.

When a group of controls is selected, the last selected control displays 8 square handles around
but its handles are white while the others are black. Another technique you can use to select
various controls consists of clicking on an unoccupied area on the form, holding the mouse
down, drawing a fake rectangle, and releasing the mouse:

Every control touched by the fake rectangle or included in it would be selected:

Single Control Selection

Multiple Control Selection

Page 1 of 2Application Design: Selecting a Control

6/27/2008http://www.functionx.com/vb/appdesign/introduction3.htm

If there is a control on your form but you don't need it, you can remove it from the application.
To delete a control, first select it and then click or press Delete. You can also right-click a
control and click Cut. To remove a group of controls, first select them, then click or press
Delete or right-click the selection and click Cut.

Control Deletion

www.manashosting.com
Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Next

Page 2 of 2Application Design: Selecting a Control

6/27/2008http://www.functionx.com/vb/appdesign/introduction3.htm

Application Design

Moving a Control

Introduction

When adding a control to a form, it assumes a
position based on where the mouse landed when
you clicked the form. Most of the time, that
position will not be convenient. a control
consists of specifying its position by changing its
previous left and top values. You can do this
either graphically or programmatically.

To move a control graphically:

Position the mouse on it until the
changes into a cross:

Then click and drag left, right, up or down,
until you get to the desired location

Delhi Movers/Packers
We'll get you 5 free contacts of Delhi Movers &
Packers. Enquire
Yellowpages.Sulekha.com/Delhi

Windows Forms Controls
A range of rich robust winforms controls to enrich
your .net apps
www.divelements.co.uk

Click the control (once) to select it. Using your keyboard, press either the left, the up, the
right, or the down arrow keys to move the control until you get the desired position

You can also move various controls at the same time. To do this, first select the controls:

Position the mouse on one of the selected controls:

Moving Various Controls

Moving

cursor

Page 1 of 2Application Design: Moving a Control

6/27/2008http://www.functionx.com/vb/appdesign/introduction4.htm

Then click and drag left, right, up, down, or diagonally, until you get the desired position

Press the left, the up, the right, or the down arrow keys to move the control until you get
the desired position

After adding a control to a form, you can move the control to change its position, as we will
learn in the next few sections. In the next lesson, we will learn how you can change the size of
a control. The availability of these two operations is controlled by a Boolean property named
Locked. The of this property is False. Therefore, to prevent the control from
being moved or resized, access its Properties window and set the Locked property to True.

Locking a Control

www.manashosting.com
Ads by Google

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Next

default value

Page 2 of 2Application Design: Moving a Control

6/27/2008http://www.functionx.com/vb/appdesign/introduction4.htm

Application Design

Control Alignment

Introduction

Microsoft Visual Studio 2005 provides various
tools to assist you with aligning your controls on
a form. You can first add a control to a form and
position the control the way you want. Here is an
example:

Windows Forms Controls
A range of rich robust winforms controls to enrich your .net
apps
www.divelements.co.uk

Free Datagrid for WPF
100% stylable and templatable, with rich in-place editing &
more
xceed.com/Grid_WPF_Intro.html

Laminar Air Flow
High quality Laminar Air Flow, Low Cost, Call Now
www.ChemPharmIndia.com

Holiday Cottages Scotland
large selection traditional holiday cottages in the Scottish
Borders
www.unique-cottages.co.uk

Once you have a control on your form, you can add another control as we saw in the previous
lesson. To position the other control, you can use the previous one as a reference. To assist
you with this, when moving the new control to position it, a guiding vertical line would show
you the alignment to follow with regards to an existing control. Here is an example:

Using this approach, once the control is aligned fine, you can release the mouse. As another
technique, after positioning one or a few controls, to align a control with reference to another,
press and hold Ctrl. Then press the left, the up, the right, or the down arrow key. When you
press one of these keys, the control would move to align itself with the next control in that
direction. Once the alignment is to your liking, release Ctrl.

There are various other techniques you can use to align the controls. We will review them.

If you have a certain control on the form and want to position it exactly at equal distance
between the left and the right borders of the form, select the control, then click the Center

Horizontally button on the Layout toolbar :

Control Centering Towards the Center of the Form

Page 1 of 6Application Design: Control Alignment

6/27/2008http://www.functionx.com/vb/appdesign/introduction5.htm

Horizontal alignment affects controls whose distance from the left border of the parent must be
the same. To perform this type of alignment, the Layout toolbar provides the necessary
buttons. The same actions can be performed using menu items of the Format group on the
main menu. The options are as follows:

As seen above, the horizontal-oriented buttons allow moving controls left or right. Another
option you have consists of moving controls up or down for better alignment. Once again you
must first select the controls. Then on the Layout toolbar or the Format group of the main
menu, use the following options:

Another valuable option you have consists of controlling the alignment of objects with regards
to the extreme borders of controls of the selected group.

You can also position one or more controls in the middle of the form. To do that, select the

control, then click the Center Vertically button on the Layout toolbar :

Suppose you have a group of horizontally aligned controls as follows:

=>

Horizontal Alignment

Button Name Format Menu Description

Align Lefts Align -> Lefts
All selected controls will have their left
border coincide with the left border of the
base control

Align Centers Align -> Centers
The middle handles of the selected controls
will coincide with the middle handles of the
base control

Align Rights Align -> Rights
All selected controls will have their right
border coincide with the right border of the
base control

Vertical Alignment

Button Name Format Menu Description

Align Tops Align -> Tops

All selected controls will have their top
border coincide with the top border of the
base control but their left border would have
the same distance with the left border of the
parent

Align Middles Align -> Middles
The top handles of the selected controls will
align vertically with the top handle of the
base control

Align
Bottoms

Align ->
Bottoms

All selected controls will have their bottom
border coincide with the bottom border of
the base control but their left border would
have the same distance with the left border
of the parent

Control Centering Towards the Middle of the Form

=>

Horizontal Spacing and Alignment

Page 2 of 6Application Design: Control Alignment

6/27/2008http://www.functionx.com/vb/appdesign/introduction5.htm

Obviously the buttons on this form are not enjoying the most professional alignment. For one
thing, the distance between the Continue and the Submit buttons is longer than the distance
between the Submit and the Deny buttons. The Layout toolbar and the Format group of the
main menu allow you to specify a better horizontal alignment of controls with regards to each
other. The options available are:

Result: The Forms Designer will calculate the horizontal distances that separate each
combination of two controls and find their average. This average is applied to the horizontal
distance of each combination of two controls:

Result: The Forms Designer will move each control horizontally, except the base control (the
control that has white squares) by one unit away from the base control. This will be done every
time you click the Increase Horizontal Spacing button or the Format -> Horizontal Spacing ->
Increase menu item:

Result: The Forms Designer will move each control horizontally, except the base control (the
control that has darker handles) by one unit towards the base control. This will be done every
time you click the Decrease Horizontal Spacing button or the Format -> Horizontal Spacing ->
Decrease menu item:

Button Name Format

Make Horizontal Spacing Equal
Horizontal
Spacing -> Make
Equal

The left control is used as reference

=>

Button Name Format

Increase Horizontal Spacing
Horizontal
Spacing ->
Increase

The left control is used as reference

=>

The middle control is used as reference

=>

The right control is used as reference

=>

Button Name Format

Decrease Horizontal Spacing
Horizontal
Spacing ->
Decrease

The left control is used as reference

=>

The middle control is used as reference

Page 3 of 6Application Design: Control Alignment

6/27/2008http://www.functionx.com/vb/appdesign/introduction5.htm

Result: The Forms Designer will move all controls (horizontally), except for the left control, to
the left so that the left border of a control touches the right border of the next control:

Suppose you have a group of horizontally positioned controls as follows:

The buttons on this form are not professionally aligned with regards to each other. Once again,
the Layout toolbar and the Format group of the main menu allow you to specify a better
vertical alignment of controls relative to each other. The options available are:

Result: The Forms Designer will calculate the total vertical distances that separate each
combination of two controls and find their average. This average is applied to the vertical
distance of each combination of two controls:

Result: The Forms Designer will move each control vertically, except the base control (the
control that has darker handles) by one unit away from the base control. This will be done

=>

The right control is used as reference

Button Name Format

Remove Horizontal Spacing
Horizontal
Spacing ->
Remove

The left control is used as reference

=>

Vertical Spacing and Alignment

Button Name Format

Make Vertical Spacing Equal
Vertical Spacing -
> Make Equal

The top control is used as reference

=>

Button Name Format

Increase Vertical Spacing
Vertical Spacing -
> Increase

Integrated Access
Control
Biometric, RFID, TCP/IP
panel Proximity, MiFare &
CCTV
www.amtel-security.com

GT Group
Global Manufacturers of
Exhaust Brakes & EGR's
for Diesel Engines
www.gtpp.co.uk

ACN Nuclear Medicine
BMD devices, Dexa
devices for osteoporosis
and nuclear medicine
www.acn.it

JavaScript Menu
Designs
Powerful, easy, truly cross-
browser Buy
AllWebMenus, save time &
money!
www.likno.com

Motor Control Tutorials
Free Web Tutorials from
Galil, The World Leader in
Motor Control.
www.Galilmc.com

Page 4 of 6Application Design: Control Alignment

6/27/2008http://www.functionx.com/vb/appdesign/introduction5.htm

every time you click the Increase Horizontal Spacing button or the Format -> Horizontal
Spacing -> Increase menu item:

Result: The Forms Designer will move each control, except the base control (the control that
has darker handles) by one unit towards the base control. This will be done every time you click
the Decrease Horizontal Spacing button or the Format -> Horizontal Spacing -> Decrease menu
item:

The top control is used as reference

=>

The middle control is used as reference

=>

The bottom control is used as reference

=>

Button Name Format

Decrease Vertical Spacing
Vertical Spacing -
> Decrease

The top control is used as reference

=>

The middle control is used as reference

=>

The bottom control is used as reference

Page 5 of 6Application Design: Control Alignment

6/27/2008http://www.functionx.com/vb/appdesign/introduction5.htm

Result: The Forms Designer will move all controls vertically, except for the top control, to the
top so that the top border of a control touches the bottom border of the next control towards
the top:

=>

Button Name Format

Remove Vertical Spacing
Vertical Spacing -
> Remove

The top control is used as reference

=>

Previous Copyright © 2007 FunctionX, Inc. Next

Page 6 of 6Application Design: Control Alignment

6/27/2008http://www.functionx.com/vb/appdesign/introduction5.htm

Application Design

Resizing the Controls

All graphical controls, including the form, can be
resized using guiding mouse cursors or the
keyboard. To resize a control, first select it.
Except for the form, whenever a control is
selected, there are eight handles around it. To
resize the control, position your mouse on one of
the handles. The mouse pointer will change,
indicating in what direction you can move to
resize the control.

Introduction

www manashosting com Ads by Google

Before resizing a control, as mentioned already, first select it. To enlarge a control:

Position the mouse on the right (or the left) handle. Then click and drag in right (or left)
direction. Once you get the desired width, release the mouse

Press and hold Shift. Then press the right arrow key as many times as you want. Once you
get the desired width, release Shift

To narrow a control:

Position the mouse on its right (or its left) handle. Then click and drag in the left (or the
right) direction. Once you get the desired width, release the mouse

Press and hold Shift. Then press the left arrow key as many times as you want. Once you
get the desired width, release Shift

To heighten a control:

Position the mouse on its top (or its bottom) handle. Then click and drag in the top (or the
bottom) direction. Once you get the desired width, release the mouse

Press and hold Shift. Then press the up arrow key as many times as you want. Once you
get the desired width, release Shift

To shrink a control:

Position the mouse on its top (or its bottom) handle. Then click and drag in the bottom (or
the top) direction. Once you get the desired width, release the mouse

Press and hold Shift. Then press the down arrow key as many times as you want. Once you
get the desired width, release Shift

Imagine you have added three controls to your form and, after spending some time designing
them, they appear as follows:

Cursor Role

Moves the seized border in the North-West <-> South-East direction

Shrinks or heightens the control

Moves the seized border in the North-East <-> South-West direction

Narrows or enlarges the control

The Width and Height of a Control

Page 1 of 5Application Design: Resizing the Controls

6/27/2008http://www.functionx.com/vb/appdesign/introduction6.htm

The dimensions of the controls are not set professionally. As seen above, you can resize by
dragging their borders but this might take a while if you want them to have the same width,
the same height, or both the same height and width. The dimensions of a control or a group of
controls are carried by a Size value.

At design time, to change the dimensions of a control, first click it. Then, in the Properties
window, change the values of its Size property.

To change the dimensions of a group of controls, first select them. Then, in the Properties
window, change the values of the Size field. The new value would be applied to all selected
controls. Alternatively, the Form Designer provides tools to automatically do this for you.

To synchronize the widths of a group of controls, first select them. Then, on the Layout toolbar
or on the Format group of the main menu, select:

Result: All controls, except for the base control (the control that has the dark handles), will be
resized horizontally so they have the same width as the base control:

To set the same height to a group of controls, first select them. Then, on the Layout toolbar or
on the Format group of the main menu, select:

Button Name Format

Make Same Width Make Same Size -> Width

The top control is used as reference

=>

The middle control is used as reference

=>

The bottom control is used as reference

Page 2 of 5Application Design: Resizing the Controls

6/27/2008http://www.functionx.com/vb/appdesign/introduction6.htm

Result: All controls, except for the base control (the control that has the dark handles), will be
resized vertically so they have the same height as the base control:

To set the same width and the same height to a group of controls, first select them. Then, on
the Layout toolbar or on the Format group of the main menu, select:

Result: The Form Designer will calculate the sum of the heights of all controls and find their
average height (AvgHeight). It will also calculate the sum of the widths of all controls and find
their average width (AvgWidth). These averages will be applied to the height and the width
respectively of each control:

Button Name Format

Make Same Height Make Same Size -> Height

The top control is used as reference

=>

The middle control is used as reference

=>

The bottom control is used as reference

=>

Button Name Format

Make Same Size Make Same Size -> Both

www.manashosting.com
Ads by Google

Page 3 of 5Application Design: Resizing the Controls

6/27/2008http://www.functionx.com/vb/appdesign/introduction6.htm

1. To create a new application, on the main menu, click File -> New -> Project...

2. In the Templates list, click Windows Application

3. In the Name box, replace the content with Rectangle2 and press Enter

4. From the Toolbox and from what we learned in the previous lesson, add four labels, four
text boxes, and two buttons to the form

5. Based on what we have reviewed so far, design the form as follows:

6. To test the application, on the Standard toolbar, click the Start Without Debugging button

=>

=>

=>

Practical Learning: Setting the Locations and Sizes of Controls

Page 4 of 5Application Design: Resizing the Controls

6/27/2008http://www.functionx.com/vb/appdesign/introduction6.htm

7. While the form is displaying, drag its right border to widen it. Also drag its bottom border to
heighten it

8. Close the form and return to your programming environment

9. Save all

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Home

Page 5 of 5Application Design: Resizing the Controls

6/27/2008http://www.functionx.com/vb/appdesign/introduction6.htm

Introduction to Applications Menus

The Main Menu

Introduction

When it comes to a , a menu is a list of food items that
the business offers to its customers. For a computer , a
menu is a list of actions that can be performed on that program.
To be aware of these actions, the list must be presented to the
user upon request. On a typical DOS application, a menu is
presented with numerical or character options that the user can
select from. An example would be:

Here are the various options:
1. Register a new student2. Review a student's information
3. Enter student's grades
4.4. Close the application

www dotnetcharting com Ads by Google

The user would then enter the number (or character) that corresponds to the desired option
and continue using the program. For a graphical application, a menu is presented as a list of
words and, using a mouse or a keyboard, the user can select the desired item from the menu.

To enhance the functionality of a graphical application, also to take advantage of the mouse
and the keyboard, there are various types of menus. A menu is considered a main menu when
it carries most of the actions the user can perform on a particular application. Such a menu is
positioned in the top section of the form in which it is used. >

A mA main menu is divided in categories of items and each category is represented by a word.
In WordPad, the categories of menus are File, Edit, View, Insert, Format, and Help:

To use a menu, the user first clicks one of the words that displays on top. When clicked, the
menu expands and displays a list of items that belong to that category. Here is an example:

There is no strict rule on how a menu is organized. There are only suggestions. For example,
actions that are related to file processing, such as creating a new file, opening an existing file,
saving a file, printing the open file, or closing the file usually stay under a category called File.
In the same way, actions related to viewing documents can be listed under a View menu
category.

To To support actions that are used to graphically enhance the functionality of an application,
the . provides the ToolStrip class. To support menus for an application,

Main Menu Creation

restaurant
application

NET Framework

Page 1 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

the .NET Framework provides the MenuStrip class (in Microsoft Visual Studio 2002 and 2003,
the main menu was implemented through the MainMenu class, which is still available but lacks
some features).

To graphically create a main menu, in the Menus & Toolbars section of the Toolbox, you can

click the MenuStrip button and click the form that will use the menu. After clicking the
form, an empty menu is initiated:

Like every control, the main menu must have a name. After adding the menu strip to a form,
you can accept the suggested name or, in the Properties window, click (Name) and type the
desired name. You can then use the menu placeholder to add the necessary menu item(s)..

To programmatically create a main menu, declare a handle to MenuStrip class and initialize it
with its default constructor. Because the main menu is primarily a control, you must add it to
the list of controls of the form. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class
 Inherits Form

 Private MenuMain As MenuStrip

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip
 Controls.Add(MenuMain)
 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Modulere

In our introduction, we saw that a main menu was made of categories represented in the top
section. After adding a MenuStrip, you can start creating the desired menu categories. To
graphically create a menu category:

In the menu strip, you can click the Type Here line and type the desired string

In the menu strip, you can click Type Here. Then, in the Properties window, click the Text
field and type the desired string

To create the next menu category, you can click Type Here on the right side of the previous
menu category. In the same way, you can continue creating the desired menu categories.

Here is an example:

Menu Categories

Starter

Page 2 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

Besides clicking Type Here and typing a string, an alternative is to get assisted by a dialog box.
To open it:

Under the form, you can click the menu strip object and, in the Properties window, you can
click the ellipsis button of the Items field

Under the form, you can right-click the menu strip and click Edit Items...

A dialog box, titled Items Collection Editor, would come up:

To create a menu category, in the Select Item And Add To List Below combo box, select
MenuItem and click the Add button. In the right list, configure the menu item. At a minimum,
you should specify its caption in the Text field. Like every control, each menu item has a name.
To make sure you can easily recognize it in your code, when creating a menu item, you should
give it a name unless you are contempt with the suggested one. After creating the menu
categories, you can click OK and keep the dialog box opened for more options.

To support menu items, the .NET Framework provides the ToolStripMenuItem class. Using it,
to create a menu category, declare a handle to this class and initialize it using one of its
constructors. The default constructor is used to create a menu item without specifying any of
its options. Here is an example:

Module

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuFile As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip
 MenuFile = New ToolStripMenuItem
 Controls.Add(MenuMain)
 End Sub

 End Class

Exercise

Page 3 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

End Module

To specify the caption that will be displayed on a menu category, you can use the following
constructor of the ToolStripMenuItem class:

Public Sub New(text As String)

Here is an example:

Public Sub InitializeComponent()
 MenuMain = New MenuStrip
 MenuFile = New ToolStripMenuItem("File")
 Controls.Add(MenuMain)
End Sub

If you had instantiated the class using its default constructor, to specify its caption, the
ToolStripMenuItem class is equipped with the Text property. Therefore, assign a string to
this property. Here is an example:

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuFile As ToolStripMenuItem
 Private MenuEdit As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip
 MenuFile = New ToolStripMenuItem("File")
 MenuEdit = New ToolStripMenuItem()
 MenuEdit.Text = "Edit"

 Controls.Add(MenuMain)
 End Sub

 End Class

End Module

In the same way, you can create as many menu categories as you judge necessary for your
application.

In our introduction, we saw that if you click a menu category, a list comes up. Here is an
example:

The objects under a menu category are referred to as menu items. To graphically create a
menu item, first access the menu strip, which you can do by clicking it under the form. On the
form, click a menu category. Once you do, a placeholder would be displayed under it:

To create a menu item:

Introduction to Menu Items

Page 4 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

Under a category, click Type Here and type the desired caption.

Click the menu category. Then, in the Properties window, click Text and type the desired
string.

In the same way, to create the next menu item, under the same category, click the next Type
Here and type the desired caption or change the Text value in the Properties window.

An alternative is to use a dialog box. To access it, in the menu designer:

Right-click the menu category and click Edit Drop Down Items...

Click the menu category. Then, in the Properties window, click the ellipsis button of the
DropDownItems field

The Items Collection Editor dialog box would come up:

To create a menu item, in the Select Item And Add To List Below combo box, select MenuItem
and click Add. On the right side, configure the menu item as you see fit. At a minimum, you
should specify its caption in the Text field.

Both the menu category and the menu item are created using the ToolStripMenuItem class.
Here are examples:

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuFile As ToolStripMenuItem
 Private MenuFileNew As ToolStripMenuItem
 Private MenuFileExit As ToolStripMenuItem
 Private MenuEdit As ToolStripMenuItem
 Private MenuEditCopy As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip()
 MenuFile = New ToolStripMenuItem("File")
 MenuFileNew = New ToolStripMenuItem("New")
 MenuFileExit = New ToolStripMenuItem("Exit")
 MenuEdit = New ToolStripMenuItem("Edit")
 MenuEditCopy = New ToolStripMenuItem("Copy")
 End Sub

 End Class

Page 5 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

End Module

If you visually create your main menu, the form designer takes care of most details behind the
scenes. For example, each menu item is automatically added to its parent menu category. If
you programmatically create your main menu, you must associate each menu item to its parent
menu category.

To support menu categories, ToolStripMenuItem, the class used to create menu categories,
is derived from a class named ToolStripDropDownItem. The ToolStripDropDownItem
class is abstract, which means you cannot instantiate it. Instead, it provides functionality to
other classes derived from it. The ToolStripDropDownItem class is based on the
ToolStripItem class.

To support menu items, the ToolStripDropDownItem class is equipped with a property
named DropDownItems. This property is of type ToolStripItemCollection, which a
collection-based class. The ToolStripItemCollection class implements the IList and the
ICollection interfaces.

To specify that a menu item will be part of a menu category, call the Add() method of the
ToolStripItemCollection class. This method is overloaded with various versions. One of the
versions uses the following syntax:

Public Function Add(value As ToolStripItem) As Integer

This version allows you to pass a ToolStripItem-type of item class, such as a
ToolStripMenuItem object. Here is an example:

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuEdit As ToolStripMenuItem
 Private MenuEditCopy As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip
 MenuEdit = New ToolStripMenuItem("Edit")
 MenuEditCopy = New ToolStripMenuItem("Copy")
 MenuEdit.DropDownItems.Add(MenuEditCopy)
 End Sub

 End Class

End Module

The ToolStripItemCollection class also allows you to create a menu item without going
through a ToolStripItem-type of object. To support this, its provides the following version of
its Add() method:

Public Function Add(text As String) As ToolStripItem

This method takes as argument the text that the menu item would display and it returns the
ToolStripItem item that was created. Here is an example:

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuEdit As ToolStripMenuItem
 Private MenuEditCopy As ToolStripMenuItem
 Private MenuEditPaste As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

Associating Menu Items to Menu Categories

Page 6 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip
 MenuEdit = New ToolStripMenuItem("Edit")
 MenuEditCopy = New ToolStripMenuItem("Copy")
 MenuEdit.DropDownItems.Add(MenuEditCopy)
 MenuEditPaste = CType(MenuEdit.DropDownItems.Add("Paste"), _
 ToolStripMenuItem)
 End Sub

 End Class

End Module

Instead of adding one menu item at a time, you can create an array of menu items and then
add it to a category in one row. To support this, the ToolStripItemCollection class
implements the AddRange() method. This method is overloaded with two versions. One of the
versions uses the following syntax:

Public Sub AddRange(toolStripItems As ToolStripItem())

When calling this method, you must pass it an array of ToolStripItem-type of objects. Here
are two examples:

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuFile As ToolStripMenuItem
 Private MenuFileNew As ToolStripMenuItem
 Private MenuFileOpen As ToolStripMenuItem
 Private MenuFileExit As ToolStripMenuItem
 Private MenuEdit As ToolStripMenuItem
 Private MenuEditCopy As ToolStripMenuItem
 Private MenuEditPaste As ToolStripMenuItem
 Private MenuHelp As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip

 MenuFile = New ToolStripMenuItem("File")
 MenuFileNew = New ToolStripMenuItem("New")
 MenuFileOpen = New ToolStripMenuItem("Open")
 MenuFileExit = New ToolStripMenuItem("Exit")
 Dim MenuFileItems() As ToolStripMenuItem = _
 {MenuFileNew, MenuFileOpen, MenuFileExit}
 MenuFile.DropDownItems.AddRange(MenuFileItems)

 MenuEdit = New ToolStripMenuItem("Edit")
 MenuEditCopy = New ToolStripMenuItem("Copy")
 MenuEdit.DropDownItems.Add(MenuEditCopy)
 MenuEditPaste = CType(MenuEdit.DropDownItems.Add("Paste"), _
 ToolStripMenuItem)

 MenuHelp = New ToolStripMenuItem("Help")
 Dim mnuHelpItems() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Search"), _
 New ToolStripMenuItem("Contents"), _
 New ToolStripMenuItem("Index"), _
 New ToolStripMenuItem("Support "), _
 New ToolStripMenuItem("About this application") _
 }
 MenuHelp.DropDownItems.AddRange(mnuHelpItems)
 End Sub

 End Class

End Module

If you visually create your main menu, each menu category is automatically assigned to the
menu strip. If you programmatically create your main menu, you must take care of this in

Associating Menu Categories to the Main Menu

www.manashosting.com
Ads by Google

Web Site

Page 7 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

order to show the whole menu.

After creating the menu categories, you can add them to the main menu. To support this, the
ToolStrip class is equipped with a property named Items and it makes this property available
to the MenuStrip class. The Items property is of type ToolStripItemCollection. This class
implements the IList, the ICollection, and the IEnumerable interfaces. Therefore, to add a
menu category to a MenuStrip object, you can call the Add() method of the
ToolStripItemCollection class. This method is overloaded with various versions and we saw
that one of them uses the following version:

Public Function Add(value As ToolStripItem) As Integer

You can call this version and pass it a ToolStripItem-type of object, such as a
ToolStripMenuItem value. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuFile As ToolStripMenuItem
 Private MenuFileNew As ToolStripMenuItem
 Private MenuFileOpen As ToolStripMenuItem
 Private MenuFileExit As ToolStripMenuItem
 Private MenuEdit As ToolStripMenuItem
 Private MenuEditCopy As ToolStripMenuItem
 Private MenuEditPaste As ToolStripMenuItem
 Private MenuHelp As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip

 MenuFile = New ToolStripMenuItem("File")
 MenuFileNew = New ToolStripMenuItem("New")
 MenuFileOpen = New ToolStripMenuItem("Open")
 MenuFileExit = New ToolStripMenuItem("Exit")
 Dim MenuFileItems() As ToolStripMenuItem = _
 {MenuFileNew, MenuFileOpen, MenuFileExit}
 MenuFile.DropDownItems.AddRange(MenuFileItems)

 MenuEdit = New ToolStripMenuItem("Edit")
 MenuEditCopy = New ToolStripMenuItem("Copy")
 MenuEdit.DropDownItems.Add(MenuEditCopy)
 MenuEditPaste = CType(MenuEdit.DropDownItems.Add("Paste"), _
 ToolStripMenuItem)

 MenuHelp = New ToolStripMenuItem("Help")
 Dim mnuHelpItems() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Search"), _
 New ToolStripMenuItem("Contents"), _
 New ToolStripMenuItem("Index"), _
 New ToolStripMenuItem("Support Web Site"), _
 New ToolStripMenuItem("About this application") _
 }
 MenuHelp.DropDownItems.AddRange(mnuHelpItems)

 MenuMain.Items.Add(MenuFile)
 Controls.Add(MenuMain)
 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

Page 8 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

End Module

In the same way, you can add the other items. Alternatively, you can create an array of menu
categories and add them in a row. To support this, the ToolStripItemCollection is equipped
with the AddRange() method that is overloaded with two versions. One of the versions uses
the following syntax:

Public Sub AddRange(toolStripItems As ToolStripItem())

When calling this method, pass it an array of ToolStripItem types of values. Here is an
example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuMain As MenuStrip
 Private MenuFile As ToolStripMenuItem
 Private MenuFileNew As ToolStripMenuItem
 Private MenuFileOpen As ToolStripMenuItem
 Private MenuFileExit As ToolStripMenuItem
 Private MenuEdit As ToolStripMenuItem
 Private MenuEditCopy As ToolStripMenuItem
 Private MenuEditPaste As ToolStripMenuItem

 Private MenuView As ToolStripMenuItem

 Private MenuHelp As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 MenuMain = New MenuStrip

 MenuFile = New ToolStripMenuItem("File")
 MenuFileNew = New ToolStripMenuItem("New")
 MenuFileOpen = New ToolStripMenuItem("Open")
 MenuFileExit = New ToolStripMenuItem("Exit")
 Dim MenuFileItems() As ToolStripMenuItem = _
 {MenuFileNew, MenuFileOpen, MenuFileExit}
 MenuFile.DropDownItems.AddRange(MenuFileItems)

 MenuEdit = New ToolStripMenuItem("Edit")
 MenuEditCopy = New ToolStripMenuItem("Copy")
 MenuEdit.DropDownItems.Add(MenuEditCopy)
 MenuEditPaste = CType(MenuEdit.DropDownItems.Add("Paste"), _
 ToolStripMenuItem)

 MenuView = New ToolStripMenuItem("View")
 Dim MenuViewItems() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Standard Toolbar"), _
 New ToolStripMenuItem("Formatting Toolbar"), _
 New ToolStripMenuItem("Status Bar") _
 }
 MenuView.DropDownItems.AddRange(MenuViewItems)

 MenuHelp = New ToolStripMenuItem("Help")
 Dim mnuHelpItems() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Search"), _
 New ToolStripMenuItem("Contents"), _
 New ToolStripMenuItem("Index"), _
 New ToolStripMenuItem("Support Web Site"), _
 New ToolStripMenuItem("About this application") _
 }
 MenuHelp.DropDownItems.AddRange(mnuHelpItems)

 Dim mnuAccessories() As ToolStripMenuItem = {MenuView, MenuHelp}

 MenuMain.Items.Add(MenuFile)
 MenuMain.Items.AddRange(mnuAccessories)

 Controls.Add(MenuMain)

Page 9 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

This would produce:

1. Start Microsoft

2. Create a new Windows Application named AltairRealtors3

3. In the Solution Explorer, right-click Form1.vb and click Rename

4. Type AltairRealtors.vb and press Enter

5. From the Menus & Toolbars section of the Toolbox, click the MenuStrip button and click
the form

6. While the menu strip is still selected, in the Properties window, click (Name), type
MenuMain and press Enter

7. On the form, click Type Here, type File and press Enter

8. On the form, click File.
In the Properties window, click (Name) and type MenuFile

9. On the form, click File and under it, click the Type Here box

10. Type New Property and press Enter

11. On the form, click File and click New Property.
In the Properties window, click (Name) and type MenuFileNewProperty

12. On the form, click File and, under New Property, click the Type Here box

13. Type Exit and press Enter

14. On the form, click File and click Exit.
In the Properties window, click (Name) and type MenuFileExit

15. Complete the design of the form as follows:

Practical Learning: Creating a Menu

Visual Basic

Page 10 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

16. On the main menu, click Project -> Add Windows Form...

17. Set the Name to RealEstateProperty and click Add

18. Design the form as follows:

Control Text Name Other Properties

MenuStrip

Label
Altair Realtors - Properties
Listing

: Times New
Roman, 21.75pt,
style=Bold
ForeColor: MediumBlue

ListView lvwProperties

Columns

(Name) Text TextAlign Width

colPropertyNumber Prop # 50

colPropertyType Property Type 78

colAddress Address 130

colCity City 80

colState State 40

colZIPCode ZIP Code Center 58

colBedrooms Beds Right 40

colBathrooms Baths Right 40

colMarketValue Market Value Right 75

Control Text Name Other Properties

Label Property #:

TextBox txtPropertyNumber Modifiers: Public

Label
Property
Type:

ComboBox cbxPropertyTypes

Modifiers: Public
Items:
Unknown
Single Family
Townhouse

Font

Condominium

Page 11 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

19. Display the AltairRealtors form

If you create a menu as we have just done, to write code for one of the menu items, you can
double-click the menu item. This would open the Click event of the menu item in the Code
Editor and you can start writing the desired code for that item.

1. Right-click the form and click View Code

2. In the Class Name combo box, select MenuFileNewProperty

3. In the Method Name combo box, select Click and implement the event as follows:

Label Address:

TextBox txtAddress Modifiers: Public

Label City:

TextBox txtCity Modifiers: Public

Label State:

ComboBox cbxStates

Modifiers: Public
Items:
DC
MD
PA
VA
WV

Label ZIP Code:

TextBox txtZIPCode Modifiers: Public

Label Bedrooms:

TextBox 0 txtBedrooms Modifiers: Public

Label Bathrooms:

TextBox 1.0 txtBathrooms Modifiers: Public

Label Market Value:

TextBox 0.00 txtMarketValue Modifiers: Public

Button OK btnOK DialogResult: OK

Button Cancel btnCancel
DialogResult:
Cancel

Form

FormBorderStyle: FixedDialog

Text: Altair Realtors - Available Property

StartPosition: CenterScreen

AcceptButton: btnOK

CancelButton: btnCancel

MaximizeBox: False

MinimizeBox: False

ShowInTaskBar: False

Coding a Menu Item

Practical Learning: Writing Code For a Main Menu

Private Sub MenuFileNewProperty_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuFileNewProperty.Click
 Dim rndNumber As Random
 Dim number1 As Integer
 Dim number2 As Integer
 Dim PropertyNumber As String
 Dim dlgProperty As RealEstateProperty

 rndNumber = New Random(DateTime.Now.Millisecond)
 number1 = rndNumber.Next(100, 999)

Page 12 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

4. In the Class Name combo box, select MenuFileExit

5. In the Method Name combo box, select Click and implement the event as follows:

6. Execute the application

7. To close the form, click File -> Exit

 number2 = rndNumber.Next(100, 999)
 PropertyNumber = number1 & number2
 dlgProperty = New RealEstateProperty

 dlgProperty.txtPropertyNumber.Text = PropertyNumber
 dlgProperty.Text = "Altair Realtors - New Property"

 If dlgProperty.ShowDialog() = Windows.Forms.DialogResult.OK Then
 Dim strPropertyType As String = dlgProperty.cbxPropertyTypes.Text
 Dim strAddress As String = dlgProperty.txtAddress.Text
 Dim strCity As String = dlgProperty.txtCity.Text
 Dim strState As String = dlgProperty.cbxStates.Text
 Dim strZIPCde As String = dlgProperty.txtZIPCode.Text
 Dim strBedrooms As String = dlgProperty.txtBedrooms.Text
 Dim strBathrooms As String = dlgProperty.txtBathrooms.Text
 Dim strMarketValue As String = dlgProperty.txtMarketValue.Text

 Dim lviProperty As ListViewItem = _
 New ListViewItem(dlgProperty.txtPropertyNumber.Text)

 lviProperty.SubItems.Add(strPropertyType)
 lviProperty.SubItems.Add(strAddress)
 lviProperty.SubItems.Add(strCity)
 lviProperty.SubItems.Add(strState)
 lviProperty.SubItems.Add(strZIPCde)
 lviProperty.SubItems.Add(strBedrooms)
 lviProperty.SubItems.Add(strBathrooms)
 lviProperty.SubItems.Add(strMarketValue)
 lvwProperties.Items.Add(lviProperty)
 End If
End Sub

Private Sub MenuFileExit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuFileExit.Click
 End
End Sub

www dotnetcharting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 13 of 13Introduction to Applications Menus

6/27/2008http://www.functionx.com/vb/menus/mainmenu.htm

Applications Menus: The Contextual Menu

Contextual Menus

Introduction

In our introduction to the main menu, we saw
that, to access it, the user clicks one of its
categories. A contextual menu is one that
appears when the user right-clicks an area of an
application or form. In most applications, when
the user right-clicks a title bar, the operating
system is configured to display a system menu.
Here is an example:

Shop for Menu
Designer Wine Accessories. In Stock! Easy
Shipping Worldwide.
Lumiliving.com/Menu

Free Flash Menus
Easy to create animated menus for your website.
Don't miss it !
www.FlashVortex.com

Slash Voice-Over Costs
Add High-Quality, Low-Cost Voice- Overs in E-
Learning Presentations.
www.speechover.com

A menu is considered, or qualifies as, popup if, or because, it can appear anywhere on the form
as the programmer wishes. Such a menu is also referred to as context-sensitive or contextual
because its appearance and behavior depend on where it displays on the form or on a particular
control. The person who creates the application decides if or where the contextual menu would
appear. Because this characteristic is up to the programmer, the same application can display
different types of popup menus depending on where the user right-clicks. Here are examples:

Page 1 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

The first difference between a main menu and a popup menu is that a popup menu appears as
one category or one list of items and not like a group of categories of menus like a main menu.
Secondly, while a main menu by default is positioned on the top section of a form, a popup
menu doesn't have a specific location on the form.

1. Start Microsoft Visual Basic

2. Create a new Windows Application named AltairRealtors3b

3. In the Solution Explorer, right-click Form1.vb and click Rename

4. Type AltairRealtors.vb and press Enter

5. From the Menus & Toolbars section of the Toolbox, click the MenuStrip button and click
the form

6. While the menu strip is still selected, in the Properties window, click (Name), type
MenuMain and press Enter

7. On the form, click Type Here, type File and press Enter

8. On the form, click File.
In the Properties window, click (Name) and type MenuFile

9. On the form, click File and under it, click the Type Here box

10. Type New Property and press Enter

11. On the form, click File and click New Property.
In the Properties window, click (Name) and type MenuFileNewProperty

12. On the form, click File and, under New Property, click the Type Here box

13. Type Exit and press Enter

14. On the form, click File and click Exit.
In the Properties window, click (Name) and type MenuFileExit

15. Complete the design of the form as follows:

Practical Learning: Creating a Menu

Page 2 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

16. On the main menu, click Project -> Add Windows Form...

17. Set the Name to RealEstateProperty and click Add

18. Design the form as follows:

Control Text Name Other Properties

MenuStrip

Label
Altair Realtors - Properties
Listing

Font: Times New
Roman, 21.75pt,
style=Bold
ForeColor: MediumBlue

ListView lvwProperties

Columns

(Name) Text TextAlign Width

colPropertyNumber Prop # 50

colPropertyType Property Type 78

colAddress Address 130

colCity City 80

colState State 40

colZIPCode ZIP Code Center 58

colBedrooms Beds Right 40

colBathrooms Baths Right 40

colMarketValue Market Value Right 75

Control Text Name Other Properties

Label Property #:

TextBox txtPropertyNumber Modifiers: Public

Label
Property
Type:

ComboBox cbxPropertyTypes

Modifiers: Public
Items:
Unknown
Single Family
Townhouse
Condominium

Label Address:

TextBox txtAddress Modifiers: Public

Label City:

TextBox txtCity Modifiers: Public

Label State:

ComboBox cbxStates

Modifiers: Public
Items:
DC
MD
PA
VA
WV

Label ZIP Code:

TextBox txtZIPCode Modifiers: Public

Page 3 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

19. Display the AltairRealtors form

20. Right-click the form and click View Code

21. In the Class Name combo box, select MenuFileNewProperty

22. In the Method Name combo box, select Click and implement the event as follows:

23. In the Class Name combo box, select MenuFileExit

Label Bedrooms:

TextBox 0 txtBedrooms Modifiers: Public

Label Bathrooms:

TextBox 1.0 txtBathrooms Modifiers: Public

Label Market Value:

TextBox 0.00 txtMarketValue Modifiers: Public

Button OK btnOK DialogResult: OK

Button Cancel btnCancel
DialogResult:
Cancel

Form

FormBorderStyle: FixedDialog

Text: Altair Realtors - Available Property

StartPosition: CenterScreen

AcceptButton: btnOK

CancelButton: btnCancel

MaximizeBox: False

MinimizeBox: False

ShowInTaskBar: False

Private Sub MenuFileNewProperty_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuFileNewProperty.Click
 Dim rndNumber As Random
 Dim number1 As Integer
 Dim number2 As Integer
 Dim PropertyNumber As String
 Dim dlgProperty As RealEstateProperty

 rndNumber = New Random(DateTime.Now.Millisecond)
 number1 = rndNumber.Next(100, 999)
 number2 = rndNumber.Next(100, 999)
 PropertyNumber = number1 & number2
 dlgProperty = New RealEstateProperty

 dlgProperty.txtPropertyNumber.Text = PropertyNumber
 dlgProperty.Text = "Altair Realtors - New Property"

 If dlgProperty.ShowDialog() = Windows.Forms.DialogResult.OK Then
 Dim strPropertyType As String = dlgProperty.cbxPropertyTypes.Text
 Dim strAddress As String = dlgProperty.txtAddress.Text
 Dim strCity As String = dlgProperty.txtCity.Text
 Dim strState As String = dlgProperty.cbxStates.Text
 Dim strZIPCde As String = dlgProperty.txtZIPCode.Text
 Dim strBedrooms As String = dlgProperty.txtBedrooms.Text
 Dim strBathrooms As String = dlgProperty.txtBathrooms.Text
 Dim strMarketValue As String = dlgProperty.txtMarketValue.Text

 Dim lviProperty As ListViewItem = _
 New ListViewItem(dlgProperty.txtPropertyNumber.Text)

 lviProperty.SubItems.Add(strPropertyType)
 lviProperty.SubItems.Add(strAddress)
 lviProperty.SubItems.Add(strCity)
 lviProperty.SubItems.Add(strState)
 lviProperty.SubItems.Add(strZIPCde)
 lviProperty.SubItems.Add(strBedrooms)
 lviProperty.SubItems.Add(strBathrooms)
 lviProperty.SubItems.Add(strMarketValue)
 lvwProperties.Items.Add(lviProperty)
 End If
End Sub

Page 4 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

24. In the Method Name combo box, select Click and implement the event as follows:

25. Execute the application

26. To close the form, click File -> Exit

To support the creation and management of contextual menus, the .NET Framework provides
the ContextMenuStrip class. This class is derived from ToolStripDropDownMenu, which
itself is based on the ToolStripDropDown class. The ToolStripDropDown class is derived
from ToolStrip.

To visually create a contextual menu, in the Menus & Toolbars section of the Toolbox, click the

ContextMenuStrip button and click the form. Once you have a ContextMenuStrip
object, you can create its menu items. To do this, as mentioned for the MenuStrip, you can
click the first Type Here line, type a string, press Enter, and continue creating the other menu
items in the same way.

Unlike a main menu, a popup menu provides a single list of items. If you want different popup
menus for your form, you have two options. You can create various popup menus or
programmatically change your single popup menu in response to something or some action on
your form.

To programmatically create a contextual menu, start by declaring a handle to
ContextMenuStrip. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private Contextual As ContextMenuStrip

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 Contextual = New ContextMenuStrip

 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

Private Sub MenuFileExit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuFileExit.Click
 End
End Sub

Creating a Contextual Menu

Page 5 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

End Module

To assist you with each item of a contextual menu, ToolStrip, the ancestor to the
ContextMenuStrip class, is equipped with a property named Items. This property is of type
ToolStripItemCollection, which is a collection-based class. The ToolStripItemCollection
class implements the IList, the ICollection, and the IEnumerable interfaces.

To create one or more menu items, you can use the various techniques we reviewed for the
main menu. Here are examples:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private MenuEditCut As ToolStripMenuItem
 Private Contextual As ContextMenuStrip

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 Contextual = New ContextMenuStrip
 MenuEditCut = New ToolStripMenuItem("Cut")

 Dim MenuEdit() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Copy"), _
 New ToolStripMenuItem("Paste") _
 }

 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

After creating a menu item, to add it to the contextual menu, you can call the
ToolStripItemCollection.Add() method. To add an array of items, you can call the create
ToolStripItemCollection.AddRange() method. Here are examples:

Public Sub InitializeComponent()

 Contextual = New ContextMenuStrip
 MenuEditCut = New ToolStripMenuItem("Cut")

 Dim MenuEdit() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Copy"), _
 New ToolStripMenuItem("Paste") _
 }

 Contextual.Items.Add(MenuEditCut)
 Contextual.Items.AddRange(MenuEdit)

End Sub

1. From the Menus & Toolbars section of the Toolbox, click ContextMenuStrip and click the
form

2. While the context menu strip is still selected, in the Properties window click (Name) and
type MenuWithProperties

3. Then click Items and click its ellipsis button

 Practical Learning: Introducing Contextual Menus

www.manashosting.com
Ads by Google

Page 6 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

4. Under the Select Item And Add To List combo box, make sure MenuItem is selected and
click Add

5. On the right side, click Text and type Edit

6. Click (Name) and type MenuEditProperty

7. On the left side, click Add and, on the right side, change the properties as follows:
Text: Delete
(Name): MenuDeleteProperty

8. On the left side, click Add and, on the right side, change the properties as follows:
Text: Clear
(Name): MenuClearProperties

9. Click OK

10. From the Menus & Toolbars section of the Toolbox, click ContextMenuStrip and click the
form

11. While the context menu strip is still selected, in the Properties window click (Name) and
type MenuNoProperty

12. On the form, under ContextMenuStrip, click Type Here

13. Type New Property and press Enter

14. On the form, under ContextMenuStrip, click New Property

15. In the Properties window, click (Name), type MenuNewProperty and press Enter

By default, a newly created contextual menu is attached neither to the form nor to any control
on it. In order to display a context menu, you must assign its name to the control. To support
this, Control, the ancestor to all visual controls of the .NET Framework, is equipped, and
provides to its children, a property named ContextMenuStrip, which is of type
ContextMenuStrip.

To visually assign a contextual menu to a control during design, click the control. In the
Properties window, click the ContextMenuStrip field, then click the arrow of its combo box, and
select the menu. If you had created more than one contextual menu, the combo box would
show all of them and you can choose the one you want to use as default.

To programmatically specify the contextual menu of a control, assign a ContextMenuStrip
object to its ContextMenuStrip property. Here is an example:

Public Sub InitializeComponent()

 Contextual = New ContextMenuStrip
 MenuEditCut = New ToolStripMenuItem("Cut")

 Dim MenuEdit() As ToolStripMenuItem = _
 { _
 New ToolStripMenuItem("Copy"), _
 New ToolStripMenuItem("Paste") _
 }

 Contextual.Items.Add(MenuEditCut)
 Contextual.Items.AddRange(MenuEdit)

Using a Contextual Menu

Page 7 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

 ContextMenuStrip = Contextual

End Sub

After assigning a ContextMenuStrip object to a control, when you right-click (actually when
the user right-clicks) the control, the contextual menu would display. The above code would
produce:

1. Right-click the form and click View Code

2. Just under the Public Class AltairRealtors line, declare a ListViewItem variable named
itmSelected

3. In the Class Name combo box, select (AltairRealtors Events)

4. In the Method Name combo box, select Load and implement the event as follows:

5. In the Class Name combo box, select lvwProperties

6. In the Method Name combo box, select MouseDown and implement the event as follows:

7. Save the file

In your application, you can create as many contextual menus as you want. If you have
different controls, each can have its own contextual menu or many can share a contextual
menu. Also, you can use different contextual menus for a control and decide what menu to
display when/why.

There is nothing particularly specific with writing code for a popup menu item. You approach it
exactly as if you were dealing with a menu item of a main menu. You can write code for an
item of a popup menu independent of any other item of a main menu. If you want an item of a
popup menu to respond to the same request as an item of a main menu, you can write code for

Practical Learning: Creating a Context Menu

Public Class AltairRealtors

 Private itmSelected As ListViewItem

. . . No Change

Private Sub AltairRealtors_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 itmSelected = New ListViewItem()
 lvwProperties.ContextMenuStrip = MenuNoProperty
End Sub

Private Sub lvwProperties_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lvwProperties.MouseDown
 If e.Button = Windows.Forms.MouseButtons.Right Then
 If lvwProperties.SelectedItems.Count > 0 Then
 itmSelected = lvwProperties.SelectedItems(0)
 Else
 itmSelected = Nothing
 End If
 End If
End Sub

Coding Contextual Menus

Page 8 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

one of the menu items (either the item on the main menu or the item on the popup menu) and
simply call its Click event in the event of the other menu item.

1. In the Class Name combo box, select lvwProperties

2. In the Method Name combo box, select ItemSelectionChanged and implement the event as
follows:

3. In the Class Name combo box, select MenuEditProperties

4. In the Method Name combo box, select Click and implement the event as follows:

5. In the Class Name combo box, select MenuDeleteProperty

6. In the Method Name combo box, select Click and implement the event as follows:

Practical Learning: Using Various Contextual Menus

Private Sub lvwProperties_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles lvwProperties.MouseDown
 If e.Button = Windows.Forms.MouseButtons.Right Then
 If lvwProperties.SelectedItems.Count > 0 Then
 itmSelected = lvwProperties.SelectedItems(0)
 Else
 itmSelected = Nothing
 End If
 End If
End Sub

Private Sub MenuEditProperty_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuEditProperty.Click
 ' Prepare to open the AvailableProperties dialog box
 Dim dlgProperty As RealEstateProperty = New RealEstateProperty

 ' Make sure an item, and only one, is selected
 If (lvwProperties.SelectedItems.Count = 0) Or _
 (lvwProperties.SelectedItems.Count > 1) Then
 Exit Sub
 End If

 ' Identify the item that is currently selected
 Dim lviCurrent As ListViewItem = lvwProperties.SelectedItems(0)

 ' Display the ItemDetails dialog box with the item number
 dlgProperty.txtPropertyNumber.Text = lviCurrent.Text
 dlgProperty.cbxPropertyTypes.Text = lviCurrent.SubItems(1).Text
 dlgProperty.txtAddress.Text = lviCurrent.SubItems(2).Text
 dlgProperty.txtCity.Text = lviCurrent.SubItems(3).Text
 dlgProperty.cbxStates.Text = lviCurrent.SubItems(4).Text
 dlgProperty.txtZIPCode.Text = lviCurrent.SubItems(5).Text
 dlgProperty.txtBedrooms.Text = lviCurrent.SubItems(6).Text
 dlgProperty.txtBathrooms.Text = lviCurrent.SubItems(7).Text
 dlgProperty.txtMarketValue.Text = lviCurrent.SubItems(8).Text

 If dlgProperty.ShowDialog() = Windows.Forms.DialogResult.OK Then
 lvwProperties.SelectedItems(0).Text = _
 dlgProperty.txtPropertyNumber.Text
 lvwProperties.SelectedItems(0).SubItems(1).Text = _
 dlgProperty.cbxPropertyTypes.Text
 lvwProperties.SelectedItems(0).SubItems(2).Text = _
 dlgProperty.txtAddress.Text
 lvwProperties.SelectedItems(0).SubItems(3).Text = _
 dlgProperty.txtCity.Text
 lvwProperties.SelectedItems(0).SubItems(4).Text = _
 dlgProperty.cbxStates.Text
 lvwProperties.SelectedItems(0).SubItems(5).Text = _
 dlgProperty.txtZIPCode.Text
 lvwProperties.SelectedItems(0).SubItems(6).Text = _
 dlgProperty.txtBedrooms.Text
 lvwProperties.SelectedItems(0).SubItems(7).Text = _
 dlgProperty.txtBathrooms.Text
 lvwProperties.SelectedItems(0).SubItems(8).Text = _
 dlgProperty.txtMarketValue.Text
 End If
End Sub

Private Sub MenuDeleteProperty_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuDeleteProperty.Click
 If lvwProperties.SelectedItems.Count = 0 Then Exit Sub
 Dim Answer As MsgBoxResult

 Answer = MsgBox("Are you sure you want " & _

Page 9 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

7. In the Class Name combo box, select MenuClearProperty

8. In the Method Name combo box, select Click and implement the event as follows:

9. In the Class Name combo box, select MenuNewProperty

10. In the Method Name combo box, select Click and implement the event as follows:

11. Execute the application and test it

12. Right-click an empty line of the list view to see the contextual menu and click New Property

13. Right-click the list view and click Edit

 "to delete that property?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 "Delete Property")

 If Answer = MsgBoxResult.Yes Then
 lvwProperties.SelectedItems(0).Remove()
 End If
End Sub

Private Sub MenuClearProperties_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuClearProperties.Click
 Dim Answer As MsgBoxResult
 Answer = MsgBox("Are you sure you want " & _
 "to delete all properties?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 "Remove all Properties")

 If Answer = MsgBoxResult.Yes Then
 lvwProperties.Items.Clear()
 End If
End Sub

Private Sub MenuNewProperty_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MenuNewProperty.Click
 MenuFileNewProperty_Click(sender, e)
End Sub

Page 10 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

14. Right-click a row on the form and click Delete

15. Accept to delete the property

16. Close the form and return to your programming environment

www CDFrontEnd com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 11 of 11Applications Menus: The Contextual Menu

6/27/2008http://www.functionx.com/vb/menus/contextmenu.htm

Characteristics of Menu Items

Introduction

In the previous lesson, we saw how to create a menu. Here is an
example:

Imports .Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class
 Inherits Form

 Private mnuMain As MenuStrip

 Private mnuFile As ToolStripMenuItem
 Private mnuFileNew As ToolStripMenuItem

 Dim components As System.ComponentModel.

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 mnuMain = New MenuStrip
 Controls.Add(mnuMain)

 mnuFile = New ToolStripMenuItem("File")
 mnuFileNew = New ToolStripMenuItem("New")

 mnuFile.DropDownItems.Add(mnuFileNew)
 mnuMain.Items.Add(mnuFile)

 End Sub

 End

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 .Run(frmStart)

 Return 0
 End Function

End Module

www manashosting com Ads by Google

This would produce:

After creating a menu (main menu and contextual menu), there are various actions you can
perform to improve it and there are many ways you can enhance the user's experience with
your application. Menus provide various features such as access keys and shortcuts. There are
also other things you can do such as grouping menus. Although some of these actions are not
required to make an application useful, they can be necessary to make it more professional.

1. Start a new Windows Forms Application named SolasPropertyRental2

Practical Learning: Introducing Menu Appearance

System

Starter

Container

Class

Application

Page 1 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

2. In the Solution Explorer, right-click Form1.vb and click Rename

3. Type Central.vb and press Enter twice (to display the form)

4. Change the properties of the form as follows:
Text: Solas
StartPosition: CenterScreen

5. On the main menu, click Project -> Add Class...

6. Set the Name to RentalProperty and click Add

7. Change the file as follows:

8. In the Solution Explorer, right-click Central.vb and click View Code

9. Just above the first line, type Imports System.Collections and, in the class, declare an
ArrayList variable named lstRentalProperties

Public Class RentalProperty
 Private code As String
 Private type As String
 Private As Integer
 Private baths As Single
 Private rent As Double
 Private status As String

 Public Property PropertyCode() As String
 Get
 Return code
 End Get
 Set(ByVal value As String)
 code = value
 End Set
 End Property

 Public Property PropertyType() As String
 Get
 Return type
 End Get
 Set(ByVal value As String)
 type = value
 End Set
 End Property

 Public Property () As Integer
 Get
 Return beds
 End Get
 Set(ByVal value As Integer)
 beds = value
 End Set
 End Property

 Public Property () As Single
 Get
 Return
 End Get
 Set(ByVal value As Single)
 baths = value
 End Set
 End Property

 Public Property MonthlyRent() As Double
 Get
 Return rent
 End Get
 Set(ByVal value As Double)
 rent = value
 End Set
 End Property

 Public Property OccupancyStatus() As String
 Get
 Return status
 End Get
 Set(ByVal value As String)
 status = value
 End Set
 End Property

End Class

Imports System.Collections

Property Rental

beds

Bedrooms

Bathrooms

baths

Page 2 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

10. In the Class Name combo box, select (Central Events)

11. In the Method Name combo box, select Load and initialize the variable as follows:

12. Re-display the Central form

13. In the Menus & Toolbars section of the Toolbox, click the MenuStrip button and click
the form

14. While the menu strip is still selected, in the Properties window, click (Name) and type
mnuMain

15. In the Common Controls section of the Toolbox, click ListView and click the form

16. While the picture box is still selected, in the Properties window, change its characteristics
as follows:
Dock: Fill
FullRowSelect: True
GridLines: True
(Name): lvwRentalProperties
View: Details
HeaderStyle: Nonclickable

17. Still in the Properties window, click Columns and click its ellipsis button

18. Create the columns as follows:

19. Click OK

20. In the Menus & Toolbars section of the Toolbox, click the ContextMenuStrip button and
click the form

21. While the menu strip is still selected, in the Properties window, click (Name) and type
cmsProperties

22. On the form, click the list view

23. In the Properties window, click ContextMenuStrip and select cmsProperties

You may notice that some have a letter underlined. Using this letter allows the
user to access the menu using a keyboard. For example, if the letter F is underline in a File
menu as in File, the user can access the File menu by pressing the Alt, then the F keys. To
create this functionality, choose a letter on the menu item and precede it with the & character.
For example, &File would produce File. You can apply the same principle if you are
programmatically creating the menu. Here are two examples:

Public Sub InitializeComponent()

 mnuMain = New MenuStrip
 Controls.Add(mnuMain)

 mnuFile = New ToolStripMenuItem("&File")
 mnuFileNew = New ToolStripMenuItem("&New")

 mnuFile.DropDownItems.Add(mnuFileNew)
 mnuMain.Items.Add(mnuFile)

End Sub

Public Class Central
 Private lstRentalProperties As ArrayList
End Class

Private Sub Central_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 lstRentalProperties = New ArrayList
End Sub

(Name) Text TextAlign Width

colPropertyCode Prop Code

colPropertyType Property Type Center 80

colBedrooms Bedrooms Right

colBathrooms Bathrooms Right 62

colMonthlyRent Monthly Rent Right 75

colStatus Status

Access Keys

menu items

Page 3 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

After creating the menu, to use it, the user can press Alt or F10:

1. Under the form, click mnuMain

2. In the Properties window, click Items and click its ellipsis button

3. In the Items Collection Editor, make sure MenuItem is selected in the Select Item And Add
To List Below combo box and click Add

4. While toolStripMenuItem1 is selected in the Members combo box, in the right list, change
the following characteristics:
Text: &File
(Name): mnuFile

5. Still in the right list, click DropDownItems and click its ellipsis button

6. In the Items Collection Editor, make sure MenuItem is selected in the Select Item And Add
To List Below combo box and click Add

7. While toolStripMenuItem1 is selected in the Members combo box, in the right list, change
the following characteristics:
Text: &New Property
(Name): mnuFileNewProperty

8. In the Items Collection Editor (mnuFile.DropDownItems), click OK

9. In the Items Collection Editor, click OK

A shortcut is a key or a combination of keys that the user can press to perform an action that
can also be performed using a menu item. When creating a menu, to specify a shortcut, use
the ShortcutKeys property.

To visually specify a shortcut, in the menu , click the menu item. In the Properties
window, click ShortcutKeys and click the arrow of the field, a window would come up:

To specify just a letter for the shortcut, you can click the arrow of the combo box on the left
side of the Reset button. A list would come up from which you can select the desired letter:

Practical Learning: Using Access Keys

Shortcuts

designer

Page 4 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

You are probably more familiar with shortcuts made of combinations of keys, such as Ctrl + N,
Alt + F6, or Ctrl + Alt + Delete. To visually create such a shortcut, click the check box(es) and
select the desired letter.

If you have used applications like or Adobe Photoshop, you may know that they
don't show all of their shortcuts on the menu. If you want to hide a shortcut, after specifying it,
in the Properties window, set the ShowShortcutKeys property to False.

To programmatically specify a shortcut, assign a key or a combination of keys to the
ShortcutKeys property of the ToolStripMenuItem class. The ShortcutKeys property is of
type Keys, which is an enumeration of the various keys of a keyboard recognized by

. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module

 Public Class Starter
 Inherits Form

 Private mnuMain As MenuStrip
 Private mnuFile As ToolStripMenuItem
 Private mnuFileNew As ToolStripMenuItem
 Private mnuFileExit As ToolStripMenuItem
 Private mnuFormat As ToolStripMenuItem
 Private mnuFormatFont As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 mnuMain = New MenuStrip
 Controls.Add(mnuMain)

 mnuFile = New ToolStripMenuItem("&File")
 mnuFileNew = New ToolStripMenuItem("&New")

 mnuFileExit = New ToolStripMenuItem("E&xit")

 mnuFormat = New ToolStripMenuItem("For& ")
 mnuFormatFont = New ToolStripMenuItem("Fo&nt")

 mnuFormatFont.ShortcutKeys = Keys.F4

 mnuFile.DropDownItems.Add(mnuFileNew)
 mnuFile.DropDownItems.Add(mnuFileExit)
 mnuMain.Items.Add(mnuFile)

 mnuFormat.DropDownItems.Add(mnuFormatFont)
 mnuMain.Items.Add(mnuFormat)

Microsoft Word

Microsoft
Windows

Exercise

mat

Page 5 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

This would produce:

To create a shortcut that is a combination of keys, use the bit manipulation operator OR
represented by |. Here is an example:

Public Sub InitializeComponent()

 mnuMain = New MenuStrip
 Controls.Add(mnuMain)

 mnuFile = New ToolStripMenuItem("&File")
 mnuFileNew = New ToolStripMenuItem("&New")

 mnuFileNew.ShortcutKeys = Keys.Control Or Keys.N

 mnuFileExit = New ToolStripMenuItem("E&xit")

 mnuFormat = New ToolStripMenuItem("For&mat")
 mnuFormatFont = New ToolStripMenuItem("Fo&nt")

 mnuFormatFont.ShortcutKeys = Keys.F4

 mnuFile.DropDownItems.Add(mnuFileNew)
 mnuFile.DropDownItems.Add(mnuFileExit)
 mnuMain.Items.Add(mnuFile)

 mnuFormat.DropDownItems.Add(mnuFormatFont)
 mnuMain.Items.Add(mnuFormat)

End Sub

This would produce:

Normally, when you have associated a shortcut with a menu item, when the user displays the
menu, the shortcut would appear. In some applications, you may want to hide the shortcut. To
support this, the ToolStripMenuItem class is equipped with the Boolean ShowShortcutKeys
property. The of this property is true. If you want to hide the shortcut, you can
set this property to false.

1. Under the form, click mnuMain

2. In the Properties window, click Items and click its ellipsis button

3. In the Members list of the Items Collection Editor, click mnuFile

4. On the right side, click DropDownItems and click its ellipsis button

Practical Learning: Creating Shortcuts

www.dotnetcharting.com
Ads by Google

default value

Page 6 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

5. In the Members list, click mnuFileNewProperty

6. In the right list, click ShortcutKeys and click the arrow of its combo box

7. In the window that appears, click the Ctrl check box

8. Click the arrow of the combo box next to Reset, scroll down and select N

9. In the Items Collection Editor (mnuTools.DropDownItems), click OK

10. In the Items Collection Editor, click OK

When a user has clicked a menu item, an action is supposed to occur. In some cases, an
intermediary action is necessary before performing or completing the action. To indicate that an
intermediary action is needed for the action related to the menu item, standards
suggest that the menu's text be followed by three periods. For example, in WordPad, if you
want to display the date or the time or both on a document, you must open a dialog box that
would present various options for you to choose how the date/time should be displayed. To
indicate that you will perform a primary action before displaying the value, the menu that leads
to it shows three periods:

In this case, when you click the menu item, a dialog box would come up for you to select the
desired value.

There is no programmatic between the application and the menu item that displays
three periods. It is only a suggestion to show them. Therefore, when creating a menu item, if
you know that an intermediary action will be used to perform or complete the actual action,
add three periods on the right side of its text. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private mnuMain As MenuStrip
 Private mnuSelect As ToolStripMenuItem
 Private mnuSelectColor As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 mnuMain = New MenuStrip
 Controls.Add(mnuMain)

 mnuSelect = New ToolStripMenuItem("&Select")

 mnuSelectColor = New ToolStripMenuItem(" ...")

 mnuSelect.DropDownItems.Add(mnuSelectColor)
 mnuMain.Items.Add(mnuSelect)

Three Periods

Microsoft

relationship

Background Color

Page 7 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

This would produce:

Because the three periods indicate to the user that an intermediary action will be performed,
when implementing the code for the menu item, make sure you provide that intermediary
action. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private mnuMain As MenuStrip
 Private mnuSelect As ToolStripMenuItem
 WithEvents mnuSelectColor As ToolStripMenuItem

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()

 mnuMain = New MenuStrip
 Controls.Add(mnuMain)

 mnuSelect = New ToolStripMenuItem("&Select")

 mnuSelectColor = New ToolStripMenuItem("Background Color...")

 mnuSelect.DropDownItems.Add(mnuSelectColor)
 mnuMain.Items.Add(mnuSelect)

 End Sub

 Private Sub SelectBackgroundColor(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles mnuSelectColor.Click
 Dim dlgColor As ColorDialog = New ColorDialog

 If dlgColor.ShowDialog() = Windows.Forms.DialogResult.OK Then
 BackColor = dlgColor.Color
 End If
 End Sub
 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

Friend

Page 8 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

 Return 0
 End Function

End Module

1. Under the form, click cmsProperties

2. In the Properties window, click Items and click its ellipsis button

3. In the Select Items And Add To List Below combo box, make sure MenuItem is selected and
click Add

4. On the right side, click Text and type New Property...

5. Click (Name) and type mnuProperty

6. Click Shortcut and click the arrow of its combo box

7. Click the Ctrl check box and click the arrow of the combo box to select N

8. In the Items Collection Editor, click OK

9. On the main menu, click Project -> Add Windows Form

10. Set the Name to PropertyEditor and click Add

11. Design the form as follows:

Practical Learning: Creating an Intermediary Action

Control Text Name Other Properties

Label Property Code:

TextBox txtPropertyCode

Button OK btnOK DialogResult: OK

Label Property Type:

ComboBox Unknown cbxPropertyTypes

Items:
Unknown

Single Family

Button Cancel btnCalncel
DialogResult:
Cancel

Label Bedrooms:

TextBox 0 txtBedrooms

Label Bathrooms:

TextBox 0.00 txtBathrooms

Label Monthly Rent:

TextBox 0.00 txtMonthlyRent

Label Occupancy Status:

ComboBox Unknown cbxStatus

Unknown
Available
Occupied
Needs Repair

Form FormBorderStyle: FixedDialog

Text: Solas Property Editor

StartPosition: CenterScreen

AcceptButton: btnOK

CancelButton: btnCancel

MaximizeBox: False

MinimizeBox: False

Apartment
Townhouse

Rental - Property

Page 9 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

12. In the Solution Explorer, right-click Central.vb and click View Code

13. In the Class Name combo box, select mnuProperty

14. In the Method Name combo box, select Click and implement the event as follows:

15. Return to the Central form

16. On the form, click File and click New Property

17. In the Properties window, edit its Text property to display &New Property...

18. On the form, click File and double-click New Property

19. Implement the event as follows:

20. Execute the application and try creating the following properties (let the generate
the properties codes):

21. Close the form and return to your

ShowInTaskbar: False

Private Sub mnuProperty_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles mnuProperty.Click
 Dim RandomCode As Random
 Dim Editor As PropertyEditor
 Dim SampleProperty As RentalProperty
 Dim strCode1 As String, strCode2 As String

 RandomCode = New Random
 strCode1 = CStr(RandomCode.Next(100, 999))
 strCode2 = CStr(RandomCode.Next(100, 999))

 Editor = New PropertyEditor
 Editor.txtPropertyCode.Text = strCode1 & "-" & strCode2

 If Editor.ShowDialog() = Windows.Forms.DialogResult.OK Then
 SampleProperty = New RentalProperty
 SampleProperty.PropertyCode = Editor.txtPropertyCode.Text
 SampleProperty.PropertyType = Editor.cbxPropertyTypes.Text
 SampleProperty.Bedrooms = CInt(Editor.txtBedrooms.Text)
 SampleProperty.Bathrooms = CSng(Editor.txtBathrooms.Text)
 SampleProperty.MonthlyRent = CDbl(Editor.txtMonthlyRent.Text)
 SampleProperty.OccupancyStatus= Editor.cbxStatus.Text
 lstRentalProperties.Add(SampleProperty)
 End If

 lvwRentalProperties.Items.Clear()

 If lstRentalProperties.Count > 0 Then
 For Each prop As RentalProperty In lstRentalProperties
 Dim itmProperty As ListViewItem = _
 New ListViewItem(prop.PropertyCode)
 itmProperty.SubItems.Add(prop.PropertyType)
 itmProperty.SubItems.Add(CStr(prop.Bedrooms))
 itmProperty.SubItems.Add(FormatNumber(prop.Bathrooms))
 itmProperty.SubItems.Add(FormatNumber(prop.MonthlyRent))
 itmProperty.SubItems.Add(prop.OccupancyStatus)
 lvwRentalProperties.Items.Add(itmProperty)
 Next
 End If
End Sub

Private Sub mnuFileNewProperty_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles mnuFileNewProperty.Click
 mnuProperty_Click(sender, e)
End Sub

Property Types Bedrooms Bathrooms Monthly Status

Apartment 1 1 925 Occupied

Apartment 2 1 1150.50 Available

Single 5 3.5 2250.85 Occupied

Townhouse 3 2.5 1750 Occupied

Townhouse 4 2.5 1920.50 Available

Single Family 4 2.5 2140.50
Needs
Repair

Apartment 3 2 1250.25 Available

Townhouse 3 1.5 1650.50 Occupied

computer

Rent

Family

programming environment

Page 10 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

www dotnetcharting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Next

Page 11 of 11Characteristics of Menu Items

6/27/2008http://www.functionx.com/vb/menus/characteristics1%20.htm

Studio Windows: The Toolbox

Introduction

A Windows control is a graphical object that
allows the user to interact with the computer.
The controls are as varied as the needs and goals
are. Because there are so many controls for
various purposes, their insertion to an application
and their configuration are left to the computer
programmer. The Toolbox is the accessory that
provides most of the controls used in an
application:

Free Datagrid for WPF
100% stylable and templatable, with rich in-place
editing & more
xceed.com/Grid_WPF_Intro.html

By default, the Toolbox is positioned on the left side of the IDE. To change that position, you
can drag its title bar away and dock it to another side of the IDE. The Toolbox also uses a
default width to show the items on it. If the width is too narrow or too wide, you can change it.
To do this, position the mouse to its right border and drag left or right.

When Microsoft Visual Studio is set up, it installs in the Toolbox the most regularly used
controls. If you are working in an environment that creates only a particular group of
applications and there are controls you hardly use, if you want, you can remove them from the
list. To remove a control, right-click it and click Delete.

Besides the objects in the Common Controls section, other controls are left out but are still
available. Some of the left out controls were created with the .NET Framework but are not
installed by default because they are judged hardly used. To add one or more of these left out
controls, right-click anywhere in the Toolbox and click Choose Items... In the Choose Toolbox
Items dialog box, click the .NET Framework Components tab, then click the check box of the
desired control before clicking OK:

The Toolbox and Additional Controls

Page 1 of 5Studio Windows: The Toolbox

6/27/2008http://www.functionx.com/vb/tools/toolbox.htm

In addition to custom .NET controls, some other objects called ActiveX controls were used in
previous versions of Visual Basic or Visual Studio and are available. To take care of
compatibility issues, most previous ActiveX controls were reconfigured and adapted to be used
in a .NET application. To add some of these left out controls, right-click anywhere in the
Toolbox and click Choose Items... In the Choose Toolbox Items dialog box, click the COM
Components tab, select the desired control before clicking OK

When you start a Windows Application, it provides various controls on the Toolbox so you can
choose which ones are appropriate for your particular application. Controls can be set by
categories based on their function or role. A container is a control whose main purpose is to
host other controls. To design it, you pick up objects from the Toolbox and drop them where
desired. The Toolbox organizes its items in categories and each category is represented by a
button:

The Sections of the Toolbox

Page 2 of 5Studio Windows: The Toolbox

6/27/2008http://www.functionx.com/vb/tools/toolbox.htm

If the available list of categories is not enough, you can add a new section of your choice. By
default, Visual Studio hides some categories because they are judged hardly used. To display
these additional sections, you can right-click anywhere in the Toolbox and click Show All:

If you still want an additional tab not included in the list, you can add one (or more). To do
that, right-click anywhere in the Toolbox and click Add Tab. You would be prompted to provide
a name. After typing the new name, press Enter.

To use an object of a particular category, you can first click its button. After selecting a
category, it displays its items. In each category, a particular button called Pointer is selected by
default. This simply indicates that no item in the group is currently selected.

By default, the items in each category are organized as horizontal wide buttons:

The Layout of a Category

www.manashosting.com
Ads by Google

Page 3 of 5Studio Windows: The Toolbox

6/27/2008http://www.functionx.com/vb/tools/toolbox.htm

Alternatively, you can list the items of a category as buttons of a list view. To do that, you can
right-click anywhere in the category and click List View to remove its check box:

When Microsoft Visual Studio is installed, it adds the buttons in a somewhat random order. In
the beginning, this can make it difficult to find a particular control when you need it. If you find
it more convenient, you can arrange the list of controls in any order of your choice. You have
two main options. To change the position of an item in the list, right-click it and click either
Move Up or Move Down. Alternatively, you can arrange the items in alphabetic order. To do
that, right-click anywhere in the Windows Forms section and click Sort Items Alphabetically:

Arrangement of Items in the Toolbox

Page 4 of 5Studio Windows: The Toolbox

6/27/2008http://www.functionx.com/vb/tools/toolbox.htm

Once you have rearranged items alphabetically, the Toolbox forgets the previous arrangement
and you cannot restore it. Alternatively, you can right-click the button of a control and click
either Move Up or Move Down.

www manashosting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Home

Page 5 of 5Studio Windows: The Toolbox

6/27/2008http://www.functionx.com/vb/tools/toolbox.htm

Studio Object: The Properties Window

Introduction

A property is a piece of information that
characterizes or describes a control. It could be
related to its location or size. It could be its color,
its identification, or any visual aspect that gives it
meaning. The properties of an object can be
changed either at design time or at run time. You
can also manipulate these characteristics both at
design and at run times. This means that you can
set some properties at design time and some
others at run time.

To manipulate the properties of a control at
design time, first select it on the form. While a
control is selected, use the Properties window to
manipulate the properties of the control at design
time. To access the Properties window if it is not
visible:

www manashosting com Ads by Google

On the main menu, you can click View -> Properties Window

On the form, you can right-click anything (either the form itself or any control positioned on
it) and click Properties

The shortcut to display the Properties window is F4

The Properties window uses the behaviors we reviewed in Lesson 1 about auto-hiding, docking,
floating or tabbing the tools that accompany Microsoft Visual Studio 2005. This means that you
can position it on one side of the screen or to have it float on the screen as you wish.

The Properties window is divided in 5 sections:

The Properties window starts on top with a title bar, which displays the string Properties. If the
window is docked somewhere, it displays the Window Position , the Auto-Hide , and the
Close buttons on its right side. If the window is floating, it would display only the Close
button.

Under the title bar, the Properties window displays a combo box. The content of the combo box
is the name of the form plus the names of the controls currently on the form. Besides the
technique we reviewed earlier to select a control, you can click the arrow of the combo box and

Description

Page 1 of 3The Properties Window

6/27/2008http://www.functionx.com/vb/tools/properties1.htm

select a control from the list:

Under the combo box, the Properties displays a toolbar with 4 buttons.

Under the toolbar, the Properties window displays the list of properties of the selected control
(s). On the right side, the list is equipped with a vertical scroll bar. The items in the Properties
window display in a list set when installing Microsoft Visual Studio. In the beginning, you may
be regularly lost when looking for a particular property because the list is not arranged in a
strict order of rules. You can rearrange the list. For example, you can cause the items to
display in alphabetic order. To do this, on the toolbar of the Properties window, click the

Alphabetic button . To restore the list, you can click the categorized button .

Two lists share the main area of the Properties window. When the list of properties is

displaying, the Properties button is clicked . The second is the list of events. Therefore, to

show the events, you can click the Events button . If the events section is displaying, to

show the list of properties, you can click the Properties button .

Under the list of properties, there is a long bar that displays some messages. The area is
actually a help section that displays a short description of the property that is selected in the
main area of the Properties window.

Based on a previous description,

If the Properties window is already displaying, to access the properties of the form or of a
control, simply click it

If the Properties window is not displaying, to access the characteristics of an object, right-
click either the form or a control on the form and click Properties

If the Properties window is not available, to access the characteristics, click either the form
or a control on the form and, on the main menu, click View -> Properties

When a control is selected, the Properties window displays only its characteristics:

You can also change some characteristics of various controls at the same time. To do this, first
select the controls on the form and access the Properties window:

Accessing the Properties of One or More Controls

www.manashosting.com
Ads by Google

Page 2 of 3The Properties Window

6/27/2008http://www.functionx.com/vb/tools/properties1.htm

When various controls have been selected:

The Properties window displays only the characteristics that are common to the selected
controls

The combo box on top of the Properties window is empty

Some fields of the Properties appear empty because the various controls that are selected
have different values for those properties

1. To create a new application, on the main menu, click File -> New Project...

2. In the Templates list, click Windows Application

3. Set the Name to Exercise4 and click OK

Practical Learning: Introducing the Properties Window

www manashosting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Next

Page 3 of 3The Properties Window

6/27/2008http://www.functionx.com/vb/tools/properties1.htm

Visual Basic Functions: The Message Box

Introduction

A message box is a special dialog box used to
display a piece of information to the user. As
opposed to a regular form, the user cannot type
anything in the dialog box. To support message
boxes, the language provides a
function named MsgBox. To support message
boxes, the . provides a class
named.

To display a simple message box, you can use
the MsgBox() function with the following formula:

MsgBox(Message)

Inside the parentheses, pass a string. Here is an
example: www manashosting com Ads by Google

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MsgBox("Welcome to ")
End Sub

If the message is made of different sections, you can concatenate them using the & operator.
You can also first declare a String variable, initialize it, and pass it to the function.

To create a message box using the .NET Framework, you can call the Show() method of the
MessageBox using the following formula:

MessageBox.Show(Message)

As done for the MsgBox() function, pass a string to the method. Here is an example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MessageBox.Show("Welcome to Microsoft Visual Basic")
End Sub

In our lessons, we will mostly use the MsgBox() function, not because it is better than the
MessageBox class. It is simply a preference; but it is also because these lessons are for
Microsoft Visual Basic, so we give preference to its own (rich) library.

Besides displaying a message, a message box can be used to let the user make a decision by
clicking a button and, depending on the button the user would have clicked, the message box
would return a value. To be able to return a value, the MsgBox() function is declared as
follows:

Public Shared Function MsgBox (_
 Prompt As Object, _
 <OptionalAttribute> Optional Buttons As MsgBoxStyle = MsgBoxStyle.OkOnly, _
 <OptionalAttribute> Optional Title As Object = Nothing _
) As MsgBoxResult

The value returned by a message box corresponds to a button the user would have clicked (on

The Return Value of a Message Box

Visual Basic

NET Framework

Microsoft Visual Basic

class

Page 1 of 4Visual Basic Functions: The Message Box

6/27/2008http://www.functionx.com/vb/functions/msgbox.htm

the message box). The return value of the MsgBox() function is based on the MsgBoxResult
enumeration. The buttons and the returned values are as follows:

If you create a simple message box by providing only the message, it would appear with only
one button labeled OK. If you want the user to be able to make a decision and communicate it
to you, provide a second argument. The second argument must be based on the MsgBoxStyle
enumeration. When it comes to buttons, some members of this enumeration are:

To use any of these combinations of buttons, call the MessageBoxStyle enumeration and
access the desired combination. Here is an example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MsgBox("Now we will move to the next step", MsgBoxStyle.OkCancel)
End Sub

This would produce:

If you create a simple message box by providing only the message, the dialog box would
appear with the name of the project in the title. To allow you to specify a caption of your
choice, provide a second string as the third argument to the MsgBox() function. Here is an
example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MsgBox("Now we will move to the next step", _
 MsgBoxStyle.OkCancel, "Lessons Objectives")
End Sub

This would produce:

If the User Clicks
Button
Caption

Integral Value

 OK 1

 Cancel 2

 Abort 3

 Retry 4

 Ignore 5

 Yes 6

 No 7

The Buttons of a Message Box

To Display MsgBoxStyle
Integral

Value

OKOnly 0

 OKCancel 1

 AbortRetryIgnore 2

 YesNoCancel 3

 YesNo 4

 RetryCancel 5

The Caption of a Message Box

www.manashosting.com
Ads by Google

Page 2 of 4Visual Basic Functions: The Message Box

6/27/2008http://www.functionx.com/vb/functions/msgbox.htm

To enhance the appearance of a message box, you can display an icon on it. To support ,
the MsgBoxStyle enumeration provides the following additional members:

To apply one of these buttons, combine its style with that of the button, using the OR operator.
Here is an example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MsgBox("Are you ready to provide your ?", _
 MsgBoxStyle.YesNoCancel Or MsgBoxStyle.Question, _
 "Customer Order Processing")
End Sub

This would produce:

When a message box is configured to display more than one button, the is
set to decide which button is the default. The default button has a thick border that sets it
apart from the other button(s). If the user presses Enter, the message box would behave as if
the user had clicked the default button. If the message box has more than one button, you can
decide what button would be the default. To support the default button, the MsgBoxStyle
enumeration provides the following additional options:

Here is an example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MsgBox("Are you ready to provide card information?", _
 MsgBoxStyle.YesNoCancel Or _
 MsgBoxStyle.Question Or _
 MsgBoxStyle.DefaultButton2, _
 "Customer Order Processing")
End Sub

The Icon of a Message Box

To Display MsgBoxStyle
Integral

Value

Critical 16

Question 32

Exclamation 48

Information 64

The Default Button of a Message Box

MsgBoxStyle
Integral

Value

If the message box
contains more than one

button, the default
button would be

DefaultButton1 0 the first

DefaultButton2 256 the second

DefaultButton3 512 the third

icons

credit card information

operating system

your credit

Page 3 of 4Visual Basic Functions: The Message Box

6/27/2008http://www.functionx.com/vb/functions/msgbox.htm

Home Copyright © 2008 FunctionX, Inc. Home

Page 4 of 4Visual Basic Functions: The Message Box

6/27/2008http://www.functionx.com/vb/functions/msgbox.htm

Visual Basic Functions: The Input Box

Introduction

An input box is a specially designed dialog box that
allows the programmer to request a value from the
user and use that value as necessary. An input box
displays a title, a message to indicate the
requested value, a text box for the user, and two
buttons: OK and Cancel. Here is an example:

 www manashosting com Ads by Google

When an input box displays, it presents a request to the user who can then provide a value.
After using the input box, the user can change his or her mind and press Esc or click Cancel. If
the user provided a value and want to acknowledge it, he or she can click OK or press Enter.
This would transfer the contents of the text box to the application that displayed the input box.

To support input boxes, the Visual Basic library provides a function named InputBox. Its
syntax is:

Public Function InputBox(_
 ByVal Prompt As String, _
 Optional ByVal Title As String = "", _
 Optional ByVal DefaultResponse As String = "", _
 Optional ByVal Xpos As Integer = -1, _
 Optional ByVal YPos As Integer = -1 _
) As String

The only required argument of this function is the message that prompts the user. Here is an
example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 InputBox("Enter Student's Date of Birth")
End Sub

This would produce

When calling the InputBox() function, if you pass only the first argument, the input box would
display the name of the application in the title bar. If you want, you can specify your own
caption through the Title argument. Here is an example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 InputBox("Enter Student's Date of Birth", _

Creating an Input Box

Page 1 of 3Visual Basic Functions: The Input Box

6/27/2008http://www.functionx.com/vb/functions/inputbox.htm

 "Red Oak High School - Student Registration")
End Sub

This would produce

When reading the message on the Input box, the user is asked to enter a piece of information.
The type of information the user is supposed to provide depends on you, the programmer.
Therefore, there are two important things you should always do. First you should let the user
know the type of information requested. Is it a number (what type of number)? Is it a string
(such as the name of a country or a customer's name)? Is it the location of a file (such as
C:\Program Files\Homework)? Are you expecting a Yes/No True/False type of answer (if so how
should the user provide it)? Is it a date (if it is a date, what format is the user supposed to
enter)? These questions indicate that you should state a clear request to the user.

To assist the user with the type of value you are expecting, you can give an example or a type.
To support this, the InputBox() function is equipped with the third argument as a string.
When passing it, you can provide a sample value that the user would follow. Here is an
example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 InputBox("Enter Student's Date of Birth", _
 "Red Oak High School - Student Registration", _
 "MM/DD/YYYY")
End Sub

This would produce:

The last two arguments, XPos and YPos, allow you to specify the default position of the input
box when it comes up the first time.

After typing a value, the user would click one of the buttons: OK or Cancel. If the user clicks
OK, you can retrieve the value the user would have typed. It is also your responsibility to find
out whether the user typed a valid value or not. Because the InputBox() function returns a
string, it has no mechanism of validating the user's entry. Therefore, if necessary, you must
convert the return value of the input box when the user clicks OK. Here is an example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 Dim strDOB As String

 strDOB = InputBox("Enter Student's Date of Birth", _
 "Red Oak High School - Student Registration", _
 "MM/DD/YYYY")

 If IsDate(strDOB) Then
 MsgBox("The student was born on " & CDate(strDOB).ToString("D"), _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Information, _
 "Red Oak High School - Student Registration")
 Else
 MsgBox("You provided an invalid value", _
 MsgBoxStyle.OkOnly Or MsgBoxStyle.Information, _
 "Red Oak High School - Student Registration")
 End If
End Sub

Scrollable Picturebox
OCX
Scroll Pictures and Child
Controls For VB 6
developers
Bennet-Tec.Com

Visual Basic Code
Library
Open Source Code
Snippet Library. Free
Community for
Developers.
www.daniweb.com/code

Free Computer eBooks
10,000+ Online Computer
Books. all are free!
2020ok.com

Downloadable Macro
Books
Get over 1200 Excel visual
basic macro examples with
explanations
www.add-ins.com/macro_examples

VB to C# Converter
Most Accurate VB to C#
Converter. Free Demo,
Tech Support & Upgrades.
www.tangiblesoftwaresolutions.com

Page 2 of 3Visual Basic Functions: The Input Box

6/27/2008http://www.functionx.com/vb/functions/inputbox.htm

www manashosting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Home

Page 3 of 3Visual Basic Functions: The Input Box

6/27/2008http://www.functionx.com/vb/functions/inputbox.htm

Error Handling

Introduction

Apparently no matter how careful and meticulous
you are, there will be problems with your code or
your . Some problems will come from
you. Some problems will be caused by users. And
some problems will be caused by neither you nor
your users. This means that there are things you
can fix. There are things you can avoid as much
as possible. And there are things beyond your
control. Still, as much as you can, try anticipating
any type of problem you imagine may occur
when a user is using your application, and take
action as much as possible to avoid bad
situations.

As mentioned above, there are three main types of problems that you will deal with, directly or
indirectly:

1. Syntax: A syntax error comes from your mistyping a word or forming a bad expression in
your code. It could be that you misspelled a keyword such as ByVel instead of ByVal. It
could also be a bad expression such as 524+ + 62.55. It could be a "grammar" error such
as providing the name of a variable before its data type when declaring a variable (quite
common for those who regularly transition from different languages (C/C++, Pascal, C#,

))

When you use to write your code, it would point out the errors while
you are writing your code, giving up ample time to fix them. When you compile your
application, the can let you know about other syntax errors. For this reason,
syntax errors are almost the easiest to fix. Most of the time, the compiler would point out
where the problem is so you can fix it

2. Run-Time: After all syntax errors have been fixed, the program may be ready for the user.
There are different types of problems that a user may face when interacting with your
program. For example, imagine that, in your code, you indicate that a picture would be
loaded and displayed to the user but you forget to ship the picture or the directory of the
picture indicated in your code becomes different when a user opens your application. In this
case, when you compiled and executed the application in your machine, everything was
fine; but when you distribute the application and your user tries to use it, it does not work.
This is a type of run-time error

3. Logic: These are errors that do not fit in any of the above categories. They could be caused
by the user misusing your application, a problem with the on which the
application is running while the same application is fine in another computer.
Because logic errors can be vague, they can also be difficult (even, to the extreme,
impossible) to fix

One of the best qualities of an effective is to anticipate as many problems as
possible and to deal with them in the early stages. Some problems can be easy to fix. With
some others, you will simply need to build more experience to know how to fix them.
Unfortunately, it will not be unusual to have users asking you to fix your application when a
problem may not come from it.

Error Categories

www.manashosting.com
Ads by Google

application

Java

Microsoft Visual Studio

compiler

computer
working

programmer

Page 1 of 2Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error1.htm

Home Copyright © 2008 FunctionX, Inc. Next

Page 2 of 2Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error1.htm

Classic Error Handling

Introduction

From its early stages, Microsoft Visual Basic has
always made it a priority to deal with errors. Most
or early errors occur in your code. The Visual
Studio IDE can help you detect syntax errors and
fix them. In fact, a feature almost unique to the
Visual Basic IDE, which is not available in Visual
C++ and some versions of Visual C#, is that its
Code Editor detects problems immediately as
soon as they appear in your code. In fact, in
previous versions of Visual Basic and in VBA
(Microsoft Access), a message box would display,
prompting you to fix the problem. This has
always made Visual Basic one of the friendliest
programming environments around. When you
think everything is fine, compile your code. If
there is a syntax error that that the IDE did not
signal or that you ignored when writing your
code, the compiler will let you know. If there is
no syntax error, the compilation will be over and
the executable will be ready. You can then
execute the application to see the result. If the
user is not asked to provide value(s), you are
less likely to get a run-time error.

www manashosting com Ads by Google

A run-time error is one that occurs when using your application. Consider the following
application:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private lblNumber As Label
 Private txtNumber As TextBox
 Friend WithEvents btnCalculate As Button
 Private lblResult As Label
 Private txtResult As TextBox

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 Text = "Calculations"

 lblNumber = New Label
 lblNumber.Location = New Point(17, 23)
 lblNumber.Text = "Number:"
 lblNumber.AutoSize = True

 txtNumber = New TextBox

Page 1 of 6Classic Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error2.htm

Here is an example of executing it:

The first aspect you should take into consider is to imagine what could cause a problem. If you
think there is such a possibility, start by creating a label that could be used to transfer code if a
problem occurs. Here is an example:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)

ThereWasAProblem:
 MsgBox("There was a problem when executing your instructions")
End Sub

If you create such a label, you should tell the compiler when to jump to that label. Otherwise,
as in this case, the label section would always execute. Here is an example of running the

 txtNumber.Location = New Point(78, 20)
 txtNumber.Size = New Size(83, 20)

 btnCalculate = New Button
 btnCalculate.Location = New Point(78, 45)
 btnCalculate.Text = "Calculate"
 btnCalculate.Size = New Size(83, 23)

 lblResult = New Label
 lblResult.Location = New Point(17, 75)
 lblResult.Text = "Result:"
 lblResult.AutoSize = True

 txtResult = New TextBox
 txtResult.Location = New Point(76, 72)
 txtResult.Size = New Size(83, 20)

 Controls.Add(lblNumber)
 Controls.Add(txtNumber)
 Controls.Add(btnCalculate)
 Controls.Add(lblResult)
 Controls.Add(txtResult)

 End Sub

 Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)
 End Sub
 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

Page 2 of 6Classic Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error2.htm

above version:

In this case, we want the label section to execute only when we want it to. To prevent the
compiler from reaching this section if not directed so, you can add an Exit Sub line above the
label section:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)

 Exit Sub

ThereWasAProblem:
 MsgBox("There was a problem when executing your instructions")
End Sub

This time if you execute the program with an appropriate value, the label section would not be
reached.

The above program will compile fine. When executing it, imagine that the user types an
inappropriate value such as 25$.85 instead of 25.85. In this case, the value is not a number,
the program would "crash" and let you know that there was a problem:

With some experience, you would know what the problem was, otherwise, you would face a
vague explanation. The short story is that the compiler could not continue because, in this
case, it could not multiply 25$.85 by another number.

If a problem occurs when a person is using your program, the compiler may display a nasty
and insignificant message to the user who would not know what to do with it. Therefore, you
can start by creating an appropriate label as introduced above. An error normally occurs in a
function. Therefore, to make your code easier to read, you should create a label that shows
that it is made for an error instead of being a regular label. The label should also reflect the
name of the function. Here is an example:

Private Sub CalculateClicked(ByVal sender As Object, _

In Case Of Error, Jump To Label

Page 3 of 6Classic Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error2.htm

 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)

 Exit Sub

btnOperation_Click_Error:
 MsgBox("The operation could not be executed", _
 MsgBoxStyle.OkOnly, "Operation Error")
End Sub

When you think there will be a problem in your code, somewhere in the lines under the name
of the function but before the line that could cause the problem, type On Error GoTo followed
by the name of the label that would deal with the error. Here is an example:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 On Error GoTo btnOperation_Click_Error

 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)

 Exit Sub

btnOperation_Click_Error:
 MsgBox("The operation could not be executed", _
 MsgBoxStyle.OkOnly, "Operation Error")
End Sub

Here is an example of running the program:

When the On Error GoTo statement is used, this indicates to the compiler that if any type of
error occurs while the code of this function is executed, transfer the compilation to the label. In
this case, as soon as something bad happens, the compiler marks the area where the problem
occurred, skips the normal code and jumps to the label indicated by the On Error GoTo line.
After the section of that label is executed, the compiler returns where the error occurred. If
there is nothing to solve the problem, the compiler continues down but without executing the
lines of code involved. In this case, it would encounter the Exit Sub line and get out of the
function.

Although the label is more explicit, it only indicates to the compiler what line to jump to in case
of a problem. The alternative is to specify a line number instead of a label.

If a problem occurs in your code and you provide a label to display a friendly message as done
above, the compiler would display the message and exit from the function. If this happens, as
mentioned above, when the compiler returns where the problem occurred, you can provide an
alternative. For example, in our program, if the user provides an inappropriate value that
causes the error, you can provide an alternate value and ask the compiler to continue as if

In Case Of Error, Jump To Line #

Resume

www.manashosting.com
Ads by Google

Page 4 of 6Classic Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error2.htm

nothing happened. In this case, you want to compiler to "resume" its activity.

To indicate that the program should continue, you can use the Resume keyword. Here is an
example:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 On Error GoTo btnOperation_Click_Error

 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Resume

 Result = Number * 24
 txtResult.Text = CStr(Result)

 Exit Sub

btnOperation_Click_Error:
 MsgBox("The operation could not be executed", _
 MsgBoxStyle.OkOnly, "Operation Error")
End Sub

When an error occurs, if you want the program to continue with an alternate value than the one
that caused the problem, in the label section, type Resume Next. Here is an example:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 On Error GoTo btnOperation_Click_Error

 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)

 Exit Sub

btnOperation_Click_Error:
 MsgBox("The operation could not be executed", _
 MsgBoxStyle.OkOnly, "Operation Error")
 Resume Next
End Sub

In this case, since any numeric variable is initialized with 0, when the compiler returns to the
line of code that caused the problem, it would use 0 as a substitute to the inappropriate value.
Based on this, you can provide a new value to use in case of error. Here is an example:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 On Error GoTo btnOperation_Click_Error

 Dim Number As Double
 Dim Result As Double

 Number = CDbl(txtNumber.Text)

 Result = Number * 24
 txtResult.Text = CStr(Result)

 Exit Sub

btnOperation_Click_Error:
 MsgBox("The operation could not be executed", _
 MsgBoxStyle.OkOnly, "Operation Error")

 Number = 10
 Resume Next
End Sub

Here is one example of running the program:

Page 5 of 6Classic Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error2.htm

Here is another example of running the same program:

To support error handling, the Visual Basic library provides a global variable named Err. This
allows you to identify the error and its description. Because an error depends on what caused it
and why, the values of the Err variable also depend and are not always the same.

The Err Object

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Home

Page 6 of 6Classic Error Handling

6/27/2008http://www.functionx.com/vb/exceptions/error2.htm

Exception Handling Fundamentals

Introduction

As opposed to the traditional techniques used to
deal with errors, Visual Basic now supports a
technique referred to as exception handling. This
technique was mostly used by other languages
such as C/C++, Object Pascal, C#, etc. This
technique is also referred to as structured
exception handling (SEH). The On Error GoTo
system of dealing with errors is referred to as
unstructured exception handling (we will
abbreviate is unSEH). There were many concerns
with unSEH (mostly lastly used in Microsoft Visual
Basic 6):

Java Code Coverage
Jtest Automates JUnit Test Creation & Execution; Checks
500+ Java Rules
www.parasoft.com

Bulk SMS - Stock Brokers
Stock Alert Mangaement system -Best Prices - Pay only 4
deliverd SMS
www.Planet41.com

Windows 2000 Security
Catch hackers red-handed with GFI EventsManager. Free
trial!
www.gfi.com

Market News
Read Experts Advice on the Current Volatile Nature of Stock
Market
BusinessToday.DigitalToday.in

In unSEH, you have to remember to include On Error GoTo sometimes in a random area
inside the function. Besides On Error GoTo, you have to remember to create a label
section. The name of the label has to be faithfully included in the On Error GoTo line

When using the On Error GoTo technique, you have to make sure you get out of the
function at the right time, which is done using an Exit Sub line. If you create this Exit Sub
line in the wrong area in your function, either the whole code would not be considered or
an desired section of the function would still execute, possibly producing an unpredictable
result. In the same way, a bizarre way of creating a Resume or a Resume Next line
would prevent the compiler from reaching or considering some sections of a function

As mentioned previously, the On Error GoTo system provides a global variable named Err.
As flexible as good intentioned as it may appear, to effectively use Err, you have to
proceed by trial and error because Err identifies errors by a number but its documentation
does not possibly provide a list of error numbers. This is because Err not only depends on
the application (Visual Basic, VBA, etc) but also it depends on the circumstance in which it
is invoked. The only possible solution is to cause an error in your code in order to cause Err
to show the numeric error that occurred. Then you have to use that error number and
create a custom error message

Because of these uncertainties, you should abandon the On Error GoTo traditional error
handling and use SEH in all of your new code. Because SEH and unSEH techniques are
inherently different, you cannot use both in the same function.

1. Start Microsoft Visual Basic if necessary.
Create a new Windows Application named GeorgetownCleaningServices1

2. Design the form as follows:

Practical Learning: Introducing Exception Handling

Page 1 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

Control Name Text
Additional
Properties

Form Size: 378, 408

Label
Customer
Name:

TextBox txtCustomerName1

Label mm

Label dd

Label yyyy

Label Order Date:

TextBox txtMM 1

TextBox txtDD 1

TextBox txtYYYY 2000

Label Item Types

Label Qty

Label Unit Price

Label Sub-Total

Label Shirts

TextBox txtQtyShirts 0

TextBox txtUnitPriceShirts 1.15

TextBox txtSubTotalShirts 0.00

Label Pants

TextBox txtQtyPants 0

TextBox txtUnitPricePants 1.95

TextBox txtSubTotalPants 0.00

Label Other

TextBox txtQtyOther 0

TextBox txtUnitPriceOther 3.50

TextBox txtSubTotalOther 0.00

Button btnProcess Process

Label
Customer
Name:

TextBox txtCustomerName2

Label Order date:

TextBox txtOrderDate

Label Tax Rate:

TextBox txtTaxRate 5.75

Label %

Page 2 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

3. To arrange the tab sequence, on the main menu, click View -> Tab Order

4. On the form, click only the following controls whose squares have a white background, in
the indicated order:

5. Press Esc

6. Right-click the form and click View Code

7. Declare a few variables as follows:

Button btnTax Tax

Label Total Order:

TextBox txtTotalOrder 0.00

Label Tax Amount:

TextBox txtTaxAmount 0.00

Label Net Price:

TextBox txtNetPrice 0.00

Label
Amount
Tended:

TextBox txtAmountTended 0.00

Button btnDifference Diff

Label Difference:

TextBox txtDifference 0.00

Public Class Form1

 ' Order Information
 Dim CustomerName As String
 Dim mm As String
 Dim dd As String
 Dim yyyy As String

 ' Quantities of items
 Dim NumberOfShirts As Integer
 Dim NumberOfPants As Integer
 Dim NumberOfOther As Integer

 ' Price of items
 Dim PriceOneShirt As Double
 Dim PriceAPairOfPants As Double
 Dim PriceOther As Double

 ' Each of these sub totals will be used for cleaning items
 Dim SubTotalShirts As Double
 Dim SubTotalPants As Double
 Dim SubTotalOther As Double

 ' Values used to process an order
 Dim TaxRate As Double

Page 3 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

8. In the Class Name combo box, select btnProcess

9. In the Method Name, select Click and implement its event as follows:

10. In the Class Name combo box, select btnTax

11. In the Method Name, select Click and implement its event as follows:

 Dim TotalOrder As Double
 Dim TaxAmount As Double
 Dim SalesTotal As Double

End Class

Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 If btnProcess.Text = "Process" Then
 Height = 408
 btnProcess.Text = "Reset"
 Else
 Height = 232
 txtCustomerName1.Text = ""
 txtMM.Text = "1"
 txtDD.Text = "1"
 txtYYYY.Text = "2000"
 txtQtyShirts.Text = "0"
 txtQtyPants.Text = "0"
 txtQtyOther.Text = "0"
 txtSubTotalShirts.Text = "0.00"
 txtSubTotalPants.Text = "0.00"
 txtSubTotalOther.Text = "0.00"

 btnProcess.Text = "Process"
 End If

 ' Request order information from the user
 CustomerName = txtCustomerName1.Text
 mm = txtMM.Text
 dd = txtDD.Text
 yyyy = txtYYYY.Text

 ' Request the quantity of each category of items
 ' Number of Shirts
 NumberOfShirts = CInt(txtQtyShirts.Text)
 ' Number of Pants
 NumberOfPants = CInt(txtQtyPants.Text)
 ' Number of Dresses
 NumberOfOther = CInt(txtQtyOther.Text)

 ' Unit Prices of items
 PriceOneShirt = CDbl(txtUnitPriceShirts.Text)
 PriceAPairOfPants = CDbl(txtUnitPricePants.Text)
 PriceOther = CDbl(txtUnitPriceOther.Text)

 ' Perform the necessary calculations
 SubTotalShirts = NumberOfShirts * PriceOneShirt
 SubTotalPants = NumberOfPants * PriceAPairOfPants
 SubTotalOther = NumberOfOther * PriceOther

 txtSubTotalShirts.Text = CStr(SubTotalShirts)
 txtSubTotalPants.Text = CStr(SubTotalPants)
 txtSubTotalOther.Text = CStr(SubTotalOther)

 ' Calculate the "temporary" total of the order
 TotalOrder = SubTotalShirts + SubTotalPants + SubTotalOther

 ' Display the receipt
 txtCustomerName2.Text = CustomerName
 txtOrderDate.Text = mm + "/" & dd + "/" & yyyy
 txtTotalOrder.Text = CStr(TotalOrder)
End Sub

Private Sub btnTax_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnTax.Click
 ' Get the tax rate
 TaxRate = CDbl(txtTaxRate.Text) / 100

 ' Calculate the tax amount using a constant rate
 TaxAmount = TotalOrder * TaxRate
 ' Add the tax amount to the total order
 SalesTotal = TotalOrder + TaxAmount

Page 4 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

12. In the Class Name combo box, select btnDifference

13. In the Method Name, select Click and implement its event as follows:

14. Return to the form and resize it form to appear as follows:

15. To execute the application, on the Standard toolbar, click the Start Without Debugging
button

 txtTaxAmount.Text = TaxAmount.ToString()
 txtNetPrice.Text = CStr(SalesTotal)
End Sub

Private Sub btnDifference_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnDifference.Click
 Dim AmountTended As Double = 0.0
 Dim Difference As Double = 0.0

 ' Request money for the order
 AmountTended = CDbl(txtAmountTended.Text)

 ' Calculate the difference owed to the customer
 ' or that the customer still owes to the store
 Difference = AmountTended - SalesTotal

 txtDifference.Text = CStr(Difference)
End Sub

Page 5 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

16. Close the form and return to your programming environment

17. Execute the application again. This time, type a letter such as d for the quantity of shirts
and click Process

18. Click Quit to close the form and return to your programming environment

As mentioned already, errors are likely going to occur in your program. The more you
anticipate them and take action, the better your application can be. We have already seen that
syntax errors are usually human mistakes such as misspelling, bad formulation of expressions,
etc. The compiler will usually help you fix the problem by pointing it out.

SEH is based on two main keywords: Try and Catch. An exception handling section starts with
the Try keyword and stops with the End Try statement. Between Try and End Try, there must
by at least one Catch section. Therefore, exception handling uses the following formula:

Try to Catch the Error

Ads by Google

RadarCube
ASP.NET

OLAP

Native ASP.NET
control for MS AS
based BI solutions

radar-soft.com

Page 6 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

Try
 ' Code to execute in case everything is alright
Catch
 ' If something bad happened, deal with it here
End Try

Exception handling always starts with the Try keyword. Under the Try line, Write the normal
code that the compiler must execute. Here is an example:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Try
 Number = CDbl(InputBox("Enter a number:"))

 End Try
End Sub

As the compiler is treating code in the Try section, if it encounters a problem, it "gets out" of
the Try section and starts looking for a Catch section. Therefore, you MUST always have a
Catch section. If you do not, the program will not compile. A Catch section must be written
before the End Try line:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Try
 Number = CDbl(InputBox("Enter a number:"))
 Catch

 End Try
End Sub

When the Catch keyword is simply written as above, it would be asked to treat any error that
occurs. For example, if you execute the above code with a number such as 35$.75 instead of
35$.75, nothing would appear to happen. This would indicate that the error was found and
vaguely dealt with. One problem in this case is that the compiler would not bother to let the
user know why there is no result displayed. Because there can be various types of errors in a
program, you also should make your program more intuitive and friendlier so that, when an
error occurs, the user would know the type of problem. This is also useful if somebody calls you
and says that your program is not functioning right. If there is a way the user can tell you what
exact type of error is displaying, maybe you would find the solution faster.

1. To introduce exceptions, access the form's code and change the events of the buttons as
follows:

Practical Learning: Catching Exceptions

Public Class Form1

 . . . No Change

 Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 . . . No Change

 ' Request the quantity of each category of items
 ' Number of Shirts
 Try
 NumberOfShirts = CInt(txtQtyShirts.Text)
 Catch

 End Try

 ' Number of Pants
 Try
 NumberOfPants = CInt(txtQtyPants.Text)
 Catch

 End Try

 ' Number of Dresses
 Try

Page 7 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

2. Execute the application. This time, type invalid values in the quantity text boxes and other
text boxes where the user is supposed to enter some values

3. Click Process

 NumberOfOther = CInt(txtQtyOther.Text)
 Catch

 End Try

 ' Unit Prices of items
 Try
 PriceOneShirt = CDbl(txtUnitPriceShirts.Text)
 Catch

 End Try

 Try
 PriceAPairOfPants = CDbl(txtUnitPricePants.Text)
 Catch

 End Try

 Try
 PriceOther = CDbl(txtUnitPriceOther.Text)
 Catch

 End Try

 . . . No Change
 End Sub

 Private Sub btnTax_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnTax.Click
 ' Get the tax rate
 Try
 TaxRate = CDbl(txtTaxRate.Text) / 100
 Catch

 End Try
 ' Calculate the tax amount using a constant rate
 TaxAmount = TotalOrder * TaxRate
 ' Add the tax amount to the total order
 SalesTotal = TotalOrder + TaxAmount

 txtTaxAmount.Text = TaxAmount.ToString()
 txtNetPrice.Text = SalesTotal.ToString()
 End Sub

 Private Sub btnDifference_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnDifference.Click
 Dim AmountTended As Double = 0.0
 Dim Difference As Double = 0.0

 ' Request money for the order
 Try
 AmountTended = CDbl(txtAmountTended.Text)
 Catch

 End Try

 ' Calculate the difference owed to the customer
 ' or that the customer still owes to the store
 Difference = AmountTended - SalesTotal

 txtDifference.Text = CStr(Difference)
 End Sub
End Class

Page 8 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

4. Return to your programming environment

As mentioned already, if an error occurs when processing the program in the Try section, the
compiler transfers the processing to the next Catch section. You can then use the catch section
to deal with the error. At a minimum, you can display a message to inform the user. To do this,
you can create a message box in the Catch section. Here is an example:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private lblNumber As Label
 Private txtNumber As TextBox
 Friend WithEvents btnCalculate As Button
 Private lblResult As Label
 Private txtResult As TextBox

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 Text = "Exception Behavior"

 lblNumber = New Label
 lblNumber.Location = New Point(17, 23)
 lblNumber.Text = "Number:"
 lblNumber.AutoSize = True

 txtNumber = New TextBox
 txtNumber.Location = New Point(78, 20)
 txtNumber.Size = New Size(83, 20)

 btnCalculate = New Button
 btnCalculate.Location = New Point(78, 45)
 btnCalculate.Text = "Calculate"
 btnCalculate.Size = New Size(83, 23)

 lblResult = New Label
 lblResult.Location = New Point(17, 75)
 lblResult.Text = "Result:"
 lblResult.AutoSize = True

 txtResult = New TextBox
 txtResult.Location = New Point(76, 72)
 txtResult.Size = New Size(83, 20)

The Error Message

Page 9 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

 Controls.Add(lblNumber)
 Controls.Add(txtNumber)
 Controls.Add(btnCalculate)
 Controls.Add(lblResult)
 Controls.Add(txtResult)

 End Sub

 Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Try
 Number = CDbl(txtNumber.Text)
 Result = Number * 12.48
 txtResult.Text = CStr(Result)
 Catch
 MsgBox("Something bad happened")
 End Try
 End Sub
 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

Of course, your message may not be particularly clear but this time, the program will not crash.

1. To display custom messages to the user, change the code as follows:

Practical Learning: Displaying Custom Messages

Public Class Form1

 . . . No Change

 Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 . . . No Change

 ' Request the quantity of each category of items
 ' Number of Shirts
 Try
 NumberOfShirts = CInt(txtQtyShirts.Text)
 Catch
 MsgBox("The value you typed for the number of " & _
 "shirts is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 End Try

 ' Number of Pants
 Try

Page 10 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

 NumberOfPants = CInt(txtQtyPants.Text)
 Catch
 MsgBox("The value you typed for the number of " & _
 "pair or pants is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 End Try

 ' Number of other items
 Try
 NumberOfOther = CInt(txtQtyOther.Text)
 Catch
 MsgBox("The value you typed for the number of " & _
 "other items is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 End Try

 ' Unit Prices of items
 Try
 PriceOneShirt = CDbl(txtUnitPriceShirts.Text)
 Catch
 MsgBox("The value you entered for the unit price " & _
 "of a shirt is not a recognizable currency " & _
 "amount." & vbCrLf & _
 "Only natural or decimal numbers " & _
 "are allowed. Please consult the management " & _
 "to know the valid prices.")
 End Try

 Try
 PriceAPairOfPants = CDbl(txtUnitPricePants.Text)
 Catch
 MsgBox("The value you entered for the unit price of " & _
 "a pair of pants is not a recognizable " & _
 "currency amount." & vbCrLf & _
 "Only natural or decimal " & _
 "numbers are allowed. You can consult the " & _
 "management to find out about " & _
 "the allowable prices.")
 End Try

 Try
 PriceOther = CDbl(txtUnitPriceOther.Text)
 Catch
 MsgBox("The value you entered for the unit " & _
 "price of other items is not a valid amount." & _
 vbCrLf & "You must enter only a natural or a " & _
 "decimal number. For more information, " & _
 "please consult the management to get " & _
 "the right prices.")
 End Try

 . . . No Change
 End Sub

 Private Sub btnTax_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnTax.Click
 ' Get the tax rate
 Try
 TaxRate = CDbl(txtTaxRate.Text) / 100
 Catch
 MsgBox("The value you entered is not " & _
 "recognized as a valid tax rate." & _
 vbCrLf & "A valid tax rate is a value " & _
 "between 0 and 100.00" & _
 vbCrLf & "Please try again.")
 End Try
 ' Calculate the tax amount using a constant rate
 TaxAmount = TotalOrder * TaxRate
 ' Add the tax amount to the total order
 SalesTotal = TotalOrder + TaxAmount

 txtTaxAmount.Text = TaxAmount.ToString()
 txtNetPrice.Text = SalesTotal.ToString()
 End Sub

 Private Sub btnDifference_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnDifference.Click
 Dim AmountTended As Double = 0.0
 Dim Difference As Double = 0.0

Page 11 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

2. Test the application with valid and invalid values. Here is an example:

3. Return to Notepad

 ' Request money for the order
 Try
 AmountTended = CDbl(txtAmountTended.Text)
 Catch
 MsgBox("The value you entered for the amount " & _
 "tended is not valid. Only natural or " & _
 "decimal numbers are allowed." & _
 "Please try again.")
 End Try

 ' Calculate the difference owed to the customer
 ' or that the customer still owes to the store
 Difference = AmountTended - SalesTotal

 txtDifference.Text = CStr(Difference)
 End Sub
End Class

www manashosting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 12 of 12Fundamentals of Exception Handling

6/27/2008http://www.functionx.com/vb/exceptions/exception.htm

A Review of .NET Exception Classes

Introduction

The .NET Framework provides various classes to
handle almost any type of exception you can
think of. There are so many of these classes that
we can only mention a few.

There are two main ways you can use one of the
classes of the .NET Framework. If you know for
sure that a particular exception will be produced,
pass its name to a Catch clause. Then, in the
Catch section, display a custom message. The
second option you have consists of using the
Throw keyword. We will study it later.

PDF Display and Printing
ABCpdf PDF rendering & PDF generation, for C#,
VB, ASP & .NET
www.websupergoo.com

In most cases, we will try to always indicate the type of exception that could be thrown if
something goes wrong in a program.

Everything the user types into an application using the keyboard is primarily a string and you
must convert it to the appropriate type before using it. When you request a specific .NET type
of value from the user, after the user has typed it and you decide to convert it to the
appropriate type, if your conversion fails, the program produces (we will use he word "throw")
an error. The error is of from the FormatException class.

Here is a program that deals with a FormatException exception:

Imports System.Drawing
Imports System.Windows.Forms

Module Exercise

 Public Class Starter
 Inherits Form

 Private lblNumber As Label
 Private txtNumber As TextBox
 Friend WithEvents btnCalculate As Button
 Private lblResult As Label
 Private txtResult As TextBox

 Dim components As System.ComponentModel.Container

 Public Sub New()
 InitializeComponent()
 End Sub

 Public Sub InitializeComponent()
 Text = "Exceptional Behavior"

 lblNumber = New Label
 lblNumber.Location = New Point(17, 23)
 lblNumber.Text = "Number:"
 lblNumber.AutoSize = True

 txtNumber = New TextBox
 txtNumber.Location = New Point(78, 20)
 txtNumber.Size = New Size(83, 20)

 btnCalculate = New Button
 btnCalculate.Location = New Point(78, 45)
 btnCalculate.Text = "Calculate"
 btnCalculate.Size = New Size(83, 23)

 lblResult = New Label

The Format Exception

Page 1 of 6A Review of .NET Exception Classes

6/27/2008http://www.functionx.com/vb/exceptions/netsupport2.htm

 lblResult.Location = New Point(17, 75)
 lblResult.Text = "Result:"
 lblResult.AutoSize = True

 txtResult = New TextBox
 txtResult.Location = New Point(76, 72)
 txtResult.Size = New Size(83, 20)

 Controls.Add(lblNumber)
 Controls.Add(txtNumber)
 Controls.Add(btnCalculate)
 Controls.Add(lblResult)
 Controls.Add(txtResult)

 End Sub

 Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Double
 Dim Result As Double

 Try
 Number = Double.Parse(txtNumber.Text)
 Result = Number * 12.48
 txtResult.Text = CStr(Result)
 Catch ex As FormatException
 MsgBox("Inavlid Value!")
 End Try
 End Sub
 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0
 End Function

End Module

1. Open the GeorgetownCleaningServices1 application from the previous lesson

2. Change the code as follows:

Practical Learning: Using the FormatException Class

Public Class Form1

 . . . No Change

 Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 . . . No Change

 ' Request the quantity of each category of items
 ' Number of Shirts
 Try
 NumberOfShirts = CInt(txtQtyShirts.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "shirts is not a valid number." & _

Page 2 of 6A Review of .NET Exception Classes

6/27/2008http://www.functionx.com/vb/exceptions/netsupport2.htm

 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 End Try

 ' Number of Pants
 Try
 NumberOfPants = CInt(txtQtyPants.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "pair or pants is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 End Try

 ' Number of other items
 Try
 NumberOfOther = CInt(txtQtyOther.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "other items is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 End Try

 ' Unit Prices of items
 Try
 PriceOneShirt = CDbl(txtUnitPriceShirts.Text)
 Catch ex As FormatException
 MsgBox("The value you entered for the unit price " & _
 "of a shirt is not a recognizable currency " & _
 "amount." & vbCrLf & _
 "Only natural or decimal numbers " & _
 "are allowed. Please consult the management " & _
 "to know the valid prices.")
 End Try

 Try
 PriceAPairOfPants = CDbl(txtUnitPricePants.Text)
 Catch ex As FormatException
 MsgBox("The value you entered for the unit price of " & _
 "a pair of pants is not a recognizable " & _
 "currency amount." & vbCrLf & _
 "Only natural or decimal " & _
 "numbers are allowed. You can consult the " & _
 "management to find out about " & _
 "the allowable prices.")
 End Try

 Try
 PriceOther = CDbl(txtUnitPriceOther.Text)
 Catch ex As FormatException
 MsgBox("The value you entered for the unit " & _
 "price of other items is not a valid amount." & _
 vbCrLf & "You must enter only a natural or a " & _
 "decimal number. For more information, " & _
 "please consult the management to get " & _
 "the right prices.")
 End Try

 . . . No Change
 End Sub

 Private Sub btnTax_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnTax.Click
 ' Get the tax rate
 Try
 TaxRate = CDbl(txtTaxRate.Text) / 100
 Catch ex As FormatException
 MsgBox("The value you entered is not " & _
 "recognized as a valid tax rate." & _
 vbCrLf & "A valid tax rate is a value " & _
 "between 0 and 100.00" & _
 vbCrLf & "Please try again.")
 End Try
 ' Calculate the tax amount using a constant rate
 TaxAmount = TotalOrder * TaxRate
 ' Add the tax amount to the total order
 SalesTotal = TotalOrder + TaxAmount

 txtTaxAmount.Text = TaxAmount.ToString()
 txtNetPrice.Text = SalesTotal.ToString()
 End Sub

Page 3 of 6A Review of .NET Exception Classes

6/27/2008http://www.functionx.com/vb/exceptions/netsupport2.htm

3. Execute the application and return to your programming environment

A computer application receives, processes, and produces values on a regular basis as the
program is running. To better manage these values, as we saw when studying variables and
data types, the compiler uses appropriate amounts of space to store its values. It is not
unusual that either you the programmer or a user of your application provides a value that is
beyond the allowed range based on the data type. For example, a byte uses 8 bits to store a
value and a combination of 8 bits can store a number no more than 255. If you provide a value
higher than 255 to be stored in a byte, you get an error. Consider the following program:

Private Sub CalculateClicked(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btnCalculate.Click
 Dim Number As Byte
 Dim Result As Byte

 Try
 Number = Byte.Parse(txtNumber.Text)
 Result = Number * 12
 txtResult.Text = CStr(Result)
 Catch ex As FormatException
 MsgBox("Inavlid Value!")
 End Try
End Sub

When a value beyond the allowable range is asked to be stored in memory, the compiler
produces (the verb is "throws" as we will learn soon) an error of the OverflowException class.
Here is an example of running the program with a bad number:

 Private Sub btnDifference_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnDifference.Click
 Dim AmountTended As Double = 0.0
 Dim Difference As Double = 0.0

 ' Request money for the order
 Try
 AmountTended = CDbl(txtAmountTended.Text)
 Catch ex As FormatException
 MsgBox("The value you entered for the amount " & _
 "tended is not valid. Only natural or " & _
 "decimal numbers are allowed." & _
 "Please try again.")
 End Try

 ' Calculate the difference owed to the customer
 ' or that the customer still owes to the store
 Difference = AmountTended - SalesTotal

 txtDifference.Text = CStr(Difference)
 End Sub
End Class

The Overflow Exception

Ads by Google

RadarCube
ASP.NET

OLAP

Native ASP.NET
control for MS AS
based BI solutions

radar-soft.com

Page 4 of 6A Review of .NET Exception Classes

6/27/2008http://www.functionx.com/vb/exceptions/netsupport2.htm

As with the other errors, when this exception is thrown, you should take appropriate action.

Once again, in a .NET Framework application, a value is passed to the Parse() method of its
data type for analysis. For a primitive data type, the Parse() method scans the string and if
the converted value is beyond a determined range, the compiler throws an
ArgumentOutOfRangeException exception.

1. Under the CustomerName variable, declare a variable named OrderTime of type DateTime

2. Change the Click event of the Process button as follows:

The Argument Out of Range Exception

Practical Learning: Using an ArgumentOutOfRangeException
Exception

Public Class Form1

 ' Order Information
 Dim CustomerName As String
 Dim OrderDate As DateTime
 Dim mm As String
 Dim dd As String
 Dim yyyy As String

Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 . . . No Change

 ' Request order information from the user
 CustomerName = txtCustomerName1.Text

 Try
 Dim mm As Integer, dd As Integer, yyyy As Integer
 mm = Integer.Parse(txtMM.Text)
 dd = Integer.Parse(txtDD.Text)
 yyyy = Integer.Parse(txtYYYY.Text)
 OrderDate = New DateTime(yyyy, mm, dd)

 Catch ex As ArgumentOutOfRangeException
 MsgBox("The date you entered is not valid" & _
 "- Please try again!")
 End Try

 . . . No Change

 ' Display the receipt
 txtCustomerName2.Text = CustomerName
 txtOrderDate.Text = FormatDateTime(OrderDate, DateFormat.LongDate)

Page 5 of 6A Review of .NET Exception Classes

6/27/2008http://www.functionx.com/vb/exceptions/netsupport2.htm

3. Execute the application.

4. To test it enter valid and invalid values for the controls. Here is an example:

5. Close the form and return to your programming environment

Division by zero is an operation to always avoid. It is so important that it is one of the most
fundamental exceptions of the computer. It is addressed at the core level even by the
processors. It is also addressed by the operating systems at their level. It is also addressed by
most, if not all, compilers. It is also addressed by most, if not, all libraries. This means that this
exception is never welcomed anywhere. The .NET Framework also provides it own class to face
this operation.

If an attempt to divide a value by 0, the compiler throws a DivideByZeroException exception.

 txtTotalOrder.Text = CStr(TotalOrder)
End Sub

The Divide by Zero Exception

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Next

Page 6 of 6A Review of .NET Exception Classes

6/27/2008http://www.functionx.com/vb/exceptions/netsupport2.htm

Techniques of Using Exceptions

Throwing an Exception

As mentioned above, the Exception class is
equipped with a Message property that carries a
message for the error that occurred. We also
mentioned that the message of this property may
not be particularly useful to a user. Fortunately,
you can create your own message and pass it to
the Exception object. To be able to receive
custom messages, the Exception class provides
the following constructor:

Public Sub New(message As String)

Ads by Google

Compare Excel tables

Powerful and handy add-on for Excel
2000-2007 files comparison.

www.office-excel.com

To use it, in the section where you are anticipating the error, type the Throw keyword followed
by a New instance of the Exception class using the constructor that takes a string. Here is an
example:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2

 Case "-"
 Result = Operand1 - Operand2

 Case "*"
 Result = Operand1 * Operand2

 Case "/"
 Result = Operand1 / Operand2

 Case Else
 MsgBox("Bad Operation")

 End Select

 TextBox4.Text = CStr(Result)

 Catch Ex As Exception
 MsgBox("Operation Error: " & Ex.Message & _
 vbCrLf & Oper & " is not a valid operator")
 End Try
End Sub

Page 1 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

In the above examples, when we anticipated some type of problem, we instructed the compiler
to use our default catch section. We left it up to the compiler to find out when there was a
problem and we provided a catch section to deal with it. A method with numerous or complex
operations and requests can also produce different types of errors. With such a type of
program, you should be able to face different problems and deal with them individually, each
by its own kind. To do this, you can create different catch sections, each made for a particular
error. The formula used would be:

Try
 ' Code to Try
Catch Arg1

 ' One Exception
Catch Arg2

 ' Another Exception
End Try

The compiler would proceed in a top-down:

1. Following the normal flow of the program, the compiler enters the try block

2. If no exception occurs in the Try block, the rest of the Try block is executed
If an exception occurs in the Try block, the compiler registers the type of error that
occurred. If there is a Throw line, the compiler registers it also:

a. The compiler gets out of the Try section

b. The compiler examines the first Catch. If the first Catch matches the thrown error,
that catch executes and the exception handling routine may seize. If the first Catch
does not match the thrown error, the compiler proceeds with the next Catch

c. The compiler checks the next match, if any, and proceeds as in the first match. This
continues until the compiler finds a Catch clause that matches the thrown error

d. If one of the catches matches the thrown error, its body executes. If no Catch
matches the thrown error, the compiler calls the Exception class and uses the
default message

Multiple catches are written if or when a try block is expected to throw different types of errors.
For example, in our calculator, we want to consider only the addition, the subtraction, the
multiplication, and the division. It is also likely that the user may type one or two invalid
numbers. This leads us to know that our program can produce at least two types of errors at
this time. Based on this, we can address them using two catch clauses as follows:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _

Catching Various Exceptions

Page 2 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2

 Case "-"
 Result = Operand1 - Operand2

 Case "*"
 Result = Operand1 * Operand2

 Case "/"
 Result = Operand1 / Operand2

 Case Else
 MsgBox("Bad Operation")

 End Select

 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch Ex As Exception
 MsgBox("Operation Error: " & Ex.Message & _
 vbCrLf & Oper & " is not a valid operator")
 End Try
End Sub

This program works fine as long as the user types two valid numbers and a valid arithmetic
operator. Anything else, such an invalid number or an unexpected operator would cause an
error to be thrown:

Page 3 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

Obviously various bad things could happen when this program is running. Imagine that the user
wants to perform a division. You need to tell the compiler what to do if the user enters the
denominator as 0 (or 0.00). If this happens, one of the options you should consider is to
display a message and get out. Fortunately, the .NET Framework provides the
DivideByZeroException class to deal with an exception caused by division by zero. As done
with the message passed to the Exception class, you can compose your own message and
pass it to the DivideByZeroException(string message) constructor.

Exception is the parent of all exception classes. It corresponds to the type of Catch that takes
no argument. Therefore, if you write various catch blocks, the one that either takes nor
argument or is of the Exception type must be the last.

Here is an example that catches two types of exceptions:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2

 Case "-"
 Result = Operand1 - Operand2

 Case "*"
 Result = Operand1 * Operand2

 Case "/"
 If Operand2 = 0 Then
 Throw New DivideByZeroException(_
 "Division by zero is not allowed")
 End If

 Result = Operand1 / Operand2

 Case Else
 MsgBox("Bad Operation")

 End Select

 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & _
 Oper & " is not a valid operator")
 End Try
End Sub

Page 4 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

1. To catch various exceptions, change the code as follows:

Practical Learning: Identifying the Thrown Exception

Public Class Form1

 ' Order Information
 Dim CustomerName As String
 Dim OrderDate As DateTime
 Dim mm As String
 Dim dd As String
 Dim yyyy As String

 ' Quantities of items
 Dim NumberOfShirts As Integer
 Dim NumberOfPants As Integer
 Dim NumberOfOther As Integer

 ' Price of items
 Dim PriceOneShirt As Double
 Dim PriceAPairOfPants As Double
 Dim PriceOther As Double

 ' Each of these sub totals will be used for cleaning items
 Dim SubTotalShirts As Double
 Dim SubTotalPants As Double
 Dim SubTotalOther As Double

 ' Values used to process an order
 Dim TaxRate As Double
 Dim TotalOrder As Double
 Dim TaxAmount As Double
 Dim SalesTotal As Double

 Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 If btnProcess.Text = "Process" Then
 Height = 408
 btnProcess.Text = "Reset"
 Else
 Height = 232
 txtCustomerName1.Text = ""

Page 5 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 txtMM.Text = "1"
 txtDD.Text = "1"
 txtYYYY.Text = "2000"
 txtQtyShirts.Text = "0"
 txtQtyPants.Text = "0"
 txtQtyOther.Text = "0"
 txtSubTotalShirts.Text = "0.00"
 txtSubTotalPants.Text = "0.00"
 txtSubTotalOther.Text = "0.00"

 btnProcess.Text = "Process"
 End If

 ' Request order information from the user
 CustomerName = txtCustomerName1.Text

 Try
 Dim mm As Integer, dd As Integer, yyyy As Integer
 mm = Integer.Parse(txtMM.Text)
 dd = Integer.Parse(txtDD.Text)
 yyyy = Integer.Parse(txtYYYY.Text)
 OrderDate = New DateTime(yyyy, mm, dd)

 ' This exception is thrown if the user types a value that cannot
 ' be converted into a valid number
 Catch ex As FormatException
 MsgBox("Error: " & ex.Message & _
 vbCrLf & "The value you entered " & _
 "is not a valid number")

 ' This exception is thrown if the
 ' values that user had typed cannot
 ' produce a valid date value
 Catch ex As ArgumentOutOfRangeException
 MsgBox("The date you entered is not valid" & _
 "- Please try again!")
 End Try

 ' Request the quantity of each category of items
 ' Number of Shirts
 Try
 NumberOfShirts = CInt(txtQtyShirts.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "shirts is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 ' This exception is thrown if the user types a negative value
 Catch Ex As OverflowException
 MsgBox("The number you typed is negative but " & _
 "we cannot accept a negative number of shirts")
 End Try

 ' Number of Pants
 Try
 NumberOfPants = CInt(txtQtyPants.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "pair or pants is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 Catch Ex As OverflowException
 MsgBox("The number you typed is negative but " & _
 "we cannot accept a negative number of shirts")
 End Try

 ' Number of other items
 Try
 NumberOfOther = CInt(txtQtyOther.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "other items is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 Catch Ex As OverflowException
 MsgBox("The number you typed is negative but " & _
 "we cannot accept a negative number of shirts")
 End Try

 ' Unit Prices of items
 Try
 PriceOneShirt = CDbl(txtUnitPriceShirts.Text)
 If PriceOneShirt < 0 Then
 Throw New Exception("Negative numbers are not allowed " & _
 "for the price of a shirt")

www.manashosting.com
Ads by Google

Page 6 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the unit price " & _
 "of a shirt is not a recognizable currency " & _
 "amount." & vbCrLf & _
 "Only natural or decimal numbers " & _
 "are allowed. Please consult the management " & _
 "to know the valid prices.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 Try
 PriceAPairOfPants = CDbl(txtUnitPricePants.Text)
 If PriceAPairOfPants < 0 Then
 Throw New Exception("Negative numbers are not allowed " & _
 "for the price of a pair of pants")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the unit price of " & _
 "a pair of pants is not a recognizable " & _
 "currency amount." & vbCrLf & _
 "Only natural or decimal " & _
 "numbers are allowed. You can consult the " & _
 "management to find out about " & _
 "the allowable prices.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 Try
 PriceOther = CDbl(txtUnitPriceOther.Text)
 If PriceOther < 0 Then
 Throw New Exception("Negative numbers are " & _
 "not allowed for the price")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the unit " & _
 "price of other items is not a valid amount." & _
 vbCrLf & "You must enter only a natural or a " & _
 "decimal number. For more information, " & _
 "please consult the management to get " & _
 "the right prices.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 ' Perform the necessary calculations
 SubTotalShirts = NumberOfShirts * PriceOneShirt
 SubTotalPants = NumberOfPants * PriceAPairOfPants
 SubTotalOther = NumberOfOther * PriceOther

 txtSubTotalShirts.Text = CStr(SubTotalShirts)
 txtSubTotalPants.Text = CStr(SubTotalPants)
 txtSubTotalOther.Text = CStr(SubTotalOther)

 ' Calculate the "temporary" total of the order
 TotalOrder = SubTotalShirts + SubTotalPants + SubTotalOther

 ' Display the receipt
 txtCustomerName2.Text = CustomerName
 txtOrderDate.Text = FormatDateTime(OrderDate, DateFormat.LongDate)
 txtTotalOrder.Text = CStr(TotalOrder)
 End Sub

 Private Sub btnTax_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnTax.Click
 ' Get the tax rate
 Try
 TaxRate = CDbl(txtTaxRate.Text) / 100
 If TaxRate < 0 Then
 Throw New Exception("Negative numbers are not " & _
 "allowed for a tax rate")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered is not " & _
 "recognized as a valid tax rate." & _
 vbCrLf & "A valid tax rate is a value " & _
 "between 0 and 100.00" & _
 vbCrLf & "Please try again.")

Page 7 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

2. Test the application and return to your programming environment

The calculator simulator we have studied so far performs a division as one of its assignments.
We learned that, in order to perform any operation, the compiler must first make sure that the
user has entered a valid operator. Provided the operator is one of those we are expecting, we
also must make sure that the user typed valid numbers. Even if these two criteria are met, it is
still possible that the user would enter 0 for the denominator. The block that is used to check
for a non-zero denominator depends on the exception that validates the operators. The
exception that could result from a zero denominator depends on the user first entering a valid
number for the denominator.

You can create an exception inside of another. This is referred to as nesting an exception. This
is done by applying the same techniques used to nest conditional statements. This means that
you can write an exception that depends on, and is subject to, another exception. To nest an
exception, create a Try clause in the body of the parent exception. The nested Try clause must
be followed by its own Catch clause(s). To effectively handle the exception, make sure you
include an appropriate Throw in the Try block. Here is an example:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 ' Calculate the tax amount using a constant rate
 TaxAmount = TotalOrder * TaxRate
 ' Add the tax amount to the total order
 SalesTotal = TotalOrder + TaxAmount

 txtTaxAmount.Text = TaxAmount.ToString()
 txtNetPrice.Text = SalesTotal.ToString()
 End Sub

 Private Sub btnDifference_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnDifference.Click
 Dim AmountTended As Double = 0.0
 Dim Difference As Double = 0.0

 ' Request money for the order
 Try
 AmountTended = CDbl(txtAmountTended.Text)
 If AmountTended < 0 Then
 Throw New Exception("Negative numbers are not " & _
 "allowed forthe amount tended")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the amount " & _
 "tended is not valid. Only natural or " & _
 "decimal numbers are allowed." & _
 "Please try again.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 ' Calculate the difference owed to the customer
 ' or that the customer still owes to the store
 Difference = AmountTended - SalesTotal

 txtDifference.Text = CStr(Difference)
 End Sub
End Class

Exceptions Nesting

Page 8 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2
 TextBox4.Text = CStr(Result)

 Case "-"
 Result = Operand1 - Operand2
 TextBox4.Text = CStr(Result)

 Case "*"
 Result = Operand1 * Operand2
 TextBox4.Text = CStr(Result)

 Case "/"
 Try
 If Operand2 = 0 Then
 Throw New DivideByZeroException(_
 "Division by zero is not allowed")
 End If
 Result = Operand1 / Operand2

 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 End Try

 Case Else
 MsgBox("Bad Operation")

 End Select

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & _
 Oper & " is not a valid operator")
 End Try
End Sub

One of the most effective techniques used to deal with code is to isolate assignments in
different functions. For example, the Select Case statement that was performing the
operations in the “normal” version of our program could be written as follows:

Private Function Calculate(ByVal Value1 As Double, _
 ByVal Value2 As Double, _
 ByVal symbol As Char) As Double

 Dim Result As Double = 0.0

 Select Case symbol

 Case "+"
 Result = Value1 + Value2

 Case "-"
 Result = Value1 - Value2

 Case "*"
 Result = Value1 * Value2

 Case "/"
 Result = Value1 / Value2
 End Select

 Calculate = Result
End Function

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _

Exceptions and Functions

Page 9 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 If Oper = "/" Then
 If Operand2 = 0 Then
 Throw New DivideByZeroException(_
 "Division by zero is not allowed")
 End If
 End If

 Result = Calculate(Operand1, Operand2, Oper)
 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & _
 Oper & " is not a valid operator")
 End Try
End Sub

This is an example of running the program:

You can still use regular functions that handle exceptions and each function can handle its own
exception(s). Here is an example:

Private Function Addition(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double
 Addition = Value1 + Value2
End Function

Private Function Subtraction(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double
 Subtraction = Value1 - Value2
End Function

Private Function Multiplication(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double
 Multiplication = Value1 * Value2
End Function

Private Function Division(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double

 Dim Result As Double = 0.0

 Try

 If Value2 = 0 Then
 Throw New DivideByZeroException("Division by zero is not allowed")
 End If

 Result = Value1 + Value2

 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 End Try

 Division = Result
End Function

Page 10 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Addition(Operand1, Operand2)

 Case "-"
 Result = Subtraction(Operand1, Operand2)

 Case "*"
 Result = Multiplication(Operand1, Operand2)

 Case "/"
 Result = Division(Operand1, Operand2)
 End Select

 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & Oper & " is not a valid operator")
 End Try
End Sub

Previous Copyright © 2008 FunctionX, Inc. Home

Page 11 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

Techniques of Using Exceptions

Throwing an Exception

As mentioned above, the Exception is
equipped with a Message property that carries a
message for the error that occurred. We also
mentioned that the message of this property may
not be particularly useful to a user. Fortunately,
you can create your own message and pass it to
the Exception object. To be able to receive
custom messages, the Exception class provides
the following constructor:

Public Sub New(message As String)

Ads by Google

Compare Excel tables

Powerful and handy add-on for Excel
2000-2007 files comparison.

www.office-excel.com

To use it, in the section where you are anticipating the error, type the Throw keyword followed
by a New instance of the Exception class using the constructor that takes a string. Here is an
example:

Private Sub Button1_Click(ByVal sender As .Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2

 Case "-"
 Result = Operand1 - Operand2

 Case "*"
 Result = Operand1 * Operand2

 Case "/"
 Result = Operand1 / Operand2

 Case Else
 MsgBox("Bad Operation")

 End Select

 TextBox4.Text = CStr(Result)

 Catch Ex As Exception
 MsgBox("Operation Error: " & Ex.Message & _
 vbCrLf & Oper & " is not a valid operator")
 End Try
End Sub

class

System

Page 1 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

In the above examples, when we anticipated some type of problem, we instructed the
to use our default catch section. We left it up to the compiler to find out when there was a
problem and we provided a catch section to deal with it. A method with numerous or complex
operations and requests can also produce different types of errors. With such a type of
program, you should be able to face different problems and deal with them individually, each
by its own kind. To do this, you can create different catch sections, each made for a particular
error. The formula used would be:

Try
 ' Code to Try
Catch Arg1

 ' One Exception
Catch Arg2

 ' Another Exception
End Try

The compiler would proceed in a top-down:

1. Following the normal flow of the program, the compiler enters the try block

2. If no exception occurs in the Try block, the rest of the Try block is executed
If an exception occurs in the Try block, the compiler registers the type of error that
occurred. If there is a Throw line, the compiler registers it also:

a. The compiler gets out of the Try section

b. The compiler examines the first Catch. If the first Catch matches the thrown error,
that catch executes and the routine may seize. If the first Catch
does not match the thrown error, the compiler proceeds with the next Catch

c. The compiler checks the next match, if any, and proceeds as in the first match. This
continues until the compiler finds a Catch clause that matches the thrown error

d. If one of the catches matches the thrown error, its body executes. If no Catch
matches the thrown error, the compiler calls the Exception class and uses the
default message

Multiple catches are written if or when a try block is expected to throw different types of errors.
For example, in our , we want to consider only the addition, the , the
multiplication, and the division. It is also likely that the user may type one or two invalid
numbers. This leads us to know that our program can produce at least two types of errors at
this time. Based on this, we can address them using two catch clauses as follows:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _

Catching Various Exceptions

compiler

exception handling

calculator subtraction

Page 2 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2

 Case "-"
 Result = Operand1 - Operand2

 Case "*"
 Result = Operand1 * Operand2

 Case "/"
 Result = Operand1 / Operand2

 Case Else
 MsgBox("Bad Operation")

 End Select

 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch Ex As Exception
 MsgBox("Operation Error: " & Ex.Message & _
 vbCrLf & Oper & " is not a valid operator")
 End Try
End Sub

This program works fine as long as the user types two valid numbers and a valid
operator. Anything else, such an invalid number or an unexpected operator would cause an
error to be thrown:

arithmetic

Page 3 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

Obviously various bad things could happen when this program is running. Imagine that the user
wants to perform a division. You need to tell the compiler what to do if the user enters the
denominator as 0 (or 0.00). If this happens, one of the options you should consider is to
display a message and get out. Fortunately, the . provides the
DivideByZeroException class to deal with an exception caused by division by zero. As done
with the message passed to the Exception class, you can compose your own message and
pass it to the DivideByZeroException(string message) constructor.

Exception is the parent of all exception classes. It corresponds to the type of Catch that takes
no argument. Therefore, if you write various catch blocks, the one that either takes nor
argument or is of the Exception type must be the last.

Here is an example that catches two types of exceptions:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2

 Case "-"
 Result = Operand1 - Operand2

 Case "*"
 Result = Operand1 * Operand2

 Case "/"
 If Operand2 = 0 Then
 Throw New DivideByZeroException(_
 "Division by zero is not allowed")
 End If

 Result = Operand1 / Operand2

 Case Else
 MsgBox("Bad Operation")

 End Select

 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & _
 Oper & " is not a valid operator")
 End Try
End Sub

NET Framework

Page 4 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

1. To catch various exceptions, change the code as follows:

Practical Learning: Identifying the Thrown Exception

Public Class Form1

 ' Order Information
 Dim CustomerName As String
 Dim OrderDate As DateTime
 Dim mm As String
 Dim dd As String
 Dim yyyy As String

 ' Quantities of items
 Dim NumberOfShirts As Integer
 Dim NumberOfPants As Integer
 Dim NumberOfOther As Integer

 ' Price of items
 Dim PriceOneShirt As Double
 Dim PriceAPairOfPants As Double
 Dim PriceOther As Double

 ' Each of these sub totals will be used for cleaning items
 Dim SubTotalShirts As Double
 Dim SubTotalPants As Double
 Dim SubTotalOther As Double

 ' Values used to process an order
 Dim TaxRate As Double
 Dim TotalOrder As Double
 Dim TaxAmount As Double
 Dim SalesTotal As Double

 Private Sub btnProcess_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnProcess.Click
 If btnProcess.Text = "Process" Then
 Height = 408
 btnProcess.Text = "Reset"
 Else
 Height = 232
 txtCustomerName1.Text = ""

Page 5 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 txtMM.Text = "1"
 txtDD.Text = "1"
 txtYYYY.Text = "2000"
 txtQtyShirts.Text = "0"
 txtQtyPants.Text = "0"
 txtQtyOther.Text = "0"
 txtSubTotalShirts.Text = "0.00"
 txtSubTotalPants.Text = "0.00"
 txtSubTotalOther.Text = "0.00"

 btnProcess.Text = "Process"
 End If

 ' Request order information from the user
 CustomerName = txtCustomerName1.Text

 Try
 Dim mm As Integer, dd As Integer, yyyy As Integer
 mm = Integer.Parse(txtMM.Text)
 dd = Integer.Parse(txtDD.Text)
 yyyy = Integer.Parse(txtYYYY.Text)
 OrderDate = New DateTime(yyyy, mm, dd)

 ' This exception is thrown if the user types a value that cannot
 ' be converted into a valid number
 Catch ex As FormatException
 MsgBox("Error: " & ex.Message & _
 vbCrLf & "The value you entered " & _
 "is not a valid number")

 ' This exception is thrown if the
 ' values that user had typed cannot
 ' produce a valid date value
 Catch ex As ArgumentOutOfRangeException
 MsgBox("The date you entered is not valid" & _
 "- Please try again!")
 End Try

 ' Request the quantity of each category of items
 ' Number of
 Try
 NumberOfShirts = CInt(txtQtyShirts.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "shirts is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 ' This exception is thrown if the user types a negative value
 Catch Ex As OverflowException
 MsgBox("The number you typed is negative but " & _
 "we cannot accept a negative number of shirts")
 End Try

 ' Number of Pants
 Try
 NumberOfPants = CInt(txtQtyPants.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "pair or pants is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 Catch Ex As OverflowException
 MsgBox("The number you typed is negative but " & _
 "we cannot accept a negative number of shirts")
 End Try

 ' Number of other items
 Try
 NumberOfOther = CInt(txtQtyOther.Text)
 Catch ex As FormatException
 MsgBox("The value you typed for the number of " & _
 "other items is not a valid number." & _
 vbCrLf & "Please enter a natural number such " & _
 "as 2 or 24 or even 248")
 Catch Ex As OverflowException
 MsgBox("The number you typed is negative but " & _
 "we cannot accept a negative number of shirts")
 End Try

 ' Unit Prices of items
 Try
 PriceOneShirt = CDbl(txtUnitPriceShirts.Text)
 If PriceOneShirt < 0 Then
 Throw New Exception("Negative numbers are not allowed " & _
 "for the price of a shirt")

www.manashosting.com
Ads by Google

Shirts

Page 6 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the unit price " & _
 "of a shirt is not a recognizable " & _
 "amount." & vbCrLf & _
 "Only natural or decimal numbers " & _
 "are allowed. Please consult the " & _
 "to know the valid prices.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 Try
 PriceAPairOfPants = CDbl(txtUnitPricePants.Text)
 If PriceAPairOfPants < 0 Then
 Throw New Exception("Negative numbers are not allowed " & _
 "for the price of a pair of pants")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the unit price of " & _
 "a pair of pants is not a recognizable " & _
 "currency amount." & vbCrLf & _
 "Only natural or decimal " & _
 "numbers are allowed. You can consult the " & _
 "management to find out about " & _
 "the allowable prices.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 Try
 PriceOther = CDbl(txtUnitPriceOther.Text)
 If PriceOther < 0 Then
 Throw New Exception("Negative numbers are " & _
 "not allowed for the price")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the unit " & _
 "price of other items is not a valid amount." & _
 vbCrLf & "You must enter only a natural or a " & _
 "decimal number. For more information, " & _
 "please consult the management to get " & _
 "the right prices.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 ' Perform the necessary calculations
 SubTotalShirts = NumberOfShirts * PriceOneShirt
 SubTotalPants = NumberOfPants * PriceAPairOfPants
 SubTotalOther = NumberOfOther * PriceOther

 txtSubTotalShirts.Text = CStr(SubTotalShirts)
 txtSubTotalPants.Text = CStr(SubTotalPants)
 txtSubTotalOther.Text = CStr(SubTotalOther)

 ' Calculate the "temporary" total of the order
 TotalOrder = SubTotalShirts + SubTotalPants + SubTotalOther

 ' Display the receipt
 txtCustomerName2.Text = CustomerName
 txtOrderDate.Text = FormatDateTime(OrderDate, DateFormat.LongDate)
 txtTotalOrder.Text = CStr(TotalOrder)
 End Sub

 Private Sub btnTax_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnTax.Click
 ' Get the
 Try
 TaxRate = CDbl(txtTaxRate.Text) / 100
 If TaxRate < 0 Then
 Throw New Exception("Negative numbers are not " & _
 "allowed for a tax rate")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered is not " & _
 "recognized as a valid tax rate." & _
 vbCrLf & "A valid tax rate is a value " & _
 "between 0 and 100.00" & _
 vbCrLf & "Please try again.")

currency

management

tax rate

Page 7 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

2. Test the and return to your

The calculator simulator we have studied so far performs a division as one of its assignments.
We learned that, in order to perform any operation, the compiler must first make sure that the
user has entered a valid operator. Provided the operator is one of those we are expecting, we
also must make sure that the user typed valid numbers. Even if these two criteria are met, it is
still possible that the user would enter 0 for the denominator. The block that is used to check
for a non-zero denominator depends on the exception that validates the operators. The
exception that could result from a zero denominator depends on the user first entering a valid
number for the denominator.

You can create an exception inside of another. This is referred to as nesting an exception. This
is done by applying the same techniques used to nest conditional statements. This means that
you can write an exception that depends on, and is subject to, another exception. To nest an
exception, create a Try clause in the body of the parent exception. The nested Try clause must
be followed by its own Catch clause(s). To effectively handle the exception, make sure you
include an appropriate Throw in the Try block. Here is an example:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 ' Calculate the using a constant rate
 TaxAmount = TotalOrder * TaxRate
 ' Add the tax amount to the total order
 SalesTotal = TotalOrder + TaxAmount

 txtTaxAmount.Text = TaxAmount.ToString()
 txtNetPrice.Text = SalesTotal.ToString()
 End Sub

 Private Sub btnDifference_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnDifference.Click
 Dim AmountTended As Double = 0.0
 Dim Difference As Double = 0.0

 ' Request money for the order
 Try
 AmountTended = CDbl(txtAmountTended.Text)
 If AmountTended < 0 Then
 Throw New Exception("Negative numbers are not " & _
 "allowed forthe amount tended")
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the amount " & _
 "tended is not valid. Only natural or " & _
 "decimal numbers are allowed." & _
 "Please try again.")
 Catch Ex As Exception
 MsgBox("Something bad happened")
 End Try

 ' Calculate the difference owed to the customer
 ' or that the customer still owes to the store
 Difference = AmountTended - SalesTotal

 txtDifference.Text = CStr(Difference)
 End Sub
End Class

Exceptions Nesting

tax amount

application programming environment

programming environment at DealTime!

Save on millions of products. Get the deals at
DealTime!

www.DealTime.com

Page 8 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 Select Case Oper

 Case "+"
 Result = Operand1 + Operand2
 TextBox4.Text = CStr(Result)

 Case "-"
 Result = Operand1 - Operand2
 TextBox4.Text = CStr(Result)

 Case "*"
 Result = Operand1 * Operand2
 TextBox4.Text = CStr(Result)

 Case "/"
 Try
 If Operand2 = 0 Then
 Throw New DivideByZeroException(_
 "Division by zero is not allowed")
 End If
 Result = Operand1 / Operand2

 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 End Try

 Case Else
 MsgBox("Bad Operation")

 End Select

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & _
 Oper & " is not a valid operator")
 End Try
End Sub

One of the most effective techniques used to deal with code is to isolate assignments in
different functions. For example, the Select Case statement that was performing the
operations in the “normal” version of our program could be written as follows:

Private Function Calculate(ByVal Value1 As Double, _
 ByVal Value2 As Double, _
 ByVal symbol As Char) As Double

 Dim Result As Double = 0.0

 Select Case symbol

 Case "+"
 Result = Value1 + Value2

 Case "-"
 Result = Value1 - Value2

 Case "*"
 Result = Value1 * Value2

 Case "/"
 Result = Value1 / Value2
 End Select

 Calculate = Result
End Function

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _

Exceptions and Functions

Page 9 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 If Oper = "/" Then
 If Operand2 = 0 Then
 Throw New DivideByZeroException(_
 "Division by zero is not allowed")
 End If
 End If

 Result = Calculate(Operand1, Operand2, Oper)
 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & _
 Oper & " is not a valid operator")
 End Try
End Sub

This is an example of running the program:

You can still use regular functions that handle exceptions and each function can handle its own
exception(s). Here is an example:

Private Function Addition(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double
 Addition = Value1 + Value2
End Function

Private Function Subtraction(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double
 Subtraction = Value1 - Value2
End Function

Private Function Multiplication(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double
 Multiplication = Value1 * Value2
End Function

Private Function Division(ByVal Value1 As Double, _
 ByVal Value2 As Double) As Double

 Dim Result As Double = 0.0

 Try

 If Value2 = 0 Then
 Throw New DivideByZeroException("Division by zero is not allowed")
 End If

 Result = Value1 + Value2

 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 End Try

 Division = Result
End Function

Page 10 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim Operand1 As Double
 Dim Operand2 As Double
 Dim Result As Double = 0.0
 Dim Oper As String = "."

 Try
 Operand1 = Double.Parse(TextBox1.Text)
 Oper = TextBox2.Text
 Operand2 = Double.Parse(TextBox3.Text)

 If (Oper <> "+") And _
 (Oper <> "-") And _
 (Oper <> "*") And _
 (Oper <> "/") Then
 Throw New Exception(Oper)
 End If

 Select Case Oper

 Case "+"
 Result = Addition(Operand1, Operand2)

 Case "-"
 Result = Subtraction(Operand1, Operand2)

 Case "*"
 Result = Multiplication(Operand1, Operand2)

 Case "/"
 Result = Division(Operand1, Operand2)
 End Select

 TextBox4.Text = CStr(Result)

 Catch ex As FormatException
 MsgBox("You type an invalid number. Please correct it")
 Catch ex As DivideByZeroException
 MsgBox(ex.Message)
 Catch
 MsgBox("Invalid Operation: " & vbCrLf & Oper & " is not a valid operator")
 End Try
End Sub

Previous Copyright © 2008 FunctionX, Inc. Home

Page 11 of 11Techniques of Using Exceptions

6/27/2008http://www.functionx.com/vb/exceptions/netsupport3.htm

File Information

Introduction

In its high level of support for file processing,
the . provides the FileInfo .
This class is equipped to handle all types of file-
related operations including creating, copying,

, renaming, or deleting a file. FileInfo is
based on the FileSystemInfo class that provides
information on characteristics of a file.

To assist you with finding information about a
file, the FileSystem class from the My object is
equipped with a method named GetFileInfo.

www manashosting com Ads by Google

1. Start Microsoft and create a new Windows named WattsALoan1

2. In the Solution Explorer, right-click Form1.vb and click Rename

3. Type WattsALoan.vb and press Enter

4. Design the form as follows:

Practical Learning: Introducing File Information

Control Name Text

Label Acnt #:

Label Customer Name:

Label Customer:

TextBox txtAccountNumber

TextBox txtCustomerName

Label Empl #:

Label Employee Name:

Label Prepared By:

TextBox txtEmployeeNumber

TextBox txtEmployeeName

Button btnNewEmployee

Label Loan Amount:

TextBox txtLoanAmount TextAlign: Right

Label Interest Rate:

TextBox txtInterestRate TextAlign: Right

Label %

NET Framework class

moving

Visual Basic Application

Page 1 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

5. Right-click the form and click View Code

6. Just above the Public Class line, import the .IO namespace:

7. In the Class Name combo box, select btnCalculate

8. In the Method Name combo box, select Click and implement the event as follows:

9. In the Class Name combo box, select btnClose

10. In the Method Name combo box, select Click and implement the event as follows:

11. Save the file

The FileInfo class is equipped with one constructor whose syntax is:

Public Sub New(fileName As String)

This constructor takes as argument the name of a file or its complete path. If you provide only
the name of the file, the would consider the same directory of its project.

As mentioned previously, to about a file, you can call the GetFileInfo()
method of the FileSystem class from the My object. Its syntax is:

Public Shared Function GetFileInfo(file As String) As FileInfo

Label Periods

TextBox
txtPeriods
TextAlign: Right

Button btnCalculate Calculate

Label Monthly Payment:

TextBox txtMonthlyPayment

Button btnClose Close

Imports System.IO

Public Class WattsALoan

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnCalculate.Click
 Dim LoanAmount As Double
 Dim InterestRate As Double
 Dim Periods As Double
 Dim MonthlyPayment As Double

 Try
 LoanAmount = CDbl(txtLoanAmount.Text)
 Catch ex As Exception
 MsgBox("Invalid ")
 End Try

 Try
 InterestRate = CDbl(txtInterestRate.Text)
 Catch ex As Exception

 MsgBox("Invalid ")
 End Try

 Try
 Periods = CDbl(txtPeriods.Text)
 Catch ex As Exception
 MsgBox("Invalid Periods Value")
 End Try

 MonthlyPayment = Pmt(InterestRate / 12 / 100, _
 Periods, -LoanAmount, 0, _
 DueDate.BegOfPeriod)
 txtMonthlyPayment.Text = FormatCurrency(MonthlyPayment)
End Sub

Private Sub btnClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 End
End Sub

File Initialization

System

Loan Amount

Interest Rate

compiler

get information

Page 2 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

This shared a FileInfo object. Here is an example of calling it:

Imports System.IO

Public Class

 Private Filename As String

 Private Sub btnFileInformation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnFileInformation.Click
 Dim PeopleInformation As FileInfo

 PeopleInformation = My. .FileSystem.GetFileInfo(Filename)
 End Sub
End Class

After calling this method, you can then use its returned value to get the information you want
about the file.

1. In the Class Name combo box, select (WattsALoan Events)

2. In the Method Name combo box, select Load and implement the event as follows:

3. Save the file

The FileInfo constructor is mostly meant only to indicate that you want to use a file, whether
it exists already or it would be created. Based on this, if you execute an application that has
only a FileInfo using the constructor as done above, nothing would happen.

To create a file, you have various alternatives. If you want to create one without
anything in it, which implies creating an empty file, you can call the FileInfo.Create()
method. Its syntax is:

 Create As FileStream

This method simply creates an empty file. Here is an example of calling it:

Private Sub btnFileInformation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnFileInformation.Click
 Dim PeopleInfo As FileInfo = New FileInfo("People.txt")
 PeopleInfo.Create()
End Sub

The FileInfo.Create() method returns a FileStream object. You can use this returned value
to write any type of value into the file, including text. If you want to create a file that contains
text, an alternative is to call the FileInfo.CreateText() method. Its syntax is:

Public Function CreateText As StreamWriter

This method returns a StreamWriter object. You can use this returned object to write text to
the file.

When you call the FileInfo.Create() or the FileInfo.CreateText() method, if the file passed
as argument, or as the file in the path of the argument, exists already, it would be deleted and
a new one would be created with the same name. This can cause an important file to be
deleted. Therefore, before creating a file, you may need to check whether it exists already. To
do this, you can check the value of the Boolean FileInfo.Exists property. This property holds a
True value if the file exists already and it holds a False value if the file does not yet exist or it
does not exist in the path. Here is an example of calling it:

Private Sub btnFileInformation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _

Practical Learning: Initializing a File

Private Sub WattsALoan_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim Filename As String = " .wal"
 Dim EmployeeInformation As FileInfo = _
 My.Computer.FileSystem.GetFileInfo(Filename)
End Sub

File Creation

File Existence

method returns

Exercise

Computer

Employees

object created

writing

Public Function

Page 3 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

 Handles btnFileInformation.Click
 Dim Filename As String
 Dim PeopleInformation As FileInfo

 Filename = "Student12.std"
 PeopleInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 If PeopleInformation.Exists = True Then
 MsgBox("The file exists already")
 Else
 MsgBox("Unknown file")
 End If
End Sub

1. Change the Load event of the form as follows:

2. Save the file

As mentioned earlier, the FileInfo.Create() and the FileInfo.CreateText() methods can be
used to create a file but they not write values to the file. To write values in the file, each
method returns an appropriate object. The FileInfo.Create() method returns FileStream
object. You can use this to specify the type of operation that would be allowed on the file. To
write normal text to a file, you can first call the FileInfo.CreateText() method that returns a
StreamWriter object. Here is an example:

Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String
 Dim StudentsWriter As StreamWriter
 Dim StudentInformation As FileInfo

 Filename = "Student1.std"
 StudentInformation = My.Computer.FileSystem.GetFileInfo(Filename)
 StudentsWriter = StudentInformation.CreateText()

 Try
 StudentsWriter.WriteLine(txtFirstName.Text)
 StudentsWriter.WriteLine(txtLastName.Text)
 StudentsWriter.WriteLine(cbxGenders.SelectedIndex)

 txtFirstName.Text = ""
 txtLastName.Text = ""
 cbxGenders.SelectedIndex = 2
 Finally
 StudentsWriter.Close()
 End Try
End Sub

As an alternative to Create() or CreateText(), if you want to create a file that can only be
written to, you can call the FileInfo.OpenWrite() method. Its syntax is:

Public Function OpenWrite As FileStream

This method returns a FileStream that you can then use to write values into the file.

1. Change the Load event of the form as follows:

Practical Learning: Creating a

Private Sub WattsALoan_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim EmployeeWriter As StreamWriter
 Dim Filename As String = " .wal"
 Dim EmployeeInformation As FileInfo = _
 My.Computer.FileSystem.GetFileInfo(Filename)

 ' If the employees file was not created already,
 ' then create it
 If Not EmployeeInformation.Exists Then
 EmployeeWriter = EmployeeInformation.CreateText()
 End If
End Sub

Writing to a File

Practical Learning: Writing to a Text File

Text File

Employees

Page 4 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

2. Save the file

You may have created a text-based file and written to it. If you open such a file and find out
that a piece of information is missing, you can add that information to the end of the file. To do
this, you can call the FileInfo.AppenText() method. Its syntax is:

Public Function AppendText As StreamWriter

When calling this method, you can retrieve the StreamWriter object that it returns, then use
that object to add new information to the file.

1. To create a new form, on the main menu, click Project -> Add Windows Form...

2. In the Templates list, make sure Windows Form is selected. Set the Name to
NewEmployee and click Add

3. Design the form as follows:

4. Right-click the form and click View Code

5. In the top section of the file, just above the Public Class line, import the System.IO
namespace:

6. In the Class Name combo box, select btnCreate

7. In the Method Name combo box, select Click and implement the event as follows:

Private Sub WattsALoan_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim EmployeeWriter As StreamWriter
 Dim Filename As String = "Employees.wal"
 Dim EmployeeInformation As FileInfo = _
 My.Computer.FileSystem.GetFileInfo(Filename)

 ' If the employees file was not created already,
 ' then create it
 If Not EmployeeInformation.Exists Then
 EmployeeWriter = EmployeeInformation.CreateText()

 ' And create a John Doe employee
 Try
 EmployeeWriter.WriteLine("00-000")
 EmployeeWriter.WriteLine("John Doe")
 Finally
 EmployeeWriter.Close()
 End Try
 End If
End Sub

Appending to a File

Practical Learning: Writing to a Text File

Control Text Name

Label Employee #:

TextBox txtEmployeeNumber

Label
Employee
Name:

TextBox txtEmployeeName

Button Create btnCreate

Button Close btnClose

Imports System.IO

Public Class NewEmployee

End Class

Bulk SMS - Stock
Brokers
Stock Alert Mangaement
system -Best Prices - Pay
only 4 deliverd SMS
www.Planet41.com

Free Computer eBooks
10,000+ Online Computer
Books. all are free!
2020ok.com

C/C++ Programmers
needed
Join GetAFreelancer.com
and bid on projects. Free
and quick signup.
www.GetAFreelancer.com

Text to Speech Voices
Astounding text to speech
software! Download free
trial.
www.nextup.com

Jokes, Funny Pics &
Video
Share & Read Jokes,
Funny Videos & Pics With
Your Friends On
Minglebox
www.minglebox.com

Page 5 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

8. In the Class Name combo box, select btnClose

9. In the Method Name combo box, select Click and implement the event as follows:

10. In the Solution Explorer, right-click WattsALoan.vb and click View Code

11. In the Class Name combo box, select btnNewEmployee

12. In the Method Name combo box, select Click and implement the event as follows:

13. In the Class Name combo box, select txtEmployeeNumber

14. In the Method Name combo box, select Leave

15. Implement the event as follows:

Private Sub btnCreate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnCreate.Click
 Dim Filename As String = "Employees.wal"
 Dim EmployeeInformation As FileInfo = New FileInfo(Filename)
 Dim EmployeeWriter As StreamWriter

 ' Normally, we should have the file already but just in case...
 If Not EmployeeInformation.Exists Then
 EmployeeWriter = EmployeeInformation.CreateText()
 Else ' If the file exists already, then we will only add to it
 EmployeeWriter = EmployeeInformation.AppendText()
 End If

 Try
 EmployeeWriter.WriteLine(txtEmployeeNumber.Text)
 EmployeeWriter.WriteLine(txtEmployeeName.Text)
 Finally
 EmployeeWriter.Close()
 End Try

 txtEmployeeNumber.Text = ""
 txtEmployeeName.Text = ""
 txtEmployeeNumber.Focus()
End Sub

Private Sub btnClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 Close()
End Sub

Private Sub btnNewEmployee_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnNewEmployee.Click
 Dim FormEmployee As NewEmployee = New NewEmployee()

 FormEmployee.ShowDialog()
End Sub

Private Sub txtEmployeeNumber_Leave(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles txtEmployeeNumber.Leave
 Dim Found As Boolean
 Dim Filename As String
 Dim EmployeeReader As StreamReader
 Dim EmployeeInformation As FileInfo
 Dim EmployeeNumber As String, EmployeeName As String

 Filename = "Employees.wal"
 EmployeeInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 If EmployeeInformation.Exists Then

 If txtEmployeeNumber.Text = "" Then
 txtEmployeeName.Text = ""
 Exit Sub
 Else
 EmployeeReader = EmployeeInformation.OpenText()

 Try

 Do
 EmployeeNumber = EmployeeReader.ReadLine()

 If EmployeeNumber = txtEmployeeNumber.Text Then

 EmployeeName = EmployeeReader.ReadLine()
 txtEmployeeName.Text = EmployeeName

Page 6 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

16. Execute the application to test it

17. First create a few employees as follows:

18. Process a

19. Close the application

As opposed to writing to a file, you can read from it. To support this, the FileInfo class is
equipped with a method named OpenText(). Its syntax is:

Public Function OpenText As StreamReader

This method returns a StreamReader object. You can then use this object to read the lines of
a text file. Here is an example:

Private Sub btnOpen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click
 Dim Filename As String
 Dim StudentsReader As StreamReader
 Dim StudentInformation As FileInfo

 Filename = "Student1.std"
 StudentInformation = My.Computer.FileSystem.GetFileInfo(Filename)
 StudentsReader = StudentInformation.OpenText

 Try
 txtFirstName.Text = StudentsReader.ReadLine
 txtLastName.Text = StudentsReader.ReadLine
 cbxGenders.SelectedIndex = CInt(StudentsReader.ReadLine)

 Finally
 StudentsReader.Close()
 End Try
End Sub

 Found = True
 End If
 Loop While EmployeeReader.Peek() >= 0

 ' When the application has finished the file
 ' if there was no employee with that number, let the user know
 If Found = False Then

 MsgBox("No employee with that number was found")
 txtEmployeeName.Text = ""
 txtEmployeeNumber.Focus()
 End If
 Finally
 EmployeeReader.Close()
 End Try
 End If
 End If
End Sub

Employee # Employee Name

42-806 Patricia Katts

75-148 Helene Mukoko

36-222 Frank Leandro

42-808 Gertrude Monay

Reading from a File

checking

loan

Page 7 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

If you want to open a file that can only be read from, you can call the FileInfo.OpenRead()
method. Its syntax is:

Public Function OpenRead As FileStream

This method returns a FileStream that you can then use to read values from the file.

As opposed to creating a file, probably the second most regular operation performed on a file
consists of opening it to read or explore its contents. To support opening a file, the FileInfo
class is equipped with the Open() method that is overloaded with three versions. Their
syntaxes are:

Public Function Open (_
 mode As FileMode _
) As FileStream
Public Function Open (_
 mode As FileMode, _
 access As FileAccess _
) As FileStream
Public Function Open (_
 mode As FileMode, _
 access As FileAccess, _
 share As FileShare _
) As FileStream

You can select one of these methods, depending on how you want to open the file, using the
options for file mode, file access, and file sharing. Each version of this method returns a
FileStream object that you can then use to process the file. After opening the file, you can
then read or use its content.

If you have an existing file you don't need anymore, you can delete it. This operation can be
performed by calling the FileInfo.Delete() method. Its syntax is:

Public Overrides Sub Delete

Here is an example:

Private Sub btnDelete_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnDelete.Click
 Dim Filename As String
 Dim StudentInformation As FileInfo

 Filename = "Student1.std"
 StudentInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 If PeopleInformation.Exists = True Then
 StudentInformation.Delete()
 Else
 MsgBox("Unknown file")
 End If
End Sub

You can make a copy of a file from one directory to another. To do this, you can call the
FileInfo.CopyTo() method that is overloaded with two versions. One of the versions has the
following syntax:

public FileInfo CopyTo(string destFileName)

When calling this method, specify the path or directory that will be the of the copied
file. Here is an example:

Private Sub btnCopy_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnCopy.Click
 Dim Filename As String
 Dim StudentInformation As FileInfo
 Dim MyDocuments As String = _
 Environment.GetFolderPath(Environment.SpecialFolder.Personal)

Routine Operations on Files

Opening a File

Deleting a File

Copying a File

destination

Page 8 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

 Filename = "Student1.std"
 StudentInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 If StudentInformation.Exists = True Then
 StudentInformation.CopyTo(MyDocuments & "\Federal.txt")
 Else
 MsgBox("Unknown file")
 End If
End Sub

In this example, a file named Reality.txt in the directory of the project would be retrieved and
its content would be applied to a new file named Federal.txt created in the My

 of the current user.

When calling the first version of the FileInfo.CopyTo() method, if the file exists already, the
operation would not continue and you would simply receive a message box. If you insist, you
can overwrite the target file. To do this, you can use the second version of this method. Its
syntax is:

Public Function CopyTo(destFileName As String, overwrite As Boolean) As FileInfo

The first argument is the same as that of the first version of the method. The second argument
specifies what action to take if the file exists already in the target directory. If you want to
overwrite it, pass the second argument as true; otherwise, pass it as false. Here is an example:

Private Sub btnCopy_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnCopy.Click
 Dim Filename As String
 Dim StudentInformation As FileInfo
 Dim MyDocuments As String = _
 Environment.GetFolderPath(Environment.SpecialFolder.Personal)

 Filename = "Student1.std"
 StudentInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 If StudentInformation.Exists = True Then
 StudentInformation.CopyTo(MyDocuments & "\Federal.txt", True)
 Else
 MsgBox("Unknown file")
 End If
End Sub

If you copy a file from one directory to another, you would have two copies of the same file or
the same contents in two files. Instead of copying, if you want, you can simply move a file from
one directory to another. This operation can be performed by calling the FileInfo.MoveTo()
method. Its syntax is:

Public Sub MoveTo(destFileName As String)

The argument to this method is the same as that of the CopyTo() method. After executing this
method, the FileInfo object would be moved to the destFileName path.

Here is an example:

Private Sub btnMove_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMove.Click
 Dim Filename As String
 Dim StudentInformation As FileInfo
 Dim MyDocuments As String = _
 Environment.GetFolderPath(Environment.SpecialFolder.Personal)

 Filename = "Student1.std"
 StudentInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 If StudentInformation.Exists = True Then
 StudentInformation.MoveTo(MyDocuments & "\Federal.txt")
 Else
 MsgBox("Unknown file")
 End If
End Sub

Moving a File

Documents
folder

Page 9 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

www manashosting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 10 of 10File Information

6/27/2008http://www.functionx.com/vb/fileprocessing/fileinfo.htm

File System Information

The Date and Time a File Was Created

After a file has been created, the
 makes a note of the date and the time

the file was created. This information can be
valuable in other operations such as search
routines. You too are allowed to change this date
and time values to those you prefer.

As mentioned already, the OS makes sure to
keep track of the date and time a file was
created. To find out what those date and time
values are, you can access the get accessor of
the FileSystemInfo.CreationTime property,
which is of type DateTime. Here is an example of
using it:

www manashosting com Ads by Google

Private Sub btnCreationDate_Click(ByVal sender As .Object, _
 ByVal e As System.EventArgs) _
 Handles btnCreationDate.Click
 Dim Filename As String
 Dim FileCreationTime As DateTime
 Dim StudentInformation As FileInfo

 Filename = "Student1.std"
 StudentInformation = My. .FileSystem.GetFileInfo(Filename)

 If StudentInformation.Exists = True Then
 FileCreationTime = StudentInformation.CreationTime
 MsgBox(FormatDateTime(FileCreationTime, DateFormat.LongDate))
 Else
 MsgBox("Unknown file")
 End If

End Sub

Of course, by formatting the value, you can get only either the date or only the time.

If you don't like the date, the time, or both, that the OS would have set when the file was
created, you can change them. To change one or both of these values, you can assign a desired
DateTime object to the set accessor of the FileSystemInfo.CreationTime property.

Many allow a user to open an existing file and to modify it. When people work in a
team or when a particular file is regularly opened, at one particular time, you may want to
know the date and time that the file was last accessed. To get this information, you can access
the FileSystemInfo.LastAccessTime property, which is of type DateTime.

If you are interested to know the last date and time a file was modified, you can get the value
of its FileSystemInfo.LastWriteTime property, which is of type DateTime.

The operating system requires that each file have a name. In fact, the name must be specified
when creating a file. This allows the OS to catalogue the computer files. This also allows you to
locate or identify a particular file you need.

When reviewing or opening a file, to get its name, the FileInfo class is equipped with the
Name property. Here is an example:

MsgBox("The name of this file is: \"+ & fleLoan.Name & "\"")

This string simply identifies a file.

With the advent of and later, the user doesn't have to specify the extension of a

The Date and Time a File Was Last Accessed

The Name of a File

The Extension of a File

operating
system

System

Computer

applications

Windows 95

Page 1 of 2File System Information

6/27/2008http://www.functionx.com/vb/fileprocessing/filesysteminfo.htm

file when creating it. Because of the type of confusion that this can lead to, most applications
assist the user with this detail. Some applications allow the user to choose among various
extensions. For example, using , a user can open a text, a PHP, a script, or an HTML
file.

When you access a file or when the user opens one, to know the extension of the file, you can
access the value of the FileSystemInfo.Extension property. Here is an example:

MsgBox(" : " & fleLoan.Extension)

One of the routine operations the operating system performs consists of calculating the size of
files it holds. This information is provided in terms of bits, kilobits, or kilobytes. To get the size
of a file, the FileInfo class is quipped with the Length property. Here is an example of
accessing it:

MsgBox(" : " & fleLoan.Length.ToString())

Besides its name, a file must be located somewhere. The location of a file is referred to as its
path or directory. The FileInfo class represents this path as the DirectoryName property.
Therefore, if a file has already been created, to get its path, you can access the value of the
FileInfo.DirectoryName property.

Besides the FileInfo.Directoryname, to know the full path to a file, you can access its
FileSystemInfo.FullName property.

Attributes are characteristics that apply to a file, defining what can be done or must be
disallowed on it. The Attributes are primarily defined by, and in, the operating system, mostly
when a file is created. When the user accesses or opens a file, to get its attributes, you can
access the value of its FileSystemInfo.Attributes property. This property produces a
FileAttributes object.

When you create or access a file, you can specify or change some of the attributes. To do this,
you can create a FileAttributes object and assign it to the FileSystemInfo.Attributes
property.

FileAttributes is an enumeration with the following members: Archive, Compressed,
Device, Directory, Encrypted, Hidden, Normal, NotContentIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, and Temporary.

The Size of a File

The Path to a File

The Attributes of a File

Home Copyright © 2008 FunctionX, Inc.

Notepad

File Extension

File Size

Page 2 of 2File System Information

6/27/2008http://www.functionx.com/vb/fileprocessing/filesysteminfo.htm

Directories

Introduction

A directory is a section of a medium (floppy disc,
flash drive, hard drive, CD, DVD, etc) used to
delimit a group of files. Because it is a "physical"
area, it can handle operations not available on
files. In fact, there are many fundamental
differences between both:

A file is used to contain data. A directory
doesn't contain data

A directory can contain one or more files and
not vice-versa

A directory can contain other directories

A file can be moved from one directory to
another. This operation is not possible vice-
versa since a file cannot contain a directory

www innovasys com Ads by Google

The similarities of both types are:

A directory or a file can be created. One of the restrictions is that two files cannot have the
same name inside of the same directory. Two directories cannot have the same name
inside of the same parent directory.

A directory or a file can be renamed. If a directory is renamed, the "path" of its file(s)
changes

A directory or a file can be deleted. If a directory is deleted, its files are deleted also

A directory or a file can be moved. If a directory moves, it "carries" all of its files to the new
location

A directory or a file can be copied. A file can be copied from one directory to another. If a
directory is copied to a new location, all of its files are also copied to the new location

1. Create a new Windows Application, named WattsALoan2

2. In the Solution Explorer, right-click Form1.vb and click Rename

3. Type WattsALoan.vb and press Enter

4. Design the form as follows:

Practical Learning: Introducing Directories

Control Name Text

Label If this is a new loan, enter a new account number and

Page 1 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

5. Double-click the Calculate button and implement its event as follows:

6. In the Class Name combo box, select btnClose

7. In the Method Name combo box, select Click and implement the event as follows:

the name of the customer who is requesting the loan

Label
To open a previously prepared loan, enter its account
number and press Tab

Label Acnt #:

Label Customer Name:

Label Customer:

TextBox txtAccountNumber

TextBox txtCustomerName

Label Empl #:

Label Employee Name:

Label Prepared By:

TextBox txtEmployeeNumber

TextBox txtEmployeeName

Button btnNewEmployee

Button btnNewCustomer

Label Loan Amount:

TextBox txtLoanAmount

Label Interest Rate:

TextBox txtInterestRate

Label %

Label Periods

TextBox txtPeriods

Button btnCalculate Calculate

Label Monthly Payment:

TextBox txtMonthlyPayment

Button btnClose Close

Imports System.IO

Public Class WattsALoan

 Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnCalculate.Click
 Dim LoanAmount As Double
 Dim InterestRate As Double
 Dim Periods As Double
 Dim MonthlyPayment As Double

 Try
 LoanAmount = CDbl(txtLoanAmount.Text)
 Catch ex As Exception
 MsgBox("Invalid Loan Amount")
 End Try

 Try
 InterestRate = CDbl(txtInterestRate.Text)
 Catch ex As Exception

 MsgBox("Invalid Interest Rate")
 End Try

 Try
 Periods = CDbl(txtPeriods.Text)
 Catch ex As Exception
 MsgBox("Invalid Periods Value")
 End Try

 MonthlyPayment = Pmt(InterestRate / 12 / 100, _
 Periods, -LoanAmount, 0, _
 DueDate.BegOfPeriod)
 txtMonthlyPayment.Text = FormatCurrency(MonthlyPayment)
 End Sub
End Class

Private Sub btnClose_Click(ByVal sender As Object, _

Page 2 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

8. To create a new form, on the main menu, click Project -> Add Windows Form...

9. In the Templates list, make sure Windows Form is selected.
Set the Name to NewEmployee and click Add

10. Design the form as follows:

11. Double-click the Close button

12. Implement the event as follows:

13. In the Solution Explorer, right-click WattsALoan.vb and click View Code

14. In the Class Name combo box, select btnNewEmployee

15. In the Method Name combo box, select Click and implement the event as follows:

16. Save the file

Before using a directory, you must first have it. You can use an existing directory if the
operating system or someone else had already created one. You can also create a new
directory. Directories are created and managed by various classes but the fundamental class is
called Directory. Directory is a static class. All of its methods are static, which means you will
never need to declare an instance of the Directory class in order to use it.

Besides the Directory class, additional operations of folders and sub-folders can be performed
using the DirectoryInfo class.

To create a directory, you can call the CreateDirectory() method of the Directory class. This
method is available in two versions. One of the versions uses the following syntax:

Public Shared Function CreateDirectory(path As String) As DirectoryInfo

This method takes as argument the (complete) path of the desired directory. Here is an
example:

E:\Programs\Business Orders\Customer Information

 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 End
End Sub

Control Text Name

Label Employee #:

TextBox txtEmployeeNumber

Label
Employee
Name:

TextBox txtEmployeeName

Button Create btnCreate

Button Close btnClose

Imports System.IO

Public Class NewEmployee

 Private Sub btnClose_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 Close()
 End Sub
End Class

Private Sub btnNewEmployee_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnNewEmployee.Click
 Dim FormEmployee As NewEmployee = New NewEmployee()

 FormEmployee.ShowDialog()
End Sub

Directory Creation

Page 3 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

When this method is called:

1. It first checks the parent drive, in this case E.
If the drive doesn't exist, because this method cannot create a drive, the compiler would
throw a DirectoryNotFoundException exception

2. If the drive (in this case E) exists, the compiler moves to the first directory part of the
path; in this case this would be the Programs folder in the E drive.
If the folder doesn't exist, the compiler would create it. If that first director doesn't exist,
this means that the other directory(ies), if any, under the first don't exist. So, the compiler
would create it/them

3. If the first directory exists and if there is no other directory under that directory, the
compiler would stop and would not do anything further.

4. If the directory exists and there is a sub-directory specified under it, the compiler would
check the existence of that directory.
If the sub-directory exists, the compiler would not do anything further and would stop.
If the sub-directory doesn't exist, the compiler would create it

5. The compiler would repeat step 4 until the end of the specified path

The Directory.CreateDirectory() method returns a DirectoryInfo object that you can use as
you see fit.

1. In the Class Name combo box, select (WattsALoan Events)

2. In the Method Name combo box, select Load and implement the event as follows:

3. In the Solution Explorer, right-click NewEmployee and click View Code

4. In the Class Name combo box, select btnCreate

5. In the Method Name combo box, select Click and implement the event as follows:

Practical Learning: Creating a Directory

Private Sub WattsALoan_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim Folder As String
 Dim EmployeeWriter As StreamWriter
 Dim Filename As String = "Employees.wal"
 Dim EmployeeInformation As FileInfo = _
 My.Computer.FileSystem.GetFileInfo(Filename)

 Folder = "C:\Watts A Loan"

 If Not Directory.Exists(Folder) Then
 Directory.CreateDirectory(Folder)

 Dim strFilename As String = Folder & "\Employees.wal"

 Dim fiEmployees As FileInfo = New FileInfo(strFilename)

 ' If the employees file was not created already,
 ' then create it
 If Not EmployeeInformation.Exists Then
 EmployeeWriter = EmployeeInformation.CreateText()

 ' And create a John Doe employee
 Try
 EmployeeWriter.WriteLine("00-000")
 EmployeeWriter.WriteLine("John Doe")
 Finally
 EmployeeWriter.Close()
 End Try
 End If
 End If
End Sub

Private Sub btnCreate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnCreate.Click
 Dim Filename As String = "C:\Watts A Loan\Employees.wal"
 Dim EmployeeInformation As FileInfo
 Dim EmployeeWriter As StreamWriter

 EmployeeInformation = My.Computer.FileSystem.GetFileInfo(Filename)

 ' Normally, we should have the file already but just in case...
 If Not EmployeeInformation.Exists Then
 EmployeeWriter = EmployeeInformation.CreateText()
 Else ' If the file exists already, then we will only add to it

C# examples
C, C++, and C#
Resources. Find tutorials,
tips, and reviews.
www.DevSource.com

Microsoft .Net Training
Learn VB, ASP, ABP .net,
XML Register now for
summer in Delhi
www.appinonline.com

Free Datagrid for WPF
100% stylable and
templatable, with rich in-
place editing & more
xceed.com/Grid_WPF_Intro.html

Watch files and folders
Run scripts when files or
folders change. Download
free trial today.
www.torgesta.com/mytrigger/

Visual Basic Code
Library
Open Source Code
Snippet Library. Free
Community for
Developers.
www.daniweb.com/code

Page 4 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

6. Click the WattsALoan.vb [Design] tab

Before using or creating a directory, you can first check if it exists. This is because, if a
directory already exists in the location where you want to create it, you would be prevented
from creating one with the same name. In the same way, if you just decide to directly use a
directory that doesn't exist, the operation you want to perform may fail because the directory
would not be found.

To check whether a directory exists or not, you can call the Directory.Exists() Boolean static
method. Its syntax is:

Public Shared Function Exists(path As String) As Boolean

This method receives the (complete) path of the directory. If the path exists, the method
returns true. If the directory doesn't exist, the method returns false.

One of the most routine operations performed in a directory consists of looking for a file.
Microsoft Windows operating systems and the user's intuition have different ways of addressing
this issue. The .NET Framework also provides its own means of performing this operation,
through various techniques. You can start by checking the sub-directories and files inside of a
main directory.

To look for files in a directory, the DirectoryInfo class can assist you with its GetFiles()
method, which is overloaded with three versions.

1. In the Class Name combo box, select txtAccountNumber

2. In the Method Name combo box, select Leave and implement the event as follows:

 EmployeeWriter = EmployeeInformation.AppendText()
 End If

 Try
 EmployeeWriter.WriteLine(txtEmployeeNumber.Text)
 EmployeeWriter.WriteLine(txtEmployeeName.Text)
 Finally
 EmployeeWriter.Close()
 End Try

 txtEmployeeNumber.Text = ""
 txtEmployeeName.Text = ""
 txtEmployeeNumber.Focus()
End Sub

Checking for a Directory Existence

Locating a File

Practical Learning: Using Directories and Files

Private Sub txtAccountNumber_Leave(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles txtAccountNumber.Leave
 Dim Filename As String
 Dim LoanPath As String
 Dim FileFullname As String
 Dim ListOfLoans() As FileInfo
 Dim LoanReader As StreamReader
 Dim LoanFolder As DirectoryInfo
 Dim LoanInformation As FileInfo
 Dim Found As Boolean

 Found = False
 LoanPath = "C:\Watts A Loan"

 LoanFolder = New DirectoryInfo(LoanPath)
 ListOfLoans = LoanFolder.GetFiles("*", _
 SearchOption.AllDirectories)
 Filename = txtAccountNumber.Text & ".wal"
 FileFullname = LoanPath & "none.wal"

 For Each fle As FileInfo In ListOfLoans
 If fle.Name = Filename Then
 Found = True
 FileFullname = fle.FullName
 End If
 Next

 If Found = True Then

 LoanInformation = My.Computer.FileSystem.GetFileInfo(Filename)
 LoanReader = LoanInformation.OpenText

Page 5 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

3. In the Class Name combo box, select txtEmployeeNumber

4. In the Method Name combo box, select click Leave and implement the event as follows:

5. In the Class Name combo box, select btn Save

6. In the Method Name combo box, select Click and implement the event as follows:

 Try
 txtAccountNumber.Text = LoanReader.ReadLine
 txtCustomerName.Text = LoanReader.ReadLine
 txtEmployeeNumber.Text = LoanReader.ReadLine
 txtEmployeeName.Text = LoanReader.ReadLine
 txtLoanAmount.Text = LoanReader.ReadLine
 txtInterestRate.Text = LoanReader.ReadLine
 txtPeriods.Text = LoanReader.ReadLine
 txtMonthlyPayment.Text = LoanReader.ReadLine
 Finally
 LoanReader.Close()
 End Try
 End If
End Sub

Private Sub txtAccountNumber_Leave(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles txtAccountNumber.Leave
 Dim Filename As String
 Dim LoanPath As String
 Dim FileFullname As String
 Dim ListOfLoans() As FileInfo
 Dim LoanReader As StreamReader
 Dim LoanFolder As DirectoryInfo
 Dim LoanInformation As FileInfo
 Dim Found As Boolean

 Found = False
 LoanPath = "C:\Watts A Loan"

 LoanFolder = New DirectoryInfo(LoanPath)
 ListOfLoans = LoanFolder.GetFiles("*", _
 SearchOption.AllDirectories)
 Filename = txtAccountNumber.Text & ".wal"
 FileFullname = LoanPath & "none.wal"

 For Each fle As FileInfo In ListOfLoans
 If fle.Name = Filename Then
 Found = True
 FileFullname = fle.FullName
 End If
 Next

 If Found = True Then

 LoanInformation = My.Computer.FileSystem.GetFileInfo(FileFullname)
 MsgBox(LoanInformation.FullName)
 LoanReader = LoanInformation.OpenText

 Try
 txtAccountNumber.Text = LoanReader.ReadLine
 txtCustomerName.Text = LoanReader.ReadLine
 txtEmployeeNumber.Text = LoanReader.ReadLine
 txtEmployeeName.Text = LoanReader.ReadLine
 txtLoanAmount.Text = LoanReader.ReadLine
 txtInterestRate.Text = LoanReader.ReadLine
 txtPeriods.Text = LoanReader.ReadLine
 txtMonthlyPayment.Text = LoanReader.ReadLine
 Finally
 LoanReader.Close()
 End Try
 End If
End Sub

Private Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim LoanPath As String
 Dim LoanWriter As StreamWriter

 LoanPath = "C:\Watts A Loan\" & txtAccountNumber.Text & ".wal"
 LoanWriter = My.Computer.FileSystem.OpenTextFileWriter(LoanPath, False)

 Try
 LoanWriter.WriteLine(txtAccountNumber.Text)
 LoanWriter.WriteLine(txtCustomerName.Text)

Page 6 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

7. Execute the application to test it

8. First create a few employees as follows:

9. Process a few loans

10. Close the application

 LoanWriter.WriteLine(txtEmployeeNumber.Text)
 LoanWriter.WriteLine(txtEmployeeName.Text)
 LoanWriter.WriteLine(txtLoanAmount.Text)
 LoanWriter.WriteLine(txtInterestRate.Text)
 LoanWriter.WriteLine(txtPeriods.Text)
 LoanWriter.WriteLine(txtMonthlyPayment.Text)

 txtAccountNumber.Text = ""
 txtCustomerName.Text = ""
 txtEmployeeNumber.Text = ""
 txtEmployeeName.Text = ""
 txtLoanAmount.Text = ""
 txtInterestRate.Text = ""
 txtPeriods.Text = ""
 txtMonthlyPayment.Text = ""
 txtAccountNumber.Focus()
 Finally
 LoanWriter.Close()
 End Try
End Sub

Employee # Employee Name

42-806 Patricia Katts

75-148 Helene Mukoko

36-222 Frank Leandro

42-808 Gertrude Monay

Page 7 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

www dotnetcharting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 8 of 8Directories

6/27/2008http://www.functionx.com/vb/fileprocessing/directories.htm

Introduction to File Processing

Overview of File Processing and Definitions

Introduction

A piece of information used in an is
primarily represented as a group of bits. So far, if
we requested information from the user, when
the application exited, we lost all information that
the user had entered. This is because such
information was only temporarily stored in the
random access memory (RAM). In some cases,
you will want to "keep" information that the user
has entered so you can make the information
available the next time the user opens the
application. In some other cases, whether you
request information from the user or inherently
provide it to the user, you may want different
people working from different to use
or share the same data. In these and other
scenarios, you must store the information
somewhere and retrieve it when necessary. This
is the basis of file processing.

A file is a series of bytes of data that are arranged in a particular manner to produce a usable
document. For easy storage, location, and management, the bytes are stored on a medium
such as a , a floppy disc, a compact disc, or any valid and supported type of storage.
When these bytes belong to a single but common entity and hold values that are stored on a
medium, the group is referred to as a file.

For greater management, files can be stored in a parent object called a directory or a folder.
Since a file is a unit of storage and it stores information, it has a size, which is the number of
bits it uses to store its values. To manage it, a file has a location also called a path that
specifies where and/or how the file can be retrieved. Also, for better management, a file has
attributes (characteristics) that indicate what can be done on the file or that provide specific
information that the programmer or the can use when dealing with the file.

File processing consists of creating, storing, and/or retrieving the contents of a file from a
recognizable medium. For example, it is used to save word-processed files to a , to
store a presentation on floppy disk, or to open a file from a CD-ROM. A stream is the technique
or means of performing file processing. In order to manage files stored in a computer, each file
must be able to provide basic pieces of information about itself. This basic information is
specified when the file is created but can change during the lifetime of a file.

To create a file, a user must first decide where it would be located: this is a requirement. A file
can be located on the root drive. Alternatively, a file can be positioned inside of an existing
folder. Based on security settings, a user may not be able to create a file just anywhere in the
(of the) computer. Once the user has decided where the file would reside, there are
various means of creating files that the users are trained to use. When creating a file, the user
must give it a name following the rules of the operating system combined with those of the file
system. The most fundamental piece of information a file must have is a name.

Once the user has created a file, whether the file is empty or not, the operating system assigns
basic pieces of information to it. Once a file is created, it can be opened, updated, modified,
renamed, etc.

To support file processing, the . provides the System.IO namespace that
contains many different classes to handle almost any type of file operation you may need to
perform. Therefore, to perform file processing, you can include the System.IO namespace in

Files

Streams

Streaming Prerequisites

Introduction

application

computers

hard disc

operating system

hard drive

file system

NET Framework

Page 1 of 5File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction1.htm

your project.

The parent class of file processing is Stream. With Stream, you can store data to a stream or
you can retrieve data from a stream. Stream is an abstract class, which means you cannot use
it to declare a variable in your application. As an abstract class, Stream is used as the parent
of the classes that actually implement the necessary operations. You will usually use a
combination of classes to perform a typical operation. For example, some classes are used to
create a stream object while some others are used to write data to the created stream.

1. Start or Visual Studio and create a Windows Application named
ClarksvilleIceCream2

2. In the Solution Explorer, right-click Form1.vb and click Rename

3. Type Exercise.vb and press Enter twice

4. In the Properties window, change the form's Text to Ice Cream

5. Design the form as follows:

6. Click the combo box to the right of the Flavor label. Then, in the Properties, click the ellipsis
button of Items property and create the list with:

Practical Learning: Introducing Streaming

Control Name Text Additional Properties

GroupBox

Label
Order
Date:

DateTimePicker dtpOrderDate Format: Short

Label
Order
Time:

DateTimePicker dtpOrderTime
Format: Time
ShowUpDown: True

Label Flavor:

ComboBox cboFlavors
DropDownStyle:
DropDownList

Label Container:

ComboBox cboContainers
DropDownStyle:
DropDownList

Label Ingredient:

ComboBox cboIngredients
DropDownStyle:
DropDownList

Label Scoops:

TextBox txtScoops 1 TextAlign: Right

Label
Order
Total:

TextBox txtOrderTotal 0.00 TextAlign: Right

Button btnClose Close Click to end

Vanilla
Cream of Cocoa
Chocolate Chip
Cherry Coke
Butter Pecan
Chocolate Cookie

Microsoft Visual Basic

Vending Machine

Page 2 of 5File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction1.htm

7. Click OK

8. Click the combo box to the right of the Container label. Then, in the Properties, click the
ellipsis button of Items property and create the list with:

9. Click OK

10. Click the combo box to the right of the Ingredient label. Then, in the Properties, click the
ellipsis button of Items property and create the list with:

11. Click OK

12. Right-click the form and click View Code

13. In the Class Name combo box, select txtScoops

14. In the Method Name combo box, select Leave and implement the event as follows:

15. Execute the application. Here is an example:

Chunky Butter
Organic Strawberry
Chocolate Brownies
Caramel Au Lait

Cone
Cup
Bowl

None
Peanuts
Mixed Nuts
M & M
Cookies

Private Sub txtScoops_Leave(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles txtScoops.Leave
 Dim PriceContainer As Double
 Dim PriceIngredient As Double
 Dim PriceScoops As Double
 Dim OrderTotal As Double
 Dim NumberOfScoops As Integer = 1

 ' The price of a container depends on which one the customer selected
 If cboContainers.Text = "Cone" Then
 PriceContainer = 0.55
 ElseIf cboContainers.Text = "Cup" Then
 PriceContainer = 0.75
 Else
 PriceContainer = 1.15
 End If

 ' Find out if the customer wants any ingredient at all
 If cboIngredients.Text = "None" Then
 PriceIngredient = 0.0
 Else
 PriceIngredient = 0.95
 End If

 Try
 ' Get the number of scoops
 NumberOfScoops = CInt(txtScoops.Text)

 If NumberOfScoops = 1 Then
 PriceScoops = 1.85
 ElseIf (NumberOfScoops = 2) Then
 PriceScoops = 2.55
 Else ' if(NumberOfScoops= 3)
 PriceScoops = 3.25
 End If

 ' Make sure the user selected a flavor,
 ' otherwise, there is no reason to process an order
 If cboFlavors.Text <> "" Then
 OrderTotal = PriceScoops + PriceContainer + PriceIngredient
 txtOrderTotal.Text = OrderTotal.ToString("F")
 End If
 Catch ex As Exception
 MsgBox("The value you entered for the scoops is not valid" & _
 vbCrLf & "Only natural numbers such as 1," & _
 vbCrLf & " 2, or 3 are allowed" & _
 vbCrLf & "Please try again")
 End Try
End Sub

www.admanagerplus.com
Ads by Google

Page 3 of 5File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction1.htm

16. Close the form and return to

Before performing file processing, one of your early decisions will consist of specifying the type
of operation you want the user to perform. For example, the user may want to create a brand
new file, open an existing file, or perform a routine operation on a file. In all or most cases,
whether you are creating a new file or manipulating an existing one, you must specify the
name of the file. You can do this by declaring a String variable but, as we will learn later on,
most classes used to create a stream can take a string that represents the file.

If you are creating a new file, there are certainly some rules you must observe. The name of a
file follows the directives of the operating system. On MS DOS and Windows 3.X (that is, prior
to Microsoft Windows 9X), the file had to use the 8.3 format. The actual name had to have a
maximum of 8 characters with restrictions on the characters that could be used. The user also
had to specify three characters after a period. The three characters, known as the file
extension, were used by the operating system to classify the file. That was all necessary for
those 8-bit and 16-bit operating systems. Various rules have changed. For example, the names
of folders and files on Microsoft Windows >= 95 can have up to 255 characters. The extension
of the file is mostly left to the judgment of the programmer but the files are still using
extensions. Applications can also be configured to save different types of files; that is, files with
different extensions.

Based on this, if you declare a String variable to hold the name of the file, you can simply
initialize the variable with the necessary name and its extension. Here is an example:

Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String = "Employees.spr"
End Sub

1. Right-click the form and click View Code

2. Just above the Public Class line, import the System.IO namespace:

The Name of a File

At the time of this writing, the rules for file names for Microsoft Windows were on
the MSDN web site at Windows Development\Windows Base Services\Files and
I/O\SDK Documentation\Storage\Storage Overview\File Management\Creating,
Deleting, and Maintaining Files\Naming a File (because it is a web site and not a
book, its pages can change anytime).

Practical Learning: Specifying the Name of a File

Visual Studio

Page 4 of 5File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction1.htm

3. In the Class Name combo box, select btnClose

4. In the Method Name combo box, select Click and implement the event as follows:

5. Scroll up in the file and, under the other using lines, type Imports System.IO

If you declare a string as above, the file will be created in the folder as the application.
Otherwise, you can create your new file anywhere in the hard drive. To do that, you must
provide a complete path where the file will reside. A path is a string that specifies the drive
(such as A:, C:, or D:). The sections of a complete path string are separated by a backslash.
For example, a path can the made of a folder followed by the name of the file. An example
would be

C:\Palermo.tde

A path can also consist of a drive followed by the name of the folder in which the file will be
created. Here is an example:

C:\Program Files\Palermo.tde

A path can also indicate that the file will be created in a folder that itself is inside of another
folder. In this case, remember that the names of folder must be separated by backslashes.

When providing a path to the file, you could encounter different types of problems:

If the drive you specify does not exist or cannot be read, the compiler would consider that
the file does not exist

If you provide folders that do not exist in the drive, the compiler would consider that the
file does not exist. This also means that the compiler will not create the folder(s) (the .NET
Framework provides all means to create a folder but you must ask the compiler to create it;
simply specifying a folder that does not exist will not automatically create it, even if you are
creating a new file).

Therefore, it is your responsibility to make sure that either the file or the path to the file is
valid. As we will see in the next sections, the compiler can check the existence of a file or path.

Imports System.IO

Public Class Exercise

Private Sub btnClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 Dim answer As MsgBoxResult = _
 MsgBox("Do you want to save this order to remember it " & _
 "the next time you come to " & _
 "get your ice scream?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 "Ice Cream Vending Machine")

 If answer = MsgBoxResult.Yes Then
 Dim Filename As String = InputBox(_
 "Please type your initials and press Enter", _
 "Ice Cream Vending Machine", "AA", 100, 100)
 If Filename <> "" Then
 ' Wonderful
 Else
 MsgBox("The ice cream order will not be saved")
 End If
 End If

 MsgBox("Good Bye: It was a delight serving you")
 Close()
End Sub

The Path to a File

eWebGuru com/Web Hosting India Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc. Next

Page 5 of 5File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction1.htm

File Processing

The .NET Support for Files

Introduction

The primary support of a file as an object is
provided by a .NET Framework class called File.
This Shared class is equipped with various types
of (static) methods to create, save, open, copy,
move, delete, or check the existence of a file. As
an alternative, the Microsoft Visual Basic library
provides the My object that includes the
FileSystem object in the Computer object.

www manashosting com Ads by Google

One of the valuable operations that the File class can perform is to check the existence of the
file you want to use. For example, if you are creating a new file, you may want to make sure it
does not exist already because if you try to create a file that exists already, the compiler may
first delete the old file before creating the new one. This could lead to unpredictable results,
especially because such a file is not sent to the Recycle Bin. On the other hand, if you are
trying to open a file, you should first make sure the file exists, otherwise the compiler will not
be able to open a file it cannot find.

To check the existence of a file, the File class provides the Exists method. Its syntax is:

Public Shared Function Exists(path As String) As Boolean

To perform this operation using the FileSystem class from My, you can call its FileExists()
method whose syntax is:

Public Function FileExists(ByVal file As String) As Boolean

If you provide only the name of the file, the compiler would check it in the folder of the
application. If you provide the path to the file, the compiler would check its drive, its folder(s)
and the file itself. In both cases, if the file exists, the method returns True. If the compiler
cannot find the file, the method returns False. It is important to know that if you provide a
complete path to the file, any slight mistake would produce a False result.

Besides checking the existence of the file, the File class can be used to create a new file. To
support this operation, the File class is equipped with the Create() method that is overloaded
with two versions as follows:

Public Shared Function Create(path As String) As FileStream
Public Shared Function Create(path As String, bufferSize As Integer) As FileStream

In both cases, the File.Create() method returns a Stream value, which is a FileStream
value. As the File.Create() method indicates, it takes the name or path of the file as
argument. If you know or want to specify the size, in bytes, of the file, you can use the second
version.

To provide the same operation of creating a file, you can use the Open() method of the File
class. It is overloaded in three versions as follows:

Public Shared Function Open (_
 path As String, _
 mode As FileMode _

File Existence

File Creation

Page 1 of 3File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction2.htm

) As FileStream

Public Shared Function Open (_
 path As String, _
 mode As FileMode, _
 access As FileAccess _
) As FileStream
Public Shared Function Open (_
 path As String, _
 mode As FileMode, _
 access As FileAccess, _
 share As FileShare _
) As FileStream

In order to perform an operation on a file, you must specify to the operating system how to
proceed. One of the options you have is to indicate the type of access that will be granted on
the file. This access is specified using the FileAccess enumerator. The members of the
FileAccess enumerator are:

FileAccess.Write: New data can be written to the file

FileAccess.Read: Existing data can be read from the file

FileAccess.ReadWrite: Existing data can be read from the file and new data be written to
the file

In standalone workstations, one person is usually able to access and open a file then perform
the necessary operations on it. In networked computers, you may create a file that different
people can access at the same time or you may make one file access another file to retrieve
information. For example, suppose you create an application for a fast food restaurant that has
two or more connected workstations and all workstations save their customers orders to a
common file. In this case, you must make sure that any of the computers can access the file to
save an order. An employee from one of these workstations must also be able to open the file
to retrieve a customer order for any necessary reason. You can also create a situation where
one file holds an inventory of the items of a store and another file holds the customers orders.
Obviously one file would depend on another. Based on this, when an operation must be
performed on a file, you may have to specify how a file can be shared. This is done through the
FileShare enumerator.

The values of the FileShare enumerator are:

FileShare.Inheritable: Allows other file handles to inherit from this file

FileShare.None: The file cannot be shared

FileShare.Read: The file can be opened and read from

FileShare.Write: The file can be opened and written to

FileShare.ReadWrite: The file can be opened to write to it or read from it

Besides the access to the file, another option you will most likely specify to the operating
system is referred to as the mode of a file. It is specified through the FileMode enumerator.
The members of the FileMode Enumerator are:

FileMode.Append: If the file already exists, the new data will be added to its end. If the
file doesn't exist, it will be created and the new data will be added to it

FileMode.Create: If the file already exists, it will be deleted and a new file with the same
name will be created. If the file doesn't exist, then it will be created

FileMode.CreateNew: If the new already exists, the compiler will throw an error. If the
file doesn't exist, it will be created

FileMode.Open: If the file exists, it will be opened. If the file doesn't exist, an error would
be thrown

FileMode.OpenOrCreate: If the file already exists, it will be opened. If the file doesn't
exist, it will be created

FileMode.Truncate: If the file already exists, its contents will be deleted completely but
the file will be kept, allowing you to write new data to it. If the file doesn't exist, an error
would be thrown

Access to a File

File Sharing

The Mode of a File

Starting and Closing a Stream

Convert Text to XML
Convert any Text Format
to XML Java and .NET
Converter Components
www.xmlconverters.com/Convert-Te

C/C++ Programmers
needed
Join GetAFreelancer.com
and bid on projects. Free
and quick signup.
www.GetAFreelancer.com

PC based Instruments
Data Acquisition, Signal
Generation and Digital I/O
with LabView driver
www.spectrum-instrumentation.com

Object COBOL
Transition
Upgrade your COBOL
applications using Micro
Focus Server Express
www.microfocus.com/hpconversion

Snap Stream
Compare prices at
mySimon - winner of "Best
Internet Shopping Service"
mySimon.com

Page 2 of 3File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction2.htm

File streaming consists of performing one of the routine operations on a file, such as creating or
opening it. This basic operation can be performed using a class called FileStream. You can use
a FileStream object to get a stream ready for processing. As one of the most complete classes
of file processing of the .NET Framework, FileStream is equipped with all necessary properties
and methods. To use it, you must first declare a variable of it. The class is equipped with nine
constructors.

One of the constructors of the FileStream class has the following syntax:

Public Sub New(path As String, mode As FileMode)

This constructor takes as its first argument the name of the file or its path. The second
argument specifies the type of operation to perform on the file. Here is an example of calling
this method:

Imports System.IO

Public Class Exercise

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String = "Persons.prs"

 Dim StreamPersons As FileStream = New FileStream(Filename, FileMode.Create)

 End Sub
End Class

When you use a stream, it requests resources from the operating system and uses them while
the stream is available. When you are not using the stream anymore, you should free the
resources and make them available again to the operating system so that other services can
use them. This is done by closing the stream.

To close a stream, you can can call the Close() method of the class(es) you were using. Here
are examples:

Public Class Exercise

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String = "Persons.prs"

 Dim StreamPersons As FileStream = New FileStream(Filename, FileMode.Create)

 StreamPersons.Close()
 End Sub
End Class

Starting a Stream

Closing a Stream

www innovasys com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Next

Page 3 of 3File Processing: Introduction

6/27/2008http://www.functionx.com/vb/fileprocessing/introduction2.htm

File Processing: Reading From a Stream

Binary Reading

As opposed to writing to a stream, you may want to read existing
data from it. Before doing this, you can first specify your intent to
the streaming class using the FileMode enumerator. This can be
done using the FileStream class as follows:

Private Sub btnOpen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click

 Dim Filename As String = "Persons.prs"

 Dim PersonsStreamer As FileStream = _
 New FileStream(Filename, FileMode.Create)
End Sub

ECO for Visual Studio
Much more than just an ORM Download free
version today
capableobjects.com

Reading Pen for Dyslexia
$244 School Purchase Order H.Q. Only $244 after
$35 Instant Rebate
www.quicktionarysuperstore.com

Nitrogen Management
GreenSeeker variable rate and mapping systems.
www.amitytech.com

Once the stream is ready, you can get prepared to read data from it. To support this, you can
use the BinaryReader class. This class provides two constructors. One of the constructors (the
first) has the following syntax:

Public Sub New(input As Stream)

This constructor takes as argument a Stream value, which could be a FileStream object. After
declaring a FileStream variable using this constructor, you can read data from it. To support
this, the class provides an appropriate method for each primitive data type.

After using the stream, you should close it to reclaim the resources it was using. This is done
by calling the Close() method.

Here is an example of using the mentioned methods:

Private Sub btnOpen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click

 Dim Filename As String = "Persons.prs"
 Dim PersonsStreamer As FileStream
 Dim PersonsReader As BinaryReader

 PersonsStreamer = New FileStream(Filename, FileMode.Open)
 PersonsReader = New BinaryReader(PersonsStreamer)

 txtPerson1.Text = PersonsReader.ReadString()
 txtPerson2.Text = PersonsReader.ReadString()
 txtPerson3.Text = PersonsReader.ReadString()
 txtPerson4.Text = PersonsReader.ReadString()

 PersonsReader.Close()
 PersonsStreamer.Close()
End Sub

Besides the BinaryReader class that reads its values in binary format, the .NET Framework
supports character reading through a class called StreamReader. The StreamReader class is
based on the TextReader class. Like its counterpart the StramWriter class, StreamReader
is equipped with various constructors. If you want to read values from a file, you can pass its
name or path to the following constructor:

Public Sub New(path As String)

Alternatively, to a FileStream object, you can pass it to the following constructor of the
StreamReader class to create a stream:

Public Sub New (stream As Stream)

Stream Reading

Page 1 of 4File Processing: Reading From a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/reading.htm

This method takes as argument a Stream-based variable, which could be a FileStream value.
If/since you are planning to read from a stream, configure your file mode status appropriately.
Here is an example:

Private Sub btnOpen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click
 Dim Filename As String = "Student.std"

 Dim StudentsStreamer As FileStream
 Dim StudentsReader As StreamReader

 StudentsStreamer = New FileStream(Filename, FileMode.Open)
 StudentsReader = New StreamReader(StudentsStreamer)
End Sub

After creating a StreamReader object, you can read data from the file. To support this, the
TextReader class is equipped with the Write() method that the StreamReader class inherits.
The StreamReader class itself is equipped with the ReadLine() method. Here is an example
of calling it:

Private Sub btnOpen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click
 Dim Filename As String = "Student.std"

 Dim StudentsStreamer As FileStream
 Dim StudentsReader As StreamReader

 StudentsStreamer = New FileStream(Filename, FileMode.Open)
 StudentsReader = New StreamReader(StudentsStreamer)

 txtFirstName.Text = StudentsReader.ReadLine()
 txtLastName.Text = StudentsReader.ReadLine()
 cbxGenders.SelectedIndex = CInt(StudentsReader.ReadLine())

 StudentsReader.Close()
 StudentsStreamer.Close()
End Sub

To read text from a file using the FileSystem class from My object, you can call the
OpenTextFileReader() method. It comes in two versions whose syntaxes are:

Public Shared Function OpenTextFileReader(_
 ByVal file As String,
) As System.IO.StreamReader

Public Shared Function OpenTextFileReader(_
 ByVal file As String, _
 ByVal encoding As System.Text.Encoding _
) As System.IO.StreamReader

The first argument is the name of, or the path to, the file that will receive the new values. The
encoding argument allows you to specify the type of text that you want to use.

This method returns a StreamReader value. After creating the stream reader, you can then
read values from it. To do this, you can call the ReadLine() method of the StreamReader
class. Once again, after using the stream reader, remember to close it. Here are examples:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button2.Click
 Dim fstPeople As StreamReader

 fstPeople = My.Computer.FileSystem.OpenTextFileReader("People1.ppl")

 txtPerson1.Text = fstPeople.ReadLine
 txtPerson2.Text = fstPeople.ReadLine
 txtPerson3.Text = fstPeople.ReadLine
 txtPerson4.Text = fstPeople.ReadLine

 fstPeople.Close()
End Sub

1. Access the Code and, in the Class Name combo box, select (Exercise Events)

2. In the Method Name combo box, select Load and implement the event as follows:

Using My File System

Practical Learning: Reading From a Stream

Page 2 of 4File Processing: Reading From a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/reading.htm

3. Execute the application and test it. Here is an example:

4. Close the form

Private Sub Exercise_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 Dim OrderDate As String, OrderTime As String
 Dim SelectedFlavor As String
 Dim SelectedContainer As String
 Dim SelectedIngredient As String
 Dim Scoops As String, OrderTotal As String
 Dim Filename As String
 Dim IceCreamReader As StreamReader

 Filename = InputBox(_
 "If you had previously ordered an ice cream here " & _
 "and you want to order the same, please type your " & _
 "initials and press Enter (otherwise, press Esc)", _
 "Ice Cream Vending Machine", "", 100, 100)
 If Filename <> "" Then
 Filename = Filename & ".icr"

 IceCreamReader = My.Computer.FileSystem.OpenTextFileReader(Filename)

 ' Find out if this order was previously saved in the machine
 If My.Computer.FileSystem.FileExists(Filename) Then
 ' If so, open it
 OrderDate = IceCreamReader.ReadLine()
 OrderTime = IceCreamReader.ReadLine()
 SelectedFlavor = IceCreamReader.ReadLine()
 SelectedContainer = IceCreamReader.ReadLine()
 SelectedIngredient = IceCreamReader.ReadLine()
 Scoops = IceCreamReader.ReadLine()
 OrderTotal = IceCreamReader.ReadLine()

 ' And display it to the user
 dtpOrderDate.Value = DateTime.Parse(OrderDate)
 dtpOrderTime.Value = DateTime.Parse(OrderTime)
 cboFlavors.Text = SelectedFlavor
 cboContainers.Text = SelectedContainer
 cboIngredients.Text = SelectedIngredient
 txtScoops.Text = Scoops.ToString()
 txtOrderTotal.Text = OrderTotal

 IceCreamReader.Close()
 Else
 MsgBox("It looks like you have not previously " & _
 "ordered an ice cream here")
 End If
 End If
End Sub

Page 3 of 4File Processing: Reading From a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/reading.htm

www manashosting com Feedback - Ads by Google

Previous Copyright © 2008 FunctionX, Inc. Home

Page 4 of 4File Processing: Reading From a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/reading.htm

File Processing: Writing to a Stream

Binary Writing

A streaming operation is typically used to create
a stream. Once the stream is ready, you can
write data to it. The writing operation is
performed through various classes. One of these
classes is called BinaryWriter.

The BinaryWriter class can be used to write
values of primitive data types (char, int, float,
double, etc). To use a BinaryWriter value, you
can first declare its variable. To do this, you
would use one of the class' three constructors.
The first constructor is the default. The second
constructor has the following syntax:

Zapak com Ads by Google

Public Sub New(output As Stream)

This constructor takes as argument a Stream value, which could be a FileStream variable.
Here is an example:

Public Class Exercise

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String = "Persons.prs"

 Dim StreamPersons As FileStream = New FileStream(Filename, FileMode.Create)
 Dim WriterPersons As BinaryWriter = new BinaryWriter(fstPersons)

 End Sub
End Class

As mentioned already, make sure you close a stream after using it. In the same way, make
sure you close a writer after using it. If you are using both, you should close them in the
reverse order they were used.

Most classes that are used to add values to a stream are equipped with a method called Write.
This is also the case for the BinaryWriter class. This method takes as argument the value that
must be written to the stream. The method is overloaded so that there is a version for each
primitive data type. Here is an example that adds strings to a newly created file:

Imports System.IO

Public Class Exercise

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click

Page 1 of 6File Processing: Writing to a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/writing.htm

 Dim Filename As String = "Persons.prs"

 Dim PersonsStream As FileStream
 Dim PersonsWriter As BinaryWriter

 PersonsStream = New FileStream(Filename, FileMode.Create)
 PersonsWriter = New BinaryWriter(PersonsStream)

 PersonsWriter.Write(txtPerson1.Text)
 PersonsWriter.Write(txtPerson2.Text)
 PersonsWriter.Write(txtPerson3.Text)
 PersonsWriter.Write(txtPerson4.Text)

 PersonsWriter.Close()
 PersonsStream.Close()

 txtPerson1.Text = ""
 txtPerson2.Text = ""
 txtPerson3.Text = ""
 txtPerson4.Text = ""
 End Sub
End Class

As mentioned already, the BinaryWriter class considers the values it has to write as binary
values in the orders of integers, characters, and their variants. In some cases, you may want to
write a block of text. To support this, the .NET Framework provides the StreamWriter class.
StreamWriter is derived from the TextWriter class, which the base class used to write a
series of characters to a stream. To assist you with writing operations, the StramWriter class
is equipped with various constructors.

If you had previously defined a FileStream object and you want to write values to it, you can
use the following constructor of the StreamWriter class to create a stream:

Public Sub New (stream As Stream)

This method takes as argument a Stream-based variable, which could be a FileStream value.
Here is an example of using it:

Imports System.IO

Public Class StudentRegistration

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String = "Student.std"

 Dim StudentsStreamer As FileStream
 Dim StudentsWriter As StreamWriter

 StudentsStreamer = New FileStream(Filename, FileMode.Create)
 StudentsWriter = New StreamWriter(StudentsStreamer)
 End Sub
End Class

If you do not want to use a Stream-based class, you can directly provide a file to the
StreamWriter. To support this, the class is equipped with the following constructor:

Public Sub New(path As String)

This method takes as argument the name of, or a path to, a file.

After creating a StreamWriter object, you can write one or more values to it. To support this,
the TextWriter class is equipped with the Write() method that the StreamWriter class
inherits. The StreamWriter class itself is equipped is equipped with w method named
WriteLine that is given in various versions, each version adapted to a particular data type. The
Write() method writes text on a line and keeps the caret on the same line. The WriteLine()
method writes a line of text and moves the caret to the next line.

Here is an example of using a StreamWriter class to write values to a file:

Stream Writing

Page 2 of 6File Processing: Writing to a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/writing.htm

Imports System.IO

Public Class StudentRegistration

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 Dim Filename As String = "Student.std"

 Dim StudentsStreamer As FileStream
 Dim StudentsWriter As StreamWriter

 StudentsStreamer = New FileStream(Filename, FileMode.Create)
 StudentsWriter = New StreamWriter(StudentsStreamer)

 StudentsWriter.WriteLine(txtFirstName.Text)
 StudentsWriter.WriteLine(txtLastName.Text)
 StudentsWriter.WriteLine(cbxGenders.SelectedIndex)

 StudentsWriter.Close()
 StudentsStreamer.Close()

 txtFirstName.Text = ""
 txtLastName.Text = ""
 cbxGenders.SelectedIndex = 2
 End Sub
End Class

By default, the FileStream class does not specify what operation is going to be performed on
the file. If you are planning to create a new file and write values to it, you can call the
OpenTextFileWriter() method of the FileSystem class of the My object. It comes in two
versions whose syntaxes are:

Public Function OpenTextFileWriter(_
 ByVal file As String, _
 ByVal append As Boolean _
) As System.IO.StreamWriter

Public Function OpenTextFileWriter(_
 ByVal file As String, _
 ByVal append As Boolean, _
 ByVal encoding As System.Text.Encoding _
) As System.IO.StreamWriter

The first argument is the name of, or the path to, the file that will receive the new values. The
second argument specifies whether this is a new file or you are opening it to add new values to
it. If this is a new file, pass the append argument as False. The encoding argument allows you
to specify the type of text that you want to use.

This method returns a StreamWriter. Here is an example of creating a stream writer by calling
the OpenTextFileWriter() method:

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim fstPeople As StreamWriter

 fstPeople = My.Computer.FileSystem.OpenTextFileWriter("People1.ppl", False)

 End Sub
End Class

After creating the stream writer, you can then write values to it. To do this, you can call the
WriteLine() method of the StreamWriter class. Once again, after using the stream writer,

Using My File System

www.manashosting.com
Ads by Google

Page 3 of 6File Processing: Writing to a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/writing.htm

remember to close it. Here are examples:

Imports System.IO

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim fstPeople As StreamWriter

 fstPeople = My.Computer.FileSystem.OpenTextFileWriter("People1.ppl", False)

 fstPeople.WriteLine(txtPerson1.Text)
 fstPeople.WriteLine(txtPerson2.Text)
 fstPeople.WriteLine(txtPerson3.Text)
 fstPeople.WriteLine(txtPerson4.Text)
 fstPeople.Close()

 txtPerson1.Text = ""
 txtPerson2.Text = ""
 txtPerson3.Text = ""
 txtPerson4.Text = ""
 End Sub
End Class

1. Scroll back down the file and change the code of the btnClose_Click event as follows:

2. Execute the application and create an ice cream order. Here is an example:

Practical Learning: Writing to a Stream

Private Sub btnClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 Dim Filename As String
 Dim Answer As MsgBoxResult
 Dim IceCreamWriter As StreamWriter

 Answer = MsgBox("Do you want to save this order to remember it " & _
 "the next time you come to " & _
 "get your ice scream?", _
 MsgBoxStyle.YesNo Or MsgBoxStyle.Question, _
 "Ice Cream Vending Machine")
 If Answer = MsgBoxResult.Yes Then
 Filename = InputBox(_
 "Please type your initials and press Enter", _
 "Ice Cream Vending Machine", "AA", 100, 100)
 If Filename <> "" Then
 Filename = Filename & ".icr"

 IceCreamWriter = _
 My.Computer.FileSystem.OpenTextFileWriter(Filename, False)

 IceCreamWriter.WriteLine(dtpOrderDate.Value.ToShortDateString())
 IceCreamWriter.WriteLine(dtpOrderTime.Value.ToShortTimeString())
 IceCreamWriter.WriteLine(cboFlavors.Text)
 IceCreamWriter.WriteLine(cboContainers.Text)
 IceCreamWriter.WriteLine(cboIngredients.Text)
 IceCreamWriter.WriteLine(txtScoops.Text)
 IceCreamWriter.WriteLine(txtOrderTotal.Text)

 IceCreamWriter.Close()

 MsgBox("The order has been saved")
 Else
 MsgBox("The ice cream order will not be saved")
 End If
 End If

 MsgBox("Good Bye: It was a delight serving you")
 Close()
End Sub

Page 4 of 6File Processing: Writing to a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/writing.htm

Page 5 of 6File Processing: Writing to a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/writing.htm

3. Close the form and return to your programming environment

Previous Copyright © 2008 FunctionX, Inc. Next

Page 6 of 6File Processing: Writing to a Stream

6/27/2008http://www.functionx.com/vb/fileprocessing/writing.htm

Binary Serialization

Object Serialization and De-Serialization

Consider the following program:

Introduction

Zapak com Ads by Google

Imports .IO

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Make As String = txtMake.Text
 Dim Model As String = txtModel.Text
 Dim Year As Integer = CInt(txtYear.Text)
 Dim CarColor As Integer = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car1. ", FileMode.Create)
 Dim bnwCar As BinaryWriter = New BinaryWriter(stmCar)

 Try
 bnwCar.Write(Make)
 bnwCar.Write(Model)
 bnwCar.Write(Year)
 bnwCar.Write(CarColor)
 Finally
 bnwCar.Close()
 stmCar.Close()
 End Try
 End Sub
End Class

Here is an example of running the program:

This is an example of the techniques used in file processing to save data of primitive
types:

System

car

individual

Page 1 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

The values can be retrieved with the following code:

Imports System.IO

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Make As String = txtMake.Text
 Dim Model As String = txtModel.Text
 Dim Year As Integer = CInt(txtYear.Text)
 Dim CarColor As Integer = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car1.car", FileMode.Create)
 Dim bnwCar As BinaryWriter = New BinaryWriter(stmCar)

 Try
 bnwCar.Write(Make)
 bnwCar.Write(Model)
 bnwCar.Write(Year)
 bnwCar.Write(CarColor)
 Finally
 bnwCar.Close()
 stmCar.Close()
 End Try
 End Sub

 Private Sub btnRead_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnRead.Click
 Dim stmCar As FileStream = New FileStream("Car1.car", FileMode.Open)
 Dim bnrCar As BinaryReader = New BinaryReader(stmCar)

 Try
 txtMake.Text = bnrCar.ReadString()
 txtModel.Text = bnrCar.ReadString()
 txtYear.Text = bnrCar.ReadUInt32().ToString()
 cbxColors.SelectedIndex = bnrCar.ReadInt32()
 Finally
 bnrCar.Close()
 stmCar.Close()
 End Try
 End Sub
End Class

In the same way, you can save the individual fields of a class or you can retrieve the individual
fields of a car:

Here is an example:

Class: Car.vb

Public Class Car
 Public Make As String
 Public Model As String
 Public Year As Integer

Page 2 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

Imports System.IO

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Vehicle As Car = ()

 Vehicle.Make = txtMake.Text
 Vehicle.Model = txtModel.Text
 Vehicle.Year = CInt(txtYear.Text)
 Vehicle.Color = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car2.car", FileMode.Create)
 Dim bnwCar As BinaryWriter = New BinaryWriter(stmCar)

 Try
 bnwCar.Write(Vehicle.Make)
 bnwCar.Write(Vehicle.Model)
 bnwCar.Write(Vehicle.Year)
 bnwCar.Write(Vehicle.Color)
 Finally
 bnwCar.Close()
 stmCar.Close()
 End Try
 End Sub

 Private Sub btnRead_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnRead.Click
 Dim stmCar As FileStream = New FileStream("Car2.car", FileMode.Open)
 Dim bnrCar As BinaryReader = New BinaryReader(stmCar)

 Try
 Dim Vehicle As Car = New Car()

 Vehicle.Make = bnrCar.ReadString()
 Vehicle.Model = bnrCar.ReadString()
 Vehicle.Year = bnrCar.ReadUInt32()
 Vehicle.Color = bnrCar.ReadInt32()

 txtMake.Text = Vehicle.Make
 txtModel.Text = Vehicle.Model
 txtYear.Text = Vehicle.Year
 cbxColors.SelectedIndex = Vehicle.Color
 Finally
 bnrCar.Close()
 stmCar.Close()
 End Try
 End Sub
End Class

When it comes to a class, the problem with saving individual fields is that you could forget to
save one of the fields. For example, considering a Car class, if you don't save the Make
information of a Car object and retrieve or open the saved object on another , the
receiving user would miss some information and the car cannot be completely identifiable. An
alternative is to save the whole Car object.

Object serialization consists of saving a whole object as one instead of its individual fields:

In other words, a variable declared from a class can be saved to a stream and then the saved
object can be retrieved later or on another computer. The . supports two types
of object serialization: binary and SOAP.

 Public Color As Integer
End Class

New Car

computer

NET Framework

Page 3 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

1. Start Microsoft Visual Basic and create a Windows Forms named RealEstate1

2. To create a new form, on the main menu, click Projects -> Add Windows Form...

3. Set the Name to PropertyEditor and click Add

4. Design the form as follows:

Practical Learning: Introducing Serialization

Control Text Name Other Properties

Label Property #:

TextBox txtPropertyNumber Modifiers: Public

Label
Property
Type:

ComboBox cbxPropertyTypes

Modifiers: Public
Items:
Unknown
Single Family
Townhouse

Label Address:

TextBox txtAddress Modifiers: Public

Label City:

TextBox txtCity Modifiers: Public

Label State:

ComboBox cbxStates

Modifiers: Public
Items:
DC
MD
PA
VA
WV

Label ZIP Code:

TextBox txtZIPCode Modifiers: Public

Label Bedrooms:

TextBox 0 txtBedrooms Modifiers: Public

Label Bathrooms:

TextBox 1.0 txtBathrooms Modifiers: Public

Label Market Value:

TextBox 0.00 txtMarketValue Modifiers: Public

Button OK btnOK DialogResult: OK

Button Cancel btnCancel
DialogResult:
Cancel

Application

Condominium

Page 4 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

5. In the Solution Explorer, right-click Form1.vb and click Rename

6. Type RealEstate.vb and press Enter twice (to display that form)

7. Design the form as follows:

Form

FormBorderStyle: FixedDialog

Text: Altair - Property Editor

StartPosition: CenterScreen

AcceptButton: btnOK

CancelButton: btnCancel

MaximizeBox: False

MinimizeBox: False

ShowInTaskBar: False

Control Text Name

Label Property #:

TextBox txtPropertyNumber

Button Open btnOpen

Label Property Type:

TextBox txtPropertyType

Label Address:

TextBox txtAddress

Label City:

TextBox txtCity

Label State:

TextBox txtState

Label ZIP Code:

TextBox txtZIPCode

Label Bedrooms:

TextBox 0 txtBedrooms

Label Bathrooms:

TextBox 1.0 txtBathrooms

Label Market Value:

TextBox 0.00 txtMarketValue

Button &New Property... btnNewProperty

Button Close btnClose

Form

Ads by Google

Remove Excel
Duplicates

Find and remove

duplicated columns,
rows and cells in
Excel 2000-2007.

www.office-excel.com

Realtors

Page 5 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

8. Save the form

Binary serialization works by processing an object rather than streaming its individual member
variables. This means that, to use it, you define an object and initialize it, or "fill" it, with the
necessary values and any information you judge necessary. This creates a "state" of the object.
It is this state that you prepare to serialize. When you save the object, it is converted into a
stream.

To perform binary serialization, there are a few steps you must follow. When creating the class
whose objects would be serialized, start it with the <Serializable> attribute. Here is an
example:

<Serializable()> Public Class Car
 Public Make As String
 Public Model As String
 Public Year As Integer
 Public Color As Integer
End Class

Before serializing an object, you should reference the
System.Runtime.Serialization.Formatters.Binary namespace. The class responsible for
binary serialization is called BinaryFormatter. This class is equipped with two constructors.
The default constructor is used to simply create an object.

After declaring the variable, to actually serialize an object, call the Serialize() method of the
BinaryFormatter class. The method is overloaded with two versions. One of the versions of
this method uses the following syntax:

Public Sub Serialize (_
 serializationStream As Stream, _
 graph As Object _
)

The first argument to this method must be an object of a Stream-based class, such as a
FileStream object. The second argument must be the object to serialize. This means that,
before calling this method, you should have built the object.

Here is an example:

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim vehicle As Car = New Car()
 vehicle.Make = txtMake.Text
 vehicle.Model = txtModel.Text
 vehicle.Year = CInt(txtYear.Text)
 vehicle.Color = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car3.car", FileMode.Create)
 Dim bfmCar As BinaryFormatter = New BinaryFormatter()

 bfmCar.Serialize(stmCar, vehicle)
 End Sub
End Class

1. To create a new class, on the main menu, click Project -> Add Class...

2. Set the Name to SampleProperty and click Add

3. Change the file as follows:

FormBorderStyle: FixedDialog

Text: Altair Realtors - Property Editor

StartPosition: CenterScreen

Binary Serialization

Practical Learning: Serializing an Object

<Serializable()> Public Class SampleProperty
 Public PropertyNumber As String
 Public PropertyType As String
 Public Address As String
 Public City As String
 Public State As String

Page 6 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

4. In the Solution Explorer, right-click RealEstate.vb and click View Code

5. In the Class Name combo box, select (RealEstate Events)

6. In the Method Name combo box, select Click and change the file as follows:

7. In the Class Name combo box, select btnClose

8. In the Method name combo box, select Click and implement the event as follows:

9. Execute the application and continuously click the New Property button to create the
following properties (let the computer specify the property number):

 Public ZIPCode As Integer
 Public Bedrooms As Short
 Public Bathrooms As Single
 Public MarketValue As Double
End Class

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

Public Class RealEstate

 Private Sub btnNewProperty_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnNewProperty.Click
 Dim Editor As PropertyEditor = New PropertyEditor
 Dim DirInfo As DirectoryInfo = _
 Directory.CreateDirectory("C:\Altair Realtors\Properties")

 Dim RndNumber As Random = New Random
 Dim LeftNumber As Integer = RndNumber.Next(100, 999)
 Dim RightNumber As Integer = RndNumber.Next(100, 999)
 Editor.txtPropertyNumber.Text = LeftNumber.ToString() & "-" _
 & RightNumber.ToString()

 If Editor.ShowDialog() = DialogResult.OK Then
 Dim Prop As SampleProperty = New SampleProperty
 prop.PropertyNumber = Editor.txtPropertyNumber.Text
 prop.PropertyType = Editor.cbxPropertyTypes.Text
 prop.Address = Editor.txtAddress.Text
 prop.City = Editor.txtCity.Text
 prop.State = Editor.cbxStates.Text
 prop.ZIPCode = CInt(Editor.txtZIPCode.Text)
 prop.Bedrooms = CInt(Editor.txtBedrooms.Text)
 prop.Bathrooms = CSng(Editor.txtBathrooms.Text)
 prop.MarketValue = CDbl(Editor.txtMarketValue.Text)

 Dim strFilename As String = DirInfo.FullName & "\" & _
 Editor.txtPropertyNumber.Text & ".prp"
 Dim stmProperty As FileStream = New FileStream(strFilename, _
 FileMode.Create, FileAccess.Write)
 Dim bfmProperty As BinaryFormatter = New BinaryFormatter

 bfmProperty.Serialize(stmProperty, prop)
 End If
 End Sub
End Class

Private Sub btnClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 End
End Sub

Property Address City State ZIP Beds Baths Market

Page 7 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

10. Close the form and return to your programming environment

As serialization is the process of storing an object to a medium, the opposite, de-serialization is
used to retrieve an object from a stream. To support this, the BinaryFormatter class is
equipped with the Deserialize() method. Like Serialize(), the Deserialize() method is
overloaded with two versions. One of them uses the following syntax:

Public Function Deserialize (_
 serializationStream As Stream _
) As Object

This method takes as argument a Stream-based object, such as a FileStream variable, that
indicates where the file is located. The Deserialize() method returns an Object object. As a
goal, you want the Deserialize() method to produce the type of object that was saved so you
can retrieve the values that the returned object holds. Because the method returns an Object
value, you must cast the returned value to the type of your class.

Once the Deserialize() method has returned the desired object, you can access its values.
Here is an example:

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Binary

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Vehicle As Car = New Car()

 Vehicle.Make = txtMake.Text
 Vehicle.Model = txtModel.Text
 Vehicle.Year = CInt(txtYear.Text)
 Vehicle.Color = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car3.car", FileMode.Create)
 Dim bfmCar As BinaryFormatter = New BinaryFormatter()

 bfmCar.Serialize(stmCar, vehicle)
 End Sub

 Private Sub btnRead_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnRead.Click
 Dim stmCar As FileStream = New FileStream("Car3.car", FileMode.Open)
 Dim bnrCar As BinaryReader = New BinaryReader(stmCar)

 Dim bfmCar As BinaryFormatter = New BinaryFormatter()
 Dim Vehicle As Car = CType(bfmCar.Deserialize(stmCar), Car)

 txtMake.Text = Vehicle.Make
 txtModel.Text = Vehicle.Model
 txtYear.Text = Vehicle.Year.ToString()
 cbxColors.SelectedIndex = Vehicle.Color
 End Sub
End Class

1. In the Class Name combo box, select btnOpen

2. In the Method name combo box, select Click and implement the event as follows:

Type Code Value

Single
Family

11604 Aldora Avenue Baltimore MD 21205 5 3.5 325650

Townhouse 495 Parker House Terrace Gettysburg WV 26201 3 2.5 225500

Condominium
5900 24th Street NW
#812

Washington DC 20008 1 1.0 388665

Single
Family

6114 Costinha Avenue Martinsburg WV 25401 4 3.5 325000

Condominium
10710 Desprello Street
#10D

Rockville MD 20856 1 1.0 528445

De-Serialization

Practical Learning: De-Serializing an Object

Private Sub btnOpen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click

Page 8 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

3. Execute the application and try opening a previously save property using its number

4. Close the form and return to your programming environment

In the examples we have used so far, we were saving the whole object. You can make it
possible to save only some parts of the class. When creating a class, you can specify what
fields would be serialized and which ones would not be. To specify that a member cannot be
saved, you can mark it with the <NonSerialized()> attribute. Here is an example:

<Serializable()> Public Class Car1
 Public Make As String
 Public Model As String

 ' Because the value of a car can change,
 ' there is no reason to save it
 <NonSerialized()> _
 Public Value As Double
 Public Year As Integer
 Public Color As Integer
End Class

After creating the class, you can declare a variable of it and serialize it, using either the binary
or the SOAP approach. You can then retrieve the object and its values, using any of the
techniques we learned earlier.

To support serialization, the .NET Framework provides the ISerializable interface. You can
create a class that implements this interface to customize the serialization process. Even if you
plan to use this interface, the class you create must be marked with the <Serializable>

 Dim DirProperties As DirectoryInfo = _
 New DirectoryInfo("C:\Altair Realtors\Properties")
 Dim FleProperties() As FileInfo = DirProperties.GetFiles()

 If DirProperties.Exists = True Then
 Dim Found As Boolean = False
 Dim Prop As SampleProperty = Nothing
 Dim fle As FileInfo
 For Each fle In FleProperties
 Dim stmProperty As FileStream = _
 New FileStream(fle.FullName, _
 FileMode.Open, _
 FileAccess.Read)
 Dim bfmProperty As BinaryFormatter = New BinaryFormatter()
 Prop = CType(bfmProperty.Deserialize(stmProperty), _
 SampleProperty)

 If Prop.PropertyNumber = txtPropertyNumber.Text Then
 Found = True
 End If
 Next

 If Found = True Then
 txtPropertyType.Text = Prop.PropertyType
 txtAddress.Text = Prop.Address
 txtCity.Text = Prop.City
 txtState.Text = Prop.State
 txtZIPCode.Text = Prop.ZIPCode
 txtBedrooms.Text = Prop.Bedrooms
 txtBathrooms.Text = FormatNumber(Prop.Bathrooms)
 txtMarketValue.Text = FormatNumber(Prop.MarketValue)
 Else
 MsgBox("There is no property with " & _
 "that number in our database")

 txtPropertyType.Text = "Unknown"
 txtAddress.Text = ""
 txtCity.Text = ""
 txtState.Text = ""
 txtZIPCode.Text = "00000"
 txtBedrooms.Text = "0"
 txtBathrooms.Text = "0.00"
 txtMarketValue.Text = "0.00"
 End If
 End If
End Sub

Details on Serialization

Partial Serialization

Implementing a Custom Serialized Class

Page 9 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

attribute.

The .NET Framework is filled with many classes ready for serialization. To know that a class is
ready for serialization, when viewing its documentation either in the MSDN web site or in the
help documentation, check that it is marked with the [SerializableAttribute]. Here is an
example of such as class:

.NET Built-In Serialized Classes

Some of these classes provide the properties and methods to create an object and directly
save it. For some other classes, you must first create a class, mark it with the <Serializable>
attribute, build an object of it, and then pass it to the .NET class.

www manashosting com Feedback - Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 10 of 10Microsoft Visual Basic: Binary Serialization

6/27/2008http://www.functionx.com/vb/serialization/binary.htm

SOAP Serialization

Object Serialization and De-Serialization

Consider the following program:

Introduction HTML to PDF with ABCpdf
PDF generation for C#, VB, .NET and ASP. Full HTML /
CSS support
www.websupergoo.com

Luxurious Natural Soap
Manufacturer of quality soaps custom, melt & pour, hotel
more
www.sficcorp.com

C#
C, C++, and C# Resources. Find tutorials, tips, and reviews.
www.DevSource.com

SOAP/Web Services for NSK
Open your NonStop servers to SOA Easy, fast, plus many
more benefits
www.nuwave-tech.com

Imports .IO

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Make As String = txtMake.Text
 Dim Model As String = txtModel.Text
 Dim Year As Integer = CInt(txtYear.Text)
 Dim CarColor As Integer = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car1.car", FileMode.Create)
 Dim bnwCar As BinaryWriter = New BinaryWriter(stmCar)

 Try
 bnwCar.Write(Make)
 bnwCar.Write(Model)
 bnwCar.Write(Year)
 bnwCar.Write(CarColor)
 Finally
 bnwCar.Close()
 stmCar.Close()
 End Try
 End Sub
End Class

Here is an example of running the program:

This is an example of the techniques used in file processing to save data of primitive
types:

System

individual

Page 1 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

The values can be retrieved with the following code:

Imports System.IO

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Make As String = txtMake.Text
 Dim Model As String = txtModel.Text
 Dim Year As Integer = CInt(txtYear.Text)
 Dim CarColor As Integer = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car1.car", FileMode.Create)
 Dim bnwCar As BinaryWriter = New BinaryWriter(stmCar)

 Try
 bnwCar.Write(Make)
 bnwCar.Write(Model)
 bnwCar.Write(Year)
 bnwCar.Write(CarColor)
 Finally
 bnwCar.Close()
 stmCar.Close()
 End Try
 End Sub

 Private Sub btnRead_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnRead.Click
 Dim stmCar As FileStream = New FileStream("Car1.car", FileMode.Open)
 Dim bnrCar As BinaryReader = New BinaryReader(stmCar)

 Try
 txtMake.Text = bnrCar.ReadString()
 txtModel.Text = bnrCar.ReadString()
 txtYear.Text = bnrCar.ReadUInt32().ToString()
 cbxColors.SelectedIndex = bnrCar.ReadInt32()
 Finally
 bnrCar.Close()
 stmCar.Close()
 End Try
 End Sub
End Class

In the same way, you can save the individual fields of a class or you can retrieve the individual
fields of a car:

Here is an example:

Class: Car.vb

Public Class Car
 Public Make As String
 Public Model As String
 Public Year As Integer

Page 2 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

Imports System.IO

Public Class Exercise

 Private Sub btnWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnWrite.Click
 Dim Vehicle As Car = ()

 Vehicle.Make = txtMake.Text
 Vehicle.Model = txtModel.Text
 Vehicle.Year = CInt(txtYear.Text)
 Vehicle.Color = cbxColors.SelectedIndex

 Dim stmCar As FileStream = New FileStream("Car2.car", FileMode.Create)
 Dim bnwCar As BinaryWriter = New BinaryWriter(stmCar)

 Try
 bnwCar.Write(Vehicle.Make)
 bnwCar.Write(Vehicle.Model)
 bnwCar.Write(Vehicle.Year)
 bnwCar.Write(Vehicle.Color)
 Finally
 bnwCar.Close()
 stmCar.Close()
 End Try
 End Sub

 Private Sub btnRead_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnRead.Click
 Dim stmCar As FileStream = New FileStream("Car2.car", FileMode.Open)
 Dim bnrCar As BinaryReader = New BinaryReader(stmCar)

 Try
 Dim Vehicle As Car = New Car()

 Vehicle.Make = bnrCar.ReadString()
 Vehicle.Model = bnrCar.ReadString()
 Vehicle.Year = bnrCar.ReadUInt32()
 Vehicle.Color = bnrCar.ReadInt32()

 txtMake.Text = Vehicle.Make
 txtModel.Text = Vehicle.Model
 txtYear.Text = Vehicle.Year
 cbxColors.SelectedIndex = Vehicle.Color
 Finally
 bnrCar.Close()
 stmCar.Close()
 End Try
 End Sub
End Class

When it comes to a class, the problem with saving individual fields is that you could forget to
save one of the fields. For example, considering a Car class, if you don't save the Make
information of a Car object and retrieve or open the saved object on another , the
receiving user would miss some information and the car cannot be completely identifiable. An
alternative is to save the whole Car object.

Object serialization consists of saving a whole object as one instead of its individual fields:

In other words, a variable declared from a class can be saved to a stream and then the saved
object can be retrieved later or on another computer. The .NET Framework supports two types
of object serialization: binary and SOAP.

 Public Color As Integer
End Class

New Car

computer

Page 3 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

The .NET Framework supports a technique of serialization referred to as SOAP (which stands for
Simple Object Access Protocol). This technique is a related to but, although we haven't
studied XML, you don't need to know anything about it to use SOAP serialization.

1. Start a new Windows named Loan1

2. In the Solution Explorer, right-click Form1.vb and click Rename

3. Type LoanPreparation.vb and press Enter

4. the form as followed:

SOAP Serialization

Introduction to Serialization

Practical Learning: Introducing SOAP Serialization

Control Name Text Additional Properties

GroupBox Loan Identification

Label Prepared &By:

TextBox txtEmployeeName

Label
Customer First
Name:

TextBox txtCustomerFirstName

Label Last Name:

TextBox txtCustomerLastName

GroupBox Loan Preparation

Label Principal:

TextBox txtPrincipal 0.00 TextAlign: Right

Label Interest Rate:

TextBox txtInterestRate 8.25 TextAlign: Right

Label %

Label Periods:

TextBox txtPeriods 1 TextAlign: Text

ComboBox cbxPeriods Months
Items:
Years
Months

SOAP

XML

Application

Design

Page 4 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

5. Right-click the form and click View Code

6. In the Class Name combo box, select txtCustomerLastName

7. In the Method Name combo box, select Leave and implement the event as follows:

8. In the Class Name combo box, select btnCalculate

9. In the Method Name combo box, select Click and implement the event as follows:

Days

GroupBox Results

Button btnCalculate Calculate

Label Interest Earned:

TextBox txtInterestEarned 0.00
TextAlign: Right
ReadOnly: True

Label Amount Earned:

TextBox txtFutureValue 0.00
TextAlign: Right
ReadOnly: True

GroupBox File Processing

Label Loan ID:

TextBox txtSave

Button &Save btnSave

Label Loan ID:

TextBox txtOpen

Button &Open btnOpen

Button btnClose Close

Private Sub txtCustomerLastName_Leave(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles txtCustomerLastName.Leave
 Dim Initials As String = "00"
 Dim FirstName As String = txtCustomerFirstName.Text
 Dim LastName As String = txtCustomerLastName.Text

 If LastName.Length = 0 Then
 MsgBox("You must enter a last name")
 txtCustomerLastName.Focus()
 Exit Sub
 End If

 If FirstName.Length = 0 Then
 Initials = LastName.Substring(0, 1) & "1"
 Else
 Initials = FirstName.Substring(0, 1) & LastName.Substring(0, 1)
 End If

 txtSave.Text = Initials
End Sub

Private Sub btnCalculate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnCalculate.Click
 Dim Principal As Double
 Dim InterestRate As Double
 Dim InterestEarned As Double
 Dim FutureValue As Double
 Dim Periods As Double

 ' Retrieve the value of the principal
 Try
 Principal = CDbl(txtPrincipal.Text)
 Catch As FormatException
 MsgBox("The value you entered for the principal " & _
 "is not valid.\nPlease try again")
 End Try

Soap Testing
Simple & easy to use
SOAP load testing tool.
Download Now!
www.Paessler.com/soap-load-testin

String Lubricant
Buy All Natural Guitar
Polish & Accessories. Free
Shipping!
www.ZZGuitarWorks.com

Hotel & Spa Accessories
Bali's Largest & Finest
Range Custom orders
welcome
www.sb-he.com

Convert Text to XML
Convert any Text Format
to XML Java and .NET
Converter Components
www.xmlconverters.com/Convert-Te

ECO for Visual Studio
Much more than just an
ORM Download free
version today
capableobjects.com

ex

Page 5 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

10. Execute the application to make sure it is fine

11. After using it, close the form and return to your

To serialize an object using SOAP, you follow the same steps we reviewed for the binary
serialization with one addition: you must add a certain reference.

When creating the class whose objects would be serialized, mark it with the <Serializable>
attribute. Here is an example:

<Serializable()> Public Class Car
 Public Make As String
 Public Model As String
 Public Year As Integer
 Public Color As Integer
End Class

To support SOAP serialization, the .NET Framework provides the SoapFormatter class. This
class is defined in the System.Runtime.Serialization.Formatters.Soap namespace that is
part of the System.Runtime.Serialization.Formatters.Soap.dll assembly. In order to use
The SoapFormatter class, you must reference this assembly. Then, you can create an object
and initialize it as you see fit. Before saving it, as always, create a Stream-based object that
would indicate the name (and location) of the file and the type of action to perform. Then,
declare a SoapFormatter dim as iable using its default constructor. To actually save the
object, call the Serialize() method of this class. This method uses the same syntax as that of
the BinaryFormatter class: it takes two arguments. The first is a Stream-based object. The
second is the object that needs to be serialized.

1. To create a new class, on the main menu, click Project -> Add Class...

2. Set the Name to LoanInformation and click Add

3. Change the file as follows:

4. To add SOAP support to your project, on the main menu, click Project -> Add Reference...

 ' Retrieve the interest rate
 Try
 InterestRate = CDbl(txtInterestRate.Text) / 100
 Catch ex As FormatException
 MsgBox("The value you entered for the interest " & _
 "rate is not valid\nPlease try again")
 End Try

 ' Get the number of periods
 Try
 If cbxPeriods.SelectedIndex = 0 Then ' Years
 Periods = CDbl(txtPeriods.Text)
 ElseIf cbxPeriods.SelectedIndex = 1 Then ' Months
 Periods = CDbl(txtPeriods.Text) / 12
 Else ' if cbxPeriods.SelectedIndex = 2) Days
 Periods = CDbl(txtPeriods.Text) / 360
 End If

 Catch ex As FormatException
 MsgBox("The value you entered for the number " & _
 "of periods is not valid\nPlease try again")
 End Try

 Dim InterestRatePeriods As Double = InterestRate * Periods
 Dim InterestPlus1 As Double = InterestRatePeriods + 1
 FutureValue = Principal * InterestPlus1
 InterestEarned = FutureValue - Principal

 txtInterestEarned.Text = FormatNumber(InterestEarned)
 txtFutureValue.Text = FormatNumber(FutureValue)
End Sub

Serialization With SOAP

Practical Learning: Serializing With SOAP

<Serializable()> Public Class LoanInformation
 Public EmployeeName As String
 Public CustomerFirstName As String
 Public CustomerLastName As String
 Public Principal As Double
 Public InterestRate As Double
 Public Periods As Double
 Public PeriodType As Integer
End Class

programming environment

Page 6 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

5. In the Add Reference dialog box and in the .NET tab, scroll down and select
System.Runtime.Serialization.Formatters.Soap:

6. Click OK

7. Access the LoanPreparation.vb code file

8. In the top section of the form, type the following:

9. In the Class Name combo box, select btnSave

10. In the Method Name combo box, select Click and implement the event as follows:

Imports System.IO
Imports System.Runtime.Serialization.Formatters.Soap

Public Class LoanPreparation

Private Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSave.Click
 If txtSave.Text.Length = 0 Then
 MsgBox("Please enter the customer " & _
 "initials or a name for the loan")
 txtSave.Focus()
 Exit Sub
 End If

 Dim infLoan As LoanInformation = New LoanInformation

 infLoan.EmployeeName = txtEmployeeName.Text
 infLoan.CustomerFirstName = txtCustomerFirstName.Text
 infLoan.CustomerLastName = txtCustomerLastName.Text
 infLoan.Principal = CDbl(txtPrincipal.Text)
 infLoan.InterestRate = CDbl(txtInterestRate.Text)
 infLoan.Periods = CDbl(txtPeriods.Text)
 infLoan.PeriodType = cbxPeriods.SelectedIndex

 Dim stmLoan As FileStream = New FileStream(txtSave.Text, _
 FileMode.Create, _
 FileAccess.Write)
 Dim sfmLoan As SoapFormatter = New SoapFormatter

 Try
 sfmLoan.Serialize(stmLoan, infLoan)

 txtEmployeeName.Text = ""
 txtCustomerFirstName.Text = ""
 txtCustomerLastName.Text = ""
 txtPrincipal.Text = "0.00"
 txtInterestRate.Text = "0.00"
 txtPeriods.Text = "0"
 cbxPeriods.SelectedIndex = 0
 txtFutureValue.Text = "0.00"
 txtInterestEarned.Text = "0.00"
 txtSave.Text = ""
 txtOpen.Text = ""

Page 7 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

11. Press Ctrl + F5 to execute the application

12. Create, calculate, and save a few loans

13. Close the form and return to your programming environment

De-serialization in soap is performed exactly as done for the binary de-serialization. To support
it, the SoapFormatter class is equipped with the Deserialize() method. This method uses the
same syntax as its equivalent of the BinaryFormatter class. The approach to use it is also the
same.

1. In the Class Name combo box, select btnOpen

2. In the Method Name combo box, select Click

3. To deserialize, implement the event as follows:

 txtEmployeeName.Focus()
 Finally
 stmLoan.Close()
 End Try
End Sub

De-Serialization With SOAP

Practical Learning: Deserializing With SOAP

Private Sub btnOpen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnOpen.Click
 If txtOpen.Text.Length = 0 Then

Page 8 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

4. In the Class Name combo box, select btnOpen

5. In the Method Name combo box, select Click and implement the event as follows:

6. Press Ctrl + F5 to execute the application

7. Enter the initials of a previously created loan and click Open

8. Close the form and return to your programming environment

In the examples we have used so far, we were saving the whole object. You can make it
possible to save only some parts of the class. When creating a class, you can specify what
fields would be serialized and which ones would not be. To specify that a member cannot be
saved, you can mark it with the <NonSerialized()> attribute. Here is an example:

<Serializable()> Public Class Car1
 Public Make As String
 Public Model As String

 ' Because the value of a car can change,
 ' there is no reason to save it
 <NonSerialized()> _
 Public Value As Double
 Public Year As Integer
 Public Color As Integer
End Class

After creating the class, you can declare a variable of it and serialize it, using either the binary
or the SOAP approach. You can then retrieve the object and its values, using any of the
techniques we learned earlier.

 MsgBox("Please enter a customer's initials or " & _
 "a name given to a previous loan preparation")
 txtOpen.Focus()
 Exit Sub
 End If

 Try
 Dim LoanInfo As LoanInformation = New LoanInformation
 Dim LoanStream As FileStream = New FileStream(txtOpen.Text, _
 FileMode.Open, _
 FileAccess.ReadWrite)
 Dim LoanFormatter As SoapFormatter = New SoapFormatter

 Try
 ' Open the file and store its values
 ' in the LoanInformation variable
 LoanInfo = CType(LoanFormatter.Deserialize(LoanStream), _
 LoanInformation)

 ' Retrive each value and put it in its corresponding control
 txtEmployeeName.Text = LoanInfo.EmployeeName
 txtCustomerFirstName.Text = LoanInfo.CustomerFirstName
 txtCustomerLastName.Text = LoanInfo.CustomerLastName
 txtPrincipal.Text = LoanInfo.Principal.ToString("F")
 txtInterestRate.Text = LoanInfo.InterestRate.ToString("F")
 txtPeriods.Text = LoanInfo.Periods.ToString()
 cbxPeriods.SelectedIndex = LoanInfo.PeriodType

 ' Since we didn't save the calculated values,
 ' call the Click event of the Calculate button
 btnCalculate_Click(sender, e)
 Finally
 LoanStream.Close()
 End Try
 Catch ex As FileNotFoundException
 MsgBox("There is no file with that name")
 End Try
End Sub

Private Sub btnClose_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnClose.Click
 End
End Sub

Details on Serialization

Partial Serialization

Implementing a Custom Serialized Class

Page 9 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

To support serialization, the .NET Framework provides the ISerializable interface. You can
create a class that implements this interface to customize the serialization process. Even if you
plan to use this interface, the class you create must be marked with the <Serializable>
attribute.

The .NET Framework is filled with many classes ready for serialization. To know that a class is
ready for serialization, when viewing its documentation either in the MSDN web site or in the
help documentation, check that it is marked with the [SerializableAttribute]. Here is an
example of such as class:

.NET Built-In Serialized Classes

Some of these classes provide the properties and methods to create an object and directly
save it. For some other classes, you must first create a class, mark it with the
<SerializableAttribute> attribute, build an object of it, and then pass it to the .NET class.

ASP.NET OLAP Control - Want give a Web app OLAP functions?
Easy with RadarCube! DBMS or MSAS. www.radar-soft.com

Ads by Google

Home Copyright © 2008 FunctionX, Inc.

Page 10 of 10Microsoft Visual Basic: SOAP Serialization

6/27/2008http://www.functionx.com/vb/serialization/soap.htm

	Index.pdf
	Introduction to MSVB.pdf
	Introduction
	introduction1.pdf
	introduction2.pdf
	introduction3.pdf
	introduction4.pdf
	Controls Methods
	Dynamic Control Creation

	Application Designs.pdf
	Application Design.pdf
	introduction1.pdf
	introduction2.pdf
	introduction3.pdf
	introduction4.pdf
	introduction5.pdf
	introduction6.pdf

	Applications Accessories.pdf
	Applications Accessories 1.pdf
	Applications Accessories 2.pdf
	Applications Accessories 3.pdf

	Studio Windows.pdf
	Tool Box Window.pdf
	Property window.pdf

	Functions and Procedures.pdf
	MSGBOX.pdf
	InputBox.pdf

	Exception Handling.pdf
	Error.pdf
	error1.pdf
	error2.pdf

	Exception.pdf
	Dot Net Exception.pdf
	Dot Net Exception 1.pdf
	Dot Net Exception 2.pdf
	Dot Net Exception 3.pdf

	Techniques of Using Exceptions.pdf

	File Processing.pdf
	Details.pdf
	FileInformation.pdf
	File System Information.pdf
	Directories.pdf

	Fundamentals.pdf
	introduction1.pdf
	introduction2.pdf
	reading.pdf
	writing.pdf

	Serialization.pdf
	Binary.pdf
	SOAP.pdf

