

Professional
Visual Basic® 2008

Bill Evjen
Billy Hollis
Bill Sheldon

Kent Sharkey

Wiley Publishing, Inc.

Professional
Visual Basic® 2008

Chapter 1: Visual Basic 2008 Core Elements . 1
Chapter 2: Object Syntax Introduction . 49
Chapter 3: Object-Oriented Programming. 101
Chapter 4: The Common Language . 193
Chapter 5: Localization. 219
Chapter 6: Generics . 247
Chapter 7: Namespaces . 271
Chapter 8: Exception Handling and Debugging . 299
Chapter 9: Data Access with ADO.NET 3.5 . 327
Chapter 10: Using XML in Visual Basic 2008 . 379
Chapter 11: LINQ . 437
Chapter 12: Security in the .NET Framework . 481
Chapter 13: Visual Studio 2008 . 537
Chapter 14: Working with SQL Server . 599
Chapter 15: Windows Forms . 647
Chapter 16: Windows Forms Advanced Features . 697
Chapter 17: Windows Presentation Foundation . 727
Chapter 18: Integrating WPF and Windows Forms . 779
Chapter 19: Working with ASP.NET 3.5 . 801
Chapter 20: ASP.NET 3.5 Advanced Features . 839
Chapter 21: Silverlight Development . 897
Chapter 22: Visual Studio Tools for Office . 915
Chapter 23: Assemblies . 955
Chapter 24: Deployment . 977
Chapter 25: Working with Classic COM and Interfaces. 1019
Chapter 26: Threading . 1045
Chapter 27: Windows Workflow Foundation . 1079
Chapter 28: XML Web Services . 1105
Chapter 29: Remoting . 1145
Chapter 30: Enterprise Services . 1173
Chapter 31: Network Programming . 1201
Chapter 32: Windows Communication Foundation. 1235
Chapter 33: Windows Services . 1267
Chapter 34: Visual Basic and the Internet . 1297
Appendix A: The Visual Basic Compiler . 1331
Appendix B: Visual Basic Power Packs Tools . 1347
Appendix C: Visual Basic Resources . 1361
Index . 1363

Professional
Visual Basic® 2008

Bill Evjen
Billy Hollis
Bill Sheldon

Kent Sharkey

Wiley Publishing, Inc.

Professional Visual Basic® 2008
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-19136-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:
Professional Visual basic 2008 / Bill Evjen ... [et al.].

p. cm.
Includes index.
ISBN 978-0-470-19136-1 (paper/website)
1. Microsoft Visual BASIC 2. BASIC (Computer program language) I. Evjen, Bill.

QA76.73.B3P74876 2008
005.2’762--dc22

2008004975

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

Evjen-91361 fauth.tex V1 - 04/01/2008 3:10pm Page v

About the Authors
Bill Evjen is an active proponent of .NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same year,
Bill founded the St. Louis .NET User Group (www.stlnet.org), one of the world’s first such groups. Bill
is also the founder and former executive director of the International .NET Association (www.ineta.org),
which represents more than 500,000 members worldwide.

Based in St. Louis, Missouri, Bill is an acclaimed author and speaker on ASP.NET and XML Web Services.
He has authored or co-authored more than 15 books, including Professional ASP.NET 3.5, Professional
C# 2008, ASP.NET Professional Secrets, XML Web Services for ASP.NET, and Web Services Enhancements:
Understanding the WSE for Enterprise Applications (all published by Wiley). In addition to writing, Bill is a
speaker at numerous conferences, including DevConnections, VSLive, and TechEd. He also works closely
with Microsoft as a Microsoft Regional Director and an MVP.

Bill is the technical architect for Lipper (www.lipperweb.com), a wholly owned subsidiary of Reuters, the
international news and financial services company. He graduated from Western Washington University
in Bellingham, Washington, with a Russian language degree. When he isn’t tinkering on the computer, he
can usually be found at his summer house in Toivakka, Finland. You can reach Bill at evjen@yahoo.com.

The .NET Framework 3.5 release came quickly for us writers, and it wouldn’t have been possible to produce this
book as fast as we did if it weren’t for the dedication of the teams built for it. Tremendous thanks to Katie Mohr for
being more than patient with me in getting this and some other .NET 3.5 books out the door. Also, big thanks go
out to Kevin Kent for doing his best to helping me stay on schedule.

Finally, to the ones who paid the biggest price for this writing session — my wife, Tuija, and our three kids: Sofia,
Henri, and Kalle — thanks for all you do!

Billy Hollis is an author and software consultant based in Nashville, Tennessee. Billy was co-author of
the first book ever published on Visual Basic .NET, as well as many other books on software develop-
ment. He is a member of the Microsoft Regional Director program and a Microsoft MVP. In 2002, Billy
was selected as one of the original .NET ‘‘Software Legends.’’ He is heavily involved with consulting,
training, and development on the .NET platform, focusing on architecture, smart-client development,
commercial packages, and user-interface technologies. He regularly speaks on software development at
major conferences all over the world, including Microsoft’s PDC and TechEd events, DevConnections,
VSLive, and architecture events such as the Patterns and Practices Architect Summit.

I owe tremendous thanks to my family, who have somehow learned to put up with marathon writing sessions, and
to my business partner, Gary Bailey, for keeping our clients happy while I’m writing.

Bill Sheldon is a software architect and engineer, originally from Baltimore, Maryland. Holding a degree
in computer science from the Illinois Institute of Technology (IIT), Bill has been actively employed as a
software engineer since resigning his commission with the United States Navy. He is a Microsoft MVP
for Visual Basic employed as a principal engineer with InterKnowlogy in Carlsbad, California, and works
as an instructor for Visual Basic–related courses at the University of California San Diego Extension.

In addition to writing books, Bill has published dozens of articles, including the Developer Update
Newsletter, SQL Server Magazine feature articles, and other Penton publications. He is an established
online presenter for MSDN and speaks at live events such as VSLive, DevConnections, Office

Evjen-91361 fauth.tex V1 - 04/01/2008 3:10pm Page vi

About the Authors

Developers Conference, and community events such as user groups and code camp. Bill is an avid cyclist
and is active in the fight against diabetes.

To my wonderful wife, Tracie, who is forced to carry on while I isolate myself to concentrate on writing. And to the
next generation of children who have joined our extended Sheldon family (my own and my brothers’) in the past five
years — Nick, Elena, Ben, Billy V, Abigail, and our next son (this spring’s coming attraction) — each and every
one of you is a valuable part of our lives.

Kent Sharkey is an independent consultant who lives and codes in Comox, British Columbia. Before
going solo, Kent worked at Microsoft as a technical evangelist and content strategist, promoting the
use of .NET technologies. He lives with his wife, Margaret, and three ‘‘children’’ — Squirrel, Cica,
and Toffee.

To Babi, for keeping me alive and putting up with me — hopefully, for a long time to come.

vi

Evjen-91361 ftech.tex V1 - 04/01/2008 3:11pm Page vii

About the Technical Editors
Mark Lavoie is the information system manager for a midsized insurance company located in Charlotte,
North Carolina. Mark has worked with Microsoft products and technologies for nine years. He has
worked as a consultant, managed IT projects, and designed and programmed custom applications. He is
a native of Canada and, when not working, enjoys cooking and vacationing with his wonderful wife.

Todd Meister has been developing using Microsoft technologies for over ten years. He’s been a tech-
nical editor for more than 40 titles, ranging from SQL Server to the .NET Framework. Besides tech-
nical editing, he is an assistant director for Computing Services at Ball State University in Muncie,
Indiana. His latest development accomplishment was developing an e-commerce site from scratch, which
included over 15,000 lines of .NET code, credit card integration, gift certificate functionality, and dis-
count codes. He lives with his wife, Kimberly, and their four children in central Indiana. Contact Todd at
tmeister@sycamoresolutions.com.

Andrew Moore is a graduate of Purdue University–Calumet in Hammond, Indiana, and has been devel-
oping software since 1998 for radar systems, air traffic management, discrete-event simulation, and
business communications applications using C, C++, C#, and Java on the Windows, UNIX, and Linux
platforms. Andrew is the author of two Wrox Blox titles: ‘‘Create Amazing Custom User Interfaces with
WPF, C#, and XAML in .NET 3.0’’ (www.wrox.com/WileyCDA/WroxTitle/productCd-0470258713.html)
and ‘‘.NET 3.5 CD Audio Player.’’ He is currently working as a software engineer at Interactive Intelli-
gence, Inc., in Indianapolis, Indiana, developing Microsoft-based applications for business communica-
tions. Andrew lives in Indiana with his wife, Barbara, and their two children, Sophia and Andrew.

Evjen-91361 ftech.tex V1 - 04/01/2008 3:11pm Page viii

Evjen-91361 fcre.tex V1 - 04/01/2008 3:11pm Page ix

Credits
Acquisitions Editor
Katie Mohr

Senior Development Editor
Kevin Kent

Technical Editors
Mark Lavoie
Todd Meister
Andrew Moore

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive
Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Edward Moyer, Paul Sagan, Word One

Indexer
Robert Swanson

Evjen-91361 fcre.tex V1 - 04/01/2008 3:11pm Page x

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xi

Contents

Introduction xxxi

Chapter 1: Visual Basic 2008 Core Elements 1

Initial Keywords and Syntax 2
Console Applications 5

Value and Reference Types 8
Primitive Types 10

Commands: Conditional 11
If Then 12
Comparison Operators 12
Select Case 14

Value Types (Structures) 15
Boolean 15
Integer Types 16
Unsigned Types 17
Decimal Types 18
Char and Byte 20
DateTime 21

Reference Types (Classes) 21
The Object Class 21
The String Class 22
The DBNull Class and IsDBNull Function 25
Nullable Types 26
Arrays 27
Collections 30

Commands: Looping Statements 32
For Each and For Next 32
While, Do While, and Do Until 33

Boxing 34
Parameter Passing 35

ParamArray 36
Variable Scope 37
Data Type Conversions 38

Implicit Conversions and Compiler Options 39

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xii

Contents

XML Literals 42
Performing Explicit Conversions 44

Summary 47

Chapter 2: Object Syntax Introduction 49

Object-Oriented Terminology 50
Objects, Classes, and Instances 50
Composition of an Object 50

Working with Objects 54
Object Declaration and Instantiation 54
Object References 55
Dereferencing Objects 56
Early Binding versus Late Binding 56

Creating Classes 60
Basic Classes 60
Constructor Methods 79
Termination and Cleanup 80

Advanced Concepts 81
Overloading Methods 81
Overloading Constructor Methods 84
Shared Methods, Variables, and Events 85
Operator Overloading 90
Delegates 93
Classes versus Components 98

Summary 99

Chapter 3: Object-Oriented Programming 101

Inheritance 102
Implementing Inheritance 104
Preventing Inheritance 151

Multiple Interfaces 151
Object Interfaces 151
Secondary Interfaces 152

Abstraction 159
Encapsulation 162
Polymorphism 165

Method Signatures 165
Implementing Polymorphism 165

Inheritance 176
When to Use Inheritance 176
Inheritance and Multiple Interfaces 180

xii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xiii

Contents

How Deep to Go? 186
The Fragile Base Class Problem 187

Summary 190

Chapter 4: The Common Language 193

Elements of a .NET Application 194
Modules 194
Assemblies 195
Types 196

Versioning and Deployment 197
Better Support for Versioning 197
Better Deployment 198

Cross-Language Integration 199
The Common Type System 199
Metadata 200
Better Support for Metadata 201
Attributes 201
The Reflection API 204

IL Disassembler 204
Memory Management 205

Traditional Garbage Collection 206
Faster Memory Allocation for Objects 213
Garbage Collector Optimizations 215

Summary 217

Chapter 5: Localization 219

Cultures and Regions 219
Understanding Culture Types 220
Looking at Your Thread 221

Declaring Culture Globally in ASP.NET 224
Adopting Culture Settings in ASP.NET 225
Translating Values and Behaviors 226

Understanding Differences in Dates 227
Understanding Differences in Numbers and Currencies 228
Understanding Differences in Sorting Strings 231

Working with ASP.NET Resource Files 233
Making Use of Local Resources 234
Making Use of Global Resources 240

Resource Files in Windows Forms 242
Summary 246

xiii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xiv

Contents

Chapter 6: Generics 247

Using Generics 247
Generic Types 249
Generic Methods 254

Creating Generics 255
Generic Types 255
Generic Methods 264
Constraints 265
Generics and Late Binding 268

Summary 269

Chapter 7: Namespaces 271

What Is a Namespace? 272
Namespaces and References 275
Common Namespaces 277

Importing and Aliasing Namespaces 280
Importing Namespaces 280
Aliasing Namespaces 282
Referencing Namespaces in ASP.NET 282

Creating Your Own Namespaces 283
The My Keyword 286

My.Application 287
My.Computer 291
My.Forms Namespace 294
My.Resources 294
My.User 295
My.WebServices 295

Extending the My Namespace 295
Summary 297

Chapter 8: Exception Handling and Debugging 299

A Brief Review of Error Handling in VB6 300
Exceptions in .NET 301

Important Properties and Methods of an Exception 301
How Exceptions Differ from the Err Object in VB6 302

Structured Exception-Handling Keywords 302
The Try, Catch, and Finally Keywords 303
The Throw Keyword 305
Throwing a New Exception 306

xiv

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xv

Contents

The Exit Try Statement 307
Nested Try Structures 308
Using Exception Properties 309
The Message Property 310
The InnerException and TargetSite Properties 311

Interoperability with VB6-Style Error Handling 315
Error Logging 316

The Event Log 316
Events, Methods, and Properties 318
Writing to Trace Files 319

Analyzing Problems and Measuring Performance via the Trace Class 321
Summary 325

Chapter 9: Data Access with ADO.NET 3.5 327

ADO.NET Architecture 328
Basic ADO.NET Features 329

Common ADO.NET Tasks 329
Basic ADO.NET Namespaces and Classes 332
ADO.NET Components 333

.NET Data Providers 334
Connection Object 335
Command Object 335
Using Stored Procedures with Command Objects 336
DataReader Object 340
Executing Commands Asynchronously 342
DataAdapter Objects 344
SQL Server .NET Data Provider 348
OLE DB .NET Data Provider 349

The DataSet Component 349
DataTableCollection 350
DataRelationCollection 350
ExtendedProperties 350
Creating and Using DataSet Objects 351
ADO.NET DataTable Objects 353
Advanced ADO.NET Features of the DataSet and DataTable Objects 354

Working with the Common Provider Model 356
Connection Pooling in ADO.NET 358
Building a Data Access Component 359

Constructors 360
Properties 361

xv

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xvi

Contents

Stored Procedure XML Structure 362
Methods 363
Using DataSet Objects to Bind to DataGrids 374

Summary 378

Chapter 10: Using XML in Visual Basic 2008 379

An Introduction to XML 380
XML Serialization 382

Source Code Style Attributes 387
System.Xml Document Support 389
XML Stream-Style Parsers 389

Writing an XML Stream 390
Reading an XML Stream 394
Using the MemoryStream Object 405
Document Object Model (DOM) 408

XSLT Transformations 415
XSLT Transforming between XML Standards 420
Other Classes and Interfaces in System.Xml.Xsl 422

ADO.NET 423
ADO.NET and SQL Server 2000’s Built-in XML Features 425
XML and SQL Server 2005 427
XML and SQL Server 2008 428

XML in ASP.NET 3.5 428
The XmlDataSource Server Control 428
The XmlDataSource Control’s Namespace Problem 432
The Xml Server Control 433

Summary 435

Chapter 11: LINQ 437

LINQ to SQL and Visual Studio 2008 439
Calling the Products Table Using LINQ to SQL: Creating the Console Application 439
Adding a LINQ to SQL Class 440
Introducing the O/R Designer 441
Creating the Product Object 442

How Objects Map to LINQ Objects 444
The DataContext Object 445
The Table(TEntity) Object 449

Working Without the O/R Designer 449
Creating Your Own Custom Object 449
Querying with Your Custom Object and LINQ 450

xvi

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xvii

Contents

Limiting the Columns Called with the Query 452
Working with Column Names 452
Creating Your Own DataContext Object 453

Custom Objects and the O/R Designer 454
Querying the Database 456

Using Query Expressions 456
Query Expressions in Detail 456
Filtering Using Expressions 457
Performing Joins 458
Grouping Items 459

Stored Procedures 461
LINQ to XML 462
LINQ to XML and .NET 3.5 462

New Objects for Creating XML Documents 462
Visual Basic 2008 Ventures Down Another Path 462
Namespaces and Prefixes 463

New XML Objects from the .NET Framework 3.5 463
XDocument 463
XElement 464
XNamespace 465
XComment 467
XAttribute 468

Visual Basic 2008 and XML Literals 468
Using LINQ to Query XML Documents 470

Querying Static XML Documents 470
Querying Dynamic XML Documents 472

Working Around the XML Document 473
Reading from an XML Document 473
Writing to an XML Document 475

Using LINQ to SQL with LINQ to XML 476
Setting Up the LINQ to SQL Components 476
Querying the Database and Outputting XML 477

Summary 478

Chapter 12: Security in the .NET Framework 481

Security Concepts and Definitions 482
Permissions in the System.Security.Permissions Namespace 484

Code Access Permissions 486
Role-Based Permissions 487
Identity Permissions 490

xvii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xviii

Contents

Managing Code Access Permissions 490
Managing Security Policy 495

Determining an Application’s Minimum Permissions 506
Using Visual Studio to Figure Minimum Permissions 508
Security Tools 510
Exceptions Using the SecurityException Class 511

Cryptography Basics 513
Hash Algorithms 514

Summary 535

Chapter 13: Visual Studio 2008 537

Visual Studio 2008: Express through Team Suite 538
Creating a Project from a Project Template 541
The Solution Explorer 545
My Project Properties 546
Assembly Information Screen 547
Compile Settings 549
Debug Properties 550
References 552
Resources 554
Settings 556

Project ProVBVS in Visual Studio 559
Form Properties Set in Code 561
Additional Components for Visual Studio 2008 570

Enhancing a Sample Application 571
Customizing the Code 572
Building Applications 577

Useful Features of Visual Studio 2008 583
Build Configurations 583
The Task List 586
The Command Window 586
Server Explorer 587
Recording and Using Macros in Visual Studio 2008 587
Class Diagrams 590
Team System 591
Team Edition for Developers 593
Performance Tools 595
Unit Tests 596

Summary 598

xviii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xix

Contents

Chapter 14: Working with SQL Server 599

SQL Server Compact Edition 600
Connecting to a SQL Server Compact Edition Database 601
Synchronizing Data 604

CLR Integration in SQL Server 2005 615
Deciding between T-SQL and Visual Basic 615
Creating User-Defined Types 617
Creating Stored Procedures 632
Exposing Web Services from SQL Server 639

Summary 645
Resources 646

Chapter 15: Windows Forms 647

Changes in Windows Forms Version 2.0 647
Changes to Existing Controls 648
New Controls 649
Replacements for Older Windows Forms Controls 650
Default Instances of Forms 651

The System.Windows.Forms Namespace 651
Using Forms 651

Showing Forms via Sub Main 652
Setting the Startup Form 653
Startup Location 653
Form Borders 654
Always on Top — The TopMost Property 654
Owned Forms 654
Making Forms Transparent and Translucent 656
Visual Inheritance 657
Scrollable Forms 657
MDI Forms 658
An MDI Example in VB 2008 659
Dialog Forms 660
Forms at Runtime 663

Controls 664
Control Tab Order 664
Dynamic Sizing and Positioning of Controls 665
FlowLayoutPanel Control 668
TableLayoutPanel Control 670

xix

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xx

Contents

Panel and GroupBox Container Controls 670
Extender Providers 671
Advanced Capabilities for Data Entry 674
Validating Data Entry 677
Toolbars and the New ToolStrip Control 678
Menus 681
Common Dialogs 683
Drag and Drop 685
Summary of Standard Windows.Forms Controls 688
Retired Controls 691
Handling Groups of Related Controls 691
Adding Controls at Runtime 693

Other Handy Programming Tips 694
Summary 694

Chapter 16: Windows Forms Advanced Features 697

Packaging Logic in Visual Controls 697
Custom Controls in Windows Forms 698

Inheriting from an Existing Control 698
Building a Composite Control 699
Writing a Control from Scratch 699

Inheriting from an Existing Control 699
Process Overview 700
Writing Code for an Inherited Control 700
Other Useful Attributes 703
Defining a Custom Event for the Inherited Control 704
A CheckedListBox Limiting Selected Items 705

The Control and UserControl Base Classes 709
The Control Class 709
The UserControl Class 709

A Composite UserControl 710
Creating a Composite UserControl 711
Resizing the Control 712
Exposing Properties of Contained Controls 712
Stepping Through the Example 713

Building a Control from Scratch 717
Painting a Custom Control with GDI+ 717

Attaching an Icon for the Toolbox 723
Embedding Controls in Other Controls 723
Summary 725

xx

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxi

Contents

Chapter 17: Windows Presentation Foundation 727

What, Where, Why, How — WPF Strategy 728
Raster Graphics and Vector Graphics 729
Should Your Next Windows Project Use WPF? 730
Creating a WPF Application 730

Leveraging WPF with XAML 734
Customizing the User Interface 752
Customizing the Buttons 761
Expression Blend 765

Summary 776

Chapter 18: Integrating WPF and Windows Forms 779

The Integration Library 780
Hosting WPF Controls in Windows Forms 782

Creating a WPF Control Library 782
The Windows Forms Application 785

Hosting Windows Forms Controls in WPF 792
Integration Limitations 797
Summary 798

Chapter 19: Working with ASP.NET 3.5 801

The Goals of ASP.NET 801
Developer Productivity 801
Administration and Management 802
Performance and Scalability 802
The ASP.NET Compilation System 802
Health Monitoring for Your ASP.NET Applications 803
Reading and Writing Configuration Settings 803
Localization 804
Objects for Accessing Data 804

The IDE for Building ASP.NET 3.5 Pages 805
Building ASP.NET Applications 806

Application Location Options 807
IIS 808
FTP 808
Websites Requiring FrontPage Extensions 810

The ASP.NET Page Structure Options 810
Inline Coding 812
Code-Behind Model 814

xxi

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxii

Contents

ASP.NET 3.5 Page Directives 815
ASP.NET Page Events 816
ASP.NET Application Folders 818

\App_Code Folder 818
\App_Data Folder 822
\App_Themes Folder 822
\App_GlobalResources Folder 822
\App_LocalResources 823
\App_WebReferences 823
\App_Browsers 823

Global.asax 823
ASP.NET Server Controls 827

Types of Server Controls 827
Building with Server Controls 829
Working with Server Control Events 830

Manipulating Pages and Server Controls with JavaScript 833
Using Page.ClientScript.RegisterClientScriptBlock 834
Using Page.ClientScript.RegisterStartupScript 835
Using Page.ClientScript.RegisterClientScriptInclude 836

Summary 837

Chapter 20: ASP.NET 3.5 Advanced Features 839

Applications and Pages 839
Cross-Page Posting 839
ASP.NET Compilation 844

Master Pages 847
Creating a Master Page 848
Creating the Content Page 850
Declaring the Master Page Application-Wide 853
Providing Default Content in Your Master Page 853

Data-Driven Applications 853
Using the GridView and SqlDataSource Controls 855
Allowing Editing and Deleting of Records with GridView 859
Don’t Stop There! 863

Navigation 864
Using the SiteMapPath Server Control 865
Menu Server Control 866
The TreeView Server Control 867

Membership and Role Management 870
Personalization 874

xxii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxiii

Contents

Configuring ASP.NET in IIS on Vista 876
Working with the ASP.NET Provider Model 877

Working with Microsoft SQL Server from 7.0 to 2008 879
ASP.NET AJAX 884

Understanding the Need for AJAX 885
ASP.NET AJAX and Visual Studio 2008 888
Client-Side Technologies 888
Server-Side Technologies 889
Developing with ASP.NET AJAX 889
Building a Simple ASP.NET Page with AJAX 890

Summary 895

Chapter 21: Silverlight Development 897

Looking at Silverlight 897
Silverlight Browser Requirements 897
Two Versions of Silverlight 898
Installing Silverlight 898

Developing Silverlight Applications 900
Building a Simple Silverlight Application 901

Silverlight Examples 906
A Simple Hello World! Example 906
Working with Multiple Elements 908
Events and Silverlight 910

Summary 914

Chapter 22: Visual Studio Tools for Office 915

Examining the VSTO Releases 916
Office Automation versus VSTO 917
VSTO Project Types 917

Office Business Application Architecture 918
Working with Both VBA and VSTO 920
Creating a Document Template (Word) 925

Adding Content to the Document 927
Adding a Ribbon and an Actions Pane 929
Activating the Actions Pane 932
Updating a Content Control 935

Creating an Office Add-In (Excel) 939
Outlook Form Regions 945
Summary 954

xxiii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxiv

Contents

Chapter 23: Assemblies 955

Assemblies 956
The Manifest 957

Assembly Identity 959
Referenced Assemblies 962

Assemblies and Deployment 963
Application-Private Assemblies 963
Shared Assemblies 963

Versioning Issues 965
Application Isolation 965
Side-by-Side Execution 965
Self-Describing 966
Version Policies 966
Configuration Files 968

Dynamic Loading of Assemblies 971
The Assembly Class 971
Dynamic Loading Example 973
Putting Assemblies to Work 974

Summary 974

Chapter 24: Deployment 977

Application Deployment 978
Why Deployment Is Straightforward in .NET 978
XCOPY Deployment 978
Using the Windows Installer 979
ClickOnce Deployment 979

New in Visual Studio 2008 979
Visual Studio Deployment Projects 980

Project Templates 980
Creating a Deployment Project 982

Modifying the Deployment Project 986
Project Properties 987
The File System Editor 990
The Registry Editor 994
The File Types Editor 996
The User Interface Editor 997
The Custom Actions Editor 1000
The Launch Conditions Editor 1002
Building 1005

Internet Deployment of Windows Applications 1006
No-Touch Deployment 1006

xxiv

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxv

Contents

ClickOnce Deployment 1007
Custom Deployment Options 1016

Summary 1017

Chapter 25: Working with Classic COM and Interfaces 1019

Understanding COM 1019
COM and .NET in Practice 1020

A Legacy Component 1021
The .NET Application 1024
Trying It All Out 1026
Using TlbImp Directly 1026
Late Binding 1028

ActiveX Controls 1033
The Legacy ActiveX Control 1033
A .NET Application, Again 1035
Trying It All Out, Again 1037

Using .NET Components in the COM World 1038
A .NET Component 1038
RegAsm 1041
TlbExp 1043

Summary 1044

Chapter 26: Threading 1045

What Is a Thread? 1045
Processes, AppDomains, and Threads 1047
Thread Scheduling 1048
Thread Safety and Thread Affinity 1050
When to Use Threads 1051
Designing a Background Task 1052
Interactive Applications 1052

Implementing Threading 1053
A Quick Tour 1053
Threading Options 1056
Manually Creating a Thread 1061
Shared Data 1062
Avoid Sharing Data 1064
Sharing Data with Synchronization 1066
Synchronization Objects 1068

Summary 1077

xxv

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxvi

Contents

Chapter 27: Windows Workflow Foundation 1079

Workflow in Applications 1079
Building Workflows 1080

Adding Workflow with Windows Workflow Foundation 1082
A Simple Workflow 1084
Standard Activities 1089
Building Custom Activities 1092

Using Workflows with Other Applications 1098
Using Workflow Foundation with Windows Forms 1098
Using Workflow Foundation with ASP.NET 1100

Summary 1104
Resources 1104

Chapter 28: XML Web Services 1105

Introduction to Web Services 1105
Early Architectural Designs 1107

The Network Angle 1107
Application Development 1107
Merging the Two with the Web 1107
The Foundations of Web Services 1108
The Problems 1109
The Other Players 1110
What All the Foundations Missed 1110

Building a Web Service 1115
A Realistic Example 1118

Using Visual Studio 2008 to Build Web Services 1119
Overloading WebMethods 1128
Caching Web Service Responses 1131
SOAP Headers 1131

Building a Web Service with SOAP Headers 1132
Consuming a Web Service Using SOAP Headers 1133
Requesting Web Services Using SOAP 1.2 1135

Visual Basic and System.Web.Services 1136
System.Web.Services Namespace 1136
System.Web.Services.Description Namespace 1137
System.Web.Services.Discovery Namespace 1138
System.Web.Services.Protocols Namespace 1139

Architecting with Web Services 1140
Why Web Services? 1140
How This All Fits Together 1140
State Management for XML Web Services 1141

xxvi

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxvii

Contents

Security in Web Services 1141
The Secure Sockets Layer 1142
Directory-Level Security 1142
Other Types of Security 1143

The Downside 1143
Security 1143
State 1143
Transactions 1143
Speed and Connectivity 1143

Where We Go from Here 1144
Summary 1144

Chapter 29: Remoting 1145

Remoting Overview 1146
Basic Terminology 1146
SingleCall, Singleton, and Activated Objects 1149

Implementing Remoting 1153
A Simple Example 1154
Using IIS as a Remoting Host 1164
Using Activator.GetObject 1168
Interface-Based Design 1169
Using Generated Proxies 1171

Summary 1172

Chapter 30: Enterprise Services 1173

Transactions 1173
The ACID Test 1174

Transactional Components 1175
An Example of Transactions 1176

Other Aspects of Transactions 1188
Just-In-Time 1188
Object Pooling 1189

Queued Components 1189
An Example of Queued Components 1190
Transactions with Queued Components 1194

Transactions and System.Transactions 1196
Creating Transactions 1196
Creating Resource Managers 1199

Summary 1199

xxvii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxviii

Contents

Chapter 31: Network Programming 1201

Protocols, Addresses, and Ports 1201
Addresses and Names 1203
Ports: They’re Not Just for Ships 1204
Firewalls: Can’t Live with Them, Can’t Live without Them 1204

The System.Net Namespace 1205
Web Requests (and Responses) 1205
Simplifying Common Web Requests with WebClient 1223
Creating Your Own Web Server with HttpListener 1225

Summary 1233

Chapter 32: Windows Communication Foundation 1235

The Larger Move to SOA 1236
WCF Overview 1237

Capabilities of WCF 1237
Working with the WS-* Protocols 1238

Building a WCF Service 1239
What Makes a WCF Service 1240
Creating Your First WCF Service 1241

Building the WCF Consumer 1248
Adding a Service Reference 1248
Reviewing the Reference 1250
Configuration File Changes 1253
Writing the Consumption Code 1255

Working with Data Contracts 1257
Building a Service with a Data Contract 1258
Building the Host 1259
Building the Consumer 1260
Looking at WSDL and the Schema for HelloCustomerService 1261

Namespaces 1263
Touching on Security 1263
Summary 1265

Chapter 33: Windows Services 1267

Example Windows Services 1267
Characteristics of a Windows Service 1268
Interacting with Windows Services 1268
Creating a Windows Service 1269

The .NET Framework Classes for Windows Services 1270
Other Types of Windows Services 1273

xxviii

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxix

Contents

Creating a Windows Service in Visual Basic 1273
Creating a Counter Monitor Service 1275

Installing the Service 1277
Starting the Service 1278
Uninstalling the Service 1279

Monitoring a Performance Counter 1280
Creating a Performance Counter 1280
Integrating the Counter into the Service 1281
Changing the Value in the Performance Counter 1282

Communicating with the Service 1283
The ServiceController Class 1284
Integrating a ServiceController into the Example 1285
More About ServiceController 1286

Custom Commands 1287
Passing Strings to a Service 1289
Creating a File Watcher 1289

Writing Events Using an Event Log 1289
Creating a FileSystemWatcher 1290

Debugging the Service 1293
Summary 1296

Chapter 34: Visual Basic and the Internet 1297

Downloading Internet Resources 1297
Sockets 1301

Building the Application 1301
Creating Conversation Windows 1304
Sending Messages 1311
Shutting Down the Application 1316

Using Internet Explorer in Your Applications 1321
Windows Forms and HTML — No Problem! 1321

Summary 1330

Appendix A: The Visual Basic Compiler 1331

The vbc.exe.config File 1331
Simple Steps to Compilation 1333
Compiler Output 1334

/nologo 1334
/utf8output[+:−] 1334
/verbose 1335
Optimization 1335

xxix

Evjen-91361 ftoc.tex V1 - 04/01/2008 3:12pm Page xxx

Contents

Output files 1336
.NET Assemblies 1337
Debugging and Error-Checking 1339
Help 1340
Language 1341
Preprocessor: /define 1341
Resources 1342
Miscellaneous Features 1343

Looking at the vbc.rsp File 1344

Appendix B: Visual Basic Power Packs Tools 1347

Visual Basic Power Packs 1348
Getting the Visual Basic Power Packs 1349

Using the Interop Forms Toolkit 2.0 1349
Creating a Simple Interop Form 1351
Deployment 1354
Debugging 1354
VB6 Development 1355
Final Interop Tips 1355

Using the Power Packs 2.0 Tools 1356
Summary 1360

Appendix C: Visual Basic Resources 1361

On the Web 1361
Books 1362
Author Blogs 1362

Index 1363

xxx

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxi

Introduction

In 2002, Visual Basic took the biggest leap in innovation since it was released, with the introduction
of Visual Basic .NET (as it was renamed). After more than a decade, Visual Basic was overdue for a
major overhaul. Nevertheless, .NET goes beyond an overhaul. It changes almost every aspect of software
development. From integrating Internet functionality to creating object-oriented frameworks, Visual
Basic .NET challenged traditional VB developers to learn dramatic new concepts and techniques.

2008 brought forth an even more enhanced Visual Basic language. New features have been added that
cement this language’s position as a true object-oriented language and provide better access to underly-
ing data. Visual Basic 2008 is still going to be a challenge for traditional VB6 developers to learn, but it’s
an easy road for those with any familiarity with previous versions, and this book is here to help you on
your way.

This .NET Framework 3.5 version of this book provides details about not only the latest version of Visual
Basic — version 2008 — but also the new framework that gives Visual Basic developers the capability
to build new application types using Windows Presentation Foundation (WPF) and applications and
libraries based upon the Windows Communication Foundation (WCF), the Windows Workflow Founda-
tion (WF), and Windows CardSpace. It also covers one of the more important features: LINQ.

These additions are what constitute the .NET Framework 3.5, as this version of the framework installs
and works from the previous .NET Framework 2.0 and 3.0. This book includes numerous chapters that
focus on the new technologies brought forth by the .NET Framework 3.0 and 3.5.

First, it is necessary to learn the differences between Visual Basic 2008 and the older versions of the
language. In some cases, the same functionality is implemented in a different way. This was not done
arbitrarily — there are good reasons for the changes. However, you must be prepared to unlearn old
habits and form new ones.

Next, you must be open to the new concepts. Full object orientation, new component techniques, new
visual tools for both local and Internet interfaces — all of these and more must become part of your skill
set to effectively develop applications in Visual Basic.

This book covers Visual Basic from start to finish. We begin by looking at the .NET Framework and end
by looking at the best practices for deploying .NET applications. In between, you will learn everything
from database access to integration with other technologies such as XML, along with investigating the
new features in detail. You will see that Visual Basic 2008 has emerged as a powerful yet easy-to-use
language that enables you to target the Internet just as easily as the desktop. This book covers the .NET
Framework 2.0, the .NET Framework 3.0, and the newly released .NET Framework 3.5. If you are coding
using version 1.0, 1.1, or just 2.0, some sections of the book will not work for you. Items that are new to
the .NET Framework 3.5 are specifically noted as such.

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxii

Introduction

The Importance of Visual Basic
Early in the adoption cycle of .NET, Microsoft’s new language, C#, got the lion’s share of attention.
However, as .NET adoption has increased, Visual Basic’s continuing importance has also been apparent.
Microsoft has publicly stated that it considers Visual Basic to be the language of choice for applications
where developer productivity is one of the highest priorities.

Future development of Visual Basic is emphasizing capabilities that enable access to the whole expanse of
the .NET Framework in the most productive way, while C# development is emphasizing the experience
of writing code. That fits the traditional role of Visual Basic as the language developers use in the real
world to create business applications as quickly as possible.

This difference is more than academic. One of the most important advantages of the .NET Framework is
that it enables applications to be written with dramatically less code. In the world of business applica-
tions, the goal is to concentrate on writing business logic and to eliminate routine coding tasks as much
as possible. In other words, of greatest value in this new paradigm is writing robust, useful applications
with as little code as possible, not churning out a lot of code.

Visual Basic is an excellent fit for this type of development, which makes up the bulk of software devel-
opment in today’s economy. Moreover, it will grow to be an even better fit as it is refined and evolves for
exactly that purpose.

Who This Book Is For
This book was written to help experienced developers learn Visual Basic 2008. From those who are just
starting the transition from earlier versions to those who have used Visual Basic for a while and need to
gain a deeper understanding, this book provides information on the most common programming tasks
and concepts you need.

Professional Visual Basic 2008 offers a wide-ranging presentation of Visual Basic concepts, but the .NET
Framework is so large and comprehensive that no single book can cover it all. The main area in which
this book does not attempt to be complete is Web development. While chapters discussing the basics of
browser-based programming in Visual Basic are included, professional Web developers should instead
refer to Professional ASP.NET 3.5.

What You Need to Use This Book
Although it is possible to create Visual Basic applications using the command-line tools contained in the
.NET Framework SDK, you need Visual Studio 2008 (Professional or higher), which includes the .NET
Framework SDK, to get the most out of this book. You may use Visual Studio 2005, Visual Studio .NET
2002, or Visual Studio 2003 instead, but in some cases the exercises won’t work because functionalities
and capabilities are not available in these older versions. In addition, note the following:

❑ You need the .NET Framework 3.5 (which will install the .NET Framework 2.0 by default if it
isn’t already present on the machine).

❑ Some chapters make use of SQL Server 2005 and SQL Server 2008, but you can also run the
example code using Microsoft’s SQL Express, which ships with Visual Studio 2008.

xxxii

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxiii

Introduction

❑ Several chapters make use of Internet Information Services (IIS). IIS ships with Windows Vista,
Windows Server 2008, Windows 2003 Server, Windows 2000 Server, Windows 2000 Professional,
and Windows XP, although it is not installed by default.

❑ Chapter 30 makes use of MSMQ to work with queued transactions. MSMQ ships with many
Windows versions, but it is not installed by default.

What This Book Covers
Chapter 1, ‘‘Visual Basic 2008 Core Elements’’ — This chapter introduces many of the types commonly
used in Visual Basic 2008. Topics discussed in this chapter include type coverage, type conversion, refer-
ence types, arrays, and other collections, parameter passing, and boxing. The full syntax basics of Visual
Basic are provided in this chapter.

Chapter 2, ‘‘Object Syntax Introduction’’ — This is the first of three chapters that explore object-oriented
programming in Visual Basic. This chapter defines objects, classes, instances, encapsulation, abstraction,
polymorphism, and inheritance.

Chapter 3, ‘‘Object-Oriented Programming’’ — This chapter examines inheritance and how it can be
used within Visual Basic. You create simple and abstract base classes and learn how to create base classes
from which other classes can be derived. This chapter puts the theory for much of what has been dis-
cussed thus far into practice. The four defining object-oriented concepts (abstraction, encapsulation,
polymorphism, inheritance) are described, and we explain how these concepts can be applied in design
and development to create effective object-oriented applications.

Chapter 4, ‘‘The Common Language Runtime’’ — This chapter examines the core of the .NET plat-
form: the common language runtime (CLR). The CLR is responsible for managing the execution of code
compiled for the .NET platform. You learn about versioning and deployment, memory management,
cross-language integration, metadata, and the IL Disassembler.

Chapter 5, ‘‘Localization’’ — Developers usually build applications in the English language. Then, as the
audience for the application expands, they realize the need to globalize the application. Of course, the
ideal is to build the application to handle an international audience right from the start — but in many
cases, this isn’t possible because of the extra work it requires. The .NET Framework made a considerable
effort to address the internationalization of the applications you build. Changes to the API, the addi-
tion of capabilities to the server controls, and even Visual Studio itself equip you to do the extra work
required more easily to bring your application to an international audience. This chapter looks at some
of the important items to consider when building your applications for the world. It looks closely at the
System.Globalization namespace and everything it offers your applications.

Chapter 6, ‘‘Generics’’ — This chapter focuses on one of the biggest enhancements to Visual Basic in
this version — generics. Generics enables you to make a generic collection that is still strongly typed —
providing fewer chances for errors, increasing performance, and giving you IntelliSense features when
you are working with your collections.

Chapter 7, ‘‘Namespaces’’ — This chapter introduces namespaces and their hierarchical structure. An
explanation of namespaces and some common examples are provided. In addition, you learn how to
create new namespaces, and how to import and alias existing namespaces within projects. This chapter
also looks at the My namespace available in Visual Basic.

xxxiii

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxiv

Introduction

Chapter 8, ‘‘Exception Handling and Debugging’’ — This chapter covers how error handling and
debugging work in Visual Basic 2008 by discussing the CLR exception handler and the Try...Catch...
Finally structure. Also covered are error and trace logging, and how you can use these methods to
obtain feedback about how your program is working.

Chapter 9, ‘‘Data Access with ADO.NET 3.5’’ — This chapter focuses on what you need to know about
the ADO.NET object model in order to build flexible, fast, and scalable data-access objects and applica-
tions. The evolution of ADO into ADO.NET is explored, and the main objects in ADO.NET that you need
to understand in order to build data access into your .NET applications are explained.

Chapter 10, ‘‘Using XML in Visual Basic 2008’’ — This chapter presents the features of the .NET Frame-
work that facilitate the generation and manipulation of XML. We describe the .NET Framework’s
XML-related namespaces, and a subset of the classes exposed by these namespaces is examined in detail.
This chapter also touches on a set of technologies that utilize XML — specifically, ADO.NET and SQL
Server. This chapter focuses on XML usage prior to LINQ.

Chapter 11, ‘‘LINQ’’ — This chapter presents one of the coolest and most anticipated features provided
in the .NET Framework 3.5. LINQ offers the capability to easily access underlying data — basically a
layer on top of ADO.NET. Microsoft has provided LINQ as a lightweight façade that provides a strongly
typed interface to the underlying data stores. Using LINQ, you can query against objects, data sets, a SQL
Server database, XML, and more.

Chapter 12, ‘‘Security in the .NET Framework’’ — This chapter examines additional tools and func-
tionality with regard to the security provided by .NET. Caspol.exe and Permview.exe, which assist
in establishing and maintaining security policies, are discussed. The System.Security.Permissions
namespace is also covered, and we discuss how it relates to managing permissions. Finally, you look
at the System.Security.Cryptography namespace and run through some code that demonstrates its
capabilities.

Chapter 13, ‘‘Visual Studio 2008’’ — This chapter introduces the next generation of the major IDE for
developing .NET applications: Visual Studio 2008. Previous releases of this IDE included Visual Studio
.NET 2003, Visual Studio .NET 2002, and Visual Studio 2005. This chapter focuses on the Visual
Studio 2008 release and how you can use it to build better applications more quickly.

Chapter 14, ‘‘Working with SQL Server’’ — This chapter describes how to work with the new SQL
Server 2008 along with your .NET applications. SQL Server provides a strong connection to your appli-
cations, and this chapter explains how to effectively utilize this powerful database.

Chapter 15, ‘‘Windows Forms’’ — This chapter looks at Windows Forms, concentrating primarily on
forms and built-in controls. What is new and what has been changed from previous versions of Visual
Basic are discussed, along with the System.Windows.Forms namespace.

Chapter 16, ‘‘Windows Forms Advanced Features’’ — This chapter looks at some of the more advanced
features that are available to you in building your Windows Forms applications.

Chapter 17, ‘‘Windows Presentation Foundation’’ — A component that was introduced in the .NET 3.0
and enhanced in the .NET Framework 3.5, Windows Presentation Foundation offers a new vehicle for
building applications. This chapter describes the new way in which Microsoft is promoting the presen-
tation of a GUI, and WPF provides a presentation layer that you should find rather fluid and enriching.
This chapter describes the basics of WPF and how to build simple XAML-based applications.

xxxiv

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxv

Introduction

Chapter 18, ‘‘Integrating WPF with Windows Forms’’ — Many organizations have made significant
investments in Windows Forms, and they are not ready to fully switch their applications to this new
technology. For this reason, Microsoft has provided significant means to integrate WPF into your Win-
dows Forms applications, as well as the capability to bring your Windows Forms components to a WPF
application. This chapter focuses on these capabilities.

Chapter 19, ‘‘Working with ASP.NET 3.5’’ — This chapter explores the basics of ASP.NET 3.5 in detail.
It looks at building Web applications using Visual Studio 2008 and includes discussions on the overall
application and page frameworks.

Chapter 20, ‘‘ASP.NET 3.5 Advanced Features’’ — This chapter looks at several of the advanced fea-
tures that are available to you with the latest release of ASP.NET 3.5. Examples of items covered include
cross-page posting, master pages, site navigation, personalization, and more.

Chapter 21, ‘‘Silverlight Development’’ — This chapter looks at the new technology for the Web pro-
vided by Silverlight. This new capability provides the means of using XAML and brings a more fluid
experience to the end user in the browser.

Chapter 22, ‘‘Visual Studio Tools for Office’’ — This chapter looks at using Visual Basic to work with
your Microsoft Office–focused applications.

Chapter 23, ‘‘Assemblies’’ — This chapter examines assemblies and their use within the CLR. The struc-
ture of an assembly, what it contains, and the information it contains are described. In addition, you will
look at the manifest of the assembly and its role in deployment.

Chapter 24, ‘‘Deployment’’ — This chapter takes a close look at the available deployment options for
Windows Forms and Web Forms, including the ClickOnce deployment feature and creating .msi files.

Chapter 25, ‘‘Working with Classic COM and Interfaces’’ — This chapter discusses COM and .NET
component interoperability, and what tools are provided to help link the two technologies.

Chapter 26, ‘‘Threading’’ — This chapter explores threading and explains how the various objects in
the .NET Framework enable any of its consumers to develop multithreaded applications. You will learn
how threads can be created, how they relate to processes, and the differences between multitasking and
multithreading.

Chapter 27, ‘‘Windows Workflow Foundation’’ — This chapter takes a look at this relatively new capa-
bility to easily integrate workflow into your applications. Windows Workflow was introduced in the
.NET Framework 3.0, but it is a big part of .NET 3.5 and Visual Studio 2008.

Chapter 28, ‘‘XML Web Services’’ — This chapter describes how to create and consume Web services
using VB 2008. The abstract classes provided by the CLR to set up and work with Web services are
discussed, as well as some of the technologies that support Web services. Also examined are some of the
disadvantages to using any distributed architecture, and the future of Web services.

Chapter 29, ‘‘Remoting’’ — This chapter takes a detailed look at how to use remoting in classic three-tier
application design. You examine the basic architecture of remoting and build a basic server and client
that uses a singleton object for answering client requests in the business tier. You will also learn how
to use serialization to return more complex objects from the server to the client, and how to use the call
context for passing extra data from the client to the server along with each call, without having to change
the object model.

xxxv

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxvi

Introduction

Chapter 30, ‘‘Enterprise Services’’ — This chapter explores the .NET component services — in particular,
transaction processing and queued components.

Chapter 31, ‘‘Network Programming’’ — This chapter covers working with some of the networking
protocols that are available to you in your development and how to incorporate a wider network into the
functionality of your applications.

Chapter 32, ‘‘Windows Communication Foundation’’ — This chapter looks at the newest way to build
service-oriented components that allow for standards-based communications over a number of protocols.
WCF is Microsoft’s latest answer for component communications within and outside of the enterprise.

Chapter 33, ‘‘Windows Services’’ — This chapter examines how Visual Basic is used in the production of
Windows Services. The creation, installation, running, and debugging of Windows Services are covered.

Chapter 34, ‘‘Visual Basic and the Internet’’ — This chapter describes how to download resources from
the Web, how to design your own communication protocols, and how to reuse the Web browser control
in your applications.

Appendix A, ‘‘The Visual Basic Compiler’’ — This appendix covers the Visual Basic compiler vbc.exe
and the functionality it provides.

Appendix B, ‘‘Visual Basic Power Packs Tools’’ — This appendix looks at the Visual Basic Power Packs
Tools, a set of off-cycle release packages that focus on helping developers who are maintaining traditional
Visual Basic 6.0 applications begin the process of transitioning to Visual Basic .NET.

Appendix C, ‘‘Visual Basic Resources’’ — This appendix provides a short list of VB resources available.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used
a number of conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We italicize new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use gray highlighting to emphasize code that’s particularly
important in the present context.

xxxvi

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxvii

Introduction

Source Code
As you work through the examples in this book, you may choose to either type in all the code manually
or use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-19136-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher-
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

xxxvii

Evjen-91361 flast.tex V1 - 04/01/2008 3:13pm Page xxxviii

Introduction

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxxviii

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 1

Visual Basic 2008
Core Elements

This chapter introduces the core elements that make up Visual Basic 2008. Every software devel-
opment language has unique elements of syntax and behavior. Visual Basic 2008 has evolved
significantly since Visual Basic was introduced in 1991. Although Visual Basic has its origins in
traditional procedural-based programming languages, it began the transition to objects back in 1995
with Visual Basic 4.0.

With the release of Visual Basic .NET (that is, Version 7), Visual Basic became a fully object-oriented
programming environment. Now with the release of Visual Basic 2008 (that is, Version 9), there
are still more new features, but at the core are the same basic types and commands that have been
with Visual Basic since its early stages. Object paradigms extend the core elements of the language.
Therefore, while a very brief introduction to the existence of classes and objects within the language
is presented in this chapter, the key concepts of object-oriented development are presented in detail
in Chapters 2 and 3.

This chapter focuses on the core elements of the language, including questions about those language
elements a new developer not familiar with Visual Basic might ask, such as where semicolons
should be placed. The key topics of this chapter include the following:

❑ Initial syntax and keywords to understand the basic language elements

❑ Value versus reference types

❑ Primitive types

❑ Commands: If Then Else, Select Case

❑ Value types (structures)

❑ Reference types (classes)

❑ Commands: For Each, For Next, Do While

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 2

Chapter 1: Visual Basic 2008 Core Elements

❑ Boxing

❑ Parameter passing ByVal and ByRef

❑ Variable scope

❑ Data type conversions, compiler options, and XML literals

The main goal of this chapter is to familiarize you with Visual Basic. The chapter begins by looking at
some of the keywords and language syntax you need. Experienced developers will probably gloss over
this information, as this is just a basic introduction to working with Visual Basic. After this, the chapter
discusses primitive types and then introduces you to the key branching commands for Visual Basic. After
you are able to handle simple conditions, the chapter introduces value and reference types. The code
then looks at working with collections and introduces the primary looping control structure syntax for
Visual Basic.

After this there is a brief discussion of boxing and value type conversions, conversions which often
implicitly occur when values are passed as parameters. Following these topics is a discussion of variable
scope, which defines the code that can see variables based on where they are defined in relationship to
that block of code. Finally, the chapter introduces basic data type conversions, which includes looking
at the compiler options for Visual Studio 2008. Visual Studio 2008 includes a new compiler option and a
new data type, XML literals, which are also introduced in the context of conversions.

Initial Keywords and Syntax
While it would be possible to just add a giant glossary of keywords here, that isn’t the focus of this
chapter. Instead, a few basic elements of Visual Basic need to be spelled out, so that as you read, you can
understand the examples. Chapter 7, for instance, covers working with namespaces, but some examples
and other code are introduced in this chapter.

Let’s begin with namespace. When .NET was being created, the developers realized that attempting
to organize all of these classes required a system. A namespace is an arbitrary system that the .NET
developers used to group classes containing common functionality. A namespace can have multiple
levels of grouping, each separated by a period (.). Thus, the System namespace is the basis for classes
that are used throughout .NET, while the Microsoft.VisualBasic namespace is used for classes in
the underlying .NET Framework but specific to Visual Basic. At its most basic level, a namespace does
not imply or indicate anything regarding the relationships between the class implementations in that
namespace; it is just a way of managing the complexity of the .NET Framework’s thousands of classes.
As noted earlier, namespaces are covered in detail in Chapter 7.

Next is the keyword class. Chapters 2 and 3 provide details on object-oriented syntax and the related key-
words for objects, but a basic definition of this keyword is needed here. The Class keyword designates
a common set of data and behavior within your application. The class is the definition of an object, in
the same way that your source code, when compiled, is the definition of an application. When someone
runs your code, it is considered to be an instance of your application. Similarly, when your code creates
or instantiates an object from your class definition, it is considered to be an instance of that class, or an
instance of that object.

Creating an instance of an object has two parts. The first part is the New command, which tells the com-
piler to create an instance of that class. This command instructs code to call your object definition and

2

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 3

Chapter 1: Visual Basic 2008 Core Elements

instantiate it. In some cases you might need to run a method and get a return value, but in most cases
you use the New command to assign that instance of an object to a variable.

To declare a variable in Visual Basic, you use the Dim statement. Dim is short for ‘‘dimension’’ and
comes from the ancient past of Basic, which preceded Visual Basic as a language. The idea is that you
are telling the system to allocate or dimension a section of memory to hold data. The Dim statement
is used to declare a variable, to which the system can then assign a value. As discussed in subsequent
chapters on objects, the Dim statement may be replaced by another keyword such as Public or
Private that not only dimensions the new value but also limits accessibility of that value. Each vari-
able declaration uses a Dim statement similar to the example that follows, which declares a new variable,
winForm:

Dim winForm As System.Windows.Forms.Form = New System.Windows.Forms.Form()

As a best practice, always set a variable equal to something when it is declared. In the preceding example,
the code declares a new variable (winForm) of the type Form. This variable is then set to an instance of a
Form object. It might also be assigned to an existing instance of a Form object or alternatively to Nothing.
The Nothing keyword is a way of telling the system that the variable does not currently have any value,
and as such is not actually using any memory on the heap. Later in this chapter, in the discussion of
value and reference types, keep in mind that only reference types can be set to Nothing.

What do we mean when we refer to a class consisting of data and behavior? For ‘‘data’’ this means that
the class specifies certain variables that are within its scope. Embedded in the class definition are zero or
more Dim statements that create variables used to store the properties of the class. When you create an
instance of this class, you create these variables; and in most cases the class contains logic to populate
them. The logic used for this, and to carry out other actions, is the behavior. This behavior is encapsulated
in what, in the object-oriented world, are known as methods.

However, Visual Basic doesn’t have a ‘‘method’’ keyword. Instead, it has two other keywords that are
brought forward from VB’s days as a procedural language. The first is Sub. Sub is short for ‘‘subroutine,’’
and it defines a block of code that carries out some action. When this block of code completes, it returns
control to the code that called it. To declare a function, you write code similar to the following:

Private Sub Load(ByVal object As System.Object)

End Sub

The preceding example shows the start of a method called Load. For now you can ignore the word
Private at the start of this declaration; this is related to the object and is further explained in the next
chapter. This method is implemented as a Sub because it doesn’t return a value and accepts one parame-
ter when it is called. Thus, in other languages this might be considered and written explicitly as a function
that returns Nothing.

The preceding method declaration also includes a single parameter, which is declared as being of type
System.Object. The meaning of the ByVal qualifier is explained later in this chapter, but is related to how
that value is passed to this method. The code that actually loads the object would be written between the
line declaring this method and the End Sub line.

In Visual Basic, the only difference between a Sub and the second method type, a Function, is the return
type. Note that the Function declaration shown in the following sample code specifies the return type of

3

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 4

Chapter 1: Visual Basic 2008 Core Elements

the function. A function works just like a Sub with the exception that a Function returns a value, which
can be Nothing. This is an important distinction, because when you declare a function you expect it to
include a Return statement. The Return statement is used to indicate that even though additional lines
of code may remain within a Function or Sub, those lines of code should not be executed. Instead, the
Function or Sub should end processing at the current line.

Public Function Add(ByVal ParamArray values() As Integer) As Long
Dim result As Long = 0

Return result
’TODO: Implement this function
’What if user passes in only 1 value, what about 3 or more...
result = values(0) + values(1)
Return result

End Function

In the preceding example, note that after the function initializes the second line of code, there is a Return
statement. Because the implementation of this function isn’t currently shown (it is shown later in this
chapter in the discussion of parameters), the developer wanted the code to exist with a safe value until
the code was completed. Moreover, there are two Return statements in the code. However, as soon as the
first Return statement is reached, none of the remaining code in this function is executed. The Return
statement immediately halts execution of a method, even from within a loop.

As shown in the preceding example, the function’s return value is assigned to a local variable until
returned as part of the Return statement. For a Sub, there would be no value on the line with the Return
statement, as a Sub does not return a value when it completes. When returned, the return value is usually
assigned to something else. This is shown in the next example line of code, which calls a function to
retrieve the currently active control on the executing Windows Form:

Dim ctrl As System.Windows.Forms.Control = Me.GetContainerControl().ActiveControl()

The preceding example demonstrates a call to a function. The value returned by the function
ActiveControl is of type Control, and the code assigns this to the variable ctrl. It also demonstrates
another keyword that you should be aware of: Me. The Me keyword is the way, within an object, that you
can reference the current instance of that object. For example, in the preceding example, the object
being referenced is the current window.

You may have noticed that in all the sample code presented thus far, each line is a complete command.
If you’re familiar with another programming language, then you may be used to seeing a specific char-
acter that indicates the end of a complete set of commands. Several popular languages use a semicolon
to indicate the end of a command line. For those who are considering Visual Basic as their first pro-
gramming language, consider the English language, in which we end each complete thought with a
period.

Visual Basic doesn’t use visible punctuation to end each line. Instead, it views its source files more like
a list, whereby each item on the list is placed on its own line. The result is that Visual Basic ends each
command line with the carriage-return linefeed. In some languages, a command such as X = Y can span
several lines in the source file until a semicolon or other terminating character is reached. In Visual Basic,
that entire statement would be found on a single line unless the user explicitly indicates that it is to
continue onto another line.

4

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 5

Chapter 1: Visual Basic 2008 Core Elements

When a line ends with the underscore character, this tells Visual Basic that the code on that line does
not constitute a completed set of commands. The compiler will then continue onto the next line to find
the continuation of the command, and will end as soon as a carriage-return linefeed is found without an
accompanying underscore. In other words, Visual Basic enables you to use exceptionally long lines and
indicate that the code has been spread across multiple lines to improve readability. The following line
demonstrates the use of the underscore to extend a line of code:

MessageBox.Show("Hello World", "A First Look at VB.NET", _
MessageBoxButtons.OK, MessageBoxIcon.Information)

In Visual Basic it is also possible to place multiple different statements on a single line, by separating the
statements with colons. However, this is generally considered a poor coding practice because it reduces
readability.

Console Applications
The simplest type of application is a console application. This application doesn’t have much of a user
interface; in fact, for those old enough to remember the MS-DOS operating system, a console application
looks just like an MS-DOS application. It works in a command window without support for graphics or
graphical devices such as a mouse. A console application is a text-based user interface that reads and
writes characters from the screen.

The easiest way to create a console application is to use Visual Studio. However, for our purposes let’s
just look at a sample source file for a console application, as shown in the following example. Notice that
the console application contains a single method, a Sub called Main. However, this Sub isn’t contained in
a class. Instead, the Sub is contained in a Module:

Module Module1
Sub Main()

Dim myObject As Object = New Object()
Console.WriteLine("Hello World")

End Sub
End Module

A module is another item dating to the procedural days of Visual Basic. It isn’t a class, but rather a
block of code that can contain methods, which are then referenced by classes — or, as in this case, it
can represent the execution start for a program. The module in the preceding example contains a single
method called Main. The Main method indicates the starting point for running this application. Once a
local variable is declared, the only other action taken by this method is to output a line of text to the
console.

Note that in this usage, the Console refers to the text-based window, which hosts a command prompt
from which this program is run. The console window is best thought of as a window encapsulating
the older nongraphical-style user interface whereby literally everything was driven from the command
prompt. The Console class is automatically created when you start your application, and it supports a
variety of Read and Write methods. In the preceding example, if you were to run the code from within
Visual Studio’s debugger, then the console window would open and close immediately. To prevent that,
you include a final line in the Main Sub, which executes a Read statement so that the program continues
to run while waiting for user input.

5

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 6

Chapter 1: Visual Basic 2008 Core Elements

Because so many keywords have been covered, a glossary might be useful. The following table briefly
summarizes most of the keywords discussed in the preceding section, and provides a short description
of their meaning in Visual Basic:

Keyword Description

Namespace A collection of classes that provide related capabilities. For example, the
System.Drawing namespace contains classes associated with graphics.

Class A definition of an object. Includes properties (variables) and methods, which can be
subs or functions.

Instance When a class is created, the resulting object is an instance of the class’s definition.
Not a keyword in Visual Basic.

Method A generic name for a named set of commands. In Visual Basic, both subs and
functions are types of methods. Not a keyword in Visual Basic.

Sub A method that contains a set of commands, allows data to be transferred as
parameters, and provides scope around local variables and commands

Function A method that contains a set of commands, returns a value, allows data to be
transferred as parameters, and provides scope around local variables and
commands

Return Ends the currently executing sub or function. Combined with a return value for
functions.

Dim Declares and defines a new variable

New Creates an instance of an object

Nothing Used to indicate that a variable has no value. Equivalent to null in other languages
and databases.

Me A reference to the instance of the object within which a method is executing

Console A type of application that relies on a command-line interface. Console applications
are commonly used for simple test frames. Also refers to a command window to
and from which applications can read and write text data.

Module A code block that isn’t a class but which can contain sub and function methods. Not
frequently used for application development, but is part of a console application.

Finally, as an example of code in the sections ahead, we are going to use Visual Studio 2008 to cre-
ate a simple console application. The sample code for this chapter uses a console application titled
‘‘ProVB_C01_Types.’’ To create this, start Visual Studio 2008. From the File menu, select New. In some
versions of Visual Studio, you then need to select the Project menu item from within the options for New;
otherwise, the New option takes you to the window shown in Figure 1-1.

Select a new console application, name it ProVB_C01_Types, as shown in Figure 1-1, and click OK to
continue. Visual Studio 2008 then goes to work for you, generating a series of files to support your new
project. These files, which vary by project type, are explained in more detail in subsequent chapters.
The only one that matters for this example is the one entitled Module1.vb. Fortunately, Visual Studio
automatically opens this file for you for editing, as shown in Figure 1-2.

6

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 7

Chapter 1: Visual Basic 2008 Core Elements

Figure 1-1

Figure 1-2

The sample shown in Figure 1-2 shows the default code with two lines of text added:

’ Place your code here
Console.Read()

The first line of code represents a comment. A comment is text that is part of your source file but which
the language compiler ignores. These lines enable you to describe what your code is doing, or describe
what a given variable will contain. Placing a single quote on a line means that everything that follows on
that line is considered to be a comment and should not be parsed as part of the Visual Basic language.
This means you can have a line of code followed by a comment on the same line. Commenting code

7

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 8

Chapter 1: Visual Basic 2008 Core Elements

is definitely considered a best practice, and, as discussed in Chapter 13, Visual Studio enables you to
structure comments in XML so that they can be referenced for documentation purposes.

The second line of code tells the system to wait for the user to enter something in the Console window
before continuing. Without this line of code, if you ran your project, you would see the project quickly
run, but the window would immediately close before you could read anything. Adding this line ensures
that your code entered prior to the line executes, after which the application waits until you press a key.
Because this is the last line in this sample, once you press a key, the application reads what was typed
and then closes, as there is no more code to execute.

To test this out, use the F5 key to compile and run your code, or use the play button shown in Figure 1-2
in the top toolbar to run your code. As you look at the sample code in this chapter, feel free to place code
into this sample application and run it to see the results. More important, change it to see what happens
when you introduce new conditions. As with examples in any book of this kind, the samples in this book
are meant to help you get started; you can extend and modify these in any way you like.

With that in mind, now you can take a look at how data is stored and defined within your running
application. While you might be thinking about permanent storage such as on your hard drive or within
a database, the focus for this chapter is how data is stored in memory while your program is executing.
To access data from within your program, you read and assign values to variables, and these variables
take different forms or types.

Value and Reference Types
Experienced developers generally consider integers, characters, Booleans, and strings to be the basic
building blocks of any language. In .NET, all objects share a logical inheritance from the base Object
class. One of the advantages of this common heritage is the ability to rely on certain common methods
of every variable. Another is that this allows all of .NET to build on a common type system. Visual Basic
builds on the common type system shared across .NET languages.

Because all data types are based on the core Object class, every variable you dimension can be assured
of having a set of common characteristics. However, this logical inheritance does not require a common
physical implementation for all variables. This might seem like a conflicting set of statements, but .NET
has a base type of Object and then allows simple structures to inherit from this base class. While every-
thing in .NET is based on the Object class, under the covers .NET has two major variable types: value
and reference.

For example, what most programmers see as some of the basic underlying types, such as Integer, Long,
Character, and even Byte, are not implemented as classes. Thus, on the one hand, all types inherit from
the Object class, and on the other hand, there are two core types. This is important, as you’ll see when
we discuss boxing and the cost of transitioning between value types and reference types. The key point
is that every type, whether it is a built-in structure such as an integer or string, or a custom class such as
WroxEmployee, does, in fact, inherit from the Object class. The difference between value and reference
types is an underlying implementation difference:

❑ Value types represent simple data storage located on the stack. The stack is used for items of a
known size, so items on the stack can be retrieved faster than those on the managed heap.

❑ Reference types are based on complex classes with implementation inheritance from their parent
classes, and custom storage on the managed heap. The managed heap is optimized to support
dynamic allocation of differently sized objects.

8

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 9

Chapter 1: Visual Basic 2008 Core Elements

Note that the two implementations are stored in different portions of memory. As a result, value and
reference types are treated differently within assignment statements, and their memory management is
handled differently. It is important to understand how these differences affect the software you will write
in Visual Basic. Understanding the foundations of how data is manipulated in the .NET Framework will
enable you to build more reliable and better-performing applications.

Consider the difference between the stack and the heap. The stack is a comparatively small memory
area in which processes and threads store data of fixed size. An integer or decimal value needs the same
number of bytes to store data, regardless of the actual value. This means that the location of such variables
on the stack can be efficiently determined. (When a process needs to retrieve a variable, it has to search
the stack. If the stack contained variables that had dynamic memory sizes, then such a search could take
a long time.)

Reference types do not have a fixed size — a string can vary in size from two bytes to nearly all the
memory available on a system. The dynamic size of reference types means that the data they contain is
stored on the heap, rather than the stack. However, the address of the reference type (that is, the location
of the data on the heap) does have a fixed size, and thus can be (and, in fact, is) stored on the stack. By
storing a reference only to a custom allocation on the stack, the program as a whole runs much more
quickly, as the process can rapidly locate the data associated with a variable.

Storing the data contained in fixed and dynamically sized variables in different places results in differ-
ences in the way variables behave. Rather than limit this discussion to the most basic of types in .NET,
this difference can be illustrated by comparing the behavior of the System.Drawing.Point structure
(a value type) and the System.Text.StringBuilder class (a reference type).

The Point structure is used as part of the .NET graphics library, which is part of the System.Drawing
namespace. The StringBuilder class is part of the System.Text namespace and is used to improve
performance when you’re editing strings.

First, here is an example of how the System.Drawing.Point structure is used:

Dim ptX As New System.Drawing.Point(10, 20)
Dim ptY As New System.Drawing.Point

ptY = ptX
ptX.X = 200

Console.WriteLine(ptY.ToString())

The output from this operation will be {X = 10, Y = 20}, which seems logical. When the code copies ptX
into ptY, the data contained in ptX is copied into the location on the stack associated with ptY. Later,
when the value of ptX changes, only the memory on the stack associated with ptX is altered. Altering the
value of ptX has no effect on ptY. This is not the case with reference types. Consider the following code,
which uses the System.Text.StringBuilder class:

Dim objX As New System.Text.StringBuilder("Hello World")
Dim objY As System.Text.StringBuilder

objY = objX
objX.Replace("World", "Test")

Console.WriteLine(objY.ToString())

9

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 10

Chapter 1: Visual Basic 2008 Core Elements

The output from this operation will be ‘‘Hello Test,’’ not ‘‘Hello World.’’ The previous example using
points demonstrated that when one value type is assigned to another, the data stored on the stack is
copied. Similarly, this example demonstrates that when objY is assigned to objX, the data associated
with objX on the stack is copied to the data associated with objY on the stack. However, what is copied
in this case isn’t the actual data, but rather the address on the managed heap where the data is actually
located. This means that objY and objX now reference the same data. When the data on the heap is
changed, the data associated with every variable that holds a reference to that memory is changed. This
is the default behavior of reference types, and is known as a shallow copy. Later in this chapter, you’ll see
how this behavior has been overridden for strings (which perform a deep copy).

The differences between value types and reference types go beyond how they behave when copied, and
later in this chapter you’ll encounter some of the other features provided by objects. First, though, let’s
take a closer look at some of the most commonly used value types and learn how .NET works with them.

Primitive Types
Visual Basic, in common with other development languages, has a group of elements such as integers and
strings that are termed primitive types. These primitive types are identified by keywords such as String,
Long, and Integer, which are aliases for types defined by the .NET class library. This means that the line

Dim i As Long

is equivalent to the line

Dim i As System.Int64

The reason why these two different declarations are available has to do with long-term planning for
your application. In most cases (such as when Visual Basic transitioned to .NET), you want to use the
Short, Integer, and Long designations. When Visual Basic moved to .NET, the Integer type went from
16 bits to 32 bits. Code written with this Integer type would automatically use the larger value if you
rewrote the code in .NET. Interestingly enough, however, the Visual Basic Migration Wizard actually
recast Visual Basic 6 Integer values to Visual Basic .NET Short values.

This is the same reason why Int16, Int32, and Int64 exist. These types specify a physical implementa-
tion; therefore, if your code is someday migrated to a version of .NET that maps the Integer value to
Int64, then those values defined as Integer will reflect the new larger capacity, while those declared
as Int32 will not. This could be important if your code was manipulating part of an interface where
changing the physical size of the value could break the interface.

The following table lists the primitive types that Visual Basic 2008 defines, and the structures or classes
to which they map:

Primitive Type .NET Class or Structure

Byte System.Byte (structure)

Short System.Int16 (structure)

Integer System.Int32 (structure)

10

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 11

Chapter 1: Visual Basic 2008 Core Elements

Primitive Type .NET Class or Structure

Long System.Int64 (structure)

Single System.Single (structure)

Double System.Double (structure)

Decimal System.Decimal (structure)

Boolean System.Boolean (structure)

Date System.DateTime (structure)

Char System.Char (structure)

String System.String (class)

The String primitive type stands out from the other primitives. Strings are implemented as a class, not
a structure. More important, strings are the one primitive type that is a reference type.

You can perform certain operations on primitive types that you can’t on other types. For example, you
can assign a value to a primitive type using a literal:

Dim i As Integer = 32
Dim str As String = "Hello"

It’s also possible to declare a primitive type as a constant using the Const keyword, as shown here:

Dim Const str As String = "Hello"

The value of the variable str in the preceding line of code cannot be changed elsewhere in the application
containing this code at runtime. These two simple examples illustrate the key properties of primitive
types. As noted, most primitive types are, in fact, value types. The next step is to take a look at core
language commands that enable you to operate on these variables.

Commands: Conditional
Unlike many programming languages, Visual Basic has been designed to focus on readability and clarity.
Many languages are willing to sacrifice these attributes to enable developers to type as little as possible.
Visual Basic, conversely, is designed under the paradigm that the readability of code matters more than
saving a few keystrokes, so commands in Visual Basic tend to spell out the exact context of what is
being done.

Literally dozens of commands make up the Visual Basic language, so there isn’t nearly enough space here
to address all of them. Moreover, many of the more specialized commands are covered later in this book.
However, if you are not familiar with Visual Basic or are relatively new to programming, a few would be
helpful to look at here. These fall into two basic areas: conditional statements and looping statements. This
chapter addresses two statements within each of these categories, starting with the conditional statements
and later, after collections and arrays have been introduced, covering looping statements.

11

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 12

Chapter 1: Visual Basic 2008 Core Elements

Each of these statements has the ability not only to call another method, the preferred way to manage
blocks of code, but also to literally encapsulate a block of code. Note that the variables declared within
the context of a conditional statement (between the If and End If lines) are only visible up until the
End If statement. After that these variables go out of scope. The concept of scoping is discussed in more
detail later in this chapter.

If Then
The conditional is one of two primary programming constructs (the other being the loop) that is present
in almost every programming language. After all, even in those rare cases where the computer is just
repeatedly adding values or doing some other repetitive activity, at some point a decision is needed
and a condition evaluated, even if the question is only ‘‘is it time to stop?’’ Visual Basic supports the
If-Then statement as well as the Else statement; and unlike some languages, the concept of an ElseIf
statement. The ElseIf and Else statements are totally optional, and it is not only acceptable but common
to encounter conditionals that do not utilize either of these code blocks. The following example illustrates
a simple pair of conditions that have been set up serially:

If i > 1 Then
’Code A1

ElseIf i < 1 Then
’Code B2

Else
’Code C3

End If

If the first condition is true, then code placed at marker A1 is executed. The flow would then proceed to
the End If, and the program would not evaluate any of the other conditions. Note that for best perfor-
mance, it makes the most sense to have your most common condition first in this structure, because if it
is successful, none of the other conditions need to be tested.

If the initial comparison in the preceding example code were false, then control would move to the first
Else statement, which in this case happens to be an ElseIf statement. The code would therefore test the
next conditional to determine whether the value of i were less than 1. If this were the case, then the code
associated with block B2 would be executed.

However, if the second condition were also false, then the code would proceed to the Else statement,
which isn’t concerned with any remaining condition and just executes the code in block C3. Not only
is the Else optional, but even if an ElseIf is used, the Else condition is still optional. It is acceptable
for the Else and C3 block to be omitted from the preceding example.

Comparison Operators
There are several ways to discuss what is evaluated in an If statement. Essentially, the code between
the If and Then portion of the statement must eventually evaluate out to a Boolean. At the most basic
level, this means you can write If True Then, which results in a valid statement, although the code would
always execute the associated block of code with that If statement. The idea, however, is that for a basic
comparison, you take two values and place between them a comparison operator. Comparison operators
include the following symbols: =, >, <, >=, <=.

12

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 13

Chapter 1: Visual Basic 2008 Core Elements

Additionally, certain keywords can be used with a comparison operator. For example, the keyword Not
can be used to indicate that the statement should consider the failure of a given comparison as a reason
to execute the code encapsulated by its condition. An example of this is shown in the next example:

If Not i = 1 Then
’Code A1

End If

It is therefore possible to compare two values and then take the resulting Boolean from this comparison
and reevaluate the result. In this case, the result is only reversed, but the If statement supports more
complex comparisons using statements such as And and Or. These statements enable you to create
a complex condition based on several comparisons, as shown here:

If Not i = 1 Or i < 0 And str = "Hello" Then
’Code A1

Else
’Code B2

End If

The And and Or conditions are applied to determine whether the first comparison’s results are true or false
along with the second value’s results. The And conditional means that both comparisons must evaluate to
true in order for the If statement to execute the code in block A1, and the Or statement means that if the
condition on either side is true, then the If statement can evaluate code block A1. However, in looking at
this statement, your first reaction should be to pause and attempt to determine in exactly what order all
of the associated comparisons occur.

There is a precedence. First, any numeric style comparisons are applied, followed by any unary operators
such as Not. Finally, proceeding from left to right, each Boolean comparison of And and Or is applied.
However, a much better way to write the preceding statement is to use parentheses to identify in what
order you want these comparisons to occur. The first If statement in the following example illustrates the
default order, while the second and third use parentheses to force a different priority on the evaluation
of the conditions:

If ((Not i = 1) Or i < 0) And (str = "Hello") Then
If (Not i = 1) Or (i < 0 And str = "Hello") Then
If Not ((i = 1 Or i < 0) And str = "Hello") Then

All three of the preceding If statements are evaluating the same set of criteria, yet their results are poten-
tially very different. It is always best practice to enclose complex conditionals within parentheses to
illustrate the desired order of evaluation. Of course, these comparisons have been rather simple; you
could replace the variable value in the preceding examples with a function call that might include a call
to a database. In such a situation, if the desired behavior were to execute this expensive call only when
necessary, then you might want to use one of the shortcut comparison operators.

Since you know that for an And statement both sides of the If statement must be true, there are times
when knowing that the first condition is false could save processing time; you would not bother executing
the second condition. Similarly, if the comparison involves an Or statement, then once the first part of the
condition is true, there is no reason to evaluate the second condition because you know that the net result
is success. In this case, the AndAlso and OrElse statements allow for performance optimization.

13

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 14

Chapter 1: Visual Basic 2008 Core Elements

If ((Not i = 1) Or i < 0) AndAlso (MyFunction() = "Success") Then
If Not i = 1 OrElse (i < 0 And MyFunction() = "Success") Then

The preceding code illustrates that instead of using a variable like str as used in the preceding samples,
your condition might call a function you’ve written that returns a value. In this case, MyFunction would
return a string that would then be used in the comparison. Each of these conditions has therefore been
optimized so that there are situations where the code associated with MyFunction won’t be executed.

This is potentially important, not only from a performance standpoint, but also in a scenario where given
the first condition your code might throw an error. For example, it’s not uncommon to first determine
whether a variable has been assigned a value and then to test that value. This introduces yet another pair
of conditional elements: the Is and IsNot conditionals.

Using Is enables you to determine whether a variable has been given a value, or to determine its type.
In the past it was common to see nested If statements as a developer first determined whether the value
was null, followed by a separate If statement to determine whether the value was valid. Starting with
.NET 2.0, the short-circuit conditionals enable you to check for a value and then check whether that value
meets the desired criteria. The short-circuit operator prevents the check for a value from occurring and
causing an error if the variable is undefined, so both checks can be done with a single If statement:

Dim mystring as string = Nothing
If mystring IsNot Nothing AndAlso mystring.Length > 100 Then

’Code A1
ElseIf mystring.GetType Is GetType(Integer) Then

’Code B2
End If

The preceding code would fail on the first comparison because mystring has only been initialized to
Nothing, meaning that by definition it doesn’t have a length. Note also that the second condition will fail
because you know that myString isn’t of type Integer.

Select Case
The preceding section makes it clear that the If statement is the king of conditionals. However, in another
scenario you may have a simple condition that needs to be tested repeatedly. For example, suppose a
user selects a value from a drop-down list and different code executes depending on that value. This
is a relatively simple comparison, but if you have 20 values, then you would potentially need to string
together 20 different If Then and ElseIf statements to account for all of the possibilities.

A cleaner way of evaluating such a condition is to leverage a Select Case statement. This statement was
designed to test a condition, but instead of returning a Boolean value, it returns a value that is then used
to determine which block of code, each defined by a Case statement, should be executed:

Select Case i
Case 1

’Code A1
Case 2

’Code B2
Case Else

’Code C3
End Select

14

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 15

Chapter 1: Visual Basic 2008 Core Elements

The preceding sample code shows how the Select portion of the statement determines the value rep-
resented by the variable i. Depending on the value of this variable, the Case statement executes the
appropriate code block. For a value of 1, the code in block A1 is executed; similarly, a 2 results in code
block B2 executing. For any other value, because this case statement includes an Else block, the case
statement executes the code represented by C3. Finally, the next example illustrates that the cases do not
need to be integer values and can, in fact, even be strings:

Dim mystring As String = "Intro"
Select Case mystring

Case "Intro"
’Code A1

Case "Exit"
’Code A2

Case Else
’Code A3

End Select

Now that you have been introduced to these two control elements that enable you to control what hap-
pens in your code, your next step is to review details of the different variable types that are available
within Visual Basic 2008, starting with the value types.

Value Types (Structures)
Value types aren’t as versatile as reference types, but they can provide better performance in many
circumstances. The core value types (which include the majority of primitive types) are Boolean, Byte,
Char, DateTime, Decimal, Double, Guid, Int16, Int32, Int64, SByte, Single, and TimeSpan. These are not
the only value types, but rather the subset with which most Visual Basic developers consistently work.
As you’ve seen, value types by definition store data on the stack.

Value types can also be referred to by their proper name: structures. The underlying principles and
syntax of creating custom structures mirrors that of creating classes, covered in the next chapter. This
section focuses on some of the built-in types provided by the .NET Framework — in particular, the
built-in types known as primitives.

Boolean
The .NET Boolean type represents true or false. Variables of this type work well with the conditional
statements that were just discussed. When you declare a variable of type Boolean, you can use it within
a conditional statement directly:

Dim blnTrue As Boolean = True
Dim blnFalse As Boolean = False
If blnTrue Then

Console.WriteLine(blnTrue)
Console.WriteLine(blnFalse.ToString)

End If

Always use the True and False constants when working with Boolean variables.

15

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 16

Chapter 1: Visual Basic 2008 Core Elements

Unfortunately, in the past developers had a tendency to tell the system to interpret a variable created as
a Boolean as an Integer. This is referred to as implicit conversion and is discussed later in this chapter.
It is not the best practice, and when .NET was introduced, it caused issues for Visual Basic because
the underlying representation of True in other languages wasn’t going to match those of Visual Basic.
The result was that Visual Basic represents True differently for implicit conversions than other .NET
languages.

True has been implemented in such a way that when converted to an integer, Visual Basic converts a
value of True to -1 (negative one). This is one of the few (but not the only) legacy carryovers from older
versions of Visual Basic and is different from other languages, which typically use the value integer
value 1. Generically, all languages tend to implicitly convert False to 0 and True to a nonzero value.

However, Visual Basic works as part of a multilanguage environment, with metadata-defining interfaces,
so the external value of True is as important as its internal value. Fortunately, Microsoft implemented
Visual Basic in such a way that while -1 is supported, the .NET standard of 1 is exposed from Visual
Basic methods to other languages.

To create reusable code, it is always better to avoid implicit conversions. In the case of Booleans,
if the code needs to check for an integer value, then you should explicitly evaluate the Boolean and
create an appropriate integer. The code will be far more maintainable and prone to fewer unexpected
results.

Integer Types
Now that Booleans have been covered in depth, the next step is to examine the Integer types that are
part of Visual Basic. Visual Basic 6.0 included two types of integer values: The Integer type was limited
to a maximum value of 32767, and the Long type supported a maximum value of 2147483647. The .NET
Framework added a new integer type, the Short. The Short is the equivalent of the Integer value from
Visual Basic 6.0; the Integer has been promoted to support the range previously supported by the Visual
Basic 6.0 Long type, and the Visual Basic .NET Long type is an eight-byte value. The new Long type
provides support for 64-bit values, such as those used by current 64-bit processors. In addition, each of
these types also has two alternative types. In all, Visual Basic supports nine Integer types:

Type Allocated Memory Minimum Value Maximum Value

Short 2 bytes −32768 32767

Int16 2 bytes −32768 32767

UInt16 2 bytes 0 65535

Integer 4 bytes −2147483648 2147483647

Int32 4 bytes −2147483648 2147483647

UInt32 4 bytes 0 4294967295

Long 8 bytes −9223372036854775808 9223372036854775807

Int64 8 bytes −9223372036854775808 9223372036854775807

UInt64 8 bytes 0 184467440737095551615

16

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 17

Chapter 1: Visual Basic 2008 Core Elements

Short
A Short value is limited to the maximum value that can be stored in two bytes. This means there are
16 bits and the value can range between −32768 and 32767. This limitation may or may not be based on
the amount of memory physically associated with the value; it is a definition of what must occur in the
.NET Framework. This is important, because there is no guarantee that the implementation will actually
use less memory than when using an Integer value. It is possible that in order to optimize memory or
processing, the operating system will allocate the same amount of physical memory used for an Integer
type and then just limit the possible values.

The Short (or Int16) value type can be used to map SQL smallint values.

Integer
An Integer is defined as a value that can be safely stored and transported in four bytes (not as a four-byte
implementation). This gives the Integer and Int32 value types a range from −2147483648 to 2147483647.
This range is more than adequate to handle most tasks.

The main reason to use an Int32 in place of an integer value is to ensure future portability with interfaces.
For example, the Integer value in Visual Basic 6.0 was limited to a two-byte value, but is now a four-byte
value. In future 64-bit platforms, the Integer value might be an eight-byte value. Problems could occur if
an interface used a 64-bit Integer with an interface that expected a 32-bit Integer value, or, conversely,
if code using the Integer type is suddenly passed to a variable explicitly declared as Int32.

The solution is to be consistent. Use Int32, which would remain a 32-bit value, even on a 64-bit platform,
if that is what you need. In addition, as a best practice, use Integer so your code can be unconcerned
with the underlying implementation.

The Visual Basic .NET Integer value type matches the size of an integer value in SQL Server, which
means that you can easily align the column type of a table with the variable type in your programs.

Long
The Long type is aligned with the Int64 value. Longs have an eight-byte range, which means that their
value can range from −9223372036854775808 to 9223372036854775807. This is a big range, but if you need
to add or multiply Integer values, then you need a large value to contain the result. It’s common while
doing math operations on one type of integer to use a larger type to capture the result if there’s a chance
that the result could exceed the limit of the types being manipulated.

The Long value type matches the bigint type in SQL.

Unsigned Types
Another way to gain additional range on the positive side of an Integer type is to use one of the unsigned
types. The unsigned types provide a useful buffer for holding a result that might exceed an operation by
a small amount, but this isn’t the main reason they exist. The UInt16 type happens to have the same
characteristics as the Character type, while the UInt32 type has the same characteristics as a system
memory pointer on a 32-byte system.

However, never write code that attempts to leverage this relationship. Such code isn’t portable, as on
a 64-bit system the system memory pointer changes and uses the UInt64 type. However, when larger

17

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 18

Chapter 1: Visual Basic 2008 Core Elements

integers are needed and all values are known to be positive, these values are of use. As for the low-level
uses of these types, certain low-level drivers use this type of knowledge to interface with software that
expects these values and they are the underlying implementation for other value types. This is why,
when you move from a 32-bit system to a 64-bit system, you need new drivers for your devices, and why
applications shouldn’t leverage this same type of logic.

Decimal Types
Just as there are several types to store integer values, there are three implementations of value types to
store real number values. The Single and Double types work the same way in Visual Basic .NET as they
did in Visual Basic 6.0. The difference is the Visual Basic 6.0 Currency type (which was a specialized
version of a Double type), which is now obsolete; it was replaced by the Decimal value type for very
large real numbers.

Type Allocated Memory Negative Range Positive Range

Single 4 bytes −3.402823E38 to −1.401298E-45 1.401298E-45 to 3.402823E38

Double 8 bytes −1.79769313486231E308 to
−4.94065645841247E-324

4.94065645841247E-324 to
1.79769313486232E308

Currency Obsolete — —

Decimal 16 bytes −79228162514264
337593543950335 to
0.00000000000000
00000000000001

0.00000000000000
00000000000001 to
792281625142643
37593543950335

Single
The Single type contains four bytes of data, and its precision can range anywhere from 1.401298E-45 to
3.402823E38 for positive values and from −3.402823E38 to −1.401298E-45 for negative values.

It can seem strange that a value stored using four bytes (the same as the Integer type) can store a number
that is larger than even the Long type. This is possible because of the way in which numbers are stored; a
real number can be stored with different levels of precision. Note that there are six digits after the decimal
point in the definition of the Single type. When a real number gets very large or very small, the stored
value is limited by its significant places.

Because real values contain fewer significant places than their maximum value, when working near
the extremes it is possible to lose precision. For example, while it is possible to represent a Long with
the value of 9223372036854775805, the Single type rounds this value to 9.223372E18. This seems like a
reasonable action to take, but it isn’t a reversible action. The following code demonstrates how this loss
of precision and data can result in errors:

Dim l As Long
Dim s As Single

l = Long.MaxValue
Console.WriteLine(l)

18

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 19

Chapter 1: Visual Basic 2008 Core Elements

s = Convert.ToSingle(l)
Console.WriteLine(s)
s -= 1000000000000
l = Convert.ToInt64(s)

Console.WriteLine(l)
Console.WriteLine(Long.MaxValue - l)

I placed this code into the simple console application created earlier in this chapter and ran it. The code
creates a Long that has the maximum value possible, and outputs this value. Then it converts this value
to a Single and outputs it in that format. Next, the value 1000000000000 is subtracted to the Single using
the -= syntax, which is similar to writing s = s − 1000000000000. Finally, the code assigns the Single
value back into the Long and then outputs both the Long and the difference between the original value
and the new value. The results are shown in Figure 1-3. The results probably aren’t consistent with what
you might expect.

Figure 1-3

The first thing to notice is how the values are represented in the output based on type. The Single value
actually uses an exponential display instead of displaying all of the significant digits. More important, as
you can see, the result of what is stored in the Single after the math operation actually occurs is not accu-
rate in relation to what is computed using the Long value. Therefore, both the Single and Double types
have limitations in accuracy when you are doing math operations. These accuracy issues are because
of limitations in what is stored and how binary numbers represent decimal numbers. To better address
these issues for large numbers, .NET provides the decimal type.

Double
The behavior of the previous example changes if you replace the value type of Single with Double.
A Double uses eight bytes to store values, and as a result has greater precision and range. The range
for a Double is from 4.94065645841247E-324 to 1.79769313486232E308 for positive values and from
−1.79769313486231E308 to −4.94065645841247E-324 for negative values. The precision has increased
such that a number can contain 15 digits before the rounding begins. This greater level of precision
makes the Double value type a much more reliable variable for use in math operations. It’s possible to
represent most operations with complete accuracy with this value. To test this, change the sample code
from the previous section so that instead of declaring the variable s as a Single you declare it as a Double
and rerun the code. Don’t forget to also change the conversion line from ToSingle to ToDouble. Did you
get an accurate difference? Or was yours like mine — the difference in value off by 1?

Decimal
The Decimal type is a hybrid that consists of a 12-byte integer value combined with two additional
16-bit values that control the location of the decimal point and the sign of the overall value. A Decimal
value consumes 16 bytes in total and can store a maximum value of 79228162514264337593543950335.

19

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 20

Chapter 1: Visual Basic 2008 Core Elements

This value can then be manipulated by adjusting where the decimal place is located. For example, the
maximum value while accounting for four decimal places is 7922816251426433759354395.0335. This is
because a Decimal isn’t stored as a traditional number, but as a 12-byte integer value, with the location
of the decimal in relation to the available 28 digits. This means that a Decimal does not inherently round
numbers the way a Double does.

As a result of the way values are stored, the closest precision to zero that a Decimal supports is
0.0000000000000000000000000001. The location of the decimal point is stored separately; and the Decimal
type stores a value that indicates whether its value is positive or negative separately from the actual
value. This means that the positive and negative ranges are exactly the same, regardless of the number of
decimal places.

Thus, the system makes a trade-off whereby the need to store a larger number of decimal places reduces
the maximum value that can be kept at that level of precision. This trade-off makes a lot of sense. After
all, it’s not often that you need to store a number with 15 digits on both sides of the decimal point, and
for those cases you can create a custom class that manages the logic and leverages one or more decimal
values as its properties. You’ll find that if you again modify and rerun the sample code you’ve been
using in the last couple of sections that converts to and from Long values by using Decimals for the
interim value and conversion, now your results are completely accurate.

Char and Byte
The default character set under Visual Basic is Unicode. Therefore, when a variable is declared
as type Char, Visual Basic creates a two-byte value, since, by default, all characters in the Unicode
character set require two bytes. Visual Basic supports the declaration of a character value in three ways.
Placing a c following a literal string informs the compiler that the value should be treated as a char-
acter, or the Chr and ChrW methods can be used. The following code snippet shows that all three of
these options work similarly, with the difference between the Chr and ChrW methods being the range
of available valid input values. The ChrW method allows for a broader range of values based on wide
character input.

Dim chrLtr_a As Char = "a"c
Dim chrAsc_a As Char = Chr(97)
Dim chrAsc_b as Char = ChrW(98)

To convert characters into a string suitable for an ASCII interface, the runtime library needs to validate
each character’s value to ensure that it is within a valid range. This could have a performance impact
for certain serial arrays. Fortunately, Visual Basic supports the Byte value type. This type contains a
value between 0 and 255 that exactly matches the range of the ASCII character set. When interfacing
with a system that uses ASCII, it is best to use a Byte array. The runtime knows there is no need to
perform a Unicode-to-ASCII conversion for a Byte array, so the interface between the systems operates
significantly faster.

In Visual Basic, the Byte value type expects a numeric value. Thus, to assign the letter ‘‘a’’ to a Byte, you
must use the appropriate character code. One option to get the numeric value of a letter is to use the Asc
method, as shown here:

Dim bytLtrA as Byte = Asc("a")

20

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 21

Chapter 1: Visual Basic 2008 Core Elements

DateTime
The Visual Basic Date keyword has always supported a structure of both date and time. You can, in
fact, declare date values using both the DateTime and Date types. Note that internally Visual Basic no
longer stores a date value as a Double; however, it provides key methods for converting the current
internal date representation to the legacy Double type. The ToOADate and FromOADate methods support
backward compatibility during migration from previous versions of Visual Basic.

Visual Basic also provides a set of shared methods that provides some common dates. The concept of
shared methods is described in more detail in the next chapter, which covers object syntax, but, in short,
shared methods are available even when you don’t create an instance of a class. For the DateTime struc-
ture, the Now method returns a Date value with the local date and time. This method has not been changed
from Visual Basic 6.0, but the Today and UtcNow methods have been added. These methods can be used to
initialize a Date object with the current local date, or the date and time based on Universal Coordinated
Time (also known as Greenwich Mean Time), respectively. You can use these shared methods to initialize
your classes, as shown in the following code sample:

Dim dteNow as Date = Now()
Dim dteToday as Date = Today()
Dim dteGMT as DateTime = DateTime.UtcNow()
Dim dteString As Date = #4/16/1965#
Console.WriteLine(dteString.ToLongDateString)

The last two lines in the preceding example just demonstrate the use of Date as a primitive. As noted
earlier, primitive values enable you to assign them directly within your code, but many developers seem
unaware of the format for doing this with dates.

Reference Types (Classes)
A lot of the power of Visual Basic is harnessed in objects. An object is defined by its class, which describes
what data, methods, and other attributes an instance of that class supports. Thousands of classes are
provided in the .NET Framework class library.

When code instantiates an object from a class, the object created is a reference type. Recall that the data
contained in value and reference types is stored in different locations, but this is not the only difference
between them. A class (which is the typical way to refer to a reference type) has additional capabilities,
such as support for protected methods and properties, enhanced event-handling capabilities, construc-
tors, and finalizers, and can be extended with a custom base class via inheritance. Classes can also be
used to define how operators such as ‘‘=’’ and ‘‘+’’ work on an instance of the class.

The intention of this chapter is to introduce you to some commonly used classes, and to complement
your knowledge of the common value types already covered. Chapters 2 and 3 contain a detailed look at
object orientation in Visual Basic. This chapter examines the features of the Object, String, DBNull, and
Array classes, as well as the Collection classes found in the System.Collections namespace.

The Object Class
The Object class is the base class for every type in .NET, both value and reference types. At its core, every
variable is an object and can be treated as such. You can think of the Object class (in some ways) as the

21

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 22

Chapter 1: Visual Basic 2008 Core Elements

replacement for the Variant type found in COM and COM-based versions of Visual Basic, but take care.
COM, a Variant type, represents a variant memory location; in Visual Basic, an Object type represents a
reference to an instance of the Object class. In COM, a Variant is implemented to provide a reference to
a memory area on the heap, but its definition doesn’t define any specific ways of accessing this data area.
As you’ll see during this look at objects, an instance of an ‘‘object’’ includes all the information needed to
define the actual type of that object.

Because the Object class is the basis of all types, you can assign any variable to an object. Reference types
maintain their current reference and implementation but are generically handled, whereas value types
are packaged into a box and placed into the memory location associated with the Object. For example,
there are instance methods that are available on Object, such as ToString. This method, if implemented,
returns a string representation of an instance value. Because the Object class defines it, it can be called
on any object:

Dim objMyClass as New MyClass("Hello World")

Console.WriteLine(objMyClass.ToString)

This brings up the question of how the Object class knows how to convert custom classes to String
objects. The answer is that it doesn’t. In order for this method to actually return the data in an instance
of a String, a class must override this method. Otherwise, when this code is run, the default version
of this method defined at the Object level returns the name of the current class (MyClass) as its string
representation. This section will be clearer after you read Chapter 2. The key point is that if you create an
implementation of ToString in your class definition, then even when an instance of your object is cast to
the type Object, your custom method will still be called. The following snippet shows how to create a
generic object under the Option Strict syntax:

Dim objVar as Object

objVar = Me

CType(objVar, Form).Text = "New Dialog Title Text"

That Object is then assigned a copy of the current instance of a Visual Basic form. In order to access the
Text property of the original Form class, the Object must be cast from its declared type of Object to its
actual type (Form), which supports the Text property. The CType command (covered later) accepts the
object as its first parameter, and the class name (without quotes) as its second parameter. In this case,
the current instance variable is of type Form; and by casting this variable, the code can reference the Text
property of the current form.

The String Class
Another class that plays a large role in most development projects is the String class. Having Strings
defined as a class is more powerful than the Visual Basic 6.0 data type of String that you may be more
familiar with. The String class is a special class within .NET because it is the one primitive type that is
not a value type. To make String objects compatible with some of the underlying behavior in .NET, they
have some interesting characteristics.

These methods are shared, which means that the methods are not specific to any instance of a String.
The String class also contains several other methods that are called based on an instance of a specific

22

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 23

Chapter 1: Visual Basic 2008 Core Elements

String object. The methods on the String class replace the functions that Visual Basic 6.0 had as part
of the language for string manipulation, and they perform operations such as inserting strings, splitting
strings, and searching strings.

String()
The String class has several different constructors for those situations in which you aren’t simply assign-
ing an existing value to a new string. The term constructor is expanded upon in Chapter 2. Constructors
are methods that are used to construct an instance of a class. String() would be the default construc-
tor for the String class, but the String class does not expose this constructor publicly. The following
example shows the most common method of creating a String:

Dim strConstant as String = "ABC"
Dim strRepeat as New String("A"c, 20)

A variable is declared of type String and as a primitive is assigned the value ‘ABC’. The second dec-
laration uses one of the parameterized versions of the String constructor. This constructor accepts
two parameters: The first is a character and the second is the number of times that character should
be repeated in the string.

In addition to creating an instance of a string and then calling methods on your variable, the String
class has several shared methods. A shared method refers to a method on a class that does not require an
instance of that class. Shared methods are covered in more detail in relation to objects in Chapter 2; for
the purpose of this chapter, the point is that you can reference the class String followed by a ‘‘.’’ and see
a list of shared methods for that class. For strings, this list includes the following:

Shared Methods Description

Empty This is actually a property. It can be used when an empty String is
required. It can be used for comparison or initialization of a String.

Compare Compares two objects of type String

CompareOrdinal Compares two Strings, without considering the local national language
or culture

Concat Concatenates one or more Strings

Copy Creates a new String with the same value as an instance provided

Equals Determines whether two Strings have the same value

IsNullorEmpty This shared method is a very efficient way of determining whether a given
variable has been set to the empty string or Nothing.

Not only have creation methods been encapsulated, but other string-specific methods, such as character
and substring searching, and case changes, are now available from String objects instances.

The SubString Method
The .NET String class has a method called SubString. Thanks to overloading, covered in Chapter 2,
there are two versions of this method: The first accepts a starting position and the number of characters

23

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 24

Chapter 1: Visual Basic 2008 Core Elements

to retrieve, while the second accepts simply the starting location. The following code shows examples of
using both of these methods on an instance of a String:

Dim strMyString as String = "Hello World"

Console.WriteLine(strMystring.SubString(0,5))
Console.WriteLine(strMyString.SubString(6))

The PadLeft and PadRight Methods
These methods enable you to justify a String so that it is left- or right-justified. As with SubString,
the PadLeft and PadRight methods are overloaded. The first version of these methods requires only a
maximum length of the String, and then uses spaces to pad the String. The other version requires two
parameters: the length of the returned String and the character that should be used to pad the original
String. An example of working with the PadLeft method is as follows:

Dim strMyString as String = "Hello World"

Console.WriteLine(strMyString.PadLeft(30))
Console.WriteLine(strMyString.PadLeft(20,"."c))

The String.Split Method
This instance method on a string is designed to enable you to take a string and separate out that string
into an array of components. For example, if you want to quickly find each of the different elements in
a comma-delimited string, you could use the Split method to turn the string into an array of smaller
strings, each of which contains one field of data. In the following example, the stringarray variable will
contain an array of three elements:

Dim strMyString As String = "Column1, Col2, Col3"
Dim stringarray As String() = strMyString.Split(","c)
Console.WriteLine(stringarray.Count.ToString())

The String Class Is Immutable
The Visual Basic String class isn’t entirely different from the String type that VB programmers have
used for years. The majority of string behaviors remain unchanged, and the majority of methods are
now available as classes. However, to support the default behavior that people associate with the String
primitive type, the String class isn’t declared in the same way as several other classes. Strings in .NET
do not allow editing of their data. When a portion of a string is changed or copied, the operating system
allocates a new memory location and copies the resulting string to this new location. This ensures that
when a string is copied to a second variable, the new variable references its own copy.

To support this behavior in .NET, the String class is defined as an immutable class. This means that each
time a change is made to the data associated with a string, a new instance is created, and the original
referenced memory is released for garbage collection. This is an expensive operation, but the result is
that the String class behaves as people expect a primitive type to behave. Additionally, when a copy
of a string is made, the String class forces a new version of the data into the referenced memory. This
ensures that each instance of a string references only its own memory. Consider the following code:

Dim strMyString as String
Dim intLoop as Integer

24

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 25

Chapter 1: Visual Basic 2008 Core Elements

For intLoop = 1 to 1000
strMyString = strMyString & "A very long string "

Next
Console.WriteLine(strMyString)

This code does not perform well. For each assignment operation on the strMyString variable, the system
allocates a new memory buffer based on the size of the new string, and copies both the current value of
strMyString and the new text that is to be appended. The system then frees the previous memory that
must be reclaimed by the garbage collector. As this loop continues, the new memory allocation requires
a larger chunk of memory. Therefore, operations such as this can take a long time. However, .NET offers
an alternative in the System.Text.StringBuilder object, shown in the following example:

Dim objMyStrBldr as New System.Text.StringBuilder()
Dim intLoop as Integer

For intLoop = 1 to 1000
ObjMyStrBldr.Append("A very long string ")

Next
Console.WriteLine(objMyStrBldr.ToString())

The preceding code works with strings but does not use the String class. The .NET class library
contains a class called System.Text.StringBuilder, which performs better when strings will be edited
repeatedly. This class does not store strings in the conventional manner; it stores them as individual
characters, with code in place to manage the ordering of those characters. Thus, editing or appending
more characters does not involve allocating new memory for the entire string. Because the preceding
code snippet does not need to reallocate the memory used for the entire string, each time another set
of characters is appended it performs significantly faster. Ultimately, an instance of the String class is
never explicitly needed because the StringBuilder class implements the ToString method to roll up all
of the characters into a string. While the concept of the StringBuilder class isn’t new, because it is now
available as part of the Visual Basic implementation, developers no longer need to create their own string
memory managers.

String Constants
If you ever have to produce output based on a string you’ll quickly find yourself needing to embed certain
constant values. For example, it’s always useful to be able to add a carriage-return linefeed combination
to trigger a new line in a message box. One way to do this is to learn the underlying ASCII codes and
then embed these control characters directly into your string or string-builder object.

Visual Basic provides an easier solution for working with these: the Microsoft.VisualBasic.Constants
class. The Constants class, which you can tell by its namespace is specific to Visual Basic, contains defi-
nitions for several standard string values that you might want to embed. The most common, of course, is
Constants.VbCrLf, which represents the carriage-return linefeed combination. Feel free to explore this
class for additional constants that you might need to manipulate string output.

The DBNull Class and IsDBNull Function
When working with a database, a value for a given column may not be defined. For a reference type
this isn’t a problem, as it is possible to set reference types to Nothing. However, for value types, it is
necessary to determine whether a given column from the database or other source has an actual value.

25

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 26

Chapter 1: Visual Basic 2008 Core Elements

The first way to manage this task is to leverage the DBNull call and the IsDBNull function. The IsDBNull
function accepts an object as its parameter and returns a Boolean that indicates whether the variable has
been initialized.

In addition to this method, Visual Basic has access to the DBNull class. This class is part of the System
namespace, and to use it you declare a local variable with the DBNull type. This variable is then used
with an is comparison operator to determine whether a given variable has been initialized:

Dim sysNull As System.DBNull = System.DBNull.Value
Dim strMyString As String = Nothing

If strMyString Is sysNull Then
strMyString = "Initialize my String"

End If
If Not IsDBNull(strMyString) Then

Console.WriteLine(strMyString)
End If

In this code, the strMyString variable is declared and initialized to Nothing. The first conditional is
evaluated to True, and as a result the string is initialized. The second conditional then ensures that the
declared variable has been initialized. Because this was accomplished in the preceding code, this condi-
tion is also True. In both cases, the sysNull value is used not to verify the type of the object, but to verify
that it has not yet been instantiated with a value.

Nullable Types
In addition to having the option to explicitly check for the DBNull value, Visual Basic 2005 introduced
the capability to create a nullable value type. In the background, when this syntax is used, the system
creates a reference type containing the same data that would be used by the value type. Your code can
then check the value of the nullable type before attempting to set this into a value type variable. Nullable
types are built using generics, discussed in Chapter 6.

For consistency, however, let’s take a look at how nullable types work. The key, of course, is that value
types can’t be set to null. This is why nullable types aren’t value types. The following statement shows
how to declare a nullable integer:

Dim intValue as Nullable(Of Integer)

The intValue variable acts like an integer, but isn’t actually an integer. As noted, the syntax is based on
generics, but essentially you have just declared an object of type Nullable and declared that this object
will, in fact, hold integer data. Thus, both of the following assignment statements are valid:

intValue = 123
intValue = Nothing

However, at some point you are going to need to pass intValue to a method as a parameter, or set
some property on an object that is looking for an object of type Integer. Because intValue is actually
of type Nullable, it has the properties of a nullable object. The nullable class has two properties of
interest when you want to get the underlying value. The first is the property value. This represents the
underlying value type associated with this object. In an ideal scenario, you would just use the value
property of the nullable object in order to assign to your actual value a type of integer and everything

26

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 27

Chapter 1: Visual Basic 2008 Core Elements

would work. If the intValue.value wasn’t assigned, you would get the same value as if you had just
declared a new Integer without assigning it a value.

Unfortunately, that’s not how the nullable type works. If the intValue.value property contains Nothing
and you attempt to assign it, then it throws an exception. To avoid getting this exception, you always
need to check the other property of the nullable type: HasValue. The HasValue property is a Boolean that
indicates whether a value exists; if one does not, then you shouldn’t reference the underlying value. The
following code example shows how to safely use a nullable type:

Dim int as Integer
If intValue.HasValue Then

int = intValue.Value
End If

Of course, you could add an Else statement to the preceding and use either Integer.MinValue or
Integer.MaxValue as an indicator that the original value was Nothing. The key point here is that nul-
lable types enable you to easily work with nullable columns in your database, but you must still verify
whether an actual value or null was returned.

Arrays
It is possible to declare any type as an array of that type. Because an array is a modifier of another type,
the basic Array class is never explicitly declared for a variable’s type. The System.Array class that serves
as the base for all arrays is defined such that it cannot be created, but must be inherited. As a result, to
create an Integer array, a set of parentheses is added to the declaration of the variable. These paren-
theses indicate that the system should create an array of the type specified. The parentheses used in the
declaration may be empty or may contain the size of the array. An array can be defined as having a single
dimension using a single number, or as having multiple dimensions.

All .NET arrays at an index of zero have a defined number of elements. However, the way an array is
declared in Visual Basic varies slightly from other .NET languages such as C#. Back when the first .NET
version of Visual Basic was announced, it was also announced that arrays would always begin at 0 and
that they would be defined based on the number of elements in the array. In other words, Visual Basic
would work the same way as the other initial .NET languages. However, in older versions of Visual
Basic, it is possible to specify that an array should start at 1 instead of 0. This meant that a lot of existing
code didn’t define arrays based on their upper limit. To resolve this issue, the engineers at Microsoft
decided on a compromise: All arrays in .NET begin at 0, but when an array is declared in Visual Basic,
the definition is based on the upper limit of the array, not the number of elements.

The main result of this upper-limit declaration is that arrays defined in Visual Basic have one more entry
by definition than those defined with other .NET languages. Note that it’s still possible to declare an
array in Visual Basic and reference it in C# or another .NET language. The following code illustrates
some simple examples that demonstrate five different ways to create arrays, using a simple integer array
as the basis for the comparison:

Dim arrMyIntArray1(20) as Integer
Dim arrMyIntArray2() as Integer = {1, 2, 3, 4}
Dim arrMyIntArray3(4,2) as Integer
Dim arrMyIntArray4(,) as Integer = _

{ {1, 2, 3},{4, 5, 6}, {7, 8, 9},{10, 11, 12},{13, 14 , 15} }
Dim arrMyIntArray5() as Integer

27

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 28

Chapter 1: Visual Basic 2008 Core Elements

In the first case, the code defines an array of integers that spans from arrMyIntArray1(0) to
arrMyIntArray1(20). This is a 21-element array, because all arrays start at 0 and end with the value
defined in the declaration as the upper bound. The second statement creates an array with four elements
numbered 0 through 3, containing the values 1 to 4. The third statement creates a multidimensional array
containing five elements at the first level, with each of those elements containing three child elements.
The challenge is to remember that all subscripts go from 0 to the upper bound, meaning that each array
contains one more element than its upper bound. The result is an array with 15 elements. The next line
of code, the fourth, shows an alternative way of creating the same array, but in this case there are four
elements, each containing four elements, with subscripts from 0 to 3 at each level. Finally, the last line
demonstrates that it is possible to simply declare a variable and indicate that the variable is an array,
without specifying the number of elements in the array.

Multidimensional Arrays
As shown earlier in the sample array declarations, the definition of arrMyIntArray3 is a multi-
dimensional array. This declaration creates an array with 15 elements (five in the first range, each
containing three elements) ranging from arrMyIntArray3(0,0) through arrMyIntArray3(2,1) to
arrMyIntArray3(4,2). As with all elements of an array, when it is created without specific values, the
value of each of these elements is created with the default value for that type. This case also demonstrates
that the size of the different dimensions can vary. It is possible to nest deeper than two levels, but this
should be done with care because such code is difficult to maintain.

The fourth declaration shown previously creates arrMyIntArray4(,) with predefined values. The val-
ues are mapped based on the outer set being the first dimension and the inner values being associated
with the next inner dimension. For example, the value of arrMyIntArray4(0,1) is 2, while the value
of arrMyIntArray4(2,3) is 12. The following code snippet illustrates this using a set of nested loops to
traverse the array. It also provides an example of calling the UBound method with a second parameter to
specify that you are interested in the upper bound for the second dimension of the array:

Dim intLoop1 as Integer
Dim intLoop2 as Integer
For intLoop1 = 0 to UBound(arrMyIntArray4)

For intLoop2 = 0 to UBound(arrMyIntArray4, 2)
Console.WriteLine arrMyIntArray4(intLoop1, intLoop2).ToString

Next
Next

The UBound Function
Continuing to reference the arrays defined earlier, the declaration of arrMyIntArray2 actually defined
an array that spans from arrMyIntArray2(0) to arrMyIntArray2(3). This is the case because when
you declare an array by specifying the set of values, it still starts at 0. However, in this case you are not
specifying the upper bound, but rather initializing the array with a set of values. If this set of values came
from a database or other source, then it might not be clear what the upper limit on the array was. To
verify the upper bound of an array, a call can be made to the UBound function:

Console.Writeline CStr(UBound(ArrMyIntArray2))

The preceding line of code retrieves the upper bound of the first dimension of the array. However, as
noted in the preceding section, you can specify an array with several different dimensions. Thus, this
old-style method of retrieving the upper bound carries the potential for an error of omission. The better

28

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 29

Chapter 1: Visual Basic 2008 Core Elements

way to retrieve the upper bound is to use the GetUpperBound method. In this case, you need to tell the
array which upper-bound value you want, as shown here:

ArrMyIntArray2.GetUpperBound(0)

This is the preferred method of getting an array’s upper bound because it explicitly indicates which
upper bound is wanted when using multidimensional arrays.

The UBound function has a companion called LBound. The LBound function computes the lower bound for
a given array. However, as all arrays and collections in Visual Basic are 0-based, it doesn’t have much
value anymore.

The ReDim Statement
The final declaration demonstrated previously is for arrMyIntArray5(). This is an example of an array
that has not yet been instantiated. If an attempt were made to assign a value to this array, it would trigger
an exception. The solution to this is to use the ReDim keyword. Although ReDim was part of Visual Basic
6.0, it has changed slightly. The first change is that code must first Dim an instance of the variable; it is not
acceptable to declare an array using the ReDim statement. The second change is that code cannot change
the number of dimensions in an array. For example, an array with three dimensions cannot grow to an
array of four dimensions, nor can it be reduced to only two dimensions. To further extend the example
code associated with arrays, consider the following, which manipulates some of the arrays previously
declared. Note that the arrMyIntArray5 declaration was repeated for this example because this variable
isn’t actually usable until after it is redimensioned in the following code:

Dim arrMyIntArray5() as Integer

’ The commented statement below would compile but would cause a runtime exception.
’arrMyIntArray5(0) = 1

ReDim arrMyIntArray5(2)
ReDim arrMyIntArray3(5,4)
ReDim Preserve arrMyIntArray4(UBound(arrMyIntArray4),2)

The ReDim of arrMyIntArray5 instantiates the elements of the array so that values can be assigned
to each element. The second statement redimensions the arrMyIntArray3 variable defined earlier.
Note that it is changing the size of both the first dimension and the second dimension. While it is not
possible to change the number of dimensions in an array, it is possible to resize any of an array’s dimen-
sions. This capability is required if declarations such as Dim arrMyIntArray6(, , ,) As Integer are to
be legal.

By the way, while it is possible to repeatedly ReDim a variable, this type of action should ideally be done
only rarely, and never within a loop. If you intend to loop through a set of entries and add entries to an
array, try to determine the number of entries you’ll need before entering the loop, or at a minimum ReDim
the size of your array in chunks to improve performance.

The Preserve Keyword
The last item in the code snippet in the preceding section illustrates an additional keyword associated
with redimensioning. The Preserve keyword indicates that the data stored in the array prior to redi-
mensioning should be transferred to the newly created array. If this keyword is not used, then the data
stored in an array is lost. Additionally, in the preceding example, the ReDim statement actually reduces

29

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 30

Chapter 1: Visual Basic 2008 Core Elements

the second dimension of the array. While this is a perfectly legal statement, this means that even though
you have specified preserving the data, the data values 4, 8, 12, and 16 that were assigned in the orig-
inal definition of this array will be discarded. These are lost because they were assigned in the highest
index of the second array. Because arrMyIntArray4(1,3) is no longer valid, the value that resided at this
location has been lost.

Arrays continue to be very powerful in Visual Basic, but the basic Array class is just that, basic. It
provides a powerful framework, but it does not provide a lot of other features that would allow for
more robust logic to be built into the array. To achieve more advanced features, such as sorting and
dynamic allocation, the base Array class has been inherited by the classes that make up the Collections
namespace.

Collections
The Collections namespace is part of the System namespace and provides a series of classes that imple-
ment advanced array features. While the capability to make an array of existing types is powerful,
sometimes more power is needed in the array itself. The capability to inherently sort or dynamically
add dissimilar objects in an array is provided by the classes of the Collections namespace. This name-
space contains a specialized set of objects that can be instantiated for additional features when working
with a collection of similar objects. The following table defines several of the objects that are available as
part of the System.Collections namespace:

Class Description

ArrayList Implements an array whose size increases automatically as elements are added

BitArray Manages an array of Booleans that are stored as bit values

Hashtable Implements a collection of values organized by key. Sorting is done based on a
hash of the key.

Queue Implements a first in, first out collection

SortedList Implements a collection of values with associated keys. The values are sorted by
key and are accessible by key or index.

Stack Implements a last in, first out collection

Each of the objects listed focuses on storing a collection of objects. This means that in addition to the
special capabilities each provides, it also provides one additional capability not available to objects cre-
ated based on the Array class. In short, because every variable in .NET is based on the Object class, it is
possible to have a collection defined, because one of these objects contains elements that are defined with
different types. This is true because each of these collection types stores an array of objects, and because
all classes are of type Object, a string could be stored alongside an integer value. As a result, it’s possible
within the collection classes for the actual objects being stored to be different. Consider the following
example code:

Dim objMyArrList As New System.Collections.ArrayList()
Dim objItem As Object
Dim intLine As Integer = 1
Dim strHello As String = "Hello"

30

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 31

Chapter 1: Visual Basic 2008 Core Elements

Dim objWorld As New System.Text.StringBuilder("World")

’ Add an integer value to the array list.
objMyArrList.Add(intLine)

’ Add an instance of a string object
objMyArrList.Add(strHello)

’ Add a single character cast as a character.
objMyArrList.Add(" "c)

’ Add an object that isn’t a primitive type.
objMyArrList.Add(objWorld)

’ To balance the string, insert a break between the line
’ and the string "Hello", by inserting a string constant.
objMyArrList.Insert(1, ". ")

For Each objItem In objMyArrList
’ Output the values...
Console.Write(objItem.ToString())

Next
Console.WriteLine()
For Each objItem In objMyArrList

’ Output the types...
Console.Write(objItem.GetType.ToString() + " : ")

Next

The preceding code is an example of implementing the ArrayList collection class. The collection classes,
as this example shows, are versatile. The preceding code creates a new instance of an ArrayList, along
with some related variables to support the demonstration. The code then shows four different types of
variables being inserted into the same ArrayList. Next, the code inserts another value into the middle
of the list. At no time has the size of the array been declared, nor has a redefinition of the array size
been required.

Part of the reason for this is that the Add and Insert methods on the ArrayList class are defined to accept
a parameter of type Object. This means that the ArrayList object can literally accept any value in .NET.

Specialized and Generic Collections
Visual Basic has additional classes available as part of the System.Collections.Specialized name-
space. These classes tend to be oriented around a specific problem. For example, the ListDictionary
class is designed to take advantage of the fact that while a hash table is very good at storing and retrieving
a large number of items, it can be costly when there are only a few items. Similarly, the StringCollection
and StringDictionary classes are defined so that when working with strings, the time spent interpreting
the type of object is reduced and overall performance is improved. Each class defined in this namespace
represents a specialized implementation that has been optimized for handling specific data types.

This specialization is different from the specialization provided by one of the features introduced with
Visual Studio 2005 and .NET 2.0, generics. The System.Collections.Generics namespace contains
versions of the collection classes that have been defined to support generics. The basic idea of generics is
that because performance costs and reliability concerns are associated with casting to and from the object
type, collections should allow you to specify what specific type they will contain. Generics not only

31

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 32

Chapter 1: Visual Basic 2008 Core Elements

prevent you from paying the cost of boxing for value types but, more important, add to the capability to
create type-safe code at compile time. Generics are a powerful extension to the .NET environment and
are covered in detail in Chapter 6.

Commands: Looping Statements
Just as with conditional statements, it is possible in Visual Basic to loop or cycle through all of the ele-
ments in an array. The preceding examples have relied on the use of the For statement, which has not
yet been covered. Since you’ve now covered both arrays and collections, it’s appropriate to introduce the
primary commands for working with the elements contained in those variable types. Both the For loop
and While loop share similar characteristics, and which to use is often a matter of preference.

For Each and For Next
The For structure in Visual Basic is the primary way of managing loops. It actually has two different
formats. A standard For Next statement enables you to set a loop control variable that can be incremented
by the For statement and custom exit criteria from your loop. Alternatively, if you are working with a
collection in which the items in the array are not indexed numerically, then it is possible to use a For Each
loop to automatically loop through all of the items in that collection. The following code shows a typical
For Next statement that cycles through each of the items in an array:

For i As Integer = 0 To 10 Step 2
arrMyIntArray1(i) = i

Next

The preceding example sets the value of every other array element to its index, starting with the first
item, since like all .NET collections, the collection starts at 0. The result is that items 0, 2, 4, 6, 8, 10 are set,
but items 1, 3, 5, 7, 9 may not be defined because the loop doesn’t address that value.

The For Next structure is most commonly set up to traverse an array or similar construct (for example, a
data set). The control variable i in the preceding example must be numeric. The value can be incremented
from a starting value to an ending value, which are 0 and 10, respectively, in this example. Finally, it is
possible to accept the default increment of 1; or, if desired, you can add a Step qualifier to your command
and update the control value by a value other than 1. Note that setting the value of Step to 0 means that
your loop will theoretically loop an infinite number of times. Best practices suggest your control value
should be an integer greater than 0 and not a decimal or other floating-point number.

Visual Basic provides two additional commands that can be used within the For loop’s block to enhance
performance. The first is Exit For; and as you might expect, this statement causes the loop to end and not
continue to the end of the processing. The other is Continue, which tells the loop that you are finished
executing code with the current control value and that it should increment the value and reenter the loop
for its next iteration:

For i = 1 To 100 Step 2

If arrMyIntArray1.Count <= i Then Exit For
If i = 5 Then Continue For
arrMyIntArray1 (i) = i - 1

Next

32

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 33

Chapter 1: Visual Basic 2008 Core Elements

Both the Exit For and Continue keywords were used in the preceding example. Note how each uses a
format of the If-Then structure that places the command on the same line as the If statement so that no
End If statement is required. This loop exits if the control value is larger than the number of rows defined
for arrMyIntArray1.

Next, if the control variable i indicates you are looking at the sixth item in the array (index of five), then
this row is to be ignored but processing should continue within the loop. Keep in mind that even though
the loop control variable starts at 1, the first element of the array is still at zero. The Continue statement
indicates that the loop should return to the For statement and increment the associated control variable.
Thus, the code does not process the next line for item six, where i equals 5.

The preceding examples demonstrate that in most cases, because your loop is going to process a known
collection, Visual Basic provides a command that encapsulates the management of the loop control vari-
able. The For Each structure automates the counting process and enables you to quickly assign the current
item from the collection so that you can act on it in your code. It is a common way to process all of the
rows in a data set or most any other collection, and all of the loop control elements such as Continue and
Exit are still available:

For Each item As Object In objMyArrList
’Code A1

Next

While, Do While, and Do Until
In addition to the For loop, Visual Basic includes the While and Do loops, with two different versions
of the Do loop. The first is the Do While loop. With a Do While loop, your code starts by checking for a
condition; and as long as that condition is true, it executes the code contained in the Do loop. Optionally,
instead of starting the loop by checking the While condition, the code can enter the loop and then check
the condition at the end of the loop. The Do Until loop is similar to the Do While loop:

Do While blnTrue = True
’Code A1

Loop

The Do Until differs from the Do While only in that, by convention, the condition for a Do Until is placed
after the code block, thus requiring the code in the Do block to execute once before the condition is
checked. It bears repeating, however, that a Do Until block can place the Until condition with the Do
statement instead of with the Loop statement, and a Do While block can similarly have its condition at the
end of the loop:

Do
’Code A1

Loop Until (blnTrue = True)

In both cases, instead of basing the loop around an array of items or a fixed number of iterations, the loop
is instead instructed to continue perpetually until a condition is met. A good use for these loops involves
tasks that need to repeat for as long as your application is running. Similar to the For loop, there are
Exit Do and Continue commands that end the loop or move to the next iteration, respectively. Note that
parentheses are allowed but are not required for both the While and the Until conditional expression.

33

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 34

Chapter 1: Visual Basic 2008 Core Elements

The other format for creating a loop is to omit the Do statement and just create a While loop. The While
loop works similarly to the Do loop, with the following differences. First, the While loop’s endpoint is an
End While statement instead of a loop statement. Second, the condition must be at the start of the loop
with the While statement, similar to the Do While. Finally, the While loop has an Exit While statement
instead of Exit Do, although the behavior is the same. An example is shown here:

While blnTrue = True
If blnFalse Then

blnTrue = False
End if
If not blnTrue Then Exit While
System.Threading.Thread.Sleep(500)
blnFalse = True

End While

The While loop has more in common with the For loop, and in those situations where someone is familiar
with another language such as C++ or C#, it is more likely to be used than the older Do-Loop syntax that
is more specific to Visual Basic.

Finally, before leaving the discussion of looping, note the potential use of endless loops. Seemingly
endless, or infinite, loops play a role in application development, so it’s worthwhile to illustrate how you
might use one. For example, if you were writing an e-mail program, you might want to check the user’s
mailbox on the server every 20 seconds. You could create a Do While or Do Until loop that contains
the code to open a network connection and check the server for any new mail messages to download.
You would continue this process until either the application was closed or you were unable to connect
to the server. When the application was asked to close, the loop’s Exit statement would execute, thus
terminating the loop. Similarly, if the code were unable to connect to the server, it might exit the current
loop, alert the user, and probably start a loop that would look for network connectivity on a regular basis.

One warning with endless loops: Always include a call to Thread.Sleep so that the loop only executes a
single iteration within a given time frame to avoid consuming too much processor time.

Boxing
Normally, when a conversion (implicit or explicit) occurs, the original value is read from its current
memory location, and then the new value is assigned. For example, to convert a Short to a Long, the
system reads the two bytes of Short data and writes them to the appropriate bytes for the Long variable.
However, under Visual Basic, if a value type needs to be managed as an object, then the system performs
an intermediate step. This intermediate step involves taking the value on the stack and copying it to the
heap, a process referred to as boxing. As noted earlier, the Object class is implemented as a reference
type, so the system needs to convert value types into reference types for them to be objects. This doesn’t
cause any problems or require any special programming, because boxing isn’t something you declare or
directly control, but it does affect performance.

If you’re copying the data for a single value type, this is not a significant cost, but if you’re processing an
array that contains thousands of values, the time spent moving between a value type and a temporary
reference type can be significant.

Fortunately, there are ways to limit the amount of boxing that occurs. One method that works well is to
create a class based on the value type you need to work with. This might seem counterintuitive at first

34

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 35

Chapter 1: Visual Basic 2008 Core Elements

because it costs more to create a class. The key is how often you reuse the data contained in the class. By
repeatedly using the object to interact with other objects, you avoid creating a temporary boxed object.

Examples in two important areas will help illustrate boxing. The first involves the use of arrays. When
an array is created, the portion of the class that tracks the element of the array is created as a reference
object, but each element of the array is created directly. Thus, an array of integers consists of the array
object and a set of integer value types. When you update one of these values with another integer value,
no boxing is involved:

Dim arrInt(20) as Integer
Dim intMyValue as Integer = 1

arrInt(0) = 0
arrInt(1) = intMyValue

Neither of these assignments of an integer value into the integer array that was defined previously
requires boxing. In each case, the array object identifies which value on the stack needs to be referenced,
and the value is assigned to that value type. The point here is that just because you have referenced an
object doesn’t mean you are going to box a value. The boxing occurs only when the values being assigned
are being transitioned from value types to reference types:

Dim strBldr as New System.Text.StringBuilder()
Dim mySortedList as New System.Collections.SortedList()
Dim count as Integer
For count = 1 to 100

strBldr.Append(count)
mySortedList.Add(count, count)

Next

The preceding snippet illustrates two separate calls to object interfaces. One call requires boxing of the
value intCount, while the other does not. Nothing in the code indicates which call is which, but the
Append method of StringBuilder has been overridden to include a version that accepts an integer, while
the Add method of the SortedList collection expects two objects. Although the integer values can be
recognized by the system as objects, doing so requires the runtime library to box these values so that they
can be added to the sorted list.

The key to boxing isn’t that you are working with objects as part of an action, but that you are passing a
value to a parameter that expects an object, or you are taking an object and converting it to a value type.
However, boxing does not occur when you call a method on a value type. There is no conversion to an
object, so if you need to assign an integer to a string using the ToString method, there is no boxing of
the integer value as part of the creation of the string. Conversely, you are explicitly creating a new string
object, so the cost is similar.

Parameter Passing
When an object’s methods or an assembly’s procedures and methods are called, it’s often appropriate to
provide input for the data to be operated on by the code. The values are referred to as parameters, and
any object can be passed as a parameter to a Function or Sub.

When passing parameters, be aware of whether the parameter is being passed ‘‘by value’’ (ByVal) or ‘‘by
reference’’ (ByRef). Passing a parameter by value means that if the value of that variable is changed, then

35

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 36

Chapter 1: Visual Basic 2008 Core Elements

when the Function/Sub returns, the system automatically restores that variable to the value it had before
the call. Passing a parameter by reference means that if changes are made to the value of a variable, then
these changes affect the actual variable and, therefore, are still present when the variable returns.

This is where it gets a little challenging for new Visual Basic developers. Under .NET, passing a parameter
by value indicates only how the top-level reference (the portion of the variable on the stack)
for that object is passed. Sometimes referred to as a shallow copy operation, the system copies only the
top-level reference value for an object passed by value. This is important to remember because it means
that referenced memory is not protected. When you pass an integer by value, if the program changes
the value of the integer, then your original value is restored. Conversely, if you pass a reference type,
then only the location of your referenced memory is protected, not the data located within that memory
location. Thus, while the reference passed as part of the parameter remains unchanged for the calling
method, the actual values stored in referenced objects can be updated even when an object is passed
by value.

In addition to mandatory parameters, which must be passed with a call to a given function, it is possible
to declare optional parameters. Optional parameters can be omitted by the calling code. This way, it
is possible to call a method such as PadRight, passing either a single parameter defining the length of
the string and using a default of space for the padding character, or with two parameters, the first still
defining the length of the string but the second now replacing the default of space with a dash.

Public Function PadRight(ByVal intSize as Integer, _
Optional ByVal chrPad as Char = " "c)

End Function

To use default parameters, it is necessary to make them the last parameters in the function declaration.
Visual Basic also requires that every optional parameter have a default value. It is not acceptable to
merely declare a parameter and assign it the Optional keyword. In Visual Basic, the Optional keyword
must be accompanied by a value that is assigned if the parameter is not passed in.

ParamArray
In addition to passing explicit parameters, it is also possible to tell .NET that you would like to allow a
user to pass any number of parameters of the same type. This is called a parameter array, and it enables
a user to pass as many instances of a given parameter as are appropriate. For example, the following
code creates a function Add, which allows a user to pass an array of integers and get the sum of these
integers:

Public Function Add(ByVal ParamArray values() As Integer) As Long
Dim result As Long = 0
For Each value As Integer In values

result += value
Next
Return result

End Function

The preceding code illustrates a function (first shown at the beginning of this chapter without its imple-
mentation) that accepts an array of integers. Notice that the ParamArray qualifier is preceded by a ByVal
qualifier for this parameter. The ParamArray requires that the associated parameters be passed by value;
they cannot be optional parameters.

36

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 37

Chapter 1: Visual Basic 2008 Core Elements

You might think this looks like a standard parameter passed by value except that it’s an array, but there
is more to it than that. In fact, the power of the ParamArray derives from how it can be called, which also
explains many of its limitations. The following code shows one way this method can be called:

Dim int1 as Integer = 2
Dim int2 as Integer = 3
Dim sum as Long = Add(1, int1, int2)

Notice that the preceding line, which calls this Add function, doesn’t pass an array of integers; instead,
it passes three distinct integer values. The ParamArray keyword tells Visual Basic to automatically join
these three distinct values into an array for use within this method. However, the following lines also
represent an acceptable way to call this method, by passing an actual array of values:

Dim myIntArray() as Integer = {1, 2, 3, 4}
Dim sum as Long = Add(myIntArray)

Finally, note one last limitation on the ParamArray keyword: It can only be used on the last parameter
defined for a given method. Because Visual Basic is grabbing an unlimited number of input values to
create the array, there is no way to indicate the end of this array, so it must be the final parameter.

Variable Scope
The concept of variable scope encapsulates two key elements. In all the discussion so far of variables, we
have not focused on the allocation and deallocation of those variables from memory. The first allocation
challenge is related to what happens when you declare two variables with the same name but at different
locations in the code. For example, suppose a class declares a variable called myObj that holds a prop-
erty for that class. Then, within one of that class’s methods, you declare a different variable also named
myObj. What will happen in that method? Scope defines the lifetime and precedence of every variable you
declare, and it handles this question.

Similarly, there is question of the removal of variables that you are no longer using, so you can free up
memory. Chapter 4 covers the collection of variables and memory once it is no longer needed by an
application, so this discussion focuses on priority, with the understanding that when a variable is no
longer ‘‘in scope,’’ it is available to the garbage collector for cleanup.

.NET essentially defines four levels of variable scope. The outermost scope is global. Essentially, just as
your source code defines classes, it can also declare variables that exist the entire time that your appli-
cation runs. These variables have the longest lifetime because they exist as long as your application is
executing. Conversely, these variables have the lowest precedence. Thus, if within a class or method you
declare another variable with the same name, then the variable with the smaller, more local scope is used
before the global version.

After global scope, the next scope is at the class or module level. When you add properties to a class, you
are creating variables that will be created with each instance of that class. The methods of that class will
then reference those member variables from the class, before looking for any global variables. Note that
because these variables are defined within a class, they are only visible to methods within that class. The
scope and lifetime of these variables is limited by the lifetime of that class, and when the class is removed
from the system, so are those variables. More important, those variables declared in one instance of a class
are not visible in other classes or in other instances of the same class (unless you actively expose them, in

37

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 38

Chapter 1: Visual Basic 2008 Core Elements

which case the object instance is used to fully qualify a reference to them; this concept is explored further
in Chapter 2).

The next shorter lifetime and smaller scope is that of method variables. When you declare a new variable
within a method, such variables, as well as those declared as parameters, are only visible to code that
exists within that module. Thus, the method Add wouldn’t see or use variables declared in the method
Subtract in the same class.

Finally, within a given method are various commands that can encapsulate a block of code (mentioned
earlier in this chapter). Commands such as If Then and For Each create blocks of code within a method,
and it is possible within this block of code to declare new variables. These variables then have a scope of
only that block of code. Thus, variables declared within an If Then block or a For loop only exist within
the constraints of the If block or execution of the loop. Creating variables in a For loop is a known
performance mistake and should be avoided.

Data Type Conversions
So far, this chapter has focused primarily on individual variables; but when developing software, it is
often necessary to take a numeric value and convert it to a string to display in a text box. Similarly,
it is often necessary to accept input from a text box and convert this input to a numeric value. These
conversions, unlike some, can be done in one of two fashions: implicitly or explicitly.

Implicit conversions are those that rely on the system taking the data at runtime and adjusting it to the
new type without any guidance. Often, Visual Basic’s default settings enable developers to write code
containing many implicit conversions that the developer may not even notice.

Explicit conversions, conversely, are those for which the developer recognizes the need to change a
variable’s type and assign it to a different variable. Unlike implicit conversions, explicit conversions are
easily recognizable within the code. Some languages such as C# require that essentially all conversions
that might be type unsafe be done through an explicit conversion; otherwise, an error is thrown.

It is therefore important to understand what a type-safe implicit conversion is. In short, it’s a conver-
sion that cannot fail because of the nature of the data involved. For example, if you assign the value of
a smaller type, Short, into a larger type, Long, then there is no way this conversion can fail. As both
values are integer-style numbers, and the maximum and minimum values of a Short variable are well
within the range of a Long, this conversion will always succeed and can safely be handled as an implicit
conversion:

Dim shortNumber As Short = 32767
Dim longNumber As Long = shortNumber

However, the reverse of this is not a type-safe conversion. In a system that demands explicit conver-
sions, the assignment of a Long value to a Short variable results in a compilation error, as the compiler
doesn’t have any safe way to handle the assignment when the larger value is outside the range of the
smaller value. It is still possible to explicitly cast a value from a larger type to a smaller type, but this

38

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 39

Chapter 1: Visual Basic 2008 Core Elements

is an explicit conversion. By default, Visual Basic supports certain unsafe implicit conversions. Thus,
adding the following line will not, by default, cause an error under Visual Basic:

shortNumber = longNumber

This is possible for two reasons. One is based on Visual Basic’s legacy support. Previous versions of
Visual Basic supported the capability to implicitly cast across types that don’t fit the traditional implicit
casting boundaries. It has been maintained in the language because one of the goals of Visual Basic is to
support rapid prototyping. In a rapid prototyping model, a developer is writing code that ‘‘works’’ for
demonstration purposes but may not be ready for deployment. This distinction is important because in
the discussion of implicit conversions, you should always keep in mind that they are not a best practice
for production software.

Implicit Conversions and Compiler Options
As noted in the introduction to this section, Visual Basic supports certain unsafe implicit conversions.
This capability is on by default but can be disabled in two ways. The first method is specific to each
source file and involves adding a line to the top of the source file to indicate to the compiler the status of
Option Strict.

The following line will override whatever the default project setting for Option Strict is for your project.
However, while this can be done on a per-source listing basis, this is not the recommended way to
manage Option Strict. For starters, consistently adding this line to each of your source files isn’t a good
practice:

Option Strict On

The preferred method to manage the Option Strict setting is to change the setting for your entire project.
Without going into details about the XML associated with your project file, the easiest way to accomplish
this is to use Visual Studio 2008. Visual Studio 2008 and the various versions of this tool are discussed
in more detail in Chapter 13; however, for completeness, the compilation settings are discussed in this
context.

Visual Studio 2008 includes a tab on the Project Settings page to edit the compiler settings for an entire
project. You can access this screen by right-clicking the project in the Solution Explorer and selecting
Properties from the context menu. When you select the Compile tab of the Project Properties dialog, you
should see a window similar to the one shown in Figure 1-4.

Aside from your default project file output directory, this page contains several compiler options. These
options are covered here because the Option Explicit and Option Strict settings directly affect your vari-
able usage:

❑ Option Explicit — This option has not changed from previous versions of Visual Basic. When
enabled, it ensures that every variable is explicitly declared. Of course, if you are using Option
Strict, then this setting doesn’t matter because the compiler won’t recognize the type of an unde-
clared variable. To my knowledge, there’s no good reason to ever turn this option off.

39

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 40

Chapter 1: Visual Basic 2008 Core Elements

Figure 1-4

❑ Option Strict — When this option is enabled, the compiler must be able to determine the type
of each variable, and if an assignment between two variables requires a type conversion — for
example, from Integer to Boolean — then the conversion between the two types must be
expressed explicitly. This setting can be edited by adding an Option Strict declaration to the top
of your source code file. The statement within a source file applies to all of the code entered in
that source file, but only to the code in that file.

❑ Option Compare — This option determines whether strings should be compared as binary
strings or whether the array of characters should be compared as text. In most cases, leaving
this as binary is appropriate. Doing a text comparison requires the system to convert the binary
values that are stored internally prior to comparison. However, the advantage of a text-based
comparison is that the character ‘‘A’’ is equal to ‘‘a’’ because the comparison is case-insensitive.
This enables you to perform comparisons that don’t require an explicit case conversion of the
compared strings. In most cases, however, this conversion still occurs, so it’s better to use binary
comparison and explicitly convert the case as required.

❑ Option Infer — This option is new to Visual Studio 2008 and is brought to you by the require-
ments of LINQ. When you execute a LINQ statement, you can have returned a data table that
may or may not be completely typed in advance. As a result, the types need to be inferred when
the command is executed. Thus, instead of a variable that is declared without an explicit type
being defined as an object, the compiler and runtime attempt to infer the correct type for
this object.

Existing code developed with Visual Studio 2005 is unaware of this concept, so this option will
be off by default for any project that is migrated to Visual Studio 2008. New projects will have
this option turned on, but this means that if you cut and paste code from a Visual Studio 2005
project into a Visual Studio 2008 project, or vice versa, you’ll need to be prepared for an error in
the pasted code because of changes in how types are inferred.

40

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 41

Chapter 1: Visual Basic 2008 Core Elements

In addition to setting Option Explicit, Option Strict, Option Compare, and Option Infer to either On
or Off for your project, Visual Studio 2008 allows you to customize specific compiler conditions that may
occur in your source file. Thus, it is possible to leverage individual settings, such as requiring early bind-
ing as opposed to runtime binding, without limiting implicit conversions. These individual settings are
included in the table of individual compiler settings listed below the Option Strict setting. Therefore,
you can literally create a custom version of the Option Strict settings by turning on and off individual
compiler settings for your project.

Notice that as you change your Option Strict setting, the notifications with the top few conditions are
automatically updated to reflect the specific requirements of this new setting. In general, this table lists
a set of conditions that relate to programming practices you might want to avoid or prevent, and which
you should definitely be aware of. The use of warnings for the majority of these conditions is appropriate,
as there are valid reasons why you might want to use or avoid each.

Basically, these conditions represent possible runtime error conditions that the compiler can’t truly detect,
except to identify that an increased possibility for error exists. Selecting Warning for a setting bypasses
that behavior, as the compiler will warn you but allow the code to remain. Conversely, setting a behavior
to Error prevents compilation.

An example of why these conditions are noteworthy is the warning on accessing shared member vari-
ables. If you are unfamiliar with shared member values, they are part of the discussion of classes in
Chapter 2. At this point, it’s just necessary to understand that these values are shared across all instances
of a class. Thus, if a specific instance of a class is updating a shared member value, then it is appropriate
to get a warning to that effect. The action is one that can lead to errors, as new developers sometimes fail
to realize that a shared member value is common across all instances of a class, so if one instance updates
the value, then the new value is seen by all other instances.

While many of these conditions are only addressed as individual settings, Visual Studio 2008 carries for-
ward the Option Strict setting. Most experienced developers agree that using Option Strict and being
forced to recognize when type conversions are occurring is a good thing. Certainly, when developing
software that will be deployed in a production environment, anything that can be done to help prevent
runtime errors is desirable. However, Option Strict can slow the development of a program because
you are forced to explicitly define each conversion that needs to occur. If you are developing a prototype
or demo component that has a limited life, you might find this option limiting.

If that were the end of the argument, then many developers would simply turn the option off and forget
about it, but Option Strict has a runtime benefit. When type conversions are explicitly identified, the
system performs them faster. Implicit conversions require the runtime system to first identify the types
involved in a conversion and then obtain the correct handler.

Another advantage of Option Strict is that during implementation, developers are forced to consider
every place a conversion might occur. Perhaps the development team didn’t realize that some of the
assignment operations resulted in a type conversion. Setting up projects that require explicit conversions
means that the resulting code tends to have type consistency to avoid conversions, thus reducing the
number of conversions in the final code. The result is not only conversions that run faster, but also, it is
hoped, a smaller number of conversions.

As for Option Infer, well, it is a powerful new feature. On the one hand, it will be used as part of LINQ
and the features that support LINQ, but it affects all code. In the past you needed to write the AS <mytype>
portion of every variable definition in order to have a variable defined with an explicit type. However,
now you can dimension a variable and assign it an integer or set it equal to another object, and the AS

41

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 42

Chapter 1: Visual Basic 2008 Core Elements

Integer portion of your declaration isn’t required. On the other hand, you can now dimension a variable
and assign it to a specific type without declaration, which reduces the readability of your code. Be careful
with Option Infer; it can make your code obscure.

In addition, note that Option Infer is directly affected by Option Strict. In an ideal world, Option
Strict Off would require that Option Infer also be turned off or disabled in the user interface. That isn’t
the case, although it is the behavior that is seen; once Option Strict is off, Option Infer is essentially
ignored.

How Option Infer is used in LINQ is covered in Chapter 11.

XML Literals
One of the main new features in Visual Basic 2008 is the introduction of XML literals. With Visual Studio
2008, it is possible within Visual Basic to create a new variable and assign a block of well-formatted
XML code to that string. This is being introduced here because it demonstrates a great example of a
declaration that leverages Option Infer. Start by declaring a string variable called myString and setting
this to a value such as "Hello World". In the code block that follows, notice that the first Dim statement
used does not include the "As" clause that is typically used in such declarations:

Dim myString = "Hello World"
Dim myXMLElement = <MyXMLNode attribute1="1">This is formatted Text.

Print these lines separately.
Ensure whitespace is also maintained.

<%= myString %>
</MyXMLNode>

Instead, the declaration of the myString variable relies on type inference. The compiler recognizes that
this newly declared variable is being assigned a string, so the variable is automatically defined as a
string. After the first variable is declared on the first line of the code block, the second line of code makes
up the remainder of the code block, and you may notice that it spans multiple lines without any line
continuation characters.

The second Dim statement declares another new variable, but in this case the variable is set equal to raw
XML. Note that the ‘‘<’’ is not preceded by any quotes in the code. Instead, that angle bracket indicates
that what follows will be a well-formed XML statement. At this point the Visual Basic compiler stops
treating what you have typed as Visual Basic code and instead reads this text as XML. Thus, the top-level
node can be named, attributes associated with that node can be defined, and text can be assigned to the
value of the node. The only requirement is that the XML be well formed, which means you need to have
a closing declaration, the last line in the preceding code block, to end that XML statement.

By default, because this is just an XML node and not a full document, Visual Basic infers that you are
defining an XMLElement and will define the mXMLElement variable as an instance of that class. Beyond
this, however, there is the behavior of your static XML. Note that the text itself contains comments about
being formatted. That is because within your static XML, Visual Basic automatically recognizes and
embeds literally everything.

Thus, the name XML literal. The text is captured as is, with any embedded white space or ‘‘carriage
returns’’/line feeds captured. The other interesting capability is shown on the line that reads as follows:

<%= myString %>

42

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 43

Chapter 1: Visual Basic 2008 Core Elements

This is a shorthand declaration that enables you to insert the value of the variable myString into your
literal XML. In this case, myString is set on the preceding line, but it could easily be an input parameter
to a method that returns an XML element. When you run this code, the current value of myString will be
inserted into your XML declaration.

Figure 1-5 shows a bit more code than you saw in the preceding code block. It also includes a set of
Console.WriteLine statements. These statements were added to display the data from your new XML
element. Two different statements displaying the contents of the XML element as a string appear because
each results in slightly different output:

Console.WriteLine("----------The XML-----------")
Console.WriteLine(myXMLElement.ToString())
Console.WriteLine()
Console.WriteLine("----------The Data----------")
Console.WriteLine(myXMLElement.Value.ToString())

Figure 1-5

Of the five Console.WriteLine statements, only the second and fifth are important. The first statement
on the second line instructs the XML element object to return a string representing itself. As such, the
XML element will return all of the content of that object, including the raw XML itself. The writeline that
ends the preceding code block has output the XML element to a string that only reflects the value of the
data defined for that element. Note that if the basic XML element you defined in the previous code block
had any nested XML elements, then these would be considered part of the contents of your XML element,
and their definitions and attributes would be output as part of this statement.

As shown in Figure 1-6, the result of this output is that the first block of text outputted includes your
custom XML node and its attribute. Not only do you see the text that identifies the value of the XML, you
also see that actual XML structure. However, when you instead print only the value from the XML block,
what you see is in fact just that text. Note that XML has embedded the carriage returns and left-hand
white space that was part of your XML literal so that your text appears formatted. With the use of XML
literals, you ‘‘literally’’ have the capability to replace the somewhat cryptic String.Format method call
with a very explicit means of formatting an output string. Of course, not everything can rely on Option
Infer and implicit conversions.

43

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 44

Chapter 1: Visual Basic 2008 Core Elements

Figure 1-6

Performing Explicit Conversions
Keep in mind that even when you choose to allow implicit conversions, these are only allowed for a
relatively small number of data types. At some point you’ll need to carry out explicit conversions. The
following code is an example of some typical conversions between different integer types when Option
Strict is enabled:

Dim myShort As Short
Dim myUInt16 As UInt16
Dim myInt16 As Int16
Dim myInteger As Integer
Dim myUInt32 As UInt32
Dim myInt32 As Int32
Dim myLong As Long
Dim myInt64 As Int64

myShort = 0
myUInt16 = Convert.ToUInt16(myShort)
myInt16 = myShort
myInteger = myShort
myUInt32 = Convert.ToUInt32(myShort)
myInt32 = myShort
myInt64 = myShort

myLong = Long.MaxValue
If myLong < Short.MaxValue Then

myShort = Convert.ToInt16(myLong)
End If
myInteger = CInt(myLong)

The preceding snippet provides some excellent examples of what might not be intuitive behavior. The
first thing to note is that you can’t implicitly cast from Short to UInt16, or any of the other unsigned types
for that matter. That’s because with Option Strict the compiler won’t allow an implicit conversion that
might result in a value out of range or loss of data. You may be thinking that an unsigned Short has a
maximum that is twice the maximum of a signed Short, but in this case, if the variable myShort contained
a -1, then the value wouldn’t be in the allowable range for an unsigned type.

44

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 45

Chapter 1: Visual Basic 2008 Core Elements

Just for clarity, even with the explicit conversion, if myShort were a negative number, then the
Convert.ToUInt32 method would throw a runtime exception. Managing failed conversions requires
either an understanding of exceptions and exception handling, as covered in Chapter 8, or the use of a
conversion utility such as TryParse, covered later in this section.

The second item illustrated in this code is the shared method MaxValue. All of the integer and deci-
mal types have this property. As the name indicates, it returns the maximum value for the specified
type. There is a matching MinValue method for getting the minimum value. As shared properties, the
properties can be referenced from the class (Long.MaxValue) without requiring an instance.

Finally, although this code will compile, it won’t always execute correctly. It illustrates a classic error,
which in the real world is often intermittent. The error occurs because the final conversion statement
does not check to ensure that the value being assigned to myInteger is within the maximum range for an
integer type. On those occasions when myLong is larger than the maximum allowed, this code will throw
an exception.

Visual Basic provides many ways to convert values. Some of them are updated versions of techniques
that are supported from previous versions of Visual Basic. Others, such as the ToString method, are an
inherent part of every class (although the .NET specification does not guarantee how a ToString class is
implemented for each type).

The following set of conversion methods is based on the conversions supported by Visual Basic. They
coincide with the primitive data types described earlier; however, continued use of these methods is not
considered a best practice. That bears repeating: While you may find the following methods in existing
code, you should strive to avoid and replace these calls:

CBool() CByte()

CChar() CDate()

CDbl() CDec()

CInt() CLng()

CObj() CShort()

CSng() CStr()

Each of these methods has been designed to accept the input of the other primitive data types (as appro-
priate) and to convert such items to the type indicated by the method name. Thus, the CStr class is used to
convert a primitive type to a String. The disadvantage of these methods is that they have been designed
to support any object. This means that if a primitive type is used, then the method automatically boxes
the parameter prior to getting the new value. This results in a loss of performance. Finally, although
these are available as methods within the VB language, they are actually implemented in a class (as with
everything in the .NET Framework). Because the class uses a series of type-specific overloaded methods,
the conversions run faster when the members of the Convert class are called explicitly:

Dim intMyShort As Integer = 200
Convert.ToInt32(intMyShort)
Convert.ToDateTime("9/9/2001")

45

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 46

Chapter 1: Visual Basic 2008 Core Elements

The classes that are part of System.Convert implement not only the conversion methods listed earlier,
but also other common conversions. These additional methods include standard conversions for things
such as unsigned integers and pointers.

All the preceding type conversions are great for value types and the limited number of classes to which
they apply, but these implementations are oriented toward a limited set of known types. It is not possible
to convert a custom class to an Integer using these classes. More important, there should be no reason to
have such a conversion. Instead, a particular class should provide a method that returns the appropriate
type. That way, no type conversion is required. However, when Option Strict is enabled, the compiler
requires you to cast an object to an appropriate type before triggering an implicit conversion. Note,
however, that the Convert method isn’t the only way to indicate that a given variable can be treated as
another type.

Parse and TryParse
Most value types, at least those which are part of the .NET Framework, provide a pair of shared methods
called Parse and TryParse. These methods accept a value of your choosing and then attempt to con-
vert this variable into the selected value type. The Parse and TryParse methods are only available on
value types. Reference types have related methods called DirectCast and Cast, which are optimized for
reference variables.

The Parse method has a single parameter. This input parameter accepts a value that is the target for the
object you are looking to create of a given type. This method then attempts to create a value based on the
data passed in. However, be aware that if the data passed into the Parse method cannot be converted,
then this method will throw an exception that your code needs to catch. The following line illustrates
how the Parse function works:

result = Long.Parse("100")

Unfortunately, when you embed this call within a Try-Catch statement for exception handling, you cre-
ate a more complex block of code. Because you always need to encapsulate such code within a Try-Catch
block, the .NET development team decided that it would make more sense to provide a version of this
method that encapsulated that exception-handling logic.

This is the origin of the TryParse method. The TryParse method works similarly to the Parse
method except that it has two parameters and returns a Boolean, rather than a value. Instead of assigning
the value of the TryParse method, you test it as part of an If-Then statement to determine whether the
conversion of your data to the selected type was successful. If the conversion was successful, then
the new value is stored in the second parameter passed to this method, which you can then assign to
the variable you want to hold that value:

Dim converted As Long
If Long.TryParse("100", converted) Then

result = converted
End If

CType
The CType method accepts two parameters: the first is the object that is having its type cast, and the
second is the name of the object to which it is being cast. This system enables you to cast objects from
parent to child types or from child to parent types. There is a limitation to the second parameter in that

46

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 47

Chapter 1: Visual Basic 2008 Core Elements

it can’t be a variable containing the name of the casting target. Casting is defined at compile time, and
any form of dynamic name selection would occur at runtime. An example of casting was shown as part
of the discussion of working with the Object class earlier in this chapter.

Support for a runtime determination of object types is based on treating variables as objects and using the
object metadata and the TypeOf operator to verify that an object supports various method and property
calls. The CType method accepts both value and reference types. More detailed information regarding its
use is presented in Chapter 2.

DirectCast and TryCast
The DirectCast method works similarly to the CType method, with a couple of minor differences. First,
unlike CType, the DirectCast method accepts only reference types. This is because the DirectCast
method is tied much more closely to objects and the use of inheritance and interfaces. Additionally,
in order to make it perform faster, DirectCast does not include any logic to actually check for and con-
vert an object to the requested type. The DirectCast method is meant to allow your code to take an
object that has been cast as its base type of object and recast it in its original form. Similar to CType, these
methods are covered in more detail in Chapter 2.

Summary
This chapter looked at many of the basic building blocks of Visual Basic that are used throughout project
development. Understanding not only the basic components, but also how they work will help you to
write more stable and better performing software. Note the following highlights of this chapter:

❑ Beware of array sizes; all arrays start at 0 and are defined not by size, but by the highest index.

❑ Remember to use the StringBuilder class for string manipulation.

❑ Pay attention to variable scope, and rely on it for cleaning up variables you no longer need.

❑ Use Option Strict; it’s not about style, it’s about reliability and performance.

❑ Try to avoid legacy methods for conversions.

❑ Attempt to leverage the TryParse and TryCast methods.

❑ Understand variable scope and when variables will go out of scope.

While this chapter covered many other items, including the Decimal type and how boxing works, these
bullets highlight some of the more important items. Whether you are creating a new library of methods
or a new user interface, these items consistently turn up in some form. You have seen that while .NET
provides a tremendous amount of power, that power comes at a sometimes significant performance cost.

47

Evjen-91361 c01.tex V2 - 04/01/2008 3:17pm Page 48

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 49

Object Syntax Introduction

Visual Basic supports the four major defining concepts required for a language to be fully object-
oriented:

❑ Abstraction — Abstraction is merely the ability of a language to create ‘‘black box’’ code,
to take a concept and create an abstract representation of that concept within a program.
A Customer object, for instance, is an abstract representation of a real-world customer. A
DataTable object is an abstract representation of a set of data.

❑ Encapsulation — This is the concept of a separation between interface and implementa-
tion. The idea is that you can create an interface (Public methods, properties, fields, and
events in a class), and, as long as that interface remains consistent, the application can inter-
act with your objects. This remains true even when you entirely rewrite the code within a
given method — thus, the interface is independent of the implementation. Encapsulation
enables you to hide the internal implementation details of a class. For example, the algo-
rithm you use to compute pi might be proprietary. You can expose a simple API to the end
user, but hide all the logic used by the algorithm by encapsulating it within your class.

❑ Polymorphism — Polymorphism is reflected in the ability to write one routine that can
operate on objects from more than one class — treating different objects from different
classes in exactly the same way. For instance, if both the Customer and the Vendor objects
have a Name property and you can write a routine that calls the Name property regardless
of whether you are using a Customer or Vendor object, then you have polymorphism.

Visual Basic supports polymorphism in two ways — through late binding (much like
Smalltalk, a classic example of a true object-oriented language) and through the imple-
mentation of multiple interfaces. This flexibility is very powerful and is preserved within
Visual Basic.

❑ Inheritance — Inheritance is the idea that a class can gain the interface and behaviors of a
preexisting class. This is done by inheriting these behaviors from the existing class through
a process known as subclassing.

The next chapter discusses these four concepts in detail; this chapter focuses on the syntax that
enables you to utilize these concepts.

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 50

Chapter 2: Object Syntax Introduction

Visual Basic is also a component-based language. Component-based design is often viewed as a successor
to object-oriented design, so component-based languages have some other capabilities. These are closely
related to the traditional concepts of object orientation:

❑ Multiple interfaces — Each class in Visual Basic defines a primary interface (also called the default
or native interface) through its Public methods, properties, and events. Classes can also imple-
ment other, secondary interfaces in addition to this primary interface. An object based on this
class has multiple interfaces, and a client application can choose with which interface it will
interact with the object.

❑ Assembly (component) level scoping — Not only can you define your classes and methods as
Public (available to anyone), Protected (available through inheritance), and Private (avail-
able only locally), you can also define them as Friend — meaning they are available only within
the current assembly or component. This is not a traditional object-oriented concept, but is very
powerful when used with component-based applications.

This chapter explains how to create and use classes and objects in Visual Basic. We won’t get too deeply
into code, but it is important that you spend a little time familiarizing yourself with basic object-oriented
terms and concepts.

Object-Oriented Terminology
To begin, let’s take a look at the word object itself, along with the related class and instance terms. Then we
will move on to discuss the four terms that define the major functionality in the object-oriented world:
encapsulation, abstraction, polymorphism, and inheritance.

Objects, Classes, and Instances
An object is a code-based abstraction of a real-world entity or relationship. For instance, you might have a
Customer object that represents a real-world customer, such as customer number 123, or you might have
a File object that represents C:\config.sys on your computer’s hard drive.

A closely related term is class. A class is the code that defines an object, and all objects are created based
on a class. A class is an abstraction of a real-world concept, and it provides the basis from which you
create instances of specific objects. For example, in order to have a Customer object representing customer
number 123, you must first have a Customer class that contains all of the code (methods, properties,
events, variables, and so on) necessary to create Customer objects. Based on that class, you can create any
number of objects, each one an instance of the class. Each object is identical to the others, except that it
may contain different data.

You can create many instances of Customer objects based on the same Customer class. All of the Customer
objects are identical in terms of what they can do and the code they contain, but each one contains its own
unique data. This means that each object represents a different physical customer.

Composition of an Object
You use an interface to get access to an object’s data and behaviors. The object’s data and behaviors
are contained within the object, so a client application can treat the object like a black box, accessible

50

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 51

Chapter 2: Object Syntax Introduction

only through its interface. This is a key object-oriented concept called encapsulation. The idea is that
any program that makes use of this object will not have direct access to the behaviors or data; rather,
those programs must make use of your object’s interface.

Let’s walk through each of the three elements in detail.

Interface
The interface is defined as a set of methods (Sub and Function routines), properties (Property routines),
events, and fields (also known as variables) that are declared Public in scope.

You can also have Private methods and properties in your code. While these methods can be called by
code within your object, they are not part of the interface and cannot be called by programs written to
use your object. Another option is to use the Friend keyword, which defines the scope to be your current
project, meaning that any code within your project can call the method, but no code outside your project
(that is, from a different .NET assembly) can call the method. To complicate things a bit, you can also
declare methods and properties as Protected, and these are available to classes that inherit from your
class. You will look at Protected in Chapter 3, along with inheritance.

For example, you might have the following code in a class:

Public Function CalculateValue() As Integer

End Function

Because this method is declared with the Public keyword, it is part of the interface and can be called by
client applications that are using the object. You might also have a method such as this:

Private Sub DoSomething()

End Sub

This method is declared as being Private, so it is not part of the interface. This method can only be called
by code within the class — not by any code outside the class, such as code in a program that’s using one
of the objects.

Conversely, you can do something like this:

Public Sub CalculateValue()
DoSomething()

End Sub

In this case, you’re calling the Private method from within a Public method. While code using your
objects can’t directly call a Private method, you will frequently use Private methods to help structure
the code in a class to make it more maintainable and easier to read.

Finally, you can use the Friend keyword:

Friend Sub DoSomething()

End Sub

51

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 52

Chapter 2: Object Syntax Introduction

In this case, the DoSomething method can be called by code within the class, or from other classes or
modules within the current Visual Basic project. Code from outside the project will not have access to the
method.

The Friend scope is very similar to the Public scope in that it makes methods available for use by code
outside the object itself. Unlike Public, however, the Friend keyword restricts access to code within the
current Visual Basic project, preventing code in other .NET assemblies from calling the method.

Implementation or Behavior
The code inside a method is called the implementation. Sometimes it is also called behavior, as it is this code
that actually makes the object do useful work. For instance, you might have an Age property as part of
the object’s interface. Within that method, you might have code similar to the following:

Private _Age As Integer

Public ReadOnly Property Age() As Integer
Get
Return _Age

End Get
End Property

In this case, the code is returning a value directly out of a variable, rather than doing something better
such as calculate the value based on a birth date. However, this kind of code is often written in applica-
tions, and it seems to work fine for a while.

The key point is to understand that client applications can use the object even if you change the imple-
mentation, as long as you do not change the interface. If the method name and its parameter list and
return data type remain unchanged, then you can change the implementation any way you want.

The code necessary to call the Age property would look something like this:

theAge = myObject.Age

The result of running this code is that you get the Age value returned for your use. While the client appli-
cation will work fine, you will soon discover that hard-coding the age into the application is a problem, so
at some point you’ll want to improve this code. Fortunately, you can change the implementation without
changing the client code:

Private _BirthDate As Date

Public ReadOnly Property Age() As Integer
Get

Return CInt(DateDiff(DateInterval.Year, _BirthDate, Now))

End Get
End Property

You have changed the implementation behind the interface, effectively changing how it behaves, without
changing the interface itself. Now, when you run the client application, the Age value returned is accurate
over time, whereas in the previous implementation it was not.

52

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 53

Chapter 2: Object Syntax Introduction

Keep in mind that encapsulation is a syntactic tool — it enables the code to continue to run without
change. However, it is not semantic, meaning that just because the code continues to run, that does not
mean it continues to do what you actually want it to do.

In this example, the client code may have been written to overcome the initial limitations of the imple-
mentation in some way, and thus the client code might both rely on being able to retrieve the Age value,
and count on the result of that call being a fixed value over time.

The update to the implementation won’t stop the client program from running, but it may very well
prevent it from running correctly.

Fields or Instance Variables
The third key part of an object is its data, or state. In fact, it might be argued that the only important part
of an object is its data. After all, every instance of a class is absolutely identical in terms of its interface
and its implementation; the only thing that can vary at all is the data contained within that particular
object.

Fields are variables that are declared so that they are available to all code within the class. Typically,
fields that are declared Private in scope are available only to the code in the class itself. They are also
sometimes referred to as instance variables or member variables.

Don’t confuse fields with properties. In Visual Basic, a Property is a type of method geared to retrieving
and setting values, whereas a field is a variable within the class that may hold the value exposed by a
Property. For instance, you might have a class that has these fields:

Public Class TheClass

Private _Name As String
Private _BirthDate As Date

End Class

Each instance of the class — each object — will have its own set of these fields in which to store data.
Because these fields are declared with the Private keyword, they are only available to code within each
specific object.

While fields can be declared as Public in scope, this makes them available to any code using the objects
in a manner you cannot control. This directly breaks the concept of encapsulation, as code outside your
object can directly change data values without following any rules that might otherwise be set in the
object’s code.

If you want to make the value of a field available to code outside of the object, you should instead use a
property:

Public Class TheClass
Private _Name As String
Private _BirthDate As Date

Public ReadOnly Property Name() As String
Get

53

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 54

Chapter 2: Object Syntax Introduction

Return _Name
End Get

End Property

End Class

Because the Name property is a method, you are not directly exposing the internal variables to client code,
so you preserve encapsulation of the data. At the same time, through this mechanism, you are able to
safely provide access to your data as needed.

Fields can also be declared with the Friend scope, meaning they are available to all code in your project.
Therefore, like declaring them as Public, this breaks encapsulation and is strongly discouraged.

Now that you have a grasp of some of the basic object-oriented terminology, you are ready to explore the
creation of classes and objects. First you will see how Visual Basic enables you to interact with objects,
and then you will dive into the actual process of authoring those objects.

Working with Objects
In the .NET environment in general and within Visual Basic in particular, you use objects all the time
without even thinking about it. Every control on a form — in fact, every form — is an object. When you
open a file or interact with a database, you are using objects to do that work.

Object Declaration and Instantiation
Objects are created using the New keyword, indicating that you want a new instance of a particular class.
There are numerous variations on how or where you can use the New keyword in your code. Each one
provides different advantages in terms of code readability or flexibility.

The most obvious way to create an object is to declare an object variable and then create an instance of
the object:

Dim obj As TheClass
obj = New TheClass()

The result of this code is that you have a new instance of TheClass ready for use. To interact with this
new object, you use the obj variable that you declared. The obj variable contains a reference to the object,
a concept explored later.

You can shorten the preceding code by combining the declaration of the variable with the creation of the
instance, as illustrated here:

Dim obj As New TheClass()

In previous versions of Visual Basic, this substitution was a bad idea because it had negative performance
and maintainability effects. However, since Visual Basic 2005, there is no difference between the first
example and this one, other than code length.

54

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 55

Chapter 2: Object Syntax Introduction

The preceding code both declares the variable obj as data type TheClass and creates an instance of the
class, immediately creating an object that you can use. Another variation on this theme is as
follows:

Dim obj As TheClass = New TheClass()

Again, this both declares a variable of data type TheClass and creates an instance of the class. It is up to
you how you create these instances, as it is really a matter of style. This third syntax example provides
a great deal of flexibility while remaining compact. Though it is a single line of code, it separates the
declaration of the variable’s data type from the creation of the object.

Such flexibility is very useful when working with inheritance or multiple interfaces. You might declare
the variable to be of one type — say, an interface — and instantiate the object based on a class that imple-
ments that interface. You will revisit this syntax when interfaces are covered in detail in Chapter 3.

So far, you’ve been declaring a variable for new objects, but sometimes you simply need to pass an object
as a parameter to a method, in which case you can create an instance of the object right in the call to that
method:

DoSomething(New TheClass())

This calls the DoSomething method, passing a new instance of TheClass as a parameter. This can be even
more complex. Perhaps, instead of needing an object reference, your method needs an Integer. You can
provide that Integer value from a method on the object:

Public Class TheClass
Public Function GetValue() As Integer
Return 42

End Function
End Class

You can then instantiate the object and call the method all in one shot, thus passing the value returned
from the method as a parameter:

DoSomething(New TheClass().GetValue())

Obviously, you need to carefully weigh the readability of such code against its compactness. At some
point, having code that is more compact can detract from readability, rather than enhance it.

Object References
Typically, when you work with an object, you are using a reference to that object. Conversely, when you
are working with simple data types, such as Integer, you are working with the actual value, rather than
a reference. Let’s explore these concepts and see how they work and interact.

When you create a new object using the New keyword, you store a reference to that object in a variable, as
shown here:

Dim obj As New TheClass()

55

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 56

Chapter 2: Object Syntax Introduction

This code creates a new instance of TheClass. You gain access to this new object via the obj variable. This
variable holds a reference to the object. You might then do something like this:

Dim another As TheClass
another = obj

Now, you have a second variable, another, which also has a reference to the same object. You can use
either variable interchangeably, as they both reference the exact same object. Remember that the variable
you have is not the object itself but just a reference, or pointer, to the object.

Dereferencing Objects
When you are done working with an object, you can indicate that you are through with it by dereferencing
the object. To dereference an object, simply set the object reference to Nothing:

Dim obj As TheClass

obj = New TheClass()

obj = Nothing

After any or all variables that reference an object are set to Nothing, the .NET runtime knows that you
no longer need that object. At some point, the runtime destroys the object and reclaims the memory and
resources it consumed. You can find more information on the garbage collector in Chapter 4.

Between the time when you dereference the object and the time when the .NET Framework gets around
to actually destroying it, the object simply sits in the memory, unaware that it has been dereferenced.
Right before .NET destroys the object, the Finalize method is called on the object (if it has one).

Early Binding versus Late Binding
One of the strengths of Visual Basic has long been that it provides access to both early and late binding
when interacting with objects. Early binding means that code directly interacts with an object by directly
calling its methods. Because the Visual Basic compiler knows the object’s data type ahead of time, it
can directly compile code to invoke the methods on the object. Early binding also enables the IDE to
use IntelliSense to aid development efforts by enabling the compiler to ensure that you are referencing
methods that exist and are providing the proper parameter values.

Late binding means that your code interacts with an object dynamically at runtime. This provides a great
deal of flexibility because the code doesn’t care what type of object it is interacting with as long as the
object supports the methods you want to call. Because the type of the object is not known by the IDE
or compiler, neither IntelliSense nor compile-time syntax checking is possible, but in exchange you get
unprecedented flexibility.

If you enable strict type checking by using Option Strict On in the project’s Properties dialog or at
the top of the code modules, then the IDE and compiler enforce early binding behavior. By default,
Option Strict is turned off, so you have easy access to the use of late binding within the code. Chapter
1 discusses Option Strict. You can change this default directly in Visual Studio 2008 by selecting
Tools➪Options from the VS menu. The Options dialog is shown in Figure 2-1. Expanding the Projects
and Solutions node reveals the VB defaults. Feel free to change any of these default settings.

56

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 57

Chapter 2: Object Syntax Introduction

Figure 2-1

Implementing Late Binding
Late binding occurs when the compiler cannot determine the type of object that you’ll be calling. This
level of ambiguity is achieved using the Object data type. A variable of data type Object can hold
virtually any value, including a reference to any type of object. Thus, code such as the following could be
run against any object that implements a DoSomething method that accepts no parameters:

Option Strict Off

Module LateBind
Public Sub DoWork(ByVal obj As Object)
obj.DoSomething()

End Sub
End Module

If the object passed into this routine does not have a DoSomething method that accepts no parameters,
then an exception will be thrown. Thus, it is recommended that any code that uses late binding always
provide exception handling:

Option Strict Off

Module LateBind
Public Sub DoWork(ByVal obj As Object)

Try

obj.DoSomething()

Catch ex As MissingMemberException
’ do something appropriate given failure
’ to call this method

End Try

End Sub
End Module

Here, the call to the DoSomething method has been put in a Try block. If it works, then the code in the
Catch block is ignored; but in the case of a failure, the code in the Catch block is run. You need to write

57

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 58

Chapter 2: Object Syntax Introduction

code in the Catch block to handle the case in which the object does not support the DoSomething method
call. This Catch block only catches the MissingMemberException, which indicates that the method does
not exist on the object.

While late binding is flexible, it can be error prone and is slower than early-bound code. To make a
late-bound method call, the .NET runtime must dynamically determine whether the target object actually
has a method that matches the one you are calling. It must then invoke that method on your behalf. This
takes more time and effort than an early-bound call whereby the compiler knows ahead of time that the
method exists and can compile the code to make the call directly. With a late-bound call, the compiler
has to generate code to make the call dynamically at runtime.

Using the CType Function
Whether you are using late binding or not, it can be useful to pass object references around using the
Object data type, converting them to an appropriate type when you need to interact with them. This
is particularly useful when working with objects that use inheritance or implement multiple interfaces,
concepts discussed in Chapter 3.

If Option Strict is turned off, which is the default, then you can write code using a variable of type
Object to make an early-bound method call:

Module LateBind
Public Sub DoWork(obj As Object)

Dim local As TheClass
local = obj
local.DoSomething()

End Sub
End Module

This code uses a strongly typed variable, local, to reference what was a generic object value. Behind the
scenes, Visual Basic converts the generic type to a specific type so that it can be assigned to the strongly
typed variable. If the conversion cannot be done, then you get a trappable runtime error.

The same thing can be done using the CType function. If Option Strict is enabled, then the previous
approach will not compile, and the CType function must be used. Here is the same code making use
of CType:

Module LateBind
Public Sub DoWork(obj As Object)

Dim local As TheClass

local = CType(obj, TheClass)

local.DoSomething()
End Sub

End Module

This code declares a variable of type TheClass, which is an early-bound data type that you want to use.
The parameter you’re accepting is of the generic Object data type, though, so you use the CType method
to gain an early-bound reference to the object. If the object isn’t of type TheClass, then the call to CType
fails with a trappable error.

58

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 59

Chapter 2: Object Syntax Introduction

Once you have a reference to the object, you can call methods by using the early-bound variable local.
This code can be shortened to avoid the use of the intermediate variable. Instead, you can simply call
methods directly from the data type:

Module LateBind
Public Sub DoWork(obj As Object)

CType(obj, TheClass).DoSomething()

End Sub
End Module

Even though the variable you are working with is of type Object and therefore any calls to it will be late
bound, you use the CType method to temporarily convert the variable into a specific type — in this case,
the type TheClass.

If the object passed as a parameter is not of type TheClass, then you get a trappable error, so it is always
wise to wrap this code in a Try . . . Catch block.

As shown in Chapter 3, the CType function can also be very useful when working with objects that
implement multiple interfaces. When an object has multiple interfaces, you can reference a single object
variable through the appropriate interface as needed.

Using the DirectCast Function
Another function that is very similar to CType is the method DirectCast. The DirectCast call also con-
verts values of one type into another type. It works in a more restrictive fashion than CType, but the
trade-off is that it can be somewhat faster than CType:

Dim obj As TheClass

obj = New TheClass
DirectCast(obj, ITheInterface).DoSomething()

This is similar to the last example with CType, illustrating the parity between the two functions. There
are differences, however. First, DirectCast works only with reference types, whereas CType accepts both
reference and value types. For instance, CType can be used in the following code:

Dim int As Integer = CType(123.45, Integer)

Trying to do the same thing with DirectCast would result in a compiler error, as the value 123.45 is a
value type, not a reference type.

Second, DirectCast is not as aggressive about converting types as CType. CType can be viewed as an
intelligent combination of all the other conversion functions (such as CInt, CStr, and so on). DirectCast,
conversely, assumes that the source data is directly convertible, and it won’t take extra steps to convert
the data.

As an example, consider the following code:

Dim obj As Object = 123.45

Dim int As Integer = DirectCast(obj, Integer)

59

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 60

Chapter 2: Object Syntax Introduction

If you were using CType this would work, as CType uses CInt-like behavior to convert the value to an
Integer. DirectCast, however, will throw an exception because the value is not directly convertible
to Integer.

Using the TryCast Function
A function similar to DirectCast is TryCast. TryCast converts values of one type into another type,
but unlike DirectCast, if it can’t do the conversion, then TryCast doesn’t throw an exception. Instead,
TryCast simply returns Nothing if the cast can’t be performed. TryCast only works with reference values;
it cannot be used with value types such as Integer or Boolean.

Using TryCast, you can write code like this:

Module LateBind

Public Sub DoWork(obj As Object)
Dim temp As TheClass = TryCast(obj, Object)
If temp Is Nothing Then
’ the cast couldn’t be accomplished
’ so do no work

Else
temp.DoSomething()

End If
End Sub

End Module

If you are not sure whether a type conversion is possible, then it is often best to use TryCast. This function
avoids the overhead and complexity of catching possible exceptions from CType or DirectCast and still
provides you with an easy way to convert an object to another type.

Creating Classes
Using objects is fairly straightforward and intuitive. It is the kind of thing that even the most novice pro-
grammers pick up and accept rapidly. Creating classes and objects is a bit more complex and interesting.

Basic Classes
As discussed earlier, objects are merely instances of a specific template (a class). The class contains
the code that defines the behavior of its objects, and defines the instance variables that will contain the
object’s individual data.

Classes are created using the Class keyword, and include definitions (declaration) and implementations
(code) for the variables, methods, properties, and events that make up the class. Each object created based
on this class will have the same methods, properties, and events, and its own set of data defined by the
fields in the class.

60

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 61

Chapter 2: Object Syntax Introduction

The Class Keyword
If you want to create a class that represents a person — a Person class — you could use the Class
keyword:

Public Class Person

’ Implementation code goes here

End Class

As you know, Visual Basic projects are composed of a set of files with the .vb extension. It is possible
for each file to contain multiple classes, which means that within a single file you could have something
like this:

Public Class Adult
’ Implementation code goes here.

End Class

Public Class Senior
’ Implementation code goes here.

End Class

Public Class Child
’ Implementation code goes here.

End Class

The most common and preferred approach is to have a single class per file. This is because the Visual
Studio 2008 Solution Explorer and the code-editing environment are tailored to make it easy to navigate
from file to file to find code. For instance, if you create a single class file with all these classes, the Solution
Explorer simply displays a single entry, as shown in Figure 2-2.

Figure 2-2

61

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 62

Chapter 2: Object Syntax Introduction

However, the Visual Studio IDE does provide the Class View window. If you do decide to put multiple
classes in each physical .vb file, you can make use of the Class View window to quickly and efficiently
navigate through the code, jumping from class to class without having to manually locate those classes
in specific code files, as shown in Figure 2-3.

Figure 2-3

The Class View window is extremely useful even if you stick with one class per file, as it still provides
you with a class-based view of the entire application.

This chapter uses one class per file in the examples, as this is the most common approach. To begin, open
the Visual Studio IDE and create a new Windows Application project named ‘‘ObjectIntro.’’ Choose the
Project➪Add Class menu option to add a new class module to the project. You’ll be presented with the
standard Add New Item dialog box. Change the name to Person.vb and click Open. The result will be
the following code, which defines the Person class:

Public Class Person

End Class

With the Person class created, you are ready to start adding code to declare the interface, implement the
behaviors, and declare the instance variables.

Fields
Fields are variables declared in the class. They will be available to each individual object when the appli-
cation is run. Each object gets its own set of data — basically, each object gets its own copy of the fields.

Earlier, you learned that a class is simply a template from which you create specific objects. Variables
that you define within the class are also simply templates — and each object gets its own copy of those
variables in which to store its data.

Declaring member variables is as easy as declaring variables within the Class block structure. Add the
following code to the Person class:

62

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 63

Chapter 2: Object Syntax Introduction

Public Class Person

Private mName As String
Private mBirthDate As Date

End Class

You can control the scope of the fields with the following keywords:

❑ Private — Available only to code within the class

❑ Friend — Available only to code within the project/component

❑ Protected — Available only to classes that inherit from the class (discussed in detail in
Chapter 3)

❑ Protected Friend — Available to code within your project/component and classes that inherit
from the class whether in the project or not (discussed in detail in Chapter 3)

❑ Public — Available to code outside the class and to any projects that reference the
assembly

Typically, fields are declared using the Private keyword, making them available only to code within
each instance of the class. Choosing any other option should be done with great care, because all the
other options allow code outside the class to directly interact with the variable, meaning that the value
could be changed and your code would never know that a change took place.

One common exception to making fields Private is to use the Protected keyword, as discussed in
Chapter 3.

Methods
Objects typically need to provide services (or functions) that can be called when working with the object.
Using their own data or data passed as parameters to the method, they manipulate information to yield
a result or perform an action.

Methods declared as Public, Friend, or Protected in scope define the interface of the class. Methods
that are Private in scope are available to the code only within the class itself, and can be used to provide
structure and organization to code. As discussed earlier, the actual code within each method is called an
implementation, while the declaration of the method itself is what defines the interface.

Methods are simply routines that are coded within the class to implement the services you want to
provide to the users of an object. Some methods return values or provide information to the calling code.
These are called interrogative methods. Others, called imperative methods, just perform an action and return
nothing to the calling code.

In Visual Basic, methods are implemented using Sub (for imperative methods) or Function (for inter-
rogative methods) routines within the class module that defines the object. Sub routines may accept
parameters, but they do not return any result value when they are complete. Function routines can also
accept parameters, and they always generate a result value that can be used by the calling code.

63

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 64

Chapter 2: Object Syntax Introduction

A method declared with the Sub keyword is merely one that returns no value. Add the following code to
the Person class:

Public Sub Walk()

’ implementation code goes here

End Sub

The Walk method presumably contains some code that performs some useful work when called but has
no result value to return when it is complete. To make use of this method, you might write code such
as this:

Dim myPerson As New Person()
myPerson.Walk()

Once you’ve created an instance of the Person class, you can simply invoke the Walk method.

Methods That Return Values
If you have a method that does generate some value that should be returned, you need to use the
Function keyword:

Public Function Age() As Integer
Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))

End Function

Note that you must indicate the data type of the return value when you declare a Function. This example
returns the calculated age as a result of the method. You can return any value of the appropriate data type
by using the Return keyword.

You can also return the value without using the Return keyword, by setting the value of the function
name itself:

Public Function Age() As Integer

Age = CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))

End Function

This is functionally equivalent to the previous code. Either way, you can use this method with code
similar to the following:

Dim myPerson As New Person()
Dim age As Integer

age = myPerson.Age()

The Age method returns an Integer data value that you can use in the program as required; in this case,
you’re just storing it in a variable.

Indicating Method Scope
Adding the appropriate keyword in front of the method declaration indicates the scope:

Public Sub Walk()

64

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 65

Chapter 2: Object Syntax Introduction

This indicates that Walk is a Public method and thus is available to code outside the class and even
outside the current project. Any application that references the assembly can use this method. Being
Public, this method becomes part of the object’s interface.

Alternately, you might restrict access to the method somewhat:

Friend Sub Walk()

By declaring the method with the Friend keyword, you are indicating that it should be part of the object’s
interface only for code inside the project; any other applications or projects that make use of the assembly
will not be able to call the Walk method.

The Private keyword indicates that a method is only available to the code within your particular class:

Private Function Age() As Integer

Private methods are very useful to help organize complex code within each class. Sometimes the meth-
ods contain very lengthy and complex code. In order to make this code more understandable, you may
choose to break it up into several smaller routines, having the main method call these routines in the
proper order. Moreover, you can use these routines from several places within the class, so by making
them separate methods, you enable reuse of the code. These subroutines should never be called by code
outside the object, so you make them Private.

Method Parameters
You will often want to pass information into a method as you call it. This information is provided via
parameters to the method. For instance, in the Person class, you may want the Walk method to track the
distance the person walks over time. In such a case, the Walk method would need to know how far the
person is to walk each time the method is called. Add the following code to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As Date

Private mTotalDistance As Integer

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance

End Sub
Public Function Age() As Integer
Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))

End Function
End Class

With this implementation, a Person object sums all of the distances walked over time. Each time the Walk
method is called, the calling code must pass an Integer value, indicating the distance to be walked. The
code to call this method would be similar to the following:

Dim myPerson As New Person()
myPerson.Walk(12)

The parameter is accepted using the ByVal keyword, which indicates that the parameter value is a copy
of the original value. This is the default way in which Visual Basic accepts all parameters. Typically, this

65

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 66

Chapter 2: Object Syntax Introduction

is desirable because it means that you can work with the parameter inside the code, changing its value
with no risk of accidentally changing the original value in the calling code.

If you do want to be able to change the value in the calling code, you can change the declaration to pass
the parameter by reference by using the ByRef qualifier:

Public Sub Walk(ByRef distance As Integer)

In this case, you get a reference (or pointer) back to the original value, rather than a copy. This means
that any change you make to the distance parameter is reflected back in the calling code, very similar to
the way object references work, as discussed earlier in this chapter.

Using this technique can be dangerous, as it is not explicitly clear to the caller of the method that the
value will change. Such unintended side effects can be hard to debug and should be avoided.

Properties
The .NET environment provides for a specialized type of method called a property. A property is a method
specifically designed for setting and retrieving data values. For instance, you declared a variable in the
Person class to contain a name, so the Person class may include code to allow that name to be set and
retrieved. This can be done using regular methods:

Public Sub SetName(ByVal name As String)
mName = name

End Sub

Public Function GetName() As String
Return mName

End Function

Using methods like these, you write code to interact with the object:

Dim myPerson As New Person()

myPerson.SetName("Jones")
Messagebox.Show(myPerson.GetName())

While this is perfectly acceptable, it is not as nice as it could be with the use of a property. A Property
style method consolidates the setting and retrieving of a value into a single structure, and makes the
code within the class smoother overall. You can rewrite these two methods into a single property. Add
the following code to the Person class:

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal Value As String)
mName = Value

End Set
End Property

66

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 67

Chapter 2: Object Syntax Introduction

By using a property method instead, you can make the client code much more readable:

Dim myPerson As New Person()

myPerson.Name = "Jones"
Messagebox.Show(myPerson.Name)

The Property method is declared with both a scope and a data type:

Public Property Name() As String

In this example, you’ve declared the property as Public in scope, but it can be declared using the same
scope options as any other method — Public, Friend, Private, or Protected.

The return data type of this property is String. A property can return virtually any data type appropriate
for the nature of the value. In this regard, a property is very similar to a method declared using the
Function keyword.

Though a Property method is a single structure, it is divided into two parts: a getter and a setter. The
getter is contained within a Get...End Get block and is responsible for returning the value of the property
on demand:

Get
Return mName

End Get

Though the code in this example is very simple, it could be more complex, perhaps calculating the value
to be returned, or applying other business logic to change the value as it is returned. Likewise, the code to
change the value is contained within a Set...End Set block:

Set(ByVal Value As String)
mName = Value

End Set

The Set statement accepts a single parameter value that stores the new value. The code in the block
can then use this value to set the property’s value as appropriate. The data type of this parameter must
match the data type of the property itself. Declaring the parameter in this manner enables you to change
the name of the variable used for the parameter value if needed.

By default, the parameter is named Value, but you can change the parameter name to something else, as
shown here:

Set(ByVal NewName As String)
mName = NewName

End Set

In many cases, you can apply business rules or other logic within this routine to ensure that the new
value is appropriate before you actually update the data within the object. It is also possible to restrict
either the Get or Set block to be narrower in scope than the scope of the property itself. For instance, you
may want to allow any code to retrieve the property value, but only allow other code in your project to

67

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 68

Chapter 2: Object Syntax Introduction

alter the value. In this case, you can restrict the scope of the Set block to Friend, while the Property itself
is scoped as Public:

Public Property Name() As String
Get

Return mName
End Get

Friend Set(ByVal Value As String)

mName = Value
End Set

End Property

The new scope must be more restrictive than the scope of the Property itself, and either the Get or Set
block can be restricted, but not both. The one you do not restrict uses the scope of the Property method.

Parameterized Properties
The Name property you created is an example of a single-value property. You can also create property
arrays or parameterized properties. These properties reflect a range, or array, of values. For example,
people often have several phone numbers. You might implement a PhoneNumber property as a parame-
terized property, storing not only phone numbers, but also a description of each number. To retrieve a
specific phone number you would write code such as the following:

Dim myPerson As New Person()
Dim homePhone As String

homePhone = myPerson.Phone("home")

Or, to add or change a specific phone number, you’d write the following code:

myPerson.Phone("work") = "555-9876"

Not only are you retrieving and updating a phone number property, you are also updating a specific
phone number. This implies a couple of things. First, you can no longer use a simple variable to hold
the phone number, as you are now storing a list of numbers and their associated names. Second, you
have effectively added a parameter to your property. You are actually passing the name of the phone
number as a parameter on each property call.

To store the list of phone numbers, you can use the Hashtable class. The Hashtable is very similar to
the standard VB Collection object, but it is more powerful — allowing you to test for the existence of a
specific element. Add the following declaration to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As Date
Private mTotalDistance As Integer

Private mPhones As New Hashtable

You can implement the Phone property by adding the following code to the Person class:

Public Property Phone(ByVal location As String) As String
Get

68

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 69

Chapter 2: Object Syntax Introduction

Return CStr(mPhones.Item(Location))
End Get
Set(ByVal Value As String)
If mPhones.ContainsKey(location) Then

mPhones.Item(location) = Value
Else

mPhones.Add(location, Value)
End If

End Set

End Property

The declaration of the Property method itself is a bit different from what you have seen:

Public Property Phone(ByVal location As String) As String

In particular, you have added a parameter, location, to the property itself. This parameter will act as
the index into the list of phone numbers, and must be provided when either setting or retrieving phone
number values.

Because the location parameter is declared at the Property level, it is available to all code within the
property, including both the Get and Set blocks. Within your Get block, you use the location parameter
to select the appropriate phone number to return from the Hashtable:

Get
Return mPhones.Item(location)

End Get

With this code, if there is no value stored matching the location, then you get a trappable runtime error.

Similarly, in the Set block, you use the location to update or add the appropriate element in the
Hashtable. In this case, you are using the ContainsKey method of Hashtable to determine whether the
phone number already exists in the list. If it does, then you simply update the value in the list; otherwise,
you add a new element to the list for the value:

Set(ByVal Value As String)
If mPhones.ContainsKey(location) Then
mPhones.Item(location) = Value

Else
mPhones.Add(location, Value)

End If
End Set

This way, you are able to add or update a specific phone number entry based on the parameter passed
by the calling code.

Read-Only Properties
Sometimes you may want a property to be read-only, so that it cannot be changed. In the Person class,
for instance, you may have a read-write property for BirthDate, but only a read-only property for Age.
If so, the BirthDate property is a normal property, as follows:

Public Property BirthDate() As Date
Get

69

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 70

Chapter 2: Object Syntax Introduction

Return mBirthDate
End Get
Set(ByVal Value As Date)
mBirthDate = Value
End Set

End Property

The Age value, conversely, is a derived value based on BirthDate. This is not a value that should ever be
directly altered, so it is a perfect candidate for read-only status.

You already have an Age method implemented as a Function. Remove that code from the Person class
because you will replace it with a Property routine instead. The difference between a Function routine
and a ReadOnly Property is quite subtle. Both return a value to the calling code, and either way the object
is running a subroutine defined by the class module to return the value.

The difference is less a programmatic one than a design choice. You could create all your objects without
any Property routines at all, just using methods for all interactions with the objects. However, Property
routines are obviously attributes of an object, whereas a Function might be an attribute or a method. By
carefully implementing all attributes as ReadOnly Property routines, and any interrogative methods as
Function routines, you create more readable and understandable code.

To make a property read-only, use the ReadOnly keyword and only implement the Get block:

Public ReadOnly Property Age() As Integer
Get
Return CInt(DateDiff(DateInterval.Year, mdtBirthDate, Now()))

End Get
End Property

Because the property is read-only, you will get a syntax error if you attempt to implement a Set block.

Write-Only Properties
As with read-only properties, sometimes a property should be write-only, whereby the value can be
changed but not retrieved.

Many people have allergies, so perhaps the Person object should have some understanding of the ambi-
ent allergens in the area. This is not a property that should be read from the Person object, as allergens
come from the environment, rather than from the person, but it is data that the Person object needs in
order to function properly. Add the following variable declaration to the class:

Public Class Person
Private mstrName As String
Private mdtBirthDate As Date
Private mintTotalDistance As Integer
Private colPhones As New Hashtable()

Private mAllergens As Integer

You can implement an AmbientAllergens property as follows:

Public WriteOnly Property AmbientAllergens() As Integer
Set(ByVal Value As Integer)
mAllergens = Value

70

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 71

Chapter 2: Object Syntax Introduction

End Set
End Property

To create a write-only property, use the WriteOnly keyword and only implement a Set block in the code.
The property is write-only, so you will get a syntax error if you try to implement a Get block.

The Default Property
Objects can implement a default property, which can be used to simplify the use of an object at times by
making it appear as if the object has a native value. A good example of this behavior is the Collection
object, which has a default property called Item that returns the value of a specific item, allowing you to
write the following:

Dim mData As New HashTable()

Return mData(index)

Default properties must be parameterized properties. A property without a parameter cannot be marked
as the default. This is a change from previous versions of Visual Basic, in which any property could be
marked as the default.

Our Person class has a parameterized property — the Phone property you built earlier. You can make
this the default property by using the Default keyword:

Default Public Property Phone(ByVal location As String) As String

Get
Return CStr(mPhones.Item(location))

End Get
Set(ByVal Value As String)

If mPhones.ContainsKey(location) Then
mPhones.Item(location) = Value

Else
mPhones.Add(location, Value)

End If
End Set

End Property

Prior to this change, you would have needed code such as the following to use the Phone property:

Dim myPerson As New Person()

MyPerson.Phone("home") = "555-1234"

Now, with the property marked as Default, you can simplify the code:

myPerson("home") = "555-1234"

By picking appropriate default properties, you can potentially make the use of objects more intuitive.

Events
Both methods and properties enable you to write code that interacts with your objects by invoking spe-
cific functionality as needed. It is often useful for objects to provide notification as certain activities occur

71

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 72

Chapter 2: Object Syntax Introduction

during processing. You see examples of this all the time with controls, where a button indicates that it was
clicked via a Click event, or a text box indicates that its contents have been changed via the TextChanged
event.

Objects can raise events of their own, providing a powerful and easily implemented mechanism by
which objects can notify client code of important activities or events. In Visual Basic, events are provided
using the standard .NET mechanism of delegates, but before discussing delegates, let’s explore how to
work with events in Visual Basic.

Handling Events
We are all used to seeing code in a form to handle the Click event of a button, such as the following
code:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

Typically, we write our code in this type of routine without paying a lot of attention to the code created
by the Visual Studio IDE. However, let’s take a second look at that code, which contains some important
things to note here.

First, notice the use of the Handles keyword. This keyword specifically indicates that this method will
be handling the Click event from the Button1 control. Of course, a control is just an object, so what is
indicated here is that this method will be handling the Click event from the Button1 object.

Second, notice that the method accepts two parameters. The Button control class defines these parame-
ters. It turns out that any method that accepts two parameters with these data types can be used to handle
the Click event. For instance, you could create a new method to handle the event:

Private Sub MyClickMethod(ByVal s As System.Object, _
ByVal args As System.EventArgs) Handles Button1.Click

End Sub

Even though you have changed the method name and the names of the parameters, you are still accepting
parameters of the same data types, and you still have the Handles clause to indicate that this method
handles the event.

Handling Multiple Events
The Handles keyword offers even more flexibility. Not only can the method name be anything you
choose, but a single method can handle multiple events if you desire. Again, the only requirement is that
the method and all the events being raised must have the same parameter list.

This explains why all the standard events raised by the .NET system class library have exactly two
parameters — the sender and an EventArgs object. Being so generic makes it possible to write very
generic and powerful event handlers that can accept virtually any event raised by the class library.

72

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 73

Chapter 2: Object Syntax Introduction

One common scenario where this is useful is when you have multiple instances of an object that raises
events, such as two buttons on a form:

Private Sub MyClickMethod(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _

Handles Button1.Click, Button2.Click

End Sub

Notice that the Handles clause has been modified so that it has a comma-separated list of events to han-
dle. Either event will cause the method to run, providing a central location for handling these
events.

The WithEvents Keyword
The WithEvents keyword tells Visual Basic that you want to handle any events raised by the object within
the code:

Friend WithEvents Button1 As System.Windows.Forms.Button

The WithEvents keyword makes any events from an object available for use, whereas the Handles key-
word is used to link specific events to the methods so that you can receive and handle them. This is true
not only for controls on forms, but also for any objects that you create.

The WithEvents keyword cannot be used to declare a variable of a type that does not raise events. In
other words, if the Button class did not contain code to raise events, you would get a syntax error when
you attempted to declare the variable using the WithEvents keyword.

The compiler can tell which classes will and will not raise events by examining their interface. Any class
that will be raising an event has that event declared as part of its interface. In Visual Basic, this means
that you will have used the Event keyword to declare at least one event as part of the interface for the
class.

Raising Events
Your objects can raise events just like a control, and the code using the object can receive these events by
using the WithEvents and Handles keywords. Before you can raise an event from your object, however,
you need to declare the event within the class by using the Event keyword.

In the Person class, for instance, you may want to raise an event anytime the Walk method is called. If
you call this event Walked, you can add the following declaration to the Person class:

Public Class Person
Private mstrName As String
Private mdtBirthDate As Date
Private mintTotalDistance As Integer
Private colPhones As New Hashtable()
Private mintAllergens As Integer

Public Event Walked()

73

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 74

Chapter 2: Object Syntax Introduction

Events can also have parameters, values that are provided to the code receiving the event. A typical
button’s Click event receives two parameters, for instance. In the Walked method, perhaps you want to
also indicate the distance that was walked. You can do this by changing the event declaration:

Public Event Walked(ByVal distance As Integer)

Now that the event is declared, you can raise that event within the code where appropriate. In this case,
you’ll raise it within the Walk method, so anytime a Person object is instructed to walk, it fires an event
indicating the distance walked. Make the following change to the Walk method:

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance

RaiseEvent Walked(distance)

End Sub

The RaiseEvent keyword is used to raise the actual event. Because the event requires a parameter, that
value is passed within parentheses and is delivered to any recipient that handles the event.

In fact, the RaiseEvent statement causes the event to be delivered to all code that has the object declared
using the WithEvents keyword with a Handles clause for this event, or any code that has used the
AddHandler method. The AddHandler method is discussed shortly.

If more than one method will be receiving the event, then the event is delivered to each recipient one at
a time. By default, the order of delivery is not defined — meaning you can’t predict the order in which
the recipients receive the event — but the event is delivered to all handlers. Note that this is a serial,
synchronous process. The event is delivered to one handler at a time, and it is not delivered to the next
handler until the current handler is complete. Once you call the RaiseEvent method, the event is deliv-
ered to all listeners one after another until it is complete; there is no way for you to intervene and stop
the process in the middle.

Declaring and Raising Custom Events
As just noted, by default you have no control over how events are raised. You can overcome this limi-
tation by using a more explicit form of declaration for the event itself. Rather than use the simple Event
keyword, you can declare a custom event. This is for more advanced scenarios, as it requires that you
provide the implementation for the event itself.

The concept of delegates is covered in detail later in this chapter, but it is necessary to look at them briefly
here in order to declare a custom event. A delegate is a definition of a method signature. When you
declare an event, Visual Basic defines a delegate for the event behind the scenes based on the signature
of the event. The Walked event, for instance, has a delegate like the following:

Public Delegate Sub WalkedEventHandler(ByVal distance As Integer)

Notice how this code declares a ‘‘method’’ that accepts an Integer and has no return value. This is
exactly what you defined for the event. Normally, you do not write this bit of code, because Visual Basic
does it automatically; but if you want to declare a custom event, then you need to manually declare the
event delegate.

74

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 75

Chapter 2: Object Syntax Introduction

You also need to declare within the class a variable where you can keep track of any code that is listening
for, or handling, the event. It turns out that you can tap into the prebuilt functionality of delegates for this
purpose. By declaring the WalkedEventHandler delegate, you have defined a data type that automatically
tracks event handlers, so you can declare the variable like this:

Private mWalkedHandlers As WalkedEventHandler

You can use the preceding variable to store and raise the event within the custom event declaration:

Public Custom Event Walked As WalkedEventHandler
AddHandler(ByVal value As WalkedEventHandler)

mWalkedHandlers = _
CType([Delegate].Combine(mWalkedHandlers, value), WalkedEventHandler)

End AddHandler

RemoveHandler(ByVal value As WalkedEventHandler)
mWalkedHandlers = _
CType([Delegate].Remove(mWalkedHandlers, value), WalkedEventHandler)

End RemoveHandler

RaiseEvent(ByVal distance As Integer)
If mWalkedHandlers IsNot Nothing Then
mWalkedHandlers.Invoke(distance)

End If
End RaiseEvent

End Event

In this case, you have used the Custom Event key phrase, rather than just Event to declare the event. A
Custom Event declaration is a block structure with three sub-blocks: AddHandler, RemoveHandler, and
RaiseEvent.

The AddHandler block is called anytime a new handler wants to receive the event. The parameter passed
to this block is a reference to the method that will be handling the event. It is up to you to store the
reference to that method, which you can do however you choose. In this implementation, you are storing
it within the delegate variable, just like the default implementation provided by Visual Basic.

The RemoveHandler block is called anytime a handler wants to stop receiving your event. The parameter
passed to this block is a reference to the method that was handling the event. It is up to you to remove
the reference to the method, which you can do however you choose. In this implementation, you are
replicating the default behavior by having the delegate variable remove the element.

Finally, the RaiseEvent block is called anytime the event is raised. Typically, it is invoked when code
within the class uses the RaiseEvent statement. The parameters passed to this block must match the
parameters declared by the delegate for the event. It is up to you to go through the list of methods that
are handling the event and call each of those methods. In the example shown here, you are allowing the
delegate variable to do that for you, which is the same behavior you get by default with a normal event.

The value of this syntax is that you could opt to store the list of handler methods in a different type of
data structure, such as a Hashtable or collection. You could then invoke them asynchronously, or in a
specific order or based on some other behavior required by the application.

75

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 76

Chapter 2: Object Syntax Introduction

Receiving Events with WithEvents
Now that you have implemented an event within the Person class, you can write client code to declare
an object using the WithEvents keyword. For instance, in the project’s Form1 code module, you can write
the following code:

Public Class Form1
Inherits System.Windows.Forms.Form

Private WithEvents mPerson As Person

By declaring the variable WithEvents, you are indicating that you want to receive any events raised by
this object. You can also choose to declare the variable without the WithEvents keyword, although in
that case you would not receive events from the object as described here. Instead, you would use the
AddHandler method, which is discussed after WithEvents.

You can then create an instance of the object, as the form is created, by adding the following code:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mPerson = New Person()

End Sub

At this point, you have declared the object variable using WithEvents and have created an instance of the
Person class, so you actually have an object with which to work. You can now proceed to write a method
to handle the Walked event from the object by adding the following code to the form. You can name this
method anything you like; it is the Handles clause that is important because it links the event from the
object directly to this method, so it is invoked when the event is raised:

Private Sub OnWalk(ByVal distance As Integer) Handles mPerson.Walked
MsgBox("Person walked " & distance)

End Sub

You are using the Handles keyword to indicate which event should be handled by this method. You are
also receiving an Integer parameter. If the parameter list of the method doesn’t match the list for the
event, then you’ll get a compiler error indicating the mismatch.

Finally, you need to call the Walk method on the Person object. Add a button to the form and write the
following code for its Click event:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button1.Click

mPerson.Walk(42)

End Sub

When the button is clicked, you simply call the Walk method, passing an Integer value. This causes the
code in your class to be run, including the RaiseEvent statement. The result is an event firing back into
the form, because you declared the mPerson variable using the WithEvents keyword. The OnWalk method
will be run to handle the event, as it has the Handles clause linking it to the event.

76

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 77

Chapter 2: Object Syntax Introduction

Figure 2-4 illustrates the flow of control, showing how the code in the button’s Click event calls the Walk
method, causing it to add to the total distance walked and then raise its event. The RaiseEvent causes
the form’s OnWalk method to be invoked; and once it is done, control returns to the Walk method in the
object. Because you have no code in the Walk method after you call RaiseEvent, the control returns to
the Click event back in the form, and then you are done.

Many people assume that events use multiple threads to do their work. This is not the case. Only one
thread is involved in the process. Raising an event is like making a method call, as the existing thread is
used to run the code in the event handler. Therefore, the application’s processing is suspended until the
event processing is complete.

Button1_Click()

Form1.OnWalk

Button1_Click()

Person.Walk()
Add distance

Person.Walk()
RaiseEvent

Figure 2-4

Receiving Events with AddHandler
Now that you have seen how to receive and handle events using the WithEvents and Handles keywords,
consider an alternative approach. You can use the AddHandler method to dynamically add event handlers
through your code, and RemoveHandler to dynamically remove them.

WithEvents and the Handles clause require that you declare both the object variable and event handler
as you build the code, effectively creating a linkage that is compiled right into the code. AddHandler,
conversely, creates this linkage at runtime, which can provide you with more flexibility. However, before
getting too deeply into that, let’s see how AddHandler works.

In Form1, you can change the way the code interacts with the Person object, first by eliminating the
WithEvents keyword

Private mPerson As Person

77

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 78

Chapter 2: Object Syntax Introduction

and then by also eliminating the Handles clause:

Private Sub OnWalk(ByVal distance As Integer)
MsgBox("Person walked " & distance)

End Sub

With these changes, you’ve eliminated all event handling for the object, and the form will no longer
receive the event, even though the Person object raises it.

Now you can change the code to dynamically add an event handler at runtime by using the
AddHandler method. This method simply links an object’s event to a method that should be called to
handle that event. Anytime after you have created the object, you can call AddHandler to set up the
linkage:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mPerson = New Person()

AddHandler mPerson.Walked, AddressOf OnWalk
End Sub

This single line of code does the same thing as the earlier use of WithEvents and the Handles clause,
causing the OnWalk method to be invoked when the Walked event is raised from the Person object.

However, this linkage is performed at runtime, so you have more control over the process than you
would have otherwise. For instance, you could have extra code to determine which event handler to link
up. Suppose that you have another possible method to handle the event for cases when a message box is
not desirable. Add this code to Form1:

Private Sub LogOnWalk(ByVal distance As Integer)
System.Diagnostics.Debug.WriteLine("Person walked " & distance)

End Sub

Rather than pop up a message box, this version of the handler logs the event to the output window in the
IDE. Now you can enhance the AddHandler code to determine which handler should be used dynamically
at runtime:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mPerson = New Person()

If Microsoft.VisualBasic.Command = "nodisplay" Then
AddHandler mPerson.Walked, AddressOf LogOnWalk

Else
AddHandler mPerson.Walked, AddressOf OnWalk

End If
End Sub

If the word nodisplay is on the command line when the application is run, then the new version of the
event handler is used; otherwise, you continue to use the message-box handler.

78

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 79

Chapter 2: Object Syntax Introduction

The counterpart to AddHandler is RemoveHandler. RemoveHandler is used to detach an event handler
from an event. One example of when this is useful is if you ever want to set the mPerson variable to
Nothing or to a new Person object. The existing Person object has its events attached to handlers, and
before you get rid of the reference to the object, you must release those references:

If Microsoft.VisualBasic.Command = "nodisplay" Then
RemoveHandler mPerson.Walked, AddressOf LogOnWalk

Else
RemoveHandler mPerson.Walked, AddressOf OnWalk

End If
mPerson = New Person

If you do not detach the event handlers, the old Person object remains in memory because each event
handler still maintains a reference to the object even after mPerson no longer points to the object.

This illustrates one key reason why the WithEvents keyword and Handles clause are preferable in most
cases. AddHandler and RemoveHandler must be used in pairs; failure to do so can cause memory leaks in
the application, whereas the WithEvents keyword handles these details for you automatically.

Constructor Methods
In Visual Basic, classes can implement a special method that is always invoked as an object is being
created. This method is called the constructor, and it is always named New.

The constructor method is an ideal location for such initialization code, as it is always run before any
other methods are ever invoked, and it is only run once for an object. Of course, you can create many
objects based on a class, and the constructor method will be run for each object that is created.

You can implement a constructor in your classes as well, using it to initialize objects as needed. This is as
easy as implementing a Public method named New. Add the following code to the Person class:

Public Sub New()
Phone("home") = "555-1234"
Phone("work") = "555-5678"

End Sub

In this example, you are simply using the constructor method to initialize the home and work phone
numbers for any new Person object that is created.

Parameterized Constructors
You can also use constructors to enable parameters to be passed to the object as it is being created. This
is done by simply adding parameters to the New method. For example, you can change the Person class
as follows:

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = name
mBirthDate = birthDate

Phone("home") = "555-1234"
Phone("work") = "555-5678"

End Sub

79

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 80

Chapter 2: Object Syntax Introduction

With this change, anytime a Person object is created, you will be provided with values for both the name
and birth date. However, this changes how you can create a new Person object. Whereas you used to
have code such as

Dim myPerson As New Person()

now you will have code such as

Dim myPerson As New Person("Bill", "1/1/1970")

In fact, because the constructor expects these values, they are mandatory — any code that needs to create
an instance of the Person class must provide these values. Fortunately, there are alternatives in the form
of optional parameters and method overloading (which enables you to create multiple versions of the
same method, each accepting a different parameter list). These topics are discussed later in the chapter.

Termination and Cleanup
In the .NET environment, an object is destroyed and the memory and resources it consumes are reclaimed
when there are no references remaining for the object. As discussed earlier in the chapter, when you are
using objects, the variables actually hold a reference or pointer to the object itself. If you have code such as

Dim myPerson As New Person()

you know that the myPerson variable is just a reference to the Person object you created. If you also have
code like

Dim anotherPerson As Person
anotherPerson = myPerson

you know that the anotherPerson variable is also a reference to the same object. This means that this
specific Person object is being referenced by two variables.

When there are no variables left to reference an object, it can be terminated by the .NET runtime environ-
ment. In particular, it is terminated and reclaimed by a mechanism called garbage collection, or the garbage
collector, covered in detail in Chapter 4.

Unlike COM (and thus VB6), the .NET runtime does not use reference counting to determine when an
object should be terminated. Instead, it uses garbage collection to terminate objects. This means that in
Visual Basic you do not have deterministic finalization, so it is not possible to predict exactly when an
object will be destroyed.

Let’s review how you can eliminate references to an object. You can explicitly remove a reference by
setting the variable equal to Nothing, with the following code:

myPerson = Nothing

You can also remove a reference to an object by changing the variable to reference a different object.
Because a variable can only point to one object at a time, it follows naturally that changing a variable to

80

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 81

Chapter 2: Object Syntax Introduction

point at another object must cause it to no longer point to the first one. This means that you can have
code such as the following:

myPerson = New Person()

This causes the variable to point to a brand-new object, thus releasing this reference to the prior object.
These are examples of explicit dereferencing.

Visual Basic also provides facilities for implicit dereferencing of objects when a variable goes out of scope.
For instance, if you have a variable declared within a method, then when that method completes, the
variable is automatically destroyed, thus dereferencing any object to which it may have pointed. In fact,
anytime a variable referencing an object goes out of scope, the reference to that object is automatically
eliminated. This is illustrated by the following code:

Private Sub DoSomething()
Dim myPerson As Person

myPerson = New Person()
End Sub

Even though the preceding code does not explicitly set the value of myPerson to Nothing, you know that
the myPerson variable will be destroyed when the method is complete because it will fall out of scope.
This process implicitly removes the reference to the Person object created within the routine.

Of course, another scenario in which objects become dereferenced is when the application itself completes
and is terminated. At that point, all variables are destroyed, so, by definition, all object references go away
as well.

Advanced Concepts
So far, you have learned how to work with objects, how to create classes with methods, properties, and
events, and how to use constructors. You have also learned how objects are destroyed within the .NET
environment and how you can hook into that process to do any cleanup required by the objects.

Now you can move on to some more complex topics and variations on what has been discussed so far.
First you’ll look at some advanced variations of the methods you can implement in classes, including an
exploration of the underlying technology behind events.

Overloading Methods
Methods often accept parameter values. The Person object’s Walk method, for instance, accepts an
Integer parameter:

Public Sub Walk(ByVal distance As Integer)
mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

81

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 82

Chapter 2: Object Syntax Introduction

Sometimes there is no need for the parameter. To address this, you can use the Optional keyword to
make the parameter optional:

Public Sub Walk(Optional ByVal distance As Integer = 0)

mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

This does not provide you with a lot of flexibility, however, as the optional parameter or parameters
must always be the last ones in the list. In addition, this merely enables you to pass or not pass the
parameter. Suppose that you want to do something fancier, such as allow different data types or even
entirely different lists of parameters.

Use of the Optional keyword makes the code harder to consume from C# or other .NET languages
because they do not support optional parameters as VB does. If you are only working in Visual Basic, this
may be a non-issue, but if you are working in a multilanguage environment, avoid using the Optional
keyword. In addition, optional parameters require a default value.

Method overloading provides exactly those capabilities. By overloading methods, you can create sev-
eral methods of the same name, with each one accepting a different set of parameters, or parameters of
different data types.

As a simple example, instead of using the Optional keyword in the Walk method, you could use over-
loading. You keep the original Walk method, but you also add another Walk method that accepts a
different parameter list. Change the code in the Person class back to the following:

Public Sub Walk(ByVal distance As Integer)

mTotalDistance += distance
RaiseEvent Walked(distance)

End Sub

Now create another method with the same name but with a different parameter list (in this case, no
parameters). Add this code to the class, without removing or changing the existing Walk method:

Public Sub Walk()
RaiseEvent Walked(0)

End Sub

At this point, you have two Walk methods. The only way to tell them apart is by the list of parameters
each accepts: the first requiring a single Integer parameter, the second having no parameter.

There is an Overloads keyword as well. This keyword is not needed for the simple overloading of meth-
ods described here, but it is required when combining overloading and inheritance, which is discussed in
Chapter 3.

You can call the Walk method either with or without a parameter, as shown in the following examples:

objPerson.Walk(42)
objPerson.Walk()

You can have any number of Walk methods in the class as long as each individual Walk method has a
different method signature.

82

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 83

Chapter 2: Object Syntax Introduction

Method Signatures
All methods have a signature, which is defined by the method name and the data types of its parameters:

Public Function CalculateValue() As Integer

End Sub

In this example, the signature is f(). The letter f is often used to indicate a method or function. It is appro-
priate here because you do not care about the name of the function; only its parameter list is important.

If you add a parameter to the method, then the signature is considered changed. For instance, you could
change the method to accept a Double:

Public Function CalculateValue(ByVal value As Double) As Integer

In that case, the signature of the method is f(Double).

Notice that in Visual Basic the return value is not part of the signature. You cannot overload a Function
routine by just having its return value’s data type vary. It is the data types in the parameter list that must
vary to utilize overloading.

Also note that the name of the parameter is totally immaterial; only the data type is important. This
means that the following methods have identical signatures:

Public Sub DoWork(ByVal x As Integer, ByVal y As Integer)

Public Sub DoWork(ByVal value1 As Integer, ByVal value2 As Integer)

In both cases, the signature is f(Integer, Integer).

The data types of the parameters define the method signature, but whether the parameters are passed
ByVal or ByRef does not. Changing a parameter from ByVal to ByRef will not change the method
signature.

Combining Overloading and Optional Parameters
Overloading is more flexible than using optional parameters, but optional parameters have the advantage
that they can be used to provide default values, as well as make a parameter optional.

You can combine the two concepts: overloading a method and having one or more of those methods
utilize optional parameters. Obviously, this sort of thing can become very confusing if overused, as you
are employing two types of method ‘‘overloading’’ at the same time.

The Optional keyword causes a single method to effectively have two signatures. This means that a
method declared as

Public Sub DoWork(ByVal x As Integer, Optional ByVal y As Integer = 0)

has two signatures at once: f(Integer, Integer) and f(Integer).

Because of this, when you use overloading along with optional parameters, the other overloaded methods
cannot match either of these two signatures. However, as long as other methods do not match either

83

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 84

Chapter 2: Object Syntax Introduction

signature, you can use overloading, as discussed earlier. For instance, you could implement methods
with the signatures

Public Sub DoWork(ByVal x As Integer, Optional ByVal y As Integer = 0)

and

Public Sub DoWork(ByVal data As String)

because there are no conflicting method signatures. In fact, with these two methods, you have actually
created three signatures:

❑ f(Integer, Integer)

❑ f(Integer)

❑ f(String)

The IntelliSense built into the Visual Studio IDE will indicate that you have two overloaded methods, one
of which has an optional parameter. This is different from creating three different overloaded methods
to match these three signatures, in which case the IntelliSense would list three variations on the method,
from which you could choose.

Overloading Constructor Methods
In many cases, you may want the constructor to accept parameter values for initializing new objects, but
also want to have the capability to create objects without providing those values. This is possible through
method overloading, which is discussed later, or by using optional parameters.

Optional parameters on a constructor method follow the same rules as optional parameters for any other
Sub routine: They must be the last parameters in the parameter list, and you must provide default values
for the optional parameters.

For instance, you can change the Person class as shown here:

Public Sub New(Optional ByVal name As String = "", _

Optional ByVal birthDate As Date = #1/1/1900#)
mName = name
mBirthDate = birthDate

Phone("home") = "555-1234"
Phone("work") = "555-5678"

End Sub

The preceding example changed both the Name and BirthDate parameters to be optional, and provides
default values for both of them. Now you have the option to create a new Person object with or without
the parameter values:

Dim myPerson As New Person("Bill", "1/1/1970")

or

Dim myPerson As New Person()

84

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 85

Chapter 2: Object Syntax Introduction

If you do not provide the parameter values, then the default values of an empty String and 1/1/1900
will be used and the code will work just fine.

Overloading the Constructor Method
You can combine the concept of a constructor method with method overloading to allow for different
ways of creating instances of the class. This can be a very powerful combination because it allows a great
deal of flexibility in object creation.

You have already explored how to use optional parameters in the constructor. Now let’s change the
implementation in the Person class to make use of overloading instead. Change the existing New method
as follows:

Public Sub New(ByVal name As String, ByVal birthDate As Date)

mName = name
mBirthDate = birthDate
Phone("home") = "555-1234"
Phone("work") = "555-5678"

End Sub

With this change, you require the two parameter values to be supplied. Now add that second implemen-
tation, as shown here:

Public Sub New()
Phone("home") = "555-1234"
Phone("work") = "555-5678"

End Sub

This second implementation accepts no parameters, meaning you can now create Person objects in two
different ways — either with no parameters or by passing the name and birth date:

Dim myPerson As New Person()

or

Dim myPerson As New Person("Fred", "1/11/60")

This type of capability is very powerful because it enables you to define the various ways in which
applications can create objects. In fact, the Visual Studio IDE considers this, so when you are typing
the code to create an object, the IntelliSense tooltip displays the overloaded variations on the method,
providing a level of automatic documentation for the class.

Shared Methods, Variables, and Events
So far, all of the methods you have built or used have been instance methods, methods that require you to
have an actual instance of the class before they can be called. These methods have used instance variables
or member variables to do their work, which means that they have been working with a set of data that
is unique to each individual object.

With Visual Basic, you can create variables and methods that belong to the class, rather than to any
specific object. In other words, these variables and methods belong to all objects of a given class and are
shared across all the instances of the class.

85

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 86

Chapter 2: Object Syntax Introduction

You can use the Shared keyword to indicate which variables and methods belong to the class, rather than
to specific objects. For instance, you may be interested in knowing the total number of Person objects
created as the application is running — kind of a statistical counter.

Shared Variables
Because regular variables are unique to each individual Person object, they do not enable you to easily
track the total number of Person objects ever created. However, if you had a variable that had a common
value across all instances of the Person class, you could use that as a counter. Add the following variable
declaration to the Person class:

Public Class Person
Implements IDisposable

Private Shared mCounter As Integer

By using the Shared keyword, you are indicating that this variable’s value should be shared across all
Person objects within your application. This means that if one Person object makes the value 42, then
all other Person objects will see the value as 42: It is a shared piece of data.

You can now use this variable within the code. For instance, you can add code to the constructor method,
New, to increment the variable so that it acts as a counter — adding 1 each time a new Person object is
created. Change the New methods as shown here:

Public Sub New()
Phone("home") = "555-1234"
Phone("work") = "555-5678"

mCounter += 1

End Sub

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = name
mBirthDate = birthDate

Phone("home") = "555-1234"
Phone("work") = "555-5678"

mCounter += 1

End Sub

The mCounter variable will now maintain a value indicating the total number of Person objects created
during the life of the application. You may want to add a property routine to allow access to this value
by writing the following code:

Public ReadOnly Property PersonCount() As Integer
Get
Return mCounter

End Get
End Property

Note that you are creating a regular property that returns the value of a shared variable, which is perfectly
acceptable. As shown shortly, you could also create a shared property to return the value.

86

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 87

Chapter 2: Object Syntax Introduction

Now you could write code to use the class as follows:

Dim myPerson As Person
myPerson = New Person()
myPerson = New Person()
myPerson = New Person()

Messagebox.Show(myPerson.PersonCount)

The resulting display would show 3, because you’ve created three instances of the Person class. You
would also need to decrement the counter after the objects are destroyed.

Shared Methods
You can share not only variables across all instances of a class, but also methods. Whereas a regular
method or property belongs to each specific object, a shared method or property is common across all
instances of the class. There are a couple of ramifications to this approach.

First, because shared methods do not belong to any specific object, they can’t access any instance variables
from any objects. The only variables available for use within a shared method are shared variables,
parameters passed into the method, or variables declared locally within the method itself. If you attempt
to access an instance variable within a shared method, you’ll get a compiler error.

In addition, because shared methods are actually part of the class, rather than any object, you can write
code to call them directly from the class without having to create an instance of the class first.

For instance, a regular instance method is invoked from an object:

Dim myPerson As New Person()

myPerson.Walk(42)

However, a shared method can be invoked directly from the class itself:

Person.SharedMethod()

This saves the effort of creating an object just to invoke a method, and can be very appropriate for meth-
ods that act on shared variables, or methods that act only on values passed in via parameters. You can
also invoke a shared method from an object, just like a regular method. Shared methods are flexible in
that they can be called with or without creating an instance of the class first.

To create a shared method, you again use the Shared keyword. For instance, the PersonCount property
created earlier could easily be changed to become a shared method instead:

Public Shared ReadOnly Property PersonCount() As Integer

Get
Return mCounter

End Get
End Property

87

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 88

Chapter 2: Object Syntax Introduction

Because this property returns the value of a shared variable, it is perfectly acceptable for it to be imple-
mented as a shared method. With this change, you can now determine how many Person objects have
ever been created without having to actually create a Person object first:

Messagebox.Show(CStr(Person.PersonCount))

As another example, in the Person class, you could create a method that compares the ages of two people.
Add a shared method with the following code:

Public Shared Function CompareAge(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return person1.Age > person2.Age
End Function

This method simply accepts two parameters — each a Person — and returns True if the first is older
than the second. Use of the Shared keyword indicates that this method doesn’t require a specific instance
of the Person class in order for you to use it.

Within this code, you are invoking the Age property on two separate objects, the objects passed as param-
eters to the method. It is important to recognize that you’re not directly using any instance variables
within the method; rather, you are accepting two objects as parameters, and invoking methods on those
objects. To use this method, you can call it directly from the class:

If Person.CompareAge(myPerson1, myPerson2) Then

Alternately, you can also invoke it from any Person object:

Dim myPerson As New Person()

If myPerson.CompareAge(myPerson, myPerson2) Then

Either way, you’re invoking the same shared method, and you’ll get the same behavior, whether you call
it from the class or a specific instance of the class.

Shared Properties
As with other types of methods, you can also have shared property methods. Properties follow the same
rules as regular methods. They can interact with shared variables but not member variables. They can also
invoke other shared methods or properties, but cannot invoke instance methods without first creating an
instance of the class. You can add a shared property to the Person class with the following code:

Public Shared ReadOnly Property RetirementAge() As Integer
Get
Return 62

End Get
End Property

This simply adds a property to the class that indicates the global retirement age for all people. To use this
value, you can simply access it directly from the class:

Messagebox.Show(Person.RetirementAge)

88

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 89

Chapter 2: Object Syntax Introduction

Alternately, you can access it from any Person object:

Dim myPerson As New Person()

Messagebox.Show(myPerson.RetirementAge)

Either way, you are invoking the same shared property.

Shared Events
As with other interface elements, events can also be marked as Shared. For instance, you could declare a
shared event in the Person class:

Public Shared Event NewPerson()

Shared events can be raised from both instance methods and shared methods. Regular events cannot be
raised by shared methods. Because shared events can be raised by regular methods, you can raise this
one from the constructors in the Person class:

Public Sub New()
Phone("home") = "555-1234"
Phone("work") = "555-5678"
mCounter += 1

RaiseEvent NewPerson()

End Sub

Public Sub New(ByVal name As String, ByVal birthDate As Date)
mName = Name
mBirthDate = BirthDate

Phone("home") = "555-1234"
Phone("work") = "555-5678"
mCounter += 1

RaiseEvent NewPerson()

End Sub

The interesting thing about receiving shared events is that you can get them from either an object, such
as a normal event, or from the class itself. For instance, you can use the AddHandler method in the form’s
code to catch this event directly from the Person class.

First, add a method to the form to handle the event:

Private Sub OnNewPerson()
Messagebox.Show("new person " & Person.PersonCount)

End Sub

Then, in the form’s Load event, add a statement to link the event to this method:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

AddHandler Person.NewPerson, AddressOf OnNewPerson

89

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 90

Chapter 2: Object Syntax Introduction

mPerson = New Person()
If Microsoft.VisualBasic.Command = "nodisplay" Then

AddHandler mPerson.Walked, AddressOf LogOnWalk
Else

AddHandler mPerson.Walked, AddressOf OnWalk
End If

End Sub

Notice that you are using the class, rather than any specific object in the AddHandler statement. You could
use an object as well, treating this like a normal event, but this illustrates how a class itself can raise an
event. When you run the application now, anytime a Person object is created you will see this event
raised.

Shared Constructor
A class can also have a Shared constructor:

Shared Sub New()

End Sub

Normal constructors are called when an instance of the class is created. The Shared constructor is called
only once during the lifetime of an application, immediately before any use of the class.

This means that the Shared constructor is called before any other Shared methods, and before any
instances of the class are created. The first time any code attempts to interact with any method on the
class, or attempts to create an instance of the class, the Shared constructor is invoked.

Because you never directly call the Shared constructor, it cannot accept any parameters. Moreover,
because it is a Shared method, it can only interact with Shared variables or other Shared methods in
the class.

Typically, a Shared constructor is used to initialize Shared fields within an object. In the Person class, for
instance, you can use it to initialize the mCount variable:

Shared Sub New()
mCount = 0

End Sub

Because this method is called only once during the lifetime of the application, it is safe to do one-time
initializations of values in this constructor.

Operator Overloading
Many basic data types, such as Integer and String, support the use of operators, including +, −, =, <>,
and so forth. When you create a class, you are defining a new type, and sometimes it is appropriate for
types to also support the use of operators.

In your class, you can write code to define how each of these operators works when applied to objects.
What does it mean when two objects are added together? Or multiplied? Or compared? If you can define
what these operations mean, you can write code to implement appropriate behaviors. This is called
operator overloading, as you are overloading the meaning of specific operators.

90

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 91

Chapter 2: Object Syntax Introduction

Operator overloading is performed by using the Operator keyword, in much the same way that you
create a Sub, Function, or Property method.

Most objects at least provide for some type of comparison, and so will often overload the comparison
operators (=, <>, and maybe <, >, <=, and >=). You can do this in the Person class, for example, by adding
the following code:

Public Shared Operator =(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return person1.Name = person2.Name
End Operator

Public Shared Operator <>(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return person1.Name <> person2.Name
End Operator

Note that you overload both the = and <> operators. Many operators come in pairs, including the equality
operator. If you overload =, then you must overload <> or a compiler error will result. Now that you have
overloaded these operators, you can write code in Form1 such as the following:

Dim p1 As New Person("Fred", #1/1/1960#)
Dim p2 As New Person("Mary", #1/1/1980#)
Dim p3 As Person = p1

Debug.WriteLine(CStr(p1 = p2))
Debug.WriteLine(CStr(p1 = p3))

Normally, it would be impossible to compare two objects using a simple comparison operator, but
because you overloaded the operator, this becomes valid code. The result will display False and True.

Both the = and <> operators accept two parameters, so these are called binary operators. There are also
unary operators that accept a single parameter. For instance, you might define the capability to convert a
String value into a Person object by overloading the CType operator:

Public Shared Narrowing Operator CType(ByVal name As String) As Person
Dim obj As New Person
obj.Name = name
Return obj

End Operator

To convert a String value to a Person, you assume that the value should be the Name property. You
create a new object, set the Name property, and return the result. Because String is a broader, or less
specific, type than Person, this is a Narrowing conversion. Were you to do the reverse, convert a Person
to a String, that would be a Widening conversion:

Public Shared Widening Operator CType(ByVal person As Person) As String
Return person.Name

End Operator

Few non-numeric objects will overload most operators. It is difficult to imagine the result of adding,
subtracting, or dividing two Customer objects against each other. Likewise, it is difficult to imagine

91

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 92

Chapter 2: Object Syntax Introduction

performing bitwise comparisons between two Invoice objects. The following chart lists the various
operators that can be overloaded:

Operators Description

=, <> Equality and inequality. These are binary operators to support the a = b and a <>
b syntax. If you implement one, then you must implement both.

>, < Greater than and less than. These are binary operators to support the a > b and
a < b syntax. If you implement one, then you must implement both.

>=, <= Greater than or equal to and less than or equal to. These are binary operators to
support the a >= b and a <= b syntax. If you implement one, then you must
implement both.

IsFalse,
IsTrue

Boolean conversion. These are unary operators to support the AndAlso and
OrElse statements. The IsFalse operator accepts a single object and returns
False if the object can be resolved to a False value. The IsTrue operator accepts
a single value and returns True if the object can be resolved to a True value. If
you implement one, then you must implement both.

CType Type conversion. This is a unary operator to support the CType(a)statement. The
CType operator accepts a single object of another type and converts that object to
the type of your class. This operator must be marked as either Narrowing, to
indicate that the type is more specific than the original type, or Widening,
to indicate that the type is broader than the original type.

+, - Addition and subtraction. These operators can be unary or binary. The unary
form exists to support the a += b and a −= b syntax, while the binary form exists
to support a + b and a − b.

*, /, \, ˆ, Mod Multiplication, division, exponent, and Mod. These are binary operators to
support the a * b, a / b, a \ b, a ^ b, and a Mod b syntax.

& Concatenation. This binary operator supports the a & b syntax. While this
operator is typically associated with String manipulation, the & operator is not
required to accept or return String values, so it can be used for any
concatenation operation that is meaningful for your object type.

<<, >> Bit shifting. These binary operators support the a << b and a >> b syntax. The
second parameter of these operators must be a value of type Integer, which will
be the integer value to be bit-shifted based on your object value.

And, Or, Xor Logical comparison or bitwise operation. These binary operators support the a
And b, a Or b, and a Xor b syntax. If the operators return Boolean results, then
they are performing logical comparisons. If they return results of other data
types, then they are performing bitwise operations.

Like Pattern comparison. This binary operator supports the a Like b syntax.

If an operator is meaningful for your data type, then you are strongly encouraged to overload that
operator.

92

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 93

Chapter 2: Object Syntax Introduction

Defining AndAlso and OrElse
Notice that neither the AndAlso nor the OrElse operators can be directly overloaded. This is because
these operators use other operators behind the scenes to do their work. To overload AndAlso and OrElse,
you need to overload a set of other operators, as shown here:

AndAlso OrElse

Overload the And operator to accept two
parameters of your object’s type and to return a
result of your object’s type.

Overload the Or operator to accept two
parameters of your object’s type and to return a
result of your object’s type.

Overload IsFalse for your object’s type
(meaning that you can return True or False by
evaluating a single instance of your object).

Overload IsTrue for your object’s type
(meaning that you can return True or False by
evaluating a single instance of your object).

If these operators are overloaded in your class, then you can use AndAlso and OrElse to evaluate state-
ments that involve instances of your class.

Delegates
Sometimes it would be nice to be able to pass a procedure as a parameter to a method. The classic scenario
is when building a generic sort routine, for which you need to provide not only the data to be sorted, but
also a comparison routine appropriate for the specific data.

It is easy enough to write a sort routine that sorts Person objects by name, or to write a sort routine that
sorts SalesOrder objects by sales date. However, if you want to write a sort routine that can sort any
type of object based on arbitrary sort criteria, that gets pretty difficult. At the same time, because some
sort routines can get very complex, it would be nice to reuse that code without having to copy and paste
it for each different sort scenario.

By using delegates, you can create such a generic routine for sorting; and in so doing, you can see how
delegates work and can be used to create many other types of generic routines. The concept of a delegate
formalizes the process of declaring a routine to be called and calling that routine.

The underlying mechanism used by the .NET environment for callback methods is the delegate. Visual
Basic uses delegates behind the scenes as it implements the Event, RaiseEvent, WithEvents, and
Handles keywords.

Declaring a Delegate
In your code, you can declare what a delegate procedure must look like from an interface standpoint.
This is done using the Delegate keyword. To see how this works, let’s create a routine to sort any kind
of data.

To do this, you will declare a delegate that defines a method signature for a method that compares the
value of two objects and returns a Boolean indicating whether the first object has a larger value than
the second object. You will then create a sort algorithm that uses this generic comparison method to sort

93

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 94

Chapter 2: Object Syntax Introduction

data. Finally, you will create an actual method that implements the comparison, and then you will pass
the method’s address to the sort routine.

Add a new module to the project by choosing Project➪Add Module. Name the module Sort.vb, and
then add the following code:

Module Sort

Public Delegate Function Compare(ByVal v1 As Object, ByVal v2 As Object) _
As Boolean

End Module

This line of code does something interesting. It actually defines a method signature as a data type. This
new data type is named Compare, and it can be used within the code to declare variables or parameters
that are accepted by your methods. A variable or parameter declared using this data type could actually
hold the address of a method that matches the defined method signature, and you can then invoke that
method by using the variable.

Any method with the following signature can be viewed as being of type Compare:

f(Object, Object)

Using the Delegate Data Type
You can write a routine that accepts this data type as a parameter, meaning that anyone calling your
routine must pass the address of a method that conforms to this interface. Add the following sort routine
to the code module:

Public Sub DoSort(ByVal theData() As Object, ByVal greaterThan As Compare)
Dim outer As Integer
Dim inner As Integer
Dim temp As Object

For outer = 0 To UBound(theData)
For inner = outer + 1 To UBound(theData)

If greaterThan.Invoke(theData(outer), theData(inner)) Then
temp = theData(outer)
theData(outer) = theData(inner)
theData(inner) = temp

End If
Next
Next

End Sub

The GreaterThan parameter is a variable that holds the address of a method matching the method sig-
nature defined by the Compare delegate. The address of any method with a matching signature can be
passed as a parameter to your Sort routine.

Note the use of the Invoke method, which is how a delegate is called from the code. In addition, note that
the routine deals entirely with the generic System.Object data type, rather than with any specific type
of data. The specific comparison of one object to another is left to the delegate routine that is passed in as
a parameter.

94

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 95

Chapter 2: Object Syntax Introduction

Implementing a Delegate Method
Now create the implementation of the delegate routine and call the sort method. On a very basic level,
all you need to do is create a method that has a matching method signature, as shown in the following
example:

Public Function PersonCompare(ByVal person1 As Object, _
ByVal person2 As Object) As Boolean

End Function

The method signature of this method exactly matches what you defined by your delegate earlier:

Compare(Object, Object)

In both cases, you are defining two parameters of type Object.

Of course, there is more to it than simply creating the stub of a method. The method needs to return a
value of True if its first parameter is greater than the second parameter. Otherwise, it should be written
to deal with some specific type of data.

The Delegate statement defines a data type based on a specific method interface. To call a routine that
expects a parameter of this new data type, it must pass the address of a method that conforms to the
defined interface.

To conform to the interface, a method must have the same number of parameters with the same data
types defined in your Delegate statement. In addition, the method must provide the same return type
as defined. The actual name of the method does not matter; it is the number, order, and data type of the
parameters and the return value that count.

To find the address of a specific method, you can use the AddressOf operator. This operator returns the
address of any procedure or method, enabling you to pass that value as a parameter to any routine that
expects a delegate as a parameter.

The Person class already has a shared method named CompareAge that generally does what you want.
Unfortunately, it accepts parameters of type Person, rather than of type Object as required by the
Compare delegate. You can use method overloading to solve this problem.

Create a second implementation of CompareAge that accepts parameters of type Object as required by
the delegate, rather than of type Person as shown in the existing implementation:

Public Shared Function CompareAge(ByVal person1 As Object, _
ByVal person2 As Object) As Boolean

Return CType(person1, Person).Age > CType(person2, Person).Age

End Function

This method simply returns True if the first Person object’s age is greater than the second. The routine
accepts two Object parameters, rather than specific Person type parameters, so you have to use the

95

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 96

Chapter 2: Object Syntax Introduction

CType method to access those objects as type Person. You accept the parameters as type Object because
that is what is defined by the Delegate statement. You are matching its method signature:

f(Object, Object)

Because this method’s parameter data types and return value match the delegate, you can use it when
calling the Sort routine. Place a button on the form and write the following code behind that button:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button2.Click

Dim myPeople(4) As Person

myPeople(0) = New Person("Fred", #7/9/1960#)
myPeople(1) = New Person("Mary", #1/21/1955#)
myPeople(2) = New Person("Sarah", #2/1/1960#)
myPeople(3) = New Person("George", #5/13/1970#)
myPeople(4) = New Person("Andre", #10/1/1965#)

DoSort(myPeople, AddressOf Person.CompareAge)
End Sub

This code creates an array of Person objects and populates them. It then calls the DoSort routine from the
module, passing the array as the first parameter, and the address of the shared CompareAge method as
the second parameter. To display the contents of the sorted array in the IDE’s output window, you can
add the following code:

Private Sub button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button2.Click

Dim myPeople(4) As Person

myPeople(0) = New Person("Fred", #7/9/1960#)
myPeople(1) = New Person("Mary", #1/21/1955#)
myPeople(2) = New Person("Sarah", #2/1/1960#)
myPeople(3) = New Person("George", #5/13/1970#)
myPeople(4) = New Person("Andre", #10/1/1965#)

DoSort(myPeople, AddressOf Person.CompareAge)

Dim myPerson As Person
For Each myPerson In myPeople

System.Diagnostics.Debug.WriteLine(myPerson.Name & " " & myPerson.Age)
Next

End Sub

When you run the application and click the button, the output window displays a list of the people sorted
by age, as shown in Figure 2-5.

What makes this so powerful is that you can change the comparison routine without changing the sort
mechanism. Simply add another comparison routine to the Person class:

Public Shared Function CompareName(ByVal person1 As Object, _
ByVal person2 As Object) As Boolean

96

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 97

Chapter 2: Object Syntax Introduction

Return CType(person1, Person).Name > CType(person2, Person).Name

End Function

Figure 2-5

Then, change the code behind the button on the form to use that alternate comparison routine:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim myPeople(4) As Person

myPeople(0) = New Person("Fred", #7/9/1960#)
myPeople(1) = New Person("Mary", #1/21/1955#)
myPeople(2) = New Person("Sarah", #2/1/1960#)
myPeople(3) = New Person("George", #5/13/1970#)
myPeople(4) = New Person("Andre", #10/1/1965#)

DoSort(myPeople, AddressOf Person.CompareName)

Dim myPerson As Person

For Each myPerson In myPeople
System.Diagnostics.Debug.WriteLine(myPerson.Name & " " & myPerson.Age)

Next
End Sub

When you run this updated code, you will find that the array contains a set of data sorted by name, rather
than age, as shown in Figure 2-6.

Figure 2-6

97

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 98

Chapter 2: Object Syntax Introduction

Simply by creating a new compare routine and passing it as a parameter, you can entirely change the
way that the data is sorted. Better still, this sort routine can operate on any type of object, as long as you
provide an appropriate delegate method that knows how to compare that type of object.

Classes versus Components
Visual Basic has another concept that is very similar to a class: the component. In fact, you can pretty much
use a component and a class interchangeably, though there are some differences.

A component is little more than a regular class, but one that supports a graphical designer within the
Visual Studio IDE. This means you can use drag-and-drop to provide the code in the component with
access to items from the Server Explorer or the Toolbox.

To add a component to a project, select Project➪Add Component, give the component a name, and click
Open in the Add New Item dialog box.

When you add a class to the project, you are presented with the code window. When you add a compo-
nent, you are presented with a graphical designer surface, much like what you would see when adding
a Web Form to the project.

If you switch to the code view (by right-clicking in the Design view and choosing View Code), you will
see the code that is created automatically, just as it is with a Windows Form, Web Form, or regular class:

Public Class Component1

End Class

This is not a lot more code than you see with a regular class, though there are differences behind the
scenes. A component uses the same partial class technology as Windows Forms or Web Forms. This
means that the code here is only part of the total code in the class. The rest of the code is hidden behind
the designer’s surface and is automatically created and managed by Visual Studio.

In the designer code is an Inherits statement that makes every component inherit from System.
ComponentModel.Component. Chapter 3 discusses the concept of inheritance, but note here that this
Inherits line is what brings in all the support for the graphical designer in Visual Studio.

The designer also manages any controls or components that are dropped on it. Those controls or compo-
nents are automatically made available to your code. For instance, if you drag and drop a Timer control
from the Windows Forms tab of the Toolbox onto the component, it will be displayed in the designer.

From here, you can set its properties using the standard Properties window in the IDE, just as you would
for a control on a form. Using the Properties window, set the Name property to theTimer. You now
automatically have access to a Timer object named theTimer, simply by dragging and dropping and
setting some properties.

This means that you can write code within the component, just as you might in a class, to use this object:

Public Sub Start()
theTimer.Enabled = True

End Sub

98

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 99

Chapter 2: Object Syntax Introduction

Public Sub Stop()
theTimer.Enabled = False

End Sub

Private Sub theTimer_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles theTimer.Tick

’ do work
End Sub

For the most part, you can use a component interchangeably with a basic class, but using a component
also provides some of the designer benefits of working with Windows Forms or Web Forms.

Summary
Visual Basic offers a fully object-oriented language with all the capabilities you would expect. This
chapter described the basic concepts behind classes and objects, as well as the separation of interface
from implementation and data. You have learned how to use the Class keyword to create classes, and
how those classes can be instantiated into specific objects, each one an instance of the class. These objects
have methods and properties that can be invoked by the client code, and can act on data within the object
stored in member or instance variables.

You also explored some more advanced concepts, including method overloading, shared or static vari-
ables and methods, and the use of delegates. Finally, the chapter provided a brief overview of attributes
and how you can use them to affect the interaction of classes or methods with the .NET environment.

The next chapter continues the discussion of object syntax as you explore the concept of inheritance
and all the syntax that enables inheritance within Visual Basic. You will also walk through the creation,
implementation, and use of multiple interfaces — a powerful concept that enables objects to be used in
different ways, depending on the interface chosen by the client application.

Also covered in the next chapter is a discussion of objects and object-oriented programming, applying all
of this syntax. It explains the key object-oriented concepts of abstraction, encapsulation, polymorphism,
and inheritance, and shows how they work together to provide a powerful way to design and implement
applications.

Chapter 4 explores the .NET common language runtime (CLR). Because the .NET platform and run-
time are object-oriented at their very core, this chapter examines how objects interact with the runtime
environment and covers topics such as using and disposing of objects and memory management.

99

Evjen-91361 c02.tex V2 - 04/01/2008 3:21pm Page 100

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 101

Object-Oriented
Programming

Visual Basic is a fully object-oriented language. Chapter 2 covered the basics of creating classes and
objects, including the creation of methods, properties, events, operators, and instance variables. You
have seen the basic building blocks for abstraction, encapsulation, and polymorphism — concepts
discussed in more detail at the end of this chapter. The final major techniques you need to under-
stand are inheritance and the use of multiple interfaces.

Inheritance is the idea that you can create a class that reuses methods, properties, events, and vari-
ables from another class. You can create a class with some basic functionality, and then use that
class as a base from which to create other, more detailed, classes. All these derived classes will have
the same common functionality as that base class, along with new, enhanced, or even completely
changed functionality.

This chapter covers the syntax that supports inheritance within Visual Basic. This includes creating
the base classes from which other classes can be derived, as well as creating those derived classes.

Visual Basic also supports a related concept: multiple interfaces. As shown in Chapter 2, all objects
have a native or default interface, which is defined by the public methods, properties, and events
declared in the class. In the .NET environment, an object can have other interfaces in addition to
this native interface — in other words, .NET objects can have multiple interfaces.

These secondary interfaces define alternative ways in which your object can be accessed by provid-
ing clearly defined sets of methods, properties, and events. Like the native interface, these secondary
interfaces define how the client code can interact with your object, essentially providing a ‘‘contract’’
that enables the client to know exactly what methods, properties, and events the object will provide.
When you write code to interact with an object, you can choose which of the interfaces you want to
use; basically, you are choosing how you want to view or interact with that object.

This chapter uses relatively basic code examples so that you can focus on the technical and syn-
tactic issues surrounding inheritance and multiple interfaces. The last part of this chapter revisits
these concepts using a more sophisticated set of code as you continue to explore object-oriented
programming and how to apply inheritance and multiple interfaces in a practical manner.

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 102

Chapter 3: Object-Oriented Programming

Of course, just knowing the syntax and learning the tools is not enough to be successful. Successfully
applying Visual Basic’s object-oriented capabilities requires an understanding of object-oriented pro-
gramming. This chapter also applies Visual Basic’s object-oriented syntax, showing how it enables you
to build object-oriented applications. It also describes the four major object-oriented concepts: abstrac-
tion, encapsulation, polymorphism, and inheritance. By the end of this chapter, you will understand
how to apply these concepts in your design and development efforts to create effective object-oriented
applications.

Inheritance
Inheritance is the concept that a new class can be based on an existing class, inheriting the interface and
functionality from the original class. In Chapter 2, you explored the relationship between a class and an
object, and saw that the class is essentially a template from which objects can be created.

While this is very powerful, it does not provide all the capabilities you might like. In particular, in many
cases a class only partially describes what you need for your object. You may have a class called Person,
for instance, which has all the properties and methods that apply to all types of people, such as first name,
last name, and birth date. While useful, this class probably does not have everything you need to describe
a specific type of person, such as an employee or a customer. An employee would have a hire date and a
salary, which are not included in Person, while a customer would have a credit rating, something neither
the Person nor the Employee classes would need.

Without inheritance, you would probably end up replicating the code from the Person class in both the
Employee and Customer classes so that they would have that same functionality as well as the ability to
add new functionality of their own.

Inheritance makes it very easy to create classes for Employee, Customer, and so forth. You do not have to
re-create that code for an employee to be a person; it automatically inherits any properties, methods, and
events from the original Person class.

You can think of it this way: When you create an Employee class, which inherits from a Person class, you
are effectively merging these two classes. If you then create an object based on the Employee class, then
it has not only the interface (properties, methods, and events) and implementation from the Employee
class, but also those from the Person class.

While an Employee object represents the merger between the Employee and Person classes, understand
that the variables and code contained in each of those classes remain independent. Two perspectives are
involved.

From the outside, the client code that interacts with the Employee object sees a single, unified object that
represents the merger of the Employee and Person classes.

From the inside, the code in the Employee class and the code in the Person class are not totally intermixed.
Variables and methods that are Private are only available within the class they were written. Variables
and methods that are Public in one class can be called from the other class. Variables and methods that
are declared as Friend are only available between classes if both classes are in the same Visual Basic
project. As discussed later in the chapter, there is also a Protected scope that is designed to work with
inheritance, but, again, this provides a controlled way for one class to interact with the variables and
methods in the other class.

102

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 103

Chapter 3: Object-Oriented Programming

Visual Studio 2008 includes a Class Designer tool that enables you to easily create diagrams of your
classes and their relationships. The Class Designer diagrams are a derivative of a standard notation
called the Unified Modeling Language (UML) that is typically used to diagram the relationships between
classes, objects, and other object-oriented concepts. The Class Designer diagrams more accurately and
completely model .NET classes, so that is the notation used in this chapter. The relationship between the
Person, Employee, and Customer classes is illustrated in Figure 3-1.

Person
Class

Customer
Class

Person

Employee
Class

Person

Figure 3-1

Each box in this diagram represents a class; in this case, you have Person, Employee, and Customer
classes. The line from Employee back up to Person, terminating in a triangle, indicates that Employee is
derived from, or inherits from, Person. The same is true for the Customer class.

Later in this chapter, you will learn when and how inheritance should be used in software design. The
beginning part of this chapter covers the syntax and programming concepts necessary to implement
inheritance. First you will create a base Person class. Then you will use that class to create both Employee
and Customer classes that inherit behavior from Person.

Before getting into the implementation, however, it’s necessary to understand some basic terms associ-
ated with inheritance — and there are a lot of terms, partly because there are often several ways to say
the same thing. The various terms are all used quite frequently and interchangeably.

Though we attempt to use consistent terminology in this book, be aware that in other books and articles,
and online, all these terms are used in various permutations.

Inheritance, for instance, is also sometimes referred to as generalization because the class from which you
are inheriting your behavior is virtually always a more general form of your new class. A person is more
general than an employee, for instance.

The inheritance relationship is also referred to as an is-a relationship. When you create a Customer class
that inherits from a Person class, that customer is a person. The employee is a person as well. Thus, you
have the is-a relationship. As shown later in the chapter, multiple interfaces can be used to implement
something similar to the is-a relationship, the act-as relationship.

When you create a class using inheritance, it inherits behaviors and data from an existing class. That
existing class is called the base class. It is also often referred to as a superclass or a parent class.

103

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 104

Chapter 3: Object-Oriented Programming

The class you create using inheritance is based on the parent class. It is called a subclass. Sometimes it is
also called a child class or a derived class. In fact, the process of inheriting from a base class by a subclass
is referred to as deriving. You are deriving a new class from the base class. The process is also called
subclassing.

Implementing Inheritance
When you set out to implement a class using inheritance, you must first start with an existing class from
which you will derive your new subclass. This existing class, or base class, may be part of the .NET
system class library framework, it may be part of some other application or .NET assembly, or you may
create it as part of your existing application.

Once you have a base class, you can then implement one or more subclasses based on that base class.
Each of your subclasses automatically inherits all of the methods, properties, and events of that base
class — including the implementation behind each method, property, and event. Your subclass can
also add new methods, properties, and events of its own, extending the original interface with new
functionality. In addition, a subclass can replace the methods and properties of the base class with
its own new implementation — effectively overriding the original behavior and replacing it with new
behaviors.

Essentially, inheritance is a way of merging functionality from an existing class into your new subclass.
Inheritance also defines rules for how these methods, properties, and events can be merged, including
control over how they can be changed or replaced, and how the subclass can add new methods, proper-
ties, and events of its own. This is what you will learn in the following sections — what these rules are
and what syntax you use in Visual Basic to make it all work.

Creating a Base Class
Virtually any class you create can act as a base class from which other classes can be derived. In fact,
unless you specifically indicate in the code that your class cannot be a base class, you can derive from it
(you will come back to this later).

Create a new Windows Application project in Visual Basic. Then add a class to the project using the
Project ➪ Add Class menu option and name it Person.vb. Begin with the following code:

Public Class Person

End Class

At this point, you technically have a base class, as it is possible to inherit from this class even though it
doesn’t do or contain anything. You can now add methods, properties, and events to this class as you
normally would. All of those interface elements would be inherited by any class you might create based
on Person. For instance, add the following code:

Public Class Person

Private mName As String
Private mBirthDate As Date

Public Property Name() As String

104

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 105

Chapter 3: Object-Oriented Programming

Get
Return mName

End Get
Set(ByVal value As String)

mName = value
End Set

End Property

Public Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal value As Date)

mBirthDate = value
End Set

End Property

End Class

This provides a simple method that can be used to illustrate how basic inheritance works. This class can
be represented by the class diagram in Visual Studio, as shown in Figure 3-2.

Person
Class

Fields

mBirthDate
mName

BirthDate
Name

Properties

Figure 3-2

In this representation of the class as it is presented from Visual Studio, the overall box represents the
Person class. In the top section of this box is the name of the class and a specification that it is a class. The
section below it contains a list of the instance variables, or fields, of the class, with their scope marked as
Private (note the lock icon). The bottom section lists the properties exposed by the class, both marked
as Public. If the class had methods or events, then they would be displayed in their own sections in the
diagram.

Creating a Subclass
To implement inheritance, you need to add a new class to your project. Use the Project ➪ Add Class
menu option and add a new class named Employee.vb. Begin with the following code:

Public Class Employee
Private mHireDate As Date

105

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 106

Chapter 3: Object-Oriented Programming

Private mSalary As Double

Public Property HireDate() As Date
Get

Return mHireDate
End Get
Set(ByVal value As Date)

mHireDate = value
End Set

End Property

Public Property Salary() As Double
Get

Return mSalary
End Get
Set(ByVal value As Double)

mSalary = value
End Set

End Property
End Class

This is a regular standalone class with no explicit inheritance. It can be represented by the following class
diagram (see Figure 3-3).

Employee
Class

Fields

mHireDate
mSalary

HireDate
Salary

Properties

Figure 3-3

Again, you can see the class name, its list of instance variables, and the properties it includes as part of its
interface. It turns out that, behind the scenes, this class inherits some capabilities from System.Object. In
fact, every class in the entire .NET platform ultimately inherits from System.Object either implicitly or
explicitly. This is why all .NET objects have a basic set of common functionality, including, most notably,
the GetType method, which is discussed in detail later in the chapter.

While having an Employee object with a hire date and salary is useful, it should also have Name and
BirthDate properties, just as you implemented in the Person class. Without inheritance, you would
probably just copy and paste the code from Person directly into the new Employee class, but with inher-
itance, you can directly reuse the code from the Person class. Let’s make the new class inherit from
Person.

106

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 107

Chapter 3: Object-Oriented Programming

The Inherits Keyword
To make Employee a subclass of Person, add a single line of code:

Public Class Employee

Inherits Person

The Inherits keyword indicates that a class should derive from an existing class, inheriting the interface
and behavior from that class. You can inherit from almost any class in your project, or from the .NET
system class library or from other assemblies. It is also possible to prevent inheritance, which is covered
later in the chapter. When using the Inherits keyword to inherit from classes outside the current project,
you need to either specify the namespace that contains that class or place an Imports statement at the top
of the class to import that namespace for your use.

The diagram in Figure 3-4 illustrates the fact that the Employee class is now a subclass of Person.

Person
Class

Employee
Class

Person

Figure 3-4

The line running from Employee back up to Person ends in an open triangle, which is the symbol for
inheritance when using the Class Designer in Visual Studio. It is this line that indicates that the Employee
class includes all the functionality, as well as the interface, of Person.

This means that an object created based on the Employee class has not only the methods HireDate and
Salary, but also Name and BirthDate. To test this, bring up the designer for Form1 (which is automatically
part of your project, because you created a Windows Application project) and add the following TextBox
controls, along with a button, to the form:

Control Type Name Text Value

TextBox txtName <blank>

TextBox txtBirthDate <blank>

TextBox txtHireDate <blank>

TextBox txtSalary <blank>

button btnOK OK

107

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 108

Chapter 3: Object-Oriented Programming

You can also add some labels to make the form more readable. The Form Designer should now look
something like Figure 3-5.

Figure 3-5

Double-click the button to bring up the code window, and enter the following code:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim emp As New Employee()

With emp
.Name = "Fred"
.BirthDate = #1/1/1960#
.HireDate = #1/1/1980#
.Salary = 30000

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtHireDate.Text = Format(.HireDate, "Short date")
txtSalary.Text = Format(.Salary, "$0.00")

End With

End Sub

The best Visual Basic practice is to use the With keyword, but be aware that this might cause issues with
portability and converting code to other languages.

Even though Employee does not directly implement the Name or BirthDate methods, they are avail-
able for use through inheritance. When you run this application and click the button, your controls are
populated with the values from the Employee object.

When the code in Form1 invokes the Name property on the Employee object, the code from the Person class
is executed, as the Employee class has no such method built in. However, when the HireDate property is
invoked on the Employee object, the code from the Employee class is executed, as it does have that method
as part of its code.

From the form’s perspective, it doesn’t matter whether a method is implemented in the Employee class
or the Person class; they are all simply methods of the Employee object. In addition, because the code
in these classes is merged to create the Employee object, there is no performance difference between
calling a method implemented by the Employee class or calling a method implemented by the
Person class.

108

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 109

Chapter 3: Object-Oriented Programming

Overloading Methods
Although your Employee class automatically gains the Name and BirthDate methods through inheritance,
it also has methods of its own — HireDate and Salary. This shows how you have extended the base
Person interface by adding methods and properties to the Employee subclass.

You can add new properties, methods, and events to the Employee class, and they will be part of any
object created based on Employee. This has no impact on the Person class whatsoever, only on the
Employee class and Employee objects.

You can even extend the functionality of the base class by adding methods to the subclass that have
the same name as methods or properties in the base class, as long as those methods or properties have
different parameter lists. You are effectively overloading the existing methods from the base class. It is
essentially the same thing as overloading regular methods, as discussed in Chapter 2.

For example, your Person class is currently providing your implementation for the Name property.
Employees may have other names you also want to store, perhaps an informal name and a formal name
in addition to their regular name. One way to accommodate this requirement is to change the Person
class itself to include an overloaded Name property that supports this new functionality. However, you
are really only trying to enhance the Employee class, not the more general Person class, so what you want
is a way to add an overloaded method to the Employee class itself, even though you are overloading a
method from its base class.

You can overload a method from a base class by using the Overloads keyword. The concept is the same
as described in Chapter 2, but in this case an extra keyword is involved. To overload the Name property,
for instance, you can add a new property to the Employee class. First, though, define an enumerated type
using the Enum keyword. This Enum will list the different types of name you want to store. Add this Enum
to the Employee.vb file, before the declaration of the class itself:

Public Enum NameTypes
Informal = 1
Formal = 2

End Enum

Public Class Employee

You can then add an overloaded Name property to the Employee class itself:

Public Class Employee
Inherits Person

Private mHireDate As Date
Private mSalary As Double

Private mNames As New Generic.Dictionary(Of NameTypes, String)

Public Overloads Property Name(ByVal type As NameTypes) As String
Get

Return mNames(type)
End Get
Set(ByVal value As String)

109

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 110

Chapter 3: Object-Oriented Programming

If mNames.ContainsKey(type) Then
mNames.Item(type) = value

Else
mNames.Add(type, value)

End If
End Set

End Property

This Name property is actually a property array, which enables you to store multiple values via the same
property. In this case, you are storing the values in a Generic.Dictionary(Of K, V)object, which is
indexed by using the Enum value you just defined. Chapter 6 discusses generics in detail. For now, you
can view this generic Dictionary just like any collection object that stores key/value data.

If you omit the Overloads keyword here, your new implementation of the Name method will shadow
the original implementation. Shadowing is very different from overloading, and is covered later in the
chapter.

Though this method has the same name as the method in the base class, the fact that it accepts a different
parameter list enables you to use overloading to implement it here. The original Name property, as imple-
mented in the Person class, remains intact and valid, but now you have added a new variation with this
second Name property, as shown in Figure 3-6.

Figure 3-6

The diagram clearly indicates that the Name method in the Person class and the Name method in the
Employee class both exist. If you hover over each Name property, you will see a tooltip showing the
method signatures, making it clear that each one has a different signature.

You can now change Form1 to make use of this new version of the Name property. First, add a couple
of new TextBox controls and associated labels. The TextBox controls should be named txtFormal and

110

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 111

Chapter 3: Object-Oriented Programming

txtInformal, and the form should now look like the one shown in Figure 3-7. Double-click the form’s
button to bring up the code window and add the code to work with the overloaded version of the Name
property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim emp As New Employee()

With emp
.Name = "Fred"

.Name (NameTypes.Formal) = "Mr. Frederick R. Jones, Sr."

.Name (NameTypes.Informal) = "Freddy"

.BirthDate = #1/1/1960#

.HireDate = #1/1/1980#

.Salary = 30000

txtName.Text = .Name

txtFormal.Text = .Name (NameTypes.Formal)
txtInformal.Text = .Name (NameTypes.Informal)

txtBirthDate.Text = Format(.BirthDate, "Short date")
txtHireDate.Text = Format(.HireDate, "Short date")
txtSalary.Text = Format(.Salary, "$0.00")

End With
End Sub

Figure 3-7

The code still interacts with the original Name property as implemented in the Person class, but you are
now also invoking the overloaded version of the property implemented in the Employee class.

Overriding Methods
So far, you have seen how to implement a base class and then use it to create a subclass. You also
extended the interface by adding methods, and you explored how to use overloading to add methods
that have the same name as methods in the base class but with different parameters.

111

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 112

Chapter 3: Object-Oriented Programming

However, sometimes you may want to not only extend the original functionality, but also actually change
or entirely replace the functionality of the base class. Instead of leaving the existing functionality and just
adding new methods or overloaded versions of those methods, you might want to entirely override the
existing functionality with your own.

You can do exactly that. If the base class allows it, then you can substitute your own implemen-
tation of a base class method — meaning your new implementation will be used instead of the
original.

The Overridable Keyword
By default, you can’t override the behavior of methods on a base class. The base class must be coded
specifically to allow this to occur, by using the Overridable keyword. This is important, as you may
not always want to allow a subclass to entirely change the behavior of the methods in your base class.
However, if you do wish to allow the author of a subclass to replace your implementation, you can do so
by adding the Overridable keyword to your method declaration.

Returning to the Employee example, you may not like the implementation of the BirthDate method as it
stands in the Person class. Suppose, for instance, that you can’t employ anyone younger than 16 years of
age, so any birth-date value more recent than 16 years ago is invalid for an employee.

To implement this business rule, you need to change the way the BirthDate property is implemented.
While you could make this change directly in the Person class, that would not be ideal. It is perfectly
acceptable to have a person under age 16, just not an employee.

Open the code window for the Person class and change the BirthDate property to include the
Overridable keyword:

Public Overridable Property BirthDate() As Date

Get
Return mBirthDate

End Get
Set(ByVal value As Date)

mBirthDate = value
End Set

End Property

This change allows any class that inherits from Person to entirely replace the implementation of the
BirthDate property with a new implementation.

By adding the Overridable keyword to your method declaration, you are indicating that you allow any
subclass to override the behavior provided by this method. This means you are permitting a subclass to
totally ignore your prior implementation, or to extend your implementation by doing other work before
or after your implementation is run.

If the subclass does not override this method, the method works just like a regular method and is auto-
matically included as part of the subclass’s interface. Putting the Overridable keyword on a method
simply allows a subclass to override the method if you choose to let it do so.

112

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 113

Chapter 3: Object-Oriented Programming

The Overrides Keyword
In a subclass, you override a method by implementing a method of the same name, and with the same
parameter list as the base class, and then you use the Overrides keyword to indicate that you are over-
riding that method.

This is different from overloading, because when you overload a method you are adding a new method
with the same name but a different parameter list. When you override a method, you are actually replac-
ing the original method with a new implementation.

Without the Overrides keyword, you will receive a compilation error when you implement a method
with the same name as one from the base class. Open the code window for the Employee class and add a
new BirthDate property:

Public Class Employee
Inherits Person

Private mHireDate As Date
Private mSalary As Double

Private mBirthDate As Date

Private mNames As New Generic.Dictionary(Of NameTypes, String)

Public Overrides Property BirthDate() As Date
Get

Return mBirthDate
End Get
Set(ByVal value As Date)

If DateDiff(DateInterval.Year, Value, Now) >= 16 Then
mBirthDate = value

Else
Throw New ArgumentException(_

"An employee must be at least 16 years old.")
End If

End Set
End Property

Because you are implementing your own version of the property, you have to declare a variable to store
that value within the Employee class. This is not ideal, and there are a couple of ways around it, including
the MyBase keyword and the Protected scope.

Notice also that you have enhanced the functionality in the Set block, so it now raises an error if the new
birth-date value would cause the employee to be less than 16 years of age. With this code, you have now
entirely replaced the original BirthDate implementation with a new one that enforces your business rule
(see Figure 3-8).

The diagram now includes a BirthDate method in the Employee class. While perhaps not entirely intu-
itive, this is how the class diagram indicates that you have overridden the method. If you hover the
mouse over the property in the Employee class, the tooltip will show the method signature, including the
Overrides keyword.

113

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 114

Chapter 3: Object-Oriented Programming

Figure 3-8

If you run your application and click the button on the form, then everything should work as it did before
because the birth date you are supplying conforms to your new business rule. Now change the code in
your form to use an invalid birth date:

With emp
.Name = "Fred"
.Name(NameTypes.Formal) = "Mr. Frederick R. Jones, Sr."
.Name(NameTypes.Informal) = "Freddy"

.BirthDate = #1/1/2000#

When you run the application (from within Visual Studio) and click the button, you receive an error
indicating that the birth date is invalid. This proves that you are now using the implementation of the
BirthDate method from the Employee class, rather than the one from the Person class. Change the date
value in the form back to a valid value so that your application runs properly.

The MyBase Keyword
You have just seen how you can entirely replace the functionality of a method in the base class by over-
riding it in your subclass. However, this can be somewhat extreme; sometimes it’s preferable to override
methods so that you extend the base functionality, rather than replace the functionality.

To do this, you need to override the method using the Overrides keyword as you just did, but within
your new implementation you can still invoke the original implementation of the method. This enables
you to add your own code before or after the original implementation is invoked — meaning you can
extend the behavior while still leveraging the code in the base class.

114

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 115

Chapter 3: Object-Oriented Programming

To invoke methods directly from the base class, you can use the MyBase keyword. This keyword is avail-
able within any class, and it exposes all the methods of the base class for your use.

Even a base class such as Person is an implicit subclass of System.Object, so it can use MyBase to
interact with its base class as well.

This means that within the BirthDate implementation in Employee, you can invoke the BirthDate
implementation in the base Person class. This is ideal, as it means that you can leverage any existing
functionality provided by Person while still enforcing your Employee-specific business rules.

To take advantage of this, you can enhance the code in the Employee implementation of BirthDate.
First, remove the declaration of mBirthDate from the Employee class. You won’t need this variable any
longer because the Person implementation will keep track of the value on your behalf. Then, change the
BirthDate implementation in the Employee class as follows:

Public Overrides Property BirthDate() As Date
Get

Return MyBase.BirthDate

End Get

Set(ByVal value As Date)
If DateDiff(DateInterval.Year, Value, Now) >= 16 Then

MyBase.BirthDate = value

Else
Throw New ArgumentException(_
"An employee must be at least 16 years old.")

End If
End Set

End Property

Run your application and you will see that it works just fine even though the Employee class no
longer contains any code to actually keep track of the birth-date value. You have effectively merged the
BirthDate implementation from Person right into your enhanced implementation in Employee, creating
a hybrid version of the property.

The MyBase keyword is covered in more detail later in the chapter. Here, you can see how it enables you
to enhance or extend the functionality of the base class by adding your own code in the subclass but still
invoking the base-class method when appropriate.

Virtual Methods
The BirthDate method is an example of a virtual method. Virtual methods are those that can be overridden
and replaced by subclasses.

Virtual methods are more complex to understand than regular nonvirtual methods. With a nonvirtual
method, only one implementation matches any given method signature, so there’s no ambiguity about
which specific method implementation will be invoked. With virtual methods, however, there may be

115

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 116

Chapter 3: Object-Oriented Programming

several implementations of the same method, with the same method signature, so you need to under-
stand the rules that govern which specific implementation of that method will be called.

When working with virtual methods, keep in mind that the data type of the object is used to determine
the implementation of the method to call, rather than the type of the variable that refers to the object.

Looking at the code in your form, you can see that you are declaring an object variable of type Employee,
and then creating an Employee object that you can reference via that object:

Dim emp As New Employee()

It is not surprising, then, that you are able to invoke any of the methods that are implemented as
part of the Employee class, and through inheritance, any of the methods implemented as part of the
Person class:

With emp
.Name = "Fred"
.Name(NameTypes.Formal) = "Mr. Frederick R. Jones, Sr."
.Name(NameTypes.Informal) = "Freddy"
.BirthDate = #1/1/1960#
.HireDate = #1/1/1980#
.Salary = 30000

When you call the BirthDate property, you know that you are invoking the implementation contained in
the Employee class, which makes sense because you know that you are using a variable of type Employee
to refer to an object of type Employee.

Because your methods are virtual methods, you can experiment with some much more interesting sce-
narios. For instance, suppose that you change the code in your form to interact directly with an object of
type Person instead of one of type Employee:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As New Person()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")

End With

End Sub

You can no longer call the methods implemented by the Employee class because they do not exist as part
of a Person object, but only as part of an Employee object. However, you can see that both the Name and
BirthDate properties continue to function as you would expect. When you run the application now, it

116

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 117

Chapter 3: Object-Oriented Programming

will work just fine. You can even change the birth-date value to something that would be invalid for
Employee:

.BirthDate = #1/1/2000#

The application will now accept it and work just fine, because the BirthDate method you are invoking is
the original version from the Person class.

These are the two simple scenarios, when you have a variable and object of type Employee or a variable
and object of type Person. However, because Employee is derived from Person, you can do something a
bit more interesting. You can use a variable of type Person to hold a reference to an Employee object. For
example, you can change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person
person = New Employee()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")

End With
End Sub

What you are doing now is declaring your variable to be of type Person, but the object itself is an instance
of the Employee class. You have done something a bit complex here, as the data type of the variable is not
the same as the data type of the object itself. Remember that a variable of a base-class type can always
hold a reference to an object of any subclass.

This is why a variable of type System.Object can hold a reference to literally
anything in the .NET Framework, because all classes are ultimately derived from
System.Object.

This technique is very useful when creating generic routines. It makes use of an object-oriented concept
called polymorphism, which is discussed more thoroughly later in this chapter. This technique enables
you to create a more general routine that populates your form for any object of type Person. Add the
following code to the form:

Private Sub DisplayPerson(ByVal thePerson As Person)
With thePerson
txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")

End With
End Sub

117

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 118

Chapter 3: Object-Oriented Programming

Now you can change the code behind the button to make use of this generic routine:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person
person = New Employee()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#

End With

DisplayPerson(person)

End Sub

The benefit here is that you can pass a Person object or an Employee object to DisplayPerson and the
routine will work the same either way.

When you run the application now, things get interesting. You will get an error when you attempt to set
the BirthDate property because it breaks your 16-year-old business rule, which is implemented in the
Employee class. How can this be when your person variable is of type Person?

This clearly demonstrates the concept of a virtual method. It is the data type of the object, in this case
Employee, that is important. The data type of the variable is not the deciding factor when choosing which
implementation of an overridden method is invoked.

The following table shows which method is actually invoked based on the variable and object data types
when working with virtual methods:

Variable Type Object Type Method Invoked

Base Base Base

Base Subclass Subclass

Subclass Subclass Subclass

Virtual methods are very powerful and useful when you implement polymorphism using inheritance.
A base-class data type can hold a reference to any subclass object, but it is the type of that specific object
which determines the implementation of the method. Therefore, you can write generic routines that
operate on many types of object as long as they derive from the same base class. You will learn how to
make use of polymorphism and virtual methods in more detail later in this chapter.

Overriding Overloaded Methods
Earlier, you wrote code in your Employee class to overload the Name method in the base Person class. This
enabled you to keep the original Name functionality but also extend it by adding another Name method
that accepted a different parameter list.

118

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 119

Chapter 3: Object-Oriented Programming

You have also overridden the BirthDate method. The implementation in the Employee class replaced the
implementation in the Person class. Overriding is a related but different concept from overloading. It is
also possible to both overload and override a method at the same time.

In the earlier overloading example, you added a new Name property to the Employee class, while retaining
the functionality present in the base Person class. You may decide that you not only want to have your
second overloaded implementation of the Name method, but also want to replace the existing one by
overriding the existing method provided by the Person class.

In particular, you may want to do this so that you can store the Name value in the Hashtable object along
with your Formal and Informal names. Before you can override the Name method, you need to add the
Overridable keyword to the base implementation in the Person class:

Public Overridable Property Name() As String

Get
Return mName

End Get
Set(ByVal value As String)
mName = value

End Set
End Property

With that done, the Name method can now be overridden by any derived classes. In the Employee class,
you can now override the Name method, replacing the functionality provided by the Person class. First
add a Normal option to the Enum that controls the types of Name value you can store:

Public Enum NameTypes
Informal = 1
Formal = 2

Normal = 3

End Enum

Now you can add code to the Employee class to implement a new Name property. This is in addition to
the existing Name property already implemented in the Employee class:

Public Overloads Overrides Property Name() As String
Get
Return Name(NameTypes.Normal)

End Get
Set(ByVal value As String)
Name(NameTypes.Normal) = value

End Set
End Property

Note that you are using both the Overrides keyword, to indicate that you are overriding the Name method
from the base class, and the Overloads keyword, to indicate that you are overloading this method in the
subclass.

This new Name property merely delegates the call to the existing version of the Name property that han-
dles the parameter-based names. To complete the linkage between this implementation of the Name

119

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 120

Chapter 3: Object-Oriented Programming

property and the parameter-based version, you need to make one more change to that original over-
loaded version:

Public Overloads Property Name(ByVal type As NameTypes) As String
Get
Return mNames(Type)

End Get
Set(ByVal value As String)
If mNames.ContainsKey(type) Then

mNames.Item(type) = value
Else

mNames.Add(type, value)
End If

If type = NameTypes.Normal Then
MyBase.Name = value

End If

End Set
End Property

This way, if the client code sets the Name property by providing the Normal index, you are still updating
the name in the base class as well as in the Dictionary object maintained by the Employee class.

Shadowing
Overloading enables you to add new versions of existing methods as long as their parameter lists are dif-
ferent. Overriding enables your subclass to entirely replace the implementation of a base-class method
with a new method that has the same method signature. As you just saw, you can even combine these
concepts not only to replace the implementation of a method from the base class, but also to simultane-
ously overload that method with other implementations that have different method signatures.

However, any time you override a method using the Overrides keyword, you are subject to the rules
governing virtual methods — meaning that the base class must give you permission to override the
method. If the base class does not use the Overridable keyword, then you can’t override the method.
Sometimes you may need to override a method that is not marked as Overridable, and shadowing
enables you to do just that.

The Shadows keyword can also be used to entirely change the nature of a method or other interface
element from the base class, although that is something which should be done with great care, as it can
seriously reduce the maintainability of your code. Normally, when you create an Employee object, you
expect that it can act not only as an Employee, but also as a Person because Employee is a subclass of
Person. However, with the Shadows keyword, you can radically alter the behavior of an Employee class
so that it does not act like a Person. This sort of radical deviation from what is normally expected invites
bugs and makes code hard to understand and maintain.

Shadowing methods is very dangerous and should be used as a last resort. It is primarily useful in cases
where you have a preexisting component such as a Windows Forms control that was not designed for
inheritance. If you absolutely must inherit from such a component, you may need to use shadowing to
‘‘override’’ methods or properties. Despite the serious limits and dangers, it may be your only option.
You will explore this in more detail later. First, let’s see how Shadows can be used to override nonvirtual
methods.

120

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 121

Chapter 3: Object-Oriented Programming

Overriding Nonvirtual Methods
Earlier in the chapter you learned about virtual methods and how they are automatically created in
Visual Basic when the Overrides keyword is employed. You can also implement nonvirtual methods
in Visual Basic. Nonvirtual methods are methods that cannot be overridden and replaced by subclasses,
so most methods you implement are nonvirtual.

If you do not use the Overridable keyword when declaring a method, then it is
nonvirtual.

In the typical case, nonvirtual methods are easy to understand. They can’t be overridden and replaced,
so you know that there’s only one method by that name, with that method signature. Therefore, when
you invoke it, there is no ambiguity about which specific implementation will be called. The reverse is
true with virtual methods, where there may be more than one method of the same name, and with the
same method signature, so you should understand the rules governing which implementation will be
invoked.

Of course, you knew it couldn’t be that simple, and it turns out that you can override nonvirtual methods
by using the Shadows keyword. In fact, you can use the Shadows keyword to override methods regardless
of whether or not they have the Overridable keyword in the declaration.

The Shadows keyword enables you to replace methods on the base class that the
base-class designer didn’t intend to be replaced.

Obviously, this can be very dangerous. The designer of a base class must be careful when marking
a method as Overridable, ensuring that the base class continues to operate properly even when that
method is replaced by another code in a subclass. Designers of base classes typically just assume that
if they do not mark a method as Overridable, it will be called and not overridden. Thus, overriding a
nonvirtual method by using the Shadows keyword can have unexpected and potentially dangerous side
effects, as you are doing something that the base-class designer assumed would never happen.

If that isn’t enough complexity, it turns out that shadowed methods follow different rules than virtual
methods when they are invoked. That is, they do not act like regular overridden methods; instead, they
follow a different set of rules to determine which specific implementation of the method will be invoked.
In particular, when you call a nonvirtual method, the data type of the variable refers to the object that
indicates which implementation of the method is called, not the data type of the object, as with virtual
methods.

To override a nonvirtual method, you can use the Shadows keyword instead of the Overrides key-
word. To see how this works, add a new property to the base Person class:

Public ReadOnly Property Age() As Integer
Get
Return CInt(DateDiff(DateInterval.Year, Now, BirthDate))

End Get
End Property

121

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 122

Chapter 3: Object-Oriented Programming

Here you have added a new method called Age to the base class, and thus automatically to the subclass.
This code has a bug, introduced intentionally for illustration. The DateDiff parameters are in the wrong
order, so you will get negative age values from this routine. The bug was introduced to highlight the fact
that sometimes you will find bugs in base classes that you didn’t write (and which you can’t fix because
you don’t have the source code).

The following example walks you through the use of the Shadows keyword to address a bug in your
base class, acting under the assumption that for some reason you can’t actually fix the code in the
Person class.

Note that you are not using the Overridable keyword on this method, so any subclass is prevented from
overriding the method by using the Overrides keyword. The obvious intent and expectation of this code
is that all subclasses will use this implementation and not override it with their own.

However, the base class cannot prevent a subclass from shadowing a method, so it does not matter
whether you use Overridable or not; either way works fine for shadowing.

Before you shadow the method, let’s see how it works as a regular nonvirtual method. First, you need to
change your form to use this new value. Add a text box named txtAge and a related label to the form.
Next, change the code behind the button to use the Age property. You will include the code to display the
data on the form right here to keep things simple and clear:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New Employee()

With person
.Name = "Fred"

.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

End With

End Sub

Remember to change the Employee birth-date value to something valid. At this point, you can run the
application. The age field should appear in your display as expected, though with a negative value due
to the bug we introduced. There’s no magic or complexity here. This is basic programming with objects,
and basic use of inheritance as described earlier in this chapter.

Of course, you don’t want a bug in your code, but nor do you have access to the Person class, and the
Person class does not allow you to override the Age method, so what can you do? The answer lies in the
Shadows keyword, which allows you to override the method anyway.

122

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 123

Chapter 3: Object-Oriented Programming

Let’s shadow the Age method within the Employee class, overriding and replacing the implementation
in the Person class even though it is not marked as Overridable. Add the following code to the
Employee class:

Public Shadows ReadOnly Property Age() As Integer
Get
Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))

End Get
End Property

In many ways, this looks very similar to what you have seen with the Overrides keyword, in that you
are implementing a method in your subclass with the same name and parameter list as a method in the
base class. In this case, however, you will see some different behavior when you interact with the object
in different ways.

Technically, the Shadows keyword is not required here. Shadowing is the default behavior when a sub-
class implements a method that matches the name and method signature of a method in the base class.
However, if you omit the Shadows keyword, then the compiler will issue a warning indicating that the
method is being shadowed, so it is always better to include the keyword, both to avoid the warning and
to make it perfectly clear that you chose to shadow the method intentionally.

Remember that your form’s code is currently declaring a variable of type Employee and is creating an
instance of an Employee object:

Dim person As Employee = New Employee()

This is a simple case, and, surprisingly, when you run the application now you will see that the value
of the age field is correct, indicating that you just ran the implementation of the Age property from the
Employee class. At this point, you are seeing the same behavior that you saw when overriding with the
Overrides keyword.

Let’s take a look at the other simple case, when you are working with a variable and object that are both
of data type Person. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person = New Person()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

End With
End Sub

123

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 124

Chapter 3: Object-Oriented Programming

Now you have a variable of type Person and an object of that same type. You would expect that the
implementation in the Person class would be invoked in this case, and that is exactly what happens: The
age field displays the original negative value, indicating that you are invoking the buggy implementation
of the method directly from the Person class. Again, this is exactly the behavior you would expect from
a method overridden via the Overrides keyword.

This next example is where things get truly interesting. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person = New Employee()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

End With
End Sub

Now you are declaring the variable to be of type Person, but you are creating an object that is of data
type Employee. You did this earlier in the chapter when exploring the Overrides keyword as well, and
in that case you discovered that the version of the method that was invoked was based on the data type
of the object. The BirthDate implementation in the Employee class was invoked.

If you run the application now, the rules are different when the Shadows keyword is used. In this case, the
implementation in the Person class is invoked, giving you the buggy negative value. When the imple-
mentation in the Employee class is ignored, you get the exact opposite behavior of what you got with
Overrides.

The following table summarizes which method implementation is invoked based on the variable and
object data types when using shadowing:

Variable Type Object Type Method Invoked

Base Base Base

Base Subclass Base

Subclass Subclass Subclass

In most cases, the behavior you will want for your methods is accomplished by the Overrides keyword
and virtual methods. However, in cases where the base-class designer does not allow you to override a
method and you want to do it anyway, the Shadows keyword provides you with the needed functionality.

Shadowing Arbitrary Elements
The Shadows keyword can be used not only to override nonvirtual methods, but also to totally replace
and change the nature of a base-class interface element. When you override a method, you are providing

124

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 125

Chapter 3: Object-Oriented Programming

a replacement implementation of that method with the same name and method signature. Using the
Shadows keyword, you can do more extreme things, such as change a method into an instance variable
or change a property into a function.

However, this can be very dangerous, as any code written to use your objects will naturally assume
that you implement all the same interface elements and behaviors as your base class, because that is the
nature of inheritance. Any documentation or knowledge of the original interface is effectively invalidated
because the original implementation is arbitrarily replaced.

By totally changing the nature of an interface element, you can cause a great deal of
confusion for programmers who might interact with your class in the future.

To see how you can replace an interface element from the base class, let’s entirely change the nature of
the Age property. In fact, let’s change it from a read-only property to a read-write property. You could
get even more extreme — change it to a Function or a Sub.

Remove the Age property from the Employee class and add the following code:

Public Shadows Property Age() As Integer
Get
Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))

End Get
Set(ByVal value As Integer)
BirthDate = DateAdd(DateInterval.Year, -value, Now)

End Set
End Property

With this change, the very nature of the Age method has changed. It is no longer a simple read-only
property; now it is a read-write property that includes code to calculate an approximate birth date based
on the age value supplied.

As it stands, your application will continue to run just fine because you are only using the read-only
functionality of the property in your form. You can change the form to make use of the new read-
write functionality:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Person = New Employee()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#

.Age = 20

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

End With
End Sub

125

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 126

Chapter 3: Object-Oriented Programming

However, this results in a syntax error. The variable you are working with, person, is of data type Person,
and that data type doesn’t provide a writeable version of the Age property. In order to use your enhanced
functionality, you must use a variable and object of type Employee:

Dim person As Employee = New Employee()

If you now run the application and click the button, the Age is displayed as 20, and the birth date is now
a value calculated based on that age value, indicating that you are now running the shadowed version of
the Age method as implemented in the Employee class.

As if that weren’t odd enough, you can do some even stranger and more dangerous things. You can
change Age into a variable, and you can even change its scope. For instance, you can comment out the
Age property code in the Employee class and replace it with the following code:

Private Shadows Age As String

At this point, you have changed everything. Age is now a String instead of an Integer. It is a variable
instead of a property or function. It has Private scope instead of Public scope. Your Employee object
is now totally incompatible with the Person data type, something that shouldn’t occur normally when
using inheritance.

This means that the code you wrote in Form1 will no longer work. The Age property is no longer
accessible and can no longer be used, so your project will no longer compile. This directly illustrates the
danger in shadowing a base-class element such that its very nature or scope is changed by the
subclass.

Because this change prevents your application from compiling, remove the line in the Employee class that
shadows Age as a String variable, and uncomment the shadowed Property routine:

Public Shadows Property Age() As Integer
Get
Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))

End Get
Set(ByVal value As Integer)
BirthDate = DateAdd(DateInterval.Year, -value, Now)

End Set
End Property

This restores your application to a working state.

Levels of Inheritance
So far, you have created a single base class and a single subclass, thus demonstrating that you can imple-
ment inheritance that is a single level deep. You can also create inheritance relationships that are several
levels deep. These are sometimes referred to as chains of inheritance.

In fact, you have been creating a two-level inheritance hierarchy so far, because you know that your base
class actually derived from System.Object, but for most purposes it is easiest to simply ignore that and
treat only your classes as part of the inheritance hierarchy.

126

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 127

Chapter 3: Object-Oriented Programming

Multiple Inheritance
Don’t confuse multilevel inheritance with multiple inheritance, which is an entirely different concept
that is not supported by either Visual Basic or the .NET platform itself. The idea behind multiple inheri-
tance is that you can have a single subclass that inherits from two base classes at the same time.

For instance, an application might have a class for Customer and another class for Vendor. It is quite
possible that some customers are also vendors, so you might want to combine the functionality of these
two classes into a CustomerVendor class. This new class would be a combination of both Customer and
Vendor, so it would be nice to inherit from both of them at once.

While this is a useful concept, multiple inheritance is complex and somewhat dangerous. Numerous
problems are associated with multiple inheritance, but the most obvious is the possibility of collisions
of properties or methods from the base classes. Suppose that both Customer and Vendor have a Name
property. CustomerVendor would need two Name properties, one for each base class. Yet it only makes
sense to have one Name property on CustomerVendor, so to which base class does it link, and how will
the system operate if it does not link to the other one?

These are complex issues with no easy answers. Within the object-oriented community, there is ongoing
debate as to whether the advantages of code reuse outweigh the complexity that comes along for the ride.

Multiple inheritance isn’t supported by the .NET Framework, so it is likewise not supported by Visual
Basic, but you can use multiple interfaces to achieve an effect similar to multiple inheritance, a topic
discussed later in the chapter when we talk about implementing multiple interfaces.

Multilevel Inheritance
You have seen how a subclass derives from a base class with the Person and Employee classes, but
nothing prevents the Employee subclass from being the base class for yet another class, a sub-subclass,
so to speak. This is not at all uncommon. In the working example, you may have different kinds of
employees, some who work in the office and others who travel.

To accommodate this, you may want OfficeEmployee and TravelingEmployee classes. Of course, these
are both examples of an employee and should share the functionality already present in the Employee
class. The Employee class already reuses the functionality from the Person class. Figure 3-9 illustrates
how these classes are interrelated.

The Employee is a subclass of Person, and your two new classes are both subclasses of Employee. While
both OfficeEmployee and TravelingEmployee are employees, and thus also people, they are each
unique. An OfficeEmployee almost certainly has a cube or office number, while a TravelingEmployee
will keep track of the number of miles traveled.

Add a new class to your project and name it OfficeEmployee. To make this class inherit from your
existing Employee class, add the following code to the class:

Public Class OfficeEmployee

Inherits Employee

End Class

127

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 128

Chapter 3: Object-Oriented Programming

Person
Class

Employee
Class

Person

NameTypes
Enum

TravelingEmployee
Class

Employee

OfficeEmployee
Class

Employee

Figure 3-9

With this change, the new class now has Name, BirthDate, Age, HireDate, and Salary methods. Notice
that methods from both Employee and Person are inherited. A subclass always gains all the methods,
properties, and events of its base class.

You can now extend the interface and behavior of OfficeEmployee by adding a property to indicate
which cube or office number the employee occupies:

Public Class OfficeEmployee
Inherits Employee

Private mOffice As String

Public Property OfficeNumber() As String
Get

Return mOffice
End Get
Set(ByVal value As String)

mOffice = value
End Set

End Property

End Class

To see how this works, let’s enhance the form to display this value. Add a new TextBox control named
txtOffice and an associated label so that your form looks like the one shown in Figure 3-10.

128

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 129

Chapter 3: Object-Oriented Programming

Figure 3-10

Now change the code behind the button to use the new property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As OfficeEmployee = New OfficeEmployee()

With person
.Name = "Fred"
.BirthDate = #1/1/1960#
.Age = 20

.OfficeNumber = "A42"

txtName.Text = .Name
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

txtOffice.Text = .OfficeNumber

End With
End Sub

You have changed the routine to declare and create an object of type OfficeEmployee — thus
enabling you to make use of the new property, as well as all existing properties and methods from
Employee and Person, as they’ve been ‘‘merged’’ into the OfficeEmployee class via inheritance. If you
now run the application, the name, birth date, age, and office values are displayed in the form.

Inheritance like this can go many levels deep, with each level extending and changing the behaviors of
the previous levels. In fact, there is no specific technical limit to the number of levels of inheritance you
can implement in Visual Basic, although very deep inheritance chains are typically not recommended
and are often viewed as a design flaw, something discussed in more detail later in this chapter.

129

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 130

Chapter 3: Object-Oriented Programming

Interacting with the Base Class, Your Class, and Your Object
You have already seen how you can use the MyBase keyword to call methods on the base class from
within a subclass. The MyBase keyword is one of three special keywords that enable you to interact with
important object and class representations:

❑ Me

❑ MyBase

❑ MyClass

The Me Keyword
The Me keyword provides you with a reference to your current object instance. Typically, you do not need
to use the Me keyword, because whenever you want to invoke a method within your current object, you
can just call that method directly.

To see clearly how this works, let’s add a new method to the Person class that returns the data of the
Person class in the form of a String. This is interesting in and of itself, as the base System.Object class
defines the ToString method for this exact purpose. Remember that all classes in the .NET Framework
ultimately derive from System.Object, even if you do not explicitly indicate it with an Inherits state-
ment. This means that you can simply override the ToString method from the Object class within your
Person class by adding the following code:

Public Overrides Function ToString() As String
Return Name

End Function

This implementation returns the person’s Name property as a result when ToString is called.

By default, ToString returns the class name of the class. Until now, if you called the ToString method
on a Person object, you would get a result of InheritanceAndInterfaces.Person.

Notice that the ToString method is calling another method within your same class — in this case, the
Name method.

You could also write this routine using the Me keyword:

Public Overrides Function ToString() As String

Return Me.Name

End Function

This is redundant because Me is the default for all method calls in a class. These two implementations are
identical, so typically the Me keyword is simply omitted to avoid the extra typing.

To see how the ToString method now works, you can change your code in Form1 to use this value instead
of the Name property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

130

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 131

Chapter 3: Object-Oriented Programming

Dim objPerson As OfficeEmployee = New OfficeEmployee()

With objPerson
.Name = "Fred"
.BirthDate = #1/1/1960#
.Age = 20
.OfficeNumber = "A42"

txtName.Text = .ToString()

txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)
txtOffice.Text = .OfficeNumber

End With
End Sub

When you run the application, the person’s name is displayed appropriately, which makes sense, as the
ToString method is simply returning the result from the Name property.

Earlier, you looked at virtual methods and how they work. Because either calling a method directly or
calling it using the Me keyword invokes the method on the current object, the method calls conform to
the same rules as an external method call. In other words, your ToString method may not actually end
up calling the Name method in the Person class if that method was overridden by a class farther down the
inheritance chain, such as the Employee or OfficeEmployee classes.

For example, you could override the Name property in your OfficeEmployee class such that it always
returns the informal version of the person’s name, rather than the regular name. You can override the
Name property by adding this method to the OfficeEmployee class:

Public Overloads Overrides Property Name() As String
Get
Return MyBase.Name(NameTypes.Informal)

End Get
Set(ByVal value As String)
MyBase.Name = value

End Set
End Property

This new version of the Name method relies on the base class to actually store the value, but instead of
returning the regular name on request, now you are always returning the informal name:

Return MyBase.Name(NameTypes.Informal)

Before you can test this, you need to enhance the code in your form to actually provide a value for the
informal name. Make the following change to the code:

Private Sub btnOK_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnOK.Click

Dim objPerson As OfficeEmployee = New OfficeEmployee()

With objPerson
.Name = "Fred"

131

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 132

Chapter 3: Object-Oriented Programming

.Name(NameTypes.Informal) = "Freddy"

.BirthDate = #1/1/1960#

.Age = 20

.OfficeNumber = "A42"

txtName.Text = .ToString()
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)
txtOffice.Text = .OfficeNumber
End With

End Sub

When you run the application, the Name field displays the informal name. Even though the ToString
method is implemented in the Person class, it is invoking the implementation of Name from the
OfficeEmployee class. This is because method calls within a class follow the same rules for calling vir-
tual methods as code outside a class, such as your code in the form. You will see this behavior with or
without the Me keyword, as the default behavior for method calls is to implicitly call them via the cur-
rent object.

While methods called from within a class follow the same rules for virtual methods, this is not the case for
shadowed methods. Here, the rules for calling a shadowed method from within your class are different
from those outside your class.

To see how this works, make the Name property in OfficeEmployee a shadowed method instead of an
overridden method:

Public Shadows Property Name() As String

Get
Return MyBase.Name(NameTypes.Informal)

End Get
Set(ByVal value As String)
MyBase.Name = value

End Set
End Property

Before you can run your application, you must adjust some code in the form. Because you have shadowed
the Name property in OfficeEmployee, the version of Name from Employee that acts as a property array is
now invalid.

Shadowing a method replaces all implementations from higher in the inheritance
chain, regardless of their method signature.

To make your application operate, you need to change the variable declaration and object creation to
declare a variable of type Employee so that you can access the property array while still creating an
instance of OfficeEmployee:

Dim person As Employee = New OfficeEmployee()

132

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 133

Chapter 3: Object-Oriented Programming

Because your variable is now of type Employee, you also need to comment out the lines that refer to the
OfficeNumber property, as it is no longer available:

With person
.Name = "Fred"
.Name(NameTypes.Informal) = "Freddy"
.BirthDate = #1/1/1960#
.Age = 20

’.OfficeNumber = "A42"

txtName.Text = .ToString()
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

’txtOffice.Text = .OfficeNumber

End With

When you run the application now, it displays the name Fred, rather than Freddy, meaning it is not
calling the Name method from OfficeEmployee; instead, it is calling the implementation provided by the
Employee class. Remember that the code to make this call still resides in the Person class, but it now
ignores the shadowed version of the Name method.

Shadowed implementations in subclasses are ignored when calling the method from within a class higher
in the inheritance chain. You will get this same behavior with or without the Me keyword. The Me key-
word, or calling methods directly, follows the same rules for overridden methods as any other method
call. For shadowed methods, however, any shadowed implementations in subclasses are ignored, and
the method is called from the current level in the inheritance chain.

The Me keyword exists primarily to enable you to pass a reference to the current object as a parameter to
other objects or methods. As shown when you look at the MyBase and MyClass keywords, things can get
very confusing, and there may be value in using the Me keyword when working with MyBase and MyClass
to ensure that it is always clear which particular implementation of a method you intended to invoke.

The MyBase Keyword
While the Me keyword allows you to call methods on the current object instance, at times you might want
to explicitly call into methods in your parent class. Earlier, you saw an example of this when you called
back into the base class from an overridden method in the subclass.

The MyBase keyword references only the immediate parent class, and it works like an object reference.
This means that you can call methods on MyBase knowing that they are being called just as if you had a
reference to an object of your parent class’s data type.

There is no way to directly navigate up the inheritance chain beyond the immediate
parent, so you can’t directly access the implementation of a method in a base class if
you are in a sub-subclass. Such behavior isn’t a good idea anyway, which is why it
isn’t allowed.

133

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 134

Chapter 3: Object-Oriented Programming

The MyBase keyword can be used to invoke or use any Public, Friend, or Protected element from
the parent class. This includes all elements directly on the base class, and any elements the base class
inherited from other classes higher in the inheritance chain.

You already used MyBase to call back into the base Person class as you implemented the overridden Name
property in the Employee class.

Any code within a subclass can call any method on the base class by using the
MyBase keyword.

You can also use MyBase to call back into the base class implementation even if you have shadowed a
method. Though it wasn’t noted at the time, you have already done this in your shadowed implemen-
tation of the Name property in the OfficeEmployee class. The highlighted lines indicate where you are
calling into the base class from within a shadowed method:

Public Shadows Property Name() As String
Get

Return MyBase.Name(NameTypes.Informal)

End Get
Set(ByVal value As String)

MyBase.Name = value

End Set
End Property

The MyBase keyword enables you to merge the functionality of the base class into your subclass code as
you deem fit.

The MyClass Keyword
As you have seen, when you use the Me keyword or call a method directly, your method call follows the
rules for calling both virtual and nonvirtual methods. In other words, as shown earlier with the Name
property, a call to Name from your code in the Person class actually invoked the overridden version of
Name located in the OfficeEmployee class.

While this behavior is often useful, sometimes you will want to ensure that you truly are running the
specific implementation from your class; even if a subclass overrode your method, you still want to
ensure that you are calling the version of the method that is directly in your class.

Maybe you decide that your ToString implementation in Person should always call the Name imple-
mentation that you write in the Person class, totally ignoring any overridden versions of Name in any
subclasses.

This is where the MyClass keyword shines. This keyword is much like MyBase, in that it provides you
with access to methods as though it were an object reference — in this case, a reference to an instance

134

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 135

Chapter 3: Object-Oriented Programming

of the class that contains the code you are writing when using the MyClass keyword. This is true even
when the instantiated object is an instance of a class derived from your class.

You have seen that a call to ToString from within Person actually invokes the implementation in
Employee or OfficeEmployee if your object is an instance of either of those types. Let’s restore the Name
property in OfficeEmployee so that it is an overridden method, rather than a shadowed method, to
demonstrate how this works:

Public Overloads Overrides Property Name() As String

Get
Return MyBase.Name(NameTypes.Informal)

End Get
Set(ByVal value As String)
MyBase.Name = value

End Set
End Property

With this change, and based on your earlier testing, you know that the ToString implementation in
Person will automatically call this overridden version of the Name property, as the call to the Name method
follows the normal rules for virtual methods. In fact, if you run the application now, the Name field on
the form displays Freddy, the informal name of the person.

You can force the use of the implementation in the current class through the use of MyClass. Change the
ToString method in Person as follows:

Public Overrides Function ToString() As String

Return MyClass.Name

End Function

You are now calling the Name method, but you are doing it using the MyClass keyword. When you run
the application and click the button, the Name field in the form displays Fred rather than Freddy, prov-
ing that the implementation from Person was invoked even though the data type of the object itself is
OfficeEmployee.

The ToString method is invoked from Person, as neither Employee nor OfficeEmployee provides an
overridden implementation. Then, because you are using the MyClass keyword, the Name method is
invoked directly from Person, explicitly defeating the default behavior you would normally expect.

Constructors
As discussed in Chapter 2, you can provide a special constructor method, named New, on a class and it
will be the first code run when an object is instantiated. You can also receive parameters via the construc-
tor method, enabling the code that creates your object to pass data into the object during the creation
process.

Constructor methods are affected by inheritance differently than regular methods. A normal Public
method, such as BirthDate on your Person class, is automatically inherited by any subclass. From there
you can overload, override, or shadow that method, as discussed already.

135

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 136

Chapter 3: Object-Oriented Programming

Simple Constructors
Constructors do not quite follow the same rules. To explore the differences, let’s implement a simple
constructor method in the Person class:

Public Sub New()
Debug.WriteLine("Person constructor")

End Sub

If you now run the application, you will see the text displayed in the output window in the IDE. This
occurs even though the code in your form is creating an object of type OfficeEmployee:

Dim person As Employee = New OfficeEmployee()

As you might expect, the New method from your base Person class is invoked as part of the construction
process of the OfficeEmployee object — simple inheritance at work. However, interesting things occur if
you implement a New method in the OfficeEmployee class itself:

Public Sub New()
Debug.WriteLine("OfficeEmployee constructor")

End Sub

Notice that you are not using the Overrides keyword, nor did you mark the method in Person as
Overridable. These keywords have no use in this context, and, in fact, will cause syntax errors if you
attempt to use them on constructor methods.

When you run the application now, you would probably expect that only the implementation of New
in OfficeEmployee would be invoked. Certainly, that is what would occur with a normal overridden
method. Of course, New isn’t overridden, so when you run the application, both implementations are run,
and both strings are output to the output window in the IDE.

Note that the implementation in the Person class ran first, followed by the implementation in the
OfficeEmployee class. This occurs because when an object is created, all the constructors for the classes
in the inheritance chain are invoked, starting with the base class and including all the subclasses one
by one. In fact, if you implement a New method in the Employee class, you can see that it too is invoked:

Public Sub New()
Debug.WriteLine("Employee constructor")

End Sub

When the application is run and the button is clicked, three strings appear in the output window. All
three constructor methods were invoked, from the Person class to the OfficeEmployee class.

Constructors in More Depth
The rules governing constructors without parameters are pretty straightforward, but things get a bit
more complex if you start requiring parameters on your constructors.

To understand why, you need to consider how even your simple constructors are invoked. While you
may see them as being invoked from the base class down through all subclasses to your final subclass,
what is really happening is a bit different.

136

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 137

Chapter 3: Object-Oriented Programming

In particular, it is the subclass New method that is invoked first. However, Visual Basic automatically
inserts a line of code into your routine at compile time. For instance, in your OfficeEmployee class you
have a constructor:

Public Sub New()
Debug.WriteLine("OfficeEmployee constructor")

End Sub

Behind the scenes, Visual Basic inserts what is effectively a call to the constructor of your parent
class on your behalf. You could do this manually by using the MyBase keyword with the following
change:

Public Sub New()

MyBase.New()

Debug.WriteLine("OfficeEmployee constructor")
End Sub

This call must be the first line in your constructor. If you put any other code before this line, you
will get a syntax error indicating that your code is invalid. Because the call is always required, and
because it always must be the first line in any constructor, Visual Basic simply inserts it for you
automatically.

Note that if you don’t explicitly provide a constructor on a class by implementing a New method,
Visual Basic creates one for you behind the scenes. The automatically created method simply has one line
of code:

MyBase.New()

All classes have constructor methods, either created explicitly by you as you write a New method or
created implicitly by Visual Basic as the class is compiled.

A constructor method is sometimes called a ctor, short for constructor. This term is often used by tools
such as ILDASM or .NET Reflector.

By always calling MyBase.New as the first line in every constructor, you are guaranteed that it is the
implementation of New in your top-level base class that actually runs first. Every subclass invokes the
parent class implementation all the way up the inheritance chain until only the base class remains. Then
its code runs, followed by each individual subclass, as shown earlier.

Constructors with Parameters
This works great when your constructors don’t require parameters, but if your constructor does require
a parameter, then it becomes impossible for Visual Basic to automatically make that call on your behalf.
After all, how would Visual Basic know what values you want to pass as parameters?

To see how this works, change the New method in the Person class to require a name parameter. You can
use that parameter to initialize the object’s Name property:

Public Sub New(ByVal name As String)
Me.Name = name

137

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 138

Chapter 3: Object-Oriented Programming

Debug.WriteLine("Person constructor")
End Sub

Now your constructor requires a String parameter and uses it to initialize the Name property. You are
using the Me keyword to make your code easier to read. Interestingly enough, the compiler actually
understands and correctly compiles the following code:

Name = name

However, that is not at all clear to a developer reading the code. By prefixing the property name with the
Me keyword, you make it clear that you are invoking a property on the object and providing it with the
parameter value.

At this point, your application won’t compile because there is an error in the New method of the Employee
class. In particular, Visual Basic’s attempt to automatically invoke the constructor on the Person class
fails because it has no idea what data value to pass for this new name parameter. There are three ways
you can address this error:

❑ Make the name parameter Optional.

❑ Overload the New method with another implementation that requires no parameter.

❑ Manually provide the Name parameter value from within the Employee class.

If you make the Name parameter Optional, then you are indicating that the New method can be called with
or without a parameter. Therefore, one viable option is to call the method with no parameters, so Visual
Basic’s default of calling it with no parameters works just fine.

If you overload the New method, then you can implement a second New method that doesn’t accept any
parameters, again allowing Visual Basic’s default behavior to work as you have seen. Keep in mind that
this solution only invokes the overloaded version of New with no parameter; the version that requires a
parameter would not be invoked.

The final way you can fix the error is by simply providing a parameter value yourself from within the
New method of the Employee class. To do this, change the Employee class as shown:

Public Sub New()

MyBase.New("George")

Debug.WriteLine("Employee constructor")
End Sub

By explicitly calling the New method of the parent class, you are able to provide it with the required
parameter value. At this point, your application will compile, but it won’t run.

Constructors, Overloading, and Variable Initialization
What isn’t clear from this code is that you have now introduced a very insidious bug. The constructor in
the Person class is using the Name property to set the value:

Public Sub New(ByVal name As String)
Me.Name = name

138

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 139

Chapter 3: Object-Oriented Programming

Debug.WriteLine("Person constructor")
End Sub

However, the Name property is overridden by the Employee class, so it is that implementation that
will be run. Unfortunately, that implementation makes use of a Dictionary object, which isn’t available
yet! It turns out that any member variables declared in a class with the New statement, such as the
Dictionary object in Employee, won’t be initialized until after the constructor for that class has
completed:

Private mNames As New Generic.Dictionary(Of NameTypes, String)

Because you are still in the constructor for Person, there’s no way the constructor for Employee can
be complete. To resolve this, you need to change the Employee class a bit so that it does not rely on
the Dictionary being created in this manner. Instead, you will add code to create it when
needed.

First, change the declaration of the variable in the Employee class:

Private mNames As Generic.Dictionary(Of NameTypes, String)

Then, update the Name property so that it creates the Hashtable object if needed:

Public Overloads Property Name(ByVal type As NameTypes) As String
Get

If mNames Is Nothing Then mNames = New Generic.Dictionary(Of NameTypes, String)

Return mNames(type)
End Get
Set(ByVal value As String)

If mNames Is Nothing Then mNames = New Generic.Dictionary(Of NameTypes, String)

If mNames.ContainsKey(type) Then
mNames.Item(type) = value

Else
mNames.Add(type, value)

End If
If type = NameTypes.Normal Then

MyBase.Name = value
End If

End Set
End Property

This ensures that a Dictionary object is created in the Employee class code even though its constructor
hasn’t yet completed.

More Constructors with Parameters
Obviously, you probably do not want to hard-code a value in a constructor as you did in the Employee
class, so you may choose instead to change this constructor to also accept a name parameter. Change the
Employee class constructor as shown:

Public Sub New(ByVal name As String)
MyBase.New(name)

139

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 140

Chapter 3: Object-Oriented Programming

Debug.WriteLine("Employee constructor")
End Sub

Of course, this just pushed the issue deeper, and now the OfficeEmployee class has a compile error in
its New method. Again, you can fix the problem by having that method accept a parameter so that it can
provide it up the chain as required. Make the following change to OfficeEmployee:

Public Sub New(ByVal name As String)
MyBase.New(name)

Debug.WriteLine("OfficeEmployee constructor")
End Sub

Finally, the code in the form is no longer valid. You are attempting to create an instance of
OfficeEmployee without passing a parameter value. Update that code as shown and then you can run
the application:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New OfficeEmployee("Mary")

With person
’.Name = "Fred"

Here, you are passing a name value to the constructor of OfficeEmployee. In addition, you have com-
mented out the line of code that sets the Name property directly — meaning the value passed in the
constructor will be displayed in the form.

Protected Scope
You have seen how a subclass automatically gains all the Public methods and properties that compose
the interface of the base class. This is also true of Friend methods and properties; they are inherited as
well and are available only to other code in the same project as the subclass.

Private methods and properties are not exposed as part of the interface of the subclass, meaning that
the code in the subclass cannot call those methods, nor can any code using your objects. These methods
are only available to the code within the base class itself. This can get confusing, as the implementations
contained in the Private methods are inherited and are used by any code in the base class; it is just that
they are not available to be called by any other code, including code in the subclass.

Sometimes you will want to create methods in your base class that can be called by a subclass as well as
the base class but not by code outside of those classes. Basically, you want a hybrid between Public and
Private — methods that are private to the classes in the inheritance chain but usable by any subclasses
that might be created within the chain. This functionality is provided by the Protected scope.

Protected methods are very similar to Private methods in that they are not available to any code that
calls your objects. Instead, these methods are available to code within the base class and to code within
any subclass. The following table lists all the available scope options:

140

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 141

Chapter 3: Object-Oriented Programming

Scope Description

Private Available only to code within your class

Protected Available only to classes that inherit from your class

Friend Available only to code within your project/component

Protected Friend Available to classes that inherit from your class (in any project) and to code
within your project/component. This is a combination of Protected and Friend.

Public Available to code outside your class

The Protected scope can be applied to Sub, Function, and Property methods. To see how the Protected
scope works, let’s add an Identity field to the Person class:

Public Class Person
Private mName As String
Private mBirthDate As String

Private mID As String

Protected Property Identity() As String
Get

Return mID
End Get
Set(ByVal value As String)

mID = value
End Set

End Property

This data field represents some arbitrary identification number or value assigned to a person. This might
be a social security number, an employee number, or whatever is appropriate.

The interesting thing about this value is that it is not currently accessible outside your inheritance chain.
For instance, if you try to use it from your code in the form, then you will discover that there is no
Identity property on your Person, Employee, or OfficeEmployee objects.

However, there is an Identity property now available inside your inheritance chain. The Identity
property is available to the code in the Person class, just like any other method. Interestingly, even
though Identity is not available to the code in your form, it is available to the code in the Employee and
OfficeEmployee classes, because they are both subclasses of Person. Employee is directly a subclass,
and OfficeEmployee is indirectly a subclass of Person because it is a subclass of Employee.

Thus, you can enhance your Employee class to implement an EmployeeNumber property by using the
Identity property. To do this, add the following code to the Employee class:

Public Property EmployeeNumber() As Integer
Get
Return CInt(Identity)

141

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 142

Chapter 3: Object-Oriented Programming

End Get
Set(ByVal value As Integer)
Identity = CStr(value)

End Set
End Property

This new property exposes a numeric identity value for the employee, but it uses the internal Identity
property to manage that value. You can override and shadow Protected elements just as you do with
elements of any other scope.

Protected Variables
Up to this point, we’ve focused on methods and properties and how they interact through inheritance.
Inheritance, and, in particular, the Protected scope, also affects instance variables and how you work
with them.

Though it is not recommended, you can declare variables in a class using Public scope. This makes the
variable directly available to code both within and outside of your class, allowing any code that interacts
with your objects to directly read or alter the value of that variable.

Variables can also have Friend scope, which likewise allows any code in your class or anywhere within
your project to read or alter the value directly. This is also generally not recommended because it breaks
encapsulation.

Rather than declare variables with Public or Friend scope, it is better to expose the
value using a Property method so that you can apply any of your business rules to
control how the value is altered as appropriate.

Of course, you know that variables can be of Private scope, and this is typically the case. This makes the
variables accessible only to the code within your class, and it is the most restrictive scope.

As with methods, however, you can also use the Protected scope when declaring variables. This makes
the variable accessible to the code in your class and to the code in any class that derives from your
class — all the way down the hierarchy chain.

Sometimes this is useful, because it enables you to provide and accept data to and from subclasses, but to
act on that data from code in the base class. At the same time, exposing variables to subclasses is typically
not ideal, and you should use Property methods with Protected scope for this instead, as they allow
your base class to enforce any business rules that are appropriate for the value, rather than just hope that
the author of the subclass only provides good values.

Events and Inheritance
So far, we’ve discussed methods, properties, and variables in terms of inheritance — how they can be
added, overridden, extended, and shadowed. In Visual Basic, events are also part of the interface of an
object, and they are affected by inheritance as well.

142

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 143

Chapter 3: Object-Oriented Programming

Inheriting Events
Chapter 2 discusses how to declare, raise, and receive events from objects. You can add such an event to
the Person class by declaring it at the top of the class:

Public Class Person
Private mName As String
Private mBirthDate As String
Private mID As String

Public Event NameChanged(ByVal newName As String)

Then, you can raise this event within the class any time the person’s name is changed:

Public Overridable Property Name() As String
Get
Return mName

End Get
Set(ByVal value As String)
mName = value

RaiseEvent NameChanged(mName)

End Set
End Property

At this point, you can receive and handle this event within your form any time you are working with a
Person object. The nice thing about this is that your events are inherited automatically by subclasses —
meaning that your Employee and OfficeEmployee objects will also raise this event. Thus, you can
change the code in your form to handle the event, even though you are working with an object of type
OfficeEmployee.

First, you can add a method to handle the event to Form1:

Private Sub OnNameChanged(ByVal newName As String)
MsgBox("New name: " & newName)

End Sub

Note that you are not using the Handles clause here. In this case, for simplicity, you use the AddHandler
method to dynamically link the event to this method. However, you could have also chosen to use the
WithEvents and Handles keywords, as described in Chapter 2 — either way works.

With the handler built, you can use the AddHandler method to link this method to the event on the object:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New OfficeEmployee("Mary")

AddHandler person.NameChanged, AddressOf OnNameChanged

143

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 144

Chapter 3: Object-Oriented Programming

With person

.Name = "Fred"

Also note that you are uncommenting the line that changes the Name property. With this change, you
know that the event should fire when the name is changed.

When you run the application now, you will see a message box, indicating that the name has changed
and proving that the NameChanged event really is exposed and available even though your object is of
type OfficeEmployee, rather than Person.

Raising Events from Subclasses
One caveat you should keep in mind is that while a subclass exposes the events of its base class, the
code in the subclass cannot raise the event. In other words, you cannot use the RaiseEvent method in
Employee or OfficeEmployee to raise the NameChanged event. Only code directly in the Person class can
raise the event.

To see this in action, let’s add another event to the Person class, an event that can indicate the change of
other arbitrary data values:

Public Class Person
Private mName As String
Private mBirthDate As String
Private mID As String

Public Event NameChanged(ByVal newName As String)

Public Event DataChanged(ByVal field As String, ByVal newValue As Object)

You can then raise this event when the BirthDate is changed:

Public Overridable Property BirthDate() As Date
Get
Return mBirthDate

End Get
Set(ByVal value As Date)
mBirthDate = value

RaiseEvent DataChanged("BirthDate", value)

End Set
End Property

It would also be nice to raise this event from the Employee class when the Salary value is changed.
Unfortunately, you can’t use the RaiseEvent method to raise the event from a base class, so the following
code won’t work (do not enter this code):

Public Property Salary() As Double
Get
Return mSalary

End Get

144

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 145

Chapter 3: Object-Oriented Programming

Set(ByVal value As Double)
mSalary = value

RaiseEvent DataChanged("Salary", value)

End Set
End Property

Fortunately, there is a relatively easy way to get around this limitation. You can simply implement a
Protected method in your base class that allows any derived class to raise the method. In the Person
class, you can add such a method:

Protected Sub OnDataChanged(ByVal field As String, _
ByVal newValue As Object)

RaiseEvent DataChanged(field, newValue)
End Sub

You can use this method from within the Employee class to indicate that Salary has changed:

Public Property Salary() As Double
Get
Return mSalary

End Get
Set(ByVal value As Double)
mSalary = value

OnDataChanged("Salary", value)

End Set
End Property

Note that the code in Employee is not raising the event, it is simply calling a Protected method in
Person. The code in the Person class is actually raising the event, meaning everything will work as
desired.

You can enhance the code in Form1 to receive the event. First, create a method to handle the event:

Private Sub OnDataChanged(ByVal field As String, ByVal newValue As Object)
MsgBox("New " & field & ": " & CStr(newValue))

End Sub

Then, link this handler to the event using the AddHandler method:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

Dim person As Employee = New OfficeEmployee("Mary")

AddHandler person.NameChanged, AddressOf OnNameChanged

AddHandler person.DataChanged, AddressOf OnDataChanged

145

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 146

Chapter 3: Object-Oriented Programming

Finally, ensure that you are changing and displaying the Salary property:

With person
.Name = "Fred"
.Name(NameTypes.Informal) = "Freddy"
.BirthDate = #1/1/1960#
.Age = 20

.Salary = 30000

txtName.Text = .ToString()
txtBirthDate.Text = Format(.BirthDate, "Short date")
txtAge.Text = CStr(.Age)

txtSalary.Text = Format(.Salary, "0.00")

End With

When you run the application and click the button now, you will get message boxes displaying the
changes to the Name property, the BirthDate property (twice, once for the BirthDate property and once
for the Age property, which changes the birth date), and the Salary property.

Shared Methods
Chapter 2 explored shared methods and how they work: providing a set of methods that can be invoked
directly from the class, rather than requiring that you create an actual object.

Shared methods are inherited just like instance methods and so are automatically available as methods
on subclasses, just as they are on the base class. If you implement a shared method in BaseClass, you can
call that method using any class derived from BaseClass.

Like regular methods, shared methods can be overloaded and shadowed. They cannot, however, be
overridden. If you attempt to use the Overridable keyword when declaring a Shared method, you will
get a syntax error. For instance, you can implement a method in your Person class to compare two Person
objects:

Public Shared Function Compare(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return (person1.Name = person2.Name)

End Function

To test this method, let’s add another button to the form, name it btnCompare, and set its Text value to
Compare. Double-click the button to bring up the code window and enter the following:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCompare.Click

Dim emp1 As New Employee("Fred")

146

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 147

Chapter 3: Object-Oriented Programming

Dim emp2 As New Employee("Mary")

MsgBox(Employee.Compare(emp1, emp2))

End Sub

This code simply creates two Employee objects and compares them. Note, though, that the code uses
the Employee class to invoke the Compare method, displaying the result in a message box. This estab-
lishes that the Compare method implemented in the Person class is inherited by the Employee class, as
expected.

Overloading Shared Methods
Shared methods can be overloaded using the Overloads keyword in the same manner as you overload
an instance method. This means that your subclass can add new implementations of the shared method
as long as the parameter list differs from the original implementation.

For example, you can add a new implementation of the Compare method to Employee:

Public Overloads Shared Function Compare(ByVal employee1 As Employee, _
ByVal employee2 As Employee) As Boolean

Return (employee1.EmployeeNumber = employee2.EmployeeNumber)

End Function

This new implementation compares two Employee objects, rather than two Person objects, and, in fact,
compares them by employee number, rather than name. You can enhance the code behind btnCompare
in the form to set the EmployeeNumber properties:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCompare.Click

Dim emp1 As New Employee("Fred")
Dim emp2 As New Employee("Mary")

emp1.EmployeeNumber = 1
emp2.EmployeeNumber = 1

MsgBox(Employee.Compare(emp1, emp2))
End Sub

While it might make little sense for these two objects to have the same EmployeeNumber value, it does
prove a point. When you run the application now, even though the Name values of the objects are differ-
ent, your Compare routine will return True, proving that you are invoking the overloaded version of the
method that expects two Employee objects as parameters.

The overloaded implementation is available on the Employee class or any classes derived from Employee,
such as OfficeEmployee. The overloaded implementation is not available if called directly from Person,
as that class only contains the original implementation.

147

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 148

Chapter 3: Object-Oriented Programming

Shadowing Shared Methods
Shared methods can also be shadowed by a subclass. This allows you to do some very interesting things,
including converting a shared method into an instance method or vice versa. You can even leave the
method as shared but change the entire way it works and is declared. In short, just as with instance
methods, you can use the Shadows keyword to entirely replace and change a shared method in a subclass.

To see how this works, use the Shadows keyword to change the nature of the Compare method in
OfficeEmployee:

Public Shared Shadows Function Compare(ByVal person1 As Person, _
ByVal person2 As Person) As Boolean

Return (person1.Age = person2.Age)

End Function

Notice that this method has the same signature as the original Compare method you implemented in the
Person class, but instead of comparing by name, here you are comparing by age. With a normal method
you could have done this by overriding, but Shared methods can’t be overridden, so the only thing you
can do is shadow it.

Of course, the shadowed implementation is only available via the OfficeEmployee class. Neither the
Person nor Employee classes, which are higher up the inheritance chain, are aware that this shadowed
version of the method exists.

To use this from your Form1 code, you can change the code for btnCompare as follows:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCompare.Click

Dim emp1 As New Employee("Fred")
Dim emp2 As New Employee("Mary")

emp1.Age = 20
emp2.Age = 25

MsgBox(OfficeEmployee.Compare(emp1, emp2))

End Sub

Instead of setting the EmployeeNumber values, you are now setting the Age values on your objects. More
important, notice that you are now calling the Compare method via the OfficeEmployee class, rather than
via Employee or Person. This causes the invocation of the new version of the method, and the ages of the
objects are compared.

Shared Events
As discussed in Chapter 2, you can create shared events, events that can be raised by shared or instance
methods in a class, whereas regular events can only be raised from within instance methods.

When you inherit from a class that defines a shared event, your new subclass automatically gains that
event, just as it does with regular events. As with instance events, a shared event cannot be raised by code

148

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 149

Chapter 3: Object-Oriented Programming

within the subclass; it can only be raised using the RaiseEvent keyword from code in the class where the
event is declared. If you want to be able to raise the event from methods in your subclass, you need to
implement a Protected method on the base class that actually makes the call to RaiseEvent.

This is no different from what you saw earlier in the chapter, other than that with a shared event you
can use a method with Protected scope that is marked as shared to raise the event, rather than use an
instance method.

Creating an Abstract Base Class
So far, you have seen how to inherit from a class, how to overload and override methods, and how virtual
methods work. In all of the examples so far, the parent classes have been useful in their own right and
could be instantiated and do some meaningful work. Sometimes, however, you want to create a class
such that it can only be used as a base class for inheritance.

MustInherit Keyword
The current Person class is being used as a base class, but it can also be instantiated directly to cre-
ate an object of type Person. Likewise, the Employee class is also being used as a base class for the
OfficeEmployee class you created that derives from it.

If you want to make a class act only as a base class, you can use the MustInherit keyword, thereby
preventing anyone from creating objects based directly on the class, and requiring them instead to create
a subclass and then create objects based on that subclass.

This can be very useful when you are creating object models of real-world concepts and entities. You
will look at ways to leverage this capability later in this chapter. Change Person to use the MustInherit
keyword:

Public MustInherit Class Person

This has no effect on the code within Person or any of the classes that inherit from it, but it does mean
that no code can instantiate objects directly from the Person class; instead, you can only create objects
based on Employee or OfficeEmployee.

This does not prevent you from declaring variables of type Person; it merely prevents you from creating
an object by using New Person. You can also continue to make use of Shared methods from the Person
class without any difficulty.

MustOverride Keyword
Another option you have is to create a method (Sub, Function, or Property) that must be overridden by a
subclass. You might want to do this when you are creating a base class that provides some behaviors but
relies on subclasses to also provide other behaviors in order to function properly. This is accomplished
by using the MustOverride keyword on a method declaration.

If a class contains any methods marked with MustOverride, the class itself must also be declared with
the MustInherit keyword or you will get a syntax error:

Public MustInherit Class Person

149

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 150

Chapter 3: Object-Oriented Programming

This makes sense. If you are requiring that a method be overridden in a subclass, it stands to reason that
your class can’t be directly instantiated; it must be subclassed to be useful.

Let’s see how this works by adding a LifeExpectancy method in Person that has no implementation and
must be overridden by a subclass:

Public MustOverride Function LifeExpectancy() As Integer

Notice that there is no End Function or any other code associated with the method. When using
MustOverride, you cannot provide any implementation for the method in your class. Such a method
is called an abstract method or pure virtual function, as it only defines the interface, and no implementation.

Methods declared in this manner must be overridden in any subclass that inherits from your base class.
If you do not override one of these methods, you will generate a syntax error in the subclass, and it won’t
compile. You need to alter the Employee class to provide an implementation for this method:

Public Overrides Function LifeExpectancy() As Integer
Return 90

End Function

Your application will compile and run at this point because you are now overriding the LifeExpectancy
method in Employee, so the required condition is met.

Abstract Base Classes
You can combine these two concepts, using both MustInherit and MustOverride, to create something
called an abstract base class, sometimes referred to as a virtual class. This is a class that provides no imple-
mentation, only the interface definitions from which a subclass can be created, as shown in the following
example:

Public MustInherit Class AbstractBaseClass
Public MustOverride Sub DoSomething()
Public MustOverride Sub DoOtherStuff()

End Class

This technique can be very useful when creating frameworks or the high-level conceptual elements
of a system. Any class that inherits AbstractBaseClass must implement both DoSomething and
DoOtherStuff; otherwise, a syntax error will result.

In some ways, an abstract base class is comparable to defining an interface using the Interface keyword.
The Interface keyword is discussed in detail later in this chapter. You could define the same interface
shown in this example with the following code:

Public Interface IAbstractBaseClass
Sub DoSomething()
Sub DoOtherStuff()

End Interface

Any class that implements the IAbstractBaseClass interface must implement both DoSomething and
DoOtherStuff or a syntax error will result, and in that regard this technique is similar to an abstract
base class.

150

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 151

Chapter 3: Object-Oriented Programming

Preventing Inheritance
If you want to prevent a class from being used as a base class, you can use the NotInheritable keyword.
For instance, you can change your OfficeEmployee as follows:

Public NotInheritable Class OfficeEmployee

At this point, it is no longer possible to inherit from this class to create a new class. Your OfficeEmployee
class is now sealed, meaning it cannot be used as a base from which to create other classes.

If you attempt to inherit from OfficeEmployee, you will get a compile error indicating that it cannot be
used as a base class. This has no effect on Person or Employee; you can continue to derive other classes
from them.

Typically, you want to design your classes so that they can be subclassed, because that provides the
greatest long-term flexibility in the overall design. Sometimes, however, you want to ensure that your
class cannot be used as a base class, and the NotInheritable keyword addresses that issue.

Multiple Interfaces
In Visual Basic, objects can have one or more interfaces. All objects have a primary, or native, interface,
which is composed of any methods, properties, events, or member variables declared using the Public
keyword. You can also have objects implement secondary interfaces in addition to their native interface
by using the Implements keyword.

Object Interfaces
The native interface on any class is composed of all the methods, properties, events, and even variables
that are declared as anything other than Private. Though this is nothing new, let’s quickly review what
is included in the native interface to set the stage for discussing secondary interfaces. To include a method
as part of your interface, you can simply declare a Public routine:

Public Sub AMethod()

End Sub

Notice that there is no code in this routine. Any code would be implementation and is not part of the
interface. Only the declaration of the method is important when discussing interfaces. This can seem con-
fusing at first, but it is an important distinction, as the separation of the interface from its implementation
is at the very core of object-oriented programming and design.

Because this method is declared as Public, it is available to any code outside the class, including other
applications that may make use of the assembly. If the method has a property, then you can declare it as
part of the interface by using the Property keyword:

Public Property AProperty() As String

End Property

151

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 152

Chapter 3: Object-Oriented Programming

You can also declare events as part of the interface by using the Event keyword:

Public Event AnEvent()

Finally, you can include actual variables, or attributes, as part of the interface:

Public AnInteger As Integer

This is strongly discouraged, because it directly exposes the internal variables for use by code outside the
class. Because the variable is directly accessible from other code, you give up any and all control over the
way the value may be changed or the code may be accessed.

Rather than make any variable Public, it is far preferable to make use of a Property method to expose
the value. That way, you can implement code to ensure that your internal variable is only set to valid
values and that only the appropriate code has access to the value based on your application’s logic.

Using the Native Interface
Ultimately, the native (or primary) interface for any class is defined by looking at all the methods, prop-
erties, events, and variables that are declared as anything other than Private in scope. This includes any
methods, properties, events, or variables that are inherited from a base class.

You are used to interacting with the default interface on most objects, so this should seem pretty straight-
forward. Consider this simple class:

Public Class TheClass
Public Sub DoSomething()

End Sub

Public Sub DoSomethingElse()

End Sub
End Class

This defines a class and, by extension, defines the native interface that is exposed by any objects
you instantiate based on this class. The native interface defines two methods: DoSomething and
DoSomethingElse. To make use of these methods, you simply call them:

Dim myObject As New TheClass()

myObject.DoSomething()

myObject.DoSomethingElse()

This is the same thing you did in Chapter 2 and so far in this chapter. However, let’s take a look at
creating and using secondary interfaces, because they are a bit different.

Secondary Interfaces
Sometimes it’s helpful for an object to have more than one interface, thereby enabling you to interact with
the object in different ways. Inheritance enables you to create subclasses that are specialized cases of the
base class. For example, your Employee is a Person.

152

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 153

Chapter 3: Object-Oriented Programming

However, sometimes you have a group of objects that are not the same thing, but you want to be able to
treat them as though they were the same. You want all these objects to act as the same thing, even though
they are all different.

For instance, you may have a series of different objects in an application, product, customer, invoice, and
so forth. Each of these would have default interfaces appropriate to each individual object — and each of
them is a different class — so there’s no natural inheritance relationship implied between these classes.
At the same time, you may need to be able to generate a printed document for each type of object, so you
would like to make them all act as a printable object.

This chapter discusses the is-a and act-as relationships in more detail later.

To accomplish this, you can define a generic interface that enables generating such a printed document.
You can call it IPrintableObject.

By convention, this type of interface is typically prefixed with a capital ‘‘I’’ to indicate that it is a formal
interface.

Each of your application objects can choose to implement the IPrintableObject interface. Every object
that implements this interface must include code to provide actual implementation of the interface, which
is unlike inheritance, whereby the code from a base class is automatically reused.

By implementing this common interface, you can write a routine that accepts any object that implements
the IPrintableObject interface and then print it — while remaining totally oblivious to the ‘‘real’’ data
type of the object or methods its native interface might expose. Before you learn how to use an interface
in this manner, let’s walk through the process of actually defining an interface.

Defining the Interface
You define a formal interface using the Interface keyword. This can be done in any code module in
your project, but a good place to put this type of definition is in a standard module. An interface defines
a set of methods (Sub, Function, or Property) and events that must be exposed by any class that chooses
to implement the interface.

Add a module to the project using Project ➪ Add Module and name it Interfaces.vb. Then, add the
following code to the module, outside the Module code block itself:

Public Interface IPrintableObject

End Interface

Module Interfaces

End Module

A code module can contain a number of interface definitions, and these definitions must exist outside
of any other code block. Thus, they do not go within a Class or Module block; they are at a peer level to
those constructs.

Interfaces must be declared using either Public or Friend scope. Declaring a Private or Protected
interface results in a syntax error. Within the Interface block of code, you can define the methods,
properties, and events that make up your particular interface. Because the scope of the interface is defined

153

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 154

Chapter 3: Object-Oriented Programming

by the Interface declaration itself, you can’t specify scopes for individual methods and events; they are
all scoped like the interface itself.

For instance, add the following code:

Public Interface IPrintableObject

Function Label(ByVal index As Integer) As String
Function Value(ByVal index As Integer) As String
ReadOnly Property Count() As Integer

End Interface

This defines a new data type, somewhat like creating a class or structure, which you can use when declar-
ing variables. For instance, you can now declare a variable of type IPrintableObject:

Private printable As IPrintableObject

You can also have your classes implement this interface, which requires each class to provide implemen-
tation code for each of the three methods defined on the interface.

Before you implement the interface in a class, let’s see how you can use the interface to write a generic
routine that can print any object that implements IPrintableObject.

Using the Interface
Interfaces define the methods and events (including parameters and data types) that an object is required
to implement if you choose to support the interface. This means that, given just the interface defini-
tion, you can easily write code that can interact with any object that implements the interface, even
though you do not know what the native data types of those objects will be.

To see how you can write such code, let’s create a simple routine in your form that can display data to
the output window in the IDE from any object that implements IPrintableObject. Bring up the code
window for your form and add the following routine:

Public Sub PrintObject(obj As IPrintableObject)
Dim index As Integer

For index = 0 To obj.Count
Debug.Write(obj.Label(index) & ": ")
Debug.WriteLine(obj.Value(index))

Next
End Sub

Notice that you are accepting a parameter of type IPrintableObject. This is how secondary interfaces
are used, by treating an object of one type as though it were actually of the interface type. As long as the
object passed to this routine implements the IPrintableObject interface, your code will work fine.

Within the PrintObject routine, you are assuming that the object will implement three elements —
Count, Label, and Value — as part of the IPrintableObject interface. Secondary interfaces can include
methods, properties, and events, much like a default interface, but the interface itself is defined and
implemented using some special syntax.

154

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 155

Chapter 3: Object-Oriented Programming

Now that you have a generic printing routine, you need a way to call it. Bring up the designer for Form1,
add a button, and name it btnPrint. Double-click the button and put this code behind it:

Private Sub btnPrint_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrint.Click

Dim obj As New Employee("Andy")

obj.EmployeeNumber = 123
obj.BirthDate = #1/1/1980#
obj.HireDate = #1/1/1996#

PrintObject(obj)

End Sub

This code simply initializes an Employee object and calls the PrintObject routine. Of course, this
code produces runtime exceptions, because PrintObject is expecting a parameter that implements
IPrintableObject, and Employee implements no such interface. Let’s move on and implement that
interface in Employee so that you can see how it works.

Implementing the Interface
Any class (other than an abstract base class) can implement an interface by using the Implements key-
word. For instance, you can implement the IPrintableObject interface in Employee by adding the
following line:

Public Class Employee
Inherits Person

Implements IPrintableObject

This causes the interface to be exposed by any object created as an instance of Employee. Adding this line
of code and pressing Enter triggers the IDE to add skeleton methods for the interface to your class. All
you need to do is provide implementations for the methods.

To implement an interface, you must implement all the methods and properties defined by that interface.

Before actually implementing the interface, however, let’s create an array to contain the labels for the
data fields so that you can return them via the IPrintableObject interface. Add the following code to
the Employee class:

Public Class Employee
Inherits Person
Implements IPrintableObject

Private mLabels() As String = {"ID", "Age", "HireDate"}

Private mHireDate As Date
Private mSalary As Double

To implement the interface, you need to create methods and properties with the same parameter and
return data types as those defined in the interface. The actual name of each method or property does

155

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 156

Chapter 3: Object-Oriented Programming

not matter because you are using the Implements keyword to link your internal method names to
the external method names defined by the interface. As long as the method signatures match, you are
all set.

This applies to scope as well. Although the interface and its methods and properties are publicly avail-
able, you do not have to declare your actual methods and properties as Public. In many cases, you can
implement them as Private, so they do not become part of the native interface and are only exposed via
the secondary interface.

However, if you do have a Public method with a method signature, you can use it to implement a
method from the interface. This has the interesting side effect that this method provides implementation
for both a method on the object’s native interface and one on the secondary interface.

In this case, you will use a Private method, so it is only providing implementation for the
IPrintableObject interface. Implement the Label method by adding the following code to Employee:

Private Function Label(ByVal index As Integer) As String _
Implements IPrintableObject.Label

Return mLabels(index)

End Function

This is just a regular Private method that returns a String value from the pre-initialized array. The
interesting part is the Implements clause on the method declaration:

Private Function Label(ByVal index As Integer) As String _
Implements IPrintableObject.Label

By using the Implements keyword in this fashion, you are indicating that this particular method is the
implementation for the Label method on the IPrintableObject interface. The actual name of the private
method could be anything. It is the use of the Implements clause that makes this work. The only require-
ment is that the parameter data types and the return value data type must match those defined by the
IPrintableObject interface.

This is very similar to using the Handles clause to indicate which method should handle an event. In fact,
like the Handles clause, the Implements clause allows you to have a comma-separated list of interface
methods that should be implemented by this one function.

You can then move on to implement the other two elements defined by the IPrintableObject interface
by adding this code to Employee:

Private Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value

Select Case index
Case 0

Return CStr(EmployeeNumber)
Case 1

Return CStr(Age)
Case Else

156

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 157

Chapter 3: Object-Oriented Programming

Return Format(HireDate, "Short date")
End Select

End Function

Private ReadOnly Property Count() As Integer _
Implements IPrintableObject.Count

Get

Return UBound(mLabels)

End Get
End Property

You can now run this application and click the button. The output window in the IDE will display your
results, showing the ID, age, and hire-date values as appropriate.

Any object could create a similar implementation behind the IPrintableObject interface, and the
PrintObject routine in your form would continue to work regardless of the native data type of the
object itself.

Reusing Common Implementation
Secondary interfaces provide a guarantee that all objects implementing a given interface have exactly the
same methods and events, including the same parameters.

The Implements clause links your actual implementation to a specific method on an interface. For
instance, your Value method is linked to IPrintableObject.Value using the following clause:

Private Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value

Sometimes, your method might be able to serve as the implementation for more than one method, either
on the same interface or on different interfaces.

Add the following interface definition to Interfaces.vb:

Public Interface IValues
Function GetValue(ByVal index As Integer) As String

End Interface

This interface defines just one method, GetValue. Notice that it defines a single Integer parameter and a
return type of String, the same as the Value method from IPrintableObject. Even though the method
name and parameter variable name do not match, what counts here is that the parameter and return
value data types do match.

Now bring up the code window for Employee. You will have it implement this new interface in addition
to the IPrintableObject interface:

Public Class Employee
Inherits Person
Implements IPrintableObject

Implements IValues

157

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 158

Chapter 3: Object-Oriented Programming

You already have a method that returns values. Rather than re-implement that method, it would be
nice to just link this new GetValues method to your existing method. You can easily do this because the
Implements clause allows you to provide a comma-separated list of method names:

Private Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value, IValues.GetValue

Select Case Index
Case 0

Return CStr(EmployeeNumber)
Case 1

Return CStr(Age)
Case Else

Return Format(HireDate, "Short date")
End Select

End Function

This is very similar to the use of the Handles keyword, covered in Chapter 2. A single method within the
class, regardless of scope or name, can be used to implement any number of methods as defined by other
interfaces as long as the data types of the parameters and return values all match.

Combining Interfaces and Inheritance
You can combine implementation of secondary interfaces and inheritance at the same time. When you
inherit from a class that implements an interface, your new subclass automatically gains the interface and
implementation from the base class. If you specify that your base-class methods are overridable, then the
subclass can override those methods. This not only overrides the base-class implementation for your
native interface, but also overrides the implementation for the interface. For instance, you could declare
the Value method in the interface as follows:

Public Overridable Function Value(ByVal index As Integer) As String _
Implements IPrintableObject.Value, IValues.GetValue

Now it is Public, so it is available on your native interface, and it is part of both the IPrintableObject
and IValues interfaces. This means that you can access the property three ways in client code:

Dim emp As New Employee()
Dim printable As IPrintableObject = emp
Dim values As IValues = emp

Debug.WriteLine(emp.Value(0))
Debug.WriteLine(printable.Value(0))
Debug.WriteLine(values.GetValue(0))

Note that you are also now using the Overrides keyword in the declaration. This means that a subclass
of Employee, such as OfficeEmployee, can override the Value method. The overridden method will be
the one invoked, regardless of whether you call the object directly or via an interface.

Combining the implementation of an interface in a base class along with overridable methods can provide
a very flexible object design.

158

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 159

Chapter 3: Object-Oriented Programming

Abstraction
Abstraction is the process by which you can think about specific properties or behaviors without thinking
about a particular object that has those properties or behaviors. Abstraction is merely the ability of a
language to create ‘‘black box’’ code, to take a concept and create an abstract representation of that
concept within a program.

A Customer object, for example, is an abstract representation of a real-world customer. A DataSet object
is an abstract representation of a set of data.

Abstraction enables you to recognize how things are similar and to ignore differences, to think in general
terms and not in specifics. A TextBox control is an abstraction because you can place it on a form and
then tailor it to your needs by setting properties. Visual Basic enables you to define abstractions using
classes.

Any language that enables a developer to create a class from which objects can be instantiated meets
this criterion, and Visual Basic is no exception. You can easily create a class to represent a customer,
essentially providing an abstraction. You can then create instances of that class, whereby each object can
have its own attributes, representing a specific customer.

In Visual Basic, you implement abstraction by creating a class using the Class keyword. To see this
in action, bring up Visual Studio and create a new Visual Basic Windows Application project named
‘‘OOExample.’’ Once the project is open, add a new class to the project using the Project ➪ Add Class
menu option. Name the new class Customer, and add some code to make this class represent a real-world
customer in an abstract sense:

Public Class Customer

Private mID As Guid = Guid.NewGuid
Private mName As String
Private mPhone As String

Public Property ID() As Guid
Get

Return mID
End Get
Set(ByVal value As Guid)

mID = value
End Set

End Property

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

Public Property Phone() As String
Get

159

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 160

Chapter 3: Object-Oriented Programming

Return mPhone
End Get
Set(ByVal value As String)
mPhone = value

End Set
End Property

End Class

You know that a real customer is a lot more complex than an ID, name, and phone number; but at the
same time, you know that in an abstract sense, your customers really do have names and phone numbers,
and that you assign them unique ID numbers to keep track of them. In this case, you are using a globally
unique identifier (GUID) as a unique ID. Thus, given an ID, name, and phone number, you know which
customer you are dealing with, and so you have a perfectly valid abstraction of a customer within your
application.

You can then use this abstract representation of a customer from within your code by using data binding
to link the object to a form. First, build the project. Then click the Data ➪ Show Data Sources menu
option to open the Data Sources window. Select the Add New Data Source link in the window to bring
up the Data Source Configuration Wizard. Within the wizard, choose to add a new Object data source,
click Next, and then select your Customer class, as shown in Figure 3-11.

Figure 3-11

Finish the wizard. The Customer class will be displayed as an available data source, as shown in
Figure 3-12, if you are working in Design view.

Click on Customer in the window. Customer should change its display to a combo box. Open the combo
box and change the selection from DataGridView to Details. This way, you get a details view of the object
on your form. Open the designer for Form1 and drag the Customer class from the Data Sources window
onto the form. The result should look something like the dialog shown in Figure 3-13.

160

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 161

Chapter 3: Object-Oriented Programming

Figure 3-12

Figure 3-13

All you need to do now is add code to create an instance of the Customer class to act as a data source for
the form. Double-click on the form to bring up its code window and add the following code:

Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.CustomerBindingSource.DataSource = New Customer()

End Sub

End Class

You are using the ability of Windows Forms to data bind to a property on an object. You learn more
about data binding later. For now, it is enough to know that the controls on the form are automatically
tied to the properties on your object.

161

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 162

Chapter 3: Object-Oriented Programming

Now you have a simple user interface (UI) that both displays and updates the data in your Customer
object, with that object providing the UI developer with an abstract representation of the customer. When
you run the application, you will see a display like the one shown in Figure 3-14.

Figure 3-14

Here, you have displayed the pre-generated ID value, and have entered values for Name and Phone
directly into the form.

Encapsulation
Perhaps the most important of the object-oriented concepts is that of encapsulation. Encapsulation is
the idea that an object should totally separate its interface from its implementation. All the data and
implementation code for an object should be entirely hidden behind its interface. This is the concept of
an object as a black box.

The idea is that you can create an interface (by creating public methods in a class) and, as long as that
interface remains consistent, the application can interact with your objects. This remains true even
if you entirely rewrite the code within a given method. The interface is independent of the imple-
mentation.

Encapsulation enables you to hide the internal implementation details of a class. For example, the algo-
rithm you use to find prime numbers might be proprietary. You can expose a simple API to the end user
but hide all of the logic used in your algorithm by encapsulating it within your class.

This means that an object should completely contain any data it requires and should contain all the code
required to manipulate that data. Programs should interact with an object through an interface, using the
properties and methods of the object. Client code should never work directly with the data owned by the
object.

Programs interact with objects by sending messages to the object indicating which
method or property they want to have invoked. These messages are generated by
other objects or external sources such as the user. The object reacts to these
messages through methods or properties.

162

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 163

Chapter 3: Object-Oriented Programming

Visual Basic classes entirely hide their internal data and code, providing a well-established interface of
properties and methods with the outside world. Let’s look at an example. Add the following class to your
project; the code defines its native interface:

Public Class Encapsulation

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

End Function

Public Property CurrentX() As Single
Get

End Get
Set(ByVal value As Single)

End Set
End Property

Public Property CurrentY() As Single
Get

End Get
Set(ByVal value As Single)

End Set
End Property

End Class

This creates an interface for the class. At this point, you can write client code to interact with the class,
because from a client perspective, all you care about is the interface. Bring up the designer for Form1 and
add a button to the form, and then write the following code behind the button:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Encapsulation
MsgBox(obj.DistanceTo(10, 10))

End Sub

Even though you have no actual code in the Encapsulation class, you can still write code to use that
class because the interface is defined.

This is a powerful idea. It means you can rapidly create class interfaces against which other developers
can create the UI or other parts of the application while you are still creating the implementation behind
the interface.

From here, you could do virtually anything you like in terms of implementing the class. For example,
you could use the values to calculate a direct distance:

Imports System.Math

Public Class Encapsulation

163

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 164

Chapter 3: Object-Oriented Programming

Private mX As Single
Private mY As Single

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

Return CSng(Sqrt((x - mX) ^ 2 + (y - mY) ^ 2))

End Function

Public Property CurrentX() As Single
Get

Return mX

End Get
Set(ByVal value As Single)

mX = value

End Set
End Property

Public Property CurrentY() As Single
Get

Return mY

End Get
Set(ByVal value As Single)

mY = value

End Set
End Property

End Class

Now when you run the application and click the button, you get a meaningful value as a result. Even
better, encapsulation enables you to change the implementation without changing the interface. For
example, you can change the distance calculation to find the distance between the points (assuming that
no diagonal travel is allowed):

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

Return Abs(x - mX) + Abs(y - mY)

End Function

This results in a different value being displayed when the program is run. You have not changed the
interface of the class, so your working client program has no idea that you have switched from one
implementation to the other. You have achieved a total change of behavior without any change to the
client code. This is the essence of encapsulation.

Of course, a user might have a problem if you make such a change to your object. If applications were
developed expecting the first set of behaviors, and then you changed to the second, there could be some
interesting side effects. The key point is that the client programs would continue to function, even if the
results are quite different from when you began.

164

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 165

Chapter 3: Object-Oriented Programming

Polymorphism
Polymorphism is often considered to be directly tied to inheritance (discussed next). In reality, it is
largely independent. Polymorphism means that you can have two classes with different implemen-
tations or code, but with a common set of methods, properties, or events. You can then write a pro-
gram that operates upon that interface and does not care about which type of object it operates at
runtime.

Method Signatures
To properly understand polymorphism, you need to explore the concept of a method signature, sometimes
also called a prototype. All methods have a signature, which is defined by the method’s name and the data
types of its parameters. You might have code such as this:

Public Function CalculateValue() As Integer

End Sub

In this example, the signature is as follows:

f()

If you add a parameter to the method, the signature will change. For example, you could change the
method to accept a Double:

Public Function CalculateValue(ByVal value As Double) As Integer

Then, the signature of the method is as follows:

f(Double)

Polymorphism merely says that you should be able to write client code that calls methods on an object,
and as long as the object provides your methods with the method signatures you expect, it does not
matter from which class the object was created. Let’s look at some examples of polymorphism within
Visual Basic.

Implementing Polymorphism
You can use several techniques to achieve polymorphic behavior:

❑ Late binding

❑ Multiple interfaces

❑ Reflection

❑ Inheritance

165

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 166

Chapter 3: Object-Oriented Programming

Late binding actually enables you to implement ‘‘pure’’ polymorphism, although at the cost of perfor-
mance and ease of programming. Through multiple interfaces and inheritance, you can also achieve
polymorphism with much better performance and ease of programming. Reflection enables you to use
either late binding or multiple interfaces, but against objects created in a very dynamic way, even going
so far as to dynamically load a DLL into your application at runtime so that you can use its classes. The
following sections walk through each of these options to see how they are implemented and to explore
their pros and cons.

Polymorphism through Late Binding
Typically, when you interact with objects in Visual Basic, you are interacting with them through
strongly typed variables. For example, in Form1 you interacted with the Encapsulation object with the
following code:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Encapsulation
MsgBox(obj.DistanceTo(10, 10))

End Sub

The obj variable is declared using a specific type (Encapsulation) — meaning that it is strongly typed
or early bound.

You can also interact with objects that are late bound. Late binding means that your object variable has
no specific data type, but rather is of type Object. To use late binding, you need to use the Option Strict
Off directive at the top of your code file (or in the project’s properties). This tells the Visual Basic compiler
that you want to use late binding, so it will allow you to do this type of polymorphism. Add the following
to the top of the Form1 code:

Option Strict Off

With Option Strict turned off, Visual Basic treats the Object data type in a special way, enabling you
to attempt arbitrary method calls against the object even though the Object data type does not
implement those methods. For example, you could change the code in Form1 to be late bound as
follows:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As Object = New Encapsulation

MsgBox(obj.DistanceTo(10, 10))

End Sub

When this code is run, you get the same result as you did before, even though the Object data type has no
DistanceTo method as part of its interface. The late-binding mechanism, behind the scenes, dynamically
determines the real type of your object and invokes the appropriate method.

166

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 167

Chapter 3: Object-Oriented Programming

When you work with objects through late binding, neither the Visual Basic IDE nor the compiler can tell
whether you are calling a valid method. Here, there is no way for the compiler to know that the object
referenced by your obj variable actually has a DistanceTo method. It just assumes that you know what
you are talking about and compiles the code.

At runtime, when the code is actually invoked, it attempts to dynamically call the DistanceTo method. If
that is a valid method, then your code will work; otherwise, you will get an error.

Obviously, there is a level of danger when using late binding, as a simple typo can introduce errors that
can only be discovered when the application is actually run. However, it also offers a lot of flexibility,
as code that makes use of late binding can talk to any object from any class as long as those objects
implement the methods you require.

There is a substantial performance penalty for using late binding. The existence of each method is dis-
covered dynamically at runtime, and that discovery takes time. Moreover, the mechanism used to invoke
a method through late binding is not nearly as efficient as the mechanism used to call a method that is
known at compile time.

To make this more obvious, change the code in Form1 by adding a generic routine that displays the
distance:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Encapsulation
ShowDistance(obj)

End Sub

Private Sub ShowDistance(ByVal obj As Object)
MsgBox(obj.DistanceTo(10, 10))

End Sub

Notice that the new ShowDistance routine accepts a parameter using the generic Object data type — so
you can pass it literally any value — String, Integer, or one of your own custom objects. It will throw
an exception at runtime, however, unless the object you pass into the routine has a DistanceTo method
that matches the required method signature.

You know that your Encapsulation object has a method matching that signature, so your code works
fine. Now let’s add another simple class to demonstrate polymorphism. Add a new class to the project
and name it Poly.vb:

Public Class Poly

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
Return x + y

End Function

End Class

This class is about as simple as you can get. It exposes a DistanceTo method as part of its interface and
provides a very basic implementation of that interface.

167

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 168

Chapter 3: Object-Oriented Programming

You can use this new class in place of the Encapsulation class without changing the ShowDistance
method by using polymorphism. Return to the code in Form1 and make the following change:

Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnEncapsulation.Click

Dim obj As New Poly

ShowDistance(obj)
End Sub

Even though you changed the class of object you are passing to ShowDistance to one with a different
overall interface and different implementation, the method called within ShowDistance remains consis-
tent, so your code will run.

Polymorphism with Multiple Interfaces
Late binding is flexible and easy, but it is not ideal because it defeats the IDE and compiler type checking
that enables you to fix bugs due to typos during the development process. It also has a negative impact
on performance.

Another way to implement polymorphism is to use multiple interfaces. This approach avoids late bind-
ing, meaning the IDE and compiler can check your code as you enter and compile it. Moreover, because
the compiler has access to all the information about each method you call, your code runs much faster.

Remove the Option Strict directive from the code in Form1. This will cause some syntax errors to be
highlighted in the code, but don’t worry — you will fix those soon enough.

Visual Basic not only supports polymorphism through late binding, but also implements a stricter form of
polymorphism through its support of multiple interfaces. (Earlier you learned about multiple interfaces,
including the use of the Implements keyword and how to define interfaces.)

With late binding, you have learned how to treat all objects as equals by making them all appear using
the Object data type. With multiple interfaces, you can treat all objects as equals by making them all
implement a common data type or interface.

This approach has the benefit that it is strongly typed, meaning the IDE and compiler can help you find
errors due to typos because the names and data types of all methods and parameters are known at design
time. It is also fast in terms of performance: Because the compiler knows about the methods, it can use
optimized mechanisms for calling them, especially compared to the dynamic mechanisms used in late
binding.

Return to the project to implement polymorphism with multiple interfaces. First, add a module to the
project using the Project ➪ Add Module menu option and name it Interfaces.vb. Replace the Module
code block with an Interface declaration:

Public Interface IShared
Function CalculateDistance(ByVal x As Single, ByVal y As Single) As Single

End Interface

168

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 169

Chapter 3: Object-Oriented Programming

Now you can make both the Encapsulation and Poly classes implement this interface. First, in the
Encapsulation class, add the following code:

Public Class Encapsulation

Implements IShared

Private mX As Single
Private mY As Single

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) _
As Single Implements IShared.CalculateDistance

Return CSng(Sqrt((x - mX) ^ 2 + (y - mY) ^ 2))
End Function

Here you are implementing the IShared interface, and because the CalculateDistance method’s signa-
ture matches that of your existing DistanceTo method, you are simply indicating that it should act as the
implementation for CalculateDistance.

You can make a similar change in the Poly class:

Public Class Poly

Implements IShared

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single _
Implements IShared.CalculateDistance

Return x + y
End Function

End Class

Now this class also implements the IShared interface, and you are ready to see polymorphism imple-
mented in your code. Bring up the code window for Form1 and change your ShowDistance method as
follows:

Private Sub ShowDistance(ByVal obj As IShared)
MsgBox(obj.CalculateDistance(10, 10))

End Sub

Note that this eliminates the compiler error you saw after removing the Option Strict directive from
Form1.

Instead of accepting the parameter using the generic Object data type, you are now accepting an IShared
parameter — a strong data type known by both the IDE and the compiler. Within the code itself, you are
calling the CalculateDistance method as defined by that interface.

This routine can now accept any object that implements IShared, regardless of what class that object
was created from, or what other interfaces that object may implement. All you care about here is that the
object implements IShared.

169

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 170

Chapter 3: Object-Oriented Programming

Polymorphism through Reflection
You have learned how to use late binding to invoke a method on any arbitrary object as long as that
object has a method matching the method signature you are trying to call. You have also walked through
the use of multiple interfaces, which enables you to achieve polymorphism through a faster, early-bound
technique. The challenge with these techniques is that late binding can be slow and hard to debug, and
multiple interfaces can be somewhat rigid and inflexible.

Enter reflection. Reflection is a technology built into the .NET Framework that enables you to write code
that interrogates an assembly to dynamically determine the classes and data types it contains. Using
reflection, you can load the assembly into your process, create instances of those classes, and invoke their
methods.

When you use late binding, Visual Basic makes use of the System.Reflection namespace behind the
scenes on your behalf. You can choose to manually use reflection as well. This gives you even more
flexibility in how you interact with objects.

For example, suppose that the class you want to call is located in some other assembly on disk — an
assembly you did not specifically reference from within your project when you compiled it. How can
you dynamically find, load, and invoke such an assembly? Reflection enables you to do this, assuming
that the assembly is polymorphic. In other words, it has either an interface you expect or a set of methods
you can invoke via late binding.

To see how reflection works with late binding, we’ll create a new class in a separate assembly (project)
and use it from within the existing application. Choose File ➪ Add ➪ New Project to add a new class
library project to your solution. Name it Objects. It begins with a single class module that you can use
as a starting point. Change the code in that class to the following:

Public Class External
Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
Return x * y

End Function
End Class

Now compile the assembly by choosing Build ➪ Build Objects. Next, bring up the code window for
Form1. Add an Imports statement at the top, and add back the Option Strict Off statement:

Option Strict Off

Imports System.Reflection

Remember that because you are using late binding, Form1 also must use Option Strict Off. Without
this, late binding isn’t available.

Add a button with the following code (you have to import the System.Reflections namespace for this
to work):

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button1.Click

Dim obj As Object

170

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 171

Chapter 3: Object-Oriented Programming

Dim dll As Assembly

dll = Assembly.LoadFrom("..\..\..\Objects\bin\Release\Objects.dll")

obj = dll.CreateInstance("Objects.External")
MsgBox(obj.DistanceTo(10, 10))

End Sub

There is a lot going on here, so let’s walk through it. First, notice that you are reverting to late binding;
your obj variable is declared as type Object. You will look at using reflection and multiple interfaces in
a moment, but for now you will use late binding.

Next, you have declared a dll variable as type Reflection.Assembly. This variable will contain a refer-
ence to the Objects assembly that you will be dynamically loading through your code. Note that you are
not adding a reference to this assembly via Project ➪ Add References. You will dynamically access the
assembly at runtime.

You then load the external assembly dynamically by using the Assembly.LoadFrom method:

dll = Assembly.LoadFrom("..\..\Objects\bin\Objects.dll")

This causes the reflection library to load your assembly from a file on disk at the location you spec-
ify. Once the assembly is loaded into your process, you can use the myDll variable to interact with it,
including interrogating it to get a list of the classes it contains or to create instances of those classes.

You can also use the [Assembly].Load method, which scans the directory containing
your application’s .exe file (and the global assembly cache) for any EXE or DLL
containing the Objects assembly. When it finds the assembly, it loads it into
memory, making it available for your use.

You can then use the CreateInstance method on the assembly itself to create objects based on any class
in that assembly. In this case, you are creating an object based on the External class:

obj = dll.CreateInstance("Objects.External")

Now you have an actual object to work with, so you can use late binding to invoke its DistanceTo
method. At this point, your code is really no different from that in the earlier late-binding example,
except that the assembly and object were created dynamically at runtime, rather than being referenced
directly by your project.

Now you should be able to run the application and have it dynamically invoke the assembly at runtime.

Polymorphism via Reflection and Multiple Interfaces
You can also use both reflection and multiple interfaces together. You have seen how multiple inter-
faces enable you to have objects from different classes implement the same interface and thus be treated
identically. You have also seen how reflection enables you to load an assembly and class dynamically
at runtime.

171

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 172

Chapter 3: Object-Oriented Programming

You can combine these concepts by using an interface shared in common between your main application
and your external assembly, using reflection to load that external assembly dynamically at runtime.

First, create the interface that will be shared across both application and assembly. To do so, add a
new Class Library project to your solution named Interfaces. Once it is created, drag and drop the
Interfaces.vb module from your original application into the new project (hold down the Shift key
as you move it). This makes the IShared interface part of that project and no longer part of your base
application.

Of course, your base application still uses IShared, so you want to reference the Interfaces project from
your application to gain access to the interface. Do this by right-clicking your OOExample project in the
Solution Explorer window and selecting Add Reference. Then add the reference, as shown in Figure 3-15.

Figure 3-15

Because the IShared interface is now part of a separate assembly, add an Imports statement to Form1,
Encapsulation, and Poly so that they are able to locate the IShared interface:

Imports Interfaces

Be sure to add this to the top of all three code modules.

You also need to have the Objects project reference Interfaces, so right-click Objects in the Solution
Explorer and choose Add Reference there as well. Add the reference to Interfaces and click OK. At this
point, both the original application and the external assembly have access to the IShared interface. You
can now enhance the code in Objects by changing the External class:

Imports Interfaces

Public Class External

172

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 173

Chapter 3: Object-Oriented Programming

Implements IShared
Public Function DistanceTo(ByVal x As Single, ByVal y As Single) _

As Single Implements IShared.CalculateDistance

Return x * y
End Function

End Class

With both the main application and external assembly using the same data type, you are ready to imple-
ment the polymorphic behavior using reflection.

Remove the Option Strict Off code from Form1. Bring up the code window for Form1 and change the
code behind the button to take advantage of the IShared interface:

Private Sub btnReflection_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim obj As IShared

Dim dll As Assembly

dll = Assembly.LoadFrom("..\..\..\Objects\bin\Release\Objects.dll")

obj = CType(dll.CreateInstance("Objects.External"), IShared)
ShowDistance(obj)

End Sub

All you have done here is change the code so that you can pass your dynamically created object to
the ShowDistance method, which you know requires a parameter of type IShared. Because your class
implements the same IShared interface (from Interfaces) used by the main application, this will work
perfectly. Rebuild and run the solution to see this in action.

This technique is very nice, as the code in ShowDistance is strongly typed, providing all the performance
and coding benefits; but both the DLL and the object itself are loaded dynamically, providing a great deal
of flexibility to your application.

Polymorphism with Inheritance
Inheritance, discussed earlier in this chapter, can also be used to enable polymorphism. The idea here is
very similar to that of multiple interfaces, as a subclass can always be treated as though it were the data
type of the parent class.

Many people consider the concepts of inheritance and polymorphism to be tightly
intertwined. As you have seen, however, it is perfectly possible to use
polymorphism without inheritance.

At the moment, both your Encapsulation and Poly classes are implementing a common interface named
IShared. You can use polymorphism to interact with objects of either class via that common interface.

173

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 174

Chapter 3: Object-Oriented Programming

The same is true if these are child classes based on the same base class through inheritance. To see how
this works, in the OOExample project, add a new class named Parent and insert the following code:

Public MustInherit Class Parent
Public MustOverride Function DistanceTo(ByVal x As Single, _

ByVal y As Single) As Single
End Class

As described earlier, this is an abstract base class, a class with no implementation of its own. The purpose
of an abstract base class is to provide a common base from which other classes can be derived.

To implement polymorphism using inheritance, you do not need to use an abstract base class. Any base
class that provides overridable methods (using either the MustOverride or Overridable keywords) will
work fine, as all its subclasses are guaranteed to have that same set of methods as part of their interface,
and yet the subclasses can provide custom implementation for those methods.

In this example, you are simply defining the DistanceTo method as being a method that must be over-
ridden and implemented by any subclass of Parent. Now you can bring up the Encapsulation class and
change it to be a subclass of Parent:

Public Class Encapsulation

Inherits Parent

Implements IShared

You do not need to stop implementing the IShared interface just because you are inheriting from Parent;
inheritance and multiple interfaces coexist nicely. You do, however, have to override the DistanceTo
method from the Parent class.

The Encapsulation class already has a DistanceTo method with the proper method signature, so you
can simply add the Overrides keyword to indicate that this method will override the declaration in the
Parent class:

Public Overrides Function DistanceTo(_
ByVal x As Single, _ByVal y As Single) _
As Single Implements IShared.CalculateDistance

At this point, the Encapsulation class not only implements the common IShared interface and its own
native interface, but also can be treated as though it were of type Parent, as it is a subclass of Parent.
You can do the same thing to the Poly class:

Public Class Poly

Inherits Parent

Implements IShared

Public Overrides Function DistanceTo(_
ByVal x As Single, ByVal y As Single) _
As Single Implements IShared.CalculateDistance

Return x + y

174

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 175

Chapter 3: Object-Oriented Programming

End Function
End Class

Finally, you can see how polymorphism works by altering the code in Form1 to take advantage of the
fact that both classes can be treated as though they were of type Parent. First, you can change the
ShowDistance method to accept its parameter as type Parent and to call the DistanceTo method:

Private Sub ShowDistance(ByVal obj As Parent)
MsgBox(obj.DistanceTo(10, 10))

End Sub

Then, you can add a new button to create an object of either type Encapsulation or Poly and pass it as a
parameter to the method:

Private Sub btnInheritance_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnInheritance.Click

ShowDistance(New Poly)
ShowDistance(New Encapsulation)

End Sub

Polymorphism Summary
Polymorphism is a very important concept in object-oriented design and programming, and Visual Basic
provides you with ample techniques through which it can be implemented.

The following table summarizes the different techniques and their pros and cons, and provides some
high-level guidelines about when to use each:

Technique Pros Cons Guidelines

Late binding Flexible, ‘‘pure’’
polymorphism

Slow, hard to debug, no
IntelliSense

Use to call arbitrary methods
on literally any object,
regardless of data type or
interfaces

Multiple
interfaces

Fast, easy to debug,
full IntelliSense

Not totally dynamic or
flexible, requires class author
to implement formal interface

Use when you are creating
code that interacts with
clearly defined methods that
can be grouped together into
a formal interface

Reflection and
late binding

Flexible, ‘‘pure’’
polymorphism,
dynamically loads
arbitrary assemblies
from disk

Slow, hard to debug, no
IntelliSense

Use to call arbitrary methods
on objects when you do not
know at design time which
assemblies you will be using

175

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 176

Chapter 3: Object-Oriented Programming

Technique Pros Cons Guidelines

Reflection
and
multiple
interfaces

Fast, easy to
debug, full
IntelliSense,
dynamically
loads arbitrary
assemblies from
disk

Not totally
dynamic or
flexible, requires
class author to
implement
formal interface

Use when you are creating code that
interacts with clearly defined methods that
can be grouped together into a formal
interface, but when you do not know at
design time which assemblies you will be
using

Inheritance Fast, easy to
debug, full
IntelliSense,
inherits behaviors
from base class

Not totally
dynamic or
flexible, requires
class author to
inherit from
common base
class

Use when you are creating objects that have
an is-a relationship, i.e., when you have
subclasses that are naturally of the same data
type as a base class. Polymorphism through
inheritance should occur because inheritance
makes sense, not because you are attempting
to merely achieve polymorphism.

Inheritance
Inheritance is the concept that a new class can be based on an existing class, inheriting its interface and
functionality. The mechanics and syntax of inheritance are described earlier in this chapter, so we won’t
rehash them here. However, you have not yet looked at inheritance from a practical perspective, and that
is the focus of this section.

When to Use Inheritance
Inheritance is one of the most powerful object-oriented features a language can support. At the same
time, inheritance is one of the most dangerous and misused object-oriented features.

Properly used, inheritance enables you to increase the maintainability, readability, and reusability of your
application by offering you a clear and concise way to reuse code, via both interface and implementation.
Improperly used, inheritance creates applications that are very fragile, whereby a change to a class can
cause the entire application to break or require changes.

Inheritance enables you to implement an is-a relationship. In other words, it enables you to implement a
new class that ‘‘is a’’ more specific type of its base class. Properly used, inheritance enables you to create
child classes that are actually the same as the base class.

For example, you know that a duck is a bird. However, a duck can also be food, though that is not its
primary identity. Proper use of inheritance enables you to create a Bird base class from which you can
derive a Duck class. You would not create a Food class and subclass Duck from Food, as a duck isn’t
primarily food — it merely acts as food sometimes.

This is the challenge. Inheritance is not just a mechanism for code reuse, but a mechanism to create classes
that flow naturally from another class. If you use it anywhere you want code reuse, you will end up with
a real mess on your hands. If you use it anywhere you just want a common interface but where the child

176

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 177

Chapter 3: Object-Oriented Programming

class is not really the same as the base class, then you should use multiple interfaces — something we’ll
discuss shortly.

The question you must ask when using inheritance is whether the child class is a
more specific version of the base class.

For example, you might have different types of products in your organization. All of these products
have some common data and behaviors — e.g., they all have a product number, a description, and a
price. However, if you have an agricultural application, you might have chemical products, seed prod-
ucts, fertilizer products, and retail products. These are all different — each having its own data and
behaviors — and yet each one of them really is a product. You can use inheritance to create this set of
products, as illustrated by the class diagram in Figure 3-16.

Product
Class

Seed
Class

Person

Fertilizer
Class

Person

Chemical
Class

Person

Retail
Class

Person

Figure 3-16

This diagram shows that you have an abstract base Product class, from which you derive the various
types of product your system actually uses. This is an appropriate use of inheritance because each child
class is obviously a more specific form of the general Product class.

Alternately, you might try to use inheritance just as a code-sharing mechanism. For example, you may
look at your application, which has Customer, Product, and SalesOrder classes, and decide that all of
them need to be designed so that they can be printed to a printer. The code to handle the printing will
all be somewhat similar, so to reuse that printing code, you create a base PrintableObject class. This
would result in the diagram shown in Figure 3-17.

PrintableObject
MustInherit Class

Customer
Class

PrintableObject

Product
Class

PrintableObject

SalesOrder
Class

PrintableObject

Figure 3-17

Intuitively, you know that this does not represent an is-a relationship. A Customer can be printed, and
you are getting code reuse, but a customer is not a specific case of a printable object. Implementing a

177

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 178

Chapter 3: Object-Oriented Programming

system such as this results in a fragile design and application. This is a case where multiple interfaces are
a far more appropriate technology.

To illustrate this point, you might later discover that you have other entities in your organization that are
similar to a customer but not quite the same. Upon further analysis, you may determine that Employee
and Customer are related because they are specific cases of a Contact class. The Contact class provides
commonality in terms of data and behavior across all these other classes (see Figure 3-18).

Contact
Class

Employee
Class

Contact

Customer
Class

Contact

Figure 3-18

However, now your Customer is in trouble; you have said it is a PrintableObject, and you are now
saying it is a Contact. You might be able to just derive Contact from PrintableObject (see Figure 3-19).

PrintableObject
MustInherit Class

Contact
Class

PrintableObject

Customer
Class

Contact

Employee
Class

Contact

Figure 3-19

The problem with this is that now Employee is also of type PrintableObject, even if it shouldn’t be,
but you are stuck because, unfortunately, you decided early on to go against intuition and say that a
Customer is a PrintableObject.

This problem could be solved by multiple inheritance, which would enable Customer to be a subclass
of more than one base class — in this case, of both Contact and PrintableObject. However, the .NET

178

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 179

Chapter 3: Object-Oriented Programming

platform and Visual Basic do not support multiple inheritance in this way. An alternative is to use inher-
itance for the is-a relationship with Contact, and use multiple interfaces to enable the Customer object to
act as a PrintableObject by implementing an IPrintableObject interface.

Application versus Framework Inheritance
What you have just seen is how inheritance can accidentally cause reuse of code where no reuse was
desired, but you can take a different view of this model by separating the concept of a framework from
your actual application. The way you use inheritance in the design of a framework is somewhat different
from how you use inheritance in the design of an actual application.

In this context, the word framework is being used to refer to a set of classes that provide base functionality
that isn’t specific to an application, but rather may be used across a number of applications within the
organization, or perhaps even beyond the organization. The .NET Framework base class library is an
example of a very broad framework you use when building your applications.

The PrintableObject class discussed earlier, for example, may have little to do with your specific appli-
cation, but may be the type of thing that is used across many applications. If so, it is a natural candidate
for use as part of a framework, rather than being considered part of your actual application.

Framework classes exist at a lower level than application classes. For example, the .NET base-class library
is a framework on which all .NET applications are built. You can layer your own framework on top of
the .NET Framework as well (see Figure 3-20).

Our App

Our Framework

.NET Framework

Figure 3-20

If you take this view, then the PrintableObject class wouldn’t be part of your application at all, but part
of a framework on which your application is built. If so, then the fact that Customer is not a specific
case of PrintableObject does not matter as much, as you are not saying that it is such a thing, but rather
that it is leveraging that portion of the framework’s functionality.

To make all this work requires a lot of planning and forethought in the design of the framework itself. To
see the dangers you face, consider that you might want to not only print objects, but also store them in a
file. In that case, you might have not only PrintableObject, but also SavableObject as a base class.

The question is, what do you do if Customer should be both printable and savable? If all printable objects
are savable, you might have the result shown in Figure 3-21.

Alternately, if all savable objects are printable, you might have the result shown in Figure 3-22. However,
neither of these truly provides a decent solution, as it is likely that the concept of being printable and the
concept of being savable are different and not interrelated in either of these ways.

When faced with this sort of issue, it is best to avoid using inheritance and instead rely on multiple
interfaces.

179

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 180

Chapter 3: Object-Oriented Programming

SavableObject
MustInherit Class

PrintableObject
MustInherit Class

SavableObject

Figure 3-21

PrintableObject
MustInherit Class

SavableObject
MustInherit Class

PrintableObject

Figure 3-22

Inheritance and Multiple Interfaces
While inheritance is powerful, it is really geared around implementing the is-a relationship. Sometimes
you will have objects that need a common interface, even though they are not really a specific case
of some base class that provides that interface. We’ve just explored that issue in the discussion of the
PrintableObject, SavableObject, and Customer classes.

Sometimes multiple interfaces are a better alternative than inheritance. The syntax for creating and using
secondary and multiple interfaces was discussed.

Multiple interfaces can be viewed as another way to implement the is-a relationship, although it is often
better to view inheritance as an is-a relationship and to view multiple interfaces as a way of implementing
an act-as relationship.

Considering this further, we can say that the PrintableObject concept could perhaps be better expressed
as an interface — IPrintableObject.

When the class implements a secondary interface such as IPrintableObject, you are not really saying
that your class is a printable object, you are saying that it can ‘‘act as’’ a printable object. A Customer is a
Contact, but at the same time it can act as a printable object. This is illustrated in Figure 3-23.

The drawback to this approach is that you have no inherited implementation when you implement
IPrintableObject. Earlier you saw how to reuse common code as you implement an interface across

180

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 181

Chapter 3: Object-Oriented Programming

multiple classes. While not as automatic or easy as inheritance, it is possible to reuse implementation
code with a bit of extra work.

Contact
Class

Customer
ClassIPrintableObject

Contact

Figure 3-23

Applying Inheritance and Multiple Interfaces
Perhaps the best way to see how inheritance and multiple interfaces interact is to look at an example.
Returning to the original OOExample project, the following example combines inheritance and multiple
interfaces to create an object that has both an is-a and act-as relationship at the same time. As an additional
benefit, you will be using the .NET Framework’s capability to print to a printer or Print Preview dialog.

Creating the Contact Base Class
You already have a simple Customer class in the project, so now add a Contact base class. Choose Project
➪ Add Class and add a class named Contact:

Public MustInherit Class Contact

Private mID As Guid = Guid.NewGuid
Private mName As String

Public Property ID() As Guid
Get

Return mID
End Get
Set(ByVal value As Guid)

mID = value
End Set

End Property

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

End Class

181

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 182

Chapter 3: Object-Oriented Programming

Subclassing Contact
Now you can make the Customer class inherit from this base class because it is a Contact. In addition,
because your base class now implements both the ID and Name properties, you can simplify the code in
Customer by removing those properties and their related variables:

Public Class Customer
Inherits Contact

Private mPhone As String

Public Property Phone() As String
Get

Return mPhone
End Get
Set(ByVal value As String)

mPhone = value
End Set

End Property
End Class

This shows the benefit of subclassing Customer from Contact, as you are now sharing the ID and Name
code across all other types of Contact as well.

Implementing IPrintableObject
You also know that a Customer should be able to act as a printable object. To do this in such a way
that the implementation is reusable requires a bit of thought. First, though, you need to define the
IPrintableObject interface.

You will use the standard printing mechanism provided by .NET from the System.Drawing namespace.
As shown in Figure 3-24, add a reference to System.Drawing.dll to the Interfaces project.

Figure 3-24

182

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 183

Chapter 3: Object-Oriented Programming

With that done, bring up the code window for Interfaces.vb in the Interfaces project and add the
following code:

Imports System.Drawing

Public Interface IPrintableObject
Sub Print()
Sub PrintPreview()
Sub RenderPage(ByVal sender As Object, _

ByVal ev As System.Drawing.Printing.PrintPageEventArgs)
End Interface

This interface ensures that any object implementing IPrintableObject will have Print and
PrintPreview methods, so you can invoke the appropriate type of printing. It also ensures that the
object has a RenderPage method, which can be implemented by that object to render the object’s data on
the printed page.

At this point, you could simply implement all the code needed to handle printing directly within the
Customer object. This isn’t ideal, however, as some of the code will be common across any objects that
want to implement IPrintableObject, and it would be nice to find a way to share that code.

To do this, you can create a new class, ObjectPrinter. This is a framework-style class, in that it has
nothing to do with any particular application, but can be used across any application in which
IPrintableObject will be used.

Add a new class named ObjectPrinter to the ObjectAndComponents project. This class will contain
all the code common to printing any object. It makes use of the built-in printing support provided by
the .NET Framework class library. To use this, you need to import a couple of namespaces, so add the
following code to the new class:

Imports System.Drawing
Imports System.Drawing.Printing
Imports Interfaces

You can then define a PrintDocument variable, which will hold the reference to your printer output. You
will also declare a variable to hold a reference to the actual object you will be printing. Notice that
you are using the IPrintableObject interface data type for this variable:

Public Class ObjectPrinter

Private WithEvents document As PrintDocument
Private printObject As IPrintableObject

Now you can create a routine to kick off the printing process for any object implementing
IPrintableObject. This code is totally generic; you will write it here so it can be reused across other
classes:

Public Sub Print(ByVal obj As IPrintableObject)
printObject = obj

document = New PrintDocument()

183

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 184

Chapter 3: Object-Oriented Programming

document.Print()
End Sub

Likewise, you can implement a method to show a print preview of your object. This code is also totally
generic, so add it here for reuse:

Public Sub PrintPreview(ByVal obj As IPrintableObject)
Dim PPdlg As PrintPreviewDialog = New PrintPreviewDialog()

printObject = obj

document = New PrintDocument()
PPdlg.Document = document
PPdlg.ShowDialog()

End Sub

Finally, you need to catch the PrintPage event that is automatically raised by the .NET printing mecha-
nism. This event is raised by the PrintDocument object whenever the document determines that it needs
data rendered onto a page. Typically, it is in this routine that you would put the code to draw text or
graphics onto the page surface. However, because this is a generic framework class, you won’t do that
here; instead, delegate the call back into the actual application object that you want to print:

Private Sub PrintPage(ByVal sender As Object, _
ByVal ev As System.Drawing.Printing.PrintPageEventArgs) _
Handles document.PrintPage

printObject.RenderPage(sender, ev)
End Sub

End Class

This enables the application object itself to determine how its data should be rendered onto the
output page. You can see how to do that by implementing the IPrintableObject interface on
the Customer class:

Imports Interfaces

Public Class Customer
Inherits Contact

Implements IPrintableObject

By adding this code, you require that your Customer class implement the Print, PrintPreview,
and RenderPage methods. To avoid wasting paper as you test the code, make both the Print and
PrintPreview methods the same and have them just do a print preview display:

Public Sub Print() _
Implements Interfaces.IPrintableObject.Print

Dim printer As New ObjectPrinter()
printer.PrintPreview(Me)

End Sub

184

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 185

Chapter 3: Object-Oriented Programming

Notice that you are using an ObjectPrinter object to handle the common details of doing a print pre-
view. In fact, any class you ever create that implements IPrintableObject will have this exact same
code to implement a print-preview function, relying on your common ObjectPrinter to take care of the
details.

You also need to implement the RenderPage method, which is where you actually put your object’s data
onto the printed page:

Private Sub RenderPage(ByVal sender As Object, _
ByVal ev As System.Drawing.Printing.PrintPageEventArgs) _
Implements IPrintableObject.RenderPage

Dim printFont As New Font("Arial", 10)
Dim lineHeight As Single = printFont.GetHeight(ev.Graphics)
Dim leftMargin As Single = ev.MarginBounds.Left
Dim yPos As Single = ev.MarginBounds.Top

ev.Graphics.DrawString("ID: " & ID.ToString, printFont, Brushes.Black, _
leftMargin, yPos, New StringFormat())

yPos += lineHeight
ev.Graphics.DrawString("Name: " & Name, printFont, Brushes.Black, _

leftMargin, yPos, New StringFormat())

ev.HasMorePages = False

End Sub

All of this code is unique to your object, which makes sense because you are rendering your specific data
to be printed. However, you don’t need to worry about the details of whether you are printing to paper
or print preview; that is handled by your ObjectPrinter class, which in turn uses the .NET Framework.
This enables you to focus on generating the output to the page within your application class.

By generalizing the printing code in ObjectPrinter, you have achieved a level of reuse that you can tap
into via the IPrintableObject interface. Any time you want to print a Customer object’s data, you can
have it act as an IPrintableObject and call its Print or PrintPreview method. To see this work, add a
new button control to Form1 with the following code:

Private Sub btnPrint_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPrint.Click

Dim obj As New Customer
obj.Name = "Douglas Adams"
CType(obj, IPrintableObject).PrintPreview()

End Sub

This code creates a new Customer object and sets its Name property. You then use the CType method to
access the object via its IPrintableObject interface to invoke the PrintPreview method.

When you run the application and click the button, you will get a print preview display showing the
object’s data (see Figure 3-25).

185

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 186

Chapter 3: Object-Oriented Programming

Figure 3-25

How Deep to Go?
Most of the examples discussed so far have illustrated how you can create a child class based on a sin-
gle parent class. That is called single-level inheritance. In fact, inheritance can be many levels deep. For
example, you might have a deep hierarchy such as the one shown in Figure 3-26.

From the root of System.Object down to NAFTACustomer you have four levels of inheritance. This can be
described as a four-level inheritance chain.

There is no hard-and-fast rule about how deep inheritance chains should go, but conventional wisdom
and general experience with inheritance in other languages such as Smalltalk and C++ indicate that the
deeper an inheritance chain becomes, the harder it is to maintain an application.

This happens for two reasons. First is the fragile base class or fragile superclass issue, discussed shortly.
The second reason is that a deep inheritance hierarchy tends to seriously reduce the readability of your
code by scattering the code for an object across many different classes, all of which are combined by the
compiler to create your object.

One of the reasons for adopting object-oriented design and programming is to avoid so-called spaghetti
code, whereby any bit of code you might look at does almost nothing useful but instead calls various other
procedures and routines in other parts of your application. To determine what is going on with spaghetti
code, you must trace through many routines and mentally piece together what it all means.

Object-oriented programming can help you avoid this problem, but it is most definitely not a magic bul-
let. In fact, when you create deep inheritance hierarchies, you are often creating spaghetti code because
each level in the hierarchy not only extends the previous level’s interface, but almost always also adds
functionality. Thus, when you look at the final NAFTACustomer class, it may have very little code. To
figure out what it does or how it behaves, you have to trace through the code in the previous four levels
of classes, and you might not even have the code for some of those classes, as they might come from other
applications or class libraries you have purchased.

On the one hand, you have the benefit that you are reusing code, but on the other hand, you have the
drawback that the code for one object is actually scattered through five different classes. Keep this in mind
when designing systems with inheritance — use as few levels in the hierarchy as possible to provide the
required functionality.

186

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 187

Chapter 3: Object-Oriented Programming

NAFTACustomer
Class

InternationalCustomer

InternationCustomer DomesticCustomer
Class

Customer
Class

Customer

Object
Class

Contact
Class

Customer
Class

Contact

Figure 3-26

The Fragile-Base-Class Problem
You have explored where it is appropriate to use inheritance and where it is not. You have also explored
how you can use inheritance and multiple interfaces in conjunction to implement both is-a and act-as
relationships simultaneously within your classes.

Earlier, we noted that while inheritance is an incredibly powerful and useful concept, it can also be very
dangerous if used improperly. You have seen some of this danger in the discussion of the misapplication
of the is-a relationship, and how you can use multiple interfaces to avoid those issues.

One of the most classic and common problems with inheritance is the fragile-base-class problem. This
problem is exacerbated when you have very deep inheritance hierarchies, but it exists even in a single-
level inheritance chain.

187

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 188

Chapter 3: Object-Oriented Programming

The issue you face is that a change in the base class always affects all child classes derived from that base
class. This is a double-edged sword. On the one hand, you get the benefit of being able to change code in
one location and have that change automatically cascade through all derived classes. On the other hand,
a change in behavior can have unintended or unexpected consequences farther down the inheritance
chain, which can make your application very fragile and hard to change or maintain.

Interface Changes
There are obvious changes you might make, which require immediate attention. For example, you might
change your Contact class to have FirstName and LastName instead of simply Name as a property. In the
Contact class, replace the mName variable declaration with the following code:

Private mFirstName As String
Private mLastName As String

Now replace the Name property with the following code:

Public Property FirstName() As String
Get
Return mFirstName

End Get
Set(ByVal value As String)
mFirstName = value

End Set
End Property

Public Property LastName() As String
Get
Return mLastName

End Get
Set(ByVal value As String)
mLastName = value

End Set
End Property

At this point, the Error List window in the IDE will display a list of locations where you need to alter
your code to compensate for the change. This is a graphic illustration of a base-class change that causes
cascading changes throughout your application. In this case, you have changed the base-class interface,
thus changing the interface of all subclasses in the inheritance chain.

To avoid having to fix code throughout your application, always strive to keep as much consistency
in your base class interface as possible. In this case, you can implement a read-only Name property that
returns the full name of the Contact:

Public ReadOnly Property Name() As String
Get
Return mFirstName & " " & mLastName

End Get
End Property

This resolves most of the items in the Error List window. You can fix any remaining issues by using the
FirstName and LastName properties. For example, in Form1 you can change the code behind your button
to the following:

188

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 189

Chapter 3: Object-Oriented Programming

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles button1.Click

Dim obj As New Customer

obj.FirstName = "Douglas"
obj.LastName = "Adams"

CType(obj, Interfaces.IPrintableObject).Print()
End Sub

Any change to a base class interface is likely to cause problems, so think carefully before making such a
change.

Implementation Changes
Unfortunately, there is another, more subtle type of change that can wreak more havoc on your applica-
tion: an implementation change. This is the core of the fragile-base-class problem.

Encapsulation provides you with a separation of interface from implementation. However, keeping your
interface consistent is merely a syntactic concept. If you change the implementation, you are making a
semantic change, a change that does not alter any of your syntax but can have serious ramifications on
the real behavior of the application.

In theory, you can change the implementation of a class, and as long as you do not change its interface,
any client applications using objects based on that class will continue to operate without change. Of
course, reality is never as nice as theory, and more often than not a change to implementation will have
some consequences on the behavior of a client application.

For example, you might use a SortedList to sort and display some Customer objects. To do this, add a
new button to Form1 with the following code:

Private Sub btnSort_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSort.Click

Dim col As New Generic.SortedDictionary(Of String, Customer)
Dim obj As Customer

obj = New Customer()
obj.FirstName = "Douglas"
obj.LastName = "Adams"
col.Add(obj.Name, obj)

obj = New Customer()
obj.FirstName = "Andre"
obj.LastName = "Norton"
col.Add(obj.Name, obj)

Dim item As Generic.KeyValuePair(Of String, Customer)
Dim sb As New System.Text.StringBuilder

For Each item In col
sb.AppendLine(item.Value.Name)

189

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 190

Chapter 3: Object-Oriented Programming

Next

MsgBox(sb.ToString)

End Sub

This code simply creates a couple of Customer objects, sets their FirstName and LastName properties, and
inserts them into a generic SortedDictionary object from the System.Collections.Generic namespace.

Items in a SortedDictionary are sorted based on their key value, and you are using the Name property
to provide that key, meaning that your entries will be sorted by name. Because your Name property is
implemented to return first name first and last name second, your entries will be sorted by first name.

If you run the application, the dialog will display the following:

Andre Norton
Douglas Adams

However, you can change the implementation of your Contact class — not directly changing or affecting
either the Customer class or your code in Form1 — to return last name first and first name second, as
shown here:

Public ReadOnly Property Name() As String
Get

Return mLastName & ", " & mFirstName

End Get
End Property

While no other code requires changing, and no syntax errors are flagged, the behavior of the application
is changed. When you run it, the output will now be as follows:

Adams, Douglas
Norton, Andre

Maybe this change is inconsequential. Maybe it totally breaks the required behavior of your form. The
developer making the change in the Contact class might not even know that someone was using that
property for sort criteria.

This illustrates how dangerous inheritance can be. Changes to implementation in a base class can cascade
to countless other classes in countless applications, having unforeseen side effects and consequences of
which the base-class developer is totally unaware.

Summary
This chapter demonstrated how Visual Basic enables you to create and work with classes and objects.
Visual Basic provides the building blocks for abstraction, encapsulation, polymorphism, and inheritance.

You have learned how to create both simple base classes as well as abstract base classes. You have
also explored how you can define formal interfaces, a concept quite similar to an abstract base class in
many ways.

190

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 191

Chapter 3: Object-Oriented Programming

You also walked through the process of subclassing, creating a new class that derives both interface and
implementation from a base class. The subclass can be extended by adding new methods or altering the
behavior of existing methods on the base class.

By the end of this chapter, you have seen how object-oriented programming flows from the four basic
concepts of abstraction, encapsulation, polymorphism, and inheritance. The chapter provided basic infor-
mation about each concept and demonstrated how to implement them using Visual Basic.

By properly applying object-oriented design and programming, you can create very large and complex
applications that remain maintainable and readable over time. Nonetheless, these technologies are not a
magic bullet. Improperly applied, they can create the same hard-to-maintain code that you might create
using procedural or modular design techniques.

It is not possible to fully cover all aspects of object-oriented programming in a single chapter. Before
launching into a full-blown object-oriented project, we highly recommend looking at other books specifi-
cally geared toward object-oriented design and programming.

191

Evjen-91361 c03.tex V2 - 04/01/2008 3:26pm Page 192

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 193

The Common Language

You’ve learned how to create simple applications and looked at how to create classes. Now it’s
time not only to start tying these elements together, but also to learn how to dispose of some of
the classes that you have created. The architects of .NET realized that all procedural languages
require certain base functionality. For example, many languages ship with their own runtime that
provides features such as memory management, but what if, instead of each language shipping
with its own runtime implementation, all languages used a common runtime? This would provide
languages with a standard environment and access to all of the same features. This is exactly what
the common language runtime (CLR) provides.

The CLR manages the execution of code on the .NET platform. .NET provided Visual Basic
developers with better support for many advanced features, including operator overloading,
implementation inheritance, threading, and the ability to marshal objects. Building such features
into a language is not trivial. The CLR enabled Microsoft to concentrate on building this plumb-
ing one time and then reuse it across different programming languages. Because the CLR supports
these features and because Visual Basic is built on top of the CLR, Visual Basic can use these fea-
tures. As a result, going forward, Visual Basic is the equal of every other .NET language, with the
CLR eliminating many of the shortcomings of the previous versions of Visual Basic.

Visual Basic developers can view the CLR as a better Visual Basic runtime. However, this run-
time, unlike the old standalone Visual Basic runtime, is common across all of .NET regardless
of the underlying operating system. Thus, the functionality exposed by the CLR is available to
all .NET languages; more important, all of the features available to other .NET languages via the
CLR are available to Visual Basic developers. Additionally, as long as you develop using managed
code — code that runs in the CLR — you’ll find that it doesn’t matter whether your application is
installed on a Windows XP client or a Vista client; your application will run. The CLR provides an
abstraction layer separate from the details of the operating system.

This chapter gets down into the belly of the application runtime environment, not to examine
how .NET enables this abstraction from the operating system, but instead to look at some specific

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 194

Chapter 4: The Common Language

features related to how you build applications that run against the CLR. This includes an introduction to
several basic elements of working with applications that run in the CLR, including the following:

❑ Elements of a .NET application

❑ Versioning and deployment

❑ Integration across .NET languages

❑ Microsoft Intermediate Language (MSIL)

❑ Memory management and the garbage collector (GC)

Elements of a .NET Application
A .NET application is composed of four primary entities:

❑ Classes — The basic units that encapsulate data and behavior

❑ Modules — The individual files that contain the intermediate language (IL) for an assembly

❑ Assemblies — The primary unit of deployment of a .NET application

❑ Types — The common unit of transmitting data between modules

Classes, covered in the preceding two chapters, are defined in the source files for your application or
class library. Upon compilation of your source files, you produce a module. The code that makes up
an assembly’s modules may exist in a single executable (.exe) file or as a dynamic link library (.dll).
A module is in fact a Microsoft Intermediate Language file, which is then used by the CLR when your
application is run. However, compiling a .NET application doesn’t produce only an MSIL file; it also
produces a collection of files that make up a deployable application or assembly. Within an assembly are
several different types of files, including not only the actual executable files, but also configuration files,
signature keys, and, most important of all, the actual code modules.

Modules
A module contains Microsoft Intermediate Language (MSIL, often abbreviated to IL) code, associated
metadata, and the assembly’s manifest. By default, the Visual Basic compiler creates an assembly that is
composed of a single module containing both the assembly code and the manifest.

IL is a platform-independent way of representing managed code within a module. Before IL can be
executed, the CLR must compile it into the native machine code. The default method is for the CLR to
use the JIT (just-in-time) compiler to compile the IL on a method-by-method basis. At runtime, as each
method is called by an application for the first time, it is passed through the JIT compiler for compilation
to machine code. Similarly, for an ASP.NET application, each page is passed through the JIT compiler
the first time it is requested, to create an in-memory representation of the machine code that represents
that page.

Additional information about the types declared in the IL is provided by the associated metadata. The
metadata contained within the module is used extensively by the CLR. For example, if a client and an
object reside within two different processes, then the CLR uses the type’s metadata to marshal data
between the client and the object. MSIL is important because every .NET language compiles down to IL.

194

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 195

Chapter 4: The Common Language

The CLR doesn’t care or need to know what the implementation language was; it knows only what the
IL contains. Thus, any differences in .NET languages exist at the level where the IL is generated; but once
generated, all .NET languages have the same runtime characteristics. Similarly, because the CLR doesn’t
care in which language a given module was originally written, it can leverage modules implemented in
entirely different .NET languages.

A question that always arises when discussing the JIT compiler and the use of a runtime environment
is ‘‘Wouldn’t it be faster to compile the IL language down to native code before the user asks to run
it?’’ Although the answer is not always yes, Microsoft has provided a utility to handle this compilation:
Ngen.exe. Ngen (short for native image generator) enables you to essentially run the JIT compiler on
a specific assembly, which is then installed into the user’s application cache in its native format. The
obvious advantage is that now when the user asks to execute something in that assembly, the JIT compiler
is not invoked, saving a small amount of time. However, unlike the JIT compiler, which only compiles
those portions of an assembly that are actually referenced, Ngen.exe needs to compile the entire codebase,
so the time required for compilation is not the same as what a user actually experiences.

Ngen.exe is executed from the command line. The utility was updated as part of .NET 2.0 and now
automatically detects and includes most of the dependent assemblies as part of the image-generation
process. To use Ngen.exe, you simply reference this utility followed by an action; for example, install
followed by your assembly reference. Several options are available as part of the generation process, but
that subject is beyond the scope of this chapter, given that Ngen.exe itself is a topic that generates heated
debate regarding its use and value.

Where does the debate begin about when to use Ngen.exe? Keep in mind that in a server application,
where the same assembly will be referenced by multiple users between machine restarts, the difference
in performance on the first request is essentially lost. This means that compilation to native code is more
valuable to client-side applications. Unfortunately, using Ngen.exe requires running it on each client
machine, which can become cost prohibitive in certain installation scenarios, particularly if you use any
form of self-updating application logic.

Another issue relates to using reflection, which enables you to reference other assemblies at runtime. Of
course, if you don’t know what assemblies you will reference until runtime, then the native image gen-
erator has a problem, as it won’t know what to reference either. You may have occasion to use Ngen.exe
for an application you’ve created, but you should fully investigate this utility and its advantages and dis-
advantages beforehand, keeping in mind that even native images execute within the CLR. Native image
generation only changes the compilation model, not the runtime environment.

Assemblies
An assembly is the primary unit of deployment for .NET applications. It is either a dynamic link library
(.dll) or an executable (.exe). An assembly is composed of a manifest, one or more modules, and (option-
ally) other files, such as .config, .ASPX, .ASMX, images, and so on.

The manifest of an assembly contains the following:

❑ Information about the identity of the assembly, including its textual name and version number

❑ If the assembly is public, then the manifest will contain the assembly’s public key. The public key
is used to help ensure that types exposed by the assembly reside within a unique namespace. It
may also be used to uniquely identify the source of an assembly.

195

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 196

Chapter 4: The Common Language

❑ A declarative security request that describes the assembly’s security requirements (the assembly
is responsible for declaring the security it requires). Requests for permissions fall into three cate-
gories: required, optional, and denied. The identity information may be used as evidence by the
CLR in determining whether or not to approve security requests.

❑ A list of other assemblies on which the assembly depends. The CLR uses this information to
locate an appropriate version of the required assemblies at runtime. The list of dependencies also
includes the exact version number of each assembly at the time the assembly was created.

❑ A list of all types and resources exposed by the assembly. If any of the resources exposed by the
assembly are localized, the manifest will also contain the default culture (language, currency,
date/time format, and so on) that the application will target. The CLR uses this information to
locate specific resources and types within the assembly.

The manifest can be stored in a separate file or in one of the modules. By default, for most applications,
it is part of the .dll or .exe file, which is compiled by Visual Studio. For Web applications, you will find
that although there is a collection of ASPX pages, the actual assembly information is located in a DLL
referenced by those ASPX pages.

Types
The type system provides a template that is used to describe the encapsulation of data and an associated
set of behaviors. It is this common template for describing data that provides the basis for the metadata
that .NET uses when applications interoperate. There are two kinds of types: reference and value. The
differences between these two types are discussed in chapter 1.

Unlike COM, which is scoped at the machine level, types are scoped at either the global or the assembly
level. All types are based on a common system that is used across all .NET languages. Similar to the
MSIL code, which is interpreted by the CLR based upon the current runtime environment, the CLR uses
a common metadata system to recognize the details of each type. The result is that all .NET languages
are built around a common type system, unlike the different implementations of COM, which require
special notation to allow translation of different data types between different .exe and .dll files.

A type has fields, properties, and methods:

❑ Fields — Variables that are scoped to the type. For example, a Pet class could declare a field
called Name that holds the pet’s name. In a well-engineered class, fields are often kept private
and exposed only as properties or methods.

❑ Properties — These look like fields to clients of the type, but can have code behind them (which
usually performs some sort of data validation). For example, a Dog data type could expose a
property to set its gender. Code could then be placed behind the property so that it could be set
only to ‘‘male’’ or ‘‘female,’’ and then this property could be saved internally to one of the fields
in the dog class.

❑ Methods — These define behaviors exhibited by the type. For example, the Dog data type could
expose a method called Sleep, which would suspend the activity of the Dog.

The preceding elements make up each application. Note that some types are defined at the application
level and others globally. Under COM, all components are registered globally, and certainly if you want
to expose a .NET component to COM, you must register it globally. However, with .NET it is not only
possible but often encouraged that the classes and types defined in your modules be visible only at the

196

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 197

Chapter 4: The Common Language

application level. The advantage of this is that you can run several different versions of an application
side by side. Of course, once you have an application that can be versioned, the next challenge is knowing
which version of that application you have.

Versioning and Deployment
Components and their clients are often installed at different times by different vendors. For example,
a Visual Basic application might rely on a third-party grid control to display data. Runtime support for
versioning is crucial for ensuring that an incompatible version of the grid control does not cause problems
for the Visual Basic application.

In addition to this issue of compatibility, deploying applications written in previous versions of Visual
Basic was problematic. Fortunately, .NET provides major improvements over the versioning and deploy-
ment offered by COM and the previous versions of Visual Basic.

Better Support for Versioning
Managing component versions was challenging in previous versions of Visual Basic. The version number
of the component could be set, but this version number was not used by the runtime. COM components
are often referenced by their ProgID, but Visual Basic does not provide any support for appending the
version number on the end of the ProgID.

For those of you who are unfamiliar with the term ProgID, it’s enough to know that ProgIDs are
developer-friendly strings used to identify a component. For example, Word.Application describes
Microsoft Word. ProgIDs can be fully qualified with the targeted version of the component — for
example, Word.Application.10 — but this is a limited capability and relies on both the application
and whether the person using it chooses this optional addendum. As you’ll see in chapter 7, a namespace
is built on the basic elements of a ProgID, but provides a more robust naming system.

For many applications, .NET has removed the need to identify the version of each assembly in a central
registry on a machine. However, some assemblies are installed once and used by multiple applications.
.NET provides a global assembly cache (GAC), which is used to store assemblies that are intended for use
by multiple applications. The CLR provides versioning support for all components loaded in the GAC.

The CLR provides two features for assemblies installed within the GAC:

❑ Side-by-side versioning — Multiple versions of the same component can be simultaneously
stored in the GAC.

❑ Automatic Quick Fix Engineering (QFE) — Also known as hotfix support, if a new version of a
component, which is still compatible with the old version, is available in the GAC, the CLR loads
the updated component. The version number, which is maintained by the developer who created
the referenced assembly, drives this behavior.

The assembly’s manifest contains the version numbers of referenced assemblies. The CLR uses the assem-
bly’s manifest at runtime to locate a compatible version of each referenced assembly. The version number
of an assembly takes the following form:

Major.Minor.Build.Revision

197

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 198

Chapter 4: The Common Language

Changes to the major and minor version numbers of the assembly indicate that the assembly is no longer
compatible with the previous versions. The CLR will not use versions of the assembly that have a differ-
ent major or minor number unless it is explicitly told to do so. For example, if an assembly was originally
compiled against a referenced assembly with a version number of 3.4.1.9, then the CLR will not load an
assembly stored in the GAC unless it has a major and minor number of 3 and 4.

Incrementing the revision and build numbers indicates that the new version is still compatible with the
previous version. If a new assembly that has an incremented revision or build number is loaded into
the GAC, then the CLR can still load this assembly for applications that were compiled referencing a
previous version. Versioning is discussed in greater detail in chapter 23.

Better Deployment
Applications written using previous versions of Visual Basic and COM were often complicated to deploy.
Components referenced by the application needed to be installed and registered; and for Visual Basic
components, the correct version of the Visual Basic runtime needed to be available. The Component
Deployment tool helped in the creation of complex installation packages, but applications could be easily
broken if the dependent components were inadvertently replaced by incompatible versions on the client’s
computer during the installation of an unrelated product.

In .NET, most components do not need to be registered. When an external assembly is referenced, the
application decides between using a global copy (which must be in the GAC on the developer’s sys-
tem) or copying a component locally. For most references, the external assemblies are referenced locally,
which means they are carried in the application’s local directory structure. Using local copies of external
assemblies enables the CLR to support the side-by-side execution of different versions of the same com-
ponent. As noted earlier, to reference a globally registered assembly, that assembly must be located in
the GAC. The GAC provides a versioning system that is robust enough to allow different versions of the
same external assembly to exist side by side. For example, an application could use a newer version of
ADO.NET without adversely affecting another application that relies on a previous version.

As long as the client has the .NET runtime installed (which only has to be done once), a .NET application
can be distributed using a simple command like this:

xcopy \\server\appDirectory "C:\Program Files\appDirectory" /E /O /I

The preceding command would copy all of the files and subdirectories from \\server\appDirectory to
C:\Program Files\appDirectory and would transfer the file’s access control lists (ACLs).

Besides the capability to XCopy applications, Visual Studio provides a built-in tool for constructing
simple .msi installations. The deployment settings can be customized for your project solution, enabling
you to integrate the deployment project with your application output. Additionally, Visual Studio 2005
introduced the capability to create a ClickOnce deployment.

ClickOnce deployment provides an entirely new method of deployment, referred to as smart-client deploy-
ment. In the smart-client model, your application is placed on a central server from which the clients
access the application files. Smart-client deployment builds on the XML Web Services architecture about
which you are learning. It has the advantages of central application maintenance combined with a richer
client interface and fewer server communication requirements, all of which you have become familiar
with in Windows Forms applications. ClickOnce deployment is discussed in greater detail in chapter 24.

198

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 199

Chapter 4: The Common Language

Cross-Language Integration
Prior to .NET, interoperating with code written in other languages was challenging. There were pretty
much two options for reusing functionality developed in other languages: COM interfaces or DLLs with
exported C functions. As for exposing functionality written in Visual Basic, the only option was to create
COM interfaces.

Because Visual Basic is now built on top of the CLR, it’s able to interoperate with the code written in
other .NET languages. It’s even able to derive from a class written in another language. To support this
type of functionality, the CLR relies on a common way of representing types, as well as rich metadata
that can describe these types.

The Common Type System
Each programming language seems to bring its own island of data types with it. For example, previous
versions of Visual Basic represent strings using the BSTR structure, C++ offers char and wchar data
types, and MFC offers the CString class. Moreover, the fact that the C++ int data type is a 32-bit value,
whereas the Visual Basic 6 Integer data type is a 16-bit value, makes it difficult to pass parameters
between applications written using different languages.

To help resolve this problem, C has become the lowest common denominator for interfacing between
programs written in multiple languages. An exported function written in C that exposes simple C data
types can be consumed by Visual Basic, Java, Delphi, and a variety of other programming languages. In
fact, the Windows API is exposed as a set of C functions.

Unfortunately, to access a C interface, you must explicitly map C data types to a language’s native data
types. For example, a Visual Basic 6 developer would use the following statement to map
the GetUserNameA Win32 function (GetUserNameA is the ANSI version of the GetUserName
function):

’ Map GetUserName to the GetUserNameA exported function
’ exported by advapi32.dll.
’ BOOL GetUserName(
’ LPTSTR lpBuffer, // name buffer
’ LPDWORD nSize // size of name buffer
’);
Public Declare Function GetUserName Lib "advapi32.dll" _
Alias "GetUserNameA" (ByVal strBuffer As String, nSize As Long) As Long

This code explicitly maps the lpBuffer C character array data type to the Visual Basic 6 String parameter
strBuffer. This is not only cumbersome, but also error prone. Accidentally mapping a variable declared
as Long to lpBuffer wouldn’t generate any compilation errors, but calling the function would more than
likely result in a difficult-to-diagnose, intermittent-access violation at runtime.

COM provides a more refined method of interoperation between languages. Visual Basic 6 introduced a
common type system (CTS) for all applications that supported COM — that is, variant-compatible data
types. However, variant data types are as cumbersome to work with for non-Visual Basic 6 developers
as the underlying C data structures that make up the variant data types (such as BSTR and SAFEARRAY)
were for Visual Basic developers. The result is that interfacing between unmanaged languages is still
more complicated than it needs to be.

199

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 200

Chapter 4: The Common Language

The CTS provides a set of common data types for use across all programming languages. The
CTS provides every language running on top of the .NET platform with a base set of types,
as well as mechanisms for extending those types. These types may be implemented as classes
or as structs, but in either case they are derived from a common System.Object class
definition.

Because every type supported by the CTS is derived from System.Object, every type supports a common
set of methods, as shown in the following table:

Method Description

Boolean
Equals(Object)

Used to test equality with another object. Reference types should return True
if the Object parameter references the same object. Value types should return
True if the Object parameter has the same value.

Int32
GetHashCode()

Generates a number corresponding to the value of an object. If two objects of
the same type are equal, then they must return the same hash code.

Type GetType() Gets a Type object that can be used to access metadata associated with the
type. It also serves as a starting point for navigating the object hierarchy
exposed by the Reflection API (discussed shortly).

String ToString() The default implementation returns the fully qualified name of the object’s
class. This method is often overridden to output data that is more meaningful
to the type. For example, all base types return their value as a string.

Metadata
Metadata is the information that enables components to be self-describing. Metadata is used to
describe many aspects of a .NET component, including classes, methods, and fields, and the assem-
bly itself. Metadata is used by the CLR to facilitate all sorts of behavior, such as validating an assembly
before it is executed or performing garbage collection while managed code is being executed. Visual
Basic developers have used metadata for years when developing and using components within their
applications.

❑ Visual Basic developers use metadata to instruct the Visual Basic runtime how to behave. For
example, you can set the Unattended Execution property to determine whether unhandled
exceptions are shown on the screen in a message box or are written to the
Event Log.

❑ COM components referenced within Visual Basic applications have accompanying type libraries
that contain metadata about the components, their methods, and their properties. You can use
the Object Browser to view this information. (The information contained within the type library
is what is used to drive IntelliSense.)

❑ Additional metadata can be associated with a component by installing it within COM+. Meta-
data stored in COM+ is used to declare the support a component needs at runtime, including
transactional support, serialization support, and object pooling.

200

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 201

Chapter 4: The Common Language

Better Support for Metadata
Metadata associated with a Visual Basic 6 component was scattered in multiple locations and stored
using multiple formats:

❑ Metadata instructing the Visual Basic runtime how to behave (such as the Unattended Execution
property) is compiled into the Visual Basic–generated executable.

❑ Basic COM attributes (such as the required threading model) are stored in the registry.

❑ COM+ attributes (such as the transactional support required) are stored in the COM+ catalog.

.NET refines the use of metadata within applications in three significant ways:

❑ .NET consolidates the metadata associated with a component.

❑ Because a .NET component does not have to be registered, installing and upgrading the compo-
nent is easier and less problematic.

❑ .NET makes a much clearer distinction between attributes that should only be set at compile
time and those that can be modified at runtime.

All attributes associated with Visual Basic components are represented in a common format and consoli-
dated within the files that make up the assembly.

Because much of a COM/COM+ component’s metadata is stored separately from the executable,
installing and upgrading components can be problematic. COM/COM+ components must be regis-
tered to update the registry/COM+ catalog before they can be used, and the COM/COM+ component
executable can be upgraded without upgrading its associated metadata.

The process of installing and upgrading a .NET component is greatly simplified. Because all meta-
data associated with a .NET component must reside within the file that contains the component, no
registration is required. After a new component is copied into an application’s directory, it can be used
immediately. Because the component and its associated metadata cannot become out of sync, upgrading
the component becomes much less of a problem.

Another problem with COM+ is that attributes that should only be set at compile time may be recon-
figured at runtime. For example, COM+ can provide serialization support for neutral components. A
component that does not require serialization must be designed to accommodate multiple requests from
multiple clients simultaneously. You should know at compile time whether or not a component requires
support for serialization from the runtime. However, under COM+, the attribute describing whether or
not client requests should be serialized can be altered at runtime.

.NET makes a much better distinction between attributes that should be set at compile time and those
that should be set at runtime. For example, whether a .NET component is serializable is determined at
compile time. This setting cannot be overridden at runtime.

Attributes
Attributes are used to decorate entities such as assemblies, classes, methods, and properties with addi-
tional information. Attributes can be used for a variety of purposes. They can provide information,

201

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 202

Chapter 4: The Common Language

request a certain behavior at runtime, or even invoke a particular behavior from another application.
An example of this can be shown by using the Demo class defined in the following code block:

Module Module1

<Serializable()> Public Class Demo

<Obsolete("Use Method2 instead.")> Public Sub Method1()
’ Old implementation ...

End Sub

Public Sub Method2()
’ New implementation ...

End Sub

End Class

Public Sub Main()
Dim d As Demo = New Demo()
d.Method1()

End Sub
End Module

Create a new console application for Visual Basic and then add a new class into the sample file. A best
practice is to place each class in its own source file, but in order to simplify this demonstration, the class
Demo has been defined within the main module.

The first attribute on the Demo class marks the class with the Serializable attribute. The base class
library will provide serialization support for instances of the Demo type. For example, the ResourceWriter
type can be used to stream an instance of the Demo type to disk. The second attribute is associated with
Method1. Method1 has been marked as obsolete, but it is still available. When a method is marked as
obsolete, there are two options, one being that Visual Studio should prevent applications from compiling.
However, a better strategy for large applications is to first mark a method or class as obsolete and then
prevent its use in the next release. The preceding code causes Visual Studio to display an IntelliSense
warning if Method1 is referenced within the application, as shown in Figure 4-1. Not only does the line
with Method1 have a visual hint of the issue, but a task has also been automatically added to the task
window.

If the developer leaves this code unchanged and then compiles it, the application will compile correctly.
As shown in Figure 4-2, the compilation is complete, but the developer receives a warning with a mean-
ingful message that the code should be changed to use the correct method.

Sometimes you might need to associate multiple attributes with an entity. The following code shows an
example of using both of the attributes from the previous code at the class level. Note that in this case
the Obsolete attribute has been modified to cause a compilation error by setting its second parameter to
True:

<Serializable(), Obsolete("No longer used.", True)> Public Class Demo
’ Implementation ...

End Class

Attributes play an important role in the development of .NET applications, particularly XML Web ser-
vices. As you’ll see in chapter 28, the declaration of a class as a Web service and of particular methods as
Web methods are all handled through the use of attributes.

202

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 203

Chapter 4: The Common Language

Figure 4-1

Figure 4-2

203

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 204

Chapter 4: The Common Language

The Reflection API
The .NET Framework provides the Reflection API for accessing metadata associated with managed code.
You can use the Reflection API to examine the metadata associated with an assembly and its types, and
even to examine the currently executing assembly.

The Assembly class in the System.Reflection namespace can be used to access the metadata in an assem-
bly. The LoadFrom method can be used to load an assembly, and the GetExecutingAssembly method can
be used to access the currently executing assembly. The GetTypes method can then be used to obtain the
collection of types defined in the assembly.

It’s also possible to access the metadata of a type directly from an instance of that type. Because every
object derives from System.Object, every object supports the GetType method, which returns a Type
object that can be used to access the metadata associated with the type.

The Type object exposes many methods and properties for obtaining the metadata associated with a type.
For example, you can obtain a collection of properties, methods, fields, and events exposed by the type by
calling the GetMembers method. The Type object for the object’s base type can also be obtained by calling
the DeclaringType property.

A good tool that demonstrates the power of reflection is Lutz Roeder’s Reflector for .NET (see www.aisto
.com/roeder/dotnet). In addition to the core tool, you can find several add-ins related to the tool at
www.codeplex.com/reflectoraddins.

IL Disassembler
One of the many handy tools that ships with Visual Studio is the IL Disassembler (ildasm.exe). It can
be used to navigate the metadata within a module, including the types the module exposes, as well as
their properties and methods. The IL Disassembler can also be used to display the IL contained within
a module.

You can find the IL Disassembler under your installation directory for Visual Studio 2008; the default
path is C:\Program Files\Microsoft SDKs\Windows\v6.0A\Bin\ILDasm.exe. Once the IL Disassembler
has been started, select File ➪ Open. Open mscorlib.dll, which is located in your system directory with
a default path of C:\Windows\Microsoft.NET\Framework\V2.0.50727\mscorlib.dll. Once mscorlib.dll
has been loaded, ILDasm will display a set of folders for each namespace in this assembly. Expand
the System namespace, then the ValueType namespace, and finally double-click the Equals method. A
window similar to the one shown in Figure 4-3 will be displayed.

Figure 4-3 shows the IL for the Equals method. Notice how the Reflection API is used to navigate through
the instance of the value type’s fields in order to determine whether the values of the two objects being
compared are equal.

The IL Disassembler is a useful tool for learning how a particular module is implemented, but it could
jeopardize your company’s proprietary logic. After all, what’s to prevent someone from using it to reverse
engineer your code? Fortunately, Visual Studio 2008, like previous versions of Visual Studio, ships with
a third-party tool called an obfuscator. The role of the obfuscator is to ensure that the IL Disassembler
cannot build a meaningful representation of your application logic.

204

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 205

Chapter 4: The Common Language

Figure 4-3

A complete discussion of the obfuscator that ships with Visual Studio 2008 is beyond the scope of this
chapter, but to access this tool, select the Tools menu and choose Dotfuscator Community Edition. The
obfuscator runs against your compiled application, taking your IL file and stripping out many of the
items that are embedded by default during the compilation process.

Memory Management
This section looks at one of the larger underlying elements of managed code. One of the reasons why
.NET applications are referred to as ‘‘managed’’ is that memory deallocation is handled automatically
by the system. The CLR’s memory management fixes the shortcomings of the COM’s memory manage-
ment. Developers are accustomed to worrying about memory management only in an abstract sense. The
basic rule has been that every object created and every section of memory allocated needs to be released
(destroyed). The CLR introduces a garbage collector (GC), which simplifies this paradigm. Gone are the
days when a misbehaving component — for example, one that failed to properly dispose of its object
references or allocated and never released memory — could crash a web server.

However, the use of a GC introduces new questions about when and if objects need to be explicitly
cleaned up. There are two elements in manually writing code to allocate and deallocate memory and
system resources. The first is the release of any shared resources such as file handles and database connec-
tions. This type of activity needs to be managed explicitly and is discussed shortly. The second element
of manual memory management involves letting the system know when memory is no longer in use by
your application. Visual Basic COM developers, in particular, are accustomed to explicitly disposing of
object references by setting variables to Nothing. While you can explicitly show your intent to destroy
the object by setting it to Nothing manually, this doesn’t actually free resources under .NET.

.NET uses a GC to automatically manage the cleanup of allocated memory, which means that you don’t
need to carry out memory management as an explicit action. Because the system is automatic, it’s not up
to you when resources are actually cleaned up; thus, a resource you previously used might sit in memory

205

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 206

Chapter 4: The Common Language

beyond the end of the method where you used it. Perhaps more important is the fact that the GC will at
times reclaim objects in the middle of executing the code in a method. Fortunately, the system ensures
that collection only happens as long as your code doesn’t reference the object later in the method.

For example, you could actually end up extending the amount of time an object is kept in memory just
by setting that object to Nothing. Thus, setting a variable to Nothing at the end of the method prevents
the garbage collection mechanism from proactively reclaiming objects, and therefore is generally dis-
couraged. After all, if the goal is simply to document a developer’s intention, then a comment is more
appropriate.

Given this change in paradigms, the next few sections look at the challenges of traditional memory
management and peek under the covers to reveal how the garbage collector works, the basics of some of
the challenges with COM-based memory management, and then a quick look at how the GC eliminates
these challenges from your list of concerns. In particular, you should understand how you can interact
with the garbage collector and why the Using command, for example, is recommended over a finalization
method in .NET.

Traditional Garbage Collection
The unmanaged (COM/Visual Basic 6) runtime environment provides limited memory management
by automatically releasing objects when they are no longer referenced by any application. Once all the
references are released on an object, the runtime automatically releases the object from memory. For
example, consider the following Visual Basic 6 code, which uses the Scripting.FileSystem object to
write an entry to a log file:

’ Requires a reference to Microsoft Scripting Runtime (scrrun.dll)
Sub WriteToLog(strLogEntry As String)
Dim objFSO As Scripting.FileSystemObject
Dim objTS As Scripting.TextStream

objTS = objFSO.OpenTextFile("C:\temp\AppLog.log", ForAppending)
Call objTS.WriteLine(Date & vbTab & strLogEntry)

End Sub

WriteToLog creates two objects, a FileSystemObject and a TextStream, which are used to create an
entry in the log file. Because these are COM objects, they may live either within the current application
process or in their own process. Once the routine exits, the Visual Basic runtime recognizes that they are
no longer referenced by an active application and dereferences the objects. This results in both objects
being deactivated. However, in some situations objects that are no longer referenced by an application
are not properly cleaned up by the Visual Basic 6 runtime. One cause of this is the circular reference.

Circular References
One of the most common situations in which the unmanaged runtime is unable to ensure that objects are
no longer referenced by the application is when these objects contain a circular reference. An example
of a circular reference is when object A holds a reference to object B and object B holds a reference to
object A.

Circular references are problematic because the unmanaged environment relies on the reference counting
mechanism of COM to determine whether an object can be deactivated. Each COM object is responsible

206

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 207

Chapter 4: The Common Language

for maintaining its own reference count and for destroying itself once the reference count reaches zero.
Clients of the object are responsible for updating the reference count appropriately, by calling the AddRef
and Release methods on the object’s IUnknown interface. However, in this scenario, object A continues
to hold a reference to object B, and vice versa, so the internal cleanup logic of these components is not
triggered.

In addition, problems can occur if the clients do not properly maintain the COM object’s reference count.
For example, an object will never be deactivated if a client forgets to call Release when the object is
no longer referenced. To avoid this, the unmanaged environment may attempt to take care of updating
the reference count for you, but the object’s reference count can be an invalid indicator of whether or
not the object is still being used by the application. For example, consider the references that objects
A and B hold.

The application can invalidate its references to A and B by setting the associated variables equal to
Nothing. However, even though objects A and B are no longer referenced by the application, the Visual
Basic runtime cannot ensure that the objects are deactivated because A and B still reference each other.
Consider the following (Visual Basic 6) code:

’ Class: CCircularRef

’ Reference to another object.
Dim m_objRef As Object

Public Sub Initialize(objRef As Object)
Set m_objRef = objRef

End Sub

Private Sub Class_Terminate()
Call MsgBox("Terminating.")
Set m_objRef = Nothing

End Sub

The CCircularRef class implements an Initialize method that accepts a reference to another object and
saves it as a member variable. Notice that the class does not release any existing reference in the m_objRef
variable before assigning a new value. The following code demonstrates how to use this CCircularRef
class to create a circular reference:

Dim objA As New CCircularRef
Dim objB As New CCircularRef

Call objA.Initialize(objB)
Call objB.Initialize(objA)

Set objA = Nothing
Set objB = Nothing

After creating two instances (objA and objB) of CCircularRef, both of which have a reference count of
one, the code then calls the Initialize method on each object by passing it a reference to the other. Now
each of the object’s reference counts is equal to two: one held by the application and one held by the other
object. Next, explicitly setting objA and objB to Nothing decrements each object’s reference count by one.
However, because the reference count for both instances of CCircularRef is still greater than zero, the
objects are not released from memory until the application is terminated. The CLR garbage collector

207

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 208

Chapter 4: The Common Language

solves the problem of circular references because it looks for a reference from the root application or
thread to every class, and all classes that do not have such a reference are marked for deletion, regardless
of any other references they might still maintain.

The CLR’s Garbage Collector
The .NET garbage collection mechanism is complex, and the details of its inner workings are beyond
the scope of this book, but it is important to understand the principles behind its operation. The GC is
responsible for collecting objects that are no longer referenced. It takes a completely different approach
from that of the Visual Basic runtime to accomplish this. At certain times, and based on internal rules, a
task will run through all the objects looking for those that no longer have any references from the root
application thread or one of the worker threads. Those objects may then be terminated; thus, the garbage
is collected.

As long as all references to an object are either implicitly or explicitly released by the application, the GC
will take care of freeing the memory allocated to it. Unlike COM objects, managed objects in .NET are not
responsible for maintaining their reference count, and they are not responsible for destroying themselves.
Instead, the GC is responsible for cleaning up objects that are no longer referenced by the application.
The GC periodically determines which objects need to be cleaned up by leveraging the information the
CLR maintains about the running application. The GC obtains a list of objects that are directly referenced
by the application. Then, the GC discovers all the objects that are referenced (both directly and indirectly)
by the ‘‘root’’ objects of the application. Once the GC has identified all the referenced objects, it is free to
clean up any remaining objects.

The GC relies on references from an application to objects; thus, when it locates an object that is unreach-
able from any of the root objects, it can clean up that object. Any other references to that object will be
from other objects that are also unreachable. Thus, the GC automatically cleans up objects that contain
circular references.

In some environments, such as COM, objects are destroyed in a deterministic fashion. Once the reference
count reaches zero, the object destroys itself, which means that you can tell exactly when the object will
be terminated. However, with garbage collection, you can’t tell exactly when an object will be destroyed.
Just because you eliminate all references to an object doesn’t mean that it will be terminated immediately.
It just remains in memory until the garbage collection process gets around to locating and destroying it,
a process called nondeterministic finalization.

This nondeterministic nature of CLR garbage collection provides a performance benefit. Rather than
expend the effort to destroy objects as they are dereferenced, the destruction process can occur when the
application is otherwise idle, often decreasing the impact on the user. Of course, if garbage collection
must occur when the application is active, then the system may see a slight performance fluctuation as
the collection is accomplished.

It is possible to explicitly invoke the GC by calling the System.GC.Collect method, but this process
takes time, so it is not the sort of behavior to invoke in a typical application. For example, you could
call this method each time you set an object variable to Nothing, so that the object would be destroyed
almost immediately, but this forces the GC to scan all the objects in your application — a very expensive
operation in terms of performance.

208

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 209

Chapter 4: The Common Language

It’s far better to design applications such that it is acceptable for unused objects to sit in the memory for
some time before they are terminated. That way, the garbage collector can also run based on its optimal
rules, collecting many dereferenced objects at the same time. This means you need to design objects that
don’t maintain expensive resources in instance variables. For example, database connections, open files
on disk, and large chunks of memory (such as an image) are all examples of expensive resources. If you
rely on the destruction of the object to release this type of resource, then the system might be keeping the
resource tied up for a lot longer than you expect; in fact, on a lightly utilized web server, it could literally
be days.

The first principle is working with object patterns that incorporate cleaning up such pending references
before the object is released. Examples of this include calling the close method on an open database
connection or file handle. In most cases, it’s possible for applications to create classes that do not risk
keeping these handles open. However, certain requirements, even with the best object design, can create
a risk that a key resource will not be cleaned up correctly. In such an event, there are two occasions when
the object could attempt to perform this cleanup: when the final reference to the object is released and
immediately before the GC destroys the object.

One option is to implement the IDisposable interface. When implemented, this interface ensures that
persistent resources are released. This is the preferred method for releasing resources. The second option
is to add a method to your class that the system runs immediately before an object is destroyed. This
option is not recommended for several reasons, including the fact that many developers fail to remem-
ber that the garbage collector is nondeterministic, meaning that you can’t, for example, reference an
SQLConnection object from your custom object’s finalizer.

Finally, as part of .NET 2.0, Visual Basic introduced the Using command. The Using command is designed
to change the way that you think about object cleanup. Instead of encapsulating your cleanup logic within
your object, the Using command creates a window around the code that is referencing an instance of your
object. When your application’s execution reaches the end of this window, the system automatically calls
the IDIsposable interface for your object to ensure that it is cleaned up correctly.

The Finalize Method
Conceptually, the GC calls an object’s Finalize method immediately before it collects an object that
is no longer referenced by the application. Classes can override the Finalize method to perform any
necessary cleanup. The basic concept is to create a method that fills the same need as what in other
object-oriented languages is referred to as a destructor. Similarly, the Class_Terminate event available in
previous versions of Visual Basic does not have a functional equivalent in .NET. Instead, it is possible to
create a Finalize method that is recognized by the GC and that prevents a class from being cleaned up
until after the finalization method is completed, as shown in the following example:

Protected Overrides Sub Finalize()
’ clean up code goes here
MyBase.Finalize()

End Sub

This code uses both Protected scope and the Overrides keyword. Notice that not only does custom
cleanup code go here (as indicated by the comment), but this method also calls MyBase.Finalize, which

209

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 210

Chapter 4: The Common Language

causes any finalization logic in the base class to be executed as well. Any class implementing a custom
Finalize method should always call the base finalization class.

Be careful, however, not to treat the Finalize method as if it were a destructor. A destructor is based on
a deterministic system, whereby the method is called when the object’s last reference is removed. In the
GC system, there are key differences in how a finalizer works:

❑ Because the GC is optimized to clean up memory only when necessary, there is a delay between
the time when the object is no longer referenced by the application and when the GC collects it.
Therefore, the same expensive resources that are released in the Finalize method may stay open
longer than they need to be.

❑ The GC doesn’t actually run Finalize methods. When the GC finds a Finalize method, it
queues the object up for the finalizer to execute the object’s method. This means that an object
is not cleaned up during the current GC pass. Because of how the GC is optimized, this can result
in the object remaining in memory for a much longer period.

❑ The GC is usually triggered when available memory is running low. As a result, execution of
the object’s Finalize method is likely to incur performance penalties. Therefore, the code in the
Finalize method should be as short and quick as possible.

❑ There’s no guarantee that a service you require is still available. For example, if the system is
closing and you have a file open, then .NET may have already unloaded the object required to
close the file, and thus a Finalize method can’t reference an instance of any other .NET object.

All cleanup activities should be placed in the Finalize method, but objects that require timely cleanup
should implement a Dispose method that can then be called by the client application just before setting
the reference to Nothing:

Class DemoDispose
Private m_disposed As Boolean = False

Public Sub Dispose()
If (Not m_disposed) Then

’ Call cleanup code in Finalize.
Finalize()

’ Record that object has been disposed.
m_disposed = True

’ Finalize does not need to be called.
GC.SuppressFinalize(Me)

End If
End Sub

Protected Overrides Sub Finalize()
’ Perform cleanup here \dots
End Sub

End Class

The DemoDispose class overrides the Finalize method and implements the code to perform any neces-
sary cleanup. This class places the actual cleanup code within the Finalize method. To ensure that the
Dispose method only calls Finalize once, the value of the private m_disposed field is checked. Once

210

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 211

Chapter 4: The Common Language

Finalize has been run, this value is set to True. The class then calls GC.SuppressFinalize to ensure
that the GC does not call the Finalize method on this object when the object is collected. If you need to
implement a Finalize method, this is the preferred implementation pattern.

This example implements all of the object’s cleanup code in the Finalize method to ensure that the object
is cleaned up properly before the GC collects it. The Finalize method still serves as a safety net in case
the Dispose or Close methods were not called before the GC collects the object.

The IDisposable Interface
In some cases, the Finalize behavior is not acceptable. For an object that is using an expensive or lim-
ited resource, such as a database connection, a file handle, or a system lock, it is best to ensure that the
resource is freed as soon as the object is no longer needed.

One way to accomplish this is to implement a method to be called by the client code to force the object to
clean up and release its resources. This is not a perfect solution, but it is workable. This cleanup method
must be called directly by the code using the object or via the use of the Using statement. The Using
statement enables you to encapsulate an object’s life span within a limited range, and automate the
calling of the IDisposable interface.

The .NET Framework provides the IDisposable interface to formalize the declaration of cleanup logic.
Be aware that implementing the IDisposable interface also implies that the object has overridden the
Finalize method. Because there is no guarantee that the Dispose method will be called, it is critical that
Finalize triggers your cleanup code if it was not already executed.

Having a custom finalizer ensures that, once released, the garbage collection mechanism will eventually
find and terminate the object by running its Finalize method. However, when handled correctly, the
IDisposable interface ensures that any cleanup is executed immediately, so resources are not consumed
beyond the time they are needed.

Note that any class that derives from System.ComponentModel.Component automatically inherits the
IDisposable interface. This includes all of the forms and controls used in a Windows Forms UI, as well
as various other classes within the .NET Framework. Because this interface is inherited, let’s review a
custom implementation of the IDisposable interface based on the Person class defined in the preceding
chapters. The first step involves adding a reference to the interface to the top of the class:

Public Class Person

Implements IDisposable

This interface defines two methods, Dispose and Finalize, that need to be implemented in the class.
Visual Studio automatically inserts both these methods into your code:

Private disposed As Boolean = False

’ IDisposable
Private Overloads Sub Dispose(ByVal disposing As Boolean)
If Not Me.disposed Then

If disposing Then
’ TODO: put code to dispose managed resources

End If

211

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 212

Chapter 4: The Common Language

’ TODO: put code to free unmanaged resources here
End If
Me.disposed = True

End Sub

#Region " IDisposable Support "
’ This code added by Visual Basic to correctly implement the disposable pattern.
Public Overloads Sub Dispose() Implements IDisposable.Dispose
’ Do not change this code.
’ Put cleanup code in Dispose(ByVal disposing As Boolean) above.
Dispose(True)
GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()
’ Do not change this code.
’ Put cleanup code in Dispose(ByVal disposing As Boolean) above.
Dispose(False)
MyBase.Finalize()

End Sub
#End Region

Notice the use of the Overloads and Overrides keywords. The automatically inserted code is following a
best-practice design pattern for implementation of the IDisposable interface and the Finalize method.
The idea is to centralize all cleanup code into a single method that is called by either the Dispose method
or the Finalize method as appropriate.

Accordingly, you can add the cleanup code as noted by the TODO: comments in the inserted code. As
mentioned in chapter 13, the TODO: keyword is recognized by Visual Studio’s text parser, which triggers
an entry in the task list to remind you to complete this code before the project is complete. Because this
code frees a managed object (the Hashtable), it appears as shown here:

Private Overloads Sub Dispose(ByVal disposing As Boolean)
If Not Me.disposed Then

If disposing Then
’ TODO: put code to dispose managed resources

mPhones = Nothing

End If

’ TODO: put code to free unmanaged resources here
End If
Me.disposed = True

End Sub

In this case, we’re using this method to release a reference to the object to which the mPhones variable
points. While not strictly necessary, this illustrates how code can release other objects when the Dispose
method is called. Generally, it is up to your client code to call this method at the appropriate time to
ensure that cleanup occurs. Typically, this should be done as soon as the code is done using the object.

This is not always as easy as it might sound. In particular, an object may be referenced by more than
one variable, and just because code in one class is dereferencing the object from one variable doesn’t
mean that it has been dereferenced by all the other variables. If the Dispose method is called while other

212

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 213

Chapter 4: The Common Language

references remain, then the object may become unusable and cause errors when invoked via those other
references. There is no easy solution to this problem, so careful design is required if you choose to use
the IDisposable interface.

Using IDisposable
One way to work with the IDisposable interface is to manually insert the calls to the interface imple-
mentation everywhere you reference the class. For example, in an application’s Form1 code, you can
override the OnLoad event for the form. You can use the custom implementation of this method to create
an instance of the Person object. Then you create a custom handler for the form’s OnClosed event, and
make sure to clean up by disposing of the Person object. To do this, add the following code to the form:

Private Sub Form1_Closed(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Closed

CType(mPerson, IDisposable).Dispose()

End Sub

The OnClosed method runs as the form is being closed, so it is an appropriate place to do cleanup work.
Note that because the Dispose method is part of a secondary interface, use of the CType method to access
that specific interface is needed in order to call the method.

This solution works fine for patterns where the object implementing IDisposable is used within a form,
but it is less useful for other patterns, such as when the object is used as part of a Web service. In fact,
even for forms, this pattern is somewhat limited in that it requires the form to define the object when the
form is created, as opposed to either having the object created prior to the creation of the form or some
other scenario that occurs only on other events within the form.

For these situations, .NET 2.0 introduced a new command keyword: Using. The Using keyword is a
way to quickly encapsulate the life cycle of an object that implements IDisposable, and ensure that the
Dispose method is called correctly:

Dim mPerson as New Person()
Using (mPerson)

’insert custom method calls
End Using

The preceding statements allocate a new instance of the mPerson object. The Using command then
instructs the compiler to automatically clean up this object’s instance when the End Using command
is executed. The result is a much cleaner way to ensure that the IDisposable interface is called.

Faster Memory Allocation for Objects
The CLR introduces the concept of a managed heap. Objects are allocated on the managed heap, and the
CLR is responsible for controlling access to these objects in a type-safe manner. One of the advantages
of the managed heap is that memory allocations on it are very efficient. When unmanaged code (such as
Visual Basic 6 or C++) allocates memory on the unmanaged heap, it typically scans through some sort of
data structure in search of a free chunk of memory that is large enough to accommodate the allocation.
The managed heap maintains a reference to the end of the most recent heap allocation. When a new

213

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 214

Chapter 4: The Common Language

object needs to be created on the heap, the CLR allocates memory on top of memory that has previously
been allocated and then increments the reference to the end of heap allocations accordingly. Figure 4-4 is
a simplification of what takes place in the managed heap for .NET.

❑ State 1 — A compressed memory heap with a reference to the endpoint on the heap

❑ State 2 — Object B, although no longer referenced, remains in its current memory location. The
memory has not been freed and does not alter the allocation of memory or of other objects on the
heap.

❑ State 3 — Even though there is now a gap between the memory allocated for object A and object
C, the memory allocation for D still occurs on the top of the heap. The unused fragment of mem-
ory on the managed heap is ignored at allocation time.

❑ State 4 — After one or more allocations, before there is an allocation failure, the garbage col-
lector runs. It reclaims the memory that was allocated to B and repositions the remaining valid
objects. This compresses the active objects to the bottom of the heap, creating more space for
additional object allocations (refer to Figure 4-4).

Object A

Reference to
top of heap
allocations

Object B

Object C

Object A

State 1: Objects A, B, and C
are allocated on the heap

State 2: Object B is no
longer referenced by the

application

Not Referenced

Object C

Reference to
top of heap
allocations

Object A

Reference to
top of heap
allocations

Not Referenced

Object C

Object D

Object A

State 3: Object D is
allocated on the heap

State 4: The GC executes,
memory from B is reclaimed,
and the heap is compressed

Object C

Object D

Reference to
top of heap
allocations

Figure 4-4

This is where the power of the GC really shines. Before the CLR is unable to allocate memory on the
managed heap, the GC is invoked. The GC not only collects objects that are no longer referenced by the
application, but also has a second task: compacting the heap. This is important because if all the GC did
was clean up objects, then the heap would become progressively more fragmented. When heap memory
becomes fragmented, you can wind up with the common problem of having a memory allocation fail,
not because there isn’t enough free memory, but because there isn’t enough free memory in a contiguous
section of memory. Thus, not only does the GC reclaim the memory associated with objects that are no

214

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 215

Chapter 4: The Common Language

longer referenced, it also compacts the remaining objects. The GC effectively squeezes out all of the spaces
between the remaining objects, freeing up a large section of managed heap for new object allocations.

Garbage Collector Optimizations
The GC uses a concept known as generations, the primary purpose of which is to improve its perfor-
mance. The theory behind generations is that objects that have been recently created tend to have a higher
probability of being garbage-collected than objects that have existed on the system for a
longer time.

To understand generations, consider the analogy of a mall parking lot where cars represent objects cre-
ated by the CLR. People have different shopping patterns when they visit the mall. Some people spend
a good portion of their day in the mall, and others stop only long enough to pick up an item or two.
Applying the theory of generations to trying to find an empty parking space for a car yields a scenario
in which the highest probability of finding a parking space is a place where other cars have recently
parked. In other words, a space that was occupied recently is more likely to be held by someone who just
needed to quickly pick up an item or two. The longer a car has been parked, the higher the probability
that its owner is an all-day shopper and the lower the probability that the parking space will be freed up
anytime soon.

Generations provide a means for the GC to identify recently created objects versus long-lived objects.
An object’s generation is basically a counter that indicates how many times it has successfully avoided
garbage collection. An object’s generation counter starts at zero and can have a maximum value of two,
after which the object’s generation remains at this value regardless of how many times it is checked for
collection.

You can put this to the test with a simple Visual Basic application. From the File menu, select either
File ➪ New ➪ Project or, if you have an open solution, File ➪ Add ➪ New Project. This opens the Add
New Project dialog box. Select a console application, provide a name and directory for your new project,
and click OK. After you create your new project, you will have a code module that looks similar to the
code that follows. Within the Main module, add the highlighted code. Right-click your second project,
and select the Set as Startup Project option so that when you run your solution, your new project is
automatically started.

Module Module1

Sub Main()

Dim myObject As Object = New Object()
Dim i As Integer

For i = 0 To 3
Console.WriteLine(String.Format("Generation = {0}", _

GC.GetGeneration(myObject)))
GC.Collect()
GC.WaitForPendingFinalizers()

Next i
Console.Read()

End Sub

End Module

215

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 216

Chapter 4: The Common Language

Regardless of the project you use, this code sends its output to the .NET console. For a Windows
application, this console defaults to the Visual Studio Output window. When you run this code, it creates
an instance of an object and then iterates through a loop four times. For each loop, it displays the current
generation count of myObject and then calls the GC. The GC.WaitForPendingFinalizers method blocks
execution until the garbage collection has been completed.

As shown in Figure 4-5, each time the GC was run, the generation counter was incremented for myObject,
up to a maximum of 2.

Figure 4-5

Each time the GC is run, the managed heap is compacted, and the reference to the end of the most
recent memory allocation is updated. After compaction, objects of the same generation are grouped
together. Generation-2 objects are grouped at the bottom of the managed heap, and generation-1 objects
are grouped next. New generation-0 objects are placed on top of the existing allocations, so they are
grouped together as well.

This is significant because recently allocated objects have a higher probability of having shorter lives.
Because objects on the managed heap are ordered according to generations, the GC can opt to collect
newer objects. Running the GC over a limited portion of the heap is quicker than running it over the
entire managed heap.

It’s also possible to invoke the GC with an overloaded version of the Collect method that accepts a
generation number. The GC will then collect all objects no longer referenced by the application that
belong to the specified (or younger) generation. The version of the Collect method that accepts no
parameters collects objects that belong to all generations.

Another hidden GC optimization results from the fact that a reference to an object may implicitly go out
of scope; therefore, it can be collected by the GC. It is difficult to illustrate how the optimization occurs
only if there are no additional references to the object and the object does not have a finalizer. However,
if an object is declared and used at the top of a module and not referenced again in a method, then in the
release mode, the metadata will indicate that the variable is not referenced in the later portion of the code.
Once the last reference to the object is made, its logical scope ends; and if the garbage collector runs, the
memory for that object, which will no longer be referenced, can be reclaimed before it has gone out of its
physical scope.

216

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 217

Chapter 4: The Common Language

Summary
This chapter introduced the CLR. You looked at the memory management features of the CLR, including
how the CLR eliminates the circular reference problem that has plagued COM developers. Next, the
chapter examined the Finalize method and explained why it should not be treated like the Class_
Terminate method. Chapter highlights include the following:

❑ Whenever possible, do not implement the Finalize method in a class.

❑ If the Finalize method is implemented, then also implement the IDisposable interface, which
can be called by the client when the object is no longer needed.

❑ Code for the Finalize method should be as short and quick as possible.

❑ There is no way to accurately predict when the GC will collect an object that is no longer refer-
enced by the application (unless the GC is invoked explicitly).

❑ The order in which the GC collects objects on the managed heap is nondeterministic. This means
that the Finalize method cannot call methods on other objects referenced by the object being
collected.

❑ Leverage the Using keyword to automatically trigger the execution of the IDisposable interface.

This chapter also examined the value of a common runtime and type system that can be targeted by
multiple languages. You saw how the CLR offers better support for metadata. Metadata is used to make
types self-describing and is used for language elements such as attributes. Included were examples of
how metadata is used by the CLR and the .NET class library, and you saw how to extend metadata by
creating your own attributes. Finally, the chapter presented a brief overview of the Reflection API and
the IL Disassembler utility (ildasm.exe), which can display the IL contained within a module.

217

Evjen-91361 c04.tex V2 - 04/01/2008 3:31pm Page 218

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 219

Localization

Developers usually build their applications in the English language. Then, as the audience for the
application expands, they realize the need to globalize the application. Of course, the ideal is to
build the application to handle an international audience right from the start, but in many cases this
may not be possible because of the extra work it requires.

With the .NET Framework 3.5, a considerable effort has been made to address the internationaliza-
tion of .NET applications. Changes to the API, the addition of capabilities to the server controls, and
even Visual Studio itself equip you to do the extra work required to bring your application to an
international audience. This chapter looks at some of the important items to consider when building
your applications for the world.

Cultures and Regions
As an example, the ASP.NET page that is pulled up in an end user’s browser runs under a specific
culture and region setting. When building an ASP.NET application or page, the defined culture in
which it runs is dependent upon a culture and region setting specified either in the server in which
the application is run or in a setting applied by the client (the end user). By default, ASP.NET runs
under a culture setting defined by the server.

The world is made up of a multitude of cultures, each of which has a language and a set of defined
ways in which it views and consumes numbers, uses currencies, sorts alphabetically, and so on. The
.NET Framework defines cultures and regions using the Request for Comments 1766 standard defi-
nition (tags for identification of languages), which specifies a language and region using two-letter
codes separated by a dash. The following table provides examples of some culture definitions:

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 220

Chapter 5: Localization

Culture Code Description

en-US English language; United States

en-GB English language; United Kingdom (Great Britain)

en-AU English language; Australia

en-CA English language; Canada

The examples in this table define four distinct cultures. These four cultures have some similarities
and some differences. All four cultures speak the same language (English), so the language code of
en is used in each culture setting. Following the language setting is the region setting. Even though
these cultures speak the same language, it is important to distinguish them further by setting their
region (such as US for the United States, GB for the United Kingdom, AU for Australia, and CA for
Canada). These settings reflect the fact that the English used in the United States is slightly different
from the English used in the United Kingdom, and so forth. Beyond language, differences exist in
how dates and numerical values are represented. This is why a culture’s language and region are
presented together.

The differences do not break down by country only. Many countries contain more than a single
language, and each area has its own preference for notation of dates and other items. For example,
en-CA specifies English speakers in Canada. Because Canada is not only an English-speaking coun-
try, it also includes the culture setting of fr-CA for French-speaking Canadians.

Understanding Culture Types
The culture definition just given is called a specific culture definition. This definition is as detailed as
you can possibly get, defining both the language and the region. The other type of culture definition
is a neutral culture definition. Each specific culture has a specified neutral culture with which it is
associated. For instance, the English language cultures shown in the previous table are separate, but
they also belong to one neutral culture: EN (English). The diagram presented in Figure 5-1 illustrates
how these culture types relate to one another.

From this diagram, you can see that many specific cultures belong to a neutral culture. Higher
in the hierarchy than the neutral culture is an invariant culture, which is an agnostic culture set-
ting that should be utilized when passing items (such as dates and numbers) around a network.
When performing these kinds of operations, you should make your back-end data flows devoid of
user-specific culture settings. Instead, apply these settings in the business and presentation layers
of your applications.

In addition, pay attention to neutral culture when working with your applications. Invariably, you
are going to build applications with views that are more dependent on a neutral culture than on
a specific culture. For instance, if you have a Spanish version of your application, you’ll probably
make this version available to all Spanish speakers regardless of their regions. In many applications,

220

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 221

Chapter 5: Localization

it won’t matter whether the Spanish speaker is from Spain, Mexico, or Argentina. In cases where it
does make a difference, use the specific culture settings.

en-US

en-GB

en-AU

es-ES

es-MX

es-AR

en-CA

Invariant
Culture

EN
(Neutral Culture)

ES
(Neutral Culture)

Figure 5-1

Looking at Your Thread
When the end user requests an ASP.NET page or runs a Windows Forms dialog, the item is exe-
cuted on a thread from the thread pool. That thread has a culture associated with it. You can get
information about the culture of the thread programmatically and then check for particular details
about that culture.

To see an example of working with a thread and reading the culture information of that thread,
create a Windows Forms application that is laid out as shown in Figure 5-2.

221

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 222

Chapter 5: Localization

Figure 5-2

When the button on the form is pressed, the Button1_Click event is fired and the user’s culture
information is read and displayed in the ListBox control. The code for the form is presented here:

Imports System.Threading

Public Class MyCulture

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim ci As New _
System.Globalization.CultureInfo(_

Thread.CurrentThread.CurrentCulture.ToString())

ListBox1.Items.Add("CURRENT CULTURE’S INFO")
ListBox1.Items.Add("Culture’s Name: " & ci.Name)
ListBox1.Items.Add("Culture’s Parent Name: " & ci.Parent.Name)
ListBox1.Items.Add("Culture’s Display Name: " & ci.DisplayName)
ListBox1.Items.Add("Culture’s English Name: " & ci.EnglishName)
ListBox1.Items.Add("Culture’s Native Name: " & ci.NativeName)
ListBox1.Items.Add("Culture’s Three Letter ISO Name: " & _

ci.ThreeLetterISOLanguageName)
ListBox1.Items.Add("Calendar Type: " & ci.Calendar.ToString())

End Sub
End Class

Because this form is working with the Thread object, in order for this to work, you need to make a
reference to the System.Threading namespace at the top of the form, as is done with the Imports
statement. Threading is covered in Chapter 26.

This simple form creates a CultureInfo object from the System.Globalization namespace and
assigns the culture from the current thread that is running using the Thread.CurrentThread
.CurrentCulture.ToString call. Once the CultureInfo object is populated with the end user’s
culture, details about that culture can be called using a number of available properties that the
CultureInfo object offers. Example results of running the form are shown in Figure 5-3.

222

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 223

Chapter 5: Localization

Figure 5-3

The CultureInfo object contains a number of properties that provide you with specific culture
information. The items displayed are only a small sampling of what is available from the
CultureInfo object. From this figure, you can see that the en-US culture is the default setting
in which the thread executes. In addition to this, you can use the CultureInfo object to get at
a lot of other descriptive information about the culture. You can always change a thread’s cul-
ture on the overloads provided via a new instantiation of the CultureInfo object, as
shown here:

Imports System.Globalization

Imports System.Threading

Public Class MyCulture

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Thread.CurrentThread.CurrentCulture = New CultureInfo("th-TH")
Dim ci As CultureInfo = _

System.Threading.Thread.CurrentThread.CurrentCulture

ListBox1.Items.Add("CURRENT CULTURE’S INFO")
ListBox1.Items.Add("Culture’s Name: " & ci.Name)
ListBox1.Items.Add("Culture’s Parent Name: " & ci.Parent.Name)
ListBox1.Items.Add("Culture’s Display Name: " & ci.DisplayName)
ListBox1.Items.Add("Culture’s English Name: " & ci.EnglishName)
ListBox1.Items.Add("Culture’s Native Name: " & ci.NativeName)
ListBox1.Items.Add("Culture’s Three Letter ISO Name: " & _

ci.ThreeLetterISOLanguageName)
ListBox1.Items.Add("Calendar Type: " & ci.Calendar.ToString())

End Sub
End Class

In this example, only a couple of lines of code are changed to assign a new instance of the
CultureInfo object to the CurrentCulture property of the thread being executed by the application.

223

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 224

Chapter 5: Localization

The culture setting enables the CultureInfo object to define the culture you want to utilize. In this
case, the Thai language of Thailand is assigned. The results produced in the ListBox control are
illustrated in Figure 5-4.

Figure 5-4

From this figure, you can see that the .NET Framework provides the native name of the language
used even if it is not a Latin-based letter style. In this case, the results are presented for the Thai lan-
guage in Thailand, including some of the properties associated with this culture (such as an entirely
different calendar than the one used in Western Europe and the United States).

Declaring Culture Globally in ASP.NET
ASP.NET enables you to easily define the culture that is used either by your entire ASP.NET appli-
cation or by a specific page within your Web application, using what are termed server-side culture
declarations. You can specify the culture for any of your ASP.NET applications by means of the appro-
priate configuration files. In the default install of ASP.NET, no culture is specified, as is evident when
you look at the global web.config.comments file found in the ASP.NET 2.0 CONFIG folder (C:\WINDOWS
\Microsoft.NET\Framework\v2.0.50727\CONFIG). This file contains a <globalization> section of the
configuration document, presented here:

<globalization requestEncoding="utf-8" responseEncoding="utf-8" fileEncoding=""
culture="" uiCulture="" enableClientBasedCulture="false"
responseHeaderEncoding="utf-8" resourceProviderFactoryType=""
enableBestFitResponseEncoding="false" />

Note the two attributes represented in bold: culture and uiCulture. The culture attribute enables
you to define the culture to use for processing incoming requests, whereas the uiCulture attribute
enables you define the default culture needed to process any resource files in the application (use of
these attributes is covered later in the chapter).

Looking at the configuration declaration in the preceding code block, you can see that nothing is specified
for the culture settings. One option you have when specifying a culture on the server is to define this
culture in the root web.config file. This causes every ASP.NET 3.5 application on that server to adopt

224

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 225

Chapter 5: Localization

this particular culture setting. The other option is to specify these settings in the web.config file of the
application itself, as illustrated here:

<configuration>
<system.web>

<globalization culture="ru-RU" uiCulture="ru-RU" />

</system.web>
</configuration>

In this case, the culture established for just this ASP.NET application is the Russian language in the
country of Russia. In addition to setting the culture at either the server-wide or the application-wide
level, another option is to set the culture at the page level, as shown here:

<%@ Page Language="VB" UICulture="ru-RU" Culture="ru-RU" %>

This example specifies that the Russian language and culture settings are used for everything on the
page. You can see this in action by using this @Page directive and a simple calendar control on the page.
Figure 5-5 shows the output.

Figure 5-5

Adopting Culture Settings in ASP.NET
In addition to using server-side settings to define the culture for your ASP.NET pages, you also have
the option to define the culture according to what the client has set as his or her preference in a browser
instance.

When end users install Microsoft’s Internet Explorer and some of the other browsers, they have the
option to select their preferred cultures in a particular order (if they have selected more than a single
culture preference). To see this in action in IE, select Tools ➪ Internet Options from the IE menu. On the
first tab provided (General) is a Languages button at the bottom of the dialog. Select this button and you
are provided with the Language Preference dialog shown in Figure 5-6.

Two cultures are selected from the list of available cultures. To add any additional cultures to the list,
click the Add button and select the appropriate culture from the list. After you have selected any cultures
present in the list, you can select the order in which you prefer to use them. In the case of Figure 5-6, the
Finnish culture is selected as the most preferred culture, whereas the U.S. version of English is selected
as the second preference. A user with this setting gets the Finnish language version of the application
before anything else; if a Finnish version is not available, a U.S. English version is presented instead.

225

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 226

Chapter 5: Localization

After making this selection, the end user can use the auto feature provided in ASP.NET 3.5. Instead of
specifying a distinct culture in any of the configuration files or from the @Page directive, you can also
state that ASP.NET should automatically select the culture provided by the end user requesting the page.
This is done using the auto keyword, as illustrated here:

<%@ Page Language="VB" UICulture="auto" Culture="auto" %>

Figure 5-6

With this construction in your page, the dates, calendars, and numbers appear in the preferred culture of
the requester. What happens if you have translated resources in resource files (shown later in the chapter)
that depend on a culture specification? Or what if you have only specific translations and therefore can’t
handle every possible culture that might be returned to your ASP.NET page? In this case, you can specify
the auto option with an additional fallback option if ASP.NET cannot find the culture settings of the user
(such as culture-specific resource files). This usage is illustrated in the following code:

<%@ Page Language="VB" UICulture="auto:en-US" Culture="auto:en-US" %>

In this case, the automatic detection is utilized, but if the culture the end user prefers is not present, then
en-US is used.

Translating Values and Behaviors
In the process of globalizing your .NET application, you may notice a number of aspects that are done
differently compared to building an application that is devoid of globalization, including how dates are
represented and how currencies are shown. This section looks at some of these issues.

226

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 227

Chapter 5: Localization

Understanding Differences in Dates
Different cultures specify dates and time very differently. For instance, take the following date as an
example:

08/11/2008

Is this date August 11, 2008 or is it November 8, 2008? Again, when storing values such as date/time
stamps in a database or other type of back-end system, always use the same culture (or invariant culture)
for these items to avoid any mistakes. It should be the job of the business logic layer or the presentation
layer to convert these items for use by the end user.

Setting the culture at the server level in ASP.NET or within a Windows Forms application, as shown
in the earlier samples, enables your .NET application to make these conversions for you. You can also
simply assign a new culture to the thread in which the application is running. For instance, consider the
following code:

Imports System.Globalization
Imports System.Threading

Public Class Differences

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim dt As DateTime = New DateTime(2008, 8, 11, 11, 12, 10, 10)

Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
ListBox1.Items.Add(_

Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
dt.ToString())

Thread.CurrentThread.CurrentCulture = New CultureInfo("ru-RU")
ListBox1.Items.Add(_

Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
dt.ToString())

Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
ListBox1.Items.Add(_

Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
dt.ToString())

Thread.CurrentThread.CurrentCulture = New CultureInfo("th-TH")
ListBox1.Items.Add(_

Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
dt.ToString())

End Sub
End Class

In this case, a Windows Forms application is used again and four different cultures are utilized in
the output. The date/time construction used by the defined culture is written to the ListBox control.
The result from this code operation is presented in Figure 5-7.

227

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 228

Chapter 5: Localization

Figure 5-7

Clearly, the formats used to represent a date/time value are dramatically different from one another —
and the Thai culture (th-TH), even uses an entirely different calendar that labels 2008 as 2551.

Understanding Differences in Numbers and Currencies
In addition to date/time values, numbers are constructed quite differently from one culture to the next.
How can a number be represented differently in different cultures? Well, it has less to do with the actual
number (although certain cultures use different number symbols) and more to do with how the number
separators are used for decimals or for showing amounts such as thousands, millions, and more. For
instance, in the English culture of the United States (en-US), numbers are represented in the following
fashion:

5,123,456.00

From this example, you can see that the en-US culture uses a comma as a separator for thousands and a
period for signifying the start of any decimals that might appear after the number is presented. It is quite
different when working with other cultures. The following code block shows an example of representing
numbers in other cultures:

Imports System.Globalization
Imports System.Threading

Public Class Differences

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim myNumber As Double = 5123456.0

Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("n"))

Thread.CurrentThread.CurrentCulture = New CultureInfo("vi-VN")

228

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 229

Chapter 5: Localization

ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _
" : " & myNumber.ToString("n"))

Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("n"))

Thread.CurrentThread.CurrentCulture = New CultureInfo("fr-CH")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("n"))
End Sub

End Class

Running this example produces the results shown in Figure 5-8.

Figure 5-8

As you can see, cultures show numbers in numerous different formats. The second culture listed in
the figure, vi-VN (Vietnamese in Vietnam), constructs a number exactly the opposite from the way it is
constructed in en-US. The Vietnamese culture uses periods for the thousand separators and a comma
for signifying decimals. Finnish uses spaces for the thousand separators and a comma for the decimal
separator, whereas the French-speaking Swiss use an apostrophe for separating thousands and a period
for the decimal separator. Therefore, it is important to ‘‘translate’’ numbers to the proper construction so
that users of your application can properly understand the numbers represented.

Another scenario in which you represent numbers is when working with currencies. It is one thing to
convert currencies so that end users understand the proper value of an item, but it is another to translate
the construction of the currency just as you would a basic number.

Each culture has a distinct currency symbol used to signify that a number represented is an actual cur-
rency value. For instance, the en-US culture represents a currency in the following format:

$5,123,456.00

The en-US culture uses a U.S. dollar symbol ($), and the location of this symbol is just as important as
the symbol itself. For en-US, the $ symbol directly precedes the currency value (with no space in between

229

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 230

Chapter 5: Localization

the symbol and the first character of the number). Other cultures use different symbols to represent
currency and often place those currency symbols in different locations. Try changing the previous code
block so that it now represents the number as a currency. The necessary changes are shown here:

Imports System.Globalization
Imports System.Threading

Public Class Differences

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim myNumber As Double = 5123456.0

Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("c"))

Thread.CurrentThread.CurrentCulture = New CultureInfo("vi-VN")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("c"))

Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("c"))

Thread.CurrentThread.CurrentCulture = New CultureInfo("fr-CH")
ListBox1.Items.Add(Thread.CurrentThread.CurrentCulture.EnglishName & _

" : " & myNumber.ToString("c"))

End Sub
End Class

Running this example shows how these cultures represent currency values (see Figure 5-9).

Figure 5-9

230

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 231

Chapter 5: Localization

Not only are the numbers constructed quite differently from one another, but the currency symbol and
the location of the symbol in regard to the number are quite different as well.

When working with currencies, note that when you are using currencies on an ASP.NET page, you have
provided an automatic culture setting for the page as a whole (such as setting the culture in the @Page
directive). You must specify a specific culture for the currency that is the same in all cases unless you are
actually doing a currency conversion. For instance, if you are specifying a U.S. dollar currency value on
your ASP.NET page, you do not want to specify that the culture of the currency is something else (for
example, the euro).

An exception would be if you actually performed a currency conversion and showed the appropriate
euro value along with the culture specification of the currency. Therefore, if you are using an auto-
matic culture setting on your ASP.NET page and you are not converting the currency, then you perform
something similar to what is illustrated in the following code for currency values:

Dim myNumber As Double = 5123456.00
Dim usCurr As CultureInfo = New CultureInfo("en-US")
Response.Write(myNumber.ToString("c", usCurr))

Understanding Differences in Sorting Strings
You have learned to translate textual values and alter the construction of the numbers, date/time values,
currencies, and more when you are globalizing an application. You should also take care when applying
culture settings to some of the programmatic behaviors that you establish for values in your applications.
One operation that can change based upon the culture setting applied is how .NET sorts strings. You
might think that all cultures sort strings in the same way (and generally they do), but sometimes differ-
ences exist. To give you an example, the following example shows a sorting operation occurring in the
en-US culture:

Imports System.Globalization
Imports System.Threading

Public Class Differences

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")

Dim myList As List(Of String) = New List(Of String)

myList.Add("Washington D.C.")
myList.Add("Helsinki")
myList.Add("Moscow")
myList.Add("Warsaw")
myList.Add("Vienna")
myList.Add("Tokyo")

myList.Sort()

231

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 232

Chapter 5: Localization

For Each item As String In myList
ListBox1.Items.Add(item.ToString())

Next

End Sub
End Class

For this example to work, you have to reference the System.Collections and the System.Collections
.Generic namespaces because this example makes use of the List(Of String) object.

In this example, a generic list of capitals from various countries of the world is created in random order.
Then the Sort method of the generic List(Of String) object is invoked. This sorting operation sorts the
strings based upon how sorting is done for the defined culture in which the application thread is running.
The preceding code shows the sorting as it is done for the en-US culture. The result of this operation is
shown in Figure 5-10.

Figure 5-10

This is pretty much what you would expect. Now, however, change the previous example so that the
culture is set to the Finnish culture:

Imports System.Globalization
Imports System.Threading

Public Class Differences

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")

Dim myList As List(Of String) = New List(Of String)

232

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 233

Chapter 5: Localization

myList.Add("Washington D.C.")
myList.Add("Helsinki")
myList.Add("Moscow")
myList.Add("Warsaw")
myList.Add("Vienna")
myList.Add("Tokyo")

myList.Sort()

For Each item As String In myList
ListBox1.Items.Add(item.ToString())

Next

End Sub
End Class

If you run the same bit of code under the Finnish culture setting, you get the results presented in
Figure 5-11.

Figure 5-11

Comparing the Finnish culture sorting done in Figure 5-11 and the U.S. English culture sorting done
in Figure 5-10, you can see that the city of Vienna is in a different place in the Finnish version. This is
because in the Finnish language, there is no difference between the letter V and the letter W. Therefore,
if you are sorting using the Finnish culture setting, then Vi comes after Wa, and thus Vienna comes last in
the list of strings in the sorting operation.

Working with ASP.NET Resource Files
When you work with ASP.NET 3.5, all resources are handled by a resource file. A resource file is an
XML-based file that has a .resx extension. You can have Visual Studio 2008 help you construct this file.
Resource files provide a set of items that are utilized by a specified culture. In your ASP.NET 3.5

233

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 234

Chapter 5: Localization

applications, you store resource files as either local resources or global resources. The following sections
describe how to use each type of resource.

Making Use of Local Resources
You might be surprised how easily you can build an ASP.NET page so that it can be localized into other
languages. In fact, the only thing you need to do is build the ASP.NET page as you normally would and
then use some built-in capabilities from Visual Studio 2008 to convert the page to a format that enables
you to plug in other languages easily.

To see this in action, build a simple ASP.NET page as presented here (referred to later in the chapter as
the ‘‘ASP.NET page code block’’):

<%@ Page Language="VB" %>

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Sample Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" runat="server"
Text="What is your name?"></asp:Label>

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:Button ID="Button1" runat="server" Text="Submit Name" />

<asp:Label ID="Label2" runat="server"></asp:Label>

</div>
</form>

</body>
</html>

As you can see, there is not much to this page. It is composed of a couple of Label controls, as well as
TextBox and Button controls. The end user enters his or her name into the text box, and then the Label2
server control is populated with the inputted name and a simple greeting.

The next step is what makes Visual Studio so great. To change the construction of this page so that it can
be localized easily from resource files, open the page in Visual Studio and select Tools ➪ Generate Local
Resource from the Visual Studio menu. Note that you can select this tool only when you are in the Design
view of your page.

Selecting Generate Local Resource from the Tool menu causes Visual Studio to create an App_Local
Resources folder in your project if you don’t have one already. A .resx file based upon this ASP.NET
page is then placed in the folder. For instance, if you are working with the Default.aspx page, then the
resource file is named Default.aspx.resx. These changes are shown in Figure 5-12.

234

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 235

Chapter 5: Localization

Figure 5-12

If you right-click on the .resx file and select View Code, notice that the .resx file is nothing more than
an XML file with an associated schema at the beginning of the document. The resource file that is gen-
erated for you takes every possible property of every translatable control on the page and gives each
item a key value that can be referenced in your ASP.NET page. Looking at the page’s code, note that
all the text values you placed in the page have been retained, but they have also been placed inside
the resource file. Visual Studio changed the code of the Default.aspx page as shown in the following
code block:

<%@ Page Language="C#" Culture="auto" meta:resourcekey="PageResource1"
UICulture="auto" %>

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Sample Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" runat="server" Text="What is your name?"
meta:resourcekey="Label1Resource1"></asp:Label>

<asp:TextBox ID="TextBox1" runat="server"
meta:resourcekey="TextBox1Resource1"></asp:TextBox>

<asp:Button ID="Button1"
runat="server" Text="Submit Name"
meta:resourcekey="Button1Resource1" />

<asp:Label ID="Label2" runat="server"

235

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 236

Chapter 5: Localization

meta:resourcekey="Label2Resource1"></asp:Label>
</div>
</form>

</body>
</html>

From this bit of code, you can see that the Culture and UICulture attributes have been added to the
@Page directive with a value of auto, thus enabling this application to be localized. In addition,
the attribute meta:resourcekey has been added to each of the controls, along with an associated value.
This is the key from the .resx file that was created on your behalf. Double-clicking on the Default.aspx.resx
file opens the resource file in the Resource Editor, shown in Figure 5-13, built into Visual Studio.

Figure 5-13

Note that a few properties from each of the server controls have been defined in the resource file. For
instance, the Button server control has its Text and ToolTip properties exposed in this resource file, and
the Visual Studio localization tool has pulled the default Text property value from the control based on
what you placed there. Looking more closely at the Button server control constructions in this file, you
can see that both the Text and ToolTip properties have a defining Button1Resource1 value preceding
the property name. This is the key that is used in the Button server control shown earlier.

<asp:Button ID="Button1"
runat="server" Text="Submit Name"
meta:resourcekey="Button1Resource1" />

Here, a meta:resourcekey attribute has been added; and in this case it references Button1Resource1.
All the properties using this key in the resource file (for example, the Text and ToolTip properties) are
applied to this Button server control at runtime.

236

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 237

Chapter 5: Localization

Adding Another Language Resource File
Now that the Default.aspx.resx file is in place, this is a file for an invariant culture. No culture is
assigned to this resource file. If no culture can be determined, then this is the resource file that is utilized.
To add another resource file for the Default.aspx page that handles another language altogether, copy
and paste the Default.aspx.resx file into the same App_LocalResources folder and rename the newly
copied file. If you use Default.aspx.fi-FI.resx, give the following keys the values shown to make a
Finnish-language resource file:

Button1Resource1.Text Lähetä Nimi
Label1Resource1.Text Mikä sinun nimi on?
PageResource1.Title Näytesivu

You want to create a custom resource in both resource files using the key Label2Answer. The Default
.aspx.resx file should have the following new key:

Label2Answer Hello

Now you can add the key Label2Answer to the Default.aspx.fi-FI.resx file as shown here:

Label2Answer Hei

You now have resources for specific controls, and a resource that you can access later programmatically.

Finalizing the Building of the Default.aspx Page
Finalizing the Default.aspx page, you want to add a Button1_Click event so that when the end user
enters a name into the text box and clicks the Submit button, the Label2 server control provides a greeting
pulled from the local resource files. When all is said and done, you should have a Default.aspx page
that looks like this:

<%@ Page Language="VB" Culture="auto" meta:resourcekey="PageResource1"
UICulture="auto" %>

<script runat="server">
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label2.Text = GetLocalResourceObject("Label2Answer").ToString() & _
" " & TextBox1.Text

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Sample Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" runat="server" Text="What is your name?"

237

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 238

Chapter 5: Localization

meta:resourcekey="Label1Resource1"></asp:Label>

<asp:TextBox ID="TextBox1" runat="server"
meta:resourcekey="TextBox1Resource1"></asp:TextBox>

<asp:Button ID="Button1"
runat="server" Text="Submit Name"

meta:resourcekey="Button1Resource1" OnClick="Button1_Click" />

<asp:Label ID="Label2" runat="server"
meta:resourcekey="Label2Resource1"></asp:Label>

</div>
</form>

</body>
</html>

In addition to pulling local resources using the meta:resourcekey attribute in the server controls on
the page to access the exposed attributes, you can also access any property value contained in the local
resource file by using the GetLocalResourceObject. When using GetLocalResourceObject, you simply
use the name of the key as a parameter, as shown here:

GetLocalResourceObject("Label2Answer")

You could just as easily get at any of the controls’ property values from the resource file programmatically
using the same construct:

GetLocalResourceObject("Button1Resource1.Text")

With the code from the Default.aspx page in place and the resource files completed, you can run
the page, entering a name in the text box and then clicking the button to get a response, as shown in
Figure 5-14.

Figure 5-14

What happened behind the scenes that caused this page to be constructed in this manner? First, only
two resource files — Default.aspx.resx and Default.aspx.fi-FI.resx — are available. The Default
.aspx.resx resource file is the invariant culture resource file, whereas the Default.aspx.fi-FI.resx
resource file is for a specific culture (fi-FI). Because I requested the Default.aspx page and my browser
is set to en-US as my preferred culture, ASP.NET found the local resources for the Default.aspx

238

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 239

Chapter 5: Localization

page. From there, ASP.NET checked for an en-US-specific version of the Default.aspx page. Because
there isn’t a specific page for the en-US culture, ASP.NET checked for an EN-(neutral culture)-specific
page. Not finding a page for the EN neutral culture, ASP.NET was then forced to use the invariant culture
resource file of Default.aspx.resx, producing the page shown in Figure 5-14.

If you now set your IE language preference as fi-FI and rerun the Default.aspx page, you see a Finnish
version of the page (see Figure 5-15).

Figure 5-15

In this case, having set my IE language preference to fi-FI, I am presented with this culture’s page instead
of the invariant culture page presented earlier. ASP.NET found this specific culture through use of the
Default.aspx.fi-FI.resx resource file.

You can see that all the control properties that were translated and placed within the resource file are
utilized automatically by ASP.NET, including the page title presented in the title bar of IE.

Neutral Cultures Are Generally Preferred
When you are working with the resource files from this example, note that one of the resources is for
a specific culture. The Default.aspx.fi-FI.resx file is for a specific culture — the Finnish language as
spoken in Finland. Another option would be to make this file work not for a specific culture, but instead
for a neutral culture. To do so, simply name the file Default.aspx.FI.resx. In this example, it doesn’t
make any difference because no other countries speak Finnish. It would make sense for languages such
as German, Spanish, or French, which are spoken in multiple countries.

For instance, if you are going to have a Spanish version of the Default.aspx page, you could def-
initely build it for a specific culture, such as Default.aspx.es-MX.resx. This construction is for the
Spanish language as spoken in Mexico. With this in place, if someone requests the Default.aspx page
with the language setting of es-MX, that user is provided with the contents of this resource file. If the
requester has a setting of es-ES, he or she will not get the Default.aspx.es-MX.resx resource file, but
the invariant culture resource file of Default.aspx.resx. If you are going to make only a single transla-
tion for your site or any of your pages, construct the resource files to be for neutral cultures, not specific
cultures.

If you have the resource file Default.aspx.ES.resx, then it won’t matter if the end user’s preferred
setting is set to es-MX, es-ES, or even es-AR — that user gets the appropriate ES neutral-culture version
of the page.

239

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 240

Chapter 5: Localization

Making Use of Global Resources
Besides using only local resources that specifically deal with a particular page in your ASP.NET applica-
tion, you also have the option to create global resources that can be used across multiple pages. To create
a resource file that can be utilized across the entire application, right-click on the solution in the Solution
Explorer of Visual Studio and select Add New Item. From the Add New Item dialog, select Resource file.

Selecting this option provides you with a Resource.resx file. Visual Studio places this file in a new folder
called App_GlobalResources. Again, this first file is the invariant culture resource file. Add a single string
resource, giving it the key of PrivacyStatement and a value of some kind (a long string).

After you have the invariant culture resource file completed, the next step is to add another resource
file, but this time name it Resource.fi-FI.resx. Again, for this resource file, use a string key of
PrivacyStatement and a different value altogether from the one you used in the other resource file.

The point of a global resource file is to have access to these resources across the entire application. You
can access the values that you place in these files in several ways. One way is to work the value directly
into any of your server control declarations. For instance, you can place the following privacy statement
in a Label server control as shown here:

<asp:Label ID="Label1" runat="server"
Text=’<%$ Resources: Resource, PrivacyStatement %>’></asp:Label>

With this construction in place, you can now grab the appropriate value of the PrivacyStatement global
resource, depending on the language preference of the end user requesting the page. To make this work,
you use the keyword Resources followed by a colon. Next, you specify the name of the resource file. In
this case, the name of the resource file is Resource, because this statement goes to the Resource.resx
and Resource.fi-FI.resx files in order to find what it needs. After specifying the particular resource
file to use, the next item in the statement is the key — in this case, PrivacyStatement.

Another way to achieve the same result is to use some built-in dialogs within Visual Studio. Highlight
the server control you want in Visual Studio from Design view so that the control appears within the
Properties window. For my example, I highlighted a Label server control. From the Properties window,
click the button within the Expressions property. This launches the Expressions dialog, where you can
bind the PrivacyStatement value to the Text property of the control (see Figure 5-16).

To make this work, highlight the Text property in the Bindable properties list. Then select an expression
type from the drop-down list on the right-hand side of the dialog. Your options include AppSettings,
ConnectionStrings, and Resources. Select Resources and you are then asked for the ClassKey and
ResourceKey property values. The ClassKey is the name of the file that should be utilized. In this
example, the name of the file is Resource.resx, so use the Resources keyword as a value. You are pro-
vided with a drop-down list in the ResourceKey property section, with all the keys available in this file.
Because only a single key exists at this point, only the PrivacyStatement key appears in this list. Make
this selection and click OK. The Label server control changes and now appears as it was presented earlier
in the two-line code block.

One nice feature is that the resources provided via global resources are available in a strongly typed
manner. For instance, you can programmatically get at a global resource value by using the construction
presented in the following example:

Label1.Text = Resources.Resource.PrivacyStatement.ToString()

240

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 241

Chapter 5: Localization

Figure 5-16

Figure 5-17 shows that you have full IntelliSense for these resource values.

Figure 5-17

241

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 242

Chapter 5: Localization

Resource Files in Windows Forms
Just as with ASP.NET, you can also work with resource files (.resx) right from Visual Studio. To see
how to localize a Windows Forms application, create a new form in your Localization project called
UsingResx.vb.

Like the ASP.NET form described earlier in this chapter (and identified as ‘‘ASP.NET page code block’’),
this Windows Form dialog contains a couple of Label controls, a Button, and a TextBox control. Ulti-
mately, your form should look like the one shown in Figure 5-18.

Figure 5-18

Note that the controls were just laid out on the form and no text was added yet. Before you get started,
let’s turn on localization features for the form. You can also do this to a form that is already completed if
you are later converting a form to deal with more than one language.

Highlighting the form in the designer, change the Localizable property to True. This enables you
to apply more than one language to a form and have the elements for a particular culture stored in a
resource file. After you have set the Localizable property to True, you can then provide values to the
Label and the Button controls on the form. The properties that you assign to the controls are done under
the (Default) language setting. You will find this setting within the Language property of the form, as
shown in Figure 5-19.

Figure 5-19

242

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 243

Chapter 5: Localization

Setting the text values to the (Default) property setting means that if a culture is undetermined or a
resource file is not available for this culture, then the default one will be utilized. From there, change
the Language property of the form to Finnish. You can then change the values of the three controls as
follows:

Button1.Text Lähetä Nimi
Label1.Text Mikä sinun nimi on?
Label2.Text Hei

Double-clicking on the form’s button will enable you to create a Button1_Click event. The code for this
page is as follows:

Imports System.Globalization
Imports System.Threading

Public Class UsingResx

Sub New()

Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
Thread.CurrentThread.CurrentUICulture = New CultureInfo("en-US")

’ This call is required by the Windows Form Designer.
InitializeComponent()

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Label2.Visible = True
Label2.Text += TextBox1.Text

End Sub
End Class

This assigns the CurrentCulture and the CurrentUICulture properties to en-US; the form it produces is
shown in Figure 5-20.

Figure 5-20

Now change the code so that it works with a Finnish culture setting:

Imports System.Globalization
Imports System.Threading

Public Class UsingResx

Sub New()

243

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 244

Chapter 5: Localization

Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
Thread.CurrentThread.CurrentUICulture = New CultureInfo("fi-FI")

’ This call is required by the Windows Form Designer.
InitializeComponent()

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Label2.Visible = True
Label2.Text += TextBox1.Text

End Sub
End Class

Running the form with this change in place now produces the window shown in Figure 5-21.

Figure 5-21

So where are all the translations stored? Just like ASP.NET, they are stored in the resource file for this
form. Looking in the Solution Explorer, you will now find a UsingResx.resx file and a UsingResx
.fi.resx file, as shown in Figure 5-22.

Figure 5-22

Opening the UsingResx.resx file will cause Visual Studio to open the file in a manner that enables you
to directly edit the values it stores. The default resource file stores some type references as well as other
properties of the controls on the form, as shown in Figure 5-23.

Opening the UsingResx.fi.resx file instead shows only the three different properties that you changed.
The rest of the properties are read from the default resource file. The contents of the Finnish resource file
are presented in Figure 5-24.

244

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 245

Chapter 5: Localization

Figure 5-23

Figure 5-24

245

Evjen-91361 c05.tex V2 - 04/01/2008 3:34pm Page 246

Chapter 5: Localization

Visual Studio 2008 provides an editor for working with resource files. You have already seen some of the
views available from the Resource Editor. Resources are categorized visually according to the data type
of the resource. This chapter has covered only the handling of strings, but other categories exist (such as
images, icons, audio files, miscellaneous files, and other items). These options are shown in Figure 5-25.

Figure 5-25

Summary
It is hoped that you see the value in localizing your .NET applications so that they can handle multiple
cultures. This chapter described some of the issues you face when localizing your applications, and
described some of the built-in tools provided via both Visual Studio and the .NET Framework to make
this process easier for you.

246

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 247

Generics

One of the things developers often need to do is create new types for their programs. Early attempts
at type creation led to user-defined types, or the use of the VB Structure statement. Another
approach is to use classes and objects to create new types. Ever since the release of the .NET
Framework 2.0, another approach is to use generics.

Generics refers to the technology built into the .NET Framework 3.5 (and the .NET Framework
versions 2.0 and 3.0) that enables you to define a code template and then declare variables using
that template. The template defines the operations that the new type can perform; and when you
declare a variable based on the template, you are creating a new type. The benefit of generics over
structures or objects is that a generic template makes it easier for your new types to be strongly
typed. Generics also make it easier to reuse the template code in different scenarios.

The primary motivation for adding generics to .NET was to enable the creation of strongly typed
collection types. Because generic collection types are strongly typed, they are significantly faster
than the previous inheritance-based collection model. Anywhere you presently use collection
classes in your code, you should consider revising that code to use generic collection types instead.

Visual Basic 2008 allows not only the use of preexisting generics, but also the creation of your own
generic templates. Because the technology to support generics was created primarily to build col-
lection classes, it naturally follows that you might create a generic collection anytime you would
otherwise build a normal collection class. More specifically, anytime you find yourself using the
Object data type, you should instead consider using generics.

This chapter begins with a brief discussion of the use of generics, followed by a walk-through of the
syntax for defining your own generic templates.

Using Generics
There are many examples of generic templates in the .NET 3.5 Base Class Library (BCL). Many of
them can be found in the System.Collections.Generic namespace, but others are scattered through
the BCL as appropriate. Many of the examples focus on generic collection types, but this is only

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 248

Chapter 6: Generics

because it is here that the performance gains due to generics are most notable. In other cases, generics
are used less for performance gains than for the strong typing benefits they provide. As noted earlier,
anytime you use a collection data type, you should consider using the generic equivalent instead.

A generic is often written as something like List(Of T). The type (or class) name in this case is List. The
letter T is a placeholder, much like a parameter. It indicates where you must provide a specific type value
to customize the generic. For instance, you might declare a variable using the List(Of T) generic:

Dim data As New List(Of Date)

In this case, you are specifying that the type parameter, T, is a Date. By providing this type, you are
specifying that the list will only contain values of type Date. To make this clearer, let’s contrast the new
List(Of T) collection with the older ArrayList type.

When you work with an ArrayList, you are working with a type of collection that can store many types
of values at the same time:

Dim data As New ArrayList()
data.Add("Hello")
data.Add(5)
data.Add(New Customer())

This ArrayList is loosely typed, internally always storing the values as type Object. This is very flexible,
but relatively slow because it is late bound. Of course, it offers the advantage of being able to store any
data type, with the disadvantage that you have no control over what is actually stored in the collection.

The List(Of T) generic collection is quite different. It is not a type at all; it is just a template. A type is
not created until you declare a variable using the template:

Dim data As New Generic.List(Of Integer)
data.Add(5)
data.Add(New Customer()) ’ throws an exception
data.Add("Hello") ’ throws an exception

When you declare a variable using the generic, you must provide the type of value that the new collection
will hold. The result is that a new type is created — in this case, a collection that can only hold Integer
values.

The important thing here is that this new collection type is strongly typed for Integer values. Not only
does its external interface (its Item and Add methods, for instance) require Integer values, but its internal
storage mechanism only works with type Integer. This means that it is not late bound like ArrayList,
but rather is early bound. The net result is much higher performance, along with all the type-safety
benefits of being strongly typed.

Generics are useful because they typically offer a higher performance option compared to traditional
classes. In some cases, they can also save you from writing code, as generic templates can provide code
reuse where traditional classes cannot. Finally, generics can sometimes provide better type safety com-
pared to traditional classes, as a generic adapts to the specific type you require, whereas classes often
must resort to working with a more general type such as Object.

248

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 249

Chapter 6: Generics

Generics come in two forms: generic types and generic methods. For instance, List(Of T) is a generic
type in that it is a template that defines a complete type or class. In contrast, some otherwise normal
classes have single methods that are just method templates and that assume a specific type when they
are called. We will look at both scenarios.

Generic Types
Now that you have a basic understanding of generics and how they compare to regular types, let’s get
into some more detail. To do this, you will make use of some other generic types provided in the .NET
Framework. A generic type is a template that defines a complete class, structure, or interface. When you
want to use such a generic, you declare a variable using the generic type, providing the real type (or
types) to be used in creating the actual type of your variable.

Basic Usage
To begin, create a new Windows Application project named ‘‘Generics.’’ On Form1 add a Button
control (named btnDictionary) and a TextBox control (named txtDisplay). Set the TextBox control’s
Multiline property to True and anchor it to take up most of the form. You can also set the text of the
button to Dictionary. The result should look something like what is shown in Figure 6-1.

Figure 6-1

First, consider the Dictionary(Of K, T) generic. This is much like the List(Of T) discussed earlier, but
this generic requires that you define the types of both the key data and the values to be stored. When you
declare a variable as Dictionary(Of K, T), the new Dictionary type that is created only accepts keys of
the one type and values of the other.

Add the following code in the click event handler for btnDictionary:

Public Class Form1

Private Sub btnDictionary_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDictionary.Click

txtDisplay.Clear()

249

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 250

Chapter 6: Generics

Dim data As New Generic.Dictionary(Of Integer, String)
data.Add(5, "Bill")
data.Add(15, "George")

For Each item As KeyValuePair(Of Integer, String) In data
txtDisplay.AppendText("Data: " & item.Key & ", " & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next

txtDisplay.AppendText(Environment.NewLine)
End Sub

End Class

As you type, watch the IntelliSense information on the Add method. Notice how the key and value para-
meters are strongly typed based on the specific types provided in the declaration of the data variable. In
the same code, you can create another type of Dictionary:

Public Class Form1

Private Sub btnDictionary_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDictionary.Click

txtDisplay.Clear()

Dim data As New Generic.Dictionary(Of Integer, String)

Dim info As New Generic.Dictionary(Of Guid, Date)

data.Add(5, "Bill")
data.Add(15, "George")

For Each item As KeyValuePair(Of Integer, String) In data
txtDisplay.AppendText("Data: " & item.Key & ", " & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next

txtDisplay.AppendText(Environment.NewLine)

info.Add(Guid.NewGuid, Now)

For Each item As KeyValuePair(Of Guid, Date) In info
txtDisplay.AppendText("Info: " & item.Key.ToString & _

", " & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next

txtDisplay.AppendText(Environment.NewLine)

End Sub

End Class

This code contains two completely different types. Both have the behaviors of a Dictionary, but they are
not interchangeable because they have been created as different types.

250

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 251

Chapter 6: Generics

Generic types may also be used as parameters and return types. For instance, add the following method
to Form1:

Private Function LoadData() As Generic.Dictionary(Of Integer, String)
Dim data As New Generic.Dictionary(Of Integer, String)
data.Add(5, "Bill")
data.Add(15, "George")

Return data
End Function

To call this method from the btnDictionary_Click method, add this code:

Private Sub btnDictionary_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDictionary.Click

txtDisplay.Clear()

Dim data As New Generic.Dictionary(Of Integer, String)
Dim info As New Generic.Dictionary(Of Guid, Date)

data.Add(5, "Bill")
data.Add(15, "George")

For Each item As KeyValuePair(Of Integer, String) In data
txtDisplay.AppendText("Data: " & item.Key & ", " & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next

txtDisplay.AppendText(Environment.NewLine)

info.Add(Guid.NewGuid, Now)

For Each item As KeyValuePair(Of Guid, Date) In info
txtDisplay.AppendText("Info: " & item.Key.ToString & _

", " & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next

txtDisplay.AppendText(Environment.NewLine)

Dim results As Generic.Dictionary(Of Integer, String)
results = LoadData()

For Each item As KeyValuePair(Of Integer, String) In results
txtDisplay.AppendText("Results: " & item.Key & ", " & item.Value)
txtDisplay.AppendText(Environment.NewLine)

Next

txtDisplay.AppendText(Environment.NewLine)

End Sub

The results of running this code are shown in Figure 6-2.

251

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 252

Chapter 6: Generics

Figure 6-2

This works because both the return type of the function and the type of the data variable are exactly
the same. Not only are they both Generic.Dictionary derivatives, they have exactly the same types in
the declaration.

The same is true for parameters:

Private Sub DoWork(ByVal values As Generic.Dictionary(Of Integer, String))
’ do work here

End Sub

Again, the parameter type is not only defined by the generic type, but also by the specific type values
used to initialize the generic template.

Inheritance
It is possible to inherit from a generic type as you define a new class. For instance, the .NET BCL defines
the System.ComponentModel.BindingList(Of T) generic type. This type is used to create collections
that can support data binding. You can use this as a base class to create your own strongly typed,
data-bindable collection. Add new classes named Customer and CustomerList to the project with the
following code:

Public Class Customer
Private mName As String

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

End Property

End Class

252

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 253

Chapter 6: Generics

Public Class CustomerList
Inherits System.ComponentModel.BindingList(Of Customer)

Private Sub CustomerList_AddingNew(ByVal sender As Object, _
ByVal e As System.ComponentModel.AddingNewEventArgs) Handles Me.AddingNew

Dim cust As New Customer()
cust.Name = "<new>"
e.NewObject = cust

End Sub
End Class

When you inherit from BindingList(Of T), you must provide a specific type — in this case, Customer.
This means that your new CustomerList class extends and can customize BindingList(Of Customer).
Here you are providing a default value for the Name property of any new Customer object added to the
collection.

When you inherit from a generic type, you can employ all the normal concepts of inheritance, including
overloading and overriding methods, extending the class by adding new methods, handling events, and
so forth.

To see this in action, add a new Button control named btnCustomer to Form1 and add a new form named
CustomerForm to the project. Add a DataGridView control to CustomerForm and dock it by selecting the
Fill in the parent container option.

Behind the btnCustomer handler, add the following code:

CustomerForm.ShowDialog()

Then add the following code behind CustomerForm:

Dim list As New CustomerList()

Private Sub CustomerForm_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

DataGridView1.DataSource = list

End Sub

This code creates an instance of CustomerList and makes it the DataSource for the DataGridView control.
When you run the program and click the button to open the CustomerForm, notice that the grid contains
a newly added Customer object. As you interact with the grid, new Customer objects are automatically
added, with a default name of <new>. An example is shown in Figure 6-3.

All this functionality of adding new objects and setting the default Name value occurs because
CustomerList inherits from BindingList(Of Customer).

253

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 254

Chapter 6: Generics

Figure 6-3

Generic Methods
A generic method is a single method that is called not only with conventional parameters, but also with
type information that defines the method. Generic methods are far less common than generic types. Due
to the extra syntax required to call a generic method, they are also less readable than a normal method.

A generic method may exist in any class or module; it does not need to be contained within a generic
type. The primary benefit of a generic method is avoiding the use of CType or DirectCast to convert
parameters or return values between different types.

It is important to realize that the type conversion still occurs; generics merely provide an alternative
mechanism to use instead of CType or DirectCast.

Without generics, code often uses the Object type. Add the following method to Form1:

Public Function AreEqual(ByVal a As Object, ByVal b As Object) As Boolean
Return a.Equals(b)

End Function

The problem with this code is that a and b could be anything. There is no restriction here, nothing to
ensure that they are even the same type. An alternative is to use generics. Add the following method to
Form1:

Public Function AreEqual(Of T)(ByVal a As T, ByVal b As T) As Boolean
Return a.Equals(b)

End Function

Now a and b are forced to be the same type, and that type is specified when the method is invoked.

Add a new Button named btnEqual to Form1 with the following code in its click event:

Dim result As Boolean

’ use normal method
result = AreEqual(1, 2)
result = AreEqual("one", "two")

254

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 255

Chapter 6: Generics

result = AreEqual(1, "two")

’ use generic method
result = AreEqual(Of Integer)(1, 2)
result = AreEqual(Of String)("one", "two")
’result = AreEqual(Of Integer)(1, "two")

However, why not just declare the method as a Boolean? This code will probably cause some confusion.
The first three method calls are invoking the normal AreEqual method. Notice that there is no problem
asking the method to compare an Integer and a String.

The second set of calls looks very odd. At first glance, they look like nonsense to many people. This is
because invoking a generic method means providing two sets of parameters to the method, rather than
the normal one set of parameters.

The first set of parameters defines the type or types required to define the method. This is much like
the list of types you must provide when declaring a variable using a generic class. In this case, you’re
specifying that the AreEqual method will be operating on parameters of type Integer.

The second set of parameters are the conventional parameters that you’d normally supply to a method.
What is special in this case is that the types of the parameters are being defined by the first set of parame-
ters. In other words, in the first call, the type is specified to be Integer, so 1 and 2 are valid parameters. In
the second call, the type is String, so "one" and "two" are valid. Notice that the third line is commented
out. This is because 1 and "two" aren’t the same type, so the compiler won’t compile that line of code.

Creating Generics
Now that you have a good idea how to use preexisting generics in your code, let’s take a look at how you
can create generic templates. The primary reason to create a generic template instead of a class is to gain
strong typing of your variables. Anytime you find yourself using the Object data type, or a base class
from which multiple types inherit, you may want to consider using generics. By using generics, you can
avoid the use of CType or DirectCast, thereby simplifying your code. If you can avoid using the Object
data type, you will typically improve the performance of your code.

As discussed earlier, there are generic types and generic methods. A generic type is basically a class
or structure that assumes specific type characteristics when a variable is declared using the generic. A
generic method is a single method that assumes specific type characteristics, even though the method
might be in an otherwise very conventional class, structure, or module.

Generic Types
Recall that a generic type is a class, structure, or interface template. You can create such templates your-
self to provide better performance, strong typing, and code reuse to the consumers of your types.

Classes
A generic class template is created in the same way that you create a normal class, with the exception
that you require the consumer of your class to provide you with one or more types for use in your code.
In other words, as the author of a generic template, you have access to the type parameters provided by
the user of your generic.

255

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 256

Chapter 6: Generics

For example, add a new class to the project named SingleLinkedList:

Public Class SingleLinkedList(Of T)

End Class

In the declaration of the type, you specify the type parameters that will be required:

Public Class SingleLinkedList(Of T)

In this case, you are requiring just one type parameter. The name, T, can be any valid variable name. In
other words, you could declare the type like this:

Public Class SingleLinkedList(Of ValueType)

Make this change to the code in your project.

By convention (carried over from C++ templates), the variable names for type parameters are single
uppercase letters. This is somewhat cryptic, and you may want to use a more descriptive convention for
variable naming.

Whether you use the cryptic standard convention or more readable parameter names, the parameter is
defined on the class definition. Within the class itself, you then use the type parameter anywhere that
you would normally use a type (such as String or Integer).

To create a linked list, you need to define a Node class. This will be a nested class:

Public Class SingleLinkedList(Of ValueType)

#Region " Node class "

Private Class Node
Private mValue As ValueType
Private mNext As Node

Public ReadOnly Property Value() As ValueType
Get
Return mValue

End Get
End Property

Public Property NextNode() As Node
Get
Return mNext

End Get
Set(ByVal value As Node)
mNext = value

End Set
End Property

Public Sub New(ByVal value As ValueType, ByVal nextNode As Node)
mValue = value

256

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 257

Chapter 6: Generics

mNext = nextNode
End Sub

End Class

#End Region

End Class

Notice how the mValue variable is declared as ValueType. This means that the actual type of mValue
depends on the type supplied when an instance of SingleLinkedList is created.

Because ValueType is a type parameter on the class, you can use ValueType as a type anywhere in the
code. As you write the class, you cannot tell what type ValueType will be. That information is provided
by the user of your generic class. Later, when someone declares a variable using your generic type, that
person will specify the type, like this:

Dim list As New SingleLinkedList(Of Double)

At this point, a specific instance of your generic class is created, and all cases of ValueType within your
code are replaced by the VB compiler with Double. Essentially, this means that for this specific instance
of SingleLinkedList, the mValue declaration ends up as follows:

Private mValue As Double

Of course, you never get to see this code, as it is dynamically generated by the .NET Framework’s JIT
compiler at runtime based on your generic template code.

The same is true for methods within the template. Your example contains a constructor method, which
accepts a parameter of type ValueType. Remember that ValueType will be replaced by a specific type
when a variable is declared using your generic.

So, what type is ValueType when you are writing the template itself? Because it can conceivably be any
type when the template is used, ValueType is treated like the Object type as you create the generic
template. This severely restricts what you can do with variables or parameters of ValueType within your
generic code.

The mValue variable is of ValueType, which means it is basically of type Object for the purposes of your
template code. Therefore, you can do assignments (as you do in the constructor code), and you can call
any methods that are on the System.Object type:

❑ Equals()

❑ GetHashCode()

❑ GetType()

❑ ReferenceEquals()

❑ ToString()

No operations beyond these basics are available by default. Later in the chapter, you will learn about the
concept of constraints, which enables you to restrict the types that can be specified for a type parameter.

257

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 258

Chapter 6: Generics

Constraints have the added benefit that they expand the operations you can perform on variables or
parameters defined based on the type parameter.

However, this capability is enough to complete the SingleLinkedList class. Add the following code to
the class after the End Class from the Node class:

Private mHead As Node

Default Public ReadOnly Property Item(ByVal index As Integer) As ValueType
Get

Dim current As Node = mHead

For index = 1 To index
current = current.NextNode
If current Is Nothing Then

Throw New Exception("Item not found in list")
End If

Next

Return current.Value
End Get

End Property

Public Sub Add(ByVal value As ValueType)
mHead = New Node(value, mHead)

End Sub

Public Sub Remove(ByVal value As ValueType)

Dim current As Node = mHead
Dim previous As Node = Nothing

While current IsNot Nothing
If current.Value.Equals(value) Then
If previous Is Nothing Then

’ this was the head of the list
mHead = current.NextNode

Else
previous.NextNode = current.NextNode

End If
Exit Sub

End If
previous = current
current = current.NextNode

End While

’ You got to the end without finding the item.
Throw New Exception("Item not found in list")

End Sub

258

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 259

Chapter 6: Generics

Public ReadOnly Property Count() As Integer
Get

Dim result As Integer = 0
Dim current As Node = mHead

While current IsNot Nothing
result += 1
current = current.NextNode

End While

Return result
End Get

End Property

Notice that the Item property and the Add and Remove methods all use ValueType as either return types
or parameter types. More important, note the use of the Equals method in the Remove method:

If current.Value.Equals(value) Then

The reason why this compiles is that Equals is defined on System.Object and is therefore universally
available. This code could not use the = operator because that is not universally available.

To try out the SingleLinkedList class, add a button to Form1 named btnList and add the following
code to Form1:

Private Sub btnList_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnList.Click

Dim list As New SingleLinkedList(Of String)
list.Add("Bill")
list.Add("Tuija")
list.Add("Sofia")
list.Add("Henri")
list.Add("Kalle")

txtDisplay.Clear()
txtDisplay.AppendText("Count: " & list.Count)
txtDisplay.AppendText(Environment.NewLine)

For index As Integer = 0 To list.Count - 1
txtDisplay.AppendText("Item: " & list.Item(index))
txtDisplay.AppendText(Environment.NewLine)

Next

End Sub

When you run the code, you will see a display similar to Figure 6-4.

259

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 260

Chapter 6: Generics

Figure 6-4

Other Generic Class Features
Earlier in the chapter, you used the Dictionary generic, which specifies multiple type parameters. To
declare a class with multiple type parameters, you use syntax like the following:

Public Class MyCoolType(Of T, V)
Private mValue As T
Private mData As V

Public Sub New(ByVal value As T, ByVal data As V)
mValue = value
mData = data

End Sub
End Class

In addition, it is possible to use regular types in combination with type parameters, as shown here:

Public Class MyCoolType(Of T, V)
Private mValue As T
Private mData As V
Private mActual As Double

Public Sub New(ByVal value As T, ByVal data As V, ByVal actual As Double)
mValue = value
mData = data
mActual = actual

End Sub
End Class

Other than the fact that variables or parameters of types T or V must be treated as type System.Object,
you can write virtually any code you choose. The code in a generic class is really no different from the
code you’d write in a normal class.

This includes all the object-oriented capabilities of classes, including inheritance, overloading, overrid-
ing, events, methods, properties, and so forth. However, there are some limitations on overloading. In
particular, when overloading methods with a type parameter, the compiler does not know what that

260

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 261

Chapter 6: Generics

specific type might be at runtime. Thus, you can only overload methods in ways in which the type
parameter (which could be any type) does not lead to ambiguity.

For instance, adding these two methods to MyCoolType before the .NET Framework 3.5 would have
resulted in a compiler error:

Public Sub DoWork(ByVal data As Integer)
’ do work here

End Sub

Public Sub DoWork(ByVal data As V)
’ do work here

End Sub

Now this is possible due to the support for implicitly typed variables. During compilation in .NET 3.5,
the compiler figures out what the data type of V should be and makes the appropriate changes to compile
V as what is utilized in your code. This was not the case prior to .NET 3.5. Before this version of the
.NET Framework, this kind of code would have resulted in a compiler error. It wasn’t legal because the
compiler didn’t know whether V would be an Integer at runtime. If V were to end up defined as an
Integer, then you’d have two identical method signatures in the same class.

Classes and Inheritance
Not only can you create basic generic class templates, you can also combine the concept with inheritance.
This can be as basic as having a generic template inherit from an existing class:

Public Class MyControls(Of T)
Inherits Control

End Class

In this case, the MyControls generic class inherits from the Windows Forms Control class, thus gaining
all the behaviors and interface elements of a Control.

Alternately, a conventional class can inherit from a generic template. Suppose that you have a simple
generic template:

Public Class GenericBase(Of T)

End Class

It is quite practical to inherit from this generic class as you create other classes:

Public Class Subclass
Inherits GenericBase(Of Integer)

End Class

Notice how the Inherits statement not only references GenericBase, but also provides a specific type
for the type parameter of the generic type. Anytime you use a generic type, you must provide values

261

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 262

Chapter 6: Generics

for the type parameters, and this is no exception. This means that your new Subclass actually inherits
from a specific instance of GenericBase, where T is of type Integer.

Finally, you can also have generic classes inherit from other generic classes. For instance, you can create
a generic class that inherits from the GenericBase class:

Public Class GenericSubclass(Of T)
Inherits GenericBase(Of Integer)

End Class

As with the previous example, this new class inherits from an instance of GenericBase, where T is of type
Integer.

Things can get far more interesting. It turns out that you can use type parameters to specify the types for
other type parameters. For instance, you could alter GenericSubclass like this:

Public Class GenericSubclass(Of V)
Inherits GenericBase(Of V)

End Class

Notice that you’re specifying that the type parameter for GenericBase is V — which is the type provided
by the caller when it declares a variable using GenericSubclass. Therefore, if a caller does

Dim obj As GenericSubclass(Of String)

then V is of type String, meaning that GenericSubclass is inheriting from an instance of GenericBase,
where its T parameter is also of type String. The type flows through from the subclass into the base class.
If that is not complex enough, consider the following class definition:

Public Class GenericSubclass(Of V)
Inherits GenericBase(Of GenericSubclass(Of V))

End Class

In this case, the GenericSubclass is inheriting from GenericBase, where the T type in GenericBase is
actually a specific instance of the GenericSubclass type. A caller can create such an instance as follows:

Dim obj As GenericSubclass(Of Date)

In this case, the GenericSubclass type has a V of type Date. It also inherits from GenericBase, which has
a T of type GenericSubclass(Of Date).

Such complex relationships are typically not useful, but it is important to recognize how types flow
through generic templates, especially when inheritance is involved.

Structures
You can also define generic Structure types. Structures are discussed in Chapter 1. The basic rules and
concepts are the same as for defining generic classes, as shown here:

262

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 263

Chapter 6: Generics

Public Structure MyCoolStructure(Of T)
Public Value As T

End Structure

As with generic classes, the type parameter or parameters represent real types that are provided by the
user of the Structure in actual code. Thus, anywhere you see a T in the structure; it will be replaced by a
real type such as String or Integer.

Code can use the structure in a manner similar to how a generic class is used:

Dim data As MyCoolStructure(Of Guid)

When the variable is declared, an instance of the Structure is created based on the type parameter
provided. In this example, an instance of MyCoolStructure that holds Guid objects has been created.

Interfaces
Finally, you can define generic interface types. Generic interfaces are a bit different from generic classes
or structures because they are implemented by other types when they are used. You can create a generic
interface using the same syntax used for classes and structures:

Public Interface ICoolInterface(Of T)
Sub DoWork(ByVal data As T)
Function GetAnswer() As T

End Interface

Then the interface can be used within another type. For instance, you might implement the interface in
a class:

Public Class ARegularClass
Implements ICoolInterface(Of String)

Public Sub DoWork(ByVal data As String) _
Implements ICoolInterface(Of String).DoWork

End Sub

Public Function GetAnswer() As String _
Implements ICoolInterface(Of String).GetAnswer

End Function

End Class

Notice that you provide a real type for the type parameter in the Implements statement and Implements
clauses on each method. In each case, you are specifying a specific instance of the ICoolInterface
interface — one that deals with the String data type.

As with classes and structures, an interface can be declared with multiple type parameters. Those type
parameter values can be used in place of any normal type (such as String or Date) in any Sub, Function,
Property, or Event declaration.

263

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 264

Chapter 6: Generics

Generic Methods
You have already seen examples of methods declared using type parameters such as T or V. While these
are examples of generic methods, they have been contained within a broader generic type such as a class,
structure, or interface.

It is also possible to create generic methods within otherwise normal classes, structures, interfaces, or
modules. In this case, the type parameter is not specified on the class, structure, or interface, but rather is
specified directly on the method itself.

For instance, you can declare a generic method to compare equality like this:

Public Module Comparisons

Public Function AreEqual(Of T)(ByVal a As T, ByVal b As T) As Boolean
Return a.Equals(b)

End Function

End Module

In this case, the AreEqual method is contained within a module, though it could just as easily be con-
tained in a class or structure. Notice that the method accepts two sets of parameters. The first set of
parameters is the type parameter — in this example, just T. The second set of parameters consists of the
normal parameters that a method would accept. In this example, the normal parameters have their types
defined by the type parameter, T.

As with generic classes, it is important to remember that the type parameter is treated as a System.Object
type as you write the code in your generic method. This severely restricts what you can do with param-
eters or variables declared using the type parameters. Specifically, you can perform assignment and call
the various methods common to all System.Object variables.

In a moment you will look at constraints, which enable you to restrict the types that can be assigned to
the type parameters and expand the operations that can be performed on parameters and variables of
those types.

As with generic types, a generic method can accept multiple type parameters:

Public Class Comparisons

Public Function AreEqual(Of T, R)(ByVal a As Integer, ByVal b As T) As R
’ implement code here

End Function

End Class

In this example, the method is contained within a class, rather than a module. Notice that it accepts two
type parameters, T and R. The return type is set to type R, whereas the second parameter is of type T. Also,
look at the first parameter, which is a conventional type. This illustrates how you can mix conventional
types and generic type parameters in the method parameter list and return types, and by extension within
the body of the method code.

264

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 265

Chapter 6: Generics

Constraints
At this point, you have learned how to create and use generic types and methods, but there have been
serious limitations on what you can do when creating generic type or method templates thus far. This is
because the compiler treats any type parameters as the type System.Object within your template code.
The result is that you can assign the values and call the various methods common to all System.Object
instances, but you can do nothing else. In many cases, this is too restrictive to be useful.

Constraints offer a solution and at the same time provide a control mechanism. Constraints enable you to
specify rules about the types that can be used at runtime to replace a type parameter. Using constraints,
you can ensure that a type parameter is a Class or a Structure, or that it implements a certain interface
or inherits from a certain base class.

Not only do constraints enable you to restrict the types available for use, but they also give the VB
compiler valuable information. For example, if the compiler knows that a type parameter must always
implement a given interface, then the compiler will allow you to call the methods on that interface within
your template code.

Type Constraints
The most common type of constraint is a type constraint. A type constraint restricts a type parameter to
be a subclass of a specific class or to implement a specific interface. This idea can be used to enhance the
SingleLinkedList to sort items as they are added. First, change the declaration of the class itself to add
the IComparable constraint:

Public Class SingleLinkedList(Of ValueType As IComparable)

With this change, ValueType is not only guaranteed to be equivalent to System.Object, it is also guaran-
teed to have all the methods defined on the IComparable interface.

This means that within the Add method you can make use of any methods in the IComparable interface
(as well as those from System.Object). The result is that you can safely call the CompareTo method
defined on the IComparable interface, because the compiler knows that any variable of type ValueType
will implement IComparable:

Public Sub Add(ByVal value As ValueType)

If mHead Is Nothing Then
’ List was empty, just store the value.
mHead = New Node(value, mHead)

Else
Dim current As Node = mHead
Dim previous As Node = Nothing

While current IsNot Nothing
If current.Value.CompareTo(value) > 0 Then

If previous Is Nothing Then
’ this was the head of the list
mHead = New Node(value, mHead)

Else
’ insert the node between previous and current

265

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 266

Chapter 6: Generics

previous.NextNode = New Node(value, current)
End If
Exit Sub

End If
previous = current
current = current.NextNode

End While

’ you’re at the end of the list, so add to end
previous.NextNode = New Node(value, Nothing)

End If

End Sub

Note the call to the CompareTo method:

If current.Value.CompareTo(value) > 0 Then

This is possible because of the IComparable constraint on ValueType. If you run the code now, the items
should be displayed in sorted order, as shown in Figure 6-5.

Figure 6-5

Not only can you constrain a type parameter to implement an interface, but you can also constrain it to
be a specific type (class) or subclass of that type. For example, you could implement a generic method
that works on any Windows Forms control:

Public Shared Sub ChangeControl(Of C As Control)(ByVal control As C)

control.Anchor = AnchorStyles.Top Or AnchorStyles.Left

End Sub

The type parameter, C, is constrained to be of type Control. This restricts calling code to only specify this
parameter as Control or a subclass of Control such as TextBox.

Then the parameter to the method is specified to be of type C, which means that this method will work
against any Control or subclass of Control. Because of the constraint, the compiler now knows that the

266

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 267

Chapter 6: Generics

variable will always be some type of Control object, so it allows you to use any methods, properties, or
events exposed by the Control class as you write your code.

Finally, it is possible to constrain a type parameter to be of a specific generic type:

Public Class ListClass(Of T, V As Generic.List(Of T))

End Class

The preceding code specifies that the V type must be a List(Of T), whatever type T might be. A caller
can use your class like this:

Dim list As ListClass(Of Integer, Generic.List(Of Integer))

Earlier in the chapter, in the discussion of how inheritance and generics interact, you saw that things can
get quite complex. The same is true when you constrain type parameters based on generic types.

Class and Structure Constraints
Another form of constraint enables you to be more general. Rather than enforce the requirement for a
specific interface or class, you can specify that a type parameter must be either a reference type or a
value type.

To specify that the type parameter must be a reference type, you use the Class constraint:

Public Class ReferenceOnly(Of T As Class)

End Class

This ensures that the type specified for T must be the type of an object. Any attempt to use a value type,
such as Integer or Structure, results in a compiler error.

Likewise, you can specify that the type parameter must be a value type such as Integer or a Structure
by using the Structure constraint:

Public Class ValueOnly(Of T As Structure)

End Class

In this case, the type specified for T must be a value type. Any attempt to use a reference type such as
String, an interface, or a class results in a compiler error.

New Constraints
Sometimes you want to write generic code that creates instances of the type specified by a type parameter.
In order to know that you can actually create instances of a type, you need to know that the type has a
default public constructor. You can determine this using the New constraint:

Public Class Factories(Of T As New)

Public Function CreateT() As T

267

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 268

Chapter 6: Generics

Return New T
End Function

End Class

The type parameter, T, is constrained so that it must have a public default constructor. Any attempt to
specify a type for T that does not have such a constructor will result in a compile error.

Because you know that T will have a default constructor, you are able to create instances of the type, as
shown in the CreateT method.

Multiple Constraints
In many cases, you will need to specify multiple constraints on the same type parameter. For instance,
you might want to require that a type be a reference type and have a public default constructor.

Essentially, you are providing an array of constraints, so you use the same syntax you use to initialize
elements of an array:

Public Class Factories(Of T As {New, Class})

Public Function CreateT() As T
Return New T

End Function

End Class

The constraint list can include two or more constraints, enabling you to specify a great deal of information
about the types allowed for this type parameter.

Within your generic template code, the compiler is aware of all the constraints applied to your type
parameters, so it allows you to use any methods, properties, and events specified by any of the constraints
applied to the type.

Generics and Late Binding
One of the primary limitations of generics is that variables and parameters declared based on a type
parameter are treated as type System.Object inside your generic template code. While constraints
offer a partial solution, expanding the type of those variables based on the constraints, you are still very
restricted in what you can do with the variables.

One key example is the use of common operators. There is no constraint you can apply that tells the
compiler that a type supports the + or – operators. This means that you cannot write generic code
like this:

Public Function Add(Of T)(ByVal val1 As T, ByVal val2 As T) As T
Return val1 + val2

End Function

This will generate a compiler error because there is no way for the compiler to verify that variables of
type T (whatever that is at runtime) support the + operator. Because there is no constraint that you can

268

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 269

Chapter 6: Generics

apply to T to ensure that the + operator will be valid, there is no direct way to use operators on variables
of a generic type.

One alternative is to use Visual Basic’s native support for late binding to overcome the limitations shown
here. Recall that late binding incurs substantial performance penalties because a lot of work is done
dynamically at runtime, rather than by the compiler when you build your project. It is also important to
remember the risks that attend late binding — specifically, the fact that the code can fail at runtime in
ways that early-bound code cannot. Nonetheless, given those caveats, late binding can be used to solve
your immediate problem.

To enable late binding, be sure to put Option Strict Off at the top of the code file containing your
generic template (or set the project property to change Option Strict project-wide from the project’s
properties). Then you can rewrite the Add function as follows:

Public Function Add(Of T)(ByVal value1 As T, ByVal value2 As T) As T
Return CObj(value1) + CObj(value2)

End Function

By forcing the value1 and value2 variables to be explicitly treated as type Object, you are telling the
compiler that it should use late binding semantics. Combined with the Option Strict Off setting, the
compiler assumes that you know what you are doing and it allows the use of the + operator even though
its validity can’t be confirmed.

The compiled code uses dynamic late binding to invoke the + operator at runtime. If that operator does
turn out to be valid for whatever type T is at runtime, then this code will work great. In contrast, if the
operator is not valid, then a runtime exception will be thrown.

Summary
Generics enable you to create class, structure, interface, and method templates. These templates gain
specific types based on how they are declared or called at runtime. Generics provide you with another
code reuse mechanism, along with procedural and object-oriented concepts.

They also enable you to change code that uses parameters or variables of type Object (or other general
types) to use specific data types. This often leads to much better performance and increases the readability
of your code.

269

Evjen-91361 c06.tex V2 - 04/01/2008 3:38pm Page 270

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 271

Namespaces

Even if you did not realize it, you have been using namespaces since the beginning of this book. For
example, System, System.Diagnostics, and System.Windows.Forms are all namespaces contained
within the .NET Framework. Namespaces are an easy concept to understand, but this chapter puts
the ideas behind them on a firm footing — and clears up any misconceptions you might have about
how they are used and organized.

If you are familiar with COM, you will find that the concept of namespaces is the logical exten-
sion of programmatic identifier (ProgID) values. For example, the functionality of Visual Basic 6’s
FileSystemObject is now mostly encompassed in .NET’s System.IO namespace, though this is not
a one-to-one mapping. However, namespaces reflect more than a change in name; they represent
the logical extension of the COM naming structure, expanding its ease of use and extensibility.

In addition to the traditional System and Microsoft namespaces (for example, used in things such
as Microsoft’s Web Services Enhancements), the .NET Framework 3.5 includes a way to access
some tough-to-find namespaces using the My namespace. The My namespace is a powerful way of
‘‘speed-dialing’’ specific functionalities in the base.

This chapter about namespaces covers the following:

❑ What namespaces are

❑ Which namespaces are used in Visual Studio 2008 projects by default

❑ How to reference namespaces and use the Imports statement

❑ How the compiler searches for class references

❑ How to alias namespaces and create your own namespaces

❑ How to use the My namespace

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 272

Chapter 7: Namespaces

What Is a Namespace?
Namespaces are a way of organizing the vast number of classes, structures, enumerations, delegates, and
interfaces that the .NET Framework class library provides. They are a hierarchically structured index into
a class library, which is available to all of the .NET languages, not only the Visual Basic 2008 language
(with the exception of the My namespace). The namespaces, or object references, are typically organized by
function. For example, the System.IO namespace contains classes, structures, and interfaces for working
with input/output streams and files. The classes in this namespace do not necessarily inherit from the
same base classes (apart from Object, of course).

A namespace is a combination of a naming convention and an assembly, which organizes collections of
objects and prevents ambiguity about object references. A namespace can be, and often is, implemented
across several physical assemblies, but from the reference side, it is the namespace that ties these assem-
blies together. A namespace consists of not only classes, but also other (child) namespaces. For example,
IO is a child namespace of the System namespace.

Namespaces provide identification beyond the component name. With a namespace, it is possible to
use a more meaningful title (for example, System) followed by a grouping (for example, Text) to group
together a collection of classes that contain similar functions. For example, the System.Text namespace
contains a powerful class called StringBuilder. To reference this class, you can use the fully qualified
namespace reference of System.Text.StringBuilder, as shown here:

Dim sb As New System.Text.StringBuilder()

The structure of a namespace is not a reflection of the physical inheritance of classes that make
up the namespace. For example, the System.Text namespace contains another child namespace called
RegularExpressions. This namespace contains several classes, but they do not inherit or otherwise
reference the classes that make up the System.Text namespace.

Figure 7-1 shows how the System namespace contains the Text child namespace, which also has a child
namespace, called RegularExpressions. Both of these child namespaces, Text and RegularExpressions,
contain a number of objects in the inheritance model for these classes, as shown in the figure.

As shown in Figure 7-1, while some of the classes in each namespace do inherit from each other, and
while all of the classes eventually inherit from the generic Object, the classes in System.Text.
RegularExpressions do not inherit from the classes in System.Text.

To emphasize the usefulness of namespaces, we can draw another good example from Figure 7-1. If you
make a reference to System.Drawing.Imaging.Encoder in your application, then you are making a ref-
erence to a completely different Encoder class than the namespace shown in Figure 7-1 — System.Text.
Encoder. Being able to clearly identify classes that have the same name but very different functions, and
disambiguate them, is yet another advantage of namespaces.

If you are an experienced COM developer, you may note that unlike a ProgID, which reflects a one-level
relationship between the project assembly and the class, a single namespace can use child namespaces
to extend the meaningful description of a class. The System namespace, imported by default as part of
every project created with Visual Studio, contains not only the default Object class, but also many other
classes that are used as the basis for every .NET language.

What if a class you need isn’t available in your project? The problem may be with the references in your
project. For example, by default, the System.DirectoryServices namespace, used to get programmatic

272

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 273

Chapter 7: Namespaces

access to the Active Directory objects, is not part of your project’s assembly. Using it requires adding a
reference to the project assembly. The concept of referencing a namespace is very similar to the capability
to reference a COM object in VB6.

System.Text System.Text.RegularExpressions

Capture

Group

Encoding

CaptureCollection

GroupCollection

MatchCollection

RegEx

RegExCompilationInfo

Object

StringBuilder

UTF8Encoding

UTF7Encoding

ASCIIEncoding

Encoding

Encoder

Decoder

UnicodeEncoding

Figure 7-1

In fact, with all this talk about referencing, it is probably a good idea to look at an example of adding an
additional namespace to a project. Before doing that, though, you should know a little bit about how a
namespace is actually implemented.

Namespaces are implemented within .NET assemblies. The System namespace is implemented in an
assembly called System.dll provided with Visual Studio. By referencing this assembly, the project is
capable of referencing all the child namespaces of System that happen to be implemented in this assem-
bly. Using the preceding table, the project can import and use the System.Text namespace because its
implementation is in the System.dll assembly. However, although it is listed, the project cannot import
or use the System.Data namespace unless it references the assembly that implements this child of the
System namespace, System.Data.dll.

Let’s create a sample project so you can examine the role that namespaces play within it. Using Visual
Studio 2008, create a new Visual Basic Windows Application project called Namespace_Sampler.

The Microsoft.VisualBasic.Compatibility.VB6 library is not part of Visual Basic 2008 projects by
default. To gain access to the classes that this namespace provides, you need to add it to your project.
You can do this by using the Add Reference dialog box (available by right-clicking the Project Name
node within the Visual Studio Solution Explorer). The Add Reference dialog box has five tabs, each
containing elements that can be referenced from your project:

❑ .NET — This tab contains .NET assemblies that can be found in the GAC. In addition to provid-
ing the name of the assembly, you can also get the version of the assembly and the version of the
framework to which the assembly is compiled. The final data point found in this tab is the loca-
tion of the assembly on the machine.

273

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 274

Chapter 7: Namespaces

❑ COM — This tab contains all the available COM components. It provides the name of the
component, the TypeLib version, and the path of the component.

❑ Projects — This tab contains any custom .NET assemblies from any of the various projects
contained within your solution.

❑ Browse — This tab enables you to look for any component files (.dll, .tlb, .olb, .ocx, .exe, or
.manifest) on the network.

❑ Recent — This tab lists the most recently made references for quick referencing capabilities.

The Add Reference dialog is shown in Figure 7-2.

Figure 7-2

The available .NET namespaces are listed by component name. This is the same as the namespace name.
Within the dialog, you can see a few columns that supply the namespace of the component, the version
number of the component, the version of the .NET Framework for which the particular component is
targeted, and the path location of the file. You can select a single namespace to make a reference to
by clicking your mouse on the component that you are interested in. Holding down the Ctrl key and
pressing the mouse button enables you to select multiple namespaces to reference.

To select a range of namespaces, first click on either the first or the last component in the dialog that is
contained in the range, and then complete the range selection by holding down the Shift key and using
the mouse to select the other component in the range. Once you have selected all the components that
you are interested in referencing, click OK.

The example in Figure 7-2 is importing some namespaces from the Microsoft.VisualBasic namespace,
even though only one selection has been made. This implementation, while a bit surprising at first, is
very powerful. First, it shows the extensibility of namespaces. This is because the single Microsoft.
VisualBasic.Compatibility.VB6 namespace is actually implemented in two separate assemblies. If
you also make a reference to the Microsoft.VisualBasic.Compatibility namespace as well as the
Microsoft.VisualBasic.Compatibility.Data namespace, you will see (through the Object Browser
found in Visual Studio) that the Microsoft.VisualBasic.Compatibility.VB6 namespace is
actually found in both locations, as shown in Figure 7-3.

274

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 275

Chapter 7: Namespaces

Figure 7-3

Second, this implementation enables you to include only the classes that you need — in this case, those
related to the VB6 (Visual Basic 6) environment or to database tools, or both types.

Note some interesting points about the Microsoft.VisualBasic namespace. First, this namespace gives
you access to all the functions that VB6 developers have had for years. Microsoft has implemented these
in the .NET Framework and made them available for your use within your .NET projects. Because
these functions have been implemented in the .NET Framework, there is absolutely no performance
hit for using them, but you will most likely find the functionality that they provide available in newer
.NET namespaces. Second, contrary to what the name of the namespace suggests, this namespace is
available for use by all of the .NET languages, which means that even a C# developer could use the
Microsoft.VisualBasic namespace if desired.

Namespaces and References
Highlighting their importance to every project, references (including namespaces) are no longer hidden
from view, available only after opening a dialog box as they were in VB6. As shown in the Solution
Explorer window in Figure 7-4, every new project includes a set of referenced namespaces. (If you do
not see the references listed in the Solution Explorer, click the Show All Files button from the Solution
Explorer menu.)

The list of default references varies depending on the type of project. The example in Figure 7-4 shows
the default references for a Windows Forms project in Visual Studio 2008. If the project type were an
ASP.NET Web Application, the list of references would change accordingly — the reference to the
System.Windows.Forms namespace assembly would be replaced by a reference to System.Web. If

275

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 276

Chapter 7: Namespaces

the project type were an ASP.NET Web service (not shown), then the System.Windows.Forms namespace
would be replaced by references to the System.Web and System.Web.Services namespaces.

Figure 7-4

In addition to making the namespaces available, references play a second important role in your project.
One of the advantages of .NET is using services and components built on the common language runtime
(CLR), which enables you to avoid DLL conflicts. The various problems that can occur related to DLL
versioning, commonly referred to as ‘‘DLL hell,’’ involve two types of conflict.

The first situation occurs when you have a component that requires a minimum DLL version, and an
older version of the same DLL causes your product to break. The alternative situation is when you require
an older version of a DLL, and a new version is incompatible. In either case, the result is that a shared
file, outside of your control, creates a systemwide dependency that affects your software. With .NET, it
is possible, but not required, to indicate that a DLL should be shipped as part of your project to avoid an
external dependency.

To indicate that a referenced component should be included locally, you can select the reference in the
Solution Explorer and then examine the properties associated with that reference. One editable property
is called Copy Local. You will see this property and its value in the Properties window within Visual
Studio 2008. For those assemblies that are part of a Visual Studio 2008 installation, this value defaults to
False, as shown in Figure 7-5. However, for custom references, this property defaults to True to indicate
that the referenced DLL should be included as part of the assembly. Changing this property to True
changes the path associated with the assembly. Instead of using the path to the referenced file’s location
on the system, the project creates a subdirectory based on the reference name and places the files required
for the implementation of the reference in this subdirectory.

The benefit of this is that even when another version of the DLL is later placed on the system, your
project’s assembly will continue to function. However, this protection from a conflicting version comes
at a price: Future updates to the namespace assembly to fix flaws will be in the system version but not in
the private version that is part of your project’s assembly.

To resolve this, Microsoft’s solution is to place new versions in directories based on their version infor-
mation. If you examine the path information for all of the Visual Studio 2008 references, you will see that

276

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 277

Chapter 7: Namespaces

it includes a version number. As new versions of these DLLs are released, they are installed in a separate
directory. This method allows for an escape from DLL hell, by keeping new versions from stomping on
old versions, and it enables old versions to be easily located for maintenance updates. Therefore, it is
often better to leave alone the default behavior of Visual Studio 2008, which is set to copy only locally
custom components, until your organization implements a directory structure with version information
similar to that of Microsoft.

Figure 7-5

The Visual Basic 2008 compiler will not allow you to add a reference to your assembly if the targeted
implementation includes a reference that is not also referenced in your assembly. The good news is that
the compiler will help. If, after adding a reference, that reference does not appear in the IntelliSense list
generated by Visual Studio 2008, then go ahead and type the reference to a class from that reference.
The compiler will flag it with underlining, similar to the Microsoft Word spelling or grammar error
underlines. When you click the underlined text, the compiler will tell you which other assemblies need
to be referenced in the project in order to use the class in question.

Common Namespaces
The generated list of references shown in the Solution Explorer for the newly created Namespace_Sampler
project includes most, but not all, of the namespaces that are part of your Windows Application project.
For example, one namespace not displayed as a reference is Microsoft.VisualBasic, and the accompa-
nying Microsoft.VisualBasic.dll. Every Visual Basic 2008 project includes the namespace Microsoft.
VisualBasic. This namespace is part of the Visual Studio project templates for Visual Basic 2008 and is,
in short, what makes Visual Basic 2008 different from C# or any other .NET language. The implicit inclu-
sion of this namespace is the reason why you can call IsDBNull and other methods of Visual Basic 2008
directly. The only difference in the default namespaces included with Visual Basic 2008 and C# Windows
Application projects is that the former use Microsoft.VisualBasic and the latter use Microsoft.CSharp.

To see all of the namespaces that are imported automatically, such as the Microsoft.VisualBasic
namespace, right-click the project name in the Solution Explorer and select Properties from the
context menu. This opens the project’s Properties window in Visual Studio. Select the References tab
from the left pane and you will see the reference Microsoft.VisualBasic at the top of the list (see
Figure 7-6).

277

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 278

Chapter 7: Namespaces

Figure 7-6

When looking at the project’s global list of imports in the text area at the bottom of the page, you can
see that in addition to the Microsoft.VisualBasic namespace, the System.Collections and System.
Diagnostics namespaces are also imported into the project. This is signified by the check marks next
to the namespace. Unlike the other namespaces in the list, these namespaces are not listed as refer-
ences in the text area directly above this. That’s because implementation of the System.Collections
and System.Diagnostics namespaces is part of the referenced System.dll. Similarly to Microsoft.
VisualBasic, importing these namespaces allows references to the associated classes, such that a fully
qualified path is not required. Because these namespaces contain commonly used classes, it is worthwhile
to always include them at the project level.

The following list briefly summarizes some of the namespaces commonly used in Visual Basic 2008
projects:

❑ System.Collections — Contains the classes that support various feature-rich object collections.
Included automatically, it has classes for arrays, lists, dictionaries, queues, hash tables, and so on.

❑ System.Collections.Generic — Ever since .NET 2.0, this namespace has enabled working with
the generics capabilities of the framework — a way to build type-safe collections as well as pro-
vide generic methods and classes.

❑ System.Data — This namespace contains the classes needed to support the core features of
ADO.NET.

❑ System.Diagnostics — Included in all Visual Basic 2008 projects, this namespace includes the
debugging classes. The Trace and Debug classes provide the primary capabilities, but the name-
space contains dozens of classes to support debugging.

278

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 279

Chapter 7: Namespaces

❑ System.Drawing — This namespace contains simple drawing classes to support Windows
Application projects.

❑ System.EnterpriseServices — Not included automatically, the System.EnterpriseServices
implementation must be referenced to make it available. This namespace contains the classes
that interface .NET assemblies with COM+.

❑ System.IO — This namespace contains important classes that enable you to read and write to
files as well as data streams.

❑ System.Linq — This namespace contains an object interface to work with disparate data sources
in a new and easy manner. This is a new namespace in .NET 3.5.

❑ System.Text — This commonly used namespace enables you to work with text in a number of
different ways, usually in regard to string manipulation. One of the more popular objects that
this namespace offers is the StringBuilder object.

❑ System.Threading — This namespace contains the objects needed to work with and manipulate
threads within your application.

❑ System.Web — This is the namespace that deals with one of the more exciting features of the
.NET Framework: ASP.NET. This namespace provides the objects that deal with browser-server
communications. Two main objects include HttpRequest, which deals with the request from
the client to the server, and HttpResponse, which deals with the response from the server to the
client.

❑ System.Web.Services — This is the main namespace you use when creating XML Web Services,
one of the more powerful capabilities provided with the .NET Framework. This namespace
offers the classes that deal with SOAP messages and the manipulation of these messages.

❑ System.Windows.Forms — This namespace provides classes to create Windows Forms in
Windows Application projects. It contains the form elements.

Of course, to really make use of the classes and other objects in this list, you need more detailed informa-
tion. In addition to resources such as Visual Studio 2008’s help files, the best source of information is the
Object Browser, available directly in the Visual Studio 2008 IDE. You can find it by selecting View➪Object
Browser if you are using Visual Studio 2008, 2005, or 2003, or View➪Other Windows➪Object Browser if
you are using Visual Studio 2002. The Visual Studio 2008 Object Browser is shown in Figure 7-7.

The Object Browser displays each of the referenced assemblies and enables you to drill down into the
various namespaces. Figure 7-7 illustrates how the System.dll implements a number of namespaces,
including some that are part of the System namespace. By drilling down into a namespace, you can see
some of the classes available. By further selecting a class, the browser shows not only the methods and
properties associated with the selected class, but also a brief outline of what that class does.

Using the Object Browser is an excellent way to gain insight into which classes and interfaces are
available via the different assemblies included in your project, and how they work. Clearly, the abil-
ity to actually see which classes are available and know how to use them is fundamental to being able
to work efficiently. Working effectively in the .NET CLR environment requires finding the right class for
the task.

279

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 280

Chapter 7: Namespaces

Figure 7-7

Importing and Aliasing Namespaces
Not all namespaces should be imported at the global level. Although you have looked at the namespaces
included at this level, it is much better to import namespaces only in the module where they will be used.
Importing a namespace at the module level does not change setting the reference, but you do not add it
into the list of imports on the project’s Properties page. As with variables used in a project, it is possible
to define a namespace at the module level. The advantage of this is similar to using local variables in
that it helps to prevent different namespaces from interfering with each other. As this section shows, it is
possible for two different namespaces to contain classes or even child namespaces with the same name.

Importing Namespaces
The development environment and compiler need a way to prioritize the order in which namespaces
should be checked when a class is referenced. It is always possible to unequivocally specify a class by
stating its complete namespace path. This is referred to as fully qualifying your declaration. The following
example fully qualifies a StringBuilder object:

Dim sb As New System.Text.StringBuilder

However, if every reference to every class needed its full namespace declaration, then Visual Basic
2008 and every other .NET language would be very difficult to program in. After all, who wants to
type System.Collections.ArrayList each time an instance of the ArrayList class is wanted? If you
review the global references, you will see the System.Collections namespace. Thus, you can just

280

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 281

Chapter 7: Namespaces

type ArrayList whenever you need an instance of this class, as the reference to the larger System.
Collections namespace has already been made by the application.

In theory, another way to reference the StringBuilder class is to use Text.StringBuilder, but with all
namespaces imported globally, there is a problem with this, caused by what is known as namespace crowd-
ing. Because there is a second namespace, System.Drawing, that has a child called Text, the compiler
does not have a clear location for the Text namespace and, therefore, cannot resolve the StringBuilder
class. The solution to this problem is to ensure that only a single version of the Text child namespace is
found locally. That way, the compiler will use this namespace regardless of the global availability of the
System.Drawing.Text namespace.

Imports statements specify to the compiler those namespaces that the code will use:

Imports Microsoft.Win32
Imports System
Imports SysDraw = System.Drawing

Once they are imported into the file, you are not required to fully qualify your object declarations in
your code. For instance, if you imported the System.Data.SqlClient namespace into your file, then you
would be able to create a SqlConnection object in the following manner:

Dim conn As New SqlConnection

Each of the preceding Imports statements illustrates a different facet of importing namespaces. The
first namespace, Imports Microsoft.Win32, is not imported at the global level. Looking at the reference
list, you may not see the Microsoft assembly referenced directly. However, opening the Object Browser
reveals that this namespace is actually included as part of the System.dll.

As noted earlier, the StringBuilder references become ambiguous because both System.Text and
System.Drawing.Text are valid namespaces at the global level. As a result, the compiler has no way
to determine which Text child namespace is being referenced. Without any clear indication, the compiler
flags Text.StringBuilder declarations in the command handler. However, using the Imports System
declaration in the module tells the compiler that before checking namespaces imported at the global level,
it should attempt to match incomplete references at the module level. Because the System name-
space is declared at this level, if System.Drawing is not, then there is no ambiguity regarding which child
namespace Text.StringBuilder belongs to.

This sequence demonstrates how the compiler looks at each possible declaration:

❑ It first determines whether the item is a complete reference, such as System.
Text.StringBuilder.

❑ If the declaration does not match a complete reference, then the compiler tries to determine
whether the declaration is from a child namespace of one of the module-level imports.

❑ Finally, if a match is not found, then the compiler looks at the global-level imports to determine
whether the declaration can be associated with a namespace imported for the entire assembly.

While the preceding logical progression of moving from a full declaration through module- to global-level
imports resolves the majority of issues, it does not handle all possibilities. Specifically, if you import

281

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 282

Chapter 7: Namespaces

System.Drawing at the module level, the namespace collision would return. This is where the third
import statement becomes important — this import statement uses an alias.

Aliasing Namespaces
Aliasing has two benefits in .NET. First, aliasing enables a long namespace such as System.
EnterpriseServices to be replaced with a shorthand name such as COMPlus. Second, it adds a way
to prevent ambiguity among child namespaces at the module level.

As noted earlier, the System and System.Drawing namespaces both contain a child namespace of Text.
Because you will be using a number of classes from the System.Drawing namespace, it follows that
this namespace should be imported into the form’s module. However, were this namespace imported
along with the System namespace, the compiler would again find references to the Text child namespace
ambiguous. By aliasing the System.Drawing namespace to SysDraw, the compiler knows that it should
only check the System.Drawing namespace when a declaration begins with that alias. The result is that
although multiple namespaces with the same child namespace are now available at the module level, the
compiler knows that one (or more) of them should only be checked at this level when they are explicitly
referenced.

Aliasing as defined here is done in the following fashion:

Imports SysDraw = System.Drawing

Referencing Namespaces in ASP.NET
Making a reference to a namespace in ASP.NET is quite similar to working with Windows Forms, but
you have to take some simple, additional steps. From your ASP.NET solution, first make a reference to
the assemblies from the References folder, just as you do with Windows Forms. Once there, import these
namespaces at the top of the page file in order to avoid having to fully qualify the reference every time
on that particular page.

For example, instead of using System.Collections.Generic for each instance of use, use the < %# Import
% > page directive at the top of the ASP.NET page (if the page is constructed using the inline coding style)
or use the Imports keyword at the top of the ASP.NET page’s code-behind file (just as you would with
Windows Forms applications). The following example shows how to perform this task when using inline
coding for ASP.NET pages:

<%# Import Namespace="System.Collections.Generic" %>

Now that this reference is in place on the page, you can access everything this namespace contains with-
out having to fully qualify the object you are accessing. Note that the Import keyword in the inline
example is not missing an ‘‘s’’ at the end. When importing in this manner, it is Import (without the ‘‘s’’)
instead of Imports — as it is in the ASP.NET code-behind model and Windows Forms.

In ASP.NET 1.0/1.1, if you used a particular namespace on each page of your application, you need
the Import statement on each and every page where that namespace was needed. ASP.NET 3.5 includes

282

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 283

Chapter 7: Namespaces

the capability to use the web.config file to make a global reference so that you don’t need to make further
references on the pages themselves, as shown in the following example:

<pages>
<namespaces>

<add namespace="System.Drawing" />
<add namespace="Wrox.Books" />

</namespaces>
</pages>

In this example, using the <namespaces> element in the web.config file, references are made to the
System.Drawing namespace and the Wrox.Books namespace. Because these references are now con-
tained within the web.config file, there is no need to again reference them on any of the ASP.NET pages
contained within this solution.

Creating Your Own Namespaces
Every assembly created in .NET is part of some root namespace. By default, this logic actually mirrors
COM, in that assemblies are assigned a namespace that matches the project name. However, unlike COM,
in .NET it is possible to change this default behavior. Just as Microsoft has packaged the system-level
and CLR classes using well-defined names, you can create your own namespaces. Of course, it is also
possible to create projects that match existing namespaces and extend those namespaces, but that is very
poor programming practice.

Creating an assembly in a custom namespace can be done at one of two levels, although unless you
want the same name for each assembly that will be used in a large namespace, you would normally
reset the root namespace for the assembly. This is done through the assembly’s project pages, reached by
right-clicking the solution name in the Solution Explorer window and working off the first tab (Applica-
tion) within the Properties page that opens in the document window, as shown in Figure 7-8.

The next step is optional, but, depending on whether you want to create a class at the top level or at
a child level, you can add a Namespace command to your code. There is a trick to being able to create
top-level namespaces or multiple namespaces within the modules that make up an assembly. Instead of
replacing the default namespace with another name, you can delete the default namespace and define
the namespaces only in the modules, using the Namespace command.

The Namespace command is accompanied by an End Namespace command. This End Namespace command
must be placed after the End Class tag for any classes that will be part of the namespace. The following
code demonstrates the structure used to create a MyMetaNamespace namespace, which contains a single
class:

Namespace MyMetaNamespace
Class MyClass1

’ Code
End Class

End Namespace

283

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 284

Chapter 7: Namespaces

Figure 7-8

You can then utilize the MyClass1 object simply by referencing its namespace, MyMetaNamespace.
MyClass1. It is also possible to have multiple namespaces in a single file, as shown here:

Namespace MyMetaNamespace1
Class MyClass1

’ Code
End Class

End Namespace

Namespace MyMetaNamespace2
Class MyClass2

’ Code
End Class

End Namespace

Using this kind of structure, if you want to utilize MyClass1, then you access it through the namespace
MyMetaNamespace.MyClass1. This does not give you access to MyMetaNamespace2 and the objects that it
offers; instead, you have to make a separate reference to MyMetaNamespace2.MyClass2.

The Namespace command can also be nested. Using nested Namespace commands is how child name-
spaces are defined. The same rules apply — each Namespace must be paired with an End Namespace and
must fully encompass all of the classes that are part of that namespace. In the following example, the
MyMetaNamespace has a child namespace called MyMetaNamespace.MyChildNamespace:

Namespace MyMetaNamespace
Class MyClass1

’ Code
End Class

Namespace MyChildNamespace

284

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 285

Chapter 7: Namespaces

Class MyClass2
’ Code

End Class
End Namespace

End Namespace

This is another point to be aware of when you make references to other namespaces within your own
custom namespaces. Consider the following example:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.IO

Namespace MyMetaNamespace1
Class MyClass1

’ Code
End Class

End Namespace
Namespace MyMetaNamespace2

Class MyClass2
’ Code

End Class
End Namespace

In this example, a number of different namespaces are referenced in the file. The three namespaces refer-
enced at the top of the code listing — the System, System.Data, and System.Data.SqlClient namespace
references — are available to every namespace developed in the file. This is because these three refer-
ences are sitting outside of any particular namespace declarations. However, the same is not true for the
System.IO namespace reference. Because this reference is made within the MyMetaNamespace2 name-
space, it is unavailable to any other namespace in the file.

When you create your own namespaces, Microsoft recommends that you use a
convention of CompanyName.TechnologyName — for example, Wrox.Books. This helps
to ensure that all libraries are organized in a consistent way.

Sometimes when you are working with custom namespaces, you might find that you have locked your-
self out of accessing a particular branch of a namespace, purely due to naming conflicts. Visual Basic
includes the Global keyword, which can be used as the outermost root class available in the .NET Frame-
work class library. Figure 7-9 shows a diagram of how the class structure looks with the Global keyword.

This means that you can make specifications such as

Global.System.String

or

Global.Wrox.System.Titles

285

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 286

Chapter 7: Namespaces

Global

System

Web

Wrox

Text

Integer

String

Book

Text

String

System

Figure 7-9

The My Keyword
The My keyword is a novel concept that was introduced in the .NET Framework 2.0 to quickly give you
access to your application, your users, your resources, the computer, or the network on which the appli-
cation resides. The My keyword has been referred to as a way of speed-dialing common but complicated
resources to which you need access. Using the My keyword, you can quickly access a wide variety of
items, such as user details or specific settings of the requestor’s browser.

Though not really considered a true namespace, the My object declarations that you make work in the
same way as the .NET namespace structure you are used to working with. To give you an example, let’s
first look at how you get the user’s machine name using the traditional namespace structure:

Environment.MachineName.ToString()

For this example, you simply need to use the Environment class and use this namespace to get at the
MachineName property. The following shows how you would accomplish this same task using the My
keyword:

My.Computer.Info.MachineName.ToString()

Looking at this example, you may be wondering what the point is if the example that uses My is lengthier
than the first example that just works off of the Environment namespace. Remember that the point is
not the length of what you type to access specific classes, but a logical way to find frequently accessed
resources without spending a lot of time hunting them down. Would you have known to look in the
Environment class to get the machine name of the user’s computer? Maybe, but maybe not. Using
My.Computer.Info.MachineName.ToString is a tremendously more logical approach; and once com-
piled, this namespace declaration will be set to work with the same class as shown previously without a
performance hit.

286

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 287

Chapter 7: Namespaces

If you type the My keyword in your Windows Forms application, IntelliSense provides you with seven
items to work with: Application, Computer, Forms, Resources, Settings, User, and WebServices.
Though this keyword works best in the Windows Forms environment, there are still things that you
can use in the Web Forms world. If you are working with a Web application, then you will have three
items off the My keyword: Application, Computer, and User. Each of these is described further in the
following sections.

My.Application
The My.Application namespace gives you quick access to specific settings and points that deal with
your overall application. The following table details the properties and methods of the My.Application
namespace:

Property/Method Description

ApplicationContext Returns contextual information about the thread of the
Windows Forms application

ChangeCulture A method that enables you to change the culture of the
current application thread

ChangeUICulture A method that enables you to change the culture that is
being used by the Resource Manager

Culture Returns the current culture being used by the current thread

Deployment Returns an instance of the ApplicationDeployment object,
which allows for programmatic access to the application’s
ClickOnce features

GetEnvironmentVariable A method that enables you to access the value of an
environment variable

Info Provides quick access to the assembly of Windows Forms.
You can get at assembly information such as version
number, name, title, copyright information, and more.

IsNetworkDeployed Returns a Boolean value that indicates whether the
application was distributed via the network using the
ClickOnce feature. If True, then the application was
deployed using ClickOnce — otherwise False.

Log Enables you to write to your application’s Event Log
listeners

MinimumSplashScreenDisplayTime Enables you to set the time for the splash screen

OpenForms Returns a FormCollection object, which allows access to
the properties of the forms currently open

SaveMySettingsOnExit Provides the capability to save the user’s settings upon
exiting the application. This method works only for
Windows Forms and console applications.

287

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 288

Chapter 7: Namespaces

Property/Method Description

SplashScreen Enables you to programmatically assign the splash screen
for the application

UICulture Returns the current culture being used by the Resource
Manager

While much can be accomplished using the My.Application namespace, for an example of its use, let’s
focus on the Info property. This property provides access to the information stored in the application’s
AssemblyInfo.vb file, as well as other details about the class file. In one of your applications, you can
create a message box that is displayed using the following code:

MessageBox.Show("Company Name: " & My.Application.Info.CompanyName & _
vbCrLf & _
"Description: " & My.Application.Info.Description & vbCrLf & _
"Directory Path: " & My.Application.Info.DirectoryPath & vbCrLf & _
"Copyright: " & My.Application.Info.Copyright & vbCrLf & _
"Trademark: " & My.Application.Info.Trademark & vbCrLf & _
"Name: " & My.Application.Info.AssemblyName & vbCrLf & _
"Product Name: " & My.Application.Info.ProductName & vbCrLf & _
"Title: " & My.Application.Info.Title & vbCrLf & _
"Version: " & My.Application.Info.Version.ToString())

From this example, it is clear that you can get at quite a bit of information concerning the assembly of the
running application. Running this code produces a message box similar to the one shown in Figure 7-10.

Figure 7-10

Another interesting property to look at from the My.Application namespace is the Log property. This
property enables you to work with the log files for your application. For instance, you can easily write
to the system’s Application Event Log by first changing the application’s app.config file to include the
following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.diagnostics>
<sources>

<source name="DefaultSource" switchName="DefaultSwitch">

288

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 289

Chapter 7: Namespaces

<listeners>
<add name="EventLog"/>

</listeners>
</source>

</sources>
<switches>

<add name="DefaultSwitch" value="Information" />
</switches>
<sharedListeners>

<add name="EventLog"
type="System.Diagnostics.EventLogTraceListener"
initializeData="EvjenEventWriter" />

</sharedListeners>
</system.diagnostics>

</configuration>

Once the configuration file is in place, you can record entries to the Application Event Log, as shown in
the following simple example:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

My.Application.Log.WriteEntry("Entered Form1_Load", _
TraceEventType.Information, 1)

End Sub

You could also just as easily use the WriteExceptionEntry method in addition to the WriteEntry
method. After running this application and looking in the Event Viewer, you will see the event shown in
Figure 7-11.

Figure 7-11

The previous example shows how to write to the Application Event Log when working with the objects
that write to the event logs. In addition to the Application Event Log, there is also a Security Event Log
and a System Event Log. Note that when using these objects, it is impossible to write to the Security

289

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 290

Chapter 7: Namespaces

Event Log, and it is only possible to write to the System Event Log if the application does it under either
the Local System or the Administrator accounts.

In addition to writing to the Application Event Log, you can just as easily write to a text file. As with
writing to the Application Event Log, writing to a text file also means that you need to make changes to
the app.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.diagnostics>
<sources>

<source name="DefaultSource" switchName="DefaultSwitch">
<listeners>

<add name="EventLog"/>

<add name="FileLog" />

</listeners>
</source>

</sources>
<switches>

<add name="DefaultSwitch" value="Information" />
</switches>
<sharedListeners>

<add name="EventLog"
type="System.Diagnostics.EventLogTraceListener"
initializeData="EvjenEventWriter" />

<add name="FileLog"

type="Microsoft.VisualBasic.Logging.FileLogTraceListener,
Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL"
initializeData="FileLogWriter"/>

</sharedListeners>
</system.diagnostics>

</configuration>

Now with this app.config file in place, you simply need to run the same WriteEntry method as before.
This time, however, in addition to writing to the Application Event Log, the information is also written
to a new text file. You can find the text file at C:\Documents and Settings\[username]\Application
Data\[AssemblyCompany]\[AssemblyProduct]\[Version]. For instance, in my example, the log file was
found at C:\Documents and Settings\Administrator\Application Data\Wrox\Log Writer\1.2.0.0\.
In the .log file found, you will see a line such as the following:

DefaultSource Information 1 Entered Form1_Load

By default, it is separated by tabs, but you can change the delimiter yourself by adding a delimiter
attribute to the FileLog section in the app.config file:

<add name="FileLog"

type="Microsoft.VisualBasic.Logging.FileLogTraceListener,
Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL"
initializeData="FileLogWriter" delimiter=";" />

290

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 291

Chapter 7: Namespaces

In addition to writing to Event Logs and text files, you can also write to XML files, console applications,
and more.

My.Computer
The My.Computer namespace can be used to work with the parameters and details of the computer in
which the application is running. The following table details the objects contained in this namespace:

Property Description

Audio This object enables you to work with audio files from your application. This includes
starting, stopping, and looping audio files.

Clipboard This object enables you to read and write to the clipboard.

Clock This enables access to the system clock to get at GMT and the local time of the
computer running the application. You can also get at the tick count, which is the
number of milliseconds that have elapsed since the computer was started.

FileSystem This object provides a large collection of properties and methods that enable
programmatic access to drives, folders, and files. This includes the ability to read,
write, and delete items in the file system.

Info This provides access to the computer’s details, such as amount of memory, the
operating system type, which assemblies are loaded, and the name of the computer
itself.

Keyboard This object provides information about which keyboard keys are pressed by the end
user. Also included is a single method, SendKeys, which enables you to send the
pressed keys to the active form.

Mouse This provides a handful of properties that enable detection of the type of mouse
installed, including details such as whether the left and right mouse buttons have been
swapped, whether a mouse wheel exists, and how much to scroll when the user uses
the wheel.

Name This is a read-only property that provides access to the name of the computer.

Network This object provides a single property and some methods that enable you to interact
with the network to which the computer on which the application is running is
connected. With this object, you can use the IsAvailable property to first verify that
the computer is connected to a network. If so, then the Network object enables you to
upload or download files, and ping the network.

Ports This object can provide notification when ports are available, as well as allow access to
the ports.

Registry This object provides programmatic access to the registry and the registry settings.
Using the Registry object, you can determine whether keys exist, determine values,
change values, and delete keys.

Screen This provides the capability to work with one or more screens that may be attached to
the computer.

291

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 292

Chapter 7: Namespaces

There is a lot to the My.Computer namespace, and it is impossible to cover all or even most of it. For
an example that uses this namespace, we’ll take a look at the FileSystem property. The FileSystem
property enables you to easily and logically access drives, directories, and files on the computer.

To illustrate the use of this property, first create a Windows Form with a DataGridView with a single
column and a Button control. It should appear as shown in Figure 7-12.

Figure 7-12

This little application will look in the user’s My Music folder and list all of the .mp3 files found therein.
Once listed, the user of the application will be able to select one of the listed files; and after pressing the
Play button, the file will be launched and played inside Microsoft’s Windows Media Player.

The first step after getting the controls on the form in place is to make a reference to the Windows Media
Player DLL. You can find this on the COM tab, and the location of the DLL is C:\WINDOWS\System32\wmp.
dll. This provides you with an object called WMPLib in the References folder of your solution.

You might be wondering why you would make a reference to a COM object in order to play a .wma file
from your application, instead of using the My.Computer.Audio namespace that is provided to you. The
Audio property only allows for the playing of .wav files, because to play .wma, .mp3, and similar files,
users must have the proper codecs on their machine. These codecs are not part of the Windows OS, but
are part of Windows Media Player.

Now that the reference to the wmp.dll is in place, let’s put some code in the Form1_Load event:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

For Each MusicFile As String _

292

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 293

Chapter 7: Namespaces

In My.Computer.FileSystem.GetFiles _
(My.Computer.FileSystem.SpecialDirectories.MyMusic, _
FileIO.SearchOption.SearchAllSubDirectories, "*.wma*")
Dim MusicFileInfo As System.IO.FileInfo = _

My.Computer.FileSystem.GetFileInfo(MusicFile.ToString())
Me.DataGridView1.Rows.Add(MusicFileInfo.Directory.Parent.Name & _

"\" & MusicFileInfo.Directory.Name & "\" & MusicFileInfo.Name)
Next

End Sub

In this example, the My.Computer.FileSystem.GetFiles method points to the My Music folder through
the use of the SpecialDirectories property. This property enables logical and easy access to fold-
ers such as Desktop, My Documents, My Pictures, Programs, and more. Though it is possible to use
just this first parameter with the GetFiles method, this example makes further definitions. The second
parameter defines the recurse value — which specifies whether the subfolders should be perused as
well. In this case, the SearchOption enumeration is set to SearchAllSubDirectories. The last param-
eter defines the wildcard that should be used in searching for elements. In this case, the value of the
wildcard is *.wma, which instructs the GetFile method to get only the files that are of type .wma. You
could just as easily set it to *.mp3 or even just *.* to get anything contained within the folders. After it is
retrieved with the GetFile method, the file is then placed inside the DataGridView control, again using
the My.Computer.FileSystem namespace to define the value of the item placed within the row.

After the Form1_Load event is in place, the last event to construct is the Button1_Click event:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim MediaPlayer As New WMPLib.WindowsMediaPlayer
MediaPlayer.openPlayer(My.Computer.FileSystem.SpecialDirectories.MyMusic & _

"\" & DataGridView1.SelectedCells.Item(0).Value)
End Sub

From this example, you can see that it is pretty simple to play one of the provided .wma files. It is as
simple as creating an instance of the WMPLib.WindowsMediaPlayer object and using the openPlayer
method, which takes as a parameter the location of the file to play. In this case, you are again using the
SpecialDirectories property. The nice thing about using this property is that whereas it could be more
difficult to find the user’s My Music folder due to the username changing the actual location of the files
that the application is looking for, using the My namespace enables it to figure out the exact location of the
items. When built and run, the application provides a list of available music files, enabling you to easily
select one for playing in the Media Player. This is illustrated in Figure 7-13.

Though it would be really cool if it were possible to play these types of files using the Audio property
from the My.Computer namespace, it is still possible to use the My.Computer.Audio namespace for playing
.wav files and system sounds.

To play a system sound, use the following construct:

My.Computer.Audio.PlaySystemSound(SystemSounds.Beep)

The system sounds in the SystemSounds enumeration include Asterisk, Beep, Exclamation, Hand, and
Question.

293

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 294

Chapter 7: Namespaces

Figure 7-13

My.Forms Namespace
The My.Forms namespace provides a quick and logical way to access the properties and methods of the
forms contained within your solution. For instance, to get at the first form in your solution (assuming
that it’s named Form1), use the following namespace construct:

My.Form.Form1

To get at other forms, you simply change the namespace so that the name of the form you are trying to
access follows the Form keyword in the namespace construction.

My.Resources
The My.Resources namespace is a very easy way to get at the resources stored in your application.
If you open the MyResources.resx file from the My Projects folder in your solution, you can easily
create as many resources as you wish. For example, you could create a single String resource titled
MyResourceString and give it a value of St. Louis Rams.

To access the resources that you create, use the simple reference shown here:

My.Resources.MyResourceString.ToString()

Using IntelliSense, all of your created resources will appear after you type the period after the My.
Resources string.

294

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 295

Chapter 7: Namespaces

My.User
The My.User namespace enables you to work with the IPrincipal interface. You can use the My.User
namespace to determine whether the user is authenticated or not, the user’s name, and more. For instance,
if you have a login form in your application, you could allow access to a particular form with code similar
to the following:

If (Not My.User.IsInRole("Administrators")) Then
’ Code here

End If

You can also just as easily get the user’s name with the following:

My.User.Name

In addition, you can check whether the user is authenticated:

If My.User.IsAuthenticated Then
’ Code here

End If

My.WebServices
When not using the My.WebServices namespace, you access your Web services references in a lengthier
manner. The first step in either case is to make a Web reference to some remote XML Web Service in
your solution. These references will then appear in the Web References folder in the Solution Explorer
in Visual Studio 2008. Before the introduction of the My namespace, you would have accessed the values
that the Web reference exposed in the following manner:

Dim ws As New ReutersStocks.GetStockDetails
Label1.Text = ws.GetLatestPrice.ToString()

This works, but now with the My namespace, you can use the following construct:

Label1.Text = My.WebServices.GetStockDetails.GetLatestPrice.ToString()

Extending the My Namespace
You are not limited to only what the My namespace provides. Just as you can with other namespaces,
you can extend this namespace until your heart is content. To show an example of extending the My
namespace so that it includes your own functions and properties, in your Windows Forms application,
create a new module called CompanyExtensions.vb.

The code for the entire module and the associated class is presented here:

Namespace My
<HideModuleName()> _
Module CompanyOperations

295

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 296

Chapter 7: Namespaces

Private _CompanyExtensions As New CompanyExtensions

Friend Property CompanyExtensions() As CompanyExtensions
Get

Return _CompanyExtensions
End Get
Set(ByVal value As CompanyExtensions)

_CompanyExtensions = value
End Set

End Property
End Module

End Namespace

Public Class CompanyExtensions
Public ReadOnly Property CompanyDateTime() As DateTime

Get
Return DateTime.Now()

End Get
End Property

End Class

From this example, you can see that the module CompanyOperations is wrapped inside the My namespace.
From there, a single property is exposed — CompanyExtensions. The class, CompanyExtensions, is a
reference to the class found directly below in the same file. This class, CompanyExtensions, exposes
a single ReadOnly Property called CompanyDateTime.

With this in place, build your application, and you are now ready to see the new expanded My namespace
in action. From your Windows Form application’s Page_Load event, add the following code snippet:

MessageBox.Show(My.CompanyExtensions.CompanyDateTime)

From the My namespace, you will now find the CompanyExtensions class directly in the IntelliSense, as
presented in Figure 7-14.

Figure 7-14

The name of the module CompanyOperations doesn’t also appear in the list off My because the <Hide
ModuleName() > attribute precedes the opening module statement. This attribute signifies that you don’t
want the module name exposed out to the My namespace.

296

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 297

Chapter 7: Namespaces

The preceding example shows how to create your own sections within the My namespace, but you can
also extend the sections that are already present (for example, Computer, User, etc.). Extending the My
namespace is simply a matter of creating a partial class and extending it with the feature sets that
you want to appear in the overall My namespace. An example of such an extension is presented in the
following code sample:

Namespace My
Partial Class MyComputer

Public ReadOnly Property Hostname() As String
Get

Dim iphostentry As System.Net.IPHostEntry = _
System.Net.Dns.GetHostEntry(String.Empty)

Return iphostentry.HostName.ToString()
End Get

End Property
End Class

End Namespace

From this, you can see that this code is simply extending upon the already present MyComputer class:

Partial Class MyComputer

End Class

This extension exposes a single ReadOnly Property called Hostname that returns the local user’s host-
name. After compiling or utilizing this class in your project, you will find the Hostname property available
to you within the My.Computer namespace, as shown in Figure 7-15.

Figure 7-15

Summary
The introduction of namespaces with the .NET Framework provides a powerful tool that helps to abstract
logical capabilities from their physical implementation. While there are differences in the syntax of
referencing objects from a namespace and referencing the same object from a COM-style component

297

Evjen-91361 c07.tex V2 - 04/01/2008 3:40pm Page 298

Chapter 7: Namespaces

implementation, there are several similarities. After demonstrating the hierarchical structure of name-
spaces, this chapter covered the following:

❑ Why namespace hierarchies are not related to class hierarchies

❑ How to review and add references to a project

❑ How to import and alias namespaces at the module level

❑ How to create custom namespaces

❑ How to use the My namespace

Namespaces play an important role in enterprise software development. They enable you to separate
the implementation of related functional objects while retaining the ability to group these objects, which
improves the overall maintainability of your code. Anyone who has ever worked on a large project
has experienced situations in which a fix to a component was delayed because of the potential impact
on other components in the same project. Regardless of the logical separation of components in the
same project, developers who take part in the development process worry about testing. With separate
implementations for related components, it is not only possible to alleviate this concern, but also easier
than ever before for a team of developers to work on different parts of the same project.

298

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 299

Exception Handling
and Debugging

All professional-grade programs need to handle unexpected conditions. In programming languages
before Microsoft .NET, this was often called error handling. Unexpected conditions generated error
codes, which were trapped by programming logic that took appropriate action.

The common language runtime in .NET does not generate error codes. When an unexpected con-
dition occurs, the CLR creates a special object called an exception. This object contains properties
and methods that describe the unexpected condition in detail and provide various items of useful
information about what went wrong.

Because the .NET Framework deals with exceptions instead of errors, the term error handling is
seldom used in the .NET world. Instead, the term exception handling is preferred. This term refers to
the techniques used in .NET to detect exceptions and take appropriate action.

This chapter covers how exception handling works in Visual Basic 2008. It discusses the common
language runtime (CLR) exception handler in detail and the programming methods that are most
efficient in catching errors. Specifically, it covers the following:

❑ A very brief overview of error handling in Visual Basic 6 (VB6), for those just moving to
.NET

❑ The general principles behind exception handling

❑ The Try . . . Catch . . . Finally structure, the Exit Try statement, and nested Try structures

❑ The exception object’s methods and properties

❑ Capabilities in Visual Studio for working with exceptions

❑ Error and trace logging and how you can use these methods to obtain feedback about how
your program is working

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 300

Chapter 8: Exception Handling and Debugging

A Brief Review of Error Handling in VB6
For compatibility, Visual Basic 2008 and other .NET versions of Visual Basic still support the old-style
syntax for error handling that was used in Visual Basic 6 and earlier versions. That means you can still
use the syntax presented in this review. However, it is strongly recommended that you avoid using
this old-style syntax in favor of the exception handling features that are native to .NET. Using the more
modern Try . . . Catch syntax (presented after this review) will give you more flexibility and better code
structure.

The old-style syntax in VB6 was handed down from DOS versions of BASIC. The On Error construct
was created in an era when line labels and GoTo statements were commonly used. Such error handling is
difficult to use and has limited functionality compared to more modern alternatives.

In VB6, a typical routine with error handling code looks like this:

Private Function OpenFile(sFileName As String) As Boolean

On Error GoTo ErrHandler:
Open sFileName For Random As #1
OpenFile = True
Exit Sub

ErrHandler:
Select Case Err.Number

Case 53 ’ File not found
MessageBox.Show "File not found"

Case Else
MessageBox.Show "Other error"

End Select
OpenFile = False

End Function

The top of the routine points to a section of code called an error handler, which is usually placed at the
bottom of the routine. The error handler takes control as soon as an error is detected in the routine,
checking the error number to determine what action to take. The error number is available as a property
of the Err object, which is a globally available object that holds error information in VB6.

There are several other error-handling syntax options not included in the preceding error-handling code.
If the error handler can take care of the error without breaking execution, then it can resume execution
with the line of code that generated the error (Resume), the one after that (Resume Next), or at a particular
location (Resume LineLabel).

Error-handling code becomes more complex if the error handling needs to vary in the routine. Multiple
On Error GoTo statements must be used to send errors to various error handlers, all of which are clustered
at the bottom of the routine. With such a lack of organization of error-handling code, it is easy to become
confused about what should happen under various conditions. There is also very little information avail-
able about the error during the process, except for the error number. You can’t determine, for example,
the line number on which the error was generated without single-stepping through the code.

300

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 301

Chapter 8: Exception Handling and Debugging

Such logic can rapidly become convoluted and unmanageable. There’s a much better way to manage
errors in VB 2008: structured exception handling. The rest of this chapter explains this technique for working
with code errors, and uses the term structured exception handling throughout, except for the small
sections that discuss compatibility with older error-handling techniques.

Exceptions in .NET
.NET implements a systemwide, comprehensive approach to exception handling. As noted in the chapter
introduction, instead of an error number, .NET uses an exception object. This object contains information
relevant to the error, exposed as properties of the object. Later you’ll see a table that summarizes the
properties and information they expose.

Such an object is an instance of a class that derives from a class named System.Exception. As shown
later, a variety of subclasses of System.Exception are used for different circumstances.

Important Properties and Methods of an Exception
The Exception class has properties that contain useful information about the exception, as shown in the
following table:

Property Description

HelpLink A string indicating the link to help for this exception

InnerException Returns the exception object reference to an inner (nested) exception

Message A string that contains a description of the error, suitable for displaying to users

Source A string containing the name of an object that generated the error

StackTrace A read-only property that holds the stack trace as a text string. The stack trace is
a list of the pending method calls at the point at which the exception was
detected. That is, if MethodA called MethodB, and an exception occurred in
MethodB, the stack trace would contain both MethodA and MethodB.

TargetSite A read-only string property that holds the method that threw the exception

The two most important methods of the Exception class are as follows:

Method Description

GetBaseException Returns the first exception in the chain

ToString Returns the error string, which might include as much information as the error
message, the inner exceptions, and the stack trace, depending on the error

301

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 302

Chapter 8: Exception Handling and Debugging

You will see these properties and methods used in the code examples shown later, after you have covered
the syntax for detecting and handling exceptions.

How Exceptions Differ from the Err Object in VB6
Because an exception contains all of the information needed about an error, structured exception han-
dling does not use error numbers and the Err object. The exception object contains all the relevant
information about the error.

However, whereas there is only one global Err object in VB6, there are many types of exception objects
in the .NET Framework. For example, if a divide by zero is done in code, then an OverflowException is
generated. In addition to the dozens of exception types available in the .NET Framework, you can inherit
from a class called ApplicationException and create your own exception classes (see Chapter 3 for a
discussion of inheritance).

In .NET, all exceptions inherit from System.Exception. Special-purpose exception classes can be found
in many namespaces. The following table lists four representative examples of the classes that extend
Exception:

Namespace Class Description

System InvalidOperationException Generated when a call to an object method is
inappropriate because of the object’s state

System OutOfMemoryException Results when there is not enough memory to
carry out an operation

System.XML XmlException Often caused by an attempt to read invalid XML

System.Data DataException Represents errors in ADO.NET components

There are literally dozens of exception classes scattered throughout the .NET Framework namespaces.
It is common for an exception class to reside in a namespace with the classes that typically generate the
exception. For example, the DataException class is in System.Data, with the ADO.NET components that
often generate a DataException instance.

Having many types of exceptions in VB 2008 enables different types of conditions to be trapped
with different exception handlers. This is a major advance over VB6. The syntax to accomplish that is
discussed next.

Structured Exception-Handling Keywords
Structured exception handling depends on several keywords in VB 2008:

❑ Try — Begins a section of code in which an exception might be generated from a code error. This
section of code is often called a Try block. A trapped exception is automatically routed to a Catch
statement (discussed next).

302

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 303

Chapter 8: Exception Handling and Debugging

❑ Catch — Begins an exception handler for a type of exception. One or more Catch code blocks
follow a Try block, with each Catch block catching a different type of exception. When an excep-
tion is encountered in the Try block, the first Catch block that matches that type of exception
receives control.

❑ Finally — Contains code that runs when the Try block finishes normally, or when a Catch block
receives control and then finishes. That is, the code in the Finally block always runs, regardless
of whether an exception was detected. Typically, the Finally block is used to close or dispose
of any resources, such as database connections, that might have been left unresolved by the code
that had a problem.

❑ Throw — Generates an exception. It’s often done in a Catch block when the exception should be
kicked back to a calling routine, or in a routine that has itself detected an error such as
a bad argument passed in. Another common place to throw an exception is after a test
on the arguments passed to a method or property, if it is discovered that the argument
is not appropriate, such as when a negative number is passed in for a count that must be
positive.

The Try, Catch, and Finally Keywords
Here is an example showing some typical, simple structured exception-handling code in VB 2008. In this
case, the most likely source of an error is the iItems argument. If it has a value of zero, then this would
lead to dividing by zero, which would generate an exception.

First, create a Windows Application in Visual Basic 2008 and place a button on the default Form1 created
in the project. In the button’s click event, place the following two lines of code:

Dim sngAvg As Single
sngAvg = GetAverage(0, 100)

Then put the following function in the form’s code:

Private Function GetAverage(iItems As Integer, iTotal As Integer) as Single
’ Code that might throw an exception is wrapped in a Try block

Try
Dim sngAverage As Single

’ This will cause an exception to be thrown if iItems = 0
sngAverage = CSng(iTotal \ iItems)

’ This only executes if the line above generated no error
MessageBox.Show("Calculation successful")
Return sngAverage

Catch excGeneric As Exception
’ If the calculation failed, you get here
MessageBox.Show("Calculation unsuccessful - exception caught")
Return 0

End Try

End Function

303

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 304

Chapter 8: Exception Handling and Debugging

This code traps all the exceptions with a single generic exception type, and you don’t have
any Finally logic. Run the program and press the button. You will be able to follow the
sequence better if you place a breakpoint at the top of the GetAverage function and step through
the lines.

Here is a more complex example that traps the divide-by-zero exception explicitly. This second version
of the GetAverage function (notice that the name is GetAverage2) also includes a Finally block:

Private Function GetAverage2(iItems As Integer, iTotal As Integer) as Single

’ Code that might throw an exception is wrapped in a Try block
Try

Dim sngAverage As Single

’ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

’ This only executes if the line above generated no error.
MessageBox.Show("Calculation successful")
Return sngAverage

Catch excDivideByZero As DivideByZeroException
’ You’ll get here with an DivideByZeroException in the Try block
MessageBox.Show("Calculation generated DivideByZero Exception")
Return 0

Catch excGeneric As Exception
’ You’ll get here when any exception is thrown and not caught in
’ a previous Catch block.
MessageBox.Show("Calculation failed - generic exception caught")
Return 0

Finally
’ Code in the Finally block will always run.
MessageBox.Show("You always get here, with or without an error")

End Try

End Function

This code contains two Catch blocks for different types of exceptions. If an exception is generated, then
.NET will go down the Catch blocks looking for a matching exception type. That means the Catch blocks
should be arranged with specific types first and more generic types after.

Place the code for GetAverage2 in the form, and place another button on Form1. In the Click event for
the second button, place the following code:

Dim sngAvg As Single
sngAvg = GetAverage2(0, 100)

Run the program again and press the second button. As before, it’s easier to follow if you set a breakpoint
early in the code and then step through the code line by line.

304

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 305

Chapter 8: Exception Handling and Debugging

The Throw Keyword
Sometimes a Catch block is unable to handle an error. Some exceptions are so unexpected that they
should be ‘‘sent back up the line’’ to the calling code, so that the problem can be promoted to code that
can decide what to do with it. A Throw statement is used for that purpose.

A Throw statement ends execution of the exception handler — that is, no more code in the Catch block
after the Throw statement is executed. However, Throw does not prevent code in the Finally block from
running. That code still runs before the exception is kicked back to the calling routine.

You can see the Throw statement in action by changing the earlier code for GetAverage2 to look like this:

Private Function GetAverage3(iItems As Integer, iTotal as Integer) as Single

’ Code that might throw an exception is wrapped in a Try block
Try

Dim sngAverage As Single

’ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

’ This only executes if the line above generated no error.
MessageBox.Show("Calculation successful")
Return sngAverage

Catch excDivideByZero As DivideByZeroException
’ You’ll get here with an DivideByZeroException in the Try block.
MessageBox.Show("Calculation generated DivideByZero Exception")

Throw excDivideByZero

MessageBox.Show("More logic after the throw - never executed")

Catch excGeneric As Exception
’ You’ll get here when any exception is thrown and not caught in
’ a previous Catch block.
MessageBox.Show("Calculation failed - generic exception caught")

Throw excGeneric

Finally
’ Code in the Finally block will always run, even if
’ an exception was thrown in a Catch block.
MessageBox.Show("You always get here, with or without an error")

End Try
End Function

Here is some code to call GetAverage3. You can place this code in another button’s click event to test
it out:

Try
Dim sngAvg As Single
sngAvg = GetAverage3(0, 100)

305

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 306

Chapter 8: Exception Handling and Debugging

Catch exc As Exception
MessageBox.Show("Back in the click event after an error")

Finally
MessageBox.Show("Finally block in click event")

End Try

Throwing a New Exception
Throw can also be used with exceptions that are created on-the-fly. For example, you might want your
earlier function to generate an ArgumentException, as you can consider a value of iItems of zero to be
an invalid value for that argument.

In such a case, a new exception must be instantiated. The constructor allows you to place your own
custom message into the exception. To show how this is done, let’s change the aforementioned example
to throw your own exception instead of the one caught in the Catch block:

Private Function GetAverage4(iItems As Integer, iTotal as Integer) as Single

If iItems = 0 Then
Dim excOurOwnException As New _

ArgumentException("Number of items cannot be zero")

Throw excOurOwnException
End If

’ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

’ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

’ This only executes if the line above generated no error.
MessageBox.Show("Calculation successful")
Return sngAverage

Catch excDivideByZero As DivideByZeroException
’ You’ll get here with an DivideByZeroException in the Try block.
MessageBox.Show("Calculation generated DivideByZero Exception")
Throw excDivideByZero
MessageBox.Show("More logic after the thrown - never executed")

Catch excGeneric As Exception
’ You’ll get here when any exception is thrown and not caught in
’ a previous Catch block.
MessageBox.Show("Calculation failed - generic exception caught")
Throw excGeneric

Finally
’ Code in the Finally block will always run, even if
’ an exception was thrown in a Catch block.
MessageBox.Show("You always get here, with or without an error")

306

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 307

Chapter 8: Exception Handling and Debugging

End Try
End Function

This code can be called from a button with similar code for calling GetAverage3. Just change the name of
the function called to GetAverage4.

This technique is particularly well suited to dealing with problems detected in property procedures.
Property Set procedures often do checking to ensure that the property is about to be assigned a valid
value. If not, then throwing a new ArgumentException (instead of assigning the property value) is a
good way to inform the calling code about the problem.

The Exit Try Statement
The Exit Try statement will, under a given circumstance, break out of the Try or Catch block and
continue at the Finally block. In the following example, you exit a Catch block if the value of iItems is
0, because you know that your error was caused by that problem:

Private Function GetAverage5(iItems As Integer, iTotal as Integer) As Single

’ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

’ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

’ This only executes if the line above generated no error.
MessageBox.Show("Calculation successful")
Return sngAverage

Catch excDivideByZero As DivideByZeroException
’ You’ll get here with an DivideByZeroException in the Try block.

If iItems = 0 Then
Return 0
Exit Try

Else
MessageBox.Show("Error not caused by iItems")

End If

Throw excDivideByZero
MessageBox.Show("More logic after the thrown - never executed")

Catch excGeneric As Exception
’ You’ll get here when any exception is thrown and not caught in
’ a previous Catch block.
MessageBox.Show("Calculation failed - generic exception caught")
Throw excGeneric

Finally
’ Code in the Finally block will always run, even if
’ an exception was thrown in a Catch block.
MessageBox.Show("You always get here, with or without an error")

End Try
End Sub

307

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 308

Chapter 8: Exception Handling and Debugging

In your first Catch block, you have inserted an If block so that you can exit the block given a certain
condition (in this case, if the overflow exception was caused because the value of intY was 0). The Exit
Try goes immediately to the Finally block and completes the processing there:

If iItems = 0 Then
Return 0
Exit Try

Else
MessageBox.Show("Error not caused by iItems")

End If

Now, if the overflow exception is caused by something other than division by zero, then you’ll get a
message box displaying ‘‘Error not caused by iItems.’’

Nested Try Structures
Sometimes particular lines in a Try block may need special exception processing. Moreover, errors can
occur within the Catch portion of the Try structures and cause further exceptions to be thrown. For both
of these scenarios, nested Try structures are available. You can alter the example under the section ‘‘The
Throw Keyword’’ to demonstrate the following code:

Private Function GetAverage6(iItems As Integer, iTotal as Integer) As Single

’ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

’ Do something for performance testing
Try

LogEvent("GetAverage")
Catch exc As Exception

MessageBox.Show("Logging function unavailable")
End Try

’ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)

’ This only executes if the line above generated no error.
MessageBox.Show("Calculation successful")
Return sngAverage

Catch excDivideByZero As DivideByZeroException
’ You’ll get here with an DivideByZeroException in the Try block.
MessageBox.Show("Error not divide by 0")
Throw excDivideByZero
MessageBox.Show("More logic after the thrown - never executed")

Catch excGeneric As Exception
’ You’ll get here when any exception is thrown and not caught in
’ a previous Catch block.
MessageBox.Show("Calculation failed - generic exception caught")
Throw excGeneric

308

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 309

Chapter 8: Exception Handling and Debugging

Finally
’ Code in the Finally block will always run, even if
’ an exception was thrown in a Catch block.
MessageBox.Show("You always get here, with or without an error")

End Try
End Function

In the preceding example, you are assuming that a function exists to log an event. This function
would typically be in a common library, and might log the event in various ways. You will look
at logging exceptions in detail later in the chapter, but a simple LogEvent function might look
like this:

Public Sub LogEvent(ByVal sEvent As String)
FileOpen(1, "logfile.txt", OpenMode.Append)
Print(1, DateTime.Now & "-" & sEvent & vbCrLf)
FileClose(1)

End Sub

In this case, you don’t want a problem logging an event, such as a ‘‘disk full’’ error, to crash the
routine. The code for the GetAverage function triggers a message box to indicate trouble with the logging
function.

A Catch block can be empty. In that case, it has a similar effect as On Error Resume Next in VB6: the
exception is ignored. However, execution does not pick up with the line after the line that generated the
error, but instead picks up with either the Finally block or the line after the End Try if no Finally block
exists.

Using Exception Properties
The previous examples have displayed hard-coded messages in message boxes, which is obviously not a
good technique for production applications. Instead, a message box or log entry describing an exception
should provide as much information as possible concerning the problem. To do this, various properties
of the exception can be used.

The most brutal way to get information about an exception is to use the ToString method of the excep-
tion. Suppose that you modify the earlier example of GetAverage2 to change the displayed information
about the exception like this:

Private Function GetAverage2(ByVal iItems As Integer, ByVal iTotal As Integer) _
As Single

’ Code that might throw an exception is wrapped in a Try block.
Try

Dim sngAverage As Single

’ This will cause an exception to be thrown.
sngAverage = CSng(iTotal \ iItems)
’ This only executes if the line above generated no error.
MessageBox.Show("Calculation successful")

Return sngAverage

309

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 310

Chapter 8: Exception Handling and Debugging

Catch excDivideByZero As DivideByZeroException
’ You’ll get here with an DivideByZeroException in the Try block.

MessageBox.Show(excDivideByZero.ToString)

Throw excDivideByZero
MessageBox.Show("More logic after the thrown - never executed")

Catch excGeneric As Exception
’ You’ll get here when any exception is thrown and not caught in
’ a previous Catch block.
MessageBox.Show("Calculation failed - generic exception caught")
Throw excGeneric

Finally
’ Code in the Finally block will always run, even if
’ an exception was thrown in a Catch block.
MessageBox.Show("You always get here, with or without an error")

End Try
End Function

When the function is accessed with iItems = 0, a message box similar to the one in Figure 8-1 will be
displayed.

Figure 8-1

The Message Property
The message shown in Figure 8-1 is helpful to a developer because it contains a lot of information, but
it’s not something you would typically want users to see. Instead, a user normally needs to see a short
description of the problem, and that is supplied by the Message property.

If the previous code is changed so that the Message property is used instead of ToString, then the mes-
sage box will provide something like what is shown in Figure 8-2.

Figure 8-2

310

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 311

Chapter 8: Exception Handling and Debugging

The InnerException and TargetSite Properties
The InnerException property is used to store an exception trail. This comes in handy when multiple
exceptions occur. It’s quite common for an exception to occur that sets up circumstances whereby further
exceptions are raised. As exceptions occur in a sequence, you can choose to stack them for later reference
by use of the InnerException property of your Exception object. As each exception joins the stack, the
previous Exception object becomes the inner exception in the stack.

For simplicity, you’ll start a new code sample, with just a subroutine that generates its own exception.
You’ll include code to add a reference to an InnerException object to the exception you are generating
with the Throw method.

This example also includes a message box to show what’s stored in the exception’s TargetSite property.
As shown in the results, TargetSite will contain the name of the routine generating the exception — in
this case, HandlerExample. Here’s the code:

Sub HandlerExample()
Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
intY = 0
intX = 5
’ First Required Error Statement.
Try
’ Cause a "Divide by Zero"
intZ = CType((intX \ intY), Integer)

’ Catch the error.
Catch objA As System.DivideByZeroException

Try
Throw (New Exception("0 as divisor", objA))

Catch objB As Exception
Dim sError As String
sError = "My Message: " & objB.Message & vbCrLf & vbCrLf
sError &= "Inner Exception Message: " & _

objB.InnerException.Message & vbCrLf & vbCrLf
sError &= "Method Error Occurred: " & objB.TargetSite.Name
MessageBox.Show(sError)

End Try
Catch
Messagebox.Show("Caught any other errors")

Finally
Messagebox.Show(Str(intZ))

End Try
End Sub

As before, you catch the divide-by-zero error in the first Catch block, and the exception is stored in objA
so that you can reference its properties later.

You throw a new exception with a more general message ("0 as divisor") that is easier to interpret,
and you build up your stack by appending objA as the InnerException object using an overloaded
constructor for the Exception object:

Throw (New Exception("0 as divisor", objA))

311

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 312

Chapter 8: Exception Handling and Debugging

You catch your newly thrown exception in another Catch statement. Note how it does not catch a specific
type of error:

Catch objB As Exception

Then you construct an error message for the new exception and display it in a message box:

Dim sError As String
sError = "My Message: " & objB.Message & vbCrLf & vbCrLf
sError &= "Inner Exception Message: " & _

objB.InnerException.Message & vbCrLf & vbCrLf
sError &= "Method Error Occurred: " & objB.TargetSite.Name
MessageBox.Show(sError)

The message box that is produced is shown in Figure 8-3.

Figure 8-3

First your own message is included, based on the new exception thrown by your own code. Then the
InnerException gets the next exception in the stack, which is the divide-by-zero exception, and its
message is included. Finally, the TargetSite property gives you the name of the method that threw
the exception. TargetSite is particularly helpful in logs or error reports from users that are used by
developers to track down unexpected problems.

After this message box, the Finally clause displays another message box that just shows the current
value of intZ, which is zero because the divide failed. This second box also occurs in other examples that
follow.

Source and StackTrace
The Source and StackTrace properties provide the user with information regarding where the error
occurred. This supplemental information can be invaluable, as the user can pass it on to the troubleshooter
in order to help resolve errors more quickly. The following example uses these two properties and shows
the feedback when the error occurs:

Sub HandlerExample2()

Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
intY = 0
intX = 5

312

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 313

Chapter 8: Exception Handling and Debugging

’ First Required Error Statement.
Try
’ Cause a "Divide by Zero"
intZ = CType((intX \ intY), Integer)

’ Catch the error.
Catch objA As System.DivideByZeroException

objA.Source = "HandlerExample2"
Messagebox.Show("Error Occurred at :" & _

objA.Source & objA.StackTrace)

Finally
Messagebox.Show(Str(intZ))

End Try
End Sub

The output from the Messagebox statement is very detailed, providing the entire path and line number
where the error occurred, as shown in Figure 8-4.

Figure 8-4

Notice that this information is also included in the ToString method examined earlier (refer to
Figure 8-1).

GetBaseException
The GetBaseException method comes in very handy when you are deep in a set of thrown excep-
tions. This method returns the originating exception, which makes debugging easier and helps keep the
troubleshooting process on track by sorting through information that can be misleading:

Sub HandlerExample3()

Dim intX As Integer
Dim intY As Integer
Dim intZ As Integer
intY = 0
intX = 5
’ First Required Error Statement.
Try
’ Cause a "Divide by Zero"
intZ = CType((intX \ intY), Integer)

’ Catch the error.
Catch objA As System.DivideByZeroException

313

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 314

Chapter 8: Exception Handling and Debugging

Try
Throw (New Exception("0 as divisor", objA))

Catch objB As Exception
Try

Throw (New Exception("New error", objB))
Catch objC As Exception

Messagebox.Show(objC.GetBaseException.Message)
End Try

End Try

Finally
Messagebox.Show(Str(intZ))

End Try
End Sub

The InnerException property provides the information that the GetBaseException method needs, so
as your example executes the Throw statements, it sets up the InnerException property. The purpose
of the GetBaseException method is to provide the properties of the initial exception in the chain that
was produced. Hence, objC.GetBaseException.Message returns the Message property of the origi-
nal OverflowException message even though you’ve thrown multiple errors since the original error
occurred:

Messagebox.Show(objC.GetBaseException.Message)

To put it another way, the code traverses back to the exception caught as objA and displays the same
message as the objA.Message property would, as shown in Figure 8-5.

Figure 8-5

HelpLink
The HelpLink property gets or sets the help link for a specific Exception object. It can be set to any string
value, but is typically set to a URL. If you create your own exception in code, you might want to set
HelpLink to some URL describing the error in more detail. Then the code that catches the exception can
go to that link. You could create and throw your own custom application exception with code like the
following:

Dim exc As New ApplicationException("A short description of the problem")
exc.HelpLink = "http://mysite.com/somehtmlfile.htm"
Throw exc

When trapping an exception, the HelpLink can be used to launch a viewer so the user can see details
about the problem. The following example shows this in action, using the built-in Explorer in Windows:

314

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 315

Chapter 8: Exception Handling and Debugging

Sub HandlerExample4()
Try

Dim exc As New ApplicationException("A short description of the problem")
exc.HelpLink = "http://mysite.com/somehtmlfile.htm"
Throw exc

’ Catch the error.
Catch objA As System.Exception

Shell("explorer.exe " & objA.HelpLink)

End Try
End Sub

This results in launching Internet Explorer to show the page specified by the URL. Most exceptions
thrown by the CLR or the .NET Framework’s classes have a blank HelpLink property. You should only
count on using HelpLink if you have previously set it to a URL (or some other type of link information)
yourself.

Interoperability with VB6-Style Error Handling
Because VB 2008 still supports the older On Error statement from pre-.NET versions of VB, you
may encounter code that handles errors with On Error instead of with structured exception handling.
You can use both techniques in a single program, but it is not possible to use both in a single routine.
If you attempt to use both On Error and Try . . . Catch in a single routine, you will get a syntax
error.

The VB compiler does allow the two techniques for handling errors to communicate with each other. For
example, suppose you have a routine that uses On Error and then uses Err.Raise to promote the error to
the calling code. Also suppose that the calling code makes the call in a Try . . . Catch block. In that case,
the error created by Err.Raise becomes an exception in the calling code and is trapped by a Catch block
just as a normal exception would be. Here’s a code example to illustrate. First, create a subroutine that
creates an error with Err.Raise, like this:

Private Sub RaiseErrorWithErrRaise()
Err.Raise(53) ’ indicates File Not Found

End Sub

Then call this routine from a button’s click event, with the call inside a Try . . . Catch block:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click
Try

RaiseErrorWithErrRaise()
Catch ex As Exception

MessageBox.Show(ex.Message)
End Try

End Sub

315

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 316

Chapter 8: Exception Handling and Debugging

When the button is clicked, it will display a message box with File Not Found. Even though the File Not
Found error is raised by Err.Raise, it is translated to a .NET exception automatically.

Similarly, exceptions that are generated by a Throw statement in a called routine can be trapped by
On Error in a calling routine. The exception is then translated into an Err object that works like the
VB6 Err object.

Error Logging
Error logging is important in many applications for thorough troubleshooting. It is common for end users
of an application to forget exactly what the error said. Recording specific errors in a log enables you to
get the specific error message without recreating the error.

While error logging is very important, you only want to use it to trap specific levels of errors because
it carries overhead and can reduce the performance of your application. Specifically, log only errors
that are critical to your application integrity — for instance, an error that would cause the data that the
application is working with to become invalid.

There are three main approaches to error logging:

❑ Write error information in a text file or flat file located in a strategic location.

❑ Write error information to a central database.

❑ Write error information to the system Event Log, which is available on all versions of Windows
supported by the .NET Framework 3.0. The .NET Framework includes a component that can
be used to write to and read from the System, Application, and Security Logs on any given
machine.

The type of logging you choose depends on the categories of errors you wish to trap and the types of
machines on which you will run your application. If you choose to write to the Event Log, then you need
to categorize the errors and write them in the appropriate log file. Resource-, hardware-, and system-level
errors fit best into the System Event Log. Data access errors fit best into the Application Event Log.
Permission errors fit best into the Security Event Log.

The Event Log
Three Event Logs are available: the System, Application, and Security Logs. Events in these logs can be
viewed using the Event Viewer, which is accessed from the Control Panel. Access Administrative Tools
and then select the Event Viewer subsection to view events. Typically, your applications would use the
Application Event Log.

Event logging is available in your program through an EventLog component, which can both read
and write to all of the available logs on a machine. The EventLog component is part of the System
.Diagnostics namespace. This component allows adding and removing custom Event Logs, reading
and writing to and from the standard Windows Event Logs, and creating customized Event Log entries.

316

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 317

Chapter 8: Exception Handling and Debugging

Event Logs can become full, as they have a limited amount of space, so you only want to write criti-
cal information to your Event Logs. You can customize each of your system Event Log’s properties by
changing the log size and specifying how the system will handle events that occur when the log is full.
You can configure the log to overwrite data when it is full or overwrite all events older than a given
number of days. Remember that the Event Log that is written to is based on where the code is running
from, so if there are many tiers, then you must locate the proper Event Log information to research the
error further.

There are five types of Event Log entries you can make. These five types are divided into event type
entries and audit type entries.

Event type entries are as follows:

❑ Information — Added when events such as a service starting or stopping occurs

❑ Warning — Occurs when a noncritical event happens that might cause future problems, such as
disk space getting low

❑ Error — Should be logged when something occurs that prevents normal processing, such as a
startup service not being able to start

Audit type entries usually go into the Security Log and can be either of the following:

❑ Success audit — For example, a success audit might be a successful login through an application
to an SQL Server.

❑ Failure audit — A failure audit might come in handy if a user doesn’t have access to create an
output file on a certain file system.

If you don’t specify the type of Event Log entry, an information type entry is generated.

Each entry in an Event Log has a Source property. This required property is a programmer-defined string
that is assigned to an event to help categorize the events in a log. A new Source must be defined prior
to being used in an entry in an Event Log. The SourceExists method is used to determine whether a
particular source already exists on the given computer. Use a string that is relevant to where the error
originated, such as the component’s name. Packaged software often uses the software name as the Source
in the Application Log. This helps group errors that occur by specific software package.

The EventLog component is in the System.Diagnostics namespace. To use it conveniently, include an
Imports System.Diagnostics statement in the declarations section of your code.

Certain security rights must be obtained in order to manipulate Event Logs.
Ordinary programs can read all of the Event Logs and write to the Application Event
Log. Special privileges, on the administrator level, are required to perform tasks
such as clearing and deleting Event Logs. Your application should not normally
need to do these tasks, or write to any log besides the Application Event Log.

317

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 318

Chapter 8: Exception Handling and Debugging

The most common events, methods, and properties for the EventLog component are listed and described
in the following tables.

Events, Methods, and Properties
The following table describes the relevant event:

Event Description

EntryWritten Generated when an event is written to a log

The following table describes the relevant methods:

Methods Description

CreateEventSource Creates an event source in the specified log

DeleteEventSource Deletes an event source and associated entries

WriteEntry Writes a string to a specified log

Exists Used to determine whether a specific Event Log exists

SourceExists Used to determine whether a specific source exists in a log

GetEventLogs Retrieves a list of all Event Logs on a particular computer

Delete Deletes an entire Event Log. Use this method with care.

The following table describes the relevant properties:

Properties Description

Source Specifies the source of the entry to be written

Log Used to specify a log to write to. The three logs are System, Application, and
Security. The System Log is the default if not specified.

The following example illustrates some of these methods and properties:

Sub LoggingExample1()
Dim objLog As New EventLog()
Dim objLogEntryType As EventLogEntryType
Try
Throw (New EntryPointNotFoundException())

Catch objA As System.EntryPointNotFoundException
If Not EventLog.SourceExists("Example") Then

EventLog.CreateEventSource("Example", "System")
End If
objLog.Source = "Example"

318

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 319

Chapter 8: Exception Handling and Debugging

objLog.Log = "System"
objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry("Error: " & objA.Message, objLogEntryType)

End Try
End Sub

The preceding code declares two variables: one to instantiate your log and one to hold your entry’s type
information. Note that you need to check for the existence of a source prior to creating it. The following
two lines of code accomplish that:

If Not EventLog.SourceExists("Example") Then
EventLog.CreateEventSource("Example", "System")

After you have verified or created your source, you can set the Source property of the EventLog object,
the Log property to specify which log you want to write to, and EventLogEntryType to Information
(other options are Warning, Error, SuccessAudit, and FailureAudit). If you attempt to write to a source
that does not exist in a specific log, then you get an error. After you have set these three properties of the
EventLog object, you can then write your entry. In this example, you concatenated the word Error with
the actual exception’s Message property to form the string to write to the log:

objLog.Source = "Example"
objLog.Log = "System"
objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry("Error: " & objA.Message, objLogEntryType)

Writing to Trace Files
As an alternative to the Event Log, you can write your debugging and error information to trace files.
A trace file is a text-based file that you generate in your program to track detailed information about an
error condition. Trace files are also a good way to supplement your event logging if you want to track
detailed information that would potentially fill the Event Log.

A more detailed explanation of the variety of trace tools and their uses in debugging follows in the section
‘‘Analyzing Problems and Measuring Performance via the Trace Class.’’ This section covers some of the
techniques for using the StreamWriter interface in your development of a trace file.

The concepts involved in writing to text files include setting up streamwriters and debug listeners.
The StreamWriter interface is handled through the System.IO namespace. It enables you to interface
with the files in the file system on a given machine. The Debug class interfaces with these output objects
through listener objects. The job of any listener object is to collect, store, and send the stored output to
text files, logs, and the Output window. In the example, you will use the TextWriterTraceListener
interface.

As you will see, the StreamWriter object opens an output path to a text file, and by binding the
StreamWriter object to a listener object you can direct debug output to a text file.

Trace listeners are output targets and can be a TextWriter or an EventLog, or can send output to the
default Output window (which is DefaultTraceListener). The TextWriterTraceListener accommo-
dates the WriteLine method of a Debug interface by providing an output object that stores information
to be flushed to the output stream, which you set up by the StreamWriter interface.

319

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 320

Chapter 8: Exception Handling and Debugging

The following table lists some of the commonly used methods from the StreamWriter object:

Method Description

Close Closes the StreamWriter

Flush Flushes all content of the StreamWriter to the output file designated upon creation
of the StreamWriter

Write Writes byte output to the stream. Optional parameters allow location designation in
the stream (offset).

WriteLine Writes characters followed by a line terminator to the current stream object

The following table lists some of the methods associated with the Debug object, which provides the output
mechanism for the text file example to follow:

Method Description

Assert Checks a condition and displays a message if False

Close Executes a flush on the output buffer and closes all listeners

Fail Emits an error message in the form of an Abort/Retry/Ignore message box

Flush Flushes the output buffer and writes it to the listeners

Write Writes bytes to the output buffer

WriteLine Writes characters followed by a line terminator to the output buffer

WriteIf Writes bytes to the output buffer if a specific condition is True

WriteLineIf Writes characters followed by a line terminator to the output buffer if a specific
condition is True

The following example shows how you can open an existing file (called mytext.txt) for output
and assign it to the Listeners object of the Debug object so that it can catch your Debug.WriteLine
statements:

Sub LoggingExample2()
Dim objWriter As New _

IO.StreamWriter("C:\mytext.txt", True)
Debug.Listeners.Add(New TextWriterTraceListener(objWriter))
Try
Throw (New EntryPointNotFoundException())

Catch objA As System.EntryPointNotFoundException
Debug.WriteLine(objA.Message)

320

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 321

Chapter 8: Exception Handling and Debugging

objWriter.Flush()
objWriter.Close()
objWriter = Nothing

End Try
End Sub

Looking in detail at this code, you first create a StreamWriter that is assigned to a file in your local file
system:

Dim objWriter As New _
IO.StreamWriter("C:\mytext.txt", True)

You then assign your StreamWriter to a debug listener by using the Add method:

Debug.Listeners.Add(New TextWriterTraceListener (objWriter))

This example forces an exception and catches it, writing the Message property of the Exception object
(which is Entry point was not found) to the debug buffer through the WriteLine method:

Debug.WriteLine(objA.Message)

Finally, you flush the listener buffer to the output file and free your resources:

objWriter.Flush()
objWriter.Close()
objWriter = Nothing

Analyzing Problems and Measuring
Performance via the Trace Class

The trace tools in the .NET Framework make use of the Trace class, which provides properties and
methods that help you trace the execution of your code. By default, tracing is enabled in VB 2008,
so not unlike the previous debug discussion, all you have to do is set up the output and utilize its
capabilities.

You can specify the detail level you want to perform for your tracing output by configuring trace switches.
You will see an example of setting a trace switch shortly, but it is important to understand what a trace
switch can do and what the settings for trace switches mean.

Trace switches can be either BooleanSwitch or TraceSwitch. BooleanSwitch has a value of either 0
or 1 and is used to determine whether tracing is off or on, respectively, whereas TraceSwitch enables
you to specify a level of tracing based on five enumerated values. You can manage a BooleanSwitch or
TraceSwitch as an environment variable. Once a switch is established, you can create and initialize it in
code and use it with either trace or debug.

321

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 322

Chapter 8: Exception Handling and Debugging

A TraceSwitch can have five enumerated levels, which can be read as 0–4 or checked with four proper-
ties provided in the switch class interface. The four properties return a Boolean value based on whether
the switch is set to a certain level or higher. The five enumerated levels for TraceSwitch are as follows:

Level Description

0 None

1 Only error messages

2 Warning and error messages

3 Information, warning, and error messages

4 Verbose, information, warning, and error messages

The four properties are TraceError, TraceWarning, TraceInfo, and TraceVerbose. For example, if your
switch were set at number 2 and you asked for the TraceError or TraceWarning properties, they would
return True, whereas the TraceInformation and TraceVerbose properties would return False.

An environment variable is managed either via the command line or under My computer ➪ Properties
➪ Advanced within the Environment Variables button. Within the Environment Variables button, you
add a new User variable, giving it the SwitchName and Value for that switch.

From the command line, type Set _Switch_MySwitch = 0

The value on the left of the = symbol is the name of the switch; the value on its right is either 0 or 1
for a BooleanSwitch or 0–4 for a TraceSwitch. Note the space between the word Set and the leading
underscore of _Switch. Once you have typed this line, if you follow that by the plain SET command at
the command line, it will show your new switch as an environment variable, as shown in Figure 8-6.

Figure 8-6

322

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 323

Chapter 8: Exception Handling and Debugging

For the example that follows, the output is directed to the default Output window:

Sub TraceExample1()
Dim objTraceSwitch As TraceSwitch
objTraceSwitch = New TraceSwitch("ExampleSwitch", "Test Trace Switch")
objTraceSwitch.Level = TraceLevel.Error
Try
Throw (New EntryPointNotFoundException())

Catch objA As System.EntryPointNotFoundException
Trace.WriteLineIf(objTraceSwitch.TraceVerbose, _

"First Trace " & objA.Source)
Trace.WriteLineIf(objTraceSwitch.TraceError, _

"Second Trace " & objA.Message)
End Try

End Sub

You begin by assigning your switch to an existing registry entry and setting its level:

objTraceSwitch = New TraceSwitch("ExampleSwitch", "Test Trace Switch")
objTraceSwitch.Level = TraceLevel.Error

After you throw your exception, you first cause your trace output listener to catch the Source property
of your Exception object based on whether the value of your switch is TraceVerbose or better:

Trace.WriteLineIf(objTraceSwitch.TraceVerbose, _
"First Trace " & objA.Source)

Because the tracing level is set to Error, this line is skipped; and you continue by writing a trace to the
Output window to include the message information if the level is set to Error:

Trace.WriteLineIf(objTraceSwitch.TraceError, _
"Second Trace " & objA.Message)

As indicated in your Output window, you successfully wrote only the second trace line, based on the
level being Error on your trace switch (see Figure 8-7).

Figure 8-7

Tracing can also be helpful in determining the performance of your application. Overall, your application
might appear to be working fine, but it is always good to be able to measure your application’s perfor-
mance so that environment changes or degradation over time can be counteracted. The basic concept

323

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 324

Chapter 8: Exception Handling and Debugging

here is to use conditional compilation so that you can toggle your performance-measuring code on
and off:

Sub TraceExample2()
Dim connInfo As New Connection()
Dim rstInfo As New Recordset()
#Const bTrace = 1
Dim objWriter As New _
IO.StreamWriter(IO.File.Open("c:\mytext.txt", IO.FileMode.OpenOrCreate))

connInfo.ConnectionString = "Provider = sqloledb.1" & _
";Persist Security Info = False;" & "Initial Catalog = Northwind;" & _
"DataSource = LocalServer"

connInfo.Open(connInfo.ConnectionString, "sa")
Trace.Listeners.Add(New TextWriterTraceListener(objWriter))
#If bTrace Then
Trace.WriteLine("Begun db query at " & now())

#End If
rstInfo.Open("SELECT CompanyName, OrderID, " & _
"OrderDate FROM Orders AS a LEFT JOIN Customers" & _
" AS b ON a.CustomerID = b.CustomerID WHERE " & _
"a.CustomerID = ’Chops’", connInfo, _
CursorTypeEnum.adOpenForwardOnly, _
LockTypeEnum.adLockBatchOptimistic)

#If bTrace Then
Trace.WriteLine("Ended db query at " & now())

#End If
Trace.Listeners.Clear()
objWriter.Close()
rstInfo.Close()
connInfo.Close()
rstInfo = Nothing
connInfo = Nothing

End Sub

This subroutine uses ADO, so be sure to add a reference to an ADO library and an
Imports ADODB statement in the declarations section of the module.

In this simple example, you are trying to measure the performance of a database query using a condi-
tional constant defined as bTrace by the following code:

#Const bTrace = 1

You establish your database connection strings, and then right before you execute your query you write
to a log file based on whether you are in tracing mode or not:

#If bTrace Then
Trace.WriteLine("Begun db query at " & now())

#End If

324

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 325

Chapter 8: Exception Handling and Debugging

Again, after your query returns you write to your log only if you are in tracing mode:

#If bTrace Then
Trace.WriteLine("Ended db query at" & now())

#End If

Always remember that tracing can potentially slow the application down, so use this functionality only
when troubleshooting, not all the time.

Summary
This chapter reviewed the exception object and the syntax available to work with exceptions. You have
looked at the various properties of exceptions and learned how to use the exposed information. You have
also seen how to promote exceptions to consuming code using the Throw statement, and how structured
exception handling interoperates with the old-style On Error. As discussed, any new code you write
should use structured exception handling. Avoid using the old-style On Error except for maintenance
tasks in old code.

Also covered were other topics related to error handling:

❑ Error logging to Event Logs and trace files

❑ Instrumentation and measuring performance

❑ Tracing techniques

By using the full capabilities for error handling that are now available in VB 2008, you can make your
applications more reliable and diagnose problems faster when they do occur. Proper use of tracing and
instrumentation can also help you tune your application for better performance.

325

Evjen-91361 c08.tex V2 - 04/01/2008 3:43pm Page 326

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 327

Data Access with
ADO.NET 3.5

ADO.NET 1.x was the successor to ActiveX Data Objects 2.6 (ADO). The main goal of ADO.NET
1.x was to enable developers to easily create distributed, data-sharing applications in the .NET
Framework. The main goals of ADO.NET today are to improve the performance of existing fea-
tures in ADO.NET 1.x, to provide easier use and to add new features without breaking backward
compatibility.

Throughout this chapter, when ADO.NET is mentioned without a version number after it (that is,
1.x, 2.0, or 3.5), the statement applies to all versions of ADO.NET.

ADO.NET 1.x was built upon industry standards such as XML, and it provided a data-access inter-
face to communicate with data sources such as SQL Server and Oracle. ADO.NET 3.5 builds upon
these concepts, while increasing performance. Applications can use ADO.NET to connect to these
data sources and retrieve, manipulate, and update data. ADO.NET 3.5 does not break any compati-
bility with ADO.NET 2.0 or 1.x; it only adds to the stack of functionality.

In solutions that require disconnected or remote access to data, ADO.NET 3.5 uses XML to exchange
data between programs or with Web pages. Any component that can read XML can make use of
ADO.NET components. A receiving component does not even have to be an ADO.NET compo-
nent if a transmitting ADO.NET component packages and delivers a data set in an XML format.
Transmitting information in XML-formatted data sets enables programmers to easily separate the
data-processing and user interface components of a data-sharing application onto separate servers.
This can greatly improve both the performance and maintainability of systems that support many
users.

For distributed applications, ADO.NET 1.x proved that the use of XML data sets provided perfor-
mance advantages relative to the COM marshaling used to transmit disconnected data sets in ADO.
Because transmission of data sets occurred through XML streams in a simple text-based standard
accepted throughout the industry, receiving components did not require any of the architectural
restrictions required by COM. XML data sets used in ADO.NET 1.x also avoided the processing

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 328

Chapter 9: Data Access with ADO.NET 3.5

cost of converting values in the Fields collection of a Recordset to data types recognized by COM. Vir-
tually any two components from different systems can share XML data sets, provided that they both
use the same XML schema for formatting the data set. This continues to be true in ADO.NET 3.5, but the
story gets better. The XML integration in ADO.NET today is even stronger, and extensive work was done
to improve the performance of the DataSet object, particularly in the areas of serialization and memory
usage.

ADO.NET also supports the scalability required by Web-based data-sharing applications. Web appli-
cations must often serve hundreds, or even thousands, of users. By default, ADO.NET does not retain
lengthy database locks or active connections that monopolize limited resources. This enables the number
of users to grow with only a small increase in the demands made on the resources of a system.

In this chapter, you will see that ADO.NET is a very extensive and flexible API for accessing many types
of data, and because ADO.NET 3.5 is an incremental change to the previous versions of ADO.NET, all
previous ADO.NET knowledge already learned can be leveraged. In fact, to get the most out of this
chapter, you should be fairly familiar with earlier versions of ADO.NET and the entire .NET Framework.

This chapter demonstrates how to use the ADO.NET object model in order to build flexible, fast, scalable
data-access objects and applications. Specifically, it covers the following:

❑ The ADO.NET architecture

❑ Some of the specific features offered in ADO.NET, including batch updates, DataSet perfor-
mance improvements, and asynchronous processing

❑ Working with the Common Provider Model

❑ Building a data-access component

ADO.NET Architecture
The main design goals of ADO.NET 3.5 are as follows:

❑ Customer-driven features that are still backwardly compatible with ADO.NET 1.x

❑ Improving performance on your data-store calls

❑ Providing more power for power users

❑ Taking advantage of SQL Server 2005/2008 features

ADO.NET addresses a couple of the most common data-access strategies used for applications today.
When classic ADO was developed, many applications could be connected to the data store almost
indefinitely. Today, with the explosion of the Internet as the means of data communication, a new data
technology is required to make data accessible and updateable in a disconnected architecture.

The first of these common data-access scenarios is one in which a user must locate a collection of data
and iterate through this data just a single time. This is a popular scenario for Web pages. When a request
for data from a Web page that you have created is received, you can simply fill a table with data from
a data store. In this case, you go to the data store, grab the data that you want, send the data across
the wire, and then populate the table. In this scenario, the goal is to get the data in place as fast as
possible.

328

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 329

Chapter 9: Data Access with ADO.NET 3.5

The second way to work with data in this disconnected architecture is to grab a collection of data and
use this data separately from the data store itself. This could be on the server or even on the client. Even
though the data is disconnected, you want the capability to keep the data (with all of its tables and
relations in place) on the client side. Classic ADO data was represented by a single table that you could
iterate through; but ADO.NET can be a reflection of the data store itself, with tables, columns, rows, and
relations all in place. When you are done with the client-side copy of the data, you can persist the changes
that you made in the local copy of data directly back into the data store. The technology that gives you
this capability is the DataSet, which is covered shortly.

Although classic ADO was geared for a two-tiered environment (client-server), ADO.NET addresses a
multi-tiered environment. ADO.NET is easy to work with because it has a unified programming model.
This unified programming model makes working with data on the server the same as working with
data on the client. Because the models are the same, you find yourself more productive when working
with ADO.NET.

Basic ADO.NET Features
This chapter begins with a quick look at the basics of ADO.NET and then provides an overview of
ADO.NET capabilities, namespaces, and classes. It also reviews how to work with the Connection,
Command, DataAdapter, DataSet, and DataReader objects.

Common ADO.NET Tasks
Before jumping into the depths of ADO.NET, step back and make sure that you understand some of the
common tasks you might perform programmatically within ADO.NET. This section looks at the process
of selecting, inserting, updating, and deleting data.

The following example makes use of the Northwind.mdf SQL Server Express Database file. To get this
database, search for ‘‘Northwind and pubs Sample Databases for SQL Server 2000.’’ You can find this
link at www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en. Once installed, you will find the Northwind.mdf file in the C:\ SQL
Server 2000 Sample Databases directory. To add this database to your ASP.NET application, create
an App_Data folder within your project (if it isn’t already there) and right-click on the folder and select
Add Existing Item. From the provided dialog, you can browse to the location of the Northwind.mdf file
that you just installed. If you have trouble getting permissions to work with the database, make a data
connection to the file from the Visual Studio Server Explorer. You will be asked to be made the appropriate
user of the database and VS will make the appropriate changes on your behalf for this to occur.

Selecting Data
After the connection to the data source is open and ready to use, you probably want to read the data from
the data source. If you do not want to manipulate the data, but simply to read it or transfer it from one
spot to another, you use the DataReader class.

The following example uses the GetCompanyNameData function to provide a list of company names from
the SQL Northwind database.

Imports Microsoft.VisualBasic
Imports System.Collections.Generic

329

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 330

Chapter 9: Data Access with ADO.NET 3.5

Imports System.Data
Imports System.Data.SqlClient

Public Class SelectingData
Public Function GetCompanyNameData() As List(Of String)

Dim conn As SqlConnection
Dim cmd As SqlCommand
Dim cmdString As String = "Select CompanyName from Customers"
conn = New SqlConnection("Data Source=.\SQLEXPRESS;AttachDbFilename=

|DataDirectory|\NORTHWND.MDF;Integrated Security=True;
User Instance=True") ’ Put this string on one line in your code

cmd = New SqlCommand(cmdString, conn)
conn.Open()

Dim myReader As SqlDataReader
Dim returnData As List(Of String) = New List(Of String)
myReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

While myReader.Read()
returnData.Add(myReader("CompanyName").ToString())

End While

Return returnData
End Function

End Class

In this example, you create an instance of both the SqlConnection and the SqlCommand classes. Then,
before you open the connection, you simply pass the SqlCommand class a SQL command selecting specific
data from the Northwind database. After your connection is opened (based upon the commands passed
in), you create a DataReader. To read the data from the database, you iterate through the data with
the DataReader by using the myReader.Read method. After the List(Of String) object is built, the
connection is closed and the object is returned from the function.

Inserting Data
When working with data, you often insert the data into the data source. The next code sample shows you
how to do this. This data may have been passed to you by the end user through the XML Web Service,
or it may be data that you generated within the logic of your class.

Public Sub InsertData()
Dim conn As SqlConnection
Dim cmd As SqlCommand
Dim cmdString As String = "Insert Customers (CustomerID, _

CompanyName, ContactName) Values (’BILLE’, ’XYZ Company’, ’Bill Evjen’)"
conn = New SqlConnection("Data Source=.\SQLEXPRESS;AttachDbFilename=

|DataDirectory|\NORTHWND.MDF;Integrated Security=True;
User Instance=True") ’ Put this string on one line in your code

cmd = New SqlCommand(cmdString, conn)
conn.Open()

cmd.ExecuteNonQuery()
conn.Close()

End Sub

330

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 331

Chapter 9: Data Access with ADO.NET 3.5

Inserting data into SQL is pretty straightforward and simple. Using the SQL command string, you insert
specific values for specific columns. The actual insertion is initiated using the cmd.ExecuteNonQuery
command. This executes a command on the data when you don’t want anything in return.

Updating Data
In addition to inserting new records into a database, you frequently update existing rows of data in a
table. Imagine a table in which you can update multiple records at once. In the next example, you want
to update an employee table by putting a particular value in the emp_bonus column if the employee has
been at the company for five years or longer:

Public Function UpdateEmployeeBonus() As Integer
Dim conn As SqlConnection
Dim cmd As SqlCommand
Dim RecordsAffected as Integer
Dim cmdString As String = "UPDATE Employees SET emp_bonus=1000 WHERE " & _

"yrs_duty>=5"
conn = New SqlConnection("Data Source=.\SQLEXPRESS;AttachDbFilename=

|DataDirectory|\NORTHWND.MDF;Integrated Security=True;
User Instance=True") ’ Put this string on one line in your code

cmd = New SqlCommand(cmdString, conn)
conn.Open()

RecordsAffected = cmd.ExecuteNonQuery()
conn.Close()

Return RecordsAffected
End Function

This update function iterates through all the employees in the table and changes the value of the emp_
bonus field to 1000 if an employee has been with the company for more than five years. This is done with
the SQL command string. The great thing about these update capabilities is that you can capture the num-
ber of records that were updated by assigning the ExecuteNonQuery command to the RecordsAffected
variable. The total number of affected records is then returned by the function.

Deleting Data
Along with reading, inserting, and updating data, you sometimes need to delete data from the data
source. Deleting data is a simple process of using the SQL command string and then the ExecuteNonQuery
command as you did in the update example. The following bit of code illustrates this:

Public Function DeleteEmployee() As Integer
Dim conn As SqlConnection
Dim cmd As SqlCommand
Dim RecordsAffected as Integer
Dim cmdString As String = "DELETE Employees WHERE LastName=’Evjen’"
conn = New SqlConnection("Data Source=.\SQLEXPRESS;AttachDbFilename=

|DataDirectory|\NORTHWND.MDF;Integrated Security=True;
User Instance=True") ’ Put this string on one line in your code

cmd = New SqlCommand(cmdString, conn)
conn.Open()

RecordsAffected = cmd.ExecuteNonQuery()

331

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 332

Chapter 9: Data Access with ADO.NET 3.5

conn.Close()

Return RecordsAffected
End Function

You can assign the ExecuteNonQuery command to an Integer variable (just as you did for the update
function) to return the number of records deleted.

Basic ADO.NET Namespaces and Classes
The six core ADO.NET namespaces are shown in the following table. In addition to these namespaces,
each new data provider can have its own namespace. As an example, the Oracle .NET data provider adds
a namespace of System.Data.OracleClient (for the Microsoft-built Oracle data provider).

Namespace Description

System.Data This namespace is the core of ADO.NET. It contains classes used
by all data providers. Its classes represent tables, columns, rows,
and the DataSet class. It also contains several useful interfaces,
such as IDbCommand, IDbConnection, and IDbDataAdapter. These
interfaces are used by all managed providers, enabling them to
plug into the core of ADO.NET.

System.Data.Common This namespace defines common classes that are used as base
classes for data providers. All data providers share these classes.
Two examples are DbConnection and DbDataAdapter.

System.Data.OleDb This namespace defines classes that work with OLE-DB data
sources using the .NET OleDb data provider. It contains classes
such as OleDbConnection and OleDbCommand.

System.Data.Odbc This namespace defines classes that work with the ODBC data
sources using the .NET ODBC data provider. It contains classes
such as OdbcConnection and OdbcCommand.

System.Data.SqlClient This namespace defines a data provider for the SQL Server 7.0 or
later database. It contains classes such as SqlConnection and
SqlCommand.

System.Data.SqlTypes This namespace defines a few classes that represent specific data
types for the SQL Server database.

ADO.NET has three distinct types of classes commonly referred to as disconnected, shared, and data
providers. The disconnected classes provide the basic structure for the ADO.NET Framework. A good
example of this type of class is the DataTable class. The objects of this class are capable of storing
data without any dependency on a specific data provider. The Shared classes form the base classes
for data providers and are shared among all data providers. The data provider classes are meant to
work with different kinds of data sources. They are used to perform all data-management operations
on specific databases. The SqlClient data provider, for example, works only with the SQL Server
database.

332

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 333

Chapter 9: Data Access with ADO.NET 3.5

A data provider contains Connection, Command, DataAdapter, and DataReader objects. Typically, in
programming ADO.NET, you first create the Connection object and provide it with the necessary infor-
mation, such as the connection string. You then create a Command object and provide it with the details
of the SQL command that is to be executed. This command can be an inline SQL text command, a stored
procedure, or direct table access. You can also provide parameters to these commands if needed.

After you create the Connection and the Command objects, you must decide whether the command returns a
result set. If the command doesn’t return a result set, then you can simply execute the command by calling
one of its several Execute methods. Conversely, if the command returns a result set, you must decide
whether you want to retain the result set for future use without maintaining the connection to the database.
If you want to retain the result set, then you must create a DataAdapter object and use it to fill a DataSet
or a DataTable object. These objects are capable of maintaining their information in a disconnected mode.
However, if you don’t want to retain the result set, but rather to simply process the command in a swift
fashion, then you can use the Command object to create a DataReader object. The DataReader object needs
a live connection to the database, and it works as a forward-only, read-only cursor.

ADO.NET Components
To better support the disconnected model as defined above, the ADO.NET components separate data
access from data manipulation. This is accomplished via two main components: the DataSet and the
.NET Data Provider. Figure 9-1 illustrates the concept of separating data access from data manipulation.

.NET Data Framework Provider DataSet

Connection
Transaction SelectCommand

DataRelationCollection

DataRowCollection

DataColumnCollection

ConstraintCollection

InsertCommand

UpdateCommand

DeleteCommand

Parameters

DataAdapter DataTableCollection

Command

DataReader

DataTable

Database XML

Figure 9-1

The DataSet is the core component of the disconnected architecture of ADO.NET. It is explicitly designed
for data access independent of any data source. As a result, it can be used with multiple and differing data
sources, with XML data, or even to manage data local to an application such as an in-memory data cache.
The DataSet contains a collection of one or more DataTable objects made up of rows and columns of data,

333

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 334

Chapter 9: Data Access with ADO.NET 3.5

as well as primary key, foreign key, constraint, and relation information about the data in the DataTable
objects. It is basically an in-memory database, but what sets it apart is that it doesn’t care whether its data
is obtained from a database, an XML file, a combination of the two, or somewhere else. You can apply
inserts, updates, and deletes to the DataSet and then push the changes back to the data source, no matter
where the data source lives! This chapter offers an in-depth look at the DataSet object family.

The other core element of the ADO.NET architecture is the .NET Data Provider, whose components are
designed for data manipulation (as opposed to data access with the DataSet). These components are
listed in the following table.

The DataAdapter uses Command objects to execute SQL commands at the data source, both to load the
DataSet with data and to reconcile changes made to the data in the DataSet with the data source. You
will take a closer look at this later in the detailed discussion of the DataAdapter object.

.NET Data Providers can be written for any data source, though this topic is beyond the scope of this
chapter.

Object Activity

Connection Provides connectivity to a data source

Command Enables access to database commands to return and modify data, run stored
procedures, and send or retrieve parameter information

DataReader Provides a high-performance, read-only stream of data from the data source

DataAdapter Provides the bridge between the DataSet object and the data source

The .NET Framework 3.5 ships with three .NET Data Providers: the SQL Server .NET Data Provider, the
Oracle .NET Data Provider, and the OLE DB .NET Data Provider.

Do not confuse the OLE DB .NET Data Provider with generic OLE DB Providers.

The rule of thumb when deciding which data provider to use is to first use a .NET Relational Database
Management System (RDBMS)–specific data provider if it is available, and to use the .NET OLE DB
Provider when connecting to any other data source. (Most RDBMS vendors are now producing their
own .NET Data Providers in order to encourage .NET developers to use their databases.)

For example, if you were writing an application that uses SQL Server, then you would want to use the
SQL Server .NET Data Provider. The .NET OLE DB Provider is used to access any data source exposed
through OLE DB, such as Microsoft Access, Open DataBase Connectivity (ODBC), and so on. You will be
taking a closer look at these later.

.NET Data Providers
.NET Data Providers are used for connecting to a RDBMS-specific database (such as SQL Server or
Oracle), executing commands, and retrieving results. Those results are either processed directly (via a
DataReader) or placed in an ADO.NET DataSet (via a DataAdapter) in order to be exposed to the user

334

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 335

Chapter 9: Data Access with ADO.NET 3.5

in an ad hoc manner, combined with data from multiple sources, or passed around between tiers. NET
Data Providers are designed to be lightweight, to create a minimal layer between the data source and the
.NET programmer’s code, and to increase performance while not sacrificing any functionality.

Connection Object
To connect to a specific data source, you use a data Connection object. To connect to Microsoft SQL
Server 7.0 or later, you need to use the SqlConnection object of the SQL Server .NET Data Provider. You
need to use the OleDbConnection object of the OLE DB .NET Data Provider to connect to an OLE DB
data source, or the OLE DB Provider for SQL Server (SQLOLEDB) to connect to versions of Microsoft
SQL Server earlier than 7.0.

Connection String Format — OleDbConnection
For the OLE DB .NET Data Provider, the connection string format is the same as the connection string
format used in ADO, with the following exceptions:

❑ The Provider keyword is required.

❑ The URL, Remote Provider, and Remote Server keywords are not supported.

Here is an example OleDbConnection connection string connecting to an Oracle database:

Provider=msdaora;Data Source=MyOracleDB;UserId=myUsername;Password=myPassword;

Connection-String Format — SqlConnection
The SQL Server .NET Data Provider supports a connection-string format that is similar to the OLE
DB (ADO) connection-string format. The only thing that you need to omit, obviously, is the provider
name-value pair, as you know you are using the SQL Server .NET Data Provider. Here is an example of
a SqlConnection connection string:

Data Source=(local);Initial Catalog=pubs;Integrated Security=SSPI;

Command Object
After establishing a connection, you can execute commands and return results from a data source (such
as SQL Server) using a Command object. A Command object can be created using the Command constructor, or
by calling the CreateCommand method of the Connection object. When creating a Command object using the
Command constructor, you need to specify a SQL statement to execute at the data source, and a Connection
object. The Command object’s SQL statement can be queried and modified using the CommandText prop-
erty. The following code is an example of executing a SELECT command and returning a DataReader
object:

` Build the SQL and Connection strings.
Dim sql As String = "SELECT * FROM authors"
Dim connectionString As String = "Initial Catalog=pubs;" _
& "Data Source=(local);Integrated Security=SSPI;"

` Initialize the SqlCommand with the SQL
` and Connection strings.
Dim command As SqlCommand = New SqlCommand(sql, _

335

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 336

Chapter 9: Data Access with ADO.NET 3.5

New SqlConnection(connectionString))
` Open the connection.
command.Connection.Open()
` Execute the query, return a SqlDataReader object.
` CommandBehavior.CloseConnection flags the
` DataReader to automatically close the DB connection
` when it is closed.
Dim dataReader As SqlDataReader = _

command.ExecuteReader(CommandBehavior.CloseConnection)

The CommandText property of the Command object executes all SQL statements in addition to the standard
SELECT, UPDATE, INSERT, and DELETE statements. For example, you could create tables, foreign keys,
primary keys, and so on, by executing the applicable SQL from the Command object.

The Command object exposes several Execute methods to perform the intended action. When returning
results as a stream of data, ExecuteReader is used to return a DataReader object. ExecuteScalar is used
to return a singleton value. In ADO.NET, the ExecuteRow method has been added, which returns a single
row of data in the form of a SqlRecord object. ExecuteNonQuery is used to execute commands that do
not return rows, which usually includes stored procedures that have output parameters and/or return
values. (You will learn about stored procedures in a later section.)

When using a DataAdapter with a DataSet, Command objects are used to return and modify data at the
data source through the DataAdapter object’s SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand properties.

Note that the DataAdapter object’s SelectCommand property must be set before the
Fill method is called.

The InsertCommand, UpdateCommand, and DeleteCommand properties must be set before the Update
method is called. You will take a closer look at this when you look at the DataAdapter object.

Using Stored Procedures with Command Objects
This section offers a quick look at how to use stored procedures, before delving into a more complex
example later in the chapter demonstrating how you can build a reusable data-access component that
also uses stored procedures. The motivation for using stored procedures is simple. Imagine you have the
following code:

SELECT au_lname FROM authors WHERE au_id=’172-32-1176’

If you pass that to SQL Server using ExecuteReader on SqlCommand (or any execute method, for that
matter), SQL Server has to compile the code before it can run it, in much the same way that VB .NET
applications have to be compiled before they can be executed. This compilation takes up SQL Server’s
time, so it is easy to deduce that if you can reduce the amount of compilation that SQL Server has to
do, database performance should increase. (Compare the speed of execution of a compiled application
against interpreted code.)

336

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 337

Chapter 9: Data Access with ADO.NET 3.5

That’s what stored procedures are all about: you create a procedure, store it in the database, and because
the procedure is recognized and understood ahead of time, it can be compiled ahead of time and ready
for use in your application.

Stored procedures are very easy to use, but the code to access them is sometimes a little verbose. The next
section demonstrates some code that can make accessing stored procedures a bit more straightforward,
but to make things clearer, let’s start by building a simple application that demonstrates how to create
and call a stored procedure.

Creating a Stored Procedure
To create a stored procedure, you can either use the tools in Visual Studio .NET or you can use the tools
in SQL Server’s Enterprise Manager if you are using SQL Server 2000, or in SQL Server Management
Studio if you are using SQL Server 2005/2008. (Technically, you can use a third-party tool or just create
the stored procedure in a good, old-fashioned SQL script.)

This example builds a stored procedure that returns all of the columns for a given author ID. The SQL to
do this looks like this:

SELECT
au_id, au_lname, au_fname, phone,
address, city, state, zip, contract

FROM
authors

WHERE
au_id = whatever author ID you want

The ‘‘whatever author ID you want’’ part is important. When using stored procedures, you typically
have to be able to provide parameters into the stored procedure and use them from within code. This is
not a book about SQL Server, so this example focuses only on the principle involved. You can find many
resources on the Web about building stored procedures (they have been around a very long time, and
they are most definitely not a .NET-specific feature).

Variables in SQL Server are prefixed by the @ symbol, so if you have a variable called au id, then your
SQL will look like this:

SELECT
au_id, au_lname, au_fname, phone,
address, city, state, zip, contract

FROM
authors

WHERE
au_id = @au_id

In Visual Studio 2008, stored procedures can be accessed using the Server Explorer. Simply add a new
data connection (or use an existing data connection), and then drill down into the Stored Procedures
folder in the management tree. A number of stored procedures are already loaded. The byroyalty pro-
cedure is a stored procedure provided by the sample pubs database developers. Figure 9-2 illustrates the
stored procedures of the pubs database in Visual Studio 2008.

337

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 338

Chapter 9: Data Access with ADO.NET 3.5

Figure 9-2

To create a new stored procedure, just right-click the Stored Procedures folder in the Server Explorer and
select Add New Stored Procedure to invoke the Editor window.

A stored procedure can be either a single SQL statement or a complex set of statements. T-SQL supports
branches, loops, and other variable declarations, which can make for some pretty complex stored proce-
dure code. However, your stored procedure is just a single line of SQL. You need to declare the parameter
that you want to pass in (@au_id) and the name of the procedure: usp_authors_Get_By_ID. Here’s code
for the stored procedure:

CREATE PROCEDURE usp_authors_Get_By_ID
@au_id varchar(11)

AS
SELECT

au_id, au_lname, au_fname, phone,
address, city, state, zip, contract

FROM
authors

WHERE
au_id = @au_id

Click OK to save the stored procedure in the database. You are now able to access this stored procedure
from code.

Calling the Stored Procedure
Calling the stored procedure is just a matter of creating a SqlConnection object to connect to the database,
and a SqlCommand object to run the stored procedure.

The sample code for this chapter demonstrates a solution called Examples.sln, which includes a project
called AdoNetFeaturesTest.

338

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 339

Chapter 9: Data Access with ADO.NET 3.5

For all of the data-access examples in this chapter, you need the pubs database,
which can be downloaded from MSDN. In addition, be sure to run the
examples.sql file — available with the code download for this chapter — in SQL
Server 2005 Management Studio before running the code examples. This creates the
necessary stored procedures and functions in the pubs database. You can also use
the SQL Server Express Edition of the pubs database, PUBS.MDF, also found on
MSDN.

Now you have to decide what you want to return by calling the stored procedure. In this case, you return an
instance of the SqlDataReader object. The TestForm.vbfile contains a method called GetAuthorSqlReader
that takes an author ID and returns an instance of a SqlDataReader. Here is the code for the method:

Private Function GetAuthorSqlReader(ByVal authorId As String) As SqlDataReader
` Build a SqlCommand
Dim command As SqlCommand = New SqlCommand("usp_authors_Get_By_ID", _

GetPubsConnection())
` Tell the command we are calling a stored procedure
command.CommandType = CommandType.StoredProcedure
` Add the @au_id parameter information to the command
command.Parameters.Add(New SqlParameter("@au_id", authorId))
` The reader requires an open connection
command.Connection.Open()
` Execute the sql and return the reader
Return command.ExecuteReader(CommandBehavior.CloseConnection)

End Function

Notice that in the SqlCommand’s constructor call, you have factored out creating a connection to the pubs
database into a separate helper method. This is used later in other code examples in your form.

Here is the code for the GetPubsConnection helper method:

Private Function GetPubsConnection() As SqlConnection
` Build a SqlConnection based on the config value.
Return New _

SqlConnection(ConfigurationSettings.AppSettings("dbConnectionString"))
End Function

The most significant thing this code does is grab a connection string to the database from the application’s
configuration file, app.config. Here is what the entry in the app.config file looks like:

<appSettings>
<add key="dbConnectionString" value="data source=(local);initial

catalog=pubs;Integrated Security=SSPI;" />
</appSettings>

Although the helper method does not do much, it is nice to place this code in a separate method. This
way, if the code to get a connection to the databases needs to be changed, then the code only has to be
changed in one place.

339

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 340

Chapter 9: Data Access with ADO.NET 3.5

Accessing a stored procedure is more verbose (but not more difficult) than accessing a normal SQL
statement through the methods discussed thus far. The approach is as follows:

1. Create a SqlCommand object.

2. Configure it to access a stored procedure by setting the CommandType property.

3. Add parameters that exactly match those in the stored procedure itself.

4. Execute the stored procedure using one of the SqlCommand object’s Execute*** methods

There is no real need to build an impressive UI for this application, as we’re about to add a button named
getAuthorByIdButton that calls the GetAuthorSqlRecord helper method and displays the selected
author’s name. Here is the button’s Click event handler:

Private Sub _getAuthorByIdButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _getAuthorByIdButton.Click
Dim reader As SqlDataReader = Me. GetAuthorSqlReader ("409-56-7008")
If reader.Read()

MessageBox.Show(reader("au_fname").ToString() & " " _
& reader("au_lname").ToString())

End If

reader.Close()
End Sub

This has hard-coded an author ID of 409-56-7008. Run the code now and you should see the result shown
in Figure 9-3.

Figure 9-3

DataReader Object
You can use the DataReader to retrieve a read-only, forward-only stream of data from the database.
Using the DataReader can increase application performance and reduce system overhead because only
one buffered row at a time is ever in memory. With the DataReader object, you are getting as close to
the raw data as possible in ADO.NET; you do not have to go through the overhead of populating a
DataSet object, which sometimes may be expensive if the DataSet contains a lot of data. The disadvan-
tage of using a DataReader object is that it requires an open database connection and increases network
activity.

340

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 341

Chapter 9: Data Access with ADO.NET 3.5

After creating an instance of the Command object, a DataReader is created by calling the ExecuteReader
method of the Command object. Here is an example of creating a DataReader and iterating through it to
print out its values to the screen:

Private Sub TraverseDataReader()

` Build the SQL and Connection strings.
Dim sql As String = "SELECT * FROM authors"
Dim connectionString As String = "Initial Catalog=pubs;" _

& "Data Source=(local);Integrated Security=SSPI;"

` Initialize the SqlCommand with the SQL query and connection strings.
Dim command As SqlCommand = New SqlCommand(sql, _

New SqlConnection(connectionString))
` Open the connection.
command.Connection.Open()
` Execute the query, return a SqlDataReader object.
` CommandBehavior.CloseConnection flags the
` DataReader to automatically close the DB connection
` when it is closed.
Dim reader As SqlDataReader = _

command.ExecuteReader(CommandBehavior.CloseConnection)
` Loop through the records and print the values.
Do While reader.Read

Console.WriteLine(reader.GetString(1) & " " & reader.GetString(2))
Loop
` Close the DataReader (and its connection).
reader.Close()

End Sub

This code snippet uses the SqlCommand object to execute the query via the ExecuteReader method. This
method returns a populated SqlDataReader object, which you loop through and then print out the author
names. The main difference between this code and looping through the rows of a DataTable is that you
have to stay connected while you loop through the data in the DataReader object; this is because the
DataReader reads in only a small stream of data at a time to conserve memory space.

At this point, an obvious design question is whether to use the DataReader or the
DataSet. The answer depends upon performance. If you want high performance
and you are only going to access the data you are retrieving once, then the
DataReader is the way to go. If you need access to the same data multiple times, or if
you need to model a complex relationship in memory, then the DataSet is the way
to go. As always, test each option thoroughly before deciding which one is the best.

The Read method of the DataReader object is used to obtain a row from the results of the query. Each
column of the returned row may be accessed by passing the name or ordinal reference of the column to
the DataReader; or, for best performance, the DataReader provides a series of methods that enable you

341

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 342

Chapter 9: Data Access with ADO.NET 3.5

to access column values in their native data types (GetDateTime, GetDouble, GetGuid, GetInt32, and so
on). Using the typed accessor methods when the underlying data type is known reduces the amount of
type conversion required (converting from type Object) when retrieving the column value.

The DataReader provides a nonbuffered stream of data that enables procedural logic to efficiently process
results from a data source sequentially. The DataReader is a good choice when retrieving large amounts of
data; only one row of data is cached in memory at a time. You should always call the Close method when
you are through using the DataReader object, as well as close the DataReader object’s database connection;
otherwise, the connection will not be closed until the garbage collector gets around to collecting the object.

Note how you use the CommandBehavior.CloseConnection enumeration value on the SqlDataReader.
ExecuteReader method. This tells the SqlCommand object to automatically close the database connection
when the SqlDataReader.Close method is called.

If your command contains output parameters or return values, they will not be
available until the DataReader is closed.

Executing Commands Asynchronously
In ADO.NET, additional support enables Command objects to execute their commands asynchronously,
which can result in a huge perceived performance gain in many applications, especially in Windows
Forms applications. This can come in very handy, especially if you ever have to execute a long-running
SQL statement. This section examines how this functionality enables you to add asynchronous processing
to enhance the responsiveness of an application.

The SqlCommand object provides three different asynchronous call options: BeginExecuteReader,
BeginExecuteNonQuery, and BeginExecuteXmlReader. Each of these methods has a corresponding ‘‘end’’
method — that is, EndExecuteReader, EndExecutreNonQuery, and EndExecuteXmlReader. Now that you
are familiar with the DataReader object, let’s look at an example using the BeginExecuteReader method
to execute a long-running query.

In the AdoNetFeaturesTest project, I have added a Button and an associated Click event handler to the
form that will initiate the asynchronous call to get a DataReader instance:

Private Sub _testAsyncCallButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _testAsyncCallButton.Click

` Build a connection for the async call to the database.
Dim connection As SqlConnection = GetPubsConnection()
connection.ConnectionString &= "Asynchronous Processing=true;"

` Build a command to call the stored procedure.
Dim command As New SqlCommand("usp_Long_Running_Procedure", _

connection)

` Set the command type to stored procedure.
command.CommandType = CommandType.StoredProcedure

` The reader requires an open connection.
connection.Open()

342

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 343

Chapter 9: Data Access with ADO.NET 3.5

` Make the asynchronous call to the database.
command.BeginExecuteReader(AddressOf Me.AsyncCallback, _
command, CommandBehavior.CloseConnection)

End Sub

The first thing you do is reuse your helper method GetPubsConnection to get a connection to the pubs
database. Next, and this is very important, you append the statement Asynchronous Processing = true
to your Connection object’s connection string. This must be set in order for ADO.NET to make asyn-
chronous calls to SQL Server.

After getting the connection set, you then build a SqlCommand object and initialize it to be able to execute
the usp_Long_Running_Procedure stored procedure. This procedure uses the SQL Server 2005 WAITFOR
DELAY statement to create a 20-second delay before it executes the usp_Authors_Get_All stored proce-
dure. As you can probably guess, the usp_authors_Get_All stored procedure simply selects all of the
authors from the authors table. The delay is added simply to demonstrate that while this stored proce-
dure is executing, you can perform other tasks in your Windows Forms application. Here is the SQL code
for the usp_Long_Running_Procedure stored procedure:

CREATE PROCEDURE usp_Long_Running_Procedure
AS
SET NOCOUNT ON

WAITFOR DELAY ’00:00:20’
EXEC usp_authors_Get_All

The last line of code in the Button’s Click event handler is the call to BeginExecuteReader. In this call,
the first thing you are passing in is a delegate method (Me.AsyncCallback) for the System.AsyncCallback
delegate type. This is how the .NET Framework calls you back once the method is finished running
asynchronously. You then pass in your initialized SqlCommand object so that it can be executed, as
well as the CommandBehavior value for the DataReader. In this case, you pass in the CommandBehavior
.CloseConnection value so that the connection to the database will be closed once the DataReader has
been closed. You will look at the DataReader in more detail in the next section.

Now that you have initiated the asynchronous call, and have defined a callback for your asynchronous
call, let’s look at the actual method that is being called back, the AsyncCallback method:

Private Sub AsyncCallback(ByVal ar As IAsyncResult)
` Get the command that was passed from the AsyncState of the IAsyncResult.
Dim command As SqlCommand = CType(ar.AsyncState, SqlCommand)
` Get the reader from the IAsyncResult.
Dim reader As SqlDataReader = command.EndExecuteReader(ar)
` Get a table from the reader.
Dim table As DataTable = Me.GetTableFromReader(reader, "Authors")
` Call the BindGrid method on the Windows main thread,
` passing in the table.
Me.Invoke(New BindGridDelegate(AddressOf Me.BindGrid), _

New Object() {table})
End Sub

The first line of the code is simply retrieving the SqlCommand object from the AsyncState property of
the IAsyncResult that was passed in. Remember that when you called BeginExecuteReader earlier,

343

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 344

Chapter 9: Data Access with ADO.NET 3.5

you passed in your SqlCommand object. You need it so that you can call the EndExecuteReader method
on the next line. This method gives you your SqlDataReader. On the next line, you then transform the
SqlDataReader into a DataTable (covered later when the DataSet is discussed).

The last line of this method is probably the most important. If you tried to just take your DataTable and
bind it to the grid, it would not work, because right now you are executing on a thread other than the
main Windows thread. The helper method named BindGrid can do the data binding, but it must be called
only in the context of the Windows main thread. To bring the data back to the main Windows thread, it
must be marshaled via the Invoke method of the Form object. Invoke takes two arguments: the delegate
of the method you want to call and (optionally) any parameters for that method. In this case, you define
a delegate for the BindGrid method, called BindGridDelegate. Here is the delegate declaration:

Private Delegate Sub BindGridDelegate(ByVal table As DataTable)

Notice how the signature is exactly the same as the BindGrid method shown here:

Private Sub BindGrid(ByVal table As DataTable)
` Clear the grid.
Me._authorsGridView.DataSource = Nothing
` Bind the grid to the DataTable.
Me._authorsGridView.DataSource = table

End Sub

Here is another look at the call to the form’s Invoke method:

Me.Invoke(New BindGridDelegate(AddressOf Me.BindGrid), _
New Object() {table})

You pass in a new instance of the BindGridDelegate delegate and initialize it with a pointer to the
BindGrid method. As a result, the .NET worker thread that was executing your query can now safely
join up with the main Windows thread.

DataAdapter Objects
Each .NET Data Provider included with the .NET Framework has a DataAdapter object. The OLE DB
.NET Data Provider includes an OleDbDataAdapter object, and the SQL Server .NET Data Provider
includes a SqlDataAdapter object. A DataAdapter is used to retrieve data from a data source and pop-
ulate DataTable objects and constraints within a DataSet. The DataAdapter also resolves changes made
to the DataSet back to the data source. The DataAdapter uses the Connection object of the .NET Data
Provider to connect to a data source, and Command objects to retrieve data from, and resolve changes to,
the data source from a DataSet object.

This differs from the DataReader, in that the DataReader uses the Connection object to access the data
directly, without having to use a DataAdapter. The DataAdapter essentially decouples the DataSet object
from the actual source of the data, whereas the DataReader is tightly bound to the data in a read-only
fashion.

The SelectCommand property of the DataAdapter is a Command object that retrieves data from the data
source. A nice, convenient way to set the DataAdapter’s SelectCommand property is to pass in a Command
object in the DataAdapter’s constructor. The InsertCommand, UpdateCommand, and DeleteCommand

344

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 345

Chapter 9: Data Access with ADO.NET 3.5

properties of the DataAdapter are Command objects that manage updates to the data in the data source
according to the modifications made to the data in the DataSet. The Fill method of the DataAdapter
is used to populate a DataSet with the results of the SelectCommand of the DataAdapter. It also adds
or refreshes rows in the DataSet to match those in the data source. The following example code demon-
strates how to fill a DataSet object with information from the authors table in the pubs
database:

Private Sub TraverseDataSet()
` Build the SQL and Connection strings.
Dim sql As String = "SELECT * FROM authors"
Dim connectionString As String = "Initial Catalog=pubs;" _

& "Data Source=(local);Integrated Security=SSPI;"

` Initialize the SqlDataAdapter with the SQL
` and Connection strings, and then use the
` SqlDataAdapter to fill the DataSet with data.
Dim adapter As New SqlDataAdapter(sql, connectionString)
Dim authors As New DataSet
adapter.Fill(authors)

` Iterate through the DataSet’s table.
For Each row As DataRow In authors.Tables(0).Rows

Console.WriteLine(row("au_fname").ToString _
& " " & row("au_lname").ToString)

Next

` Print the DataSet’s XML.
Console.WriteLine(authors.GetXml())
Console.ReadLine()

End Sub

Note how you use the constructor of the SqlDataAdapter to pass in and set the SelectCommand, as well
as pass in the connection string in lieu of a SqlCommand object that already has an initialized Connection
property. You then just call the SqlDataAdapter object’s Fill method and pass in an initialized DataSet
object. If the DataSet object is not initialized, then the Fill method raises an exception (System
.ArgumentNullException).

Ever since ADO.NET 2.0, a significant performance improvement was made in the way that the
DataAdapter updates the database. In ADO.NET 1.x, the DataAdapter’s Update method would loop
through each row of every DataTable object in the DataSet and subsequently make a trip to the database
for each row being updated. In ADO.NET 2.0, batch update support was added to the DataAdapter.
This means that when the Update method is called, the DataAdapter batches all of the updates from the
DataSet in one trip to the database.

Now let’s take a look at a more advanced example. Here, you use a DataAdapter to insert, update, and
delete data from a DataTable back to the pubs database:

Private Sub _batchUpdateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _batchUpdateButton.Click

` Build insert, update, and delete commands.

345

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 346

Chapter 9: Data Access with ADO.NET 3.5

` Build the parameter values.
Dim insertUpdateParams() As String = {"@au_id", "@au_lname", _

"@au_fname", _
"@phone", "@address", "@city", "@state", "@zip", "@contract"}

The preceding code begins by initializing a string array of parameter names to pass into the Build
SqlCommand helper method:

` Insert command.
Dim insertCommand As SqlCommand = _

BuildSqlCommand("usp_authors_Insert", _
insertUpdateParams)

Next, you pass the name of the stored procedure to execute and the parameters for the stored procedure
to the BuildSqlCommand helper method. This method returns an initialized instance of the SqlCommand
class. Here is the BuildSqlCommand helper method:

Private Function BuildSqlCommand(ByVal storedProcedureName As String, _
ByVal parameterNames() As String) As SqlCommand

` Build a SqlCommand.
Dim command As New SqlCommand(storedProcedureName, GetPubsConnection())
` Set the command type to stored procedure.
command.CommandType = CommandType.StoredProcedure
` Build the parameters for the command.
` See if any parameter names were passed in.
If Not parameterNames Is Nothing Then

` Iterate through the parameters.
Dim parameter As SqlParameter = Nothing
For Each parameterName As String In parameterNames

` Create a new SqlParameter.
parameter = New SqlParameter()
parameter.ParameterName = parameterName
` Map the parameter to a column name in the DataTable/DataSet.
parameter.SourceColumn = parameterName.Substring(1)
` Add the parameter to the command.
command.Parameters.Add(parameter)

Next
End If
Return command

End Function

This method first initializes a SqlCommand class and passes in the name of a stored procedure; it then
uses the GetPubsConnection helper method to pass in a SqlConnection object to the SqlCommand. The
next step is to set the command type of the SqlCommand to a stored procedure. This is important because
ADO.NET uses this to optimize how the stored procedure is called on the database server. You then
check whether any parameter names have been passed (via the parameterNames string array); if so, you
iterate through them. While iterating through the parameter names, you build up SqlParameter objects
and add them to the SqlCommand’s collection of parameters.

The most important step in building up the SqlParameter object is setting its SourceColumn property.
This is what the DataAdapter later uses to map the name of the parameter to the name of the column in
the DataTable when its Update method is called. An example of such a mapping is associating the @au_id

346

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 347

Chapter 9: Data Access with ADO.NET 3.5

parameter name with the au_id column name. As shown in the code, the mapping assumes that the
stored procedure parameters all have exactly the same names as the columns, except for the mandatory
@ character in front of the parameter. That’s why when assigning the SqlParameter’s SourceColumn
property value, you use the Substring method to strip off the @ character to ensure that it maps correctly.

You then call the BuildSqlCommand method two more times to build your update and delete SqlCommand
objects:

` Update command.
Dim updateCommand As SqlCommand = _

BuildSqlCommand("usp_authors_Update", _
insertUpdateParams)

` Delete command.
Dim deleteCommand As SqlCommand = _

BuildSqlCommand("usp_authors_Delete", _
New String() {"@au_id"})

Now that the SqlCommand objects have been created, the next step is to create a SqlDataAdapter object.
Once the SqlDataAdapter is created, you set its InsertCommand, UpdateCommand, and DeleteCommand
properties with the respective SqlCommand objects that you just built:

` Create an adapter.
Dim adapter As New SqlDataAdapter()

` Associate the commands with the adapter.
adapter.InsertCommand = insertCommand
adapter.UpdateCommand = updateCommand
adapter.DeleteCommand = deleteCommand

The next step is to get a DataTable instance of the authors table from the pubs database. You do this
by calling the GetAuthorsSqlReader helper method to first get a DataReader and then the GetTable
FromReader helper method to load a DataTable from a DataReader:

` Get the authors reader.
Dim reader As SqlDataReader = GetAuthorsSqlReader()
` Load a DataTable from the reader.
Dim table As DataTable = GetTableFromReader(reader, "Authors")

Once you have your DataTable filled with data, you begin modifying it so you can test the new batch
update capability of the DataAdapter. The first change to make is an insert in the DataTable. In order to
add a row, you first call the DataTable’s NewRow method to give you a DataRow initialized with the same
columns as your DataTable:

` Add a new author to the DataTable.
Dim row As DataRow = table.NewRow

Once that is done, you can set the values of the columns of the DataRow:

row("au_id") = "335-22-0707"
row("au_fname") = "Bill"

347

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 348

Chapter 9: Data Access with ADO.NET 3.5

row("au_lname") = "Evjen"
row("phone") = "800-555-1212"
row("contract") = 0

Then you call the Add method of the DataTable’s DataRowCollection property and pass in the newly
populated DataRow object:

table.Rows.Add(row)

Now that there is a new row in the DataTable, the next test is to update one of its rows:

` Change an author in the DataTable.
table.Rows(0)("au_fname") = "Updated Name!"

Finally, you delete a row from the DataTable. In this case, it is the second-to-last row in the DataTable:

` Delete the second to last author from the table
table.Rows(table.Rows.Count - 2).Delete()

Now that you have performed an insert, update, and delete action on your DataTable, it is time to send
the changes back to the database. You do this by calling the DataAdapter’s Update method and passing
in either a DataSet or a DataTable. Note that you are calling the GetChanges method of the DataTable;
this is important, because you only want to send the changes to the DataAdapter:

` Send only the changes in the DataTable to the database for updating.
adapter.Update(table.GetChanges())

To prove that the update worked, you get back a new DataTable from the server using the same tech-
nique as before, and then bind it to the grid with your helper method to view the changes that were
made:

` Get the new changes back from the server to show that the update worked.
reader = GetAuthorsSqlReader()
table = GetTableFromReader(reader, "Authors")
` Bind the grid to the new table data.
BindGrid(table)

End Sub

SQL Server .NET Data Provider
The SQL Server .NET Data Provider uses Tabular Data Stream (TDS) to communicate with the SQL
Server. This offers a great performance increase, as TDS is SQL Server’s native communication protocol.
As an example of how much of an increase you can expect, when I ran some simple tests accessing the
authors table of the pubs database, the SQL Server .NET Data Provider performed about 70 percent faster
than the OLE DB .NET Data Provider.

The SQL Server .NET Data Provider is lightweight and performs very well, thanks to not having to go
through the OLE DB or ODBC layer. What it actually does is establish a network connection (usually
sockets-based) and drag data from this directly into managed code and vice versa.

348

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 349

Chapter 9: Data Access with ADO.NET 3.5

This is very important, as going through the OLE DB or ODBC layers means that
the CLR has to marshal (convert) all of the COM data types to .NET CLR data types
each time data is accessed from a data source. When using the SQL Server .NET
Data Provider, everything runs within the .NET CLR, and the TDS protocol is faster
than the other network protocols previously used for SQL Server.

To use this provider, you need to include the System.Data.SqlClient namespace in your application.
Note that it works only for SQL Server 7.0 and later. I highly recommend using the SQL Server .NET
Data Provider any time you are connecting to a SQL Server 7.0 and later database server. The SQL Server
.NET Data Provider requires the installation of MDAC 2.6 or later.

OLE DB .NET Data Provider
The OLE DB .NET Data Provider uses native OLE DB through COM interop to enable data access. The
OLE DB .NET Data Provider supports both manual and automatic transactions. For automatic trans-
actions, the OLE DB .NET Data Provider automatically enlists in a transaction and obtains transaction
details from Windows 2000 Component Services. The OLE DB .NET Data Provider does not support
OLE DB 2.5 interfaces. OLE DB Providers that require support for OLE DB 2.5 interfaces will not func-
tion properly with the OLE DB .NET Data Provider. This includes the Microsoft OLE DB Provider
for Exchange and the Microsoft OLE DB Provider for Internet Publishing. The OLE DB .NET Data
Provider requires the installation of MDAC 2.6 or later. To use this provider, you need to include the
System.Data.OleDb namespace in your application.

The DataSet Component
The DataSet object is central to supporting disconnected, distributed data scenarios with ADO.NET.
The DataSet is a memory-resident representation of data that provides a consistent relational program-
ming model regardless of the data source. The DataSet represents a complete set of data, including
related tables, constraints, and relationships among the tables; basically, it’s like having a small relational
database residing in memory.

Because the DataSet contains a lot of metadata, you need to be careful about how much data you try to
stuff into it, as it consumes memory.

The methods and objects in a DataSet are consistent with those in the relational database model. The
DataSet can also persist and reload its contents as XML, and its schema as XSD. It is completely discon-
nected from any database connections, so it is totally up to you to fill it with whatever data you need in
memory.

Ever since ADO.NET 2.0, there have been several new features to the DataSet and the DataTable
classes, as well as enhancements to existing features. The features covered in this section are as
follows:

❑ The binary serialization format option

❑ Additions to make the DataTable more of a standalone object

349

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 350

Chapter 9: Data Access with ADO.NET 3.5

❑ The capability to expose DataSet and DataTable data as a stream (DataReader), and loading
stream data into a DataSet or DataTable

DataTableCollection
An ADO.NET DataSet contains a collection of zero or more tables represented by DataTable objects. The
DataTableCollection contains all of the DataTable objects in a DataSet.

A DataTable is defined in the System.Data namespace and represents a single table of memory-resident
data. It contains a collection of columns represented by the DataColumnCollection, which defines the
schema and rows of the table. It also contains a collection of rows represented by the DataRowCollection,
which contains the data in the table. Along with the current state, a DataRow retains its original state and
tracks changes that occur to the data.

DataRelationCollection
A DataSet contains relationships in its DataRelationCollection object. A relationship (represented
by the DataRelation object) associates rows in one DataTable with rows in another DataTable. The
relationships in the DataSet can have constraints, which are represented by UniqueConstraint and
ForeignKeyConstraint objects. It is analogous to a JOIN path that might exist between the primary and
foreign key columns in a relational database. A DataRelation identifies matching columns in two tables
of a DataSet.

Relationships enable you to see what links information within one table to another. The essential elements
of a DataRelation are the name of the relationship, the two tables being related, and the related columns
in each table. Relationships can be built with more than one column per table, with an array of DataColumn
objects for the key columns. When a relationship is added to the DataRelationCollection, it may
optionally add ForeignKeyConstraints that disallow any changes that would invalidate the relationship.

ExtendedProperties
DataSet (as well as DataTable and DataColumn) has an ExtendedProperties property.
ExtendedProperties is a PropertyCollection in which a user can place customized information, such
as the SELECT statement that is used to generate the result set, or a date/time stamp indicating when the
data was generated. Because the ExtendedProperties contains customized information, this is a good
place to store extra user-defined data about the DataSet (or DataTable or DataColumn), such as a time
when the data should be refreshed. The ExtendedProperties collection is persisted with the schema
information for the DataSet (as well as DataTable and DataColumn). The following code is an example
of adding an expiration property to a DataSet:

Private Shared Sub DataSetExtended()

` Build the SQL and Connection strings.
Dim sql As String = "SELECT * FROM authors"
Dim connectionString As String = "Initial Catalog=pubs;" _

& "Data Source=(local);Integrated Security=SSPI;"

` Initialize the SqlDataAdapter with the SQL
` and Connection strings, and then use the
` SqlDataAdapter to fill the DataSet with data.

350

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 351

Chapter 9: Data Access with ADO.NET 3.5

Dim adapter As SqlDataAdapter = _
New SqlDataAdapter(sql, connectionString)

Dim authors As New DataSet
adapter.Fill(authors)

` Add an extended property called "expiration."
` Set its value to the current date/time + 1 hour.
authors.ExtendedProperties.Add("expiration", _

DateAdd(DateInterval.Hour, 1, Now))

Console.Write(authors.ExtendedProperties("expiration").ToString)
Console.ReadLine()

End Sub

This code begins by filling a DataSet with the authors table from the pubs database. It then adds a new
extended property, called expiration, and sets its value to the current date and time plus one hour. You
then simply read it back. As you can see, it is very easy to add extended properties to DataSet objects.
The same pattern also applies to DataTable and DataColumn objects.

Creating and Using DataSet Objects
The ADO.NET DataSet is a memory-resident representation of the data that provides a consistent rela-
tional programming model, regardless of the source of the data it contains. A DataSet represents a
complete set of data, including the tables that contain, order, and constrain the data, as well as the rela-
tionships between the tables. The advantage to using a DataSet is that the data it contains can come from
multiple sources, and it is fairly easy to get the data from multiple sources into the DataSet. In addition,
you can define your own constraints between the DataTables in a DataSet.

There are several methods for working with a DataSet, which can be applied independently or in com-
bination:

❑ Programmatically create DataTables, DataRelations, and constraints within the DataSet and
populate them with data.

❑ Populate the DataSet or a DataTable from an existing RDBMS using a DataAdapter.

❑ Load and persist a DataSet or DataTable using XML.

❑ Load a DataSet from an XSD schema file.

❑ Load a DataSet or a DataTable from a DataReader.

Here is a typical usage scenario for a DataSet object:

1. A client makes a request to a Web service.

2. Based on this request, the Web service populates a DataSet from a database using a
DataAdapter and returns the DataSet to the client.

3. The client then views the data and makes modifications.

4. When finished viewing and modifying the data, the client passes the modified DataSet back
to the Web service, which again uses a DataAdapter to reconcile the changes in the returned
DataSet with the original data in the database.

351

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 352

Chapter 9: Data Access with ADO.NET 3.5

5. The Web service may then return a DataSet that reflects the current values in the database.

6. Optionally, the client can then use the DataSet class’s Merge method to merge the returned
DataSet with the client’s existing copy of the DataSet; the Merge method will accept success-
ful changes and mark with an error any changes that failed.

The design of the ADO.NET DataSet makes this scenario fairly easy to implement. Because the DataSet
is stateless, it can be safely passed between the server and the client without tying up server resources
such as database connections. Although the DataSet is transmitted as XML, Web services and ADO.NET
automatically transform the XML representation of the data to and from a DataSet, creating a rich, yet
simplified, programming model.

In addition, because the DataSet is transmitted as an XML stream, non-ADO.NET clients can consume
the same Web service consumed by ADO.NET clients. Similarly, ADO.NET clients can interact easily
with non-ADO.NET Web services by sending any client DataSet to a Web service as XML and by con-
suming any XML returned as a DataSet from the Web service. However, note the size of the data; if your
DataSet contains a large number of rows, then it will eat up a lot of bandwidth.

Programmatically Creating DataSet Objects
You can programmatically create a DataSet object to use as a data structure in your programs. This could
be quite useful if you have complex data that needs to be passed around to another object’s method. For
example, when creating a new customer, instead of passing 20 arguments about the new customer to
a method, you could just pass the programmatically created DataSet object with all of the customer
information to the object’s method.

Here is the code for building an ADO.NET DataSet object that is comprised of related tables:

Private Sub BuildDataSet()

Dim customerOrders As New Data.DataSet("CustomerOrders")
Dim customers As Data.DataTable = customerOrders.Tables.Add("Customers")
Dim orders As Data.DataTable = customerOrders.Tables.Add("Orders")
Dim row As Data.DataRow

With customers
.Columns.Add("CustomerID", Type.GetType("System.Int32"))
.Columns.Add("FirstName", Type.GetType("System.String"))
.Columns.Add("LastName", Type.GetType("System.String"))
.Columns.Add("Phone", Type.GetType("System.String"))
.Columns.Add("Email", Type.GetType("System.String"))

End With

With orders
.Columns.Add("CustomerID", Type.GetType("System.Int32"))
.Columns.Add("OrderID", Type.GetType("System.Int32"))
.Columns.Add("OrderAmount", Type.GetType("System.Double"))
.Columns.Add("OrderDate", Type.GetType("System.DateTime"))

End With

customerOrders.Relations.Add("Customers_Orders", _
customerOrders.Tables("Customers").Columns("CustomerID"), _
customerOrders.Tables("Orders").Columns("CustomerID"))

352

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 353

Chapter 9: Data Access with ADO.NET 3.5

row = customers.NewRow()
row("CustomerID") = 1
row("FirstName") = "Bill"
row("LastName") = "Evjen"
row("Phone") = "555-1212"
row("Email") = "evjen@yahoo.com"
customers.Rows.Add(row)

row = orders.NewRow()
row("CustomerID") = 1
row("OrderID") = 22
row("OrderAmount") = 0
row("OrderDate") = #11/10/1997#
orders.Rows.Add(row)

Console.WriteLine(customerOrders.GetXml())
Console.ReadLine()

End Sub

Here is what the resulting XML of the DataSet looks like:

<CustomerOrders>
<Customers>
<CustomerID>1</CustomerID>
<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>
<Phone>555-1212</Phone>
<Email>evjen@yahoo.com</Email>

</Customers>
<Orders>

<CustomerID>1</CustomerID>
<OrderID>22</OrderID>
<OrderAmount>0</OrderAmount>
<OrderDate>1997-11-10T00:00:00.0000</OrderDate>

</Orders>
</CustomerOrders>

You begin by first defining a DataSet object (CustomerOrders) named CustomerOrders. You then create
two tables: one for customers (customers) and one for orders (orders). Then you define the columns
of the tables. Note that you call the Add method of the DataSet’s Tables collection. You then define the
columns of each table and create a relation in the DataSet between the customers table and the orders
table on the CustomerID column. Finally, you create instances of Rows for the tables, add the data, and
then append the Rows to the Rows collection of the DataTable objects.

If you create a DataSet object with no name, it is given the default name of NewDataSet.

ADO.NET DataTable Objects
A DataSet is made up of a collection of tables, relationships, and constraints. In ADO.NET, DataTable
objects are used to represent the tables in a DataSet. A DataTable represents one table of in-memory
relational data. The data is local to the .NET application in which it resides, but can be populated from a
data source such as SQL Server using a DataAdapter.

353

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 354

Chapter 9: Data Access with ADO.NET 3.5

The DataTable class is a member of the System.Data namespace within the .NET Framework class
library. You can create and use a DataTable independently or as a member of a DataSet, and DataTable
objects can be used by other .NET Framework objects, including the DataView. You access the collection
of tables in a DataSet through the DataSet object’s Tables property.

The schema, or structure, of a table is represented by columns and constraints. You define the schema of
a DataTable using DataColumn objects as well as ForeignKeyConstraint and UniqueConstraint objects.
The columns in a table can map to columns in a data source, contain calculated values from expressions,
automatically increment their values, or contain primary key values.

If you populate a DataTable from a database, then it inherits the constraints from the database, so you
don’t have to do all of that work manually. A DataTable must also have rows in which to contain
and order the data. The DataRow class represents the actual data contained in the table. You use the
DataRow and its properties and methods to retrieve, evaluate, and manipulate the data in a table. As you
access and change the data within a row, the DataRow object maintains both its current and original state.

You can create parent-child relationships between tables within a database, such as SQL Server, using
one or more related columns in the tables. You create a relationship between DataTable objects using a
DataRelation, which can then be used to return a row’s related child or parent rows.

Advanced ADO.NET Features of the DataSet and DataTable
Objects

One of the main complaints developers had about ADO.NET 1.x was related to the performance of the
DataSet and its DataTable children — in particular, when they contained a large amount of data. The
performance hit comes in two different ways. The first way is the time it takes to actually load a DataSet
with a lot of data. As the number of rows in a DataTable increases, the time to load a new row increases
almost proportionally to the number of rows. The second way is when the large DataSet is serialized
and remoted. A key feature of the DataSet is the fact that it automatically knows how to serialize itself,
especially when you want to pass it between application tiers. Unfortunately, the serialization is quite
verbose and takes up a lot of memory and network bandwidth. Both of these performance problems have
been addressed since ADO.NET 2.0.

Indexing
The first improvement made since ADO.NET 2.0 to the DataSet family was a complete rewrite of the
indexing engine for the DataTable, which now scales much better for large DataSets. The addition of the
new indexing engine results in faster basic inserts, updates, and deletes, which also means faster Fill
and Merge operations. Just as in relational database design, if you are dealing with large DataSets, then
it pays big dividends if you first add unique keys and foreign keys to your DataTable. Even better, you
don’t have to change any of your code at all to take advantage of this new feature.

Serialization
The second improvement made to the DataSet family was adding new options to the way the DataSet
and DataTable are serialized. The main complaint about retrieving DataSet objects from Web services
and remoting calls was that they were way too verbose and took up too much network bandwidth. In
ADO.NET 1.x, the DataSet serializes as XML, even when using the binary formatter. Using ADO.NET,
you can also specify true binary serialization by setting the newly added RemotingFormat property to

354

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 355

Chapter 9: Data Access with ADO.NET 3.5

SerializationFormat.Binary, rather than (the default) SerializationFormat.XML. In the AdoNetFea-
turesTest project of the Examples solution, I have added a Button (serializationButton) to the form
and its associated Click event handler that demonstrates how to serialize a DataTable in binary format:

Private Sub _serializationButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _serializationButton.Click

` Get the authors reader.
Dim reader As SqlDataReader = GetAuthorsSqlReader()
` Load a DataTable from the reader
Dim table As DataTable = GetTableFromReader(reader, "Authors")

This code begins by calling the helper methods GetAuthorsSqlReader and GetTableFromReader to get
a DataTable of the authors from the pubs database. The next code block, shown here, is where you are
actually serializing the DataTable out to a binary format:

Using fs As New FileStream("c:\authors.dat", FileMode.Create)
table.RemotingFormat = SerializationFormat.Binary
Dim format As New BinaryFormatter()
format.Serialize(fs, table)

End Using

` Tell the user what happened.
MessageBox.Show("Successfully serialized the DataTable!")

End Sub

This code takes advantage of the newly added Using statement for Visual Basic to wrap up creating
and disposing of a FileStream instance that will hold your serialized DataTable data. The next step
is to set the DataTable’s RemotingFormat property to the SerializationFormat.Binary enumeration
value. Once that is done, you simply create a new BinaryFormatter instance, and then call its Serialize
method to serialize your DataTable into the FileStream instance. You then finish by showing users a
message box indicating that the data has been serialized.

DataReader Integration
Another nice feature of the DataSet and DataTable classes is the capability to both read from and write
out to a stream of data in the form of a DataReader. You will first take a look at how you can load a
DataTable from a DataReader. To demonstrate this, I have added a Button (loadFromReaderButton) and
its associated Click event handler to TestForm.vb of the AdoNetFeaturesTest project in the Examples
solution:

Private Sub _loadFromReaderButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _loadFromReaderButton.Click

` Get the authors reader.
Dim reader As SqlDataReader = GetAuthorsSqlReader()

` Load a DataTable from the reader.
Dim table As DataTable = GetTableFromReader(reader, "Authors")

` Bind the grid to the table.
BindGrid(table)
End Sub

355

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 356

Chapter 9: Data Access with ADO.NET 3.5

This method is a controller method, meaning that it only calls helper methods. It begins by first obtaining
a SqlDataReader from the GetAuthorsReader helper method. It then calls the GetTableFromReader
helper method to transform the DataReader into a DataTable. The GetTableFromReader method is where
you actually get to see the DataTable’s new load functionality:

Private Function GetTableFromReader(ByVal reader As SqlDataReader, _
ByVal tableName As String) As DataTable
` Create a new DataTable using the name passed in.
Dim table As New DataTable(tableName)
` Load the DataTable from the reader.
table.Load(reader)
` Close the reader.
reader.Close()
Return table

End Function

This method begins by first creating an instance of a DataTable and initializing it with the name passed
in from the tableName argument. Once the new DataTable has been initialized, you call the new Load
method and pass in the SqlDataReader that was passed into the method via the reader argument. This
is where the DataTable takes the DataReader and populates the DataTable instance with the column
names and data from the DataReader. The next step is to close the DataReader, as it is no longer needed;
and finally, you return the newly populated DataTable.

DataTable Independence
One of the most convenient capabilities in ADO.NET is the inclusion of several methods from the DataSet
class in the DataTable class. The DataTable is now much more versatile and useful than it was in the
early ADO.NET days. The DataTable now supports all of the same read and write methods for XML as
the DataSet — specifically, the ReadXml, ReadXmlSchema, WriteXml, and WriteXmlSchema methods.

The Merge method of the DataSet has now been added to the DataTable as well; and in addition to
the existing functionality of the DataSet class, some of the new features of the DataSet class have
been added to the DataTable class — namely, the RemotingFormat property, the Load method, and the
GetDataReader method.

Working with the Common Provider Model
In ADO.NET 1.x, you could either code to the provider-specific classes, such as SqlConnection, or the
generic interfaces, such as IDbConnection. If there was a possibility that the database you were program-
ming against would change during your project, or if you were creating a commercial package intended
to support customers with different databases, then you had to use the generic interfaces. You cannot
call a constructor on an interface, so most generic programs included code that accomplished the task of
obtaining the original IDbConnection by means of their own factory method, such as a GetConnection
method that would return a provider-specific instance of the IDbConnection interface.

ADO.NET today has a more elegant solution for getting the provider-specific connection. Each data
provider registers a ProviderFactory class and a provider string in the .NET machine.config file. A
base ProviderFactory class (DbProviderFactory) and a System.Data.Common.ProviderFactories
class can return a DataTable of information about different data providers registered in machine.config,

356

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 357

Chapter 9: Data Access with ADO.NET 3.5

and can return the correct ProviderFactory given the provider string (called ProviderInvariantName)
or a DataRow from the DataTable. Instead of writing your own framework to build connections based
on the name of the provider, ADO.NET now makes it much more straightforward, flexible, and easy to
solve this problem.

Let’s look at an example of using the common provider model to connect to the pubs database and
display some rows from the authors table. In the AdoNetFeaturesTest project, on the TestForm.vb form,
the providerButton button’s Click event handler shows this functionality. The code is broken down into
six steps. The first step is get the provider factory object based on a configuration value of the provider’s
invariant name:

Private Sub _providerButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles _providerButton.Click

` 1. Factory
` Create the provider factory from config value.
Dim factory As DbProviderFactory = DbProviderFactories.GetFactory(_

ConfigurationSettings.AppSettings("providerInvariantName"))

You are able to get the factory via the DbProviderFactories object’s GetFactory method and pass in
the string name of the provider invariant that you are storing in the project’s app.config file. Here is the
entry in the app.config file:

<add key="providerInvariantName" value="System.Data.SqlClient" />

In this case, you are using the SQL Server Data Provider. Once you have the factory object, the next step
is to use it to create a connection:

` 2. Connection
` Create the connection from the factory.
Dim connection As DbConnection = factory.CreateConnection()
` Get the connection string from config.
connection.ConnectionString = _

ConfigurationSettings.AppSettings("dbConnectionString")

The connection is created by calling the DbProviderFactory’s CreateConnection method. In this case,
the factory is returning a SqlConnection, because you chose to use the System.Data.SqlClient provider
invariant. To keep your code generic, you will not be directly programming against any of the classes in
the System.Data.SqlClient namespace. Note how the connection class you declare is a DbConnection
class, which is part of the System.Data namespace.

The next step is to create a Command object so you can retrieve the data from the authors table:

` 3. Command
` Create the command from the connection.
Dim command As DbCommand = connection.CreateCommand()
` Set the type of the command to stored procedure.
command.CommandType = CommandType.StoredProcedure
` Set the name of the stored procedure to execute.
command.CommandText = "usp_authors_Get_All"

357

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 358

Chapter 9: Data Access with ADO.NET 3.5

You begin by declaring a generic DbCommand class variable and then using the DbConnection’s
CreateCommand method to create the DbCommand instance. Once you have done that, you set the command
type to StoredProcedure and then set the stored procedure name.

This example uses a DbDataAdapter to fill a DataTable with the authors’ data. Here is how you create
and initialize the DbDataAdapter:

` 4. Adapter
` Create the adapter from the factory.
Dim adapter As DbDataAdapter = factory.CreateDataAdapter()
` Set the adapter’s select command.
adapter.SelectCommand = command

Just as you did when you created your DbConnection instance, you use the factory to create your
DbDataAdapter. After creating it, you then set the SelectCommand property’s value to the instance of
the previously initialized DbCommand instance.

After finishing these steps, the next step is to create a DataTable and fill it using the DataAdapter:

` 5. DataTable
` Create a new DataTable.
Dim authors As New DataTable("Authors")
` Use the adapter to fill the DataTable.
adapter.Fill(authors)

The final step is to bind the table to the form’s grid:

` 6. Grid
` Populate the grid with the data.
BindGrid(authors)

You already looked at the BindGrid helper method in the asynchronous example earlier. In this example,
you are simply reusing this generic method again:

Private Sub BindGrid(ByVal table As DataTable)
` Clear the grid.
Me._authorsGridView.DataSource = Nothing
` Bind the grid to the DataTable.
Me._authorsGridView.DataSource = table

End Sub

The main point to take away from this example is that you were able to easily write database-agnostic
code with just a few short lines. ADO.NET 1.x required a lot of lines of code to create this functionality;
you had to write your own abstract factory classes and factory methods in order to create instances of the
generic database interfaces, such as IDbConnection, IDbCommand, and so on.

Connection Pooling in ADO.NET
Pooling connections can significantly enhance the performance and scalability of your application. Both
the SQL Client .NET Data Provider and the OLE DB .NET Data Provider automatically pool connections
using Windows Component Services and OLE DB Session Pooling, respectively. The only requirement is
that you must use the exact same connection string each time if you want a pooled connection.

358

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 359

Chapter 9: Data Access with ADO.NET 3.5

ADO.NET now enhances the connection pooling functionality offered in ADO.NET 1.x by enabling you
to close all of the connections currently kept alive by the particular managed provider that you are using.
You can clear a specific connection pool by using the shared SqlConnection.ClearPool method or clear
all of the connection pools in an application domain by using the shared SqlConnection.ClearPools
method. Both the SQL Server and Oracle managed providers implement this functionality.

Building a Data-Access Component
To better demonstrate what you have learned so far about ADO.NET, in this section you are going to
build a data-access component. This component is designed to abstract the processing of stored proce-
dures. The component you build is targeted at SQL Server, and it is assumed that all data access to the
database will be through stored procedures. The idea of only using stored procedures to access data in
a database has a number of advantages, such as scalability, performance, flexibility, and security. The
only disadvantage is that you have to use stored procedures, and not SQL strings. Through the process
of building this component, you will see how stored procedures are implemented in ADO.NET. You will
also be building on the knowledge that you have gained from the previous chapters.

This component’s main job is to abstract stored procedure calls to SQL Server, and one of the ways
you do this is by passing in all of your stored procedure parameter metadata as XML (covered later in
this section). The other job of the component is to demonstrate the use of some of the new objects in
ADO.NET.

The code for this project is quite extensive, and you will only examine the key parts of it in this chapter.
The full source is available in the code download (www.wrox.com).

Let’s start with the beginning of the component. The first thing you do is declare your class and the
private members of the class:

Option Explicit On
Option Strict On

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Xml
Imports System.Collections
Imports System.Diagnostics

`´` <summary>
`´` This class wraps stored procedure calls to SQL Server.
`´` It requires that all
`´` stored procedures and their parameters be defined in an
`´` XML document before
`´` calling any of its methods. The XML can be passed in as an XmlDocument
`´` instance or as a string of XML. The only exceptions to this rule are
`´` stored procedures that do not have parameters. This class also caches
`´` SqlCommand objects. Each time a stored procedure is executed, a SqlCommand
`´` object is built and cached into memory so that the next time the stored
`´` procedure is called the SqlCommand object can be retrieved from memory.
`´` </summary>
Public NotInheritable Class StoredProcedureHelper

359

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 360

Chapter 9: Data Access with ADO.NET 3.5

Private _connectionString As String = ""
Private _spParamXml As String = ""
Private _spParamXmlDoc As XmlDocument = Nothing
Private _spParamXmlNode As XmlNode = Nothing
Private _commandParametersHashTable As New Hashtable()

Private Const ExceptionMsg As String = _
"There was an error in the method. " _
& "Please see the Windows Event Viewer Application log for details"

You begin with your Option statements. Note that you are using the Option Strict statement. This
helps prevent logic errors and data loss that can occur when you work between variables of different
types. Next, you import the namespaces that you need for your component. In this case, most of your
dependencies are on System.Data.SqlClient. You call your class StoredProcedureHelper to indicate
that it wraps calling stored procedures to SQL Server. Next, you declare your private data members. You
use the ExceptionMsg constant to indicate a generic error message for any exceptions thrown.

Constructors
Now you get to declare your constructors for the StoredProcedureHelper class. This is where you can
really take advantage of method overloading, and it gives you a way to pass data to your class upon
instantiation. First, you declare a default constructor:

`´` <summary>
`´` Default constructor.
`´` </summary>
Public Sub New()

End Sub

The default constructor is provided in case users want to pass data to your class through public properties
instead of through constructor arguments.

The next constructor you create allows a database connection string to be passed into it. By abstracting
the database connection string out of this component, you give users of your component more flexi-
bility regarding how they store and retrieve their database connection strings. Here is the code for the
constructor:

`´` <summary>
`´` Overloaded constructor.
`´` </summary>
`´` <param name="connectionString">The connection string to the
`´` SQL Server database.</param>
Public Sub New(ByVal connectionString As String)

Me._connectionString = connectionString
End Sub

The only difference between this constructor and the default constructor is that you are passing in a
database connection string.

360

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 361

Chapter 9: Data Access with ADO.NET 3.5

In the next constructor, you pass in both a database connection string and a string of XML representing
the stored procedure parameters for the stored procedures you want to call:

`´` <summary>
`´` Overloaded constructor.
`´` </summary>
`´` <param name="connectionString">The connection string to the
`´` SQL Server database.</param>
`´` <param name="spParamXml">A valid XML string which conforms to
`´` the correct schema for stored procedure(s) and their
`´` associated parameter(s).</param>
Public Sub New(ByVal connectionString As String, ByVal spParamXml As String)

Me.New(connectionString)
Me._spParamXml = spParamXml
Me._spParamXmlDoc = New XmlDocument
Try

Me._spParamXmlDoc.LoadXml(spParamXml)
Me._spParamXmlNode = Me._spParamXmlDoc.DocumentElement

Catch e As XmlException
LogError(e)
Throw New Exception(ExceptionMsg, e)

End Try
End Sub

This constructor sets the database connection string by calling the first overloaded constructor. This
handy technique enables you to avoid writing duplicate code in your constructors. The constructor then
loads the stored procedure parameter configuration into a private XmlDocument instance variable as well
as a private XmlNode instance variable.

The remaining constructors enable you to pass in combinations of database connection strings as well
as either a valid XmlDocument instance representing the stored procedure parameters or a valid XmlNode
instance that represents the stored procedure parameters.

Properties
Now let’s look at the properties of your class. Your object contains the following properties:
ConnectionString, SpParamXml, and SpParamXmlDoc. These properties are provided as a courtesy in case
the user of your object does not want to supply them via a constructor call. The ConnectionString prop-
erty provides the same functionality as the first overloaded constructor you looked at. The SpParamXml
property enables the user of the object to pass in a valid XML string representing the stored procedures’
parameter metadata. All of the properties are read-write. The SpParamXmlDoc property enables users to
pass in an XmlDocument instance representing the stored procedures’ parameter metadata.

Here is the code for the SpParamXml property:

`´` <summary>
`´` A valid XML string which conforms to the correct schema for
`´` stored procedure(s) and their associated parameter(s).
`´` </summary>
Public Property SpParamXml() As String

361

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 362

Chapter 9: Data Access with ADO.NET 3.5

Get
Return Me._spParamXml

End Get
Set(ByVal Value As String)

Me._spParamXml = Value
` Set the XmlDocument instance to null, since
` an XML string is being passed in.
Me._spParamXmlDoc = Nothing
Try

Me._spParamXmlDoc.LoadXml(Me._spParamXml)
Me._spParamXmlNode = Me._spParamXmlDoc.DocumentElement

Catch e As XmlException
LogError(e)
Throw New Exception(ExceptionMsg)

End Try
End Set

End Property

Note that this property resets the XmlDocument instance to Nothing before trying to load the document.
This is done in case it was already set in one of the overloaded constructors, or from a previous call to this
property. It also sets the XmlNode instance to the DocumentElement property of the XmlDocument instance,
thus keeping them both in sync.

Stored Procedure XML Structure
In this case, rather than have the user of this class be responsible for populating the Parameters collection
of a Command object, you will abstract it out into an XML structure. The structure is very simple; it basically
enables you to store the metadata for one or more stored procedures at a time. This has a huge advantage
because you can change all of the parameters on a stored procedure without having to recompile the
project. Shown here is the XML structure for the metadata:

<StoredProcedures>
<StoredProcedure name>
<Parameters>
<Parameter name size datatype direction isNullable sourceColumn />
</Parameters>

</StoredProcedure>
</StoredProcedures>

Here is what some sample data for the XML structure looks like:

<?xml version="1.0"?>
<StoredProcedures>
<StoredProcedure name="usp_Get_Authors_By_States">
<Parameters>
<Parameter name="@states" size="100" datatype="VarChar"
direction="Input" isNullable="True" />

<Parameter name="@state_delimiter" size="1" datatype="Char"
direction="Input" isNullable="True" />

</Parameters>
</StoredProcedure>

</StoredProcedures>

362

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 363

Chapter 9: Data Access with ADO.NET 3.5

The valid values for the direction attribute are Input, Output, ReturnValue, and InputOutput. These
values map directly to the System.Data.Parameter enumeration values. The valid values for the data
type attribute are BigInt, Binary, Bit, Char, DateTime, Decimal, Float, Image, Int, Money, NChar, NText,
NVarChar, Real, SmallDateTime, SmallInt, SmallMoney, Text, Timestamp, TinyInt, UniqueIdentifier,
VarBinary, VarChar, and Variant. These values map directly to the System.Data.SqlDbType enumeration
values.

Methods
That completes our look at the stored procedure XML structure the class expects, as well as the public
properties and public constructors for the class. Now let’s turn our attention to the public methods of
your class.

ExecSpReturnDataSet
This public function executes a stored procedure and returns a DataSet object. It takes a stored procedure
name (String), an optional DataSet name (String), and an optional list of parameter names and values
(IDictionary). Here is the code for ExecSpReturnDataSet:

`´` <summary>
`´` Executes a stored procedure with or without parameters and returns a
`´` populated DataSet object.
`´` </summary>
`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <param name="dataSetName">An optional name for the DataSet instance.</param>
`´` <param name="paramValues">A name-value pair of stored procedure parameter
`´` name(s) and value(s).</param>
`´` <returns>A populated DataSet object.</returns>
Public Function ExecSpReturnDataSet(ByVal spName As String, _

ByVal dataSetName As String, _
ByVal paramValues As IDictionary) As DataSet

Dim command As SqlCommand = Nothing
Try

` Get the initialized SqlCommand instance.
command = GetSqlCommand(spName)
` Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)
` Initialize the SqlDataAdapter with the SqlCommand object.
Dim sqlDA As New SqlDataAdapter(command)

` Initialize the DataSet.
Dim ds As New DataSet()

If Not (dataSetName Is Nothing) Then
If dataSetName.Length > 0 Then

ds.DataSetName = dataSetName
End If

End If

` Fill the DataSet.
sqlDA.Fill(ds)

` Return the DataSet.

363

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 364

Chapter 9: Data Access with ADO.NET 3.5

Return ds
Catch e As Exception

LogError(e)
Throw New Exception(ExceptionMsg, e)

Finally
` Close and release resources.
DisposeCommand(command)

End Try
End Function

This function uses three main objects to accomplish its mission: SqlCommand, SqlDataAdapter, and
DataSet. You first wrap everything in a Try-Catch-Finally block to ensure that you trap any exceptions
that are thrown and to properly close and release the SqlCommand and SqlConnection resources. You call
a helper method, GetSqlCommand, in order to get a fully initialized SqlCommand instance, to include any
SqlParameter objects the SqlCommand may have based on your object’s internal XmlDocument. Here is the
code for GetSqlCommand and its overload:

`´` <summary>
`´` Initializes a SqlCommand object based on a stored procedure name
`´` and a SqlTransaction instance. Verifies that the stored procedure
`´` name is valid, and then tries to get the SqlCommand object from
`´` cache. If it is not already in cache, then the SqlCommand object
`´` is initialized and placed into cache.
`´` </summary>
`´` <param name="transaction">The transaction that the stored
`´` procedure will be executed under.</param>
`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <returns>An initialized SqlCommand object.</returns>
Public Function GetSqlCommand(ByVal transaction As SqlTransaction, _

ByVal spName As String) As SqlCommand

Dim command As SqlCommand = Nothing

` Get the name of the stored procedure.
If spName.Length < 1 Or spName.Length > 127 Then

Throw New ArgumentOutOfRangeException("spName", _
"Stored procedure name must be from 1 - 128 characters.")

End If

` See if the command object is already in memory.
Dim hashKey As String = Me._connectionString & ":" & spName
command = CType(_commandParametersHashTable(hashKey), SqlCommand)
If command Is Nothing Then

` It was not in memory.
` Initialize the SqlCommand.
command = New SqlCommand(spName, GetSqlConnection(transaction))

` Tell the SqlCommand that you are using a stored procedure.
command.CommandType = CommandType.StoredProcedure

` Build the parameters, if there are any.
BuildParameters(command)

` Put the SqlCommand instance into memory.

364

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 365

Chapter 9: Data Access with ADO.NET 3.5

Me._commandParametersHashTable(hashKey) = command
Else

` It was in memory, but you still need to set the
` connection property.
command.Connection = GetSqlConnection(transaction)

End If

` Return the initialized SqlCommand instance.
Return command

End Function

`´` <summary>
`´` Overload. Initializes a SqlCommand object based on a stored
`´` procedure name, with no SqlTransaction instance.
`´` Verifies that the stored procedure name is valid, and then tries
`´` to get the SqlCommand object from cache. If it is not already in
`´` cache, then the SqlCommand object is initialized and placed into cache.
`´` </summary>
`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <returns>An initialized SqlCommand object.</returns>
Public Function GetSqlCommand(ByVal spName As String) As SqlCommand

` Return the initialized SqlCommand instance.
Return GetSqlCommand(Nothing, spName)

End Function

The difference between this method and its overload is that the first method takes in a SqlTransaction
instance argument, and the overload does not require the SqlTransaction instance to be passed in.
The overload simply calls the first method and passes in a value of Nothing for the SqlTransaction
argument.

This method first performs a check to ensure that the stored procedure name is between 1 and 128 char-
acters long, in accordance with SQL Server’s object-naming conventions. If it is not, then you throw
an exception. The next step this method performs is to try to get an already initialized SqlCommand
object from your object’s private Hashtable variable, commandParametersHashTable, using your object’s
database connection string and the name of the stored procedure as the key. If the SqlCommand is not
found, then you go ahead and build the SqlCommand object by calling its constructor and passing in
the stored procedure name and a SqlConnection instance returned from the GetSqlConnection helper
method. The code then sets the SqlCommand’s CommandType property. You should ensure that you pass in
the CommandType.StoredProcedure enumeration value, as you are executing a stored procedure.

Once the SqlCommand object is properly initialized, you pass it to the BuildParameters method. You will
look at this method in more detail later. After this step, the SqlCommand is fully initialized, and you place
it into your object’s internal cache (the commandParametersHashTable Hashtable variable). Finally, the
SqlCommand is returned to the calling code.

Getting back to the ExecSpReturnDataSet method, now that the SqlCommand object has been properly
initialized, you need to set the values of the parameters. This is done via another helper method called
SetParameterValues. SetParameterValues takes two arguments: a reference to a SqlCommand object
and an IDictionary interface. You are using an IDictionary interface instead of a class such as a
Hashtable (which implements the IDictionary interface) in order to make your code more flexible.
This is a good design practice and works quite well — for example, in situations where the user of your
class has built his or her own custom dictionary object that implements the IDictionary interface. It

365

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 366

Chapter 9: Data Access with ADO.NET 3.5

then loops through the SqlCommand’s Parameters collection and sets each SqlParameter’s value based
on the corresponding name-value pair in the IDictionary object, as long as the parameter’s direction is
not Output. Following is the code for the SetParameterValues method:

`´` <summary>
`´` Traverses the SqlCommand’s SqlParameters collection and sets the values
`´` for all of the SqlParameter(s) objects whose direction is not Output and
`´` whose name matches the name in the dictValues IDictionary that was
`´` passed in.
`´` </summary>
`´` <param name="command">An initialized SqlCommand object.</param>
`´` <param name="dictValues">A name-value pair of stored procedure parameter
`´` name(s) and value(s).</param>
Public Sub SetParameterValues(ByVal command As SqlCommand, _

ByVal dictValues As IDictionary)
If command Is Nothing Then

Throw New ArgumentNullException("command", _
"The command argument cannot be null.")

End If
` Traverse the SqlCommand’s SqlParameters collection.
Dim parameter As SqlParameter
For Each parameter In command.Parameters

` Do not set Output parameters.
If parameter.Direction <> ParameterDirection.Output Then

` Set the initial value to DBNull.
parameter.Value = TypeCode.DBNull
` If there is a match, then update the parameter value.
If dictValues.Contains(parameter.ParameterName) Then

parameter.Value = dictValues(parameter.ParameterName)
Else

` There was not a match.
` If the parameter value cannot be null, throw an exception.
If Not parameter.IsNullable Then

Throw New ArgumentNullException(parameter.ParameterName, _
"Error getting the value for the " _
& parameter.ParameterName & " parameter.")

End If
End If

End If
Next parameter

End Sub

When traversing the SqlCommand’s Parameters collection, if a SqlParameter’s value cannot be found
in the IDictionary instance, then a check is made to determine whether the SqlParameter’s value is
allowed to be null or not. If it is allowed, then the value is set to DBNull; otherwise, an exception is
thrown.

After setting the values of the parameters, the next step is to pass the SqlCommand object to the
SqlDataAdapter’s constructor:

` Initialize the SqlDataAdapter with the SqlCommand object.
Dim sqlDA As New SqlDataAdapter(command)

366

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 367

Chapter 9: Data Access with ADO.NET 3.5

Then try to set the name of the DataSet using the dataSetName method argument:

` Try to set the name of the DataSet.
If Not (dataSetName Is Nothing) Then

If dataSetName.Length > 0 Then
ds.DataSetName = dataSetName

End If
End If

After doing this, you call the Fill method of the SqlDataAdapter to fill your DataSet object:

` Fill the DataSet.
sqlDA.Fill(ds)

You then return the DataSet object back to the caller:

` Return the DataSet.
Return ds

If an exception was caught, then you log the exception data to the Windows Application Log via the
LogError private method, and then throw a new exception with your generic exception message. Nest
the original exception inside of the new exception via the innerException constructor parameter:

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

In the Finally block, you close and release the SqlCommand object’s resources via the DisposeCommand
helper method:

Finally
` Close and release resources
DisposeCommand(command)

The DisposeCommand helper function closes the SqlCommand’s SqlConnection property and disposes
of the SqlCommand object:

`´` <summary>
`´` Disposes a SqlCommand and its underlying SqlConnection.
`´` </summary>
`´` <param name="command"></param>
Private Sub DisposeCommand(ByVal command As SqlCommand)

If Not (command Is Nothing) Then
If Not (command.Connection Is Nothing) Then

command.Connection.Close()
command.Connection.Dispose()

End If
command.Dispose()

End If
End Sub

367

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 368

Chapter 9: Data Access with ADO.NET 3.5

BuildParameters
This private method is the heart of this object and does the most work. It is responsible for parsing the
stored procedure parameter XML and mapping all of the SqlParameter objects into the Parameters
property of the SqlCommand object. Here is the signature of the method:

`´` <summary>
`´` Finds the parameter information for the stored procedure from the
`´` stored procedures XML document and then uses that information to
`´` build and append the parameter(s) for the SqlCommand’s
`´` SqlParameters collection.
`´` </summary>
`´` <param name="command">An initialized SqlCommand object.</param>
Private Sub BuildParameters(ByVal command As SqlCommand)

The first thing you do in this method is determine whether any XML is being passed in or not. Here
is the code that checks for the XML:

` See if there is an XmlNode of parameter(s) for the stored procedure.
If Me._spParamXmlNode Is Nothing Then

` No parameters to add, so exit.
Return

End If

The last bit of code simply checks whether there is an XmlNode instance of parameter information. If the
XmlNode has not been initialized, then you exit the method. It is entirely possible that users of this object
may have stored procedures with no parameters at all. You choose an XmlNode object to parse the XML
because loading all of the stored procedure XML into memory will not hurt performance; it is a small
amount of data. As an alternative, you could use an XmlReader object to load into memory only what
you need at runtime.

The next step is to clear the SqlCommand object’s Parameters collection:

` Clear the parameters collection for the SqlCommand
command.Parameters.Clear()

You then use the name of the stored procedure as the key in your XPath query of the XML, and execute
the following XPath query to get the list of parameters for the stored procedure:

` Get the node list of <Parameter>’s for the stored procedure.
Dim xpathQuery As String = "//StoredProcedures/StoredProcedure[@name=’" _

& command.CommandText & "’]/Parameters/Parameter"
Dim parameterNodes As XmlNodeList = Me._spParamXmlNode.SelectNodes(xpathQuery)

This query is executed off the XmlDocument object and returns an XmlNodeList object. You start the loop
through the Parameter elements in the XML and retrieve all of the mandatory Parameter attributes:

Dim parameterNode As XmlElement
For Each parameterNode In parameterNodes

` Get the attribute values for the <Parameter> element.

` Get the attribute values for the <Parameter> element.

368

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 369

Chapter 9: Data Access with ADO.NET 3.5

` name
Dim parameterName As String = parameterNode.GetAttribute("name")
If parameterName.Length = 0 Then

Throw New ArgumentNullException("name", "Error getting the ’name’ " _
& "attribute for the <Parameter> element.")

End If

` size
Dim parameterSize As Integer = 0
If parameterNode.GetAttribute("size").Length = 0 Then

Throw New ArgumentNullException("size", "Error getting the ’size’ " _
& "attribute for the <Parameter> element.")

Else
parameterSize = Convert.ToInt32(parameterNode.GetAttribute("size"))

End If

` datatype
Dim sqlDataType As SqlDbType
If parameterNode.GetAttribute("datatype").Length = 0 Then

Throw New ArgumentNullException("datatype", "Error getting the " _
& "’datatype’ attribute for the <Parameter> element.")

Else
sqlDataType = CType([Enum].Parse(GetType(SqlDbType), _

parameterNode.GetAttribute("datatype"), True), SqlDbType)
End If

` direction
Dim parameterDirection As ParameterDirection = parameterDirection.Input
If parameterNode.GetAttribute("direction").Length > 0 Then

parameterDirection = CType([Enum].Parse(GetType(ParameterDirection), _
parameterNode.GetAttribute("direction"), True), ParameterDirection)

End If
End If

Because these attributes are mandatory, if any of them are missing, then you throw an exception. The
interesting part of this code is using the Enum.Parse static method to convert the string value from
the XML into the correct .NET enumeration data type for the sqlDataType and parameterDirection
variables. This is possible because the probable values in your XML for these attributes map directly to
the names of their respective enumeration data types in .NET. Next, you get the optional attributes:

` Get the optional attribute values for the <Parameter> element.
` isNullable
Dim isNullable As Boolean = False
Try

If parameterNode.GetAttribute("isNullable").Length > 0 Then
isNullable = Boolean.Parse(parameterNode.GetAttribute("isNullable"))

End If
Catch
End Try

` sourceColumn - This must map to the name of a column in a DataSet.
Dim sourceColumn As String = ""
Try

If parameterNode.GetAttribute("sourceColumn").Length > 0 Then

369

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 370

Chapter 9: Data Access with ADO.NET 3.5

sourceColumn = parameterNode.GetAttribute("sourceColumn")
End If

Catch
End Try

These attributes are optional mainly because of their data types. Because isNullable is Boolean, you
go ahead and convert it to False if it is missing; and if sourceColumn is missing, then you just ignore it
entirely.

Now you are ready to create the SqlParameter object and set its Direction property:

` Create the parameter object. Pass in the name, datatype,
` and size to the constructor.
Dim sqlParameter As SqlParameter = New SqlParameter(parameterName, _

sqlDataType, parameterSize)

’Set the direction of the parameter.
sqlParameter.Direction = parameterDirection

You then set the optional property values of the SqlParameter object:

` If the optional attributes have values, then set them.
` IsNullable
If isNullable Then

sqlParameter.IsNullable = isNullable
End If

` SourceColumn
sqlParameter.SourceColumn = sourceColumn

Finally, you add the SqlParameter object to the SqlCommand object’s Parameters collection, complete
your loop, and finish the method:

` Add the parameter to the SqlCommand’s parameter collection.
command.Parameters.Add(sqlParameter)

Next parameterNode
End Sub

Now it’s time to look at ExecSpReturnDataReader. This function is almost identical to
ExecSpReturnDataSet except that it returns a SqlDataReader object instead of a DataSet object.

ExecSpReturnDataReader
This public function executes a stored procedure and returns a SqlDataReader object. Similar to the
ExecSpReturnDataSet method, it takes a stored procedure name (String) and an optional list of param-
eter names and values (IDictionary). Here is the code for ExecSpReturnDataReader:

`´` <summary>
`´` Executes a stored procedure with or without parameters and returns a
`´` SqlDataReader instance with a live connection to the database. It is
`´` very important to call the Close method of the SqlDataReader as soon
`´` as possible after using it.
`´` </summary>

370

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 371

Chapter 9: Data Access with ADO.NET 3.5

`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <param name="paramValues">A name-value pair of stored procedure parameter
`´` name(s) and value(s).</param>
`´` <returns>A SqlDataReader object.</returns>
Public Function ExecSpReturnDataReader(ByVal spName As String, _

ByVal paramValues As IDictionary) As SqlDataReader

Dim command As SqlCommand = Nothing
Try
` Get the initialized SqlCommand instance.
command = GetSqlCommand(spName)

` Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

` Open the connection.
command.Connection.Open()

` Execute the sp and return the SqlDataReader.
Return command.ExecuteReader(CommandBehavior.CloseConnection)

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

End Try

End Function

This function uses two objects to accomplish its mission: SqlCommand and SqlDataReader. The only part
where this function differs from ExecSpReturnDataSet is right after you call the SetParameterValues
private method. In this case, you have to ensure that the SqlCommand object’s SqlConnection is opened
because the SqlDataReader requires an open connection. You then call the ExecuteReader method of the
SqlCommand object to get your SqlDataReader object, passing in the CommandBehavior.CloseConnection
value for the method’s behavior argument.

Because this method returns a SqlDataReader object, which requires an open database connection, you
do not close the connection in this method. It is up to the caller to close the SqlDataReader and the con-
nection when finished. Because you used the CommandBehavior.CloseConnection value for the behavior
argument, the user of the method only has to remember to call the SqlDataReader’s Close method in
order to close the underlying SqlConnection object.

The next function you are going to look at, ExecSpReturnXmlReader, is almost identical to the last two
functions, except that it returns an XmlReader instead of a DataSet or a SqlDataReader.

ExecSpReturnXmlReader
This public function executes a stored procedure and returns an XmlReader instance. The function
requires the stored procedure to contain a FOR XML clause in its SQL statement. Once again, it takes a
stored procedure name (String) and an optional list of parameter names and values (IDictionary).
Here is the code for ExecSpReturnXmlReader:

`´` <summary>
`´` Executes a stored procedure with or without parameters and returns an
`´` XmlReader instance with a live connection to the database. It is

371

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 372

Chapter 9: Data Access with ADO.NET 3.5

`´` very important to call the Close method of the XmlReader as soon
`´` as possible after using it. Only use this method when calling stored
`´` procedures that return XML results (FOR XML ...).
`´` </summary>
`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <param name="paramValues">A name-value pair of stored procedure parameter
`´` name(s) and value(s).</param>
`´` <returns>An XmlReader object.</returns>
Public Function ExecSpReturnXmlReader(ByVal spName As String, _

ByVal paramValues As IDictionary) As XmlReader

Dim command As SqlCommand = Nothing
Try

` Get the initialized SqlCommand instance.
command = GetSqlCommand(spName)
` Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

` Open the connection.
command.Connection.Open()

` Execute the sp and return the XmlReader.
Return command.ExecuteXmlReader()

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

End Try
End Function

The only difference between this method and ExecSpReturnDataReader is that you call the
ExecuteXmlReader method of the SqlCommand object instead of the ExecuteReader method. Like the
ExecSpReturnDataReader method, users of this method need to close the returned XmlReader after using
it in order to properly release resources.

This method works only with SQL Server 2000 and later.

Next up is the ExecSp method, which needs only the SqlCommand object to get its work done. Its job is to
execute stored procedures that do not return result sets.

ExecSp
This public method executes a stored procedure and does not return a value. It takes a stored procedure
name (String) and an optional list of parameter names and values (IDictionary) for its arguments. Here
is the code for ExecSp:

`´` <summary>
`´` Executes a stored procedure with or without parameters that
`´` does not return output values or a resultset.
`´` </summary>
`´` <param name="transaction">The transaction that the stored procedure
`´` will be executed under.</param>
`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <param name="paramValues">A name-value pair of stored procedure parameter
`´` name(s) and value(s).</param>
Public Sub ExecSp(ByVal spName As String, ByVal paramValues As IDictionary)

372

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 373

Chapter 9: Data Access with ADO.NET 3.5

Dim command As SqlCommand = Nothing
Try

` Get the initialized SqlCommand instance.
command = GetSqlCommand(transaction, spName)
` Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

` Run the stored procedure.
RunSp(command)

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

Finally
` Close and release resources.
DisposeCommand(command)

End Try
End Sub

It is almost identical to the other Exec* functions, except when it executes the stored procedure. The
code inside of the private RunSp method opens the SqlCommand’s SqlConnection object and then calls
the SqlCommand object’s ExecuteNonQuery method. This ensures that the SqlCommand does not return any
type of DataReader object to read the results. This method is used mostly to execute INSERT, UPDATE, and
DELETE stored procedures that do not return any results. It also has an overload that does not include the
SqlTransaction argument.

Following is the code for RunSp:

`´` <summary>
`´` Opens the SqlCommand object’s underlying SqlConnection and calls
`´` the SqlCommand’s ExecuteNonQuery method.
`´` </summary>
`´` <param name="command">An initialized SqlCommand object.</param>
Private Sub RunSp(ByRef command As SqlCommand)

` Open the connection.
command.Connection.Open()

`a Execute the stored procedure.
command.ExecuteNonQuery()

End Sub

Finally, the last public function you are going to create is ExecSpOutputValues.

ExecSpOutputValues
This last public function in your component executes a stored procedure and returns an IDictionary
object that contains output parameter name-value pairs. It is not meant for stored procedures that return
result sets. As with the previous examples, this function takes a stored procedure name (String) and
an optional list of parameter names and values (IDictionary) for its arguments. Here is the code for
ExecSpOutputValues:

`´` <summary>
`´` Executes a stored procedure with or without parameters and returns an

373

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 374

Chapter 9: Data Access with ADO.NET 3.5

`´` IDictionary instance with the stored procedure’s output parameter
`´` name(s) and value(s).
`´` </summary>
`´` <param name="transaction">The transaction that the stored procedure
`´` will be executed under.</param>
`´` <param name="spName">The name of the stored procedure to execute.</param>
`´` <param name="paramValues">A name-value pair of stored procedure parameter
`´` name(s) and value(s).</param>
`´` <returns>An IDictionary object.</returns>
Public Function ExecSpOutputValues(ByVal transaction As SqlTransaction, _

ByVal spName As String, _
ByVal paramValues As IDictionary) As IDictionary

Dim command As SqlCommand = Nothing
Try

` Get the initialized SqlCommand instance.
command = GetSqlCommand(transaction, spName)
` Set the parameter values for the SqlCommand.
SetParameterValues(command, paramValues)

` Run the stored procedure.
RunSp(command)

` Get the output values.
Dim outputParams As New Hashtable()
Dim param As SqlParameter
For Each param In command.Parameters

If param.Direction = ParameterDirection.Output _
Or param.Direction = ParameterDirection.InputOutput Then
outputParams.Add(param.ParameterName, param.Value)

End If
Next param
Return outputParams

Catch e As Exception
LogError(e)
Throw New Exception(ExceptionMsg, e)

Finally
` Close and release resources.
DisposeCommand(command)

End Try
End Function

This function is almost identical to ExecSp except that after the SqlCommand.ExecuteNonQuery method
is called, you iterate through the SqlCommand object’s Parameters collection and look for all of the
parameters that are output parameters. Next, you take the values of the output parameters and add the
name-value pair to the IDictionary instance that you return. This method also has an overload that does
not include the SqlTransaction argument.

Using DataSet Objects to Bind to DataGrids
Now that you have built your data-access component, it is time to test it. A nice way to do that is to call
the ExecSpReturnDataSet method, take the DataSet object that was created, and then bind the DataSet
to a DataGrid. You also get to see how easily the DataSet and the DataGrid control integrate together.

374

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 375

Chapter 9: Data Access with ADO.NET 3.5

This exercise uses a Windows Application project called SqlServerWrapperTestHarness, added to the
Examples solution. It contains references to System, System.Data, System.Drawing, System.Windows
.Forms, and System.Xml, as well as a project reference to the SqlServerWrapper project. Added to the
project is a form named TestForm.vb with two buttons, one for testing the ExecSpReturnDataSetmethod
and one for testing the ExecSpReturnSqlRecord method. In this example, you will be looking only at the
code for testing the ExecSpReturnDataSet method. Figure 9-4 shows what the test form looks like.

Figure 9-4

Figure 9-5 shows what your references should look like.

Here is the code for the declarations and private members of the form:

Option Explicit On
Option Strict On

Imports SqlServerWrapper
Imports System.Data.SqlClient
Imports System.Xml
Imports System.Configuration

Public Class TestForm
Inherits System.Windows.Forms.Form

Private _helper As StoredProcedureHelper = Nothing

These declarations should look pretty familiar by now. Note that you are declaring a private variable
(_helper) for the StoredProcedureHelper class that you are using so you can get to the class from other
parts of the form instead of just a Button Click event handler.

375

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 376

Chapter 9: Data Access with ADO.NET 3.5

Figure 9-5

Next, you initialize the _helper variable in the form’s Load event handler:

Private Sub TestForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
` Set the SQL connection string
Dim connectionString As String = _

ConfigurationSettings.AppSettings("dbConnectionString")

` Call the SqlServer wrapper constructor and
` pass the DB connection string and the stored procedures config.
helper = New StoredProcedureHelper(connectionString, _

CType(ConfigurationSettings.GetConfig("StoredProcedureSettings"), _
XmlNode))

End Sub

As in the earlier examples, this code begins by retrieving a connection string to the pubs database from
the app.config file. You then create a new instance of the StoredProcedureHelper and assign it to
the _helper class variable. During the constructor call to the StoredProcedureHelper class, you first
pass in your connection string, and then you pass in an XmlNode of the stored procedure metadata for the
StoredProcedureHelper class to consume. Note that you are passing the stored procedure metadata in to
your class via the GetConfig method of the ConfigurationSettings class. This is because you have cre-
ated a section inside of your app.config file called StoredProcedureSettings, and you have configured
a SectionHandler to let the .NET Framework application configuration functionality consume your XML
and give it back to you as an XmlNode. Here is what this section looks like inside of the app.config file:

<configSections>
<section name="StoredProcedureSettings"
type="SqlServerWrapper.StoredProcedureSectionHandler, SqlServerWrapper" />

376

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 377

Chapter 9: Data Access with ADO.NET 3.5

</configSections>
<StoredProcedureSettings>
<StoredProcedures>

<StoredProcedure name="usp_Get_Authors_By_States">
<Parameters>

<Parameter name="@states" datatype="VarChar" direction="Input"
isNullable="false" size="100" />

<Parameter name="@state_delimiter" datatype="Char" direction="Input"
isNullable="false" size="1" />

</Parameters>
</StoredProcedure>
<StoredProcedure name="usp_Get_Author_By_ID">
<Parameters>

<Parameter name="@au_id" datatype="VarChar" direction="Input"
isNullable="false" size="11" />

</Parameters>
</StoredProcedure>

</StoredProcedures>
</StoredProcedureSettings>

This is nice because you don’t need to include a separate XML file for your project; you just integrate
seamlessly into the app.config file. Note how you are defining what class in what assembly will handle
consuming your <StoredProcedureSettings> section in the <section> element. In order for this to
work, the class defined must implement the System.Configuration.IConfigurationSectionHandler
interface. Here is the code for your section handler:

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration
Imports System.Xml
Imports System.Xml.Serialization
Imports System.Xml.XPath

Public Class StoredProcedureSectionHandler
Implements IConfigurationSectionHandler

Public Function Create(ByVal parent As Object, _
ByVal configContext As Object, _
ByVal section As System.Xml.XmlNode) As Object _

Implements IConfigurationSectionHandler.Create
Return section("StoredProcedures")

End Function
End Class

This code is pretty simple; you just return the XML node named StoredProcedures to the caller of your
handler.

Back to your Button’s Click event handler, once you have the StoredProcedureHelper class instance
fully initialized, you then create the parameter values for the stored procedure you want to execute and
pass these arguments to the ExecSpReturnDataSet method:

` Add the two parameter name-values.
Dim params As New Hashtable

377

Evjen-91361 c09.tex V2 - 04/02/2008 2:41pm Page 378

Chapter 9: Data Access with ADO.NET 3.5

params.Add("@states", "CA")
params.Add("@state_delimiter", "^")

` Execute the sp, and get the DataSet object back.
Dim ds As DataSet = _helper.ExecSpReturnDataSet("usp_Get_Authors_By_States", _

"", params)

The last step is to actually bind the data to the form’s grid:

` Bind the DataGrid to the DataSet object.
dgdAuthors.SetDataBinding(ds.Tables(0), Nothing)

The results should look like the dialog shown in Figure 9-6.

Figure 9-6

Summary
This chapter took a look at ADO.NET and some of its more advanced features. You have seen and used
the main objects in ADO.NET that you need to quickly get up and running in order to build data-access
into your .NET applications. You took a fairly in-depth look at the DataSet and DataTable classes, as
these are the core classes of ADO.NET.

You also looked at stored procedures, including how to create them in SQL Server and how to access
them from your code. Finally, you built your own custom data-access component, which makes it easy
to call stored procedures, and separate data-access code from the rest of business-logic code in a .NET
application.

378

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 379

Using XML in Visual
Basic 2008

This chapter describes how you can generate and manipulate Extensible Markup Language (XML)
using Visual Basic 2008. Of course, using XML in Visual Basic is a vast area to cover (more than
possibly could be covered in a chapter). The .NET Framework exposes five XML-specific name-
spaces that contain over a hundred different classes. In addition, dozens of other classes support and
implement XML-related technologies, such as ADO.NET, SQL Server, and BizTalk. Consequently,
this chapter focuses on the general concepts and the most important classes.

Visual Basic relies on the classes exposed in the following XML-related namespaces to transform,
manipulate, and stream XML documents:

❑ System.Xml provides core support for a variety of XML standards, including DTD, name-
space, DOM, XDR, XPath, XSLT, and SOAP.

❑ System.Xml.Serialization provides the objects used to transform objects to and from
XML documents or streams using serialization.

❑ System.Xml.Schema provides a set of objects that enable schemas to be loaded, created, and
streamed. This support is achieved using a suite of objects that support in-memory manip-
ulation of the entities that compose an XML schema.

❑ System.Xml.XPath provides a parser and evaluation engine for the XML Path language
(XPath).

❑ System.Xml.Xsl provides the objects necessary when working with Extensible Stylesheet
Language (XSL) and XSL Transformations (XSLT).

The XML-related technologies utilized by Visual Basic include other technologies that generate
XML documents and enable XML documents to be managed as a data source:

❑ ADO — The legacy COM objects provided by ADO can generate XML documents in
stream or file form. ADO can also retrieve a previously persisted XML document and
manipulate it. (Although ADO is not used in this chapter, ADO and other legacy COM
APIs can be accessed seamlessly from Visual Basic.)

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 380

Chapter 10: Using XML in Visual Basic 2008

❑ ADO.NET — This uses XML as its underlying data representation: The in-memory data repre-
sentation of the ADO.NET DataSet object is XML; the results of data queries are represented as
XML documents; XML can be imported into a DataSet and exported from a DataSet. (ADO.NET
is covered in Chapter 9.)

❑ SQL Server 2000 — XML-specific features were added to SQL Server 2000 (FOR XML queries to
retrieve XML documents and OPENXML to represent an XML document as a rowset). Visual Basic
can use ADO.NET to access SQL Server’s XML-specific features (the documents generated and
consumed by SQL Server can then be manipulated programmatically). Recently, Microsoft also
released SQLXML, which provides an SQL Server 2000 database with some excellent XML capa-
bilities, such as querying a database using XQuery, getting back XML result sets from a database,
working with data just as if it were XML, taking huge XML files and having SQLXML convert
them to relational data, and much more. SQLXML enables you to perform these functions and
more via a set of managed .NET classes. You can download SQLXML free from the Microsoft
SQLXML website at http://msdn2.microsoft.com/aa286527.aspx.

❑ SQL Server 2005 — SQL Server has now been modified with XML in mind. SQL Server 2005 can
natively understand XML because it is now built into the underlying foundation of the database.
SQL Server 2005 includes an XML data type that also supports an XSD schema validation. The
capability to query and understand XML documents is a valuable addition to this database
server. SQL Server 2005 also comes in a lightweight (and free) version called SQL Server Express
Edition.

❑ SQL Server 2008 — The latest edition of SQL Server, version 2008, works off of the SQL Server
2005 release and brings to the table an improved XSD schema validation process as well as
enhanced support for XQuery.

This chapter makes sense of this range of technologies by introducing some basic XML concepts and
demonstrating how Visual Basic, in conjunction with the .NET Framework, can make use of XML. Specif-
ically, in this chapter you will do all of the following:

❑ Learn the rationale behind XML.

❑ Look at the namespaces within the .NET Framework class library that deal with XML and XML-
related technologies.

❑ Take a close look at some of the classes contained within these namespaces.

❑ Gain an overview of some of the other Microsoft technologies that utilize XML, particularly SQL
Server and ADO.NET.

At the end of this chapter, you will be able to generate, manipulate, and transform XML using Visual
Basic.

This book also covers LINQ to XML and the new XML objects found in the System.Xml.Linq name-
space. These items are covered in Chapter 11.

An Introduction to XML
XML is a tagged markup language similar to HTML. In fact, XML and HTML are distant cousins and
have their roots in the Standard Generalized Markup Language (SGML). This means that XML leverages

380

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 381

Chapter 10: Using XML in Visual Basic 2008

one of the most useful features of HTML — readability. However, XML differs from HTML in that XML
represents data, whereas HTML is a mechanism for displaying data. The tags in XML describe the data,
as shown in the following example:

<?xml version="1.0" encoding="utf-8" ?>
<Movies>

<FilmOrder name="Grease" filmId="1" quantity="21"></FilmOrder>
<FilmOrder name="Lawrence of Arabia" filmId="2" quantity="10"></FilmOrder>
<FilmOrder name="Star Wars" filmId="3" quantity="12"></FilmOrder>
<FilmOrder name="Shrek" filmId="4" quantity="14"></FilmOrder>

</Movies>

This XML document represents a store order for a collection of movies. The standard used to represent
an order of films would be useful to movie rental firms, collectors, and others. This information can be
shared using XML for the following reasons:

❑ The data tags in XML are self-describing.

❑ XML is an open standard and supported on most platforms today.

XML supports the parsing of data by applications not familiar with the contents of the XML doc-
ument. XML documents can also be associated with a description (a schema) that informs an application
as to the structure of the data within the XML document.

At this stage, XML looks simple — it is just a human-readable way to exchange data in a universally
accepted format. The essential points that you should understand about XML are as follows:

❑ XML data can be stored in a plain text file.

❑ A document is said to be well formed if it adheres to the XML standard.

❑ Tags are used to specify the contents of a document — for example, <FilmOrder>.

❑ XML elements (also called nodes) can be thought of as the objects within a document.

❑ Elements are the basic building blocks of the document. Each element contains a start tag and
end tag. A tag can be both a start tag and an end tag in one — for example, <FilmOrder />.
In this case, the tag specifies that there is no content (or inner text) to the element (there isn’t
a closing tag because none is required due to the lack of inner-text content). Such a tag is said
to be empty.

❑ Data can be contained in the element (the element content) or within attributes contained in
the element.

❑ XML is hierarchical. One document can contain multiple elements, which can themselves contain
child elements, and so on. However, an XML document can only have one root element.

This last point means that the XML document hierarchy can be thought of as a tree containing nodes:

❑ The example document has a root node, <Movies>.

❑ The branches of the root node are elements of type <FilmOrder>.

❑ The leaves of the XML element, <FilmOrder>, are its attributes: name, quantity, and filmId.

381

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 382

Chapter 10: Using XML in Visual Basic 2008

Of course, we are interested in the practical use of XML by Visual Basic. A practical manipulation of the
example XML, for example, is to display (for the staff of a movie supplier) a particular movie order in an
application so that the supplier can fill the order and then save the information to a database. This chapter
explains how you can perform such tasks using the functionality provided by the .NET Framework class
library.

XML Serialization
The simplest way to demonstrate Visual Basic’s support for XML is not with a complicated technology,
such as SQL Server or ADO.NET, but with a practical use of XML: serializing a class.

The serialization of an object means that it is written out to a stream, such as a file or a socket (this is also
known as dehydrating an object). The reverse process can also be performed: An object can be deserialized
(or rehydrated) by reading it from a stream.

The type of serialization described in this chapter is XML serialization, whereby XML is used to represent
a class in serialized form.

To help you understand XML serialization, let’s examine a class named FilmOrder (which can be found
in the code download from www.wrox.com). This class is implemented in Visual Basic and is used by the
company for processing a movie order. The class could be instantiated on a firm’s PDA, laptop, or even
mobile phone (as long as the device had the .NET Framework installed).

An instance of FilmOrder corresponding to each order could be serializing to XML and sending over a
socket using the PDA’s cellular modem. (If the person making the order had a PDA that did not have
a cellular modem, then the instance of FilmOrder could be serialized to a file.) The order could then be
processed when the PDA was dropped into a docking cradle and synced. We are talking about data in
a propriety form here, an instance of FilmOrder being converted into a generic form — XML — that can
be universally understood.

The System.Xml.Serialization namespace contains classes and interfaces that support the serialization
of objects to XML, and the deserialization of objects from XML. Objects are serialized to documents or
streams using the XmlSerializer class.

Let’s look at how you can use XmlSerializer. First, you need to define an object that implements a
default constructor, such as FilmOrder:

Public Class FilmOrder

` These are Public because we have yet to implement
` properties to provide program access.

Public name As String
Public filmId As Integer
Public quantity As Integer

Public Sub New()

End Sub

382

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 383

Chapter 10: Using XML in Visual Basic 2008

Public Sub New(ByVal name As String, _
ByVal filmId As Integer, _
ByVal quantity As Integer)

Me.name = name
Me.filmId = filmId
Me.quantity = quantity

End Sub
End Class

This class should be created in a console application. From there, we can move on to the module. Within
the module’s Sub Main, create an instance of XmlSerializer, specifying the object to serialize and its type
in the constructor (you need to make a reference to System.Xml.Serialization for this to work):

Dim serialize As XmlSerializer = _
New XmlSerializer(GetType(FilmOrder))

Create an instance of the same type passed as a parameter to the constructor of XmlSerializer:

Dim MyFilmOrder As FilmOrder = _
New FilmOrder("Grease", 101, 10)

Call the Serialize method of the XmlSerializer instance and specify the stream to which the seri-
alized object is written (parameter one, Console.Out) and the object to be serialized (parameter two,
MyFilmOrder):

serialize.Serialize(Console.Out, MyFilmOrder)
Console.ReadLine()

To make reference to the XmlSerializer object, you need to make reference to the System.Xml.
Serialization namespace:

Imports System.Xml.Serialization

Running the module, the following output is generated by the preceding code:

<?xml version="1.0" encoding="IBM437"?>
<FilmOrder xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>

This output demonstrates the default way in which the Serialize method serializes an object:

❑ Each object serialized is represented as an element with the same name as the class — in this
case, FilmOrder.

❑ The individual data members of the class serialized are contained in elements named for each
data member — in this case, name, filmId, and quantity.

383

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 384

Chapter 10: Using XML in Visual Basic 2008

Also generated are the following:

❑ The specific version of XML generated — in this case, 1.0

❑ The encoding used — in this case, IBM437

❑ The schemas used to describe the serialized object — in this case, www.w3.org/2001/XMLSchema-
instance and www.w3.org/2001/XMLSchema

A schema can be associated with an XML document and describe the data it contains (name, type, scale,
precision, length, and so on). Either the actual schema or a reference to where the schema resides can be
contained in the XML document. In either case, an XML schema is a standard representation that can
be used by all applications that consume XML. This means that applications can use the supplied schema
to validate the contents of an XML document generated by the Serialize method of the XmlSerializer
object.

The code snippet that demonstrated the Serialize method of XmlSerializer displayed the XML gener-
ated to Console.Out. Clearly, we do not expect an application to use Console.Out when it would like to
access a FilmOrder object in XML form. The point was to show how serialization can be performed in just
two lines of code (one call to a constructor and one call to method). The entire section of code responsible
for serializing the instance of FilmOrder is presented here:

Try
Dim serialize As XmlSerializer = _

New XmlSerializer(GetType(FilmOrder))
Dim MyMovieOrder As FilmOrder = _

New FilmOrder("Grease", 101, 10)
serialize.Serialize(Console.Out, MyMovieOrder)
Console.Out.WriteLine()
Console.Readline()

Catch ex As Exception
Console.Error.WriteLine(ex.ToString())

End Try

The Serialize method’s first parameter is overridden so that it can serialize XML to a file (the filename
is given as type String), a Stream, a TextWriter, or an XmlWriter. When serializing to Stream,
TextWriter, or XmlWriter, adding a third parameter to the Serialize method is permissible. This third
parameter is of type XmlSerializerNamespaces and is used to specify a list of namespaces that qualify
the names in the XML-generated document. The permissible overrides of the Serialize method are
as follows:

Public Sub Serialize(Stream, Object)
Public Sub Serialize(TextWriter, Object)
Public Sub Serialize(XmlWriter, Object)
Public Sub Serialize(Stream, Object, XmlSerializerNamespaces)
Public Sub Serialize(TextWriter, Object, XmlSerializerNamespaces)
Public Sub Serialize(XmlWriter, Object, XmlSerializerNamespaces)
Public Sub Serialize(XmlWriter, Object, XmlSerializerNamespaces, String)
Public Sub Serialize(XmlWriter, Object, XmlSerializerNamespaces, String, _

String)

384

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 385

Chapter 10: Using XML in Visual Basic 2008

An object is reconstituted using the Deserialize method of XmlSerializer. This method is overrid-
den and can deserialize XML presented as a Stream, a TextReader, or an XmlReader. The overloads for
Deserialize are as follows:

Public Function Deserialize(Stream) As Object
Public Function Deserialize(TextReader) As Object
Public Function Deserialize(XmlReader) As Object
Public Function Deserialize(XmlReader, XmlDeserializationEvents) As Object
Public Function Deserialize(XmlReader, String) As Object
Public Function Deserialize(XmlReader, String, XmlDeserializationEvents) _

As Object

Before demonstrating the Deserialize method, we will introduce a new class, FilmOrder_Multiple.
This class contains an array of film orders (actually an array of FilmOrder objects). FilmOrder_Multiple
is defined as follows:

Public Class FilmOrder_Multiple
Public multiFilmOrders() As FilmOrder

Public Sub New()

End Sub

Public Sub New(ByVal multiFilmOrders() As FilmOrder)
Me.multiFilmOrders = multiFilmOrders

End Sub
End Class

The FilmOrder_Multiple class contains a fairly complicated object, an array of FilmOrder objects. The
underlying serialization and deserialization of this class is more complicated than that of a single instance
of a class that contains several simple types, but the programming effort involved on your part is just as
simple as before. This is one of the great ways in which the .NET Framework makes it easy for you to
work with XML data, no matter how it is formed.

To work through an example of the deserialization process, first create a sample order stored as an XML
file called Filmorama.xml:

<?xml version="1.0" encoding="utf-8" ?>
<FilmOrder_Multiple xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>

385

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 386

Chapter 10: Using XML in Visual Basic 2008

<FilmOrder>
<name>Star Wars</name>
<filmId>103</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

</FilmOrder_Multiple>

In order for this to run, you should either have the .xml file in the location of the executable or define the
full path of the file within the code example.

Once the XML file is in place, the next step is to change your console application so it will deserialize the
contents of this file. After you have the XML file in place, ensure that your console application has made
the proper namespace references:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

The following code demonstrates an object of type FilmOrder_Multiple being deserialized (or rehy-
drated) from a file, Filmorama.xml. This object is deserialized using this file in conjunction with the
Deserialize method of XmlSerializer:

` Open file, ..\Filmorama.xml
Dim dehydrated As FileStream = _

New FileStream("Filmorama.xml", FileMode.Open)

` Create an XmlSerializer instance to handle deserializing,
` FilmOrder_Multiple
Dim serialize As XmlSerializer = _

New XmlSerializer(GetType(FilmOrder_Multiple))

` Create an object to contain the deserialized instance of the object.
Dim myFilmOrder As FilmOrder_Multiple = _

New FilmOrder_Multiple

` Deserialize object
myFilmOrder = serialize.Deserialize(dehydrated)

Once deserialized, the array of film orders can be displayed:

Dim SingleFilmOrder As FilmOrder

For Each SingleFilmOrder In myFilmOrder.multiFilmOrders
Console.Out.WriteLine("{0}, {1}, {2}", _

SingleFilmOrder.name, _
SingleFilmOrder.filmId, _
SingleFilmOrder.quantity)

Next

Console.ReadLine()

386

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 387

Chapter 10: Using XML in Visual Basic 2008

This example is just code that serializes an instance of type FilmOrder_Multiple. The output generated
by displaying the deserialized object containing an array of film orders is as follows:

Grease, 101, 10
Lawrence of Arabia, 102, 10
Star Wars, 103, 10

XmlSerializer also implements a CanDeserialize method. The prototype for this method is as follows:

Public Overridable Function CanDeserialize(ByVal xmlReader As XmlReader) _
As Boolean

If CanDeserialize returns True, then the XML document specified by the xmlReader parameter can be
deserialized. If the return value of this method is False, then the specified XML document cannot
be deserialized.

The FromTypes method of XmlSerializer facilitates the creation of arrays that contain XmlSerializer
objects. This array of XmlSerializer objects can be used in turn to process arrays of the type to be serial-
ized. The prototype for FromTypes is shown here:

Public Shared Function FromTypes(ByVal types() As Type) As XmlSerializer()

Before exploring the System.Xml.Serialization namespace, take a moment to consider the various uses
of the term ‘‘attribute.’’

Source Code Style Attributes
Thus far, you have seen attributes applied to a specific portion of an XML document. Visual Basic
has its own flavor of attributes, as do C# and each of the other .NET languages. These attributes refer to
annotations to the source code that specify information, or metadata, that can be used by other
applications without the need for the original source code. We will call such attributes Source Code Style
attributes.

In the context of the System.Xml.Serialization namespace, Source Code Style attributes can be used to
change the names of the elements generated for the data members of a class or to generate XML attributes
instead of XML elements for the data members of a class. To demonstrate this, we will use a class called
ElokuvaTilaus, which contains data members named name, filmId, and quantity. It just so happens
that the default XML generated when serializing this class is not in a form that can be readily consumed
by an external application.

For example, assume that a Finnish development team has written this external application — hence,
the XML element and attribute names are in Finnish (minus the umlauts), rather than English. To
rename the XML generated for a data member, name, a Source Code Style attribute will be used. This
Source Code Style attribute specifies that when ElokuvaTilaus is serialized, the name data member is
represented as an XML element, <Nimi>. The actual Source Code Style attribute that specifies this is as
follows:

<XmlElementAttribute("Nimi")> Public name As String

387

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 388

Chapter 10: Using XML in Visual Basic 2008

ElokuvaTilaus, which means MovieOrder in Finnish, also contains other Source Code Style attributes:

❑ <XmlAttributeAttribute("ElokuvaId")> specifies that filmId is to be serialized as an XML
attribute named ElokuvaId.

❑ <XmlAttributeAttribute("Maara")> specifies that quantity is to be serialized as an XML
attribute named Maara.

ElokuvaTilaus is defined as follows:

Imports System.Xml.Serialization

Public Class ElokuvaTilaus

` These are Public because we have yet to implement
` properties to provide program access.

<XmlElementAttribute("Nimi")> Public name As String
<XmlAttributeAttribute("ElokuvaId")> Public filmId As Integer
<XmlAttributeAttribute("Maara")> Public quantity As Integer

Public Sub New()
End Sub

Public Sub New(ByVal name As String, _
ByVal filmId As Integer, _
ByVal quantity As Integer)

Me.name = name
Me.filmId = filmId
Me.quantity = quantity

End Sub

End Class

ElokuvaTilaus can be serialized as follows:

Dim serialize As XmlSerializer = _
New XmlSerializer(GetType(ElokuvaTilaus))

Dim MyMovieOrder As ElokuvaTilaus = _
New ElokuvaTilaus("Grease", 101, 10)

serialize.Serialize(Console.Out, MyMovieOrder)
Console.Readline()

The output generated by this code reflects the Source Code Style attributes associated with the class
ElokuvaTilaus:

<?xml version="1.0" encoding="IBM437"?>
<ElokuvaTilaus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
ElokuvaId="101" Maara="10">

<Nimi>Grease</Nimi>
</ElokuvaTilaus>

388

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 389

Chapter 10: Using XML in Visual Basic 2008

The value of filmId is contained in an XML attribute, ElokuvaId, and the value of quantity is contained
in an XML attribute, Maara. The value of name is contained in an XML element, Nimi.

The example only demonstrates the Source Code Style attributes exposed by the XmlAttributeAttribute
and XmlElementAttribute classes in the System.Xml.Serialization namespace. A variety of other
Source Code Style attributes exist in this namespace that also control the form of XML gen-
erated by serialization. The classes associated with such Source Code Style attributes include
XmlTypeAttribute, XmlTextAttribute, XmlRootAttribute, XmlIncludeAttribute,
XmlIgnoreAttribute, and XmlEnumAttribute.

System.Xml Document Support
The System.Xml namespace implements a variety of objects that support standards-based XML pro-
cessing. The XML-specific standards facilitated by this namespace include XML 1.0, Document Type
Definition (DTD) support, XML namespaces, XML schemas, XPath, XQuery, XSLT, DOM Level 1 and
DOM Level 2 (Core implementations), as well as SOAP 1.1, SOAP 1.2, SOAP Contract Language,
and SOAP Discovery. The System.Xml namespace exposes over 30 separate classes in order to facilitate
this level of the XML standard’s compliance.

To generate and navigate XML documents, there are two styles of access:

❑ Stream-based — System.Xml exposes a variety of classes that read XML from and write XML
to a stream. This approach tends to be a fast way to consume or generate an XML document
because it represents a set of serial reads or writes. The limitation of this approach is that it does
not view the XML data as a document composed of tangible entities, such as nodes, elements,
and attributes. An example of where a stream could be used is when receiving XML documents
from a socket or a file.

❑ Document Object Model (DOM)-based — System.Xml exposes a set of objects that access XML
documents as data. The data is accessed using entities from the XML document tree (nodes, ele-
ments, and attributes). This style of XML generation and navigation is flexible but may not yield
the same performance as stream-based XML generation and navigation. DOM is an excellent
technology for editing and manipulating documents. For example, the functionality exposed by
DOM could simplify merging your checking, savings, and brokerage accounts.

XML Stream-Style Parsers
When demonstrating XML serialization, XML stream-style parsers were mentioned. After all, when an
instance of an object is serialized to XML, it has to be written to a stream, and when it is deserialized, it
is read from a stream. When an XML document is parsed using a stream parser, the parser always points
to the current node in the document. The basic architecture of stream parsers is shown in Figure 10-1.

The following classes that access a stream of XML (read XML) and generate a stream of XML (write XML)
are contained in the System.Xml namespace:

❑ XmlWriter — This abstract class specifies a non-cached, forward-only stream that writes an XML
document (data and schema).

389

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 390

Chapter 10: Using XML in Visual Basic 2008

Document
Object

Model [DOM]

StreamingXML

XmlDocument

XmlReader

XmlWriter

XsITransform

XSL/T

other classes

XmlDocument

XmlDocument

Figure 10-1

❑ XmlReader — This abstract class specifies a non-cached, forward-only stream that reads an XML
document (data and schema).

The diagram of the classes associated with the XML stream-style parser referred to one other class,
XslTransform. This class is found in the System.Xml.Xsl namespace and is not an XML stream-style
parser. Rather, it is used in conjunction with XmlWriter and XmlReader. This class is covered in detail
later.

The System.Xml namespace exposes a plethora of additional XML manipulation classes in addition to
those shown in the architecture diagram. The classes shown in the diagram include the following:

❑ XmlResolver — This abstract class resolves an external XML resource using a Uniform Resource
Identifier (URI). XmlUrlResolver is an implementation of an XmlResolver.

❑ XmlNameTable — This abstract class provides a fast means by which an XML parser can access
element or attribute names.

Writing an XML Stream
An XML document can be created programmatically in .NET. One way to perform this task is by writing
the individual components of an XML document (schema, attributes, elements, and so on) to an XML
stream. Using a unidirectional write-stream means that each element and its attributes must be written
in order — the idea is that data is always written at the head of the stream. To accomplish this, you use a
writable XML stream class (a class derived from XmlWriter). Such a class ensures that the XML document
you generate correctly implements the W3C Extensible Markup Language (XML) 1.0 specification and
the Namespaces in XML specification.

Why is this necessary when you have XML serialization? You need to be very careful here to separate
interface from implementation. XML serialization works for a specific class, such as the ElokuvaTilaus
class. This class is a proprietary implementation and not the format in which data is exchanged. For this
one specific case, the XML document generated when ElokuvaTilaus is serialized just so happens to be
the XML format used when placing an order for some movies. ElokuvaTilaus was given a little help
from Source Code Style attributes so that it would conform to a standard XML representation of a film
order summary.

390

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 391

Chapter 10: Using XML in Visual Basic 2008

In a different application, if the software used to manage an entire movie distribution business wants to
generate movie orders, then it must generate a document of the appropriate form. The movie distribution
management software achieves this using the XmlWriter object.

Before reviewing the subtleties of XmlWriter, note that this class exposes over 40 methods and
properties. The example in this section provides an overview that touches on a subset of these methods
and properties. This subset enables the generation of an XML document that corresponds to a movie
order.

This example builds the module that generates the XML document corresponding to a movie order.
It uses an instance of XmlWriter, called FilmOrdersWriter, which is actually a file on disk. This means
that the XML document generated is streamed to this file. Because the FilmOrdersWriter variable
represents a file, you have to take a few actions against the file. For instance, you have to ensure the
file is

❑ Created — The instance of XmlWriter, FilmOrdersWriter, is created by using the Create
method as well as by assigning all the properties of this object with the XmlWriterSettings
object.

❑ Opened — The file the XML is streamed to, FilmOrdersProgrammatic.xml, is opened by pass-
ing the filename to the constructor associated with XmlWriter.

❑ Generated — The process of generating the XML document is described in detail at the end of
this section.

❑ Closed — The file (the XML stream) is closed using the Close method of XmlWriter or by sim-
ply making use of the Using keyword, which ensures that the object is closed at the end of the
Using statement.

Before you create the XmlWriter object, you first need to customize how the object operates by using the
XmlWriterSettings object. This object, introduced in .NET 2.0, enables you to configure the behavior of
the XmlWriter object before you instantiate it:

Dim myXmlSettings As New XmlWriterSettings()
myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

You can specify a few settings for the XmlWriterSettings object that define how XML creation will be
handled by the XmlWriter object. The following table details the properties of the XmlWriterSettings
class:

Property Initial Value Description

CheckCharacters True This property, if set to True, performs a character
check on the contents of the XmlWriter object. Legal
characters can be found at
www.w3.org/TR/REC-xml#charsets.

CloseOutput False Specifies whether the XmlWriter should also close the
stream or the System.IO.TextWriter object

391

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 392

Chapter 10: Using XML in Visual Basic 2008

Property Initial Value Description

ConformanceLevel Conformance
Level.Document

Allows the XML to be checked to ensure that it
follows certain specified rules. Possible
conformance-level settings include Document,
Fragment, and Auto.

Encoding Encoding.UTF8 Defines the encoding of the XML generated

Indent True Defines whether the XML generated should be
indented or not. Setting this value to False will not
indent child nodes from parent nodes.

IndentChars Two spaces Specifies the number of spaces by which child nodes
are indented from parent nodes. This setting only
works when the Indent property is set to True. If you
want, you can assign this any string value you choose.

NewLineChars \r\n Assigns the characters that are used to define line
breaks

NewLineHandling NewLineHandling.
Replace

Defines whether to normalize line breaks in the
output. Possible values include Replace, Entitize,
and None.

NewLineOn Attributes True Defines whether a node’s attributes should be written
to a new line in the construction. This will occur if set
to True.

OmitXml Declaration False Defines whether an XML declaration should be
generated in the output. This omission only occurs if
set to True.

OutputMethod OutputMethod.Xml Defines the method to serialize the output. Possible
values include Xml, Html, Text, and AutoDetect.

Once the XmlWriterSettings object has been instantiated and assigned the values you deem nec-
essary, the next steps are to invoke the XmlWriter object and make the association between the
XmlWriterSettings object and the XmlWriter object.

The basic infrastructure for managing the file (the XML text stream) and applying the settings class is
either

Dim FilmOrdersWriter As XmlWriter = _
XmlWriter.Create("..\FilmOrdersProgrammatic.xml", myXmlSettings)

FilmOrdersWriter.Close()

or the following, if you are utilizing the Using keyword, which is the recommended approach:

Using FilmOrdersWriter As XmlWriter = _
XmlWriter.Create("..\FilmOrdersProgrammatic.xml", myXmlSettings)

End Using

392

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 393

Chapter 10: Using XML in Visual Basic 2008

With the preliminaries completed (file created and formatting configured), the process of writing the
actual attributes and elements of your XML document can begin. The sequence of steps used to generate
your XML document is as follows:

1. Write an XML comment using the WriteComment method. This comment describes from
whence the concept for this XML document originated and generates the following code:

<!-- Same as generated by serializing, ElokuvaTilaus -->

2. Begin writing the XML element, <ElokuvaTilaus>, by calling the WriteStartElement
method. You can only begin writing this element because its attributes and child elements
must be written before the element can be ended with a corresponding </ElokuvaTilaus>.
The XML generated by the WriteStartElementmethod is as follows

<ElokuvaTilaus>

3. Write the attributes associated with <ElokuvaTilaus> by calling the WriteAttributeString
method twice. The XML generated by calling the WriteAttributeString method twice adds
to the <ElokuvaTilaus> XML element that is currently being written to the following:

<ElokuvaTilaus ElokuvaId="101" Maara="10">

4. Using the WriteElementString method, write the child XML element <Nimi> contained
in the XML element, <ElokuvaTilaus>. The XML generated by calling this method is as
follows:

<Nimi>Grease</Nimi>

5. Complete writing the <ElokuvaTilaus>parent XML element by calling the WriteEndElement
method. The XML generated by calling this method is as follows:

</ElokuvaTilaus>

Let’s now put all this together in the Module1.vb file shown here:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Module Module1

Sub Main()

Dim myXmlSettings As New XmlWriterSettings
myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

Using FilmOrdersWriter As XmlWriter = _
XmlWriter.Create("..\FilmOrdersProgrammatic.xml", myXmlSettings)

FilmOrdersWriter.WriteComment(" Same as generated " & _
"by serializing, ElokuvaTilaus ")

FilmOrdersWriter.WriteStartElement("ElokuvaTilaus")

393

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 394

Chapter 10: Using XML in Visual Basic 2008

FilmOrdersWriter.WriteAttributeString("ElokuvaId", "101")
FilmOrdersWriter.WriteAttributeString("Maara", "10")
FilmOrdersWriter.WriteElementString("Nimi", "Grease")
FilmOrdersWriter.WriteEndElement() ’ End ElokuvaTilaus

End Using

End Sub

End Module

Once this is run, you will find the XML file FilmOrdersProgrammatic.xml created in the same folder as
the Module1.vb file or in the bin directory. The content of this file is as follows:

<?xml version="1.0" encoding="utf-8"?>
<!-- Same as generated by serializing, ElokuvaTilaus -->
<ElokuvaTilaus

ElokuvaId="101"
Maara="10">
<Nimi>Grease</Nimi>

</ElokuvaTilaus>

The previous XML document is the same in form as the XML document generated by serializing the
ElokuvaTilaus class. Notice that in the previous XML document, the <Nimi> element is indented two
characters and that each attribute is on a different line in the document. This was achieved using the
XmlWriterSettings class.

The sample application covered only a small portion of the methods and properties exposed by the XML
stream-writing class, XmlWriter. Other methods implemented by this class manipulate the underlying
file, such as the Flush method; and some methods allow XML text to be written directly to the stream,
such as the WriteRaw method.

The XmlWriter class also exposes a variety of methods that write a specific type of XML data to the
stream. These methods include WriteBinHex, WriteCData, WriteString, and WriteWhiteSpace.

You can now generate the same XML document in two different ways. You have used two different
applications that took two different approaches to generating a document that represents a standardized
movie order. However, there are even more ways to generate XML, depending on the circumstances.
Using the previous scenario, you could receive a movie order from a store, and this order would have to
be transformed from the XML format used by the supplier to your own order format.

Reading an XML Stream
In .NET, XML documents can be read from a stream as well. Data is traversed in the stream in order (first
XML element, second XML element, and so on). This traversal is very quick because the data is processed
in one direction and features such as write and move backward in the traversal are not supported. At any
given instance, only data at the current position in the stream can be accessed.

Before exploring how an XML stream can be read, you need to understand why it should be read in the
first place. Returning to our movie supplier example, imagine that the application managing the movie
orders can generate a variety of XML documents corresponding to current orders, preorders, and returns.

394

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 395

Chapter 10: Using XML in Visual Basic 2008

All the documents (current orders, preorders, and returns) can be extracted in stream form and processed
by a report-generating application. This application prints the orders for a given day, the preorders
that are going to be due, and the returns that are coming back to the supplier. The report-generating
application processes the data by reading in and parsing a stream of XML.

One class that can be used to read and parse such an XML stream is XmlReader. Other classes in the
.NET Framework are derived from XmlReader, such as XmlTextReader, which can read XML from a file
(specified by a string corresponding to the file’s name), a Stream, or an XmlReader. This example uses an
XmlReader to read an XML document contained in a file. Reading XML from a file and writing it to a file
is not the norm when it comes to XML processing, but a file is the simplest way to access XML data. This
simplified access enables you to focus on XML-specific issues.

In creating a sample, the first step is to make the proper imports into the Module1.vb file:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

From there, the next step in accessing a stream of XML data is to create an instance of the object that will
open the stream (the readMovieInfo variable of type XmlReader) and then open the stream itself. Your
application performs this as follows (where MovieManage.xml is the name of the file containing the XML
document):

Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)

Note that because the XmlWriter has a settings class, the XmlReader also has a settings class. Though
you can make assignments to the XmlReaderSettings object, in this case you do not. Later, this chapter
covers the XmlReaderSettings object.

The basic mechanism for traversing each stream is to traverse from node to node using the Read method.
Node types in XML include Element and Whitespace. Numerous other node types are defined, but this
example focuses on traversing XML elements and the white space that is used to make the elements
more readable (carriage returns, linefeeds, and indentation spaces). Once the stream is positioned at a
node, the MoveToNextAttribute method can be called to read each attribute contained in an element.
The MoveToNextAttribute method only traverses attributes for nodes that contain attributes (nodes of
type element). An example of an XmlReader traversing each node and then traversing the attributes of
each node follows:

While readMovieInfo.Read()
` Process node here.
While readMovieInfo.MoveToNextAttribute()

` Process attribute here.
End While

End While

This code, which reads the contents of the XML stream, does not utilize any knowledge of the stream’s
contents. However, a great many applications know exactly how the stream they are going to traverse
is structured. Such applications can use XmlReader in a more deliberate manner and not simply traverse
the stream without foreknowledge.

395

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 396

Chapter 10: Using XML in Visual Basic 2008

Once the example stream has been read, it can be cleaned up using the End Using call:

End Using

This ReadMovieXml subroutine takes the filename containing the XML to read as a parameter. The code
for the subroutine is as follows (and is basically the code just outlined):

Private Sub ReadMovieXml(ByVal fileName As String)

Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, _

myXmlSettings)
While readMovieInfo.Read()

ShowXmlNode(readMovieInfo)
While readMovieInfo.MoveToNextAttribute()

ShowXmlNode(readMovieInfo)
End While

End While
End Using

Console.ReadLine()
End Sub

For each node encountered after a call to the Read method, ReadMovieXml calls the ShowXmlNode subrou-
tine. Similarly, for each attribute traversed, the ShowXmlNode subroutine is called. This subroutine breaks
down each node into its sub-entities:

❑ Depth — This property of XmlReader determines the level at which a node resides in the XML
document tree. To understand depth, consider the following XML document composed solely of
elements: <A><C><D></D></C>.
Element <A> is the root element, and when parsed would return a Depth of 0. Elements and
<C> are contained in <A> and hence reflect a Depth value of 1. Element <D> is contained in <C>.
The Depth property value associated with <D> (depth of 2) should, therefore, be one more
than the Depth property associated with <C> (depth of 1).

❑ Type — The type of each node is determined using the NodeType property of XmlReader. The
node returned is of enumeration type, XmlNodeType. Permissible node types include Attribute,
Element, and Whitespace. (Numerous other node types can also be returned, including CDATA,
Comment, Document, Entity, and DocumentType.)

❑ Name — The type of each node is retrieved using the Name property of XmlReader. The name
of the node could be an element name, such as <ElokuvaTilaus>, or an attribute name, such
as ElokuvaId.

❑ Attribute Count — The number of attributes associated with a node is retrieved using the
AttributeCount property of XmlReader’s NodeType.

❑ Value — The value of a node is retrieved using the Value property of XmlReader. For example,
the element node <Nimi> contains a value of Grease.

The subroutine ShowXmlNode is implemented as follows:

Private Sub ShowXmlNode(ByVal reader As XmlReader)

396

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 397

Chapter 10: Using XML in Visual Basic 2008

If reader.Depth > 0 Then
For depthCount As Integer = 1 To reader.Depth

Console.Write(" ")
Next

End If

If reader.NodeType = XmlNodeType.Whitespace Then

Console.Out.WriteLine("Type: {0} ", reader.NodeType)

ElseIf reader.NodeType = XmlNodeType.Text Then

Console.Out.WriteLine("Type: {0}, Value: {1} ", _
reader.NodeType, _
reader.Value)

Else

Console.Out.WriteLine("Name: {0}, Type: {1}, " & _
"AttributeCount: {2}, Value: {3} ", _
reader.Name, _
reader.NodeType, _
reader.AttributeCount, _
reader.Value)

End If

End Sub

Within the ShowXmlNode subroutine, each level of node depth adds two spaces to the output generated:

If reader.Depth > 0 Then
For depthCount As Integer = 1 To reader.Depth
Console.Write(" ")

Next
End If

You add these spaces in order to create human-readable output (so you can easily determine the depth
of each node displayed). For each type of node, ShowXmlNode displays the value of the NodeType prop-
erty. The ShowXmlNode subroutine makes a distinction between nodes of type Whitespace and other
types of nodes. The reason for this is simple: A node of type Whitespace does not contain a name or
attribute count. The value of such a node is any combination of white-space characters (space, tab, car-
riage return, and so on). Therefore, it doesn’t make sense to display the properties if the NodeType is
XmlNodeType.WhiteSpace. Nodes of type Text have no name associated with them, so for this type, sub-
routine ShowXmlNode only displays the properties NodeType and Value. For all other node types, the Name,
AttributeCount, Value, and NodeType properties are displayed.

To finalize this module, add a Sub Main as follows:

Sub Main(ByVal args() As String)
ReadMovieXml("..\MovieManage.xml")

End Sub

397

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 398

Chapter 10: Using XML in Visual Basic 2008

Here is an example construction of the MovieManage.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<MovieOrderDump>

<FilmOrder_Multiple>
<multiFilmOrders>

<FilmOrder>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

</FilmOrder_Multiple>

<PreOrder>
<FilmOrder>

<name>Shrek III - Shrek Becomes a Programmer</name>
<filmId>104</filmId>
<quantity>10</quantity>

</FilmOrder>
</PreOrder>

<Returns>
<FilmOrder>

<name>Star Wars</name>
<filmId>103</filmId>
<quantity>2</quantity>

</FilmOrder>
</Returns>

</MovieOrderDump>

Running this module produces the following output (a partial display, as it would be rather lengthy):

Name: xml, Type: XmlDeclaration, AttributeCount: 2, Value: version="1.0"
encoding="utf-8"
Name: version, Type: Attribute, AttributeCount: 2, Value: 1.0
Name: encoding, Type: Attribute, AttributeCount: 2, Value: utf-8
Type: Whitespace
Name: MovieOrderDump, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: FilmOrder_Multiple, Type: Element, AttributeCount: 0, Value:
Type: Whitespace

398

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 399

Chapter 10: Using XML in Visual Basic 2008

Name: multiFilmOrders, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: FilmOrder, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
Name: name, Type: Element, AttributeCount: 0, Value:
Type: Text, Value: Grease

This example managed to use three methods and five properties of XmlReader. The output generated
was informative but far from practical. XmlReader exposes over 50 methods and properties, which means
that we have only scratched the surface of this highly versatile class. The remainder of this section looks
at the XmlReaderSettings class, introduces a more realistic use of XmlReader, and demonstrates how the
classes of System.Xml handle errors.

The XmlReaderSettings Class
Just like the XmlWriter object, the XmlReader object requires settings to be applied for instantiation of
the object. This means that you can apply settings specifying how the XmlReader object behaves when
it is reading whatever XML you might have for it. This includes settings for dealing with white space,
schemas, and more:

Property Initial Value Description

CheckCharacters True This property, if set to True, performs a character check
on the contents of the retrieved object. Legal characters
can be found at www.w3.org/TR/REC-xml#charsets.

CloseOutput False Specifies whether the XmlWriter should also close the
stream or the System.IO.TextWriter object

ConformanceLevel Conformance
Level.Document

Allows the XML to be checked to ensure that it follows
certain specified rules. Possible conformance-level
settings include Document, Fragment, and Auto.

IgnoreComments False Defines whether comments should be ignored or not

IgnoreProcessing
Instructions

False Defines whether processing instructions contained
within the XML should be ignored

IgnoreWhitespace False Defines whether the XmlReader object should ignore all
insignificant white space

LineNumberOffset 0 Defines the line number at which the LineNumber
property starts counting within the XML file

LinePosition
Offset

0 Defines the position in the line number at which the
LineNumber property starts counting within the XML file

NameTable An empty
XmlNameTable
object

Enables the XmlReader to work with a specific
XmlNameTable object that is used for atomized string
comparisons

399

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 400

Chapter 10: Using XML in Visual Basic 2008

Property Initial Value Description

ProhibitDtd False Defines whether the XmlReader should perform a
DTD validation

Schemas An empty XmlSchemaSet
object

Enables the XmlReader to work with an instance
of the XmlSchemaSet class

ValidationFlags ValidationFlags
.AllowXmlAttributes and
validationFlags
.ProcessidentityConstraints.

Enables you to apply validation schema settings.
Possible values include AllowXmlAttributes,
ProcessIdentityConstraints,
ProcessInlineSchema, ProcessSchemaLocation,
ReportValidationWarnings, and None.

ValidationType None Specifies whether the XmlReader will perform
validation or type assignment when reading.
Possible values include Auto, DTD, None, Schema,
and XDR.

XmlResolver A write-only property that enables you to access
external documents

An example of using this settings class to modify the behavior of the XmlReader class is as follows:

Dim myXmlSettings As New XmlReaderSettings()
myXmlSettings.IgnoreWhitespace = True
myXmlSettings.IgnoreComments = True

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
` Use XmlReader object here.

End Using

In this case, the XmlReader object that is created ignores the white space that it encounters, as well as
any of the XML comments. These settings, once established with the XmlReaderSettings object, are then
associated with the XmlReader object through its Create method.

Traversing XML Using XmlTextReader
An application can easily use XmlReader to traverse a document that is received in a known format. The
document can thus be traversed in a deliberate manner. You just implemented a class that serialized
arrays of movie orders. The next example takes an XML document containing multiple XML documents
of that type and traverses them. Each movie order is forwarded to the movie supplier via fax. The docu-
ment is traversed as follows:

Read root element: <MovieOrderDump>
Process each <FilmOrder_Multiple> element

Read <multiFilmOrders> element
Process each <FilmOrder>

Send fax for each movie order here

400

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 401

Chapter 10: Using XML in Visual Basic 2008

The basic outline for the program’s implementation is to open a file containing the XML document to
parse and to traverse it from element to element:

Dim myXmlSettings As New XmlReaderSettings()

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
readMovieInfo.Read()
readMovieInfo.ReadStartElement("MovieOrderDump")

Do While (True)

`**
`* Process FilmOrder elements here *

`**

Loop

readMovieInfo.ReadEndElement() ’ </MovieOrderDump>

End Using

The preceding code opened the file using the constructor of XmlReader, and the End Using statement
takes care of shutting everything down for you. The code also introduced two methods of the XmlReader
class:

❑ ReadStartElement(String) — This verifies that the current in the stream is an element and that
the element’s name matches the string passed to ReadStartElement. If the verification is success-
ful, then the stream is advanced to the next element.

❑ ReadEndElement() — This verifies that the current element is an end tab; and if the verification
is successful, then the stream is advanced to the next element.

The application knows that an element, <MovieOrderDump>, will be found at a specific point in the docu-
ment. The ReadStartElement method verifies this foreknowledge of the document format. After all the
elements contained in element <MovieOrderDump> have been traversed, the stream should point to
the end tag </MovieOrderDump>. The ReadEndElement method verifies this.

The code that traverses each element of type <FilmOrder> similarly uses the ReadStartElement and
ReadEndElement methods to indicate the start and end of the <FilmOrder> and <multiFilmOrders>
elements. The code that ultimately parses the list of movie orders and faxes the movie supplier (using the
FranticallyFaxTheMovieSupplier subroutine) is as follows:

Dim myXmlSettings As New XmlReaderSettings()

Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
readMovieInfo.Read()
readMovieInfo.ReadStartElement("MovieOrderDump")

Do While (True)

401

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 402

Chapter 10: Using XML in Visual Basic 2008

readMovieInfo.ReadStartElement("FilmOrder_Multiple")
readMovieInfo.ReadStartElement("multiFilmOrders")

Do While (True)
readMovieInfo.ReadStartElement("FilmOrder")
movieName = readMovieInfo.ReadElementString()
movieId = readMovieInfo.ReadElementString()
quantity = readMovieInfo.ReadElementString()
readMovieInfo.ReadEndElement() ’ clear </FilmOrder>

FranticallyFaxTheMovieSupplier(movieName, movieId, quantity)

` Should read next FilmOrder node
` else quits
readMovieInfo.Read()

If ("FilmOrder" <> readMovieInfo.Name) Then
Exit Do

End If
Loop

readMovieInfo.ReadEndElement() ’ clear </multiFilmOrders>
readMovieInfo.ReadEndElement() ’ clear </FilmOrder_Multiple>

` Should read next FilmOrder_Multiple node
` else you quit
readMovieInfo.Read() ’ clear </MovieOrderDump>

If ("FilmOrder_Multiple" <> readMovieInfo.Name) Then
Exit Do

End If

Loop

readMovieInfo.ReadEndElement() ’ </MovieOrderDump>

End Using

Three lines within the preceding code contain a call to the ReadElementString method:

movieName = readMovieInfo.ReadElementString()
movieId = readMovieInfo.ReadElementString()
quantity = readMovieInfo.ReadElementString()

While parsing the stream, it was known that an element named <name> existed and that this element
contained the name of the movie. Rather than parse the start tag, get the value, and parse the end
tag, it was easier to get the data using the ReadElementString method. This method retrieves the data
string associated with an element and advances the stream to the next element. The ReadElementString
method was also used to retrieve the data associated with the XML elements <filmId> and
<quantity>.

402

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 403

Chapter 10: Using XML in Visual Basic 2008

The output of this example is a fax (not shown here because the point of this example is to demonstrate
that it is simpler to traverse a document when its form is known). The format of the document is still
verified by XmlReader as it is parsed.

The XmlReader class also exposes properties that provide more insight into the data contained in the
XML document and the state of parsing: IsEmptyElement, EOF, and IsStartElement.

.NET CLR-compliant types are not 100 percent inline with XML types, so ever since the .NET Framework
2.0 was introduced, the new methods it made available in the XmlReader make the process of casting
from one of these XML types to .NET types easier.

Using the ReadElementContentAs method, you can easily perform the necessary casting required:

Dim username As String = _
myXmlReader.ReadElementContentAs(GetType(String), DBNull.Value)

Dim myDate As DateTime = _
myXmlReader.ReadElementContentAs(GetType(DateTime), DBNull.Value)

Also available is a series of direct casts through new methods such as the following:

❑ ReadElementContentAsBase64()

❑ ReadElementContentAsBinHex()

❑ ReadElementContentAsBoolean()

❑ ReadElementContentAsDateTime()

❑ ReadElementContentAsDecimal()

❑ ReadElementContentAsDouble()

❑ ReadElementContentAsFloat()

❑ ReadElementContentAsInt()

❑ ReadElementContentAsLong()

❑ ReadElementContentAsObject()

❑ ReadElementContentAsString()

In addition to these methods, the raw XML associated with the document can also be retrieved, using
ReadInnerXml and ReadOuterXml. Again, this only scratches the surface of the XmlReader class, a class
quite rich in functionality.

Handling Exceptions
XML is text and could easily be read using mundane methods such as Read and ReadLine. A key
feature of each class that reads and traverses XML is inherent support for error detection and

403

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 404

Chapter 10: Using XML in Visual Basic 2008

handling. To demonstrate this, consider the following malformed XML document found in the file named
Malformed.xml:

<?xml version="1.0" encoding="IBM437" ?>
<ElokuvaTilaus ElokuvaId="101", Maara="10">

<Nimi>Grease</Nimi>
<ElokuvaTilaus>

This document may not immediately appear to be malformed. By wrapping a call to the method you
developed (ReadMovieXml), you can see what type of exception is raised when XmlReader detects the
malformed XML within this document:

Try
ReadMovieXml("Malformed.xml")

Catch xmlEx As XmlException
Console.Error.WriteLine("XML Error: " + xmlEx.ToString())

Catch ex As Exception
Console.Error.WriteLine("Some other error: " + ex.ToString())

End Try

The methods and properties exposed by the XmlReader class raise exceptions of type System.Xml
.XmlException. In fact, every class in the System.Xml namespace raises exceptions of type XmlException.
Although this is a discussion of errors using an instance of type XmlReader, the concepts reviewed apply
to all errors generated by classes found in the System.Xml namespace.

Properties exposed by XmlException include the following:

❑ Data — A set of key-value pairs that enable you to display user-defined information about the
exception

❑ HelpLink — The link to the help page that deals with the exception

❑ InnerException — The System.Exception instance indicating what caused the current exception

❑ LineNumber — The number of the line within an XML document where the error occurred

❑ LinePosition — The position within the line specified by LineNumber where the error occurred

❑ Message — The error message that corresponds to the error that occurred. This error took place
at the line in the XML document specified by LineNumber and within the line at the position
specified by LinePostion.

❑ Source — Provides the name of the application or object that triggered the error

❑ SourceUri — Provides the URI of the element or document in which the error occurred

❑ StackTrace — Provides a string representation of the frames on the call stack when the error
was triggered

❑ TargetSite — The method that triggered the error

The error displayed when subroutine movieReadXML processes Malformed.xml is as follows:

XML Error: System.Xml.XmlException: The ’,’ character, hexadecimal value 0x2C,
cannot begin a name. Line 2, position 49.

404

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 405

Chapter 10: Using XML in Visual Basic 2008

The preceding snippet indicates that a comma separates the attributes in element <FilmOrder>
(ElokuvaTilaus="101", Maara="10"). This comma is invalid. Removing it and running the code again
results in the following output:

XML Error: System.Xml.XmlException: This is an unexpected token. Expected
’EndElement’. Line 5, position 27.

Again, you can recognize the precise error. In this case, you do not have an end element,</ElokuvaTilaus>,
but you do have an opening element, <ElokuvaTilaus>.

The properties provided by the XmlException class (such as LineNumber, LinePosition, and Message)
provide a useful level of precision when tracking down errors. The XmlReader class also exposes a level
of precision with respect to the parsing of the XML document. This precision is exposed by the XmlReader
through properties such as LineNumber and LinePosition.

Using the MemoryStream Object
A very useful class that can greatly help you when working with XML is System.IO.MemoryStream. Rather
than need a network or disk resource backing the stream (as in System.Net.Sockets.NetworkStream
and System.IO.FileStream), MemoryStream backs itself up onto a block of memory. Imagine that you
want to generate an XML document and e-mail it. The built-in classes for sending e-mail rely on having
a System.String containing a block of text for the message body, but if you want to generate an XML
document, then you need a stream.

If the document is reasonably sized, then write the document directly to memory and copy that block
of memory to the e-mail. This is good from a performance and reliability perspective because you don’t
have to open a file, write it, rewind it, and read the data back in again. However, you must consider
scalability in this situation because if the file is very large, or if you have a great number of smaller files,
then you could run out of memory (in which case you have to go the ‘‘file’’ route).

This section describes how to generate an XML document to a MemoryStream object, reading the
document back out again as a System.String value and e-mailing it. What you will do is create
a new class called EmailStream that extends MemoryStream. This new class contains an extra
method called CloseAndSend that, as its name implies, closes the stream and sends the e-mail
message.

First, create a new console application project called ‘‘EmailStream.’’ The first task is to create a basic
Customer object that contains a few basic members and can be automatically serialized by .NET through
use of the SerializableAttribute attribute:

<Serializable()> Public Class Customer

` members...
Public Id As Integer
Public FirstName As String
Public LastName As String
Public Email As String

End Class

405

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 406

Chapter 10: Using XML in Visual Basic 2008

The fun part is the EmailStream class itself. This needs access to the System.Net.Mail namespace, so
import this namespace into your code for your class. The new class should also extend System.IO.
MemoryStream, as shown here:

Imports System.IO
Imports System.Net.Mail

Public Class EmailStream
Inherits MemoryStream

The first job of CloseAndSend is to start putting together the mail message. This is done by creating a new
System.Web.Mail.MailMessage object and configuring the sender, recipient, and subject:

` CloseAndSend - close the stream and send the email...
Public Sub CloseAndSend(ByVal fromAddress As String, _

ByVal toAddress As String, _
ByVal subject As String)

` Create the new message...
Dim message As New MailMessage()

message.From = New MailAddress(fromAddress)
message.To.Add(New MailAddress(toAddress))
message.Subject = subject

This method will be called after the XML document has been written to the stream, so you can assume
at this point that the stream contains a block of data. To read the data back out again, you have to
rewind the stream and use a System.IO.StreamReader. Before you do this, however, call Flush.
Traditionally, streams have always been buffered — that is, the data is not sent to the final destination
(the memory block in this case, but a file in the case of a FileStream, and so on) each time the stream is
written. Instead, the data is written in (mostly) a nondeterministic way. Because you need all the data to
be written, you call Flush to ensure that all the data has been sent to the destination and that the buffer
is empty.

In a way, EmailStream is a great example of buffering. All the data is held in a memory ‘‘buffer’’ until
you finally send the data on to its destination in a response to an explicit call to this method:

` Flush and rewind the stream...

Flush()
Seek(0, SeekOrigin.Begin)

Once you have flushed and rewound the stream, you can create a StreamReader and dredge all the data
out into the Body property of the MailMessage object:

` Read out the data...

Dim reader As New StreamReader(Me)
message.Body = reader.ReadToEnd()

406

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 407

Chapter 10: Using XML in Visual Basic 2008

After you have done that, close the stream by calling the base class method:

` Close the stream...

Close()

Finally, send the message:

` Send the message...
Dim SmtpMail As New SmtpClient()
SmtpMail.Send(message)

End Sub

End Class

To call this method, you need to add some code to the Main method. First, create a new Customer object
and populate it with some test data:

Imports System.Xml.Serialization

Module Module1

Sub Main()

` Create a new customer...
Dim customer As New Customer
customer.Id = 27
customer.FirstName = "Bill"
customer.LastName = "Gates"
customer.Email = bill.gates@microsoft.com

After you have done that, you can create a new EmailStream object. You then use XmlSerializer to
write an XML document representing the newly created Customer instance to the block of memory that
EmailStream is backing to:

` Create a new email stream...
Dim stream As New EmailStream

` Serialize...
Dim serializer As New XmlSerializer(customer.GetType())
serializer.Serialize(stream, customer)

At this point, the stream will be filled with data; and after all the data has been flushed, the block of mem-
ory that EmailStream backs on to will contain the complete document. Now you can call CloseAndSend
to e-mail the document:

` Send the email...
stream.CloseAndSend("evjen@yahoo.com", _

"evjen@yahoo.com", "XML Customer Document")
End Sub

End Module

407

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 408

Chapter 10: Using XML in Visual Basic 2008

You probably already have the Microsoft SMTP service properly configured — this service is necessary
to send e-mail. You also need to ensure that the e-mail addresses used in your code go to your e-mail
address! Run the project and check your e-mail; you should see something similar to what is shown in
Figure 10-2.

Figure 10-2

Document Object Model (DOM)
The classes of the System.Xml namespace that support the Document Object Model (DOM) interact as
illustrated in Figure 10-3.

XmlMode XmlElement XmlAttribute

XmlDocument

XML DocumentObjectModel [DOM]

XmlWriter, TextWriter
file, Stream

XmlReader, TextReader
file, Stream

Figure 10-3

Within this diagram, an XML document is contained in a class named XmlDocument. Each node within
this document is accessible and managed using XmlNode. Nodes can also be accessed and managed
using a class specifically designed to process a specific node’s type (XmlElement, XmlAttribute, and so
on). XML documents are extracted from XmlDocument using a variety of mechanisms exposed through

408

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 409

Chapter 10: Using XML in Visual Basic 2008

such classes as XmlWriter, TextWriter, Stream, and a file (specified by filename of type String). XML
documents are consumed by an XmlDocument using a variety of load mechanisms exposed through the
same classes.

A DOM-style parser differs from a stream-style parser with respect to movement. Using the DOM, the
nodes can be traversed forward and backward. Nodes can be added to the document, removed from
the document, and updated. However, this flexibility comes at a performance cost. It is faster to read or
write XML using a stream-style parser.

The DOM-specific classes exposed by System.Xml include the following:

❑ XmlDocument — Corresponds to an entire XML document. A document is loaded using the
Load method. XML documents are loaded from a file (the filename specified as type String),
TextReader, or XmlReader. A document can be loaded using LoadXml in conjunction with
a string containing the XML document. The Save method is used to save XML documents.
The methods exposed by XmlDocument reflect the intricate manipulation of an XML docu-
ment. For example, the following self-documenting creation methods are implemented by
this class: CreateAttribute, CreateCDataSection, CreateComment, CreateDocumentFragment,
CreateDocumentType, CreateElement, CreateEntityReference, CreateNavigator, CreateNode,
CreateProcessingInstruction, CreateSignificantWhitespace, CreateTextNode,
CreateWhitespace, and CreateXmlDeclaration. The elements contained in the document
can be retrieved. Other methods support the retrieving, importing, cloning, loading, and
writing of nodes.

❑ XmlNode — Corresponds to a node within the DOM tree. This class supports data types,
namespaces, and DTDs. A robust set of methods and properties is provided to create,
delete, and replace nodes: AppendChild, Clone, CloneNode, CreateNavigator, InsertAfter,
InsertBefore, Normalize, PrependChild, RemoveAll, RemoveChild, ReplaceChild,
SelectNodes, SelectSingleNode, Supports, WriteContentTo, and WriteTo. The contents of a
node can similarly be traversed in a variety of ways: FirstChild, LastChild, NextSibling,
ParentNode, and PreviousSibling.

❑ XmlElement — Corresponds to an element within the DOM tree. The functionality exposed
by this class contains a variety of methods used to manipulate an element’s attributes:
AppendChild, Clone, CloneNode, CreateNavigator, GetAttribute, GetAttributeNode,
GetElementsByTagName, GetNamespaceOfPrefix, GetPrefixOfNamespace, InsertAfter,
InsertBefore, Normalize, PrependChild, RemoveAll, RemoveAllAttributes, RemoveAttribute,
RemoveAttributeAt, RemoveAttributeNode, RemoveChild, ReplaceChild, SelectNodes,
SelectSingleNode, SetAttribute, SetAttributeNode, Supports, WriteContentTo,
and WriteTo.

❑ XmlAttribute — Corresponds to an attribute of an element (XmlElement) within the DOM tree.
An attribute contains data and lists of subordinate data, so it is a less complicated object than
an XmlNode or an XmlElement. An XmlAttribute can retrieve its owner document (property,
OwnerDocument), retrieve its owner element (property, OwnerElement), retrieve its parent node
(property, ParentNode), and retrieve its name (property, Name). The value of an XmlAttribute is
available via a read-write property named Value. Methods available to XmlAttribute
include AppendChild, Clone, CloneNode, CreateNavigator, GetNamespaceOfPrefix,
GetPrefixOfNamespace, InsertAfter, InsertBefore, Normalize, PrependChild, RemoveAll,
RemoveChild, ReplaceChild, SelectNodes, SelectSingleNode, WriteContentTo,
and WriteTo.

409

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 410

Chapter 10: Using XML in Visual Basic 2008

Given the diverse number of methods and properties exposed by XmlDocument, XmlNode, XmlElement,
and XmlAttribute (and there are many more than those listed here), it’s clear that any XML 1.0 or
1.1-compliant document can be generated and manipulated using these classes. In comparison to their
XML stream counterparts, these classes offer more flexible movement within the XML document and
through any editing of XML documents.

A similar comparison could be made between DOM and data serialized and deserialized using XML.
Using serialization, the type of node (for example, attribute or element) and the node name are specified
at compile time. There is no on-the-fly modification of the XML generated by the serialization process.

Other technologies that generate and consume XML are not as flexible as the DOM. This includes
ADO.NET and ADO, which generate XML of a particular form. The default install of SQL Server 2000
does expose a certain amount of flexibility when it comes to the generation (FOR XML queries) and con-
sumption (OPENXML) of XML. SQL Server 2005 has more support for XML and even supports an XML
data type. SQL Server 2005 also expands upon the FOR XML query with FOR XML TYPE. The choice between
using classes within the DOM and a version of SQL Server is a choice between using a language such as
Visual Basic to manipulate objects or installing SQL Server and performing most of the XML manipula-
tion in SQL.

DOM Traversing Raw XML Elements
The first DOM example loads an XML document into an XmlDocument object using a string that contains
the actual XML document. This scenario is typical of an application that uses ADO.NET to generate XML,
but then uses the objects of the DOM to traverse and manipulate this XML. ADO.NET’s DataSet object
contains the results of ADO.NET data access operations. The DataSet class exposes a GetXml method
that retrieves the underlying XML associated with the DataSet. The following code demonstrates how
the contents of the DataSet are loaded into the XmlDocument:

Dim xmlDoc As New XmlDocument
Dim ds As New DataSet()

` Set up ADO.NET DataSet() here
xmlDoc.LoadXml(ds.GetXml())

This example over the next few pages simply traverses each XML element (XmlNode) in the document
(XmlDocument) and displays the data accordingly. The data associated with this example is not retrieved
from a DataSet but is instead contained in a string, rawData, which is initialized as follows:

Dim rawData As String = _
"<multiFilmOrders>" & _
" <FilmOrder>" & _
" <name>Grease</name>" & _
" <filmId>101</filmId>" & _
" <quantity>10</quantity>" & _
" </FilmOrder>" & _
" <FilmOrder>" & _
" <name>Lawrence of Arabia</name>" & _
" <filmId>102</filmId>" & _
" <quantity>10</quantity>" & _
" </FilmOrder>" & _
"</multiFilmOrders>"

410

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 411

Chapter 10: Using XML in Visual Basic 2008

The XML document in rawData is a portion of the XML hierarchy associated with a movie order. The
preceding example is what you would do if you were using any of the .NET Framework versions before
version 3.5. If you are working on the .NET Framework 3.5, then you can use the new XML literal capa-
bility offered. This means that you can now put XML directly in your code as XML and not as a string.
This approach is presented here:

Dim rawData As String = _
<multiFilmOrders>

<FilmOrder>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

The basic idea in processing this data is to traverse each <FilmOrder> element in order to display
the data it contains. Each node corresponding to a <FilmOrder> element can be retrieved from your
XmlDocument using the GetElementsByTagName method (specifying a tag name of FilmOrder). The
GetElementsByTagName method returns a list of XmlNode objects in the form of a collection of type
XmlNodeList. Using the For Each statement to construct this list, the XmlNodeList (movieOrderNodes)
can be traversed as individual XmlNode elements (movieOrderNode). The code for handling this is as
follows:

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode

xmlDoc.LoadXml(rawData)

` Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName("FilmOrder")

For Each movieOrderNode In movieOrderNodes
`**
` Process <name>, <filmId> and <quantity> here

`**
Next

Each XmlNode can then have its contents displayed by traversing the children of this node using the
ChildNodes method. This method returns an XmlNodeList (baseDataNodes) that can be traversed one
XmlNode list element at a time:

Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean

baseDataNodes = movieOrderNode.ChildNodes

411

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 412

Chapter 10: Using XML in Visual Basic 2008

bFirstInRow = True

For Each baseDataNode As XmlNode In baseDataNodes
If (bFirstInRow) Then
bFirstInRow = False

Else
Console.Out.Write(", ")

End If
Console.Out.Write(baseDataNode.Name & ": " & baseDataNode.InnerText)

Next
Console.Out.WriteLine()

The bulk of the preceding code retrieves the name of the node using the Name property and the InnerText
property of the node. The InnerText property of each XmlNode retrieved contains the data associated with
the XML elements (nodes) <name>, <filmId>, and <quantity>. The example displays the contents of the
XML elements using Console.Out. The XML document is displayed as follows:

name: Grease, filmId: 101, quantity: 10
name: Lawrence of Arabia, filmId: 102, quantity: 10

Other, more practical, methods for using this data could have been implemented, including the following:

❑ The contents could have been directed to an ASP.NET Response object, and the data retrieved
could have been used to create an HTML table (<table> table, <tr> row, and <td> data) that
would be written to the Response object.

❑ The data traversed could have been directed to a ListBox or ComboBox Windows Forms control.
This would enable the data returned to be selected as part of a GUI application.

❑ The data could have been edited as part of your application’s business rules. For example, you
could have used the traversal to verify that the <filmId> matched the <name>. Something like
this could be done if you wanted to validate the data entered into the XML document in any
manner.

Here is the example in its entirety:

Dim rawData As String = _
<multiFilmOrders>

<FilmOrder>
<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
<FilmOrder>

<name>Lawrence of Arabia</name>
<filmId>102</filmId>
<quantity>10</quantity>

</FilmOrder>
</multiFilmOrders>

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode

412

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 413

Chapter 10: Using XML in Visual Basic 2008

Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean

xmlDoc.LoadXml(rawData)

` Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName("FilmOrder")

For Each movieOrderNode In movieOrderNodes
baseDataNodes = movieOrderNode.ChildNodes
bFirstInRow = True
For Each baseDataNode As XmlNode In baseDataNodes
If (bFirstInRow) Then

bFirstInRow = False
Else

Console.Out.Write(", ")
End If
Console.Out.Write(baseDataNode.Name & ": " & baseDataNode.InnerText)

Next
Console.Out.WriteLine()

Next

DOM Traversing XML Attributes
This next example demonstrates how to traverse data contained in attributes and how to update the
attributes based on a set of business rules. In this example, the XmlDocument object is populated by
retrieving an XML document from a file. After the business rules edit the object, the data is persisted
back to the file:

Dim xmlDoc As New XmlDocument

xmlDoc.Load("..\MovieSupplierShippingListV2.xml")
`***
` Business rules process document here

`***

xmlDoc.Save("..\MovieSupplierShippingListV2.xml")

The data contained in the file, MovieSupplierShippingListV2.xml, is a variation of the movie order.
You have altered your rigid standard (for the sake of example) so that the data associated with individual
movie orders is contained in XML attributes instead of XML elements. An example of this movie order
data is as follows:

<FilmOrder name="Grease" filmId="101" quantity="10" />

You already know how to traverse the XML elements associated with a document, so let’s assume
that you have successfully retrieved the XmlNode associated with the <FilmOrder> element:

Dim attributes As XmlAttributeCollection
Dim filmId As Integer
Dim quantity As Integer

413

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 414

Chapter 10: Using XML in Visual Basic 2008

attributes = node.Attributes()

For Each attribute As XmlAttribute In attributes
If 0 = String.Compare(attribute.Name, "filmId") Then
filmId = attribute.InnerXml

ElseIf 0 = String.Compare(attribute.Name, "quantity") Then
quantity = attribute.InnerXml

End If
Next

The preceding code traverses the attributes of an XmlNode by retrieving a list of attributes using
the Attributes method. The value of this method is used to set the attributes’ object (data type,
XmlAttributeCollection). The individual XmlAttribute objects (variable, attribute) contained in
attributes are traversed using a For Each loop. Within the loop, the contents of the filmId and the
quantity attribute are saved for processing by your business rules.

Your business rules execute an algorithm that ensures that the movies in the company’s order are pro-
vided in the correct quantity. This rule specifies that the movie associated with filmId=101 must be sent
to the customer in batches of six at a time due to packaging. In the event of an invalid quantity, the code
for enforcing this business rule will remove a single order from the quantity value until the number
is divisible by six. Then this number is assigned to the quantity attribute. The Value property of the
XmlAttribute object is used to set the correct value of the order’s quantity. The code performing this
business rule is as follows:

If filmId = 101 Then
` This film comes packaged in batches of six.
Do Until (quantity / 6) = True
quantity -= 1

Loop

Attributes.ItemOf("quantity").Value = quantity
End If

What is elegant about this example is that the list of attributes was traversed using For Each. Then
ItemOf was used to look up a specific attribute that had already been traversed. This would not have
been possible by reading an XML stream with an object derived from the XML stream reader class,
XmlReader.

You can use this code as follows:

Sub TraverseAttributes(ByRef node As XmlNode)

Dim attributes As XmlAttributeCollection
Dim filmId As Integer
Dim quantity As Integer

attributes = node.Attributes()

For Each attribute As XmlAttribute In attributes
If 0 = String.Compare(attribute.Name, "filmId") Then

filmId = attribute.InnerXml
ElseIf 0 = String.Compare(attribute.Name, "quantity") Then

quantity = attribute.InnerXml

414

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 415

Chapter 10: Using XML in Visual Basic 2008

End If
Next

If filmId = 101 Then
` This film comes packaged in batches of six
Do Until (quantity / 6) = True

quantity -= 1
Loop

Attributes.ItemOf("quantity").Value = quantity
End If

End Sub

Sub WXReadMovieDOM()

Dim xmlDoc As New XmlDocument

Dim movieOrderNodes As XmlNodeList

xmlDoc.Load("..\MovieSupplierShippingListV2.xml")

` Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName("FilmOrder")

For Each movieOrderNode As XmlNode In movieOrderNodes
TraverseAttributes(movieOrderNode)

Next

xmlDoc.Save("..\MovieSupplierShippingListV2.xml")
End Sub

XSLT Transformations
XSLT is a language that is used to transform XML documents into another format altogether. One popular
use of XSLT is to transform XML into HTML so that XML documents can be presented visually. You have
performed a similar task before. When working with XML serialization, you rewrote the FilmOrder class.
This class was used to serialize a movie order object to XML using nodes that contained English-language
names. The rewritten version of this class, ElokuvaTilaus, serialized XML nodes containing Finn-
ish names. Source Code Style attributes were used in conjunction with the XmlSerializer class to
accomplish this transformation. Two words in this paragraph send chills down the spine of any experi-
enced developer: rewrote and rewritten. The point of an XSL transform is to use an alternate language
(XSLT) to transform the XML, rather than rewrite the source code, SQL commands, or some other mech-
anism used to generate XML.

Conceptually, XSLT is straightforward. A file with an .xslt extension describes the changes
(transformations) that will be applied to a particular XML file. Once this is completed, an XSLT pro-
cessor is provided with the source XML file and the XSLT file, and performs the transformation. The
System.Xml.Xsl.XslTransform class is such an XSLT processor. Another processor you will find (intro-
duced in the .NET Framework 2.0) is the XsltCommand object found at SystemXml.Query.XsltCommand.
This section looks at using both of these processors.

There are also some new features to be found in Visual Studio 2008 that deal with XSLT. The new version
of the IDE supports items such as XSLT data breakpoints and better support in the editor for loading

415

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 416

Chapter 10: Using XML in Visual Basic 2008

large documents. Additionally, XSLT stylesheets can be compiled into assemblies even more easily with
the new command-line stylesheet compiler, XSLTC.exe.

The XSLT file is itself an XML document, although certain elements within this document are XSLT-
specific commands. Dozens of XSLT commands can be used in writing an XSLT file. The first example
explores the following XSLT elements (commands):

❑ stylesheet — This element indicates the start of the style sheet (XSL) in the XSLT file.

❑ template — This element denotes a reusable template for producing specific output. This output
is generated using a specific node type within the source document under a specific context. For
example, the text <xsl: template match="/"> selects all root notes ("/") for the specific trans-
form template.

❑ for-each — This element applies the same template to each node in the specified set. Recall the
example class (FilmOrder_Multiple) that could be serialized. This class contained an array of
movie orders. Given the XML document generated when a FilmOrder_Multiple is serialized,
each movie order serialized could be processed using <xsl:for-each select = "FilmOrder_
Multiple/multiFilmOrders/FilmOrder">.

❑ value-of — This element retrieves the value of the specified node and inserts it into the docu-
ment in text form. For example, <xsl:value-of select="name" /> would take the value of the
XML element <name> and insert it into the transformed document.

When serialized, the FilmOrder_Multiple class generates XML such as the following (where . . . indicates
where additional <FilmOrder> elements may reside):

<?xml version="1.0" encoding="UTF-8" ?>
<FilmOrder_Multiple>

<multiFilmOrders>
<FilmOrder>

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
...

</multiFilmOrders>
</FilmOrder_Multiple>

The preceding XML document is used to generate a report that is viewed by the manager of the movie
supplier. This report is in HTML form, so that it can be viewed via the Web. The XSLT elements you
previously reviewed (stylesheet, template, and for-each) are the only XSLT elements required to
transform the XML document (in which data is stored) into an HTML file (data that can be displayed).
An XSLT file DisplayThatPuppy.xslt contains the following text, which is used to transform a serialized
version, FilmOrder_Multiple:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="/">

<HTML>
<TITLE>What people are ordering</TITLE>
<BODY>

<TABLE BORDER="1">

416

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 417

Chapter 10: Using XML in Visual Basic 2008

<TR>
<TD>Film Name</TD>
<TD>Film ID</TD>
<TD>Quantity</TD>

</TR>
<xsl:for-each select=
"FilmOrder_Multiple/multiFilmOrders/FilmOrder">

<TR>
<TD><xsl:value-of select="name" /></TD>
<TD><xsl:value-of select="filmId" /></TD>
<TD><xsl:value-of select="quantity" /></TD>

</TR>
</xsl:for-each>

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

In the preceding XSLT file, the XSLT elements are marked in bold. These elements perform operations
on the source XML file containing a serialized FilmOrder_Multiple object and generate the appropriate
HTML file. Your file contains a table (marked by the table tag, <TABLE>) that contains a set of rows (each
row marked by a table row tag, <TR>). The columns of the table are contained in table data tags, <TD>.
The XSLT file contains the header row for the table:

<TR>
<TD>Film Name</TD>
<TD>Film ID</TD>
<TD>Quantity</TD>

</TR>

Each row containing data (an individual movie order from the serialized object, FilmOrder_Multiple)
is generated using the XSLT element, for-each, to traverse each <FilmOrder> element within the source
XML document:

<xsl:for-each select=
"FilmOrder_Multiple/multiFilmOrders/FilmOrder">

The individual columns of data are generated using the value-of XSLT element, in order to query the
elements contained within each <FilmOrder> element (<name>, <filmId>, and <quantity>):

<TR>
<TD><xsl:value-of select="name" /></TD>
<TD><xsl:value-of select="filmId" /></TD>
<TD><xsl:value-of select="quantity" /></TD>

</TR>

The code to create a displayable XML file using the XslTransform object is as follows:

Dim myXslTransform As New XslCompiledTransform()

Dim destFileName As String = "..\ShowIt.html"

417

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 418

Chapter 10: Using XML in Visual Basic 2008

myXslTransform.Load("..\DisplayThatPuppy.xsl")
myXslTransform.Transform("..\FilmOrders.xml", destFileName)

System.Diagnostics.Process.Start(destFileName)

This consists of only seven lines of code, with the bulk of the coding taking place in the XSLT file. The
previous code snippet created an instance of a System.Xml.Xsl.XslCompiledTransform object named
myXslTransform. The Load method of this class is used to load the XSLT file you previously reviewed,
DisplayThatPuppy.xslt. The Transform method takes a source XML file as the first parameter, which
in this case was a file containing a serialized FilmOrder_Multiple object. The second parameter is the
destination file created by the transform (ShowIt.html). The Start method of the Process class is used to
display the HTML file. This method launches a process that is best suited for displaying the file provided.
Basically, the extension of the file dictates which application will be used to display the file. On a typical
Windows machine, the program used to display this file is Internet Explorer, as shown in Figure 10-4.

Figure 10-4

Don’t confuse displaying this HTML file with ASP.NET. Displaying an HTML file in this manner takes
place on a single machine without the involvement of a Web server. Using ASP.NET is more complex
than displaying an HTML page in the default browser.

As demonstrated, the backbone of the System.Xml.Xsl namespace is the XslCompiledTransform class.
This class uses XSLT files to transform XML documents. XslTransform exposes the following methods
and properties:

❑ XmlResolver — This get/set property is used to specify a class (abstract base class, XmlResolver)
that is used to handle external references (import and include elements within the style sheet).
These external references are encountered when a document is transformed (the method,
Transform, is executed). The System.Xml namespace contains a class, XmlUrlResolver, which
is derived from XmlResolver. The XmlUrlResolver class resolves the external resource based
on a URI.

❑ Load — This overloaded method loads an XSLT style sheet to be used in transforming XML doc-
uments. It is permissible to specify the XSLT style sheet as a parameter of type XPathNavigator,
filename of XSLT file (specified as parameter type String), XmlReader, or IXPathNavigable. For
each type of XSLT supported, an overloaded member is provided that enables an XmlResolver to

418

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 419

Chapter 10: Using XML in Visual Basic 2008

also be specified. For example, it is possible to call Load(String, XmlResolver), where String
corresponds to a filename and XmlResolver is an object that handles references in the style
sheet of type xsl:import and xsl:include. It would also be permissible to pass in a value
of Nothing for the second parameter of the Load method (so that no XmlResolver would be
specified).

❑ Transform — This overloaded method transforms a specified XML document using the pre-
viously specified XSLT style sheet and an XmlResolver. The location where the transformed
XML is to be output is specified as a parameter to this method. The first parameter of each over-
loaded method is the XML document to be transformed. This parameter can be represented as an
IXPathNavigable, XML filename (specified as parameter type String), or XPathNavigator.

The most straightforward variant of the Transformmethod is Transform(String, String, XmlResolver).
In this case, a file containing an XML document is specified as the first parameter, a filename that receives
the transformed XML document is specified as the second parameter, and the XmlResolver is used
as the third parameter. This is exactly how the first XSLT example utilized the Transform method:

myXslTransform.Transform("..\FilmOrders.xml", destFileName)

The first parameter to the Transform method can also be specified as IXPathNavigable or XPath–
Navigator. Either of these parameter types allows the XML output to be sent to an object of type Stream,
TextWriter, or XmlWriter. When these two flavors of input are specified, a parameter containing an
object of type XsltArgumentList can be specified. An XsltArgumentList object contains a list of argu-
ments that are used as input to the transform.

When working with a .NET 2.0/3.5 project, it is preferable to use the XslCompiledTransform object
instead of the XslTransform object, because the XslTransform object is considered obsolete.

The XslCompiledTransform object uses the same Load and Transform methods to pull the data. The
Transform method provides the following signatures:

XslCompiledTransform.Transform(IXPathNavigable, XmlWriter)
XslCompiledTransform.Transform(IXPathNavigable, XsltArguementList, XmlWriter)
XslCompiledTransform.Transform(IXPathNavigable, XsltArguementList, TextWriter)
XslCompiledTransform.Transform(IXPathNavigable, XsltArguementList, Stream)
XslCompiledTransform.Transform(XmlReader, XmlWriter)
XslCompiledTransform.Transform(XmlReader, XsltArguementList, XmlWriter)
XslCompiledTransform.Transform(XmlReader, XsltArguementList, TextWriter)
XslCompiledTransform.Transform(XmlReader, XsltArguementList, Stream)
XslCompiledTransform.Transform(XmlReader, XsltArguementList, XmlWriter,

XmlResolver)
XslCompiledTransform.Transform(String, String)
XslCompiledTransform.Transform(String, XmlWriter)
XslCompiledTransform.Transform(String, XsltArguementList, XmlWriter)
XslCompiledTransform.Transform(String, XsltArguementList, TextWriter)
XslCompiledTransform.Transform(String, XsltArguementList, Stream)

In this case, String is a representation of the .xslt file that should be used in the transformation. Here,
String represents the location of specific files (whether it is source files or output files). Some of the
signatures also allow for output to XmlWriter objects, streams, and TextWriter objects. These can be
used by also providing additional arguments using the XsltArgumentList object.

419

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 420

Chapter 10: Using XML in Visual Basic 2008

The preceding example used the second signature XslCompiledTransform.Transform(String, String),
which asked for the source file and the destination file (both string representations of the location of said
files):

myXslCompiledTransform.Transform("..\FilmOrders.xml", destFileName)

XSLT Transforming between XML Standards
The first example used four XSLT elements to transform an XML file into an HTML file. Such an example
has merit, but it doesn’t demonstrate an important use of XSLT: transforming XML from one standard
into another standard. This may involve renaming elements/attributes, excluding elements/attributes,
changing data types, altering the node hierarchy, and representing elements as attributes, and vice versa.

Returning to the example, a case of differing XML standards could easily affect your software that auto-
mates movie orders coming into a supplier. Imagine that the software, including its XML representation
of a movie order, is so successful that you sell 100,000 copies. However, just as you are celebrating, a con-
sortium of the largest movie supplier chains announces that they are no longer accepting faxed orders
and that they are introducing their own standard for the exchange of movie orders between movie
sellers and buyers.

Rather than panic, you simply ship an upgrade that includes an XSLT file. This upgrade (a bit of extra
code plus the XSLT file) transforms your XML representation of a movie order into the XML representa-
tion dictated by the consortium of movie suppliers. Using an XSLT file enables you to ship the upgrade
immediately. If the consortium of movie suppliers revises their XML representation, then you are not
obliged to change your source code. Instead, you can simply ship the upgraded XSLT file that ensures
each movie order document is compliant.

The specific source code that executes the transform is as follows:

Dim myXslCompiledTransform As XslCompiledTransform = New XslCompiledTransform

myXslCompiledTransform.Load("..\ConvertLegacyToNewStandard.xslt")
myXslCompiledTransform.Transform("..\MovieOrdersOriginal.xml", _

"..\MovieOrdersModified.xml")

Those three lines of code accomplish the following:

❑ Create an XslCompiledTransform object

❑ Use the Load method to load an XSLT file (ConvertLegacyToNewStandard.xslt)

❑ Use the Transform method to transform a source XML file (MovieOrdersOriginal.xml) into a
destination XML file (MovieOrdersModified.xml)

Recall that the input XML document (MovieOrdersOriginal.xml) does not match the format required by
your consortium of movie supplier chains. The content of this source XML file is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<FilmOrder_Multiple>

<multiFilmOrders>
<FilmOrder>

420

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 421

Chapter 10: Using XML in Visual Basic 2008

<name>Grease</name>
<filmId>101</filmId>
<quantity>10</quantity>

</FilmOrder>
...

</multiFilmOrders>
</FilmOrder_Multiple>

The format exhibited in the preceding XML document does not match the format of the consortium of
movie supplier chains. To be accepted by the collective of suppliers, you must transform the document
as follows:

❑ Remove element <FilmOrder_Multiple>.

❑ Remove element <multiFilmOrders>.

❑ Rename element <FilmOrder> to <DvdOrder>.

❑ Remove element <name> (the film’s name is not to be contained in the document).

❑ Rename element <quantity> to HowMuch and make HowMuch an attribute of <DvdOrder>.

❑ Rename element <filmId> to FilmOrderNumber and make FilmOrderNumber an attribute of
<DvdOrder>.

❑ Display attribute HowMuch before attribute FilmOrderNumber.

Many of the steps performed by the transform could have been achieved using an alternative technol-
ogy. For example, you could have used Source Code Style attributes with your serialization to generate
the correct XML attribute and XML element name. Had you known in advance that a consortium of
suppliers was going to develop a standard, you could have written your classes to be serialized based
on the standard. The point is that you did not know and now one standard (your legacy standard)
has to be converted into a newly adopted standard of the movie suppliers’ consortium. The worst
thing you could do would be to change your working code and then force all users working with the
application to upgrade. It is vastly simpler to add an extra transformation step to address the new
standard.

The XSLT file that facilitates the transform is named ConvertLegacyToNewStandard.xslt. A portion of
this file is implemented as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="FilmOrder">
<!- rename <FilmOrder> to <DvdOrder> ->
<xsl:element name="DvdOrder">

<!- Make element ’quantity’ attribute HowMuch
Notice attribute HowMuch comes before attribute FilmOrderNumber ->

<xsl:attribute name="HowMuch">
<xsl:value-of select="quantity"></xsl:value-of>

</xsl:attribute>
<!- Make element filmId attribute FilmOrderNumber ->
<xsl:attribute name="FilmOrderNumber">
<xsl:value-of select="filmId"></xsl:value-of>

</xsl:attribute>
</xsl:element>

421

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 422

Chapter 10: Using XML in Visual Basic 2008

<!- end of DvdOrder element ->
</xsl:template>

</xsl:stylesheet>

In the previous snippet of XSLT, the following XSLT elements are used to facilitate the transformation:

❑ <xsl:template match="FilmOrder"> — All operations in this template XSLT element take
place on the original document’s FilmOrder node.

❑ <xsl:element name="DvdOrder"> — The element corresponding to the source document’s
FilmOrder element will be called DvdOrder in the destination document.

❑ <xsl:attribute name="HowMuch"> — An attribute named HowMuch will be contained in the pre-
viously specified element, <DvdOrder>. This attribute XSLT element for HowMuch comes before
the attribute XSLT element for FilmOrderNumber. This order was specified as part of your
transform to adhere to the new standard.

❑ <xsl:value-of select=‘quantity’> — Retrieve the value of the source document’s <quantity>
element and place it in the destination document. This instance of XSLT element value-of pro-
vides the value associated with the attribute HowMuch.

Two new XSLT elements have crept into your vocabulary: element and attribute. Both of these XSLT
elements live up to their names. Specifying the XSLT element named element places an element in the
destination XML document. Specifying the XSLT element named attribute places an attribute in
the destination XML document. The XSLT transform found in ConvertLegacyToNewStandard.xslt is
too long to review here. When reading this file in its entirety, remember that this XSLT file contains
inline documentation to specify precisely what aspect of the transformation is being performed at which
location in the XSLT document. For example, the following XML code comments indicate what the XSLT
element attribute is about to do:

<!-- Make element ’quantity’ attribute HowMuch
Notice attribute HowMuch comes before attribute FilmOrderNumber -->

<xsl:attribute name="HowMuch">
<xsl:value-of select=’quantity’></xsl:value-of>

</xsl:attribute>

The preceding example spans several pages but contains just three lines of code. This demonstrates that
there is more to XML than learning how to use it in Visual Basic and the .NET Framework. Among other
things, you also need a good understanding of XSLT, XPath, and XQuery.

Other Classes and Interfaces in System.Xml.Xsl
We just took a good look at XSLT and the System.Xml.Xsl namespace, but there is a lot more to it than
that. Other classes and interfaces exposed by the System.Xml.Xsl namespace include the following:

❑ IXsltContextFunction — This interface accesses at runtime a given function defined in the
XSLT style sheet.

❑ IXsltContextVariable — This interface accesses at runtime a given variable defined in the
XSLT style sheet.

422

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 423

Chapter 10: Using XML in Visual Basic 2008

❑ XsltArgumentList — This class contains a list of arguments. These arguments are XSLT param-
eters or XSLT extension objects. The XsltArgumentList object is used in conjunction with the
Transform method of XslTransform.

❑ XsltContext — This class contains the state of the XSLT processor. This context information
enables XPath expressions to have their various components resolved (functions, parameters,
and namespaces).

❑ XsltException, XsltCompileException — These classes contain the information pertaining to
an exception raised while transforming data. XsltCompileException is derived from
XsltException.

ADO.NET
ADO.NET enables Visual Basic applications to generate XML documents and use such documents
to update persisted data. ADO.NET natively represents its DataSet’s underlying data store in XML.
ADO.NET also enables SQL Server–specific XML support to be accessed. This chapter focuses on those
features of ADO.NET that enable the XML generated and consumed to be customized. ADO.NET is
covered in detail in Chapter 9.

The DataSet properties and methods that are pertinent to XML include Namespace, Prefix, GetXml,
GetXmlSchema, InferXmlSchema, ReadXml, ReadXmlSchema, WriteXml, and WriteXmlSchema. An example
of code that uses the GetXml method is shown here:

Dim adapter As New _
SqlClient.SqlDataAdapter("SELECT ShipperID, CompanyName, Phone " & _

"FROM Shippers", _
"SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;")

Dim ds As New DataSet()

adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

The preceding code uses the sample Northwind database, retrieving all rows from the Shippers table.
This table was selected because it contains only three rows of data.

The following example makes use of the Northwind.mdf SQL Server Express Database file. To get this
database, please search for ‘‘Northwind and pubs Sample Databases for SQL Server 2000.’’ You can find
this link at www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-
8da2-eebc53a68034&displaylang=en. Once you’ve installed it, you’ll find the Northwind.mdf file
in the C:\SQL Server 2000 Sample Databases directory. To add this database to your application,
right-click on the solution you are working with and select Add Existing Item. From the provided dialog,
you’ll then be able to browse to the location of the Northwind.mdf file that you just installed. If you
have trouble getting permissions to work with the database, make a data connection to the file from the
Visual Studio Server Explorer. You will be asked to be made the appropriate user of the database, and
VS will make the appropriate changes on your behalf for this to occur. When added, you will encounter
a Data Source Configuration Wizard. For the purposes of this chapter, simply press the Cancel button
when you encounter this dialog.

423

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 424

Chapter 10: Using XML in Visual Basic 2008

The XML returned by GetXml is as follows (where . . . signifies that <Table> elements were removed for
the sake of brevity):

<NewDataSet>
<Table>
<ShipperID>1</ShipperID>
<CompanyName>Speedy Express</CompanyName>
<Phone>(503) 555-9831</Phone>

</Table>
...

</NewDataSet>

What you are trying to determine from this XML document is how to customize the XML generated. The
more customization you can perform at the ADO.NET level, the less will be needed later. With this in
mind, note that the root element is <NewDataSet> and that each row of the DataSet is returned as an XML
element, <Table>. The data returned is contained in an XML element named for the column in which the
data resides (<ShipperID>, <CompanyName>, and <Phone>, respectively).

The root element, <NewDataSet>, is just the default name of the DataSet. This name could have been
changed when the DataSet was constructed by specifying the name as a parameter to the constructor:

Dim ds As New DataSet("WeNameTheDataSet")

If the previous version of the constructor were executed, then the <NewDataSet> element would be
renamed <WeNameTheDataSet>. After the DataSet has been constructed, you can still set the property
DataSetName, thus changing <NewDataSet> to a name such as <WeNameTheDataSetAgain>:

ds.DataSetName = "WeNameTheDataSetAgain"

The <Table> element is actually the name of a table in the DataSet’s Tables property. Programmatically,
you can change <Table> to <WeNameTheTable>:

ds.Tables("Table").TableName = "WeNameTheTable"

You can customize the names of the data columns returned by modifying the SQL to use alias names. For
example, you could retrieve the same data but generate different elements using the following SQL code:

SELECT ShipperID As TheID, CompanyName As CName, Phone
As TelephoneNumber FROM Shippers

Using the preceding SQL statement, the <ShipperID> element would become the <TheID> element. The
<CompanyName> element would become <CName>, and <Phone> would become <TelephoneNumber>.
The column names can also be changed programmatically by using the Columns property associated
with the table in which the column resides. An example of this follows, where the XML element <TheID>
is changed to <AnotherNewName>:

ds.Tables("WeNameTheTable").Columns("TheID").ColumnName = "AnotherNewName"

424

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 425

Chapter 10: Using XML in Visual Basic 2008

This XML could be transformed using System.Xml.Xsl. It could be read as a stream (XmlTextReader)
or written as a stream (XmlTextWriter). The XML returned by ADO.NET could even be deserialized
and used to create an object or objects using XmlSerializer. The point is to recognize what ADO.NET-
generated XML looks like. If you know its format, then you can transform it into whatever you like.

ADO.NET and SQL Server 2000’s Built-in XML Features
Those interested in fully exploring the XML-specific features of SQL Server should take a look at Profes-
sional SQL Server 2000 Programming by Robert Vieira (Wrox Press, 2000). However, because the content
of that book is not .NET-specific, the next example forms a bridge between Professional SQL Server 2000
Programming and the .NET Framework.

Two of the major XML-related features exposed by SQL Server are as follows:

❑ FOR XML — The FOR XML clause of an SQL SELECT statement enables a rowset to be returned as an
XML document. The XML document generated by a FOR XML clause is highly customizable with
respect to the document hierarchy generated, per-column data transforms, representation of
binary data, XML schema generated, and a variety of other XML nuances.

❑ OPENXML — The OPENXML extension to Transact-SQL enables a stored procedure call to manipu-
late an XML document as a rowset. Subsequently, this rowset can be used to perform a variety of
tasks, such as SELECT, INSERT INTO, DELETE, and UPDATE.

SQL Server’s support for OPENXML is a matter of calling a stored procedure. A developer who can execute
a stored procedure call using Visual Basic in conjunction with ADO.NET can take full advantage of SQL
Server’s support for OPENXML. FOR XML queries have a certain caveat when it comes to ADO.NET. To
understand this caveat, consider the following FOR XML query:

SELECT ShipperID, CompanyName, Phone FROM Shippers FOR XML RAW

Using SQL Server’s Query Analyzer, this FOR XML RAW query generated the following XML:

<row ShipperID="1" CompanyName="Speedy Express" Phone="(314) 555-9831" />
<row ShipperID="2" CompanyName="United Package" Phone="(314) 555-3199" />
<row ShipperID="3" CompanyName="Federal Shipping" Phone="(314) 555-9931" />

The same FOR XML RAW query can be executed from ADO.NET as follows:

Dim adapter As New _
SqlDataAdapter("SELECT ShipperID, CompanyName, Phone " & _

"FROM Shippers FOR XML RAW", _
"SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;")

Dim ds As New DataSet

adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

The caveat with respect to a FOR XML query is that all data (the XML text) must be returned via a result
set containing a single row and a single column named XML_F52E2B61-18A1-11d1-B105- 00805F49916B.

425

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 426

Chapter 10: Using XML in Visual Basic 2008

The output from the preceding code snippet demonstrates this caveat (where . . . represents similar data
not shown for reasons of brevity):

<NewDataSet>
<Table>
<XML_F52E2B61-18A1-11d1-B105-00805F49916B>

/<row ShipperID="1" CompanyName="Speedy Express"
Phone="(503) 555-9831"/>
...

</XML_F52E2B61-18A1-11d1-B105-00805F49916B>
</Table>

</NewDataSet>

The value of the single row and single column returned contains what looks like XML, but it contains
/< instead of the less-than character, and /> instead of the greater-than character. The symbols
< and > cannot appear inside XML data, so they must be entity-encoded — that is, represented as />
and /<. The data returned in element <XML_F52E2B61-18A1-11d1-B105-00805F49916B> is not XML,
but data contained in an XML document.

To fully utilize FOR XML queries, the data must be accessible as XML. The solution to this quandary is the
ExecuteXmlReader method of the SQLCommand class. When this method is called, an SQLCommand object
assumes that it is executed as a FOR XML query and returns the results of this query as an XmlReader
object. An example of this follows:

Dim connection As New _
SqlConnection("SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;")

Dim command As New _
SqlCommand("SELECT ShipperID, CompanyName, Phone " & _

"FROM Shippers FOR XML RAW")
Dim memStream As MemoryStream = New MemoryStream
Dim xmlReader As New XmlTextReader(memStream)

connection.Open()
command.Connection = connection
xmlReader = command.ExecuteXmlReader()
` Extract results from XMLReader

You will need to import the System.Data.SqlClient namespace for this example to work.

The XmlReader created in this code is of type XmlTextReader, which derives from XmlReader. The
XmlTextReader is backed by a MemoryStream; hence, it is an in-memory stream of XML that can be tra-
versed using the methods and properties exposed by XmlTextReader. Streaming XML generation and
retrieval was discussed earlier.

Using the ExecuteXmlReader method of the SQLCommand class, it is possible to retrieve the result of
FOR XML queries. What makes the FOR XML style of queries so powerful is that it can configure the data
retrieved. The three types of FOR XML queries support the following forms of XML customization:

❑ FOR XML RAW — This type of query returns each row of a result set inside an XML element named
<row>. The data retrieved is contained as attributes of the <row> element. The attributes are
named for the column name or column alias in the FOR XML RAW query.

426

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 427

Chapter 10: Using XML in Visual Basic 2008

❑ FOR XML AUTO — By default, this type of query returns each row of a result set inside an XML ele-
ment named for the table or table alias contained in the FOR XML AUTO query. The data retrieved is
contained as attributes of this element. The attributes are named for the column name or column
alias in the FOR XML AUTO query. By specifying FOR XML AUTO, ELEMENTS, it is possible to retrieve
all data inside elements, rather than inside attributes. All data retrieved must be in attribute or
element form. There is no mix-and-match capability.

❑ FOR XML EXPLICIT — This form of the FOR XML query enables the precise XML type of
each column returned to be specified. The data associated with a column can be returned as
an attribute or an element. Specific XML types, such as CDATA and ID, can be associated
with a column returned. Even the level in the XML hierarchy in which data resides can be
specified using a FOR XML EXPLICIT query. This style of query is fairly complicated to implement.

FOR XML queries are flexible. Using FOR XML EXPLICIT and the movie rental database, it would be possible
to generate any form of XML movie order standard. The decision that needs to be made is where XML
configuration takes place. Using Visual Basic, a developer could use XmlTextReader and XmlTextWriter
to create any style of XML document. Using the XSLT language and an XSLT file, the same level of
configuration can be achieved. SQL Server and, in particular, FOR XML EXPLICIT, enable the same level
of XML customization, but this customization takes place at the SQL level and may even be configured
to stored procedure calls.

XML and SQL Server 2005
As a representation for data, XML is ideal in that it is a self-describing data format that enables you
to provide your data sets as complex data types. It also provides order to your data. SQL Server 2005
embraces this direction.

More and more developers are turning to XML as a means of data storage. For instance, Microsoft
Office enables documents to be saved and stored as XML documents. As an increasing number of prod-
ucts and solutions turn toward XML as a means of storage, this allows for a separation between the
underlying data and the presentation aspect of what is being viewed. XML is also being used as a means
of communicating data sets across platforms and the enterprise. The entire XML Web Services story
is a result of this new capability. Simply said, XML is a powerful alternative to your data storage
solutions.

Just remember that the power of using XML isn’t only about storing data as XML somewhere (whether
that is XML files or not); it is also about the capability to quickly access this XML data and to be able to
query the data that is retrieved.

SQL Server 2005 makes a big leap toward XML in adding an XML data type as an option. This
enables you to unify the relational aspects of the database and the current desires to work with
XML data.

FOR XML has also been expanded from within this latest edition of SQL Server. This includes a new TYPE
directive that returns an XML data type instance. In addition, the NET 2.0 Framework introduced a new
namespace — System.Data.SqlXml — that enables you to easily work with the XML data that comes
from SQL Server 2005. The SqlXml object is an XmlReader-derived type. Another addition is the use of
the SqlDataReader object’s GetXml method.

427

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 428

Chapter 10: Using XML in Visual Basic 2008

XML and SQL Server 2008
SQL Server 2008 continues on this path and introduces some new XML features. First, it supports
lax validation using XSD schemas. This wasn’t possible prior to this release. Another big change is
related to how SQL Server handles the storage of dateTime values. In SQL Server 2005, when you stored
dateTime values, the database would first normalize everything to UTC time, regardless of whether
or not you wanted to store the information in a specific time zone. In addition, if you excluded the
time in your dateTime declaration, SQL Server 2005 would add it back for you so that there was a full
dateTime stored within the database. SQL Server 2008, conversely, enables you to store the dateTime
value exactly as you declared it. No modifications or alterations are made to your value as it is stored in
the database.

Another new feature of SQL Server 2008 is support of union types that contain list types. This means that
you can now work with elements such as the following:

<Stocks>INTC MSFT CSCO IBM RTRSY</Stocks>

Union types enable you to define multiple items within a single element with a space between the ele-
ments, rather than define each as separate elements, as shown here:

<Stocks>
<Item>INTC</Item>
<Item>MSFT</Item>
<Item>CSCO</Item>
<Item>IBM</Item>
<Item>RTRSY</Item>

</Stocks>

XML in ASP.NET 3.5
Most Microsoft-focused Web developers have usually concentrated on either Microsoft SQL Server or
Microsoft Access for their data storage needs. Today, however, a considerable amount of data is stored
in XML format, so considerable inroads have been made in improving Microsoft’s core Web technology
to work easily with this format.

The XmlDataSource Server Control
ASP.NET 3.5 contains a series of data source controls designed to bridge the gap between your data
stores (such as XML) and the data-bound controls at your disposal. These new data controls not only
enable you to retrieve data from various data stores, they also enable you to easily manipulate the data
(using paging, sorting, editing, and filtering) before the data is bound to an ASP.NET server control.

With XML being as important as it is, a specific data source control is available in ASP.NET just for
retrieving and working with XML data: XmlDataSource. This control enables you to connect to your XML
data and use this data with any of the ASP.NET data-bound controls. Just like the SqlDataSource and the
ObjectDataSource controls (which are two of the other data source controls), the XmlDataSource control
enables you to not only retrieve data, but also insert, delete, and update data items. With increasing
numbers of users turning to XML data formats, such as Web services, RSS feeds, and more, this control
is a valuable resource for your Web applications.

428

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 429

Chapter 10: Using XML in Visual Basic 2008

To show the XmlDataSource control in action, first create a simple XML file and include this file in your
application. The following code reflects a simple XML file of Russian painters:

<?xml version="1.0" encoding="utf-8" ?>
<Artists>

<Painter name="Vasily Kandinsky">
<Painting>

<Title>Composition No. 218</Title>
<Year>1919</Year>

</Painting>
</Painter>
<Painter name="Pavel Filonov">

<Painting>
<Title>Formula of Spring</Title>
<Year>1929</Year>

</Painting>
</Painter>
<Painter name="Pyotr Konchalovsky">

<Painting>
<Title>Sorrento Garden</Title>
<Year>1924</Year>

</Painting>
</Painter>

</Artists>

Now that the Painters.xml file is in place, the next step is to use an ASP.NET DataList control and
connect this DataList control to an <asp:XmlDataSource> control, as shown here:

<%@ Page Language="VB"%>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>XmlDataSource</title>
</head>
<body>

<form id="form1" runat="server">
<asp:DataList ID="DataList1" Runat="server"
DataSourceID="XmlDataSource1">

<ItemTemplate>
<p><%# XPath("@name") %>

<i><%# XPath("Painting/Title") %></i>

<%# XPath("Painting/Year") %></p>

</ItemTemplate>
</asp:DataList>

<asp:XmlDataSource ID="XmlDataSource1" Runat="server"
DataFile="~/Painters.xml" XPath="Artists/Painter">

</asp:XmlDataSource>
</form>

</body>
</html>

This is a simple example, but it shows you the power and ease of using the XmlDataSource control. Pay
attention to two attributes in this example. The first is the DataFile attribute. This attribute points to

429

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 430

Chapter 10: Using XML in Visual Basic 2008

the location of the XML file. Because the file resides in the root directory of the application, it is simply
∼/Painters.xml. The next attribute included in the XmlDataSource control is the XPath attribute. The
XmlDataSource control uses XPath for the filtering of XML data. In this case, the XmlDataSource control
is taking everything within the <Painter> set of elements. The value Artists/Painter means that the
XmlDataSource control navigates to the <Artists> element and then to the <Painter> element within
the specified XML file.

The DataList control next must specify the DataSourceID as the XmlDataSource control. In the
<ItemTemplate> section of the DataList control, you can retrieve specific values from the XML file by
using XPath commands. The XPath commands filter the data from the XML file. The first value retrieved
is an element attribute (name) contained in the <Painter> element. When you retrieve an attribute of
an element, you preface the name of the attribute with an @ symbol. In this case, you simply specify
@name to get the painter’s name. The next two XPath commands go deeper into the XML file, getting the
specific painting and the year of the painting. Remember to separate nodes with a /. When run in
the browser, this code produces the results shown in Figure 10-5.

Figure 10-5

Besides working from static XML files such as the Painters.xml file, the XmlDataSource file can work
from dynamic, URL-accessible XML files. One popular XML format pervasive on the Internet today
is blogs, or weblogs. Blogs, or personal diaries, can be viewed either in the browser, through an RSS-
aggregator, or just as pure XML.

Figure 10-6 shows blog entries directly in the browser (if you are using IE7). Behind this blog is an actual
XML document that can be worked with by your code. You can find a lot of blogs to play with for this
example at weblogs.asp.net. This screen shot uses the blog found at www.geekswithblogs.net/evjen.

Now that you know the location of the XML from the blog, you can use this XML with the XmlDataSource
control and display some of the results in a DataList control. The code for this example is shown here:

<%@ Page Language="VB"%>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

430

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 431

Chapter 10: Using XML in Visual Basic 2008

Figure 10-6

<title>XmlDataSource</title>
</head>
<body>

<form id="form1" runat="server">
<asp:DataList ID="DataList1" Runat="server"
DataSourceID="XmlDataSource1">

<HeaderTemplate>
<table border="1" cellpadding="3">

</HeaderTemplate>
<ItemTemplate>

<tr><td><%# XPath("title") %>

<i><%# XPath("pubDate") %></i>

<%# XPath("description") %></td></tr>

</ItemTemplate>
<AlternatingItemTemplate>

<tr bgcolor="LightGrey"><td><%# XPath("title") %>

<i><%# XPath("pubDate") %></i>

<%# XPath("description") %></td></tr>

</AlternatingItemTemplate>
<FooterTemplate>

</table>
</FooterTemplate>

</asp:DataList>

<asp:XmlDataSource ID="XmlDataSource1" Runat="server"
DataFile="http://geekswithblogs.net/evjen/Rss.aspx"
XPath="rss/channel/item">

</asp:XmlDataSource>
</form>

</body>
</html>

431

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 432

Chapter 10: Using XML in Visual Basic 2008

This example shows that the DataFile points to a URL where the XML is retrieved. The XPath property
filters out all the <item> elements from the RSS feed. The DataList control creates an HTML table and
pulls out specific data elements from the RSS feed, such as the <title>, <pubDate>, and <description>
elements.

Running this page in the browser results in something similar to what is shown in Figure 10-7.

Figure 10-7

This approach also works with XML Web Services, even those for which you can pass in parameters
using HTTP-GET. You just set up the DataFile value in the following manner:

DataFile="http://www.someserver.com/GetWeather.asmx/ZipWeather?zipcode=63301"

The XmlDataSource Control’s Namespace Problem
One big issue with using the XmlDataSource control is that when using the XPath capabilities of the
control, it is unable to understand namespace-qualified XML. The XmlDataSource control chokes on
any XML data that contains namespaces, so it is important to yank out any prefixes and namespaces
contained in the XML.

To make this a bit easier, the XmlDataSource control includes the TransformFile attribute. This attribute
takes your XSLT transform file, which can be applied to the XML pulled from the XmlDataSource control.
That means you can use an XSLT file, which will transform your XML in such a way that the prefixes
and namespaces are completely removed from the overall XML document. An example of this XSLT
document is illustrated here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

432

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 433

Chapter 10: Using XML in Visual Basic 2008

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
<xsl:template match="*">

<!-- Remove any prefixes -->
<xsl:element name="{local-name()}">

<!-- Work through attributes -->
<xsl:for-each select="@*">

<!-- Remove any attribute prefixes -->
<xsl:attribute name="{local-name()}">

<xsl:value-of select="."/>
</xsl:attribute>

</xsl:for-each>
<xsl:apply-templates/>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

Now, with this XSLT document in place within your application, you can use the XmlDataSource control
to pull XML data and strip that data of any prefixes and namespaces:

<asp:XmlDataSource ID="XmlDataSource1" runat="server"
DataFile="NamespaceFilled.xml" TransformFile="~/RemoveNamespace.xsl"
XPath="ItemLookupResponse/Items/Item"></asp:XmlDataSource>

The Xml Server Control
Since the very beginning of ASP.NET, there has always been a server control called the Xml server control.
This control performs the simple operation of XSLT transformation upon an XML document. The
control is easy to use: All you do is point to the XML file you wish to transform using the DocumentSource
attribute, and the XSLT transform file using the TransformSource attribute.

To see this in action, use the Painters.xml file shown earlier. Create your XSLT transform file, as shown
in the following example:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h3>List of Painters & Paintings</h3>
<table border="1">

<tr bgcolor="LightGrey">
<th>Name</th>
<th>Painting</th>
<th>Year</th>

</tr>
<xsl:apply-templates select="//Painter"/>

</table>
</body>

</html>
</xsl:template>

433

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 434

Chapter 10: Using XML in Visual Basic 2008

<xsl:template match="Painter">
<tr>

<td>
<xsl:value-of select="@name"/>

</td>
<td>
<xsl:value-of select="Painting/Title"/>

</td>
<td>
<xsl:value-of select="Painting/Year"/>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

With the XML document and the XSLT document in place, the final step is to combine the two using the
Xml server control provided by ASP.NET:

<%@ Page Language="VB" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">

<title>XmlDataSource</title>
</head>
<body>

<form id="form1" runat="server">
<asp:Xml ID="Xml1" runat="server" DocumentSource="~/Painters.xml"
TransformSource="~/PaintersTransform.xsl"></asp:Xml>

</form>
</body>
</html>

The result is shown in Figure 10-8.

Figure 10-8

434

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 435

Chapter 10: Using XML in Visual Basic 2008

Summary
Ultimately, XML could be the underpinning of electronic commerce, banking transactions, and data
exchange of almost every conceivable kind. The beauty of XML is that it isolates data representation
from data display. Technologies such as HTML contain data that is tightly bound to its display format.
XML does not suffer this limitation, and at the same time it has the readability of HTML. Accordingly,
the XML facilities available to a Visual Basic application are vast, and a large number of XML-related
features, classes, and interfaces are exposed by the .NET Framework.

This chapter showed you how to use System.Xml.Serialization.XmlSerializer to serialize classes.
Source Code Style attributes were introduced in conjunction with serialization. This style of attributes
enables the customization of the XML serialized to be extended to the source code associated with a class.
What is important to remember about the direction of serialization classes is that a required change in the
XML format becomes a change in the underlying source code. Developers should resist the temptation
to rewrite serialized classes in order to conform to some new XML data standard (such as the example
movie order format endorsed by your consortium of movie rental establishments). Technologies such
as XSLT, exposed via the System.Xml.Query namespace, should be examined first as alternatives. This
chapter demonstrated how to use XSLT style sheets to transform XML data using the classes found in the
System.Xml.Query namespace.

The most useful classes and interfaces in the System.Xml namespace were reviewed, including those
that support document-style XML access: XmlDocument, XmlNode, XmlElement, and XmlAttribute. The
System.Xml namespace also contains classes and interfaces that support stream-style XML access:
XmlReader and XmlWriter.

Finally, you looked at Microsoft’s SQL Server 2005, 2008, and XQuery, as well as how to use XML with
ASP.NET 3.5. The next chapter takes a look at LINQ, one of the biggest new features related to how the
.NET Framework 3.5 works with XML. LINQ, which provides a new means of querying your data, is a
lightweight façade over ADO.NET. You will likely find that the new LINQ to XML is a great way to work
with XML.

435

Evjen-91361 c10.tex V2 - 04/01/2008 3:50pm Page 436

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 437

LINQ

Probably the biggest and most exciting addition to the .NET Framework 3.5 is the addition of the
.NET Language Integrated Query Framework (LINQ) into Visual Basic 2008. Basically, what LINQ
provides is a lightweight façade over programmatic data integration. This is a big deal, because
data is king.

Pretty much every application deals with data in some manner, whether that data comes from
memory (in-memory data), databases, XML files, text files, or somewhere else. Many developers
find it very difficult to move from the strongly typed, object-oriented world of Visual Basic to the
data tier, where objects are second-class citizens. The transition from the one world to the next was
a kludge at best and full of error-prone actions.

In VB, programming with objects means a wonderful, strongly typed ability to work with code.
You can navigate very easily through the namespaces, work with a debugger in the Visual Studio
IDE, and more. However, when you have to access data, you will notice that things are dramatically
different.

You end up in a world that is not strongly typed, and debugging is a pain or even nonexistent.
You end up spending most of the time sending strings to the database as commands. As a devel-
oper, you also have to be aware of the underlying data and how it is structured or how all the data
points relate.

Microsoft has provided LINQ as a lightweight façade that provides a strongly typed interface to
the underlying data stores. LINQ provides the means for developers to stay within the coding
environment they’re used to and access the underlying data as objects that work with the IDE,
IntelliSense, and even debugging.

With LINQ, the queries that you create now become first-class citizens within the .NET Framework
alongside everything else you are used to. When you begin to work with queries for the data store

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 438

Chapter 11: LINQ

you’re working with, you will quickly realize that they now work and behave as if they were types in the
system. This means that you can now use any .NET-complaint language and query the underlying data
store as you never have before.

Figure 11-1 shows LINQ’s place in querying data.

LINQ TO
Objects

Objects
Relational

Data Stores

LINQ TO
DataSets

LINQ TO
SQL

LINQ TO
Entities

LINQ TO
XML

.NET Language Integrated Query (LINQ)

C# 2008 Visual Basic 2008 Others

<XML>

XML

Figure 11-1

Looking at the figure, you can see that different types of LINQ capabilities are available depending on
the underlying data you’re going to be working with in your application:

❑ LINQ to Objects

❑ LINQ to DataSets

❑ LINQ to SQL

❑ LINQ to Entities

❑ LINQ to XML

As a developer, you are given class libraries that provide objects that, using LINQ, can be queried like
any other data store. In fact, objects are nothing more than data that is stored in memory. Indeed, your
objects themselves might be querying data. This is where LINQ to Objects comes into play.

LINQ to SQL, LINQ to Entities, and LINQ to DataSets provide the means to query relational data. Using
LINQ, you can query directly against your database and even against the stored procedures that your
database exposes. The last item in the diagram is the capability to query against your XML using LINQ
to XML. What makes LINQ so exciting is that it matters very little what you are querying against, as your
queries will be quite similar.

This chapter takes a close look at LINQ to SQL and LINQ to XML. You will get a taste of how to perform
LINQ to Object queries via this focus as well.

438

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 439

Chapter 11: LINQ

LINQ to SQL and Visual Studio 2008
LINQ to SQL in particular is a means to have a strongly typed interface against a SQL Server database.
You will find that the approach that LINQ to SQL provides is by far the easiest approach there is at
present for querying SQL Server. It’s not simply about querying single tables within the database; for
instance, if you call the Customers table of the Microsoft sample Northwind database and want to pull a
customer’s specific orders from the Orders table in the same database, then LINQ will use the relations
of the tables and make the query on your behalf. LINQ will query the database and load up the data for
you to work with from your code (again, strongly typed).

Keep in mind that LINQ to SQL is not only about querying data; you can also perform the Insert,
Update, and Delete statements that you need to perform.

In addition, you can interact with the entire process and customize the operations performed to add your
own business logic to any of the CRUD operations (Create/Read/Update/Delete).

Visual Studio 2008 is highly integrated with LINQ to SQL in that you will find an extensive user interface
that enables you to design the LINQ to SQL classes you will work with.

The following section demonstrates how to set up a LINQ to SQL instance and pull items from the
Products table of the Northwind database.

Calling the Products Table Using LINQ to SQL: Creating
the Console Application

To illustrate using LINQ to SQL, this example begins by calling a single table from the Northwind
database and using this table to populate some results to the screen.

First, create a console application (using the .NET Framework 3.5) and add the Northwind database file
to this project (Northwind.MDF).

The following example makes use of the Northwind.mdf SQL Server Express Database file. To get this
database, search for ‘‘Northwind and pubs Sample Databases for SQL Server 2000’’ at www.microsoft
.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034
&displaylang=en. Once you’ve installed it, you’ll find the Northwind.mdf file in the C:\SQL Server
2000 Sample Databases directory. To add this database to your application, right-click on the solu-
tion you are working with and select Add Existing Item. From the provided dialog, you’ll then be able
to browse to the location of the Northwind.mdf file that you just installed. If you have trouble get-
ting permissions to work with the database, make a data connection to the file from the Visual Studio
Server Explorer. You will be asked to be made the appropriate user of the database, and VS will make the
appropriate changes on your behalf for this to occur. When added, you will encounter a Data Source Con-
figuration Wizard. For the purposes of this chapter, simply press the Cancel button when you encounter
this dialog.

By default now, when creating many of the application types provided in the .NET Framework 3.5 within
Visual Studio 2008, you will already have the proper references in place to work with LINQ. When
creating a console application, you will get the references shown in Figure 11-2.

439

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 440

Chapter 11: LINQ

Figure 11-2

The next step is to add a LINQ to SQL class.

Adding a LINQ to SQL Class
When working with LINQ to SQL, one of the big advantages is that Visual Studio 2008 does an outstand-
ing job of making it as easy as possible. VS 2008 provides an object-relational mapping designer, called
the Object Relational Designer (O/R Designer), that enables you to visually design the object-to-database
mapping.

To start this task, right-click on your solution and select Add New Item from the provided menu. From
the items in the Add New Item dialog, select the LINQ to SQL Classes option, shown in Figure 11-3.

Figure 11-3

Because this example uses the Northwind database, name the file Northwind.dbml. Click the Add button,
which will create a couple of files for you. The Solution Explorer, after adding the Northwind.dbml file,
is shown in Figure 11-4.

A number of items were added to your project with this action. First, the Northwind.dbml file was added,
which contains two components. Because the LINQ to SQL class that was added works with LINQ, the
System.Data.Linq reference was also added on your behalf.

440

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 441

Chapter 11: LINQ

Figure 11-4

Introducing the O/R Designer
Another big addition to the IDE that appeared when you added the LINQ to SQL class to your project
(the Northwind.dbml file) was a visual representation of the .dbml file. The new O/R Designer appears
as a tab within the document window directly in the IDE. Figure 11-5 shows a view of the O/R Designer
when it is first initiated.

Figure 11-5

441

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 442

Chapter 11: LINQ

The O/R Designer consists of two parts. The first is for data classes, which can be tables, classes, associa-
tions, and inheritances. Dragging such items on this design surface will give you a visual representation
of the object that can be worked with. The second part (on the right) is for methods, which map to the
stored procedures within a database.

When viewing your .dbml file within the O/R Designer, you also have an Object Relational Designer set
of controls in the Visual Studio Toolbox, as shown in Figure 11-6.

Figure 11-6

Creating the Product Object
For this example, you need to work with the Products table from the Northwind database, which means
you need to create a Products table that will use LINQ to SQL to map to this table. Accomplishing this
task is simply a matter of opening a view of the tables contained within the database from the Server
Explorer dialog within Visual Studio and dragging and dropping the Products table onto the design
surface of the O/R Designer. The results of this action are illustrated in Figure 11-7.

Figure 11-7

442

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 443

Chapter 11: LINQ

With this action, a bunch of code is added to the designer files of the .dbml file on your behalf. These
classes give you strongly typed access to the Products table. For a demonstration of this, turn your atten-
tion to the console application’s Module1.vb file. Following is the code required for this example:

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

Dim query = dc.Products

For Each item In query
Console.WriteLine("{0} | {1} | {2}", _

item.ProductID, item.ProductName, item.UnitsInStock)
Next

Console.ReadLine()
End Sub

End Module

This short bit of code is querying the Products table within the Northwind database and pulling out
the data to display. It is important to step through this code starting with the first line in the Main
method:

Dim dc As NorthwindDataContext = New NorthwindDataContext()

The NorthwindDataContext object is an object of type DataContext. Basically, you can view this as
something that maps to a Connection type object. This object works with the connection string and
connects to the database for any required operations.

The next line is quite interesting:

Dim query = dc.Products

Here, you are using an implicitly typed variable. If you are unsure of the output type, you can assign
a type to the query variable and the type will be set into place at compile time. Actually, the code
dc.Products returns a System.Data.Linq.Table(Of ConsoleApplication1.Product) object, and this
is what the query type is set as when the application is compiled. Therefore, this means that you could
have also just as easily written the statement as follows:

Dim query As Table(Of Product) = dc.Products

This approach is actually better because programmers who look at the application’s code later will find it
easier to understand what is happening, as just using Dim query by itself has so much of a hidden aspect
to it. To use Table(Of Product), which is basically a generic list of Product objects, you should make a
reference to the System.Data.Linq namespace (using Imports System.Data.Linq).

443

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 444

Chapter 11: LINQ

The value assigned to the Query object is the value of the Products property, which is of type Table(Of
Product). From there, the next bit of code iterates through the collection of Product objects found in
Table(Of Product):

For Each item In query
Console.WriteLine("{0} | {1} | {2}", _

item.ProductID, item.ProductName, item.UnitsInStock)
Next

The iteration, in this case, pulls out the ProductID, ProductName, and UnitsInStock properties from the
Product object and writes them out to the program. Because you are using only a few of the items from
the table, the O/R Designer enables you to delete the columns that are you not interested in pulling
from the database. The results from the program are presented here:

1 | Chai | 39
2 | Chang | 17
3 | Aniseed Syrup | 13
4 | Chef Anton’s Cajun Seasoning | 53
5 | Chef Anton’s Gumbo Mix | 0

** Results removed for space reasons **

73 | Röd Kaviar | 101
74 | Longlife Tofu | 4
75 | Rhönbräu Klosterbier | 125
76 | Lakkalikööri | 57
77 | Original Frankfurter grüne Soße | 32

From this example, you can see just how easy it really is to query a SQL Server database using LINQ
to SQL.

How Objects Map to LINQ Objects
The great thing about LINQ is that it gives you strongly typed objects to use in your code (with Intel-
liSense), and these objects map to existing database objects. Again, LINQ is nothing more than a thin
façade over these pre-existing database objects. The following table shows the mappings that exist
between the database objects and the LINQ objects:

Database Object LINQ Object

Database DataContext

Table Class and Collection

View Class and Collection

Column Property

Relationship Nested Collection

Stored Procedure Method

444

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 445

Chapter 11: LINQ

On the left side, you are dealing with your database. The database is the entire entity: the tables, views,
triggers, stored procedures — everything that makes up the database. On the right, or LINQ side, you
have an object called the DataContext object. A DataContext object is bound to the database. For the
required interaction with the database, it contains a connection string that handles all of the transactions
that occur, including any logging. It also manages the output of the data. In short, the DataContext object
completely manages the transactions with the database on your behalf.

Tables, as you saw in the example, are converted to classes. This means that if you have a Products
table, you will have a Product class. Note that LINQ is name-friendly in that it changes plural tables to
singular to provide the proper name to the class that you are using in your code. In addition to database
tables being treated as classes, database views are treated the same. Columns, conversely, are treated as
properties. This enables you to manage the attributes (names and type definitions) of the column directly.

Relationships are nested collections that map between these various objects. This gives you the ability to
define relationships that are mapped to multiple items.

It’s also important to understand the mapping of stored procedures. These actually map to methods
within your code off the DataContext instance. The next section takes a closer look at the DataContext
and the table objects within LINQ.

Looking at the architecture of LINQ to SQL, you will notice that there are really three layers: your appli-
cation, the LINQ to SQL layer, and the SQL Server database. As you saw in the previous examples, you
can create a strongly typed query in your application’s code:

dc.Products

This in turn is translated to a SQL query by the LINQ to SQL layer, which is then supplied to the database
on your behalf:

SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID],
[t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice],
[t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel],
[t0].[Discontinued]
FROM [dbo].[Products] AS [t0]

In return, the LINQ to SQL layer takes the rows coming out of the database from this query and turns
them into a collection of strongly typed objects that you can easily work with.

The DataContext Object
In the preceding section, you learned that the DataContext object manages the transactions that occur
with the database you are working with when working with LINQ to SQL. There is actually a lot that
you can do with the DataContext object.

In instantiating one of these objects, note that it takes a few optional parameters:

❑ A string that represents the location of the SQL Server Express database file or the name of the
SQL Server that is used

❑ A connection string

❑ Another DataContext object

445

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 446

Chapter 11: LINQ

The first two string options also provide the option to include your own database mapping file. Once you
have instantiated this object, you are then able to programmatically use it for many types of operations.

Using ExecuteQuery
One of the simpler things you can accomplish with the DataContext object is running quick commands
that you write yourself using the ExecuteQuery method. For instance, if you are going to pull all the
products from the Products table using the ExecuteQuery(Of TResult) method, then your code would
be similar to the following:

Imports System.Data.Linq

Module Module1

Sub Main()
Dim dc As DataContext = New DataContext("Data Source=.\SQLEXPRESS;" & _

"AttachDbFilename=|DataDirectory|\NORTHWND.MDF;" & _
"Integrated Security=True;User Instance=True")"

Dim myProducts As IEnumerable(Of Product) = _
dc.ExecuteQuery(Of Product)("SELECT * FROM PRODUCTS", "")

For Each item In myProducts
Console.WriteLine(item.ProductID & " | " & item.ProductName)

Next

Console.ReadLine()
End Sub

End Module

In this case, the ExecuteQuery(Of TResult)method is called, passing in a query string and returning
a collection of Product objects. The query utilized in the method call is a simple Select statement
that doesn’t require any additional parameters to be passed in. Because no parameters are passed in
with the query, you instead need to use double quotes as the second required parameter to the method
call. If you were going to optionally substitute any values in the query, then you would construct your
ExecuteQuery(Of TResult)call as follows:

Dim myProducts As IEnumerable(Of Product) = _
dc.ExecuteQuery(Of Product) _

("SELECT * FROM PRODUCTS WHERE UnitsInStock > {0}", 50)

In this case, the {0} is a placeholder for the substituted parameter value that you are going to pass in, and
the second parameter of the ExecuteQuery(Of TResult)method is the parameter that will be used in the
substitution.

Using Connection
The Connection property actually returns an instance of the System.Data.SqlClient.SqlConnection
that is used by the DataContext object. This is ideal if you need to share this connection with other
ADO.NET code that you might be using in your application, or if you need to get at any of the
SqlConnection properties or methods that it exposes. For instance, getting at the connection string is
a simple matter:

446

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 447

Chapter 11: LINQ

Dim dc As NorthwindDataContext = New NorthwindDataContext()

Console.WriteLine(dc.Connection.ConnectionString)

Using Transaction
If you have an ADO.NET transaction that you can use, you are able to assign that transaction to the
DataContext object instance using the Transaction property. You can also use Transaction using
the TransactionScope object from the .NET 2.0 Framework. You would need to make a reference to the
System.Transactions namespace in your References folder for this example to work:

Imports System.Transactions

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

Using myScope As TransactionScope = New TransactionScope()
Dim p1 As Product = New Product() _

With {.ProductName = "Bill’s Product"}
dc.Products.InsertOnSubmit(p1)

Dim p2 As Product = New Product() _
With {.ProductName = "Another Product"}

dc.Products.InsertOnSubmit(p2)

Try
dc.SubmitChanges()

Console.WriteLine(p1.ProductID)
Console.WriteLine(p2.ProductID)

Catch ex As Exception
Console.WriteLine(ex.ToString())

End Try

myScope.Complete()
End Using

Console.ReadLine()
End Sub

End Module

In this case, the TransactionScope object is used; and if one of the operations on the database fails, then
everything will be rolled back to the original state.

Other Methods and Properties of the DataContext Object
In addition to the items just described, several other methods and properties are available from
the DataContext object. The following table shows some of the available methods from
DataContext:

447

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 448

Chapter 11: LINQ

Method Description

CreateDatabase Enables you to create a database on the server

DatabaseExists Enables you to determine whether a database exists and can be opened

DeleteDatabase Deletes the associated database

ExecuteCommand Enables you to pass in a command to the database to be executed

ExecuteQuery Enables you to pass queries directly to the database

GetChangeSet The DataContext object keeps track of changes occurring in the database on
your behalf. This method enables you to access these changes.

GetCommand Provides access to the commands that are performed

GetTable Provides access to a collection of tables from the database

Refresh Enables you to refresh your objects from the data stored within the database

SubmitChanges Executes the insert, update, and delete commands that have been
established in your code

Translate Converts an IDataReader to objects

In addition to these methods, the DataContext object exposes some of the properties shown in the
following table:

Property Description

ChangeConflicts Provides a collection of objects that caused concurrency conflicts when
the SubmitChanges method was called

CommandTimeout Enables you to set the timeout period for commands against the
database. You should set this to a higher value if your query needs
more time to execute.

Connection Enables you to work with the System.Data.SqlClient.SqlConnection
object used by the client

DeferredLoadingEnabled Enables you to specify whether or not to delay the loading of
one-to-many or one-to-one relationships

LoadOptions Enables you to specify or retrieve the value of the DataLoadOptions
object

Log Enables you to specify the location of the output of the command that
was used in the query

Mapping Provides the MetaModel on which the mapping is based

ObjectTrackingEnabled Specifies whether or not to track changes to the objects within the
database for transactional purposes. If you are dealing with a read-only
database, then you should set this property to false.

Transaction Enables you to specify the local transaction used with the database

448

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 449

Chapter 11: LINQ

The Table(TEntity) object
The Table(TEntity)object is a representation of the tables that you are working with from the database.
For instance, you saw the use of the Product class, which is a Table(Of Product)instance. As you will
see throughout this chapter, several methods are available from the Table(TEntity)object. Some of these
methods are defined in the following table:

Method Description

Attach Enables you to attach an entity to the DataContext instance

AttachAll Enables you to attach a collection of entities to the
DataContext instance

DeleteAllOnSubmit(TSubEntity) Enables you to put all the pending actions into a state of
readiness for deletion. Everything here is enacted when the
SubmitChanges method is called off of the DataContext object.

DeleteOnSubmit Enables you to put a pending action into a state of readiness
for deletion. Everything here is enacted when the
SubmitChanges method is called off of the DataContext object.

GetModifiedMembers Provides an array of modified objects. You will be able to
access their current and changed values.

GetNewBindingList Provides a new list for binding to the data store

GetOriginalEntityState Provides an instance of the object as it appeared in its original
state

InsertAllOnSubmit(TSubEntity) Enables you to put all the pending actions into a state of
readiness for insertion. Everything here is enacted when the
SubmitChanges method is called off of the DataContext object.

InsertOnSubmit Enables you to put a pending action into a state of readiness
for insertion. Everything here is enacted when the
SubmitChanges method is called off of the DataContext object.

Working Without the O/R Designer
While the new O/R Designer in Visual Studio 2008 makes the creation of everything you need for LINQ
to SQL quite easy, the underlying framework upon which this all rests also enables you to do everything
from the ground up yourself. This provides you with the most control over what happens.

Creating Your Own Custom Object
To accomplish the same task, you need to expose your Customers table yourself. The first step is to create
a new class in your project called Customer.vb. The code for this class is presented here:

Imports System.Data.Linq.Mapping

<Table(Name:="Customers")> _

449

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 450

Chapter 11: LINQ

Public Class Customer
<Column(IsPrimaryKey:=True)> _
Public CustomerID As String
<Column()> _
Public CompanyName As String
<Column()> _
Public ContactName As String
<Column()> _
Public ContactTitle As String
<Column()> _
Public Address As String
<Column()> _
Public City As String
<Column()> _
Public Region As String
<Column()> _
Public PostalCode As String
<Column()> _
Public Country As String
<Column()> _
Public Phone As String
<Column()> _
Public Fax As String

End Class

Here, the Customer.vb file defines the Customer object that you want to use with LINQ to SQL. The class
has the Table attribute assigned to it in order to signify the Table class. The Table class attribute includes
a property called Name, which defines the name of the table to use within the database that is referenced
with the connection string. Using the Table attribute also means that you need to make a reference to the
System.Data.Linq.Mapping namespace in your code.

In addition to the Table attribute, each of the defined properties in the class makes use of the Column
attribute. As stated earlier, columns from the SQL Server database will map to properties in your code.

Querying with Your Custom Object and LINQ
With only this class in place, you are able to query the Northwind database for the Customers table. The
code to accomplish this task is as follows:

Imports System.Data.Linq

Module Module1

Sub Main()
Dim dc As DataContext = New DataContext("Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
Integrated Security=True;User Instance=True") ’ Put on one line

dc.Log = Console.Out ’ Used for outputting the SQL used

450

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 451

Chapter 11: LINQ

Dim myCustomers As Table(Of Customer) = dc.GetTable(Of Customer)()

For Each item As Customer In myCustomers
Console.WriteLine("{0} | {1}", item.CompanyName, item.Country)

Next

Console.ReadLine()
End Sub

End Module

In this case, the default DataContext object is used, and the connection string to the Northwind SQL
Server Express database is passed in as a parameter. A Table class of type Customer is then populated
using the GetTable(TEntity)method. For this example, the GetTable(TEntity)operation uses your
custom-defined Customer class:

dc.GetTable(Of Customer)()

In this example, LINQ to SQL will use the DataContext object to make the query to the SQL Server
database on your behalf, and will get the returned rows as strongly typed Customer objects. This enables
you to then iterate through each of the Customer objects in the Table object’s collection and get the
information that you need, as is done with the Console.WriteLine statements:

For Each item As Customer In myCustomers
Console.WriteLine("{0} | {1}", item.CompanyName, item.Country)

Next

Running this code will produce the following results in your console application:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region],
[t0].[PostalCode], [t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [Customers] AS [t0]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.21022.8

Alfreds Futterkiste | Germany
Ana Trujillo Emparedados y helados | Mexico
Antonio Moreno Taquerı́a | Mexico
Around the Horn | UK
Berglunds snabbköp | Sweden

// Output removed for clarity

Wartian Herkku | Finland
Wellington Importadora | Brazil
White Clover Markets | USA
Wilman Kala | Finland
Wolski Zajazd | Poland

451

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 452

Chapter 11: LINQ

Limiting the Columns Called with the Query
Note that the query grabbed every column specified in your Customer class file. If you remove the
columns that you are not going to need, you then have a new Customer class file:

Imports System.Data.Linq.Mapping

<Table(Name:="Customers")> _
Public Class Customer

<Column(IsPrimaryKey:=True)> _
Public CustomerID As String
<Column()> _
Public CompanyName As String
<Column()> _
Public Country As String

End Class

In this case, I removed all the columns that are not utilized by the application. Now if you run the console
application and look at the SQL query that is produced, you will see the following results:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[Country]
FROM [Customers] AS [t0]

Now, only the three columns that are defined within the Customer class are utilized in the query to the
Customers table.

The property CustomerID is interesting in that you are able to signify that this column is a primary key
for the table through the use of the IsPrimaryKey setting in the Column attribute. This setting takes a
Boolean value, which in this case is set to True.

Working with Column Names
The other important aspect of the columns is that the name of the property that you define in the
Customer class needs to be the same name as that used in the database. For instance, if you change the
name of the CustomerID property to MyCustomerID, you will get the following exception when you run
your console application:

System.Data.SqlClient.SqlException was unhandled
Message="Invalid column name ’MyCustomerID’."
Source=".Net SqlClient Data Provider"
ErrorCode=-2146232060
Class=16
LineNumber=1
Number=207
Procedure=""
Server="\\\\.\\pipe\\F5E22E37-1AF9-44\\tsql\\query"

To get around this, you have to define the name of the column in the custom Customer class that you
have created. You can do this by using the Column attribute, as illustrated here:

<Column(IsPrimaryKey:=True, Name:="CustomerID")> _
Public MyCustomerID As String

452

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 453

Chapter 11: LINQ

Like the Table attribute, the Column attribute includes a Name property that enables you to specify the
name of the column as it appears in the Customers table. Doing this will generate a query:

SELECT [t0].[CustomerID] AS [MyCustomerID], [t0].[CompanyName], [t0].[Country]
FROM [Customers] AS [t0]

This also means that you now need to reference the column using the new name of MyCustomerID (e.g.,
item.MyCustomerID).

Creating Your Own DataContext Object
Using the plain-vanilla DataContext object probably isn’t the best approach; instead, you’ll find that
you have more control by creating your own DataContext class. To accomplish this task, create a new
class called MyNorthwindDataContext.vb and have the class inherit from DataContext. Your class in its
simplest form is illustrated here:

Imports System.Data.Linq

Public Class MyNorthwindDataContext
Inherits DataContext

Public Customers As Table(Of Customer)

Public Sub New()
MyBase.New("Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
Integrated Security=True;User Instance=True") ’ Put on one line

End Sub
End Class

Here, the class MyNorthwindDataContext inherits from DataContext and provides an instance of the
Table(Of Customer)object from your Customer class that you created earlier. The constructor is the other
requirement of this class. This constructor uses a base to initialize a new instance of the object referencing
a file (in this case a connection to a SQL database file).

Using your own DataContext object enables you to change the code in your application as follows:

Imports System.Data.Linq

Module Module1

Sub Main()
Dim dc As MyNorthwindDataContext = New MyNorthwindDataContext()

Dim myCustomers As Table(Of Customer) = dc.Customers

For Each item As Customer In myCustomers
Console.WriteLine("{0} | {1}", item.CompanyName, item.Country)

Next

Console.ReadLine()
End Sub

End Module

453

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 454

Chapter 11: LINQ

By creating an instance of the MyNorthwindDataContext object, you are enabling the class to manage
the connection to the database. Note that now you have direct access to the Customer class through the
dc.Customers statement.

The examples provided in this chapter are bare-bones examples, as they don’t include all the error
handling and logging that would generally be part of building your applications. This abbreviated style
enables the examples to highlight the main points being discussed, and nothing more.

Custom Objects and the O/R Designer
In addition to building your custom object in your own .vb file and then tying that class to the
DataContext that you have built, you can also use the O/R Designer in Visual Studio 2008 to build your
class files. When completed, Visual Studio will create the appropriate .vb file on your behalf, and by using
the O/R Designer, you also have a visual representation of the class file and any possible relationships
you have established.

For example, when viewing the Designer view of your .dbml file, note the three items in the Toolbox:
Class, Association, and Inheritance. Take the Class object from the Toolbox and drop it onto the design
surface. You will be presented with an image of the generic class, as shown in Figure 11-8.

Figure 11-8

From here, click on the Class1 name and rename this class to Customer. Then, by right-clicking next to the
name, you can add properties to the class file by selecting Add ➪ Property from the provided menu. For
this example, give the Customer class three properties: CustomerID, CompanyName, and Country. Highlight
the CustomerID property in order to configure the property from the Properties dialog in Visual Studio,
changing the Primary Key setting from False to True. Next, highlight the entire class, go to the Properties
dialog, and change the Source property to Customers, as this is the name of the table from which this
Customer object needs to work. After this is all done, you will have a visual representation of the class,
as shown in Figure 11-9.

Figure 11-9

454

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 455

Chapter 11: LINQ

As shown in the figure, the CustomerID property is properly represented with a primary key icon next
to the name. With this in place, expand the plus sign next to the Northwind.dbml file. You will find two
files here: Northwind.dbml.layout and Northwind.designer.vb. The Northwind.dbml.layout file is an
XML file that helps Visual Studio with the visual representation shown in the O/R Designer. The most
important file is Northwind.designer.vb. This is the Customer class file that was created on your behalf.
If you open this file, you can see what Visual Studio created for you.

First, you will find the Customer class file within the code:

<Table(Name:="Customers")> _
Partial Public Class Customer
Implements System.ComponentModel.INotifyPropertyChanging, _

System.ComponentModel.INotifyPropertyChanged

’ Code removed for clarity

End Class

The Customer class is the name of the class according to what you provided in the designer. The class
comes with the Table attribute and provides a Name value of Customers, as this is the name of the
database that this object needs to work with when connecting to the Northwind database.

Within the Customer class are the three properties you defined. Presented here is just one of the proper-
ties, CustomerID:

<Column(Storage:="_CustomerID", CanBeNull:=false, IsPrimaryKey:=true)> _
Public Property CustomerID() As String

Get
Return Me._CustomerID

End Get
Set

If (String.Equals(Me._CustomerID, value) = false) Then
Me.OnCustomerIDChanging(value)
Me.SendPropertyChanging
Me._CustomerID = value
Me.SendPropertyChanged("CustomerID")
Me.OnCustomerIDChanged

End If
End Set

End Property

Like before, when you built a class for yourself, the properties defined here use the Column attribute and
some of the properties available to this attribute. You can see that the primary key setting is specified
using the IsPrimaryKey item.

In addition to the Customer class is a class that inherits from the DataContext object:

<System.Data.Linq.Mapping.DatabaseAttribute(Name:="NORTHWND")> _
Partial Public Class NorthwindDataContext
Inherits System.Data.Linq.DataContext

’ Code removed for clarity

End Class

455

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 456

Chapter 11: LINQ

This DataContext object, NorthwindDataContext, enables you to connect to the Northwind database and
make use of the Customers table, as accomplished in the previous examples.

Using the O/R Designer is a process that can make the creation of your database object class files simple
and straightforward. However, you have also seen that if you want complete control, you can code
everything yourself to get the results you want.

Querying the Database
As you have seen so far in this chapter, there are a number of ways in which you can query the
database from the code of your application. In some of the simplest forms, your queries looked like
the following:

Dim query As Table(Of Product) = dc.Products

This command pulled down the entire Products table to your Query object instance.

Using Query Expressions
In addition to pulling down a straight table using dc.Products, you are about to use a strongly typed
query expression directly in your code:

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

Dim query = From p In dc.Products Select p

For Each item In query
Console.WriteLine(item.ProductID & " | " & item.ProductName)

Next

Console.ReadLine()
End Sub

End Module

In this case, a query object (again, a Table(Of Product) object) is populated with the query value of From
p in dc.Products Select p.

Query Expressions in Detail
You can use several query expressions from your code. The preceding example is a simple select state-
ment that returns the entire table. The following list of items includes some of the other query expressions
that you have at your disposal:

456

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 457

Chapter 11: LINQ

Segmentation Description

Project Select <expression>

Filter Where <expression>, Distinct

Test Any(<expression>), All(<expression>)

Join <expression> Join <expression> On <expression> Equals <expression>

Group Group By <expression>, Into <expression>, <expression> Group Join
<decision> On <expression> Equals <expression> Into <expression>

Aggregate Count([<expression>]), Sum(<expression>), Min(<expression>),
Max(<expression>), Avg(<expression>)

Partition Skip [While] <expression>, Take [While] <expression>

Set Union, Intersect, Except

Order Order By <expression>, <expression>[Ascending | Descending]

Filtering Using Expressions
In addition to straight queries for the entire table, you can filter items using the Where and Distinct
options. The following example queries the Products table for a specific type of record:

Dim query = From p In dc.Products _
Where p.ProductName.StartsWith("L") _
Select p

Here, this query is selecting all the records from the Products table that start with the letter ‘‘L.’’ This
is done via the Where p.ProductName.StartsWith("L") expression. You will find a large selection of
methods available off the ProductName property that enable you to fine-tune the filtering you need. This
operation produces the following results:

65 | Louisiana Fiery Hot Pepper Sauce
66 | Louisiana Hot Spiced Okra
67 | Laughing Lumberjack Lager
74 | Longlife Tofu
76 | Lakkalikööri

You can add as many of these expressions to the list as you need. For instance, the next example adds
two Where statements to your query:

Dim query = From p In dc.Products _
Where p.ProductName.StartsWith("L") _

Where p.ProductName.EndsWith("i") _

Select p

457

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 458

Chapter 11: LINQ

In this case, a filter expression looks for items with a product name starting with the letter ‘‘L,’’ and then
a second expression is included to ensure that a second criterion is also applied, which states that the
items must also end with the letter i. This would give you the following results:

76 | Lakkalikööri

Performing Joins
In addition to working with one table, you can work with multiple tables and perform joins with your
queries. If you drag and drop both the Customers table and the Orders table onto the Northwind.dbml
design surface, you will get the result shown in Figure 11-10.

Figure 11-10

After you drag and drop both of these elements onto the design surface, Visual Studio knows that there
is a relationship between them and creates this relationship for you in the code and represents it with
the black arrow.

From here, you can use a Join statement in your query to work with both of the tables, as shown in the
following example:

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

dc.Log = Console.Out

Dim query = From c In dc.Customers _
Join o In dc.Orders On c.CustomerID Equals o.CustomerID _
Order By c.CustomerID _
Select c.CustomerID, c.CompanyName, _

c.Country, o.OrderID, o.OrderDate

458

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 459

Chapter 11: LINQ

For Each item In query
Console.WriteLine(item.CustomerID & " | " & item.CompanyName _

& " | " & item.Country & " | " & item.OrderID _
& " | " & item.OrderDate)

Next

Console.ReadLine()
End Sub

End Module

This example is pulling from the Customers table and joining on the Orders table where the CustomerID
columns match. This is done through the Join statement:

Join o In dc.Orders On c.CustomerID Equals o.CustomerID

From here, a new object is created with the Select statement; and this new object is comprised of the
CustomerID, CompanyName, and Country columns from the Customers table as well as the OrderID and
OrderDate columns from the Orders table.

When it comes to iterating through the collection of this new object, note that the For Each statement
does not define the variable item with a specific type, as the type is not known yet:

For Each item In query
Console.WriteLine(item.CustomerID & " | " & item.CompanyName _

& " | " & item.Country & " | " & item.OrderID _
& " | " & item.OrderDate)

Next

The item object here has access to all the properties specified in the class declaration. Running this
example, you will get results similar to what is presented here in this partial result:

WILMK | Wilman Kala | Finland | 10695 | 10/7/1997 12:00:00 AM
WILMK | Wilman Kala | Finland | 10615 | 7/30/1997 12:00:00 AM
WILMK | Wilman Kala | Finland | 10673 | 9/18/1997 12:00:00 AM
WILMK | Wilman Kala | Finland | 11005 | 4/7/1998 12:00:00 AM
WILMK | Wilman Kala | Finland | 10879 | 2/10/1998 12:00:00 AM
WILMK | Wilman Kala | Finland | 10873 | 2/6/1998 12:00:00 AM
WILMK | Wilman Kala | Finland | 10910 | 2/26/1998 12:00:00 AM

Grouping Items
You can easily group items with your queries. In the Northwind.dbml example that you have been work-
ing with so far, drag and drop the Categories table onto the design surface. You will then see that there
is a relationship between this table and the Products table. The following example demonstrates how to
group products by category:

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

459

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 460

Chapter 11: LINQ

Dim query = From p In dc.Products _
Order By p.Category.CategoryName Ascending _
Group p By p.Category.CategoryName Into Group _
Select Category = CategoryName, Products = Group

For Each item In query
Console.WriteLine(item.Category)

For Each innerItem In item.Products
Console.WriteLine(" " & innerItem.ProductName)

Next

Console.WriteLine()
Next

Console.ReadLine()
End Sub

End Module

This example creates a new object, which is a group of categories, and packages the entire Product table
into this new table, called Group. Before that, the categories are ordered by name using the Order By
statement, and the order provided is Ascending (the other option being Descending). The output is the
Category (passed in through the CategoryName property) and the Product instance. The iteration with
the For Each statements is done once for the categories and again for each of the products that are found
in the category.

A partial output of this program is presented here:

Beverages
Chai
Chang
Guaraná Fantástica
Sasquatch Ale
Steeleye Stout
Côte de Blaye
Chartreuse verte
Ipoh Coffee
Laughing Lumberjack Lager
Outback Lager
Rhönbräu Klosterbier
Lakkalikööri

Condiments
Aniseed Syrup
Chef Anton’s Cajun Seasoning
Chef Anton’s Gumbo Mix
Grandma’s Boysenberry Spread
Northwoods Cranberry Sauce
Genen Shouyu
Gula Malacca

460

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 461

Chapter 11: LINQ

Sirop d’érable
Vegie-spread
Louisiana Fiery Hot Pepper Sauce
Louisiana Hot Spiced Okra
Original Frankfurter grüne Soße

Many more commands and expressions are available to you beyond what has been presented in
this chapter.

Stored Procedures
So far, you have been querying the tables directly and leaving it up to LINQ to create the appropriate
SQL statement for the operation. When working with pre-existing databases that make heavy use of
stored procedures (and for those who want to follow the best practice of using stored procedures within
a database), LINQ is still a viable option.

LINQ to SQL treats working with stored procedures as a method call. As you saw in Figure 11-5, the
design surface called the O/R Designer enables you to drag and drop tables onto it so that you can then
programmatically work with the table. On the right side of the O/R Designer is a pane in which you can
drag and drop stored procedures.

Any stored procedures that you drag and drop onto this part of the O/R Designer become
available methods to you off the DataContext object. For this example, drag and drop the
TenMostExpensiveProducts stored procedure onto this part of the O/R Designer. The following code
shows how you would call this stored procedure within the Northwind database:

Imports System.Data.Linq

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

Dim result As ISingleResult(Of Ten_Most_Expensive_ProductsResult) = _
dc.Ten_Most_Expensive_Products()

For Each item As Ten_Most_Expensive_ProductsResult In result
Console.WriteLine(item.TenMostExpensiveProducts & " | " & _

item.UnitPrice)
Next

Console.ReadLine()
End Sub

End Module

The rows coming out of the stored procedure are collected into an ISingleResult(Of Ten_Most
_Expensive_ProductsResult)object. From here, iteration through this object is simple. As you can see
from this example, calling your stored procedures is a straightforward process.

461

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 462

Chapter 11: LINQ

LINQ to XML
As stated earlier, probably the biggest and most exciting addition to the .NET Framework 3.5 is the
addition of the .NET Language Integrated Query framework (LINQ) into VB 2008. LINQ comes in many
flavors depending on the final data store you are working with in querying your data. The preceding
section took a look at using LINQ to SQL to query SQL Server databases. This section takes a quick look
at using LINQ to query your XML data sources instead.

Extensible Markup Language (XML) is now in widespread use. Many applications on the Internet or
residing on individual computers use some form of XML to run or manage the processes of an applica-
tion. Earlier books about XML commented that XML was going to be the ‘‘next big thing.’’ Now, it is the
big thing. In fact, there really isn’t anything bigger.

Microsoft has been working for years to make using XML in the .NET world as easy as possible. You can-
not help but notice the additional capabilities and enhancements to XML usage introduced in each new
version of the .NET Framework. In fact, Bill Gates highlighted Microsoft’s faith in XML in his keynote
address at the Microsoft Professional Developers Conference in 2005 when he stated that XML is being
pushed deeper and deeper into the Windows core each year. If you look around the .NET Framework,
you will probably agree.

LINQ to XML and .NET 3.5
With the introduction of LINQ to the .NET Framework 3.5, the focus was on easy access to the data that
you want to work with in your applications. One of the main data stores in the application space is XML,
so it was really a no-brainer to create the LINQ to XML implementation.

Before the LINQ to XML release, working with XML using System.Xml was not the easiest thing in the
world to achieve. With the inclusion of System.Xml.Linq, you now have a series of capabilities that make
the process of working with XML in your code much easier to achieve.

New Objects for Creating XML Documents
In creating XML within the application code, many developers turned to the XmlDocument object to do
this job. This object enables you to create XML documents that in turn enable you to append elements,
attributes, and other items in a hierarchical fashion. With LINQ to XML and the inclusion of the new
System.Xml.Linq namespace, you now have some new objects available that make the creation of XML
documents a much simpler process.

Visual Basic 2008 Ventures Down Another Path
An interesting side note to the LINQ to XML feature set is that the Visual Basic 2008 team at Microsoft
actually took the LINQ to XML capabilities a little further in some areas. For instance, something you
can’t accomplish in C# 2008 that you can do in Visual Basic 2008 is include XML as a core part of the lan-
guage. XML literals are now a true part of the Visual Basic language, and you can paste XML fragments
directly in your code for inclusion — the XML is not treated as a string.

462

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 463

Chapter 11: LINQ

Namespaces and Prefixes
One issue that was somewhat ignored in parts of the .NET Framework 2.0 was how the items in the
framework dealt with the inclusion of XML namespaces and prefixes in documents. LINQ to XML makes
this an important part of the XML story, and you will find the capabilities for working with these types
of objects to be quite simple.

New XML Objects from the .NET
Framework 3.5

Even if the LINQ querying capability were not around, the new objects available to work with the XML
(available in place of working directly with the DOM in this release of the framework) are so good that
they can even stand on their own outside LINQ. Within the new System.Xml.Linq namespace, you will
find a series of new LINQ to XML helper objects that make working with an XML document in memory
that much easier. The following sections describe the new objects that are available to you within this
new namespace.

Many of the examples in this chapter use a file called Hamlet.xml, which you can find at
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip. It includes all of Shakespeare’s plays
as XML files.

XDocument
The XDocument is a replacement of the XmlDocument object from the pre-.NET 3.5 world. The XDocument
object is easier to work with when dealing with XML documents. It works with the other new objects in
this space, such as the XNamespace, XComment, XElement, and XAttribute objects.

One of the more important members of the XDocument object is the Load method:

Dim xdoc As XDocument = XDocument.Load("C:\Hamlet.xml")

The preceding example loads the Hamlet.xml contents as an in-memory XDocument object. You can also
pass a TextReader or XmlReader object into the Load method. From here, you are able to programmati-
cally work with the XML:

Dim xdoc As XDocument = XDocument.Load("C:\Hamlet.xml")

Console.WriteLine(xdoc.Root.Name.ToString())
Console.WriteLine(xdoc.Root.HasAttributes.ToString())

This produces the following results:

PLAY
False

463

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 464

Chapter 11: LINQ

Another important member to be aware of is the Save method, which, like the Load method, enables
you to save to a physical disk location or to a TextWriter or XmlWriter object. Note that you need to be
running Visual Studio as an administrator for this to work:

Dim xdoc As XDocument = XDocument.Load("C:\Hamlet.xml")

xdoc.Save("C:\CopyOfHamlet.xml")

XElement
One of the more common objects that you will work with is the XElement object. With this object,
you can easily create even single-element objects that are XML documents themselves, and even
fragments of XML. For instance, here is an example of writing an XML element with a corresponding
value:

Dim xe As XElement = New XElement("Company", "Lipper")
Console.WriteLine(xe.ToString())

When creating a new XElement object, you can define the name of the element as well as the value
used in the element. In this case, the name of the element will be <Company>, while the value of the
<Company> element will be Lipper. Running this in a console application, you will get the following
result:

<Company>Lipper</Company>

You can also create a more complete XML document using multiple XElement objects, as shown in the
following example:

Module Module1

Sub Main()
Dim xe As XElement = New XElement("Company", _

New XElement("CompanyName", "Lipper"), _
New XElement("CompanyAddress", _

New XElement("Address", "123 Main Street"), _
New XElement("City", "St. Louis"), _
New XElement("State", "MO"), _
New XElement("Country", "USA")))

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

Running this application yields the results shown in Figure 11-11.

464

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 465

Chapter 11: LINQ

Figure 11-11

XNamespace
The XNamespace is an object that represents an XML namespace; and it is easily applied to elements
within your document. For example, you can take the previous example and easily apply a namespace to
the root element:

Module Module1

Sub Main()
Dim ns As XNamespace = "http://www.lipperweb.com/ns/1"

Dim xe As XElement = New XElement(ns + "Company", _
New XElement("CompanyName", "Lipper"), _
New XElement("CompanyAddress", _

New XElement("Address", "123 Main Street"), _
New XElement("City", "St. Louis"), _
New XElement("State", "MO"), _
New XElement("Country", "USA")))

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

In this case, an XNamespace object is created by assigning it a value of http://www.lipperweb.com/ns/1.
From there, it is actually used in the root element <Company> with the instantiation of the XElement
object:

Dim xe As XElement = New XElement(ns + "Company", _

This will produce the results illustrated in Figure 11-12.

465

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 466

Chapter 11: LINQ

Figure 11-12

Besides dealing with the root element, you can also apply namespaces to all your elements, as shown in
the following example:

Module Module1

Sub Main()
Dim ns1 As XNamespace = "http://www.lipperweb.com/ns/root"
Dim ns2 As XNamespace = "http://www.lipperweb.com/ns/sub"

Dim xe As XElement = New XElement(ns1 + "Company", _
New XElement(ns2 + "CompanyName", "Lipper"), _
New XElement(ns2 + "CompanyAddress", _

New XElement(ns2 + "Address", "123 Main Street"), _
New XElement(ns2 + "City", "St. Louis"), _
New XElement(ns2 + "State", "MO"), _
New XElement(ns2 + "Country", "USA")))

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

This produces the results shown in Figure 11-13.

Figure 11-13

466

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 467

Chapter 11: LINQ

In this case, the sub-namespace was applied to everything specified except for the <Address>, <City>,
<State>, and <Country> elements, because they inherit from their parent, <CompanyAddress>, which has
the namespace declaration.

XComment
The XComment object enables you to easily add XML comments to your XML documents. Adding a
comment to the top of the document is shown in the following example:

Module Module1

Sub Main()
Dim xdoc As XDocument = New XDocument()

Dim xc As XComment = New XComment("Here is a comment.")
xdoc.Add(xc)

Dim xe As XElement = New XElement("Company", _
New XElement("CompanyName", "Lipper"), _
New XElement("CompanyAddress", _

New XComment("Here is another comment."), _
New XElement("Address", "123 Main Street"), _
New XElement("City", "St. Louis"), _
New XElement("State", "MO"), _
New XElement("Country", "USA")))

xdoc.Add(xe)

Console.WriteLine(xdoc.ToString())

Console.ReadLine()
End Sub

End Module

Here, an XDocument object containing two XML comments is written to the console, one at the top of the
document and another within the <CompanyAddress> element. The output is shown in Figure 11-14.

Figure 11-14

467

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 468

Chapter 11: LINQ

XAttribute
In addition to elements, another important aspect of XML is attributes. Adding and working with
attributes is done through the use of the XAttribute object. The following example adds an attribute
to the root <Customers> node:

Module Module1

Sub Main()
Dim xe As XElement = New XElement("Company", _

New XAttribute("MyAttribute", "MyAttributeValue"), _
New XElement("CompanyName", "Lipper"), _
New XElement("CompanyAddress", _

New XElement("Address", "123 Main Street"), _
New XElement("City", "St. Louis"), _
New XElement("State", "MO"), _
New XElement("Country", "USA")))

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

Here, the attribute MyAttribute with a value of MyAttributeValue is added to the root element of the
XML document, producing the results shown in Figure 11-15.

Figure 11-15

Visual Basic 2008 and XML Literals
Visual Basic takes LINQ to XML one step further, enabling you to place XML directly in your code.
Using XML literals (something not available in C# 2008), you can place XML directly in your code for
working with the XDocument and XElement objects. Earlier, the use of the XElement object was presented
as follows:

Module Module1

Sub Main()
Dim xe As XElement = New XElement("Company", _

468

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 469

Chapter 11: LINQ

New XElement("CompanyName", "Lipper"), _
New XElement("CompanyAddress", _

New XElement("Address", "123 Main Street"), _
New XElement("City", "St. Louis"), _
New XElement("State", "MO"), _
New XElement("Country", "USA")))

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

Using XML literals, you can use the following syntax:

Module Module1

Sub Main()
Dim xe As XElement = _

<Company>
<CompanyName>Lipper</CompanyName>
<CompanyAddress>

<Address>123 Main Street</Address>
<City>St. Louis</City>
<State>MO</State>
<Country>USA</Country>

</CompanyAddress>
</Company>

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

This enables you to place the XML directly in the code (see Figure 11-16). The best part about this is the
IDE support for XML literals. Visual Studio 2008 has IntelliSense and excellent color-coding for the XML
that you place in your code file.

You can also use inline variables in the XML document. For instance, if you wanted to declare the value
of the <CompanyName> element outside the XML literal, then you could use a construct similar to the
following:

Module Module1

Sub Main()

Dim companyName As String = "Lipper"

Dim xe As XElement = _
<Company>

<CompanyName><%= companyName %></CompanyName>

469

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 470

Chapter 11: LINQ

<CompanyAddress>
<Address>123 Main Street</Address>
<City>St. Louis</City>
<State>MO</State>
<Country>USA</Country>

</CompanyAddress>
</Company>

Console.WriteLine(xe.ToString())

Console.ReadLine()
End Sub

End Module

In this case, the <CompanyName> element is assigned a value of Lipper from the companyName variable,
using the syntax <%=companyName %>.

Figure 11-16

Using LINQ to Query XML Documents
Now that you can get your XML documents into an XDocument object and work with the various parts of
this document, you can also use LINQ to XML to query your XML documents and work with the results.

Querying Static XML Documents
Notice that querying a static XML document using LINQ to XML takes almost no work at all. The fol-
lowing example makes use of the hamlet.xml file and queries to get all the players (actors) who appear
in a play. Each of these players is defined in the XML document with the <PERSONA> element:

470

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 471

Chapter 11: LINQ

Module Module1

Sub Main()
Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")

Dim query = From people In xdoc.Descendants("PERSONA") _
Select people.Value

Console.WriteLine("{0} Players Found", query.Count())
Console.WriteLine()

For Each item In query
Console.WriteLine(item)

Next

Console.ReadLine()
End Sub

End Module

In this case, an XDocument object loads a physical XML file (hamlet.xml) and then performs a LINQ query
over the contents of the document:

Dim query = From people In xdoc.Descendants("PERSONA") _
Select people.Value

The people object is a representation of all the <PERSONA> elements found in the document. Then the
Select statement gets at the values of these elements. From there, a Console.WriteLine method is used
to write out a count of all the players found, using query.Count. Next, each of the items is written to the
screen in a For Each loop. The results you should see are presented here:

26 Players Found

CLAUDIUS, king of Denmark.
HAMLET, son to the late, and nephew to the present king.
POLONIUS, lord chamberlain.
HORATIO, friend to Hamlet.
LAERTES, son to Polonius.
LUCIANUS, nephew to the king.
VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC
A Gentleman
A Priest.
MARCELLUS
BERNARDO
FRANCISCO, a soldier.
REYNALDO, servant to Polonius.
Players.
Two Clowns, grave-diggers.
FORTINBRAS, prince of Norway.

471

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 472

Chapter 11: LINQ

A Captain.
English Ambassadors.
GERTRUDE, queen of Denmark, and mother to Hamlet.
OPHELIA, daughter to Polonius.
Lords, Ladies, Officers, Soldiers, Sailors, Messengers, and other Attendants.
Ghost of Hamlet’s Father.

Querying Dynamic XML Documents
Numerous dynamic XML documents can be found on the Internet these days. Blog feeds, podcast feeds,
and more provide XML documents by sending a request to a specific URL endpoint. These feeds can be
viewed either in the browser, through an RSS-aggregator, or as pure XML:

Module Module1

Sub Main()
Dim xdoc As XDocument = _

XDocument.Load("http://geekswithblogs.net/evjen/Rss.aspx")

Dim query = From rssFeed In xdoc.Descendants("channel") _
Select Title = rssFeed.Element("title").Value, _

Description = rssFeed.Element("description").Value, _
Link = rssFeed.Element("link").Value

For Each item In query
Console.WriteLine("TITLE: " + item.Title)
Console.WriteLine("DESCRIPTION: " + item.Description)
Console.WriteLine("LINK: " + item.Link)

Next

Console.WriteLine()

Dim queryPosts = From myPosts In xdoc.Descendants("item") _
Select Title = myPosts.Element("title").Value, _

Published = _
DateTime.Parse(myPosts.Element("pubDate").Value), _

Description = myPosts.Element("description").Value, _
Url = myPosts.Element("link").Value, _
Comments = myPosts.Element("comments").Value

For Each item In queryPosts
Console.WriteLine(item.Title)

Next

Console.ReadLine()
End Sub

End Module

Here, the Load method of the XDocument object points to a URL where the XML is retrieved. The first
query pulls out all the main sub-elements of the <channel> element in the feed and creates new objects
called Title, Description, and Link to get at the values of these sub-elements.

472

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 473

Chapter 11: LINQ

From there, a For Each statement is run to iterate through all the items found in this query. The results
are as follows:

TITLE: Bill Evjen’s Blog
DESCRIPTION: Code, Life and Community
LINK: http://geekswithblogs.net/evjen/Default.aspx

The second query works through all the <item> elements and the various sub-elements it contains (these
are all the blog entries found in the blog). Though a lot of the items found are rolled up into properties,
in the For Each loop, only the Title property is used. You will see results similar to the following from
this query:

AJAX Control Toolkit Controls Grayed Out - HOW TO FIX
Welcome .NET 3.5!
Visual Studio 2008 Released
IIS 7.0 Rocks the House!
Word Issue - Couldn’t Select Text
Microsoft Releases XML Schema Designer CTP1
Silverlight Book
Microsoft Tafiti as a beta
ReSharper on Visual Studio 2008
Windows Vista Updates for Performance and Reliability Issues
New Version of ODP.NET for .NET 2.0 Released as Beta Today
First Review of Professional XML
Go to MIX07 for free!
Microsoft Surface and the Future of Home Computing?
Alas my friends - I’m *not* TechEd bound
New Book - Professional VB 2005 with .NET 3.0!
An article showing Oracle and .NET working together
My Latest Book - Professional XML
CISCO VPN Client Software on Windows Vista
Server-Side Excel Generation
Scott Guthrie Gives Short Review of Professional ASP.NET 2.0 SE
Windows Forms Additions in the Next Version of .NET
Tag, I’m It

Working Around the XML Document
If you have been working with the XML document hamlet.xml, you probably noticed that it is quite
large. You’ve seen how you can query into the XML document in a couple of ways, and now this section
takes a look at reading and writing to the XML document.

Reading from an XML Document
Earlier you saw just how easy it is to query into an XML document using the LINQ query statements, as
shown here:

Dim query = From people In xdoc.Descendants("PERSONA") _
Select people.Value

473

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 474

Chapter 11: LINQ

This query returns all the players found in the document. Using the Element method of the XDocument
object, you can also get at specific values of the XML document you are working with. For instance,
continuing to work with the hamlet.xml document, the following XML fragment shows you how the
title is represented:

<?xml version="1.0"?>

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>

<!-- XML removed for clarity -->

</PLAY>

As you can see, the <TITLE> element is a nested element of the <PLAY> element. You can easily get at the
title by using the following bit of code:

Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")

Console.WriteLine(xdoc.Element("PLAY").Element("TITLE").Value)

This bit of code writes out the title, The Tragedy of Hamlet, Prince of Denmark, to the console screen. In
the code, you were able to work down the hierarchy of the XML document by using two Element method
calls — first calling the <PLAY> element, and then the <TITLE> element found nested within the <PLAY>
element.

Continuing with the hamlet.xml document, you can view a long list of players who are defined with the
use of the <PERSONA> element:

<?xml version="1.0"?>

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>

<!-- XML removed for clarity -->

<PERSONAE>
<TITLE>Dramatis Personae</TITLE>

<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late,
and nephew to the present king.</PERSONA>
<PERSONA>POLONIUS, lord chamberlain. </PERSONA>
<PERSONA>HORATIO, friend to Hamlet.</PERSONA>
<PERSONA>LAERTES, son to Polonius.</PERSONA>
<PERSONA>LUCIANUS, nephew to the king.</PERSONA>

<!-- XML removed for clarity -->

</PERSONAE>

</PLAY>

474

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 475

Chapter 11: LINQ

Using that, review this bit of the code’s use of this XML:

Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")

Console.WriteLine(_
xdoc.Element("PLAY").Element("PERSONAE").Element("PERSONA").Value)

This bit of code starts at <PLAY>, works down to the <PERSONAE> element, and then makes use of the
<PERSONA> element. However, using this you will get the following result:

CLAUDIUS, king of Denmark

Although there is a collection of <PERSONA> elements, you are only dealing with the first one that is
encountered using the Element().Value call.

Writing to an XML Document
In addition to reading from an XML document, you can also write to the document just as easily. For
instance, if you wanted to change the name of the first player of the hamlet file, you could make use of
the code here to accomplish that task:

Module Module1

Sub Main()
Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")

xdoc.Element("PLAY").Element("PERSONAE"). _
Element("PERSONA").SetValue("Bill Evjen, king of Denmark")

Console.WriteLine(xdoc.Element("PLAY"). _
Element("PERSONAE").Element("PERSONA").Value)

Console.ReadLine()
End Sub

End Module

In this case, the first instance of the <PERSONA> element is overwritten with the value of Bill Evjen, king
of Denmark using the SetValue method of the Element object. After the SetValue is called and the value
is applied to the XML document, the value is then retrieved using the same approach as before. Running
this bit of code, you can indeed see that the value of the first <PERSONA> element has been changed.

Another way to change the document (by adding items to it in this example) is to create the element you
want as XElement objects and then add them to the document:

Module Module1

Sub Main()
Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")

Dim xe As XElement = New XElement("PERSONA", _

475

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 476

Chapter 11: LINQ

"Bill Evjen, king of Denmark")

xdoc.Element("PLAY").Element("PERSONAE").Add(xe)

Dim query = From people In xdoc.Descendants("PERSONA") _
Select people.Value

Console.WriteLine("{0} Players Found", query.Count())
Console.WriteLine()

For Each item In query
Console.WriteLine(item)

Next

Console.ReadLine()
End Sub

End Module

In this case, an XElement document called xe is created. The construction of xe gives you the following
XML output:

<PERSONA>Bill Evjen, king of Denmark</PERSONA>

Then, using the Element().Add method from the XDocument object, you are able to add the created
element:

xdoc.Element("PLAY").Element("PERSONAE").Add(xe)

Next, querying all the players, you will now find that instead of 26, as before, you now have 27, with the
new one at the bottom of the list. Besides Add, you can also use AddFirst, which does just that — adds
the player to the beginning of the list instead of the end, as is the default.

Using LINQ to SQL with LINQ to XML
When working with LINQ to SQL or LINQ to XML, you are limited to working with the specific data
source for which it was designed. In fact, you are able to mix multiple data sources together when
working with LINQ. To demonstrate this, this section uses LINQ to SQL to query the customers in the
Northwind database and turn the results pulled into an XML document.

Instructions for getting the Northwind sample database file as well as information on working with
LINQ to SQL are found earlier in this chapter.

Setting Up the LINQ to SQL Components
If you don’t already have it, add the Northwind SQL Server Express Edition database file to your project.
From there, right-click on the project to add a new LINQ to SQL class file to your project. Name the file
Northwind.dbml.

476

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 477

Chapter 11: LINQ

This operation gives you a design surface to work with. From the Server Explorer, drag and drop both the
Customers and the Orders tables onto the design surface. This action establishes a relationship between
these two tables. At this point, your view in the IDE should look similar to what is shown in Figure 11-17.

Figure 11-17

Now that you have your Northwind.dbml in place, you are ready to query this database structure and
output the results as an XML file.

Querying the Database and Outputting XML
The next step in your console application is to put the following code in your Module1.vb file:

Module Module1

Sub Main()
Dim dc As NorthwindDataContext = New NorthwindDataContext()

Dim xe As XElement = New XElement("Customer", _
From c In dc.Customers _
Select New XElement("Customer", _

New XElement("CustomerId", c.CustomerID), _
New XElement("CompanyName", c.CompanyName), _
New XElement("Country", c.Country), _
New XElement("OrderNum", c.Orders.Count)))

xe.Save("C:\myCustomers.xml")
Console.WriteLine("File created")

Console.ReadLine()
End Sub

End Module

477

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 478

Chapter 11: LINQ

This example creates a new instance of the NorthwindDataContext object, which is created for you
automatically with the LINQ to SQL class you created. Then, instead of using the typical

Dim query = [query]

you populate the query performed in an XElement object called xe. Within the select statement of
the query, you also create an iteration of Customers objects with the nested elements of <Customer>,
<CustomerId>, <CompanyName>, <Country>, and <OrderNum>. Once queried, the xe instance is then saved
to disk using xe.Save. On disk, looking at the myCustomers.xml file, you will see the following results
(abbreviated here):

<?xml version="1.0" encoding="utf-8"?>
<Customer>

<Customer>
<CustomerId>ALFKI</CustomerId>
<CompanyName>Alfreds Futterkiste</CompanyName>
<Country>Germany</Country>
<OrderNum>6</OrderNum>

</Customer>
<Customer>
<CustomerId>ANATR</CustomerId>
<CompanyName>Ana Trujillo Emparedados y helados</CompanyName>
<Country>Mexico</Country>
<OrderNum>4</OrderNum>

</Customer>

<!-- XML removed for clarity -->

<Customer>
<CustomerId>WILMK</CustomerId>
<CompanyName>Wilman Kala</CompanyName>
<Country>Finland</Country>
<OrderNum>7</OrderNum>

</Customer>
<Customer>
<CustomerId>WOLZA</CustomerId>
<CompanyName>Wolski Zajazd</CompanyName>
<Country>Poland</Country>
<OrderNum>7</OrderNum>

</Customer>
</Customer>

From this, you can see just how easy it is to mix the two data sources using LINQ. Using LINQ to SQL,
the customers were pulled from the database, and then using LINQ to XML, an XML file was created and
output to disk.

Summary
One of the most exciting features of the .NET Framework 3.5 release is the LINQ capabilities that the
platform provides. This chapter focused on using LINQ to SQL and some of the options available to you
in querying your SQL Server databases.

478

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 479

Chapter 11: LINQ

Using LINQ to SQL, you are able to have a strongly typed set of operations for performing CRUD opera-
tions against your database. In addition, though, you are still able to use pre-existing access capabilities,
whether that is interacting with ADO.NET or working with your stored procedures. For example, you
can still use your XmlReader and XmlWriter code along with the new LINQ to XML capabilities.

This chapter also described how to use LINQ to XML and some of the options available to you in reading
and writing from XML files and XML sources, whether the source is static or dynamic.

You were also introduced to the new LINQ to XML helper objects XDocument, XElement, XNamespace,
XAttribute, and XComment. These outstanding new objects make working with XML easier than ever
before.

479

Evjen-91361 c11.tex V2 - 04/01/2008 3:58pm Page 480

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 481

Security in the .NET
Framework

This chapter covers the basics of security and cryptography. It begins with a brief discussion of the
.NET Framework’s security architecture, because this affects all the solutions you may choose to
implement.

The .NET Framework provides you with additional tools and functionality with regard to secu-
rity. You now have the System.Security.Permissions namespace, which enables you to control
code access permissions along with role-based and identity permissions. Through your code, you
can control access to objects programmatically, as well as receive information on the current per-
missions of objects. This security framework will assist you in determining whether you have
permissions to run your code, instead of getting halfway through execution and having to deal
with permission-based exceptions. This chapter covers the following:

❑ Concepts and definitions

❑ Permissions

❑ Roles

❑ Principals

❑ Code access permissions

❑ Role-based permissions

❑ Identity permissions

❑ Managing permissions and policies

❑ Cryptography

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 482

Chapter 12: Security in the .NET Framework

Cryptography is the cornerstone of the .NET Web Services security model, so the second half of this
chapter discusses the basis of cryptography and how to implement it. Specifically, it covers the following:

❑ Hash algorithms

❑ SHA

❑ MD5

❑ Secret key encryption

❑ Public key cryptography standard

❑ Digital signatures

❑ Certification

❑ Secure Sockets Layer communications

Let’s begin by looking at some security concepts and definitions.

As always, the code for this chapter is available for download from www.wrox.com,
which you may want in order to follow along.

Security Concepts and Definitions
The following table describes the different types of security presented in this chapter and how they relate
to real-world scenarios:

Security Type Related Concept in
Security.Permissions
Namespace or Utility

Purpose

NTFS None Allows for detailing of object rights, e.g.,
locking down of specific files

Security Policies Caspol.exe utility,
PermView.exe utility

Set up overall security policy for a machine or
user from an operating-system level

Cryptographic Strong name and assembly,
generation, SignCode.exe
utility

Use of public key infrastructure and certificates

Programmatic Groups and permission sets For use in pieces of code that are being called
into. Provides extra security to prevent users of
calling code from violating security measures
implemented by the programs that are not
provided for on a machine level.

There are many approaches to providing security on your machines where your shared code is hosted. If
multiple shared code applications are on one machine, each piece of shared code can be called from many

482

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 483

Chapter 12: Security in the .NET Framework

front-end applications. Each piece of shared code will have its own security requirements for accessing
environment variables — such as the registry, the file system, and other items — on the machine that
it is running on. From an NTFS perspective, the administrator of your server can only lock down those
items on the machine that are not required to be accessed from any piece of shared code running on it.
Therefore, some applications need additional security built in to prevent any calling code from doing
things it is not supposed to do.

The machine administrator can further assist programmers by using the utilities provided with .NET to
establish additional machine and/or user policies that programs can implement. Toward that end, the
.NET environment provides programmatic security through code access security, role-based security,
and identity security. As a final security measure, you can use the cryptographic methods provided to
require the use of certificates in order to execute your code.

Security in the .NET infrastructure uses some basic concepts, which are discussed here. Code security is
managed and accessed in the .NET environment using security policies. Security policies have a relation-
ship that is fundamentally tied either to the machine that the code is running on or to particular users
under whose context the code is running. To this end, any modifications to the policy are done either at
the machine level or at the user level.

You establish the security policy on a given set of code by associating it with an entity called a group.
A group is created and managed within each of the machine- and user-based policies. These group
classifications are set up so that you can place code into categories. You want to establish new code
groups when you are ready to categorize the pieces of code that would run on a machine, and assign
the permissions that users will have to access the code. For instance, if you wanted to group all Internet
applications and then group all non-Internet applications, you would establish two groups and associate
each of your applications with its respective group.

Once you have the code separated into groups, you can define different permission sets for each group.
If you wanted to limit your Internet applications’ access to the local file system, you could create a per-
mission set that limits that access and associates the Internet application group with the new permission
set. By default, the .NET environment provides one code group named All Code that is associated with
the FullTrust permission set.

Permission sets are unique combinations of security configurations that determine what each user with
access to a machine can do on that machine. Each set determines what a user has access to — for instance,
whether the user can read environment variables, the file system, or execute other portions of code.
Permission sets are maintained at the machine and user levels through the utility Caspol.exe. Through
this utility, you can create your own permission sets, though the following seven permission sets that
ship with the .NET infrastructure are also useful:

Permission Set Explanation

FullTrust Allows full access to all resources; adds the assembly to a special list that
has FullTrust access

Everything Allows full access to everything covered by default named permission sets,
but differs from FullTrust in that the group is not added to the FullTrust
assembly list

Nothing Denies all access including Execution

483

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 484

Chapter 12: Security in the .NET Framework

Permission Set Explanation

Execution Allows execution-only access

SkipVerification Allows objects to bypass all security verification

Internet Grants default rights that are normal for Internet applications

LocalInternet Grants rights that are not as restricted as Internet, but not full trust

Security that is used within the programming environment also makes use of permission sets.
Through code you can control access to files in a file system, environment variables, file dialogs,
isolated storage, reflections, registry, sockets, and UI. Isolated storage and virtual file systems are new
operating system–level storage locations that can be used by programs and are governed by the machine
security policies. These file systems keep a machine safe from file system intrusion by designating a regu-
lated area for file storage. The main access to these items is controlled through code access
permissions.

Although many methods that we use in Visual Basic 2008 provide an identifiable return value, the only
time we get a return value from security methods is when the method fails. When a security method
succeeds, it does not provide a return value. If it fails, then it returns an exception object reflecting the
specific error that occurred.

Permissions in the System.Security
.Permissions Namespace

The System.Security.Permissions namespace is the namespace used in the code to establish and
use permissions to access many things, such as the file system, environment variables, and the reg-
istry within your programs. The namespace controls access to both operating system–level objects as
well as code objects. In order to use the namespace in your project, you need to include the Imports
System.Security.Permissions line with any of your other Imports statements in your project. Using
this namespace gives you access to the CodeAccessPermission and PrincipalPermission classes for
using role-based permissions and utilizing information supplied by Identity permissions.
CodeAccessPermission is the main class that we will use, as it controls access to the operating system
–level objects our code needs in order to function. Role-based permissions and Identity permissions
grant access to objects based on the identity of the user of the program that is running (the
user context).

In the following table, classes that end with Attribute, such as EnvironmentPermissionAttribute, are
classes that enable you to modify the security level at which your code is allowed to interact
with each respective object. The attributes that you can specify reflect Assert, Deny, or PermitOnly
permissions.

If permissions carry the Assert attribute, you have full access to the object, whereas if you have specified
Deny permissions, you are not allowed to access the object through your code. If you have PermitOnly
access, only objects within your program’s already determined scope can be accessed, and you cannot
add any more resources beyond that scope. The table also deals with security in regard to software
publishers. A software publisher is a specific entity that is using a digital signature to identify itself in a

484

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 485

Chapter 12: Security in the .NET Framework

Web-based application. The following table describes the namespace members that apply to Windows
Forms programming, with an explanation of each:

Class Description

CodeAccessSecurityAttribute Specifies security access to objects such as the registry and file
system

EnvironmentPermission Controls the capability to see and modify system and user
environment variables

EnvironmentPermissionAttribute Allows security actions for environment variables to be added
via code

FileDialogPermission Controls the capability to open files via a file dialog

FileDialogPermissionAttribute Allows security actions to be added for file dialogs via code

FileIOPermission Controls the capability to read and write files in the file system

FileIOPermissionAttribute Allows security actions to be added for file access attempts via
code

GacIdentityPermission Defines the identity permissions for files that come from the
global assembly cache (GAC)

GacIdentityPermissionAttribute Allows security actions to be added for files that originate
from the GAC

HostProtectionAttribute Allows for the use of security actions to determine host
protection requirements

IsolatedStorageFilePermission Controls access to a private virtual file system within the
isolated storage area of an application

IsolatedStorageFilePermission
Attribute

Allows security actions to be added for private virtual file
systems via code

IsolatedStoragePermission Controls access to the isolated storage area of an application

IsolatedStoragePermission
Attribute

Allows security actions to be added for the isolated storage
area of an application

KeyContainerPermission Controls access to key containers

KeyContainerPermissionAccess
Entry

Defines the access rights for particular key containers

KeyContainerPermissionAccess
EntryCollection

Represents a collection of
KeyContainerPermission-AccessEntry objects

KeyContainerPermissionAccess
EntryEnumerator

Represents the enumerators for the objects contained in the
KeyContainerPermissionAccessEntryCollection object

KeyContainerPermissionAttribute Allows security actions to be added for key containers

PermissionSetAttribute Allows security actions to be added for a permission set

485

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 486

Chapter 12: Security in the .NET Framework

Class Description

PrincipalPermission Controls the capability to make checks against an active
principal

PrincipalPermissionAttribute Allows checking against a specific user. Security principals are
a user and role combination used to establish security identity.

PublisherIdentityPermission Allows access based on the identity of a software publisher

PublisherIdentityPermission
Attribute

Allows security actions to be added for a software publisher

ReflectionPermission Controls access to nonpublic members of a given type

ReflectionPermissionAttribute Allows security actions to be added for public and nonpublic
members of a given type

RegistryPermission Controls access to registry keys and values

RegistryPermissionAttribute Allows security actions to be added for registry keys and
values

ResourcePermissionBase Controls the capability to work with the code access security
permissions

ResourcePermissionBaseEntry Allows you to define the smallest part of a code access security
permission set

SecurityAttribute Controls which security attributes are representing code; used
to control security when creating an assembly

SecurityPermission The set of security permission flags for use by .NET; this
collection is used when you want to specify a permission flag
in your code

SecurityPermissionAttribute Allows security actions for the security permission flags

StorePermission Controls access to stores that contain X509 certificates

StorePermissionAttribute Allows security actions to be added for access stores that
contain X509 certificates

UIPermission Controls access to user interfaces and use of the Windows
clipboard

UIPermissionAttribute Allows security actions to be added for UI interfaces and the
use of the clipboard

Code Access Permissions
Code access permissions are controlled through the CodeAccessPermission class within the System
.Security namespace, and its members make up the majority of the permissions we’ll use in our
attempt to secure our code and operating environment. The following table describes the class methods
available:

486

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 487

Chapter 12: Security in the .NET Framework

Method Description

Assert Sets the permission to full access so that the specific resource can be accessed
even if the caller hasn’t been granted permission to access the resource

Copy Copies a permission object

Demand Returns whether or not all callers in the call chain have been granted the
permission to access the resource in a given manner

Deny Denies all callers access to the resource

Equals Determines whether a given object is the same instance of the current object

FromXml Establishes a permission set given a specific XML encoding. This parameter is
an XML encoding

GetHashCode Returns a hash code associated with a given object

GetType Returns the type of a given object

Intersect Returns the permissions that two permission objects have in common

IsSubsetOf Returns a result indicating whether the current permission object is a subset
of a specified permission

PermitOnly Specifies that only those resources within this permission object can be
accessed even if code has been granted permission to other objects

RevertAll Reverses all previous assert, deny or permit-only methods

RevertAssert Reverses all previous assert methods

RevertDeny Reverses all previous deny methods

RevertPermitOnly Reverses all previous permit-only methods

ToString Returns a string representation of the current permission object

ToXml Creates an XML representation of the current permission object

Union Creates a permission that is the union of two permission objects

Role-Based Permissions
Role-based permissions are permissions granted based on the user and the role that code is being called
with. Users are generally authenticated within the operating system platform and hold a Security Iden-
tifier (SID) that is associated within a security context. The SID can further be associated with a role or
a group membership that is established within a security context. The .NET role functionality supports
those users and roles associated within a security context and has support for generic and custom users
and roles through the concept of principals.

A principal is an object that holds the current caller credentials, which is termed the identity of the user.
Principals come in two types: Windows principals and non-Windows principals. Windows-based prin-
cipal objects are objects that store the Windows SID information regarding the current user context

487

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 488

Chapter 12: Security in the .NET Framework

associated with the code that is calling into the module role-based permissions that are being used.
Non-Windows principals are principal objects that are created programmatically via a custom login
methodology and which are made available to the current thread.

Role-based permissions are not set against objects within your environment like code access permis-
sions. They are instead a permission that is checked within the context of the current user and role
that a user is part of. Within the System.Security.Permissions namespace, the concepts of princi-
pals and the PrincipalPermission class of objects are used to establish and check permissions. If a
programmer passes the user and role information during a call as captured from a custom login, then
the PrincipalPermission class can be used to verify this information as well. During the verification,
if the user and role information is Null, then permission is granted, regardless of the user and role. The
PrincipalPermission class does not grant access to objects, but has methods that determine whether a
caller has been given permissions according to the current permission object through the Demand method.
If a security exception is generated, then the user does not have sufficient permission.

The following table describes the methods in the PrincipalPermission class:

Method Description

Copy Copies a permission object

Demand Returns whether or not all callers in the call chain have been granted the
permission to access the resource in a given manner

Equals Determines whether a given object is the same instance of the current object

FromXml Establishes a permission set given a specific XML encoding

GetHashCode Returns a hash code associated with a given object

GetType Returns the type of a given object

Intersect Returns the permissions that two permission objects have in common
specified in the parameter

IsSubsetOf Returns a result indicating whether the current permission object is a subset
of a specified permission

IsUnrestricted Returns a result indicating whether the current permission object is
unrestricted

ToString Returns a string representation of the current permission object

ToXml Creates an XML representation of the current permission object

Union Creates a permission that is the union of two permission objects

As an example of how you might use these methods, the following code snippet captures the cur-
rent Windows principal information and displays it on the screen in the form of message box output.
Each element of the principal information could be used in a program to validate against, and thus
restrict, code execution based on the values in the principal information. This example inserts an Imports
System.Security.Pri ncipal line at the top of the module so you can use the identity and principal
objects:

488

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 489

Chapter 12: Security in the .NET Framework

Imports System.Security.Principal
Imports System.Security.Permissions

Private Sub RoleBasedPermissions_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RoleBasedPermissions.Click

Dim objIdentity As WindowsIdentity = WindowsIdentity.GetCurrent
Dim objPrincipal As New WindowsPrincipal(objIdentity)
MessageBox.Show(objPrincipal.Identity.IsAuthenticated.ToString())
MessageBox.Show(objIdentity.IsGuest.ToString())
MessageBox.Show(objIdentity.ToString())
objIdentity = Nothing
objPrincipal = Nothing

End Sub

This code illustrates a few of the properties that could be used to validate against when a caller wants to
run your code. Sometimes you want to ensure that the caller is an authenticated user, and not someone
who bypassed the security of your machine with custom login information. You can achieve that through
the following line of code:

MessageBox.Show(objPrincipal.Identity.IsAuthenticated.ToString())

It outputs in the MessageBox as either True or False depending on whether the user is authenticated or
not. Another way to ensure that your caller is not bypassing system security would be to check whether
the account is operating as a guest. The following line of code accomplishes that:

MessageBox.Show(objIdentity.IsGuest.ToString())

IsGuest returns either True or False, depending on whether the caller is authenticated as a guest. The
final MessageBox in the example displays the ToString value for the identity object. This value tells you
what type of identity it is, either a Windows identity or a non-Windows identity. The line of code that
executes it is as follows:

MessageBox.Show(objIdentity.ToString())

The output from the IsString method is shown in Figure 12-1.

Figure 12-1

Again, the principal and identity objects are used in verifying the identity or aspects of the identity of the
caller attempting to execute your code. Based on this information, you can lock down or release certain

489

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 490

Chapter 12: Security in the .NET Framework

system resources. You will learn how to lock down and release system resources through the code access
permissions examples that follow.

Identity Permissions
Identity permissions are pieces of information, also called evidence, by which a piece of code can be
identified. Examples of the evidence would be the strong name of the assembly or the digital signature
associated with the assembly.

A strong name is a combination of the name of a program, its version number, and its associated crypto-
graphic key and digital signature files.

Identity permissions are granted by the runtime based on information received from the trusted host,
or someone who has permission to provide the information. Therefore, they are permissions that you
don’t specifically request. Identity permissions provide additional information to be used by the runtime
when you configure items in the Caspol.exe utility. The additional information that the trusted host can
supply includes the digital signature, the application directory, or the strong name of the assembly.

Managing Code Access Permissions
This section looks at the most common type of permissions — programmatic access — and how they
are used. This example uses a Windows Form with four buttons on it. This Windows Form illustrates
the concept previously mentioned — namely, that when a method fails, an exception object containing
your feedback is generated. Note that in the case of a real-world example, you would be setting up
permissions for a calling application. In many instances, you don’t want a calling application to be able
to access the registry, or you want a calling application to be able to read memory variables, but not
change them.

However, in order to demonstrate the syntax of the commands, in the examples that follow we have
placed the attempts against the objects we have secured in the same module. We first set up the permis-
sion that we want and grant the code the appropriate access level we wish it to be able to utilize. Then
we use code that accesses our security object to illustrate the effect that our permissions have on the code
that accesses the objects. We’ll also be tying together many of the concepts discussed so far by way of
these examples.

To begin, let’s look at an example of trying to access a file in the file system, which illustrates the use of the
FileIOPermission class in our Permissions namespace. In the first example, the file C:\testsecurity
\testing.txt has been secured at the operating system level so that no one can access it. In order to do
this, the system administrator sets the operating system security on the file to no access:

Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.IO

Private Sub FileIO_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileIO.Click

Dim oFp As FileIOPermission = New _
FileIOPermission(FileIOPermissionAccess.Write, _

490

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 491

Chapter 12: Security in the .NET Framework

"C:\testsecurity\testing.txt")

oFp.Assert()

Try
Dim objWriter As New IO.StreamWriter _
(File.Open("C:\testsecurity\testing.txt", IO.FileMode.Open))

objWriter.WriteLine("Hi there!")
objWriter.Flush()
objWriter.Close()
objWriter = Nothing

Catch objA As System.Exception
MessageBox.Show(objA.Message)

End Try

End Sub

Let’s walk through the code. In this example, we are going to attempt to open a file in the
C:\testsecurity directory called testing.txt. We set the file access permissions within our code so
that the method, irrespective of who called it, should be able to get to it with the following lines:

Dim oFp As FileIOPermission = New _
FileIOPermission(FileIOPermissionAccess.Write, _
"C:\testsecurity\testing.txt")

oFp.Assert()

This example used the Assert method, which declares that the resource should be accessible even if
the caller has not been granted permission to access the resource. However, in this case, because the
file is secured at the operating system level (by the system administrator), we get the error shown in
Figure 12-2, which was caught by exception handling.

Figure 12-2

Now let’s look at that example again with full operating system rights, but the code permissions
set to Deny:

Protected Sub btnFileIO_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Dim oFp As FileIOPermission = New _
FileIOPermission(FileIOPermissionAccess.Write, _

"C:\testsecurity\testing.txt")

oFp.Deny()

491

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 492

Chapter 12: Security in the .NET Framework

Try
Dim objWriter As New IO.StreamWriter _

(File.Open("C:\testsecurity\testing.txt", _
IO.FileMode.Open))

objwriter.WriteLine("Hi There!")
objWriter.Flush()
objWriter.Close()
objWriter = Nothing

Catch objA As System.Exception
messagebox.Show(objA.Message)

End Try

End Sub

The Deny method denies all callers access to the object, regardless of whether the operating system
granted them permission. This is usually a good thing to put into place, as not every method you
implement needs full and unfettered access to system resources. This helps prevent accidental secu-
rity vulnerabilities that your method may expose. With the Deny method, we catch the error shown in
Figure 12-3 in the exception handler.

Figure 12-3

As you can see, this error differs from the first by reflecting a System.Security.Permissions
.FileIOPermission failure, as opposed to an OS-level exception.

The following example shows how you would use the EnvironmentPermission class of the namespace
to look at EnvironmentVariables:

Protected Sub TestEnvironmentPermissions_Click _
(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles TestEnvironmentPermissions.Click

Dim oEp As EnvironmentPermission = New EnvironmentPermission _
(EnvironmentPermissionAccess.Read, "Temp")

Dim sEv As String
oEp.Assert()

Try
sEv = Environment.GetEnvironmentVariable("Temp")

492

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 493

Chapter 12: Security in the .NET Framework

MessageBox.Show("Assert was a success")
Catch objA As System.Exception

MessageBox.Show("Assert failed")
End Try

System.Security.CodeAccessPermission.RevertAssert()
oEp.Deny()

Try
sEv = Environment.GetEnvironmentVariable("Temp")
MessageBox.Show("Deny was a success")

Catch objA As System.Exception
MessageBox.Show("Deny failed")

End Try

MessageBox.Show(oEp.ToString)

End Sub

There is a lot going on in this example, so consider it carefully. We first establish an environment variable
permission and use the Assert method to ensure access to the code that follows:

Dim oEp As EnvironmentPermission = New EnvironmentPermission _
(EnvironmentPermissionAccess.Read, "Temp")

Dim sEv As String
oEp.Assert()

We then try to read the environment variable into a string. If the string read succeeds, then we pop up a
message box to reflect the success. If the read fails, then a message box reflects the failure:

Try
sEv = Environment.GetEnvironmentVariable("Temp")
MessageBox.Show("Assert was a success")

Catch objA As System.Exception
MessageBox.Show("Assert failed")

End Try

Next, we revoke the assert we previously issued by using the RevertAssert method, and establish Deny
permissions:

System.Security.CodeAccessPermission.RevertAssert()
oEp.Deny()

We then try again to read the variable, and write the appropriate result to a message box:

Try
sEv = Environment.GetEnvironmentVariable("Temp")
MessageBox.Show("Deny failed")

Catch objA As System.Exception
MessageBox.Show("Deny was a success")

End Try

493

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 494

Chapter 12: Security in the .NET Framework

Finally, we write the ToString of the method to another message box. Following is the output of all
three message boxes as a result of running this subroutine. The first two message box messages
give us the feedback from our Assert and Deny code, followed by the output of our ToString
method:

Assert was a success

Deny failed

<IPermission class="System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
version="1" Read="Temp" />

The ToString method is an XML representation of the permission object currently in effect. The first
and second message boxes that are output reflect the system version information of the Visual Basic
security environment that was running at the time the button was clicked. The third message box is the
environment variable name surrounded by the Read tags, which was the permission in effect when the
ToString method was executed.

Look at one more example of where the permissions would affect you in your program functionality, that
of accessing the registry. You would generally access the registry on the computer that was the central
server for a component in your Windows Forms application.

When you use the EventLog methods to create entries in the machine Event Logs, you access the registry.
To illustrate this concept, the following code example denies permissions to the registry:

Protected Sub TestRegistryPermissions_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles TestRegistryPermissions.Click

Dim oRp As New _
RegistryPermission(Security.Permissions.PermissionState.Unrestricted)

oRp.Deny()

Dim objLog As New EventLog
Dim objLogEntryType As EventLogEntryType

Try
Throw (New EntryPointNotFoundException)

Catch objA As System.EntryPointNotFoundException
Try

If Not System.Diagnostics.EventLog.SourceExists("Example") Then
System.Diagnostics.EventLog.CreateEventSource("Example", "System")

End If

objLog.Source = "Example"
objLog.Log = "System"
objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry("Error: " & objA.message, objLogEntryType)

Catch objB As System.Exception
MessageBox.Show(objB.Message)

494

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 495

Chapter 12: Security in the .NET Framework

End Try
End Try

End Sub

Walking through the code, you begin by specifying the registry permission, setting it to Deny access:

Dim oRp As New _
RegistryPermission(Security.Permissions.PermissionState.Unrestricted)

oRp.Deny()

Next, you Throw an exception on purpose in order to set up writing to an Event Log:

Throw (New EntryPointNotFoundException)

When the exception is caught, it checks the registry to ensure that a specific type of registry entry source
already exists:

If Not System.Diagnostics.EventLog.SourceExists("Example") Then
System.Diagnostics.EventLog.CreateEventSource("Example", "System")

End If

At this point, the code fails with the error message shown in Figure 12-4.

Figure 12-4

These examples can serve as a good basis for use in developing classes that access the other objects within
the scope of the Permissions namespace, such as reflections and UI permissions.

Managing Security Policy
As stated in the introduction to the chapter, two command-line utilities (Caspol.exe and Permview.exe)
help in configuring and viewing security policy at both machine and user levels. When you manage secu-
rity policy at these levels, you are doing so as an administrator of a machine or user policy for a machine
that is hosting code that will be called from other front-end applications. Caspol.exe is a command-line
utility with many options for configuring your security policies (Caspol stands for Code Access Secu-
rity Policy). User and machine policy are associated with groups and permission sets. One group is
automatically provided, the AllCode group.

495

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 496

Chapter 12: Security in the .NET Framework

The Caspol utility has two categories of commands. The first category listed in the following table is the
set of commands that provide feedback about the current security policy:

Command Short Command Parameters Effect

–List –l

None This lists the
combination of
available groups and
permission sets.

–ListGroups –lg

None This lists only groups. –ListPset –lp

None This lists only
permission sets.

–ListFulltrust –lf

None This lists only
assemblies that have
full trust privileges.

-List Description -ld

None This lists code group
names and
descriptions.

–Reset –rs

None This resets the machine
and user policies to the
default for .NET. This is
handy if a policy
creates a condition that
is not recoverable. Use
this command
carefully, as you will
lose all changes made
to the current policies.

-–ResolveGroup –rsg Assembly File This lists which groups
are associated with a
given assembly file.

-–ResolvePerm –rsp Assembly File This lists what
permission sets are
associated with a given
assembly file.

This is not the list in its entirety, but some of the more important commands. Now let’s look at some
examples of output from these commands. If you wanted to list the groups active on your local machine
at the Visual Studio command prompt, you would type the following:

Caspol -Machine -ListGroups

The output looks similar to what is shown in Figure 12-5 (it varies slightly depending on the machine
you are working on).

496

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 497

Chapter 12: Security in the .NET Framework

Looking at the output in a bit more detail, you can see some things in addition to what was
specifically requested. The fourth line shows that code access security checking is ON. On the follow-
ing line, the machine is checking for the user’s right to execute the Caspol utility, as execution checking
is ON. The policy change prompt is also ON, so if the user executes a Caspol command that changes system
policy, then a confirmation prompt appears to verify that this is really intentional.

Figure 12-5

The level is also listed on the screen prior to the requested output, which is detailed at the bottom, listing
the groups present on the machine. The policies pertain to two levels: the machine and the user. When
changing policy, if the user is not an administrator, then the user policy is affected unless the user specif-
ically applies the policy to the machine through use of the -machine switch, as illustrated in the screen
shot. If the user is an administrator, then the machine policy is affected unless the user specifically applies
the policy to the user level through the use of the -user switch.

Let’s now look at another request result example. This time we ask for a listing of all of the permission
sets on the machine. At the command prompt, you would type the following:

Caspol -machine -listpset

This would result in output similar to what is shown in Figure 12-6. The following output has been
shortened for space considerations, but it contains a listing of all the code explicitly set to execute against
the seven permission sets mentioned in the definitions section. In addition, note that the output is an
XML representation of a permission object. The listing details the named permission sets and what
each one has as active rights. For instance, the fifth permission set is named LocalIntranet, while
the next lines detail the Permission class, an environment permission with read access to the envi-
ronment variable - USERNAME. The next class detail is regarding FileDialogpermissions, and it lists
those as being unrestricted. The output then goes on to detail the effective settings for IsolatedStorage
and others.

497

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 498

Chapter 12: Security in the .NET Framework

Figure 12-6

Now consider the second category of commands that go with the Caspol utility, shown in the following
table. These are the commands that we will use to actually modify policy:

Command Short Command Parameters Effect

-AddFullTrust -af Assembly File Name Adds a given Assembly file to the
full trust permission set

-AddGroup -ag Parent Label,
Membership, Permission
Set Name

Adds a code group to the code
group hierarchy

-AddPSet -ap Permission Set Path,
Permission Set Name

Adds a new named permission set
to the policy; the permission set
should be an XML file

-ChgGroup -cg Membership, Permission
Set Name

Changes a code group’s
information

-ChgPset -cp File Name, Permission
Set Name

Changes a named permission set’s
information

498

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 499

Chapter 12: Security in the .NET Framework

Command Short Command Parameters Effect

-Force -f This option is not recommended. It
forces Caspol to accept policy
changes even if the change could
prevent Caspol itself from being
executed.

-Recover -r Recovers policy information from a
backup file controlled by the utility

-RemFullTrust -rf Assembly File Name Removes a given Assembly file
from the full trust permission set

-RemGroup -rg Label Removes a code group

-RemPSet -rp Permission Set Name Removes a permission set. The
seven default sets cannot be
removed.

As before, this is not a comprehensive list of all the available commands, so consult the MSDN
documentation for the complete listing if needed. Let’s begin our discussion of these commands with
a few more definitions that help clarify the parameters associated with them. An assembly file is created
within Visual Basic each time you do a build whereby your version is a release version. An assembly
needs to have a strong name associated with it in order to be used in your permissions groupings. It
gets a strong name from being associated with a digital signature uniquely identifying the assembly. You
carry out this association by right-clicking on your solution within Visual Studio 2008 and selecting Prop-
erties from the provided menu. From the available tabs in the Properties dialog, select Signing. Within
this page of the Properties dialog, check the ‘‘Sign the assembly’’ check box. You will then need to either
choose an already created strong name key file or create a new one. For this example, create a new one
(by selecting the New option from the drop-down list). You will then be provided with the dialog shown
in Figure 12-7. You will also want to fill out the Create Strong Name Key dialog as shown (though with
your own password).

Figure 12-7

499

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 500

Chapter 12: Security in the .NET Framework

After selecting OK in this dialog, you will see a new file in your Solution Explorer called myKey.pfx, as
shown in Figure 12-8.

Figure 12-8

During the build, Visual Studio generates the strong name, after which you can add your assembly to
your security configuration. Place the executable, SecurityApp.exe (your executable will be the name of
your project), which was created from the build, into the C:\testsecurity directory on the local machine
for use with the policy method illustrations.

If you wanted to add your assembly to the fulltrust permission set, you would type Caspol -
addfulltrust C:\testsecurity\SecurityApp.exe.

Figure 12-9 shows the outcome of the command.

Figure 12-9

500

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 501

Chapter 12: Security in the .NET Framework

Before your command alters your security policy, you are notified that your DLLs can just be placed
within the GAC as well to get full trust for them. By typing ‘‘y’’ and then pressing Enter, the new appli-
cation will then be added to the fulltrust assembly list. You can confirm it was added by issuing the
following command:

Caspol -listfulltrust

An excerpt of output from the command that includes the new assembly would look like what is shown
in Figure 12-10.

Figure 12-10

This shows the application name, version, and key information associated with the .exe file when the
build was performed. Now let’s look at the creation and addition of a permission set to the permission
sets in the security policy. Permission sets can be created by hand in any text editor, in an XML format
and saved as an .xml file (this example saves it as SecurityExample.xml). Following is a listing from one
such file that was created for this example:

<PermissionSet class="System.Security.NamedPermissionSet" version="1">
<Permission class="System.Security.Permissions.FileIOPermission, mscorlib,

SN=03689116d3a4ae33" version="1">
<Read> C:\TestSecurity </Read>

501

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 502

Chapter 12: Security in the .NET Framework

</Permission>
<Permission class="System.Security.Permissions.EnvironmentPermission,

mscorlib, SN=03689116d3a4ae33" version="1">
<Read> [TEMP] </Read>

</Permission>
<Name>SecurityExample</Name>
<Description>Gives Full File Access</Description>

</PermissionSet>

The listing has multiple permissions within the permission set. The listing sets up read file permissions
within one set of tags:

<Permission class="System.Security.Permissions.FileIOPermission, mscorlib,
SN=03689116d3a4ae33" version="1">

<Read> C:\TestSecurity </Read>
</Permission>

You then set up read access to the Temp environment variable in the second set of permission tags:

<Permission class="System.Security.Permissions.EnvironmentPermission,
mscorlib, SN=03689116d3a4ae33" version="1">

<Read> [TEMP] </Read>
</Permission>

The listing also gives the custom permission set the name of SecurityExample, with a description:

<Name>SecurityExample</Name>
<Description>Gives Full File Access</Description>

When you want to add your permission set to your policy, you would type the following command:

Caspol -addpset C:\testsecurity\securityexample.xml securityexample

The last command issues the -addpset flag to indicate that you want to add a permission set, followed
by the XML file containing the permission set, followed finally by the name of the permission set.
Figure 12-11 shows the outcome of your command.

Figure 12-11

502

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 503

Chapter 12: Security in the .NET Framework

You can then list your security permission sets by typing Caspol -listpset. Figure 12-12 shows the excerpt
of the new security permission set.

Figure 12-12

This lists just the permission sets within your policy. The named permission set SecurityExample shows
up under the Named Permission Sets heading, and its description is listed just after its name.

Once you have a permission set, you can add a group that your assembly object fits into and which
enforces the new permission set. You add this group by using the AddGroup switch in Caspol. The
AddGroup switch has a couple of parameters that need more explanation. The first parameter is
parent_label. As shown in Figure 12-13, the All code group has a ‘‘1’’ before it. The labels within
code groups have a hierarchy that is established when you add groups, so you need to specify what your
parent label would be. In this case, because the only one that exists is ‘‘1,’’ that is what you designate.

Figure 12-13

Because you designate 1, the new group becomes a child of 1. The second parameter is membership.
The membership parameter has a certain list of options that you can add based on the following table.

503

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 504

Chapter 12: Security in the .NET Framework

Each option designates a piece of information you are providing about the code you will add to your
group. For instance, you might state that you will only be adding code that has a specific signature with
the -Pub option, or only code in a certain application directory with the -AppDir option.

Option Description

-All All code

-Pub Code that has a specific signature on a certificate file

-Strong Code that has a specific strong name, as designated by a filename, code name,
and version

-Zone Code that fits into the following zones: MyComputer, Intranet, Trusted, Internet,
or Untrusted

-Site Originating on a website

-Hash Code that has a specific assembly hash

-AppDir A specific application directory

-SkipVerif Code that requests the skipverification permission

-URL Originating at a specific URL

-Custom Code that requires a custom membership condition

The third parameter to the AddGroup command is the permission set name that you want to be associated
with your group. The group that we will create will be under parent label 1, and we will designate the
-Zone parameter as MyComputer because the code lives on a local drive. We will also associate the new
group with our SecurityExample permission set by typing the following command:

Caspol -addgroup 1. -Zone MyComputer SecurityExample

Output from the command was successful, as shown in Figure 12-13.

Figure 12-14 shows the -listgroups command used for listing the new group. You can see that a 1.6 level
was added, with the SecurityExample permission set attached to all code that fits into the MyComputer
Zone. You can verify that the assembly object fits into the MyComputer Zone by using the resolveperm
command, as shown in Figure 12-15.

The bottom of the figure lists which ZoneIdentityPermission the assembly object has been associated
with — MyComputer. In addition, each assembly gets a URLIdentityPermission specifying the location
of the executable.

Not only do you have a utility that helps with managing security permission sets and groups, you also
have a utility that views the security information regarding an assembly, Permview.exe. (Permview
stands for Permissions Viewer.)

504

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 505

Chapter 12: Security in the .NET Framework

Permview is not as complex as Caspol because its main purpose is to provide a certain type of
feedback regarding the security requests of assemblies. In fact, the Permview utility only has two switches:
one for the output location, and one for declarative security to be included in the output. In order
to specify an output location, the switch is /Output, and then a file path is appended to the command line
after the switch. The Permview utility brings up another concept not covered yet: declarative
security.

Figure 12-14

Figure 12-15

505

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 506

Chapter 12: Security in the .NET Framework

Declarative security is displayed in the Permview utility with the /Decl switch; it is security that a piece of
code requests at an assembly level. Because it is at the assembly level, the line that requests the security is
at the top of the Visual Basic module, even before your Imports statements. You can request one of three
levels of security, as described in the following table:

Level Description

RequestMinimum Permissions the code must have in order to run

RequestOptional Permissions that code may use, but could run without

RequestRefused Permissions that you want to ensure are never granted to the code

Requesting permissions at the assembly level helps ensure that the code will be able to run, and won’t get
permission-based security exceptions. Because you have users calling your code, the declarative security
ensures that the callers have proper security to do all that your code requires; otherwise, a security
exception is thrown. The following example shows the syntax for requesting minimum permissions;
the code would be placed at the top of the procedure. This example also illustrates the syntax described in
the table at the beginning of the chapter regarding permissions in the Security.Permissions namespace.
Moreover, it illustrates the use of a security constant, SecurityAction.RequestMinimum, for the type of
security you are requesting:

<Assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum)>

Once this line is added to the assembly by means of the AssemblyInfo.vb file, Permview will report on
what the assembly requested by listing minimal, optional, and refused permission sets, including the
security permission set under the minimal set listing.

Determining an Application’s Minimum Permissions
Before the .NET Framework 2.0, a common request from developers who were building and deploying
applications was the need for clarification regarding which permissions were required for the application
to run. This was sometimes a difficult task, as developers would build their applications under Full Trust
and then the applications would be deployed to a machine that didn’t have those privileges.

The .NET Framework 2.0 introduced a new tool that can be used to fully understand which permissions
your application will need in order to run on another machine. This command-line tool, PermCalc.exe,
does this by emulating the complete path of your assembly and all the permissions that it would
require.

To use PermCalc.exe, open the Visual Studio command prompt and navigate to the location of the
assembly you want to check. PermCalc.exe takes the following command structure:

PermCalc.exe [Options] <assembly>

You can also have PermCalc.exe evaluate more than a single assembly:

PermCalc.exe [Options] <assembly> <assembly>

506

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 507

Chapter 12: Security in the .NET Framework

For example, running the PermCalc.exe tool on the SecurityApp.exe resulted in the following:

<?xml version="1.0"?>
<Assembly>

<Namespace Name="SecurityApp">
<Type Name="Form1">

<Method Sig="void .cctor()" />
<Method Sig="instance void .ctor()">
<Demand>

<PermissionSet version="1" class="System.Security.PermissionSet">
<IPermission version="1"
class="System.Security.Permissions.ReflectionPermission,

mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" Unrestricted="true" />

<IPermission version="1"
class="System.Security.Permissions.SecurityPermission, mscorlib,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" Flags="UnmanagedCode,
ControlEvidence" />

<IPermission Window="AllWindows" version="1"
class="System.Security.Permissions.UIPermission, mscorlib,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<IPermission version="1"
class="System.Security.Permissions.KeyContainerPermission,

mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" Unrestricted="true" />

</PermissionSet>
</Demand>
<Sandbox>

<PermissionSet version="1" class="System.Security.PermissionSet">
<IPermission version="1"
class="System.Security.Permissions.ReflectionPermission,

mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" Unrestricted="true" />

<IPermission version="1"
class="System.Security.Permissions.SecurityPermission, mscorlib,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" Flags="UnmanagedCode,
ControlEvidence" />

<IPermission Window="AllWindows" version="1"
class="System.Security.Permissions.UIPermission, mscorlib,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" />

<IPermission version="1"
class="System.Security.Permissions.KeyContainerPermission,

mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" Unrestricted="true" />

</PermissionSet>
</Sandbox>

</Method>
</Type>

</Namespace>
</Assembly>

507

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 508

Chapter 12: Security in the .NET Framework

From this output, you can see the permissions that would be required for the application to run on
someone’s machine. These results were generated using the following command:

PermCalc.exe -under SecurityApp.exe

The option -under should be used when you are unsure of the exact permissions, as PermCalc.exe
actually overestimates the permissions by default. Using -under forces PermCalc.exe to underestimate
the permissions instead.

Using Visual Studio to Figure Minimum Permissions
Looking at the properties of your solution in Visual Studio, note the new Security tab. In the past, one
of the problems in testing your application’s security and permissioning was that as a developer, you
were always forced to develop your programs under Full Trust. This means that you have access to the
system’s resources in a very open and free manner. This was an issue because typically the programs that
you build cannot run under Full Trust and you still have to test the application’s abilities to tap into the
system’s resources where the program is being run.

The Security tab, shown in Figure 12-16, is a GUI to the PermCalc.exe tool that enables you to run your
applications under different types of zones.

Figure 12-16

After checking the Enable ClickOnce Security Settings check box, you can specify whether the application
will run on the client machine under Full Trust or partial trust status. You can also select the zone in
which your application will run. The options include the following:

❑ Local Intranet

❑ Internet

❑ Custom

508

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 509

Chapter 12: Security in the .NET Framework

After selecting the zone type, you can examine all the various permissions that are required by the
application in order to run.

Clicking the Calculate Permissions button on the form enables you to do just that. Visual Studio examines
the assembly (see Figure 12-17) and provides you with information about which permissions for which
assemblies would be required to run the application in the zone specified.

Figure 12-17

After analysis, Visual Studio presents information about what is needed from each of the assemblies in
order for the application to function, as shown in Figure 12-18.

Figure 12-18

What makes this section of the application’s property pages even better is that from the text box
of assemblies listed, you can highlight selected assemblies and fine-tune their permissions even

509

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 510

Chapter 12: Security in the .NET Framework

further — granularizing the permissions the assemblies are allowed to work with. For instance,
highlighting the FileIOPermission line and changing the drop-down list to Include in the text box
and clicking the Properties button enables you to fine-tune the permissioning for this assembly. The
Permission Settings dialog that appears is shown in Figure 12-19.

Figure 12-19

The FileIOPermission part of the permission settings enables you to specify the file path that the
assembly is allowed to access, as well as the actions that the assembly is allowed to take in the path
defined.

The capability to examine assemblies is provided not only through the command-line tool, PermCalc.exe;
even Visual Studio joins in and enables easy management and understanding of your applications.

Security Tools
Microsoft provides many security tools in its .NET SDK. Most of these tools are console-based utility
applications. These tools can be used to help implement the security processes outlined earlier. They
are not described in great detail, though they do deserve a review. Basically, two groups of tools are
provided with the SDK:

❑ Permissions and assembly management tools

❑ Certificate management tools

510

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 511

Chapter 12: Security in the .NET Framework

Permissions and Assembly Management Tools

Program Name Function

Caspol.exe Stands for Code Access Security Policy tool. This tool enables you to view and
modify security settings.

Signcode.exe A file signing tool that enables you to digitally sign your executable files

Storeadm.exe An administrative tool for isolated storage management. It restricts code access
to the filing system.

Permcalc.exe Emulates the complete path of your assembly and all the permissions that it
requires. It can also evaluate assemblies and provide information on the
permissions an end user would require to run the program.

Permview.exe Displays an assembly’s requested access permissions

Peverify.exe Checks whether the executable file will pass the runtime test for type-safe coding

Secutil.exe Extracts a public key from a certificate and puts it in a format that is usable in
your source code

Sn.exe Creates assemblies with strong names — that is, a digitally signed namespace
and version information

Certificate Management Tools

Program Name Function

Makecert.exe Creates an X.509 certificate for testing purposes

Certmgr.exe Assembles certificates into a CTL (Certificate Trust List). It can also be used for
revoking certificates.

Chktrust.exe Validates a signed file containing data, its PKCS#7 hash, and a X.509 certificate

Cert2spc.exe Creates an SPC (Software Publisher Certificate) from an X.509 certificate

Exceptions Using the SecurityException Class
In this latest release of the .NET Framework, the SecurityException class has been greatly expanded
to provide considerably more detailed information on the types of exceptions that are encountered in a
security context.

In the past, using the .NET Framework versions 1.0/1.1, the SecurityException class provided very little
information in terms of actually telling you what was wrong and why the exception was thrown. Due to

511

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 512

Chapter 12: Security in the .NET Framework

this limitation, the .NET Framework 2.0 added a number of new properties to the SecurityException
class. The following table details the properties of the SecurityException class:

Properties Description

Action Retrieves the security action that caused the exception to occur

Demanded Returns the permissions, permission sets, or permission set
collections that caused the error to occur

DenySetInstance Returns the denied permissions, permissions sets, or permission set
collections that caused the security actions to fail

FailedAssemblyInfo Returns information about the failed assembly

FirstPermissionThatFailed Returns the first permission contained in the permissions set or
permission set collection that failed

GrantedSet Returns the set of permissions that caused the security actions to fail

Method Returns information about the method connected to the exception

PermissionState Returns the state of the permission that threw the exception

PermissionType Returns the type of the permission that threw the exception

PermitOnlySetInstance Returns a permissions set or permission set collection that is part of
the permit-only stack frame if a security action has failed

RefusedSet Returns the permissions that were refused by the assembly

Url Returns the URL of the assembly that caused the exception

Zone Returns the zone of the assembly that caused the exception

Clearly, you can get your hands on a lot of information if a security exception is thrown in your appli-
cation. For instance, you can use something similar to the following Catch section of code to check for
security errors:

Dim myFile as FileInfo

Try
myFile = _

My.Computer.FileSystem.GetFileInfo("C:\testingsecurity\testing.txt")
Catch ex As Security.SecurityException

MessageBox.Show(ex.Method.Name.ToString())
End Try

One nice addition to the SecurityException class is how Visual Studio so easily works with it. When
you encounter a SecurityException error while working in the Debug mode of your solution, you will
get a warning directly in the IDE, similar to the warning shown in Figure 12-20 .

You can also have Visual Studio provide a detailed view of the error by breaking down the
SecurityException object in the Locals window of Visual Studio when you catch the error using a
Try-Catch statement.

512

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 513

Chapter 12: Security in the .NET Framework

Figure 12-20

Cryptography Basics
Rather than present a general exposition of cryptography, this section is meant to familiarize you with
basic techniques required to deal with .NET security and protect your Web services through encryption.
The three building blocks you need are hashing algorithms, secret key encryption, and an understanding
of the Public Key Cryptographic System (PKCS).

Hashing algorithms digest long sequences of data into short footprints, the most popular being 64-bit
hash keys. The two most popular hashing algorithms are SHA (Secure Hash Algorithm) and MD5
(Message-Digest algorithm 5). These hash keys are used for signing digital documents; in other words,
the hash is generated and encrypted using a private key.

Secret key encryption is commonly used to protect data through passwords and pass phrases (long
phrases that would be difficult to guess). Secret key encryption is suitable for situations where the
encrypted data needs to be accessed by the same person who protected it.

Public Key Cryptography is most widely used in protecting the data through encryption. It is also used
for digital signatures. Public Key Cryptography is based on asymmetric keys, which means you always
have a pair of keys. One is known to all and is called the public key. The other key of the pair is kept secret
and is known only to the owner. This is called the private key. If you use the public key to encrypt data, it
can only be decrypted using the corresponding private key of the key pair, and vice versa.

Because the public key is known to all, anyone can decrypt the information. However, the private key
is known only to the owner, so this process acts as a digital signature. In other words, if the public
key decrypts the message, then you know that the sender was the owner of the private key. As sug-
gested earlier, rather than encrypt the whole document using the private key, a hash algorithm is used
to digest the data into a compact form, which is then encrypted using the private key. The result of this
process is called the digital signature of the digital document.

513

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 514

Chapter 12: Security in the .NET Framework

If the data is encrypted using the public key, then it can only be decrypted by the corresponding private
key, which means that only the owner of the private key will be able to read the unencrypted data.
This can be used for encryption purposes. The cryptographic namespace of the .NET Framework is
System.Security.Cryptography.

Hash Algorithms
Hash algorithms are also called one-way functions because of their mathematical property of nonre-
versibility. The hash algorithms reduce large binary strings into a fixed-length binary byte array. This
fixed-length binary array is used for computing digital signatures, as explained earlier.

To verify a piece of information, the hash is recomputed and compared against a previously computed
hash value. If both values match, then the data has not been altered. Cryptographic hashing algorithms
map a large stream of binary data to a much shorter fixed length, so it is theoretically possible for two
different documents to have the same hash key.

Although it is theoretically possible for two documents to have the same MD5 hash key and a different
checksum, it is computationally impossible to create a forged document having the same hash key as
the original hash value. Consider the case of a virus attack on an executable code. In the late 1980s, as a
protective measure against accidental or malicious damage to the code’s integrity, the most sophisticated
technique available was to create a checksum or a CRC (cyclic redundancy check).

Virus makers drew cunning designs to create viruses that added padding code to the victim’s files so that
the checksum and CRC remained unchanged in spite of the infection. However, using MD5 hash values,
this kind of stealth attack is rendered unfeasible.

Windows Meta Files (WMF) still use checksums in the file header. For example, the .NET Framework
class System.Drawing.Imaging.WmfPlaceableFileHeader has a read/write property of type short
called Checksum. However, due to ease of computation, this checksum is used only as a cheap mode of
protection against accidental damage, rather than against malicious attacks.

Here is a simple program to calculate a checksum:

’ Cryptography/Checksum.vb

Imports System
Imports System.IO

Module Module1

This is the entry point for the program. Here, you check to see whether you’ve received the correct
argument from the command line to run the program, and stop the program if you haven’t:

Public Sub Main(ByVal CmdArgs() As String)
If (CmdArgs.Length <> 1) Then

Console.WriteLine("Usage: Checksum <filename>")
End

End If

First, you open the file for which the checksum is to be computed:

Dim fs As FileStream = File.OpenRead(CmdArgs(0))

514

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 515

Chapter 12: Security in the .NET Framework

You then compute the checksum, close the file, and then output the result to the screen:

Dim sum As Short = compute(fs)
fs.Close()

Console.WriteLine(sum)
End Sub

The following method computes the checksum:

Function compute(ByVal strm As Stream)
Dim sum As Long = 0
Dim by As Integer

strm.Position = 0
by = strm.ReadByte

While (by <> -1)
sum = (((by Mod &HFF) + sum) Mod &HFFFF)
by = strm.ReadByte

End While

Return CType((sum Mod &HFFFF), Short)
End Function

End Module

Compile this program with the following in the VB compiler (or build and run your application if you
are using Visual Studio):

vbc Checksum.vb

Run it with the following:

Checksum <filename>

Due to their unsafe nature, checksums and CRCs are sometimes deemed poor cousins of cryptographic
hash algorithms. The next section describes classes provided by the .NET Framework to cater to
cryptographic-grade algorithms.

Cryptographic Hash Algorithms
The abstract class System.Security.Cryptography.HashAlgorithm represents the concept of crypto-
graphic hash algorithms within the .NET Framework. The framework provides eight classes that extend
the HashAlgorithm abstract class:

❑ MD5CryptoServiceProvider (extends abstract class MD5)

❑ RIPEMD160Managed (extends abstract class RIPEMD160)

❑ SHA1CryptoServiceProvider (extends abstract class SHA1)

❑ SHA256Managed (extends abstract class SHA256)

❑ SHA384Managed (extends abstract class SHA384)

❑ SHA512Managed (extends abstract class SHA512)

515

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 516

Chapter 12: Security in the .NET Framework

❑ HMACSHA1 (extends abstract class KeyedHashAlgorithm)

❑ MACTripleDES (extends abstract class KeyedHashAlgorithm)

The last two classes belong to a class of algorithm called keyed hash algorithms. The keyed hashes extend
the concept of the cryptographic hash with the use of a shared secret key. This is used for computing the
hash of data transported over an unsecured channel.

The following is an example of computing a hash value of a file:

’ Cryptography/TestKeyHash.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports System.Runtime.Serialization.Formatters

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 1) Then
Console.WriteLine("Usage: TestKeyHash <filename>")
End

End If

The next snippet creates the object instance of the .NET SDK Framework class with a salt (a random secret
to confuse a snooper):

Dim key() As Byte = Encoding.ASCII.GetBytes("My Secret Key".ToCharArray())
Dim hmac As HMACSHA1 = New HMACSHA1(key)
Dim fs As FileStream = File.OpenRead(CmdArgs(0))

The next four lines compute the hash, convert the binary hash into a printable Base64 format, close the
file, and then print the Base64 encoded string as the result of hashing to the screen:

Dim hash() As Byte = hmac.ComputeHash(fs)
Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()

Console.WriteLine(b64)
End Sub

End Module

The code can be compiled at the command line using the following:

vbc TestKeyHash.vb

To execute the code, use the following command at the console prompt:

TestKeyHash TestKeyHash.vb

516

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 517

Chapter 12: Security in the .NET Framework

This should produce a hashed output:

IOEj/D0rOxjEqCD8qHoYm+yWw6I=

The previous example uses an instance of the HMACSHA1 class. The output displayed is a Base64 encoding
of the binary hash result value. Base64 encoding is widely used in MIME and XML file formats to repre-
sent binary data. To recover the binary data from a Base64-encoded string, you could use the following
code fragment:

Dim orig() As Byte = Convert.FromBase64String(b64)

The XML parser, however, does this automatically, as shown in later examples.

SHA
Secure Hash Algorithm (SHA) is a block cipher that operates on a block size of 64 bits. However, the
subsequent enhancements of this algorithm have bigger key values, thus increasing the value range and
therefore enhancing the cryptographic utility. Note that the bigger the key value sizes, the longer it takes
to compute the hash. Moreover, for relatively smaller data files, smaller hash values are more secure.
To put it another way, the hash algorithm’s block size should be less than or equal to the size of the
data itself.

The hash size for the SHA1 algorithm is 160 bits. Similar to the HMACSHA1 code discussed previously,
the following code shows how to use it:

’ Cryptography/TestSHA1.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports System.Runtime.Serialization.Formatters

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 1) Then

Console.WriteLine("Usage: TestSHA1 <filename>")

End
End If
Dim fs As FileStream = File.OpenRead(CmdArgs(0))

Dim sha As SHA1 = New SHA1CryptoServiceProvider()
Dim hash() As Byte = sha.ComputeHash(fs)

Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()

Console.WriteLine(b64)
End Sub

End Module

517

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 518

Chapter 12: Security in the .NET Framework

The .NET Framework provides bigger key size algorithms as well — namely, SHA256, SHA384, and
SHA512. The numbers at the end of the name indicate the block size.

The class SHA256Managed extends the abstract class SHA256, which in turn extends the abstract class
HashAlgorithm. The Forms Authentication module of ASP.NET security (System.Web.Security
.FormsAuthenticationModule) uses SHA1 as one of its valid formats to store and compare user
passwords.

MD5
MD5 stands for Message-Digest algorithm 5. It is a cryptographic, one-way hash algorithm. The MD5
algorithm competes well with SHA. MD5 is an improved version of MD4, devised by Ronald Rivest of
RSA fame. In fact, FIPS PUB 180-1 states that SHA-1 is based on principles similar to MD4. The salient
features of this class of algorithms are as follows:

❑ It is computationally unfeasible to forge an MD5 hash digest.

❑ MD5 is not based on any mathematical assumption such as the difficulty of factoring large binary
integers.

❑ MD5 is computationally cheap, and therefore suitable for low latency requirements.

❑ It is relatively simple to implement.

MD5 is the de facto standard for hash digest computation, due to the popularity of RSA. The .NET
Framework provides an implementation of this algorithm through the class MD5CryptoServiceProvider
in the System.Security.Cryptography namespace. This class extends the MD5 abstract class, which in
turn extends the abstract class HashAlgorithm. This class shares a common base class with SHA1, so the
examples previously discussed can be modified easily to accommodate it:

Dim fs As FileStream = File.OpenRead(CmdArgs(0))

Dim md5 As MD5 = New MD5CryptoServiceProvider()
Dim hash() As Byte = md5.ComputeHash(fs)

Dim b64 As String = Convert.ToBase64String(hash)
fs.Close()

Console.WriteLine(b64)

RIPEMD-160
Based on MD5, RIPEMD-160 started as a project in Europe called RIPE (RACE Integrity Primitives Evalu-
ation Message Digest) in 1996. By 1997, the design of RIPEMD-160 was finalized. RIPEMD-160 is a 160-bit
hash algorithm that is meant to be a replacement for MD4 and MD5.

The .NET Framework 2.0 introduced the RIPEMD160 class to work with this iteration of encryption
techniques. The following code demonstrates the use of this class:

Dim fs As FileStream = File.OpenRead(CmdArgs(0))

Dim myRIPEMD As New RIPEMD160Managed()

518

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 519

Chapter 12: Security in the .NET Framework

Dim hash() As Byte = myRIPEMD.ComputeHash(fs)

Dim b64 As String = Convert.ToBase64String(hash)

fs.Close()
Console.WriteLine(b64)

Secret Key Encryption
Secret key encryption is widely used to encrypt data files using passwords. The simplest technique is to
seed a random number using a password, and then encrypt the files with an XOR operation using this
random number generator.

The .NET Framework represents the secret key by an abstract base class SymmetricAlgorithm. Four
concrete implementations of different secret key algorithms are provided by default:

❑ DESCryptoServiceProvider (extends abstract class DES)

❑ RC2CryptoServiceProvider (extends abstract class RC2)

❑ RijndaelManaged (extends abstract class Rijndael)

❑ TripleDESCryptoServiceProvider (extends abstract class TripleDES)

Let’s explore the SymmetricAlgorithm design. As indicated by the following example code, two separate
methods are provided to access encryption and decryption. Here is a console application program that
encrypts and decrypts a file, given a secret key:

’ Cryptography/SymEnc.vb

Imports System.Security.Cryptography
Imports System.IO
Imports System

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 4) Then
UsageAndExit()

End If

The following computes the index of the algorithm that we’ll use:

Dim algoIndex As Integer = CmdArgs(0)

If (algoIndex < 0 Or algoIndex >= algo.Length) Then
UsageAndExit()

End If

The following opens the input and output files (the filename represented by CmdArgs(3)is the output file,
and CmdArgs(2)is the input file):

Dim fin As FileStream = File.OpenRead(CmdArgs(2))
Dim fout As FileStream = File.OpenWrite(CmdArgs(3))

519

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 520

Chapter 12: Security in the .NET Framework

We create the symmetric algorithm instance using the .NET Framework class SymmetricAlgorithm. This
uses the algorithm name indexed by the CmdArgs(0)parameter. After this, we set the key parameters and
display them onscreen for information:

Dim sa As SymmetricAlgorithm = _
SymmetricAlgorithm.Create(algo(algoIndex))

sa.IV = Convert.FromBase64String(b64IVs(algoIndex))
sa.Key = Convert.FromBase64String(b64Keys(algoIndex))

Console.WriteLine("Key " + CType(sa.Key.Length, String))
Console.WriteLine("IV " + CType(sa.IV.Length, String))
Console.WriteLine("KeySize: " + CType(sa.KeySize, String))
Console.WriteLine("BlockSize: " + CType(sa.BlockSize, String))
Console.WriteLine("Padding: " + CType(sa.Padding, String))

At this point, we check which operation is required, and execute the appropriate static method:

If (CmdArgs(1).ToUpper().StartsWith("E")) Then
Encrypt(sa, fin, fout)

Else
Decrypt(sa, fin, fout)

End If
End Sub

Here is where the encryption itself takes place:

Public Sub Encrypt(ByVal sa As SymmetricAlgorithm, _
ByVal fin As Stream, _
ByVal fout As Stream)

Dim trans As ICryptoTransform = sa.CreateEncryptor()
Dim buf() As Byte = New Byte(2048) {}
Dim cs As CryptoStream = _

New CryptoStream(fout, trans, CryptoStreamMode.Write)
Dim Len As Integer

fin.Position = 0
Len = fin.Read(buf, 0, buf.Length)

While (Len > 0)
cs.Write(buf, 0, Len)
Len = fin.Read(buf, 0, buf.Length)

End While

cs.Close()
fin.Close()

End Sub

Here’s the decryption method:

Public Sub Decrypt(ByVal sa As SymmetricAlgorithm, _
ByVal fin As Stream, _
ByVal fout As Stream)

Dim trans As ICryptoTransform = sa.CreateDecryptor()

520

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 521

Chapter 12: Security in the .NET Framework

Dim buf() As Byte = New Byte(2048) {}
Dim cs As CryptoStream = _

New CryptoStream(fin, trans, CryptoStreamMode.Read)
Dim Len As Integer

Len = cs.Read(buf, 0, buf.Length)

While (Len > 0)
fout.Write(buf, 0, Len)
Len = cs.Read(buf, 0, buf.Length)

End While

fin.Close()
fout.Close()

End Sub

This next method prints usage information:

Public Sub UsageAndExit()
Console.Write("Usage SymEnc <algo index> <D|E> <in> <out> ")
Console.WriteLine("D =decrypt, E=Encrypt")

For i As Integer = 0 To (algo.Length - 1)
Console.WriteLine("Algo index: {0} {1}", i, algo(i))

Next i
End

End Sub

The static parameters used for object creation are indexed by CmdArgs(0). How you arrive at these magic
numbers is explained shortly:

Dim algo() As String = {"DES", "RC2", "Rijndael", "TripleDES"}
Dim b64Keys() As String = {"YE32PGCJ/g0=", _

"vct+rJ09WuUcR61yfxniTQ==", _
"PHDPqfwE3z25f2UYjwwfwg4XSqxvl8WYmy+2h8t6AUg=", _
"Q1/lWoraddTH3IXAQUJGDSYDQcYYuOpm"}

Dim b64IVs() As String = {"onQX8hdHeWQ=", _
"jgetiyz+pIc=", _
"pd5mgMMfDI2Gxm/SKl5I8A==", _
"6jpFrUh8FF4="}

End Module

After compilation, this program can encrypt and decrypt using all four of the symmetric key implemen-
tations provided by the .NET Framework. The secret keys and their initialization vectors (IVs) have been
generated by a simple source code generator, examined shortly.

The following commands encrypt and decrypt files using the DES algorithm. The first command takes a
text file, 1.txt, and uses the DES algorithm to create an encrypted file called 2.bin. The next command
decrypts this file and stores it in 3.bin:

SymEnc 0 E 1.txt 2.bin
SymEnc 0 D 2.bin 3.bin

521

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 522

Chapter 12: Security in the .NET Framework

The first parameter of the SymEnc program is an index to the string array, which determines the algorithm
to be used:

Dim algo() As String = {"DES", "RC2", "Rijndael", "TripleDES"}

The string defining the algorithm is passed as a parameter to the static Create method of the abstract
class SymmetricAlgorithm. This class has an abstract factory design pattern:

Dim sa As SymmetricAlgorithm = SymmetricAlgorithm.Create(algo(algoIndex))

To encrypt, you get an instance of the ICryptoTransform interface by calling the
CreateEncryptor method of the SymmetricAlgorithm class extender:

Dim trans As ICryptoTransform = sa.CreateEncryptor()

Similarly, for decryption, you get an instance of the ICryptoTransform interface by calling the
CreateDecryptor method of the SymmetricAlgorithm class instance:

Dim trans As ICryptoTransform = sa.CreateDecryptor()

You use the class CryptoStream for both encryption and decryption, but the parameters to the constructor
differ. Encryption uses the following code:

Dim cs As CryptoStream = New CryptoStream(fout, trans, CryptoStreamMode.Write)

Similarly, decryption uses this code:

Dim cs As CryptoStream = New CryptoStream(fin, trans, CryptoStreamMode.Read)

You call the Read and Write methods of the CryptoStream for decryption and encryption, respectively.
For generating the keys, you use a simple code generator, as follows:

’ Cryptography/SymKey.vb

Imports System.IO
Imports System.Security.Cryptography
Imports System.Text

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

Dim keyz As StringBuilder = New StringBuilder
Dim ivz As StringBuilder = New StringBuilder

keyz.Append("Dim b64Keys() As String = { _" + VbCrLf)
ivz.Append(VbCrLf + "Dim b64IVs() As String = { _" + VbCrLf)

The algorithm names for symmetric keys used by .NET SDK are given the correct index values here:

Dim algo() As String = {"DES", "RC2", "Rijndael", "TripleDES"}

522

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 523

Chapter 12: Security in the .NET Framework

For each of the algorithms, you generate the keys and IV:

Dim comma As String = ", _" + VbCrLf

For i As Integer = 0 To 3
Dim sa As SymmetricAlgorithm = SymmetricAlgorithm.Create(algo(i))

sa.GenerateIV()
sa.GenerateKey()

Dim Key As String
Dim IV As String

Key = Convert.ToBase64String(sa.Key)
IV = Convert.ToBase64String(sa.IV)

keyz.AppendFormat(vbTab + """" + Key + """" + comma)
ivz.AppendFormat(vbTab + """" + IV + """" + comma)

If i = 2 Then comma = " "
Next i

Here, you print or emit the source code:

keyz.Append("}")
ivz.Append("}")

Console.WriteLine(keyz.ToString())
Console.WriteLine(ivz.ToString())

End Sub
End Module

The preceding program creates a random key and an initializing vector for each algorithm. This
output can be inserted directly into the SymEnc.vb program. The simplest way to do this is to type the
following:

SymKey > keys.txt

This redirects the information into a file called keys.txt, which you can then use to cut and paste the
values into your program. You use the StringBuilder class along with the control character crlf (car-
riage return and line feed) to format the text so that it can be inserted directly into your program. You
then convert the binary data into Base64 encoding using the public instance method ToBase64String of
the class Convert. Kerberos, the popular network authentication protocol supported by Windows Server
2003, Windows 2000, and all of the UNIX flavors, uses secret key encryption to implement security.

PKCS
The Public Key Cryptographic System is a type of asymmetric key encryption. This system uses two keys,
one private and the other public. The public key is widely distributed, whereas the private key is kept
secret. One cannot derive or deduce the private key by knowing the public key, so the public key can be
safely distributed.

523

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 524

Chapter 12: Security in the .NET Framework

The keys are different, yet complementary. That is, if you encrypt data using the public key,
then only the owner of the private key can decipher it, and vice versa. This forms the basis of PKCS
encryption.

If the private key holder encrypts a piece of data using his or her private key, any person with access to
the public key can decrypt it. The public key, as the name suggests, is available publicly. This property
of the PKCS is exploited along with a hashing algorithm, such as SHA or MD5, to provide a verifiable
digital signature process.

The abstract class System.Security.Cryptography.AsymmetricAlgorithm represents this concept in the
.NET Framework. Two concrete implementations of this class are provided by default:

❑ DSACryptoServiceProvider, which extends the abstract class DSA

❑ RSACryptoServiceProvider, which extends the abstract class RSA

DSA (Digital Signature Algorithm) was specified by NIST (National Institute of Standards and Technol-
ogy) in January 2000. The original DSA standard, however, was issued by NIST much earlier, in August
1991. DSA cannot be used for encryption and is good only for digital signature. Digital signature is
discussed in more detail in the next subsection.

RSA algorithms can also be used for encryption as well as digital signatures. RSA is the de facto standard
and has much wider acceptance than DSA. RSA is a tiny bit faster than DSA as well.

The RSA algorithm is named after its three inventors: Rivest, Shamir, and Adleman. It was patented in
the United States, but the patent expired in September 2000. RSA can be used for both digital signature
and data encryption. It is based on the assumption that large numbers are extremely difficult to fac-
tor. The use of RSA for digital signatures is approved within the FIPS PUB 186-2 and is defined in the
ANSI X9.31 standard document.

To gain some practical insights into RSA implementation of the .NET Framework, consider the follow-
ing code (for this to compile, you also have to make a reference to the System.Security DLL in your
project):

’ Cryptography/TestRSAKey.vb

Imports System.Security.Cryptography.Xml

Module Module1
Sub Main()

Dim RSA As RSAKeyValue = New RSAKeyValue
Dim str As String = RSA.Key.ToXmlString(True)
System.Console.WriteLine(str)

End Sub
End Module

This code creates a pair of private and public keys and prints it out at the command line in XML format.
To compile the preceding code, simply open a console session, run corvar.bat (if necessary), set the
.NET SDK paths, and compile the program by typing the following command:

TestRSAKey.vb

524

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 525

Chapter 12: Security in the .NET Framework

This should produce a file called TestRSAKey.exe. Execute this program and redirect the output to a file
such as key.xml:

TestRSAKey > key.xml

The file key.xml contains all the private and public members of the generated RSA key object. You can
open this XML file in Internet Explorer 5.5 or later. If you do so, you will notice that the private member
variables are also stored in this file. The binary data representing the large integers is encoded in Base64
format.

The preceding program uses an RSAKeyValue instance to generate a new key pair. The class RSAKeyValue
is contained in the System.Security.Cryptography.Xml namespace. This namespace can be thought of
as the XML face of the .NET cryptographic framework. It contains a specialized, lightweight implemen-
tation of XML for the purpose of cryptography, and the model allows XML objects to be signed with a
digital signature.

The System.Security.Cryptography.Xml namespace classes depend upon the classes contained in the
System.Security.Cryptography namespace for the actual implementation of cryptographic algorithms.

The key.xml file, generated by redirecting the output of the Visual Basic test program TestRSAKey, con-
tains both private and public keys. However, you need to keep the private key secret while making the
public key widely available. Therefore, you need to separate the public key from the key pair. Here is the
program to do that:

’ Cryptography/TestGetPubKey.vb

Imports System.IO
Imports System.Text
Imports System.Security.Cryptography

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 1) Then
Console.WriteLine("Usage: TestGetPubKey <key pair xml>")
End

End If

Dim xstr As String = File2String(CmdArgs(0))

The following code creates an instance of the RSA implementation and reinitializes the internal variables
through the XML-formatted string:

Dim rsa As RSACryptoServiceProvider = New RSACryptoServiceProvider()
rsa.FromXmlString(xstr)

Dim x As String = rsa.ToXmlString(False)
Console.WriteLine(x)

End Sub

Public Function File2String(ByVal fname As String)
Dim finfo As FileInfo = New FileInfo(fname)
Dim buf() As Byte = New Byte(finfo.Length) {}

525

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 526

Chapter 12: Security in the .NET Framework

Dim fs As FileStream = File.OpenRead(fname)

fs.Read(buf, 0, buf.Length)

Return (New ASCIIEncoding).GetString(buf)
End Function

End Module

This program is logically similar to TestRSAKey.vb except that it has to read the key file and pass a
different parameter in the ToXmlString method.

The cryptography classes use a lightweight XML implementation, thus avoiding the elaborate ritual of
parsing the fully formed generic XML data containing serialized objects. This has another advantage,
speed, because it bypasses the DOM parsers. To compile the previous code, type the following:

vbc /r:System.Security.dll TestGetPubKey.vb

This should produce the file TestGetPubKey.exe. Run this file, giving key.xml as the name of the input
file, and redirect the program’s output to pub.xml. This file contains an XML-formatted public key. The
binary data, basically binary large integers, are Base64 encoded. You may recall that key.xml contains
both the public and private key pairs, and was generated by redirecting the output of TestRSAKey.exe.
The following line redirects key.xml’s public key to pub.xml:

TestGetPubKey key.xml > pub.xml

The following program tests the encrypt and decrypt feature of the RSA algorithm:

’ Cryptography/TestCrypt.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If (CmdArgs.Length <> 4) Then
Console.WriteLine("Usage: TestCrypt <key xml> <E|D> <in> <out>")
Console.WriteLine(" E= Encrypt, D= Decrypt (needs private key)")
End

End If

Here, you read the public or private key into memory:

Dim xstr As String = File2String(CmdArgs(0))

You create an instance of an RSA cryptography service provider and initialize the parameters based on
the XML lightweight filename passed in CmdArgs(0):

Dim RSA As New RSACryptoServiceProvider()
RSA.FromXmlString(xstr)

526

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 527

Chapter 12: Security in the .NET Framework

Display the key filename:

Console.WriteLine("Key File: " + CmdArgs(0))
Dim op As String= "Encrypted"

Read the input file and store it into a byte array:

Dim info As FileInfo = New FileInfo(CmdArgs(2))
Dim inbuflen As Integer = CType(info.Length, Integer)
Dim inbuf() As Byte = New Byte(inbuflen-1) {}
Dim outbuf() As Byte
Dim fs As FileStream = File.OpenRead(CmdArgs(2))

fs.Read(inbuf, 0, inbuf.Length)
fs.Close()

Either encrypt or decrypt depending on the CmdArgs(1)option:

If (CmdArgs(1).ToUpper().StartsWith("D")) Then
op = "Decrypted"
outbuf = rsa.Decrypt(inbuf, False)

Else
outbuf = rsa.Encrypt(inbuf, False)

End If

Now write the result in the output buffer into the file and display the result:

fs = File.OpenWrite(CmdArgs(3))
fs.Write(outbuf, 0, outbuf.Length)
fs.Close()

Console.WriteLine(op + " input [" + CmdArgs(2) + "] to output [" _
+ CmdArgs(3) + "]")

End Sub

Here’s a helper method to read the filename passed as an argument and convert the content to a string:

Public Function File2String(ByVal fname As String)
Dim finfo As FileInfo = New FileInfo(fname)
Dim buf() As Byte = New Byte(finfo.Length) {}
Dim fs As FileStream = File.OpenRead(fname)

fs.Read(buf, 0, buf.Length)
fs.Close()

Return (New ASCIIEncoding).GetString(buf)
End Function

End Module

This test program encrypts or decrypts a short file depending on the parameters supplied to it. It takes
four parameters: the XML-formatted private or public key file, option E or D, representing the encrypt or
decrypt options, respectively, and input and output filenames.

527

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 528

Chapter 12: Security in the .NET Framework

This program can be compiled with the following command:

vbc /r:System.Security.dll TestCrypt.vb

The preceding command produces a PE file, TestCrypt.exe. To test the encrypt and decrypt
functions, create a small plain-text file called 1.txt. Recall that we also created two other files: key.xml
and pub.xml. The file key.xml contains a key pair, and pub.xml contains the public key extracted from
the file key.xml.

To encrypt the plain-text file plain.txt, use the following command:

TestCrypt pub.xml E 1.txt rsa.bin

Note that you have used the public key file to encrypt it. You can type the output on the console, but this
won’t make any sense because it contains binary data. You could use a binary dump utility to dump out
the file’s content. If you do this, then note that the total number of bytes is 128, compared to the input of
13 bytes. This is because the RSA is a block cipher algorithm and the block size equals the key size, so
the output is always in multiples of the block size. You may wish to rerun the preceding examples with
larger files to see the resulting encrypted file length.

Now decrypt the file to get back the original text:

TestCrypt key.xml D rsa.bin decr.txt

The key.xml file, which also contains the private key, is used to decrypt because you use the public key
to encrypt, and the private key to decrypt. In other words, anyone may send encrypted documents to
you if they know your public key, but only you can decrypt such messages. The reverse is true for digital
signatures, covered in the next section.

Digital Signature Basics
Digital signature is the encryption of a hash digest (for example, MD5 or SHA-1) of data using a public
key. The digital signature can be verified by decrypting the hash digest and comparing it against a hash
digest computed from the data by the verifier.

As noted earlier, the private key is known only to the owner, so the owner can sign a digital document by
encrypting the hash computed from the document. The public key is known to all, so anyone can verify
the signature by recomputing the hash and comparing it against the decrypted value, using the public
key of the signer.

The .NET Framework provides DSA and RSA digital signature implementations by default. This section
considers only DSA, as RSA was covered in the preceding section. Both of the implementations extend
the same base class, so all programs for DSA discussed here work for RSA as well.

First, go through the same motions of producing a key pair and a public key file and then sign and verify
the signature:

’ Cryptography/GenDSAKeys.vb

Imports System
Imports System.Security.Cryptography

528

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 529

Chapter 12: Security in the .NET Framework

Imports VB_Security.FileUtil

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()
Dim prv As String = dsa.ToXmlString(True)
Dim pub As String = dsa.ToXmlString(False)
Dim fileutil As FileUtil = New FileUtil()

fileutil.SaveString("dsa-key.xml", prv)
fileutil.SaveString("dsa-pub.xml", pub)

Console.WriteLine("Created dsa-key.xml and dsa-pub.xml")
End Sub

End Module

This code generates two XML-formatted files, dsa-key.xml and dsa-pub.xml, containing private and
public keys, respectively. Before you can run this, however, you need to create the FileUtil class used
to output the two files:

’ Cryptography/FileUtil.vb

Imports System.IO
Imports System.Text

Public Class FileUtil
Public Sub SaveString(ByVal fname As String, ByVal data As String)

SaveBytes(fname, (New ASCIIEncoding).GetBytes(data))
End Sub

Public Function LoadString(ByVal fname As String)
Dim buf() As Byte = LoadBytes(fname)
Return (New ASCIIEncoding).GetString(buf)

End Function

Public Function LoadBytes(ByVal fname As String)
Dim finfo As FileInfo = New FileInfo(fname)
Dim length As String = CType(finfo.Length, String)
Dim buf() As Byte = New Byte(length) {}
Dim fs As FileStream = File.OpenRead(fname)

fs.Read(buf, 0, buf.Length)
fs.Close()

Return buf
End Function

Public Sub SaveBytes(ByVal fname As String, ByVal data() As Byte)
Dim fs As FileStream = File.OpenWrite(fname)

fs.SetLength(0)
fs.Write(data, 0, data.Length)
fs.Close()

End Sub
End Class

529

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 530

Chapter 12: Security in the .NET Framework

The following code signs the data:

’ Cryptography/DSASign.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports VB_Security.FileUtil

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 3 Then
Console.WriteLine("Usage: DSASign <key xml> <data> <sign>")
End

End If

Dim fileutil As FileUtil = New FileUtil()
Dim xkey As String = fileutil.LoadString(CmdArgs(0))
Dim fs As FileStream = File.OpenRead(CmdArgs(1))

The following two lines of code create the DSA provider instance and reconstruct the private key from
the XML format:

Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()
dsa.FromXmlString(xkey)

The next line signs the file:

Dim sig() As Byte = dsa.SignData(fs)
fs.Close()
fileutil.SaveString(CmdArgs(2), Convert.ToString(sig))
Console.WriteLine("Signature in {0}} file", CmdArgs(2))

End Sub
End Module

To verify the signature, you can use the following sample code:

’ Cryptography/DSAVerify.vb

Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text
Imports VB_Security.FileUtil

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 3 Then
Console.WriteLine("Usage: DSAVerify <key xml> <data> <sign>")
End

530

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 531

Chapter 12: Security in the .NET Framework

End If

Dim fileutil As FileUtil = New FileUtil()
Dim xkey As String = fileutil.LoadString(CmdArgs(0))
Dim data() As Byte = fileutil.LoadBytes(CmdArgs(1))
Dim xsig As String = fileutil.LoadString(CmdArgs(2))
Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider()

dsa.FromXmlString(xkey)
Dim xsigAsByte() As Byte = New Byte(xsig) {}

Dim verify As Boolean
verify = dsa.VerifyData(data, xsigAsByte)
Console.WriteLine("Signature Verification is {0}", verify)

End Sub
End Module

The actual verification is done using the highlighted code fragment. The next four commands compile
the source files:

vbc /target:library FileUtil.vb
vbc /r:FileUtil.dll GenDSAKeys.vb
vbc /r:FileUtil.dll DSASign.vb
vbc /r:FileUtil.dll DSAVerify.vb

There are many helper classes within the System.Security.Cryptography and the System.Security
.Cryptography.Xml namespaces, and they provide numerous features to help deal with digital signa-
tures and encryption. They also provide overlapping functionality, so there is more than one way of
doing the same thing.

X.509 Certificates
X.509 is a public key certificate exchange framework. A public key certificate is a digitally signed state-
ment by the owner of a private key, trusted by the verifier (usually a certifying authority), that certifies
the validity of the public key of another entity. This creates a trust relationship between two unknown
entities. This is an ISO standard specified by the document ISO/IEC 9594-8. X.509 certificates are also
used in SSL (Secure Sockets Layer), which is covered in the next section.

Many certifying authority services are available over the Internet. VeriSign (www.verisign.com) is the
most popular, and was founded by the RSA trio themselves. You can run your own Certificate Authority
(CA) service over an intranet using Microsoft Certificate Server.

The Microsoft .NET Framework SDK also provides tools for generating certificates for testing purposes.
The following command generates a test certificate:

makecert -n CN=Test test.cer

You can view it by double-clicking the test.cer file from Windows Explorer. The certificate is shown in
Figure 12-21. From the same dialog box, you can also install this certificate on your computer by clicking
the Install Certificate button.

531

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 532

Chapter 12: Security in the .NET Framework

Figure 12-21

Three classes dealing with X.509 certificates are provided in the .NET Framework in the namespace
System.Security.Cryptography.X509Certificates. The following program loads and manipulates
the certificate created earlier:

’ Cryptography/LoadCert.vb

Imports System
Imports System.Security.Cryptography.X509Certificates

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 1 Then
Console.Write("Usage loadCert <cert file>")
End

End If

Dim cert As X509Certificate = _
X509Certificate.CreateFromCertFile(CmdArgs(0))

Console.WriteLine("Hash= {0}", cert.GetCertHashString())
Console.WriteLine("Effective Date= {0}", _

cert.GetEffectiveDateString())
Console.WriteLine("Expire Date= {0}", _

cert.GetExpirationDateString())
Console.WriteLine("Issued By= {0}", cert.Issuer.ToString())

532

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 533

Chapter 12: Security in the .NET Framework

Console.WriteLine("Issued To= {0}", cert.Subject.ToString())
Console.WriteLine("Algo= {0}", cert.GetKeyAlgorithm())
Console.WriteLine("Pub Key= {0}", cert.GetPublicKeyString())

End Sub
End Module

The static method loads CreateFromCertFile (the certificate file) and creates a new instance of the class
X509Certificate. The next section deals with SSL, which uses X.509 certificates to establish the trust
relationship.

Secure Sockets Layer
The SSL (Secure Sockets Layer) protocol provides privacy and reliability between two communicat-
ing applications over the Internet. SSL is built over the TCP layer. In January 1999, the IETF (Internet
Engineering Task Force) adopted an enhanced version of SSL 3.0 called Transport Layer Security (TLS).
TLS is backwardly compatible with SSL, and is defined in RFC 2246. However, the name SSL was
retained due to wide acceptance of this Netscape protocol name. This section provides a simplified
overview of the SSL algorithm sequence. SSL provides connection-oriented security via the following
four properties:

❑ Connection is private and encryption is valid for the current session only.

❑ Symmetric key cryptography, like DES, is used for encryption. However, the session secret key
is exchanged using public key encryption.

❑ Digital certificates are used to verify the identities of the communicating entities.

❑ Secure hash functions, such as SHA and MD5, are used for message authentication
code (MAC).

The SSL protocol sets the following goals for itself:

❑ Cryptographic security — Uses symmetric key for session, and public key for authentication

❑ Interoperability — Interpolates OS and programming languages

❑ Extensibility — Adds new protocols for encrypting data that are allowed within the SSL
framework

❑ Relative efficiency — Reduces computation and network activity by using caching techniques

Two entities communicating using SSL protocols must have a public-private key pair, optionally with
digital certificates validating their respective public keys.

At the beginning of a session, the client and server exchange information to authenticate each other.
This ritual of authentication is called the handshake protocol. During this handshake, a session ID, the
compression method, and the cipher suite to be used are negotiated. If the certificates exist, then they are
exchanged. Although certificates are optional, either the client or the server may refuse to continue with
the connection and end the session in the absence of a certificate.

After receiving each other’s public keys, a set of secret keys based on a randomly generated number is
exchanged by encrypting them with each other’s public keys. After this, the application data exchange
can commence. The application data is encrypted using a secret key, and a signed hash of the data is sent
to verify data integrity.

533

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 534

Chapter 12: Security in the .NET Framework

Microsoft implements the SSL client in the .NET Framework classes. However, the server-side SSL can
be used by deploying your service through the IIS Web server. The following code fragment can be used
to access SSL-protected Web servers from the .NET platform:

Dim req As WebRequest = WebRequest.Create("https://www.reuters.com")
Dim result As WebResponse = req.GetResponse()

Note that the preceding URL starts with https, which signals the WebRequest class (part of System.Net)
to use the SSL protocol. Interestingly, the same code is useful for accessing unsecured URLs as well.

The following code is a program for accessing a secured URL. It takes care of minor details, such as
encoding:

’ Cryptography/GetWeb.vb

Imports System
Imports System.IO
Imports System.Net
Imports System.Text

Module Module1
Public Sub Main(ByVal CmdArgs() As String)

If CmdArgs.Length <> 1 Then
Console.WriteLine("Usage: GetWeb URL")
Console.WriteLine("Example: GetWeb https://www.reuters.com")
End

End If
Dim ms As String

You call the Create method (shown next) with a URL and an encoding format:

Try
ms = Create(CmdArgs(0), "utf-8")
Console.WriteLine(ms)

Catch x As Exception
Console.WriteLine(x.StackTrace)
Console.WriteLine("Bad URL: {0}", CmdArgs(0))

End Try
End Sub

Next is the Create method. Using the .NET Framework WebRequest object, you create an HTTP-secured
request object and get its response stream:

Function Create(ByVal url As String, ByVal encod As String) As String
Dim req As WebRequest = WebRequest.Create(url)
Dim result As WebResponse = req.GetResponse()
Dim ReceiveStream As Stream = result.GetResponseStream()

Create an encoding instance from the .NET Framework object, Encoding:

Dim enc As Encoding = System.Text.Encoding.GetEncoding(encod)

534

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 535

Chapter 12: Security in the .NET Framework

The following creates the stream reader:

Dim sr As StreamReader = New StreamReader(ReceiveStream, enc)

You read the stream fully. The entire Web page or serialized object is read into the responseString:

Dim response As String = sr.ReadToEnd()
Return response

End Function

Dim MaxContentLength As Integer = 16384 ’ 16k
End Module

The preceding console application gets a secured (SSL), protected URL and displays the content on the
console. To compile the code, use the following command:

vbc /r:System.dll GetWeb.vb

Summary
This chapter covered the basics of security and cryptography. It began with an overview of the secu-
rity architecture of the .NET Framework and looked at four types of security: NTFS, security policies,
cryptographic, and programmatic.

It went on to examine the security tools and functionality that the .NET Framework provides. You
examined the System.Security.Permissions namespace and learned how you can control code access
permissions, role-based permissions, and identity permissions. You also learned how you can manage
code access permissions and security policies for your code. Two tools were used — Caspol.exe and
Permview.exe — to help configure and view security at both the machine and user levels.

The second half of the chapter looked at cryptography, both the underlying theory and how it can be
applied within your applications. You looked at the different types of cryptographic hash algorithms,
including SHA, MD5, Secret Key Encryption, and PKCS. You should also understand how you can use
digital certificates (specifically, X.509 certificates) and Secure Socket Layers (SSL).

535

Evjen-91361 c12.tex V2 - 04/01/2008 4:01pm Page 536

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 537

Visual Studio 2008

It’s possible to work with Visual Basic without Visual Studio. In practice, however, the two are
almost inseparable; without a version of Visual Studio, you’re forced to work from the command
line to create project files by hand, to make calls to the associated compilers, and to manually
address the tools necessary to build your application. Thus, while it is possible, Visual Studio 2008
is the preferred environment for developing Visual Basic applications.

With the release of Visual Studio 2005, Microsoft expanded on the different versions of Visual
Studio available for use. Unlike the early versions, they’ve expanded what we’ll call the high-end
and low-end packages associated with Visual Studio. At the low-cost end, currently free, is Visual
Basic Express Edition. This tool enables you to build desktop applications with Visual Basic only.
Its companion for Web development is Visual Web Developer Express, which enables you to build
ASP.NET applications. At the high end, Microsoft offers Visual Studio Team System, available
only with a high-cost MSDN subscription, which includes many tools that extend Visual Studio
beyond the core Integrated Development Environment (IDE) to help improve design, testing, and
collaboration between developers.

Of course, the focus of this chapter is how Visual Studio enables you to use Visual Basic to build
applications geared toward ‘‘better, faster, cheaper’’ business goals. To this end, we’ll be examining
features of Visual Studio starting with those in the core Visual Basic 2008 Express Edition and
building up to the full Visual Studio Team Suite. Topics in this chapter include the following:

❑ Versions of Visual Studio

❑ Project templates

❑ Project properties — application, compilation, debug, and so on

❑ Setting properties

❑ IntelliSense, code expansion, and code snippets

❑ Targeting a runtime environment

❑ Debugging

❑ Recording and using macros

❑ The Class Designer

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 538

Chapter 13: Visual Studio 2008

❑ Visual Studio tools for Office

❑ Team System — Team Suite Client Tools

❑ Team Foundation Server — Team Explorer

This chapter provides an overview of many of the capabilities of Visual Studio 2008, with a brief
introduction to the features available by using one of the more feature-rich versions of Visual Studio. The
goal is to demonstrate how Visual Studio makes you, as a developer, more productive and successful.

Visual Studio 2008: Express through Team
Suite

Visual Studio 2003 was focused on .NET 1.1, and Visual Studio .NET (2002) was focused on .NET 1.0,
so each version of Visual Studio has been optimized for a particular version of .NET. Similarly, Visual
Studio 2005 was optimized for .NET 2.0, and with the exception of unsupported add-ons, didn’t support
the new features of .NET 3.0.

Fortunately, Microsoft chose to keep Visual Basic and ASP.NET unchanged for the .NET 3.0 Framework
release. However, when you looked at the new .NET 3.0 Framework elements, such as Windows Pre-
sentation Foundation, Windows Communication Foundation, and Windows Workflow Foundation, you
saw those items needed to be addressed outside of Visual Studio. Thus, while Visual Studio 2005 was
separate from Visual Basic and .NET development, in practical terms the two were tightly coupled.

With Visual Studio 2008, Microsoft provides robust support for the ability to target any of three different
versions of the .NET Framework. Visual Studio 2008 enables you to target an application to run on .NET
2.0, .NET 3.0, or .NET 3.5. However, as you’ll discover, this support doesn’t mean that Visual Studio 2008
isn’t tightly coupled to its own compiler. In fact, the new support for targeting frameworks is designed
to support a runtime environment, not a compile-time environment. This is important because Visual
Studio 2005 projects are converted to the Visual Studio 2008 format when you open them, after which
they cannot be reopened by Visual Studio 2005.

The reason for this is that the underlying build engine used by Visual Studio 2008 accepts syntax changes
and even language feature changes such as XML literals, but the Visual Studio 2005 engine does not
recognize these new elements of the language. Thus, if you move source code written in Visual Studio
2008 to Visual Studio 2005, you face a strong possibility that it would fail to compile. There are ways
to manually work with a project across versions 2005 and 2008 of Visual Studio on the same team, but
they are not supported. Bill Sheldon, one of the authors of this book, has a blog post from August 2007
that deals with his experience doing this titled ‘‘Working with Both VS 2005 and VS 2008 B2 on the Same
Project’’: http://blogs.interknowlogy.com/billsheldon/archive/2007/08/29/21175.aspx.

Multitargeting support by Visual Studio 2008 ensures that your application will run on a specific version
of the framework. Thus, if your organization is not supporting .NET 3.0 or .NET 3.5, you can still use
Visual Studio 2008 and be reasonably certain that your application will not reference files from one of
those other framework versions. Multitargeting is what enables you to safely deploy without requiring
your customers to download additional framework components they don’t need.

With those ground rules in place, what versions of Visual Studio 2008 are available and what are the
primary differences between them? As already mentioned, Visual Basic 2008 Express is at the bottom tier

538

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 539

Chapter 13: Visual Studio 2008

in terms of price and features. It is accompanied there by Visual Web Developer 2008 Express Edition, for
those developers who are developing Web applications, rather than desktop applications. These two tools
are separate, but both support developing different types of Visual Basic applications, and coincidentally
both are free. Note, however, that neither is extensible; these tools are meant to be introductory, and
Microsoft’s license prevents vendors from extending these tools with productivity enhancements.

However, each of the Express edition development tools also ships with two additional components
covered briefly here: MSDN Express Edition and SQL Server 2005 Express Edition. MSDN is, of course,
the Microsoft Developer Network, which has placed most of its content online. It’s the source for not
only the core language documentation for Visual Basic, but also articles on almost every product ori-
ented to developers using Microsoft technology. Full versions of Visual Studio ship with the full MSDN
library so that you can access its content locally. However, the Express Edition tools actually ship with a
pared-down 200 MB set of documentation files — of course, that’s still a lot of documentation.

Similar to the language and Web-based tools, Microsoft has a SQL Server Express Edition package. This
package actually has a history, in that it replaces the MSDE database engine that was available with SQL
Server 2000. The SQL Server Express engine provides the core SQL Server 2005 database engine. Unlike
MSDE, it also offers a free management application available via a separate download from Microsoft.

When you install Visual Studio 2008, including the Express Editions, you also have the opportunity
to install this core database engine. The elements of this engine are freely redistributable, so if you are
looking for a set of core database features based on ADO.NET, you can create your application and
deploy your SQL Server 2005 Express Edition database without being concerned about licensing. SQL
Server is covered in more detail in Chapter 14.

Getting back to the differences in versions, the Express Edition tools provide the core components nec-
essary to create Visual Basic applications (Windows or Web) based on the core IDE. The following table
provides a quick summary of what versions are available, including a description of how each extends
Visual Studio:

Visual Studio Edition Description

Visual Basic 2008 Express
Edition

This is the core set of functionality required for creating
Windows-based applications. It includes the IDE with full local
debugging support and support for five project types: Windows
Forms Application, Dynamic Link Library, WPF Application,
WPF Browser Application, and Console Application.

Visual Web Developer 2008
Express Edition

The core set of functionality required for building Web
applications. It supports both Visual Basic and C# and allows for
local debugging of your Web application.

Visual Studio 2008 Standard
Edition

Provides a combined development language for the core Visual
Studio languages (J#, VB, C# and C++). It adds the Object
Modeling tool, and provides combined support for both
Windows and Web applications. It also provides additional
support for application deployment, and support for Mobile
Application Development, integration with a source control tool,
and macros within Visual Studio; it is also extensible.

539

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 540

Chapter 13: Visual Studio 2008

Visual Studio Edition Description

Visual Studio 2008
Professional Edition

Expands on Visual Studio Standard Edition with additional
integration to SQL Server and support for XSLTs. It also includes
support for Visual Studio Tools for Office, which enables you to
create custom client (Word, Excel, Outlook, etc.) and SharePoint
Workflow applications. This version also allows for remote
debugging of Web applications.

Visual Studio 2008 Team
Edition for*

When Visual Studio 2005 was released, Microsoft provided three
specialized versions of Visual Studio 2005 Team Suite, each of
which contained everything from the previously mentioned
versions plus a subset of the Team Suite client tools. The editions
were Team Edition for Architects, Team Edition for Developers,
and Team Edition for Testers. Since then, Microsoft released a
fourth edition that is available with Visual Studio 2008: Team
Edition for Database Developers. Each edition contains a subset
of the full Team Suite of tools, and includes a client license for
Microsoft Team Foundation Server. These must be purchased as
part of an annual MSDN package.

Visual Studio 2008 Team
Suite

The full Team Suite includes all of the core features of Visual
Studio 2008 Professional Edition and Visual Studio Tools for
Office. It also includes all the tools from Visual Studio Team Suite:
static code analysis, code profiling (performance testing), unit
tests (which may be written in Visual Basic), application and
deployment graphical design tools, Web and load-testing tools,
and a variety of related tools to enhance development. This tool,
like the Team Edition versions of Visual Studio, is focused on
enabling developers to be productive in a shared collaborative
environment. It works best when combined with Microsoft Team
Foundation Server for source control and collaboration
capabilities.

The Express Edition tools are best described as targeting students and hobbyists, not because you can’t
create serious applications but because they provide only limited support for team development, have
limited extensibility, and offer a standalone environment. The Express Tools are oriented toward devel-
opers who work independently, while still providing full access to features of the Visual Basic language.
This chapter begins working in the IDE using this version, which is essentially the lowest common
denominator, and then extends beyond the capabilities of this free tool.

Eventually, however, a developer needs additional tools and projects. This is where the full versions of
Visual Studio 2008 (Standard and Professional) come in. With an increasing level of support for team
development, these feature rich versions add macro support, and, more important, an Object Modeling
tool. As discussed later in this chapter, the Object Modeling tool enables you to create a visual represen-
tation of the classes in your solution and then convert that representation into code. Moreover, the tool
supports what is known as round-trip engineering. This means that not only can you use the graphical
model to generate code, you can also take a project’s source files and regenerate an updated version of
the graphical model — that is, edit that model in its graphical format and then update the associated
source files.

540

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 541

Chapter 13: Visual Studio 2008

For those choosing Visual Studio 2008 Professional or above, Visual Studio Tools for Office (VSTO) is
targeted primarily at enterprise developers, those who work in corporate organizations (either as employ-
ees or consultant/contractors). This tool provides a way for users of the enterprise editions of Microsoft
Office 2003 and Microsoft Office 2007 to extend these office productivity tools with applicationlike fea-
tures. Many organizations use Microsoft Office for tasks that border on custom applications. This is
especially true for Microsoft Excel. VSTO provides project templates based on these Microsoft Office
products that enable, for example, a spreadsheet to retrieve its contents from an SQL Server database
instead of the local file system. These tools provide the capability not only to manipulate data retrieval
and saving, but also to customize the user interface, including direct access to the task pane and custom
toolbar options within Microsoft Office products; they are covered in more detail in Chapter 22.

Visual Studio 2008 Team Suite and the various Team Edition products focus on extending a developer’s
reach beyond just writing code. These tools are used to examine code for flaws, manage the deployment
environment, and define relationships between applications. The suite is focused on tools that support
repeatable software processes and best practices. They are geared toward examining source code for
hidden flaws that might not cause the code to fail but might hide a hidden security flaw or make it
difficult to maintain or deploy the application. More important, the suite includes tools for creating unit
test tools that attempt to cause the code to fail, whether through bad input data or heavy load. The Team
Suite tools are focused on automating software development best practices for application teams, as
opposed to actually writing the application.

Complete coverage of all of Team System warrants a book of its own, especially when you take into
account all of the collaborative features introduced by Team Foundation Server and its tight integration
with both Team Build and SharePoint Server. Team Foundation Server goes beyond just being a replace-
ment for Visual Source Safe. It is the basis for true process-driven development, and it even includes
documentation to help train your organization on two process models supported by Microsoft. The
Team System extensions to the Microsoft software development suite are nontrivial, and are discussed in
more detail at the end of this chapter.

Creating a Project from a Project Template
While it is possible to create a Visual Basic application working entirely outside of Visual Studio 2008, it
is much easier to start from Visual Studio 2008. After you install Visual Studio you are presented with a
screen similar to the one shown in Figure 13-1 for Visual Studio 2008 Express Edition. The starting default
behavior is for the IDE to display the start page in its central section. The start page lists your most recent
projects in the upper-left corner, some tips for getting started below that, and a headline section below
that. You may or may not immediately recognize that this content is HTML text; more important, the
content is based on an RSS feed that retrieves and caches articles appropriate for your version of Visual
Studio.

The start page looks similar regardless of which version of Visual Studio 2008 you are running. Con-
ceptually, it provides a generic starting point either to select the application you intend to work on, to
quickly receive vital news related to offers, as shown in the figure, or to connect with external resources
via the community links.

Once here, the next step is to create your first project. Selecting File ➪ New Project opens the New Project
dialog, shown in Figure 13-2. This dialog provides you with a selection of templates customized by
application type. One option is to create a Class Library project. Such a project doesn’t include a user
interface; and instead of creating an assembly with an .exe file, it creates an assembly with a .dll file.
The difference, of course, is that an .exe file indicates an executable that can be started by the operating
system, whereas a .dll file represents a library referenced by an application.

541

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 542

Chapter 13: Visual Studio 2008

Figure 13-1

Figure 13-2

One of the ongoing challenges with describing the menu options for Visual Studio is that the various
versions have slight differences in look and feel too numerous to mention. For example File ➪ New
Project in Visual Basic Express becomes File ➪ New ➪ Project in Visual Studio. Thus, your display
may vary slightly from what is shown or described here, although we attempt to showcase significant
differences.

Noteworthy in Figure 13-2 is something that is missing: the ability to target different versions of the .NET
Framework. With the Express editions, Microsoft has made it so that you will always target the current
.NET 3.5 version of the .NET Framework when you create your project. However, as you’ll see later in
this chapter, you can retarget your application via the Compile Settings.

542

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 543

Chapter 13: Visual Studio 2008

Another important item to note is that unlike Visual Basic 2005 Express Edition, there are no Starter Kits.
These kits went beyond just the basic files associated with a generic project template and included source
files associated with a specific application. You’ll also note that the dialog includes a reference to My
Templates. This section of the New Project window enables you to find and install additional templates.
For example, the Microsoft site for Visual Basic enables you to download several additional Starter Kits
for everything from PayPal and Amazon.com interfaces to Blackjack and Lego Mindstorms, plus others
you can install. Additionally, third parties such as Dot Net Nuke provide custom templates associated
with their application. Dot Net Nuke is an excellent example of this type of jump start for your projects.

In order to keep the discussion of project templates in context, Figure 13-3 is an example of the same dia-
log opened from Visual Studio 2008 Team Suite. In this context, note that not only do you have additional
project templates related to Visual Basic, but another pane that groups the templates into project types
has been added. Figures 13-2 and 13-3 have different display options selected in the upper-right corner
related to the size of the template icons only. The Visual Studio 2008 version of the New Project dialog
also includes, in the upper-right corner, an option for you to select which version of the .NET Framework
you are targeting.

Figure 13-3

A quick note regarding the New Project dialog: In Visual Studio 2005, if you wanted to create an ASP.NET
2.0 website, you needed to start that process by creating a new website instead of creating a new project.
Under Visual Studio 2008, the Web projects have been restored to participants as project types; however,
to create an ASP.NET website that isn’t project-based, you will still want to access the New Website menu
item instead of the New Project menu item on the file menu.

Note that in Figure 13-3 the New Project dialog is targeting a .NET 2.0 project, and there are six common
project types at the top level of the Visual Basic hierarchy. In Figure 13-4, the target has been changed to
.NET 3.5 and the number of available project types has doubled. Targeting keeps you from attempting
to create a project for WPF without recognizing that you also need at least .NET 3.0 available on the client.
Although you can change your target after you create your project, be very careful when trying to reduce
the version number, as the controls to prevent you from selecting dependencies don’t check your existing
code base for violations. Changing your targeted framework version is covered in more detail later in
this chapter.

543

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 544

Chapter 13: Visual Studio 2008

Figure 13-4

Expanding the top level of the Visual Basic tree in Figure 13-4 shows that a project type can be further
separated into a series of categories:

❑ Windows — These are projects used to create applications that run on the local computer
within the CLR. Because such projects can run on any operating system (OS) hosting the frame-
work, the category ‘‘Windows’’ is something of a misnomer when compared to, for example,
‘‘Desktop.’’

❑ Web — The original .NET 1.x websites relied on a project file. In .NET 2.0 this project style was
briefly removed, but it’s back again. You can create these projects, including Web services, from
this section of the New Project dialog.

❑ Smart Device — These are projects that target the .NET Compact Framework. Such applications
may run on one or more handheld devices and make use of a different runtime environment
from full .NET applications.

❑ Office — Visual Studio Tools for Office (VSTO). These are .NET applications that are hosted
under Office. Visual Studio 2008 includes a set of templates you can use to target Office 2003,
as well as a separate section for templates that target Office 2007. Note that the project types
in Office 2007 include not only client applications but also SharePoint Workflow projects.

❑ Database — This template creates a project that supports classes that will run within SQL Server
2005. All versions of SQL Server 2005 (from Express through Enterprise) support the .NET
Framework as part of their runtime, and such projects have a unique set of runtime constraints.
This is a very different project template from the Database project template provided under the
Other Project Types option.

❑ Reporting — This is a new project type that enables you to create a Reports application.

544

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 545

Chapter 13: Visual Studio 2008

❑ Test — This section is available only to those using Visual Studio Team Suite. It contains the
template for a Visual Basic Unit Test project.

❑ WCF — This is the section where you can create Windows Communication Foundation
projects.

❑ Workflow — This is the section where you can create Windows Workflow Foundation (WF)
projects. The templates in this section also include templates for connecting with the SharePoint
workflow engine.

Visual Studio has other categories for projects, and you have access to other development languages and
far more project types than this chapter has room for. For now, you can select a Windows Application
project template to use as an example project for this chapter.

For this example, use ProVB_VS as the project name and then click OK. Visual Studio takes over and uses
the Windows Application template to create a new Windows Forms project. The project contains a blank
form that can be customized, and a variety of other elements that you can explore. Before customizing
any code, let’s first look at the elements of this new project.

The Solution Explorer
While the solution window both exists and is applicable for Express Edition users, it will never contain
more than a single project. Those with a version of Visual Studio above the Express Edition level have
the capability to leverage multiple projects in a single solution. A .NET solution can contain projects of
any .NET language and can include the database, testing, and installation projects as part of the overall
solution. The advantage of combining these projects is that it is easier to debug projects that reside in a
common solution.

Before discussing these files in detail, let’s take a look at the next step, which is to reveal a few additional
details about your project. Click the second button on the left in Solution Explorer to display all of the
project files, as shown in Figure 13-5. As this image shows, many other files make up your project. Some
of these, such as those under the My Project grouping, don’t require you to edit them directly. Instead,
you can double-click on the My Project entry in the Solution Explorer and open the pages to edit your
project settings. You do not need to change any of the default settings for this project, but the next section
of this chapter walks you through the various property screens.

The bin and obj directories shown are used when building your project. The obj directory contains the
first-pass object files used by the compiler to create your final executable file. The ‘‘binary’’ or compiled
version of your application is then placed in the bin directory by default. Of course, referring to the
Microsoft Intermediate Language (MSIL) code as binary is something of a misnomer, as the actual trans-
lation to binary does not occur until runtime when your application is compiled by the just-in-time (JIT)
compiler. However, Microsoft continues to use the bin directory as the default output directory for your
project’s compilation.

Figure 13-5 also shows that the project does not contain an app.config file by default. Most experienced
ASP.NET developers are familiar with using web.config files. App.config files work on the same princi-
ple in that they contain XML, which is used to store project-specific settings such as database connection
strings and other application-specific settings. Using a .config file instead of having your settings in the
Windows registry enables your applications to run side by side with another version of the application
without the settings from either version impacting the other. Because each version of your application
resides in its own directory, its settings are contained in the directory with it, which enables the different

545

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 546

Chapter 13: Visual Studio 2008

versions to run with unique settings. Before we are done going through the project properties, we will
add an App.Config file to this project.

Figure 13-5

Finally, the Solution Explorer includes your actual source file(s). In this case, the Form1.vb file is the
primary file associated with the default Windows form. You’ll be customizing this form shortly, but
before looking at that, it would be useful to look at some of the settings available by opening your project
properties. An easy way to do this is to double-click on the My Project heading shown in Figure 13-5.

My Project Properties
Visual Studio displays a vertically tabbed display for editing your project settings. The My Project display
shown in Figure 13-6, which is the view for users of Express Edition, is the same for all versions of
Visual Studio. The project properties give you access to several different aspects of your project. Some,
such as Signing, Security, and Publish, are covered in later chapters. For now, just note that this display
makes it easier to carry out several tasks that once required engineers to work outside the Visual Studio
environment.

Notice that you can customize your assembly name from this screen, as well as reset the type of appli-
cation and object to be referenced when starting your application. However, resetting the type of your
application is not recommended. If you start with the wrong application type, it is better to create a new
application, due to all the embedded settings in the application template.

In the next section you will look at a button for changing your assembly information, as well as the
capability to define a root namespace for your application classes. Namespaces are covered in detail in
Chapter 7. You also have two buttons, one of which is related to Assembly Information, which is covered

546

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 547

Chapter 13: Visual Studio 2008

in the next section. The other button refers to User Access Control settings, which enable you to specify
that only certain users can successfully start your application. In short, you have the option to limit your
application access to a specific set of users.

Figure 13-6

Finally, note that there is a section associated with enabling an application framework. The application
framework is a set of optional components that enable you to extend your application with custom events
and items, such as a splash screen, with minimal effort. Enabling the framework is the default, but unless
you want to change the default settings, the behavior is the same as if the framework weren’t enabled.
Note that the View Application Events button adds a new source file, ApplicationEvents.vb, to your
project, which includes documentation about which application events are available.

Assembly Information Screen
Selecting the Assembly Information button from within your My Project window opens the Assembly
Information dialog box. Within this dialog, shown in Figure 13-7, you can define file properties, such as
your company’s name and versioning information, which will be embedded in the operating system’s
file attributes for your project’s output. The frame of the assembly file shows that by default it contains
several standard values.

Assembly Attributes
The AssemblyInfo.vb file contains attribute blocks, which are used to set information about the assem-
bly. Each attribute block has an assembly modifier, shown in the following example:

<Assembly: AssemblyTitle("")>

547

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 548

Chapter 13: Visual Studio 2008

Figure 13-7

All the attributes set within this file provide information that is contained within the assembly metadata.
These properties are displayed in the Assembly Information dialog, which is opened from the project’s
properties page (select the Compile tab and then click the Assembly Information button). The attributes
contained within the file are summarized in the following table:

Attribute Description

Title This sets the name of the assembly, which appears within the file properties of
the compiled file as the description.

Description This attribute is used to provide a textual description of the assembly, which is
added to the Comments property for the file.

Company This sets the name of the company that produced the assembly. The name set
here appears within the Version tab of the file properties.

Product This attribute sets the product name of the resulting assembly. The product
name appears within the Version tab of the file properties.

Copyright The copyright information for the assembly. This value appears on the Version
tab of the file properties.

Trademark Used to assign any trademark information to the assembly. This information
appears on the Version tab of the file properties.

Assembly Version This attribute is used to set the version number of the assembly. Assembly
version numbers can be generated, which is the default setting for .NET
applications. This is covered in more detail in Chapter 23.

File Version This attribute is used to set the version number of the executable files. This and
other deployment-related settings are covered in more detail in Chapter 24.

548

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 549

Chapter 13: Visual Studio 2008

Attribute Description

COM Visible This attribute is used to indicate whether this assembly should be registered
and made available to COM applications.

Guid If the assembly is to be exposed as a traditional COM object, then the value of
this attribute becomes the ID of the resulting type library.

Compile Settings
The Compile tab (see Figure 13-8) was previously shown in Chapter 1. Visual Basic Express Edition users
may have noticed in that original image that near the bottom of this screen is an option to generate XML
comments for your assembly. These comments are generated based on the XML comments that you enter
for each of the classes, methods, and properties in your source file. Unfortunately, these last settings are
not available for Visual Basic 2005 Express Edition developers, although creating such comments, as
shown later in this chapter, is possible even for Express Edition users.

Figure 13-8

Below the grid of individual settings in Figure 13-8 is a series of check boxes. Unlike the full Visual
Studio suite of options, Visual Basic Express has fewer check boxes; however, users do have access to the
Advanced Compile Options button. This button opens the Advanced Compiler Settings dialog shown in
Figure 13-9. Note a couple of key elements on this screen, the first being the Remove Integer Overflow
Checks check box. In the past, this was enabled by default, and the result was a performance hit on

549

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 550

Chapter 13: Visual Studio 2008

Visual Basic applications. The new default matches that of C#, enabling Visual Basic to match C# for
performance. The compilation constants are values you shouldn’t need to touch normally unless you are
into compiler options. Similarly, the generation of serialization assemblies is something that is probably
best left in auto mode.

Figure 13-9

However, the last item on the screen enables you to target different environments. The screen shown
in Figure 13-9 is taken from the Visual Basic Express Edition, and as you can see this option is avail-
able. This means that all Visual Basic developers have the option to target their application at a specific
version of the .NET Framework. If you select a version prior to version 3.5, then when you begin to
add references, the Add References tab recognizes which version of .NET you are targeting and adjusts
the list of available references to exclude those that are part of version 3.5 — or 3.0 if you are targeting
.NET 2.0.

Note that this check occurs when adding references; there is no check when you change this value to
see whether your updated value conflicts with any existing references. Therefore, if you change this
value, then make sure you update any of your existing references to remove any that are part of .NET
3.5. You are bound to have at least one because when the template creates your project it automatically
adds a series of references determined in part by the target framework specified when you created your
application.

Debug Properties
The Express Edition of Visual Basic 2008 supports local debugging. This means it supports not
only the .NET-related Debug and Trace classes discussed in Chapter 8, but also actual breakpoints and
the associated interactive debugging available in all versions of Visual Studio. However, as noted, the full
versions of Visual Studio provide enhanced debugging options not available in Visual Basic 2008 Express

550

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 551

Chapter 13: Visual Studio 2008

Edition. Figures 13-10 and 13-11 show the project debugger startup options from Visual Basic Express
and Visual Studio 2008 Team Suite, respectively. Note that the Express Edition page has only three of the
settings that are part of the more expensive version of Visual Studio.

Figure 13-10

Figure 13-11

551

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 552

Chapter 13: Visual Studio 2008

As shown in Figure 13-10, Express Edition users have three options related to starting the debugger.
The first is to apply command-line arguments to the startup of a given application. This, of course, is
most useful for console applications, but in some cases developers add command-line parameters to
GUI applications. The second option is to select a different directory to be used to run the application.
Generally, this isn’t necessary, but it’s desirable in some cases because of path or permission requirements
or having an isolated runtime area.

Figure 13-11 shows additional options, beginning with Start Action. The default action shown is actually
the only option available to Express users — which is to start the current project. However, Visual Studio
2008 developers have two additional options. The first is to start an external program. In other words, if
you are working on a DLL or a user control, then you might want to have that application start, which
can then execute your assembly. Doing this is essentially a shortcut, rather than needing to bind to a
running process.

Similarly for Web development, you can reference a specific URL to start that Web application. This is
often a mixed blessing, as with ASP.NET 2.0, Visual Studio automatically attempts to start an ASP.NET
application based on the page you are currently editing. This is a change from ASP.NET 1.x, which
allowed you to define a start page. Because ASP.NET 2.0 does not use project files, the new behavior
was introduced. In most cases it works just fine, but if you have a Web application requiring authentica-
tion, then in most cases it makes more sense to actually place that URL into the debug settings for your
application.

The next set of options aligns with those of the Express Edition, except for that third item — Use Remote
Machine. As noted, Visual Studio 2008 provides support for remote debugging, although such debug-
ging is often more trouble than it’s worth. Using the Debug and Trace classes and effective error handling,
it is generally easier to determine remote errors with existing tools. However, for those rare environments
where an application only runs on a central server, and for which developers have the necessary permis-
sions to run the debugger but not a copy of Visual Studio on that server, it is possible to leverage remote
debugging.

Finally, as might be expected, users of Visual Studio 2008 who work with multiple languages and are
given tools to tightly integrate with SQL Server have additional debuggers. The first of these is support
for debugging outside of the CLR — what is known as unmanaged code. As a Visual Basic developer, the
only time you should be using unmanaged code is when you are referencing legacy COM components.
The developers most likely to use this debugger work in C++.

The next option turns on support for SQL Server debugging, a potentially useful feature. In short, it’s
possible, although the steps are not trivial, to have the Visual Studio debugging engine step directly into
T-SQL stored procedures so that you can see the interim results as they occur within a complex stored
procedure.

References
It’s possible to add additional references as part of your project. Similar to the default code files that are
created with a new project, each project template has a default set of referenced libraries. Actually, it has
a set of imported namespaces and then a subset of the imported namespaces also referenced across the
project. This means that while you can easily reference the classes in the referenced namespaces, you
still need to fully qualify a reference to, for example, a System.Collections.Generics.List class. For

552

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 553

Chapter 13: Visual Studio 2008

Windows Forms applications, the list of default referenced namespaces that are common from projects
that target .NET 2.0 through projects that target .NET 3.5 is fairly short:

Reference Description

System Often referred to as the root namespace. All the base data types
(String, Object, and so on) are contained within the System
namespace. This namespace also acts as the root for all other System
classes.

System.Data Classes associated with ADO.NET and database access. This
namespace is the root for SQL Server, Oracle, and other data access
classes.

System.Deployment Classes used for One Touch Deployment. This namespace is covered in
more detail in Chapter 24.

System.Drawing Provides access to the GDI+ graphics functionality

System.Windows.Forms Classes used to create traditional Windows-based applications. This
namespace is covered in more detail in Chapters 15 and 16.

System.XML Root namespace for all of the XML classes

Note that the preceding list is the complete list of references you’ll find in a project that was created to
target .NET 2.0. If your project was created to target .NET 3.5, then as you’ll see in Figure 13-12 your
default list of referenced libraries is noticeably larger. Keep in mind that changing your target framework
does not update any existing references.

To review the details of the imported and referenced namespaces, select the References tab in your My
Project display, as shown in Figure 13-12. This tab enables you to check for unused references and even
define reference paths. More important, it is from this tab that you select other .NET class libraries and
applications, as well as COM components. Selecting the Add drop-down button gives you the option to
add a reference to a local DLL or a Web service.

When referencing DLLs you have three options: reference an assembly from the GAC, reference an
assembly based on a file path, or reference another assembly from within your current solution. Each
of these options has advantages and disadvantages. The only challenge for assemblies that are in the
GAC is that your application is dependent on what is potentially a shared resource. In general, however,
for assemblies that are already in the GAC, referencing them is a straightforward, easily maintainable
process.

Notice that the list shown in Figure 13-12 reflects what a Visual Basic Express Edition user sees once that
user generates a project. If you are going to attempt to target the .NET 2.0 Framework, then you’ll want
to remove references that have a version higher then 2.0.0.0. References such as System.Core enable new
features in the System namespace that are associated with .NET 3.5.

In addition to referencing libraries, you can reference other assemblies that are part of your solution. If
your solution consists of more than a single project, then it is straightforward and highly recommended

553

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 554

Chapter 13: Visual Studio 2008

to use project references to allow those projects to reference each other. While you should avoid circular
references — Project A references Project B which references Project A — using project references is
preferred over file references. With project references, Visual Studio can map updates to these assemblies
as they occur during a build of the solution. It’s possible for Visual Studio to automatically update the
referenced assemblies in your executable project to be the latest build of the referenced DLLs that are
part of the same solution. Note that the target needs to be an executable. Visual Studio will automatically
update references between DLL projects in a common solution.

Figure 13-12

This is different from adding a reference to a DLL that is located within a specified directory. When you
create a reference via a path specification, Visual Studio can check that path for an updated copy of the
reference, but your code is no longer as portable as it would be with a project reference. More important,
unless there is a major revision, Visual Studio usually fails to detect the types of changes you are likely
to make to that file during the development process. As a result, you’ll need to manually update the
referenced file in the local directory of the assembly that’s referencing it. In general, unless you have
only the compiled version of that assembly, it’s best to leverage project references versus path-based
references.

Resources
In addition to referencing other assemblies, it is quite common for a .NET application to need to reference
things such as images, icons, audio, and other files. These files aren’t used to provide application logic
but are used at runtime to provide support for the look, feel, and even text used to communicate with
the application’s user. In theory, you can reference a series of images associated with your application by
looking for those images based on the installed file path of your application. Doing so, however, places
your application’s runtime behavior at risk, because a user might choose to replace, copy for profit, or
just delete your files.

554

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 555

Chapter 13: Visual Studio 2008

This is where project references become useful. Instead of placing the raw files onto the operating system
alongside your executable, Visual Studio will package these files into your executable so that they are less
likely to be lost or damaged. Figure 13-13 shows the Resources tab, which enables you to review and edit
all your existing resources within a project, as well as import files for use as resources in your project. It
even allows you to create new resources from scratch.

Figure 13-13

Note one little-known feature of this tab: Using the Add Resource drop-down button and selecting an
image (not an existing image but one based on one of the available image types) will create a new image
file and automatically open Microsoft Paint (for Express Edition developers); this enables you to actually
create the image that will be in the image file.

Users of Visual Studio 2008 have additional capabilities not supported by Visual Basic’s Express Edition.
For one thing, instead of using Paint, Visual Studio provides a basic image editing tool, so when Visual
Studio developers add a new image (not from a file), this editor opens within Visual Studio.

Additionally, within the list of Add Resource items, Visual Studio users can select or create a new icon.
Choosing to create a new icon opens Visual Studio’s icon editor, which provides a basic set of tools for
creating custom icons to use as part of your application. This makes working with .ico files easier in that
you don’t have to hunt for or purchase such files online; instead, you can create your own icons.

However, images aren’t the only resources that you can embed with your executable. Resources also
apply to the fixed text strings that your application uses. By default, people tend to embed this text
directly into the source code so that it is easily accessible to the developer. Unfortunately, this leaves the
application difficult to localize for use with a second language. The solution is to group all of those text
strings together, thereby creating a resource file containing all of the text strings, which is still part of
and easily accessible to the application source code. When the application is converted for use in another
language, this list of strings can be converted, making the process of localization easier. Localization is
covered in more detail in Chapter 5.

555

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 556

Chapter 13: Visual Studio 2008

Settings
New support for application settings within .NET 2.0 is a major enhancement that is often overlooked. In
.NET 1.x it was possible to create a settings file. As noted earlier in the discussion of the Solution Explorer,
the default project template does not create any application settings; accordingly, an App.Config file is
not needed and not created. App.Config files are XML files that define any custom application settings
that a developer wants to be able to change without needing to recompile the application. Because these
settings live in an XML file, they can be modified in between or even during application execution.

One original goal of .NET was to reduce the version conflict that occurs when a component has registered
with global settings and two different applications are attempting to reference two different versions of
that component. Because the settings were global and stored in the central system registry, the result was
a conflict, as the different applications each wanted its specific component and related settings.

.NET provided the capability to place version-specific project references in a local directory with the
application, enabling two different applications to reference the appropriate version of that component.
However, the second part of the problem was the central application settings. The App.config file pro-
vides the same capability, but its goal is allowing for local storage of application settings. Under .NET
1.x, support for application settings was still minimal, as most developers were still looking to the central
system registry for this purpose. At the same time, the developer tools associated with settings were also
minimal.

Fortunately, under .NET 2.0 this changed dramatically. Visual Basic 2008 provides significant sup-
port for application settings, including the Settings tab shown in Figure 13-14. This tab enables Visual
Basic developers to identify application settings and automatically create these settings within the
App.config file.

Figure 13-14

556

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 557

Chapter 13: Visual Studio 2008

Figure 13-14 illustrates several elements related to the application settings capabilities of Visual Basic. The
first setting is of type String. Under .NET 1.x, all application settings were seen as strings, and this was
considered a weakness. Accordingly, the second setting, LastLocation, exposes the Type drop-down,
illustrating that under Visual Basic 2008 you can create a setting that has a well-defined type.

However, strongly typed settings are not the most significant set of changes related to application
settings. The very next column defines the scope of a setting. There are two possible options: applica-
tionwide or user specific. The settings defined with application scope are available to all users of the
application. As shown in Figure 13-14, this example creates a sample connection string to store for
the application.

The alternative is a user-specific setting. Such settings have a default value; in this case, the last location
defaults to 0,0. However, once a user has read that default setting, the application generally updates
and saves the user-specific value for that setting. As noted by the Last Location setting, each user of this
application might close the application after having moved it to a new location on the screen, and the
goal of such a setting would be to reopen the application in the same location it was last seen. Thus,
the application would update this setting value, and Visual Basic makes it easy to do this, as shown
in the following code:

My.Settings.LastLocation = Me.Location
My.Settings.Save()

That’s right — all it takes in Visual Basic 2008 is two lines of code that leverage the My namespace for
you to update a user’s application setting and save the new value. Meanwhile, let’s take a look at what is
occurring within the newly generated App.config file. The following XML settings demonstrate how the
App.config file defines the setting values that you manipulate from within Visual Studio:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<sectionGroup name="userSettings" type="System.Configuration.

UserSettingsGroup, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" >

<section name="ProVB_VS.My.MySettings" type="System.
Configuration.ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" allowExeDefinition="MachineToLocalUser"
requirePermission="false" />

</sectionGroup>
<sectionGroup name="applicationSettings" type="System.Configuration.

ApplicationSettingsGroup, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" >

<section name="ProVB_VS.My.MySettings" type="System.Configuration.
ClientSettingsSection, System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />

</sectionGroup>
</configSections>
<system.diagnostics>

<sources>
<!-- This section defines the logging configuration for

My.Application.Log -->

557

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 558

Chapter 13: Visual Studio 2008

<source name="DefaultSource" switchName="DefaultSwitch">
<listeners>

<add name="FileLog"/>
<!-- Uncomment the below section to write to the Application

Event Log -->
<!--<add name="EventLog"/>-->

</listeners>
</source>

</sources>
<switches>

<add name="DefaultSwitch" value="Information" />
</switches>
<sharedListeners>

<add name="FileLog"
type="Microsoft.VisualBasic.Logging.FileLogTraceListener, Microsoft.

VisualBasic, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL"

initializeData="FileLogWriter"/>
<!-- Uncomment the below section and replace APPLICATION_NAME with the

name of your application to write to the Application Event Log -->
<!--<add name="EventLog"

type="System.Diagnostics.EventLogTraceListener" initializeData="APPLICATION_NAME"/>
-->

</sharedListeners>
</system.diagnostics>
<userSettings>

<ProVB_VS.My.MySettings>
<setting name="LastLocation" serializeAs="String">

<value>0, 0</value>
</setting>

</ProVB_VS.My.MySettings>
</userSettings>
<applicationSettings>

<ProVB_VS.My.MySettings>
<setting name="ConnectionString" serializeAs="String">

<value>server=(local);Database=AdventureWorks</value>
</setting>

</ProVB_VS.My.MySettings>
</applicationSettings>

</configuration>

As shown here, Visual Studio automatically generated all the XML needed to define these settings and
save the default values. Note that individual user settings are not saved back into the config file, but
rather to a user-specific working directory. It is possible not only to update application settings with
Visual Basic, but also to arrange to encrypt those settings, although this action is outside the scope of
what you can do from Visual Studio.

There are additional tabs related to your project’s properties, but these are primarily associated with
deployment. Therefore, in the interest of getting to some code, let’s look at the source files that were
generated when you created the ProVB_VS project from the Windows application template.

558

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 559

Chapter 13: Visual Studio 2008

Project ProVB VS in Visual Studio
The Form Designer opens by default when a new project is created. If you have closed it, then you can
easily reopen it by right-clicking Form1.vb in the Solution Explorer and selecting View Designer from
the pop-up menu. From this window, you can also bring up the Code view for this form. However,
Figure 13-15 illustrates the default view you get when your project template completes. On the screen is
the design surface upon which you can drag controls from the Toolbox to build your user interface and
update properties associated with your form.

Figure 13-15

The Properties pane, shown in more detail in Figure 13-16, is by default placed in the lower-right corner
of the Visual Studio window. Like many of the other windows in the IDE, if you close it, it can be accessed
through the View menu. Alternatively, you can use the F4 key to reopen this window. The Properties
pane is used to set the properties of the currently selected item control in the display.

Each control you place on your form has its own distinct set of properties. For example, in the design
view, select your form. You’ll see the Properties window adjust to display the properties of Form1 (refer
to Figure 13-16). This is the list of properties associated with your form. If you want to limit how small
a user can reduce the display area of your form, then you can now define this as a property. For your
sample, go to the Text property and change the default of Form1 to Professional VB.NET. Once you
have accepted the property change, the new value is displayed as the caption of your form. Later in this
section, you’ll set form properties in code. You’ll see that .NET properties are defined within your source
file, unlike other environments where properties you edit through the user interface are hidden in some
binary or proprietary portion of the project.

559

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 560

Chapter 13: Visual Studio 2008

Figure 13-16

Now that you’ve looked at the form’s properties, open the code associated with this file by either
right-clicking Form1.vb in the Solution Explorer and selecting Code view, or right-clicking the form
in the View Designer and selecting View Code from the pop-up menu.

You can see that the initial display of the form looks very simple. There is no code in the Form1.vb
file. Visual Basic 2005 introduced a capability called partial classes. Partial classes are covered briefly in
Chapter 2, and Visual Studio leverages them for the code, which is generated as part of the user interface
designer.

Visual Studio places all the generated source code for your form in the file Form1.Designer.vb. Because
the ‘‘Designer’’ portion of this name is a convention that Visual Studio recognizes, it hides these files by
default when you review your project in the Solution Explorer. As noted earlier, by asking Visual Studio
to ‘‘show all files,’’ you can find these generated files. If you open a ‘‘Designer.vb’’ file, you’ll see that
quite a bit of custom code is generated by the Visual Studio already in your project.

To do this, go to the toolbar located in the Solution Explorer window and select the Show All Files but-
ton. This will change your project display and a small plus sign will appear next to the Form1.vb file.
Expanding this entry displays the Form1.Designer.vb file, which you can open within the IDE. Doing
this for Form1.Designer.vb for the ProVB_VS project you created will result in a window similar to the
one shown in Figure 13-17.

560

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 561

Chapter 13: Visual Studio 2008

Figure 13-17

Note that the contents of this file are generated. For now, don’t try to make any changes. Visual Studio
automatically regenerates the entire file when a property is changed, so any changes may be lost. The
following lines start the declaration for your form in the file Form1.Designer.vb:

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1

Inherits System.Windows.Forms.Form

The first line is an attribute that can be ignored. Next is the line that actually declares a new class called
Form1. Note that in spite of the naming convention used by Visual Studio to hide the generated UI class
implementation, the name of your class and the file in which it exists are not tightly coupled. Thus, your
form will be referenced in the code as Form1 unless you modify the name used in the class declaration.
Similarly, you can rename the file that contains the class without changing the actual name of the class.

One powerful result of forms being implemented as classes is that you can now derive one form from
another form. This technique is called visual inheritance, although the elements that are actually inherited
may not be displayed.

Form Properties Set in Code
As noted earlier, Visual Studio keeps every object’s custom property values in the source code. To do this,
it adds a method to your form class called InitializeComponent. As the name suggests, this method
handles the initialization of the components contained on the form. A comment before the procedure
warns you that the Form Designer modifies the code contained in the procedure, and that you should
not modify the code directly. This module is part of the Form1.Designer.vb source file, and Visual Studio
updates this section as changes are made through the IDE.

561

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 562

Chapter 13: Visual Studio 2008

’NOTE: The following procedure is required by the Windows Form Designer
’It can be modified using the Windows Form Designer.
’Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> Private Sub _

InitializeComponent()
Me.SuspendLayout()
’
’Form1
’
Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
Me.ClientSize = New System.Drawing.Size(292, 266)
Me.Name = "Form1"
Me.Text = "Professional VB.NET"
Me.ResumeLayout(False)

End Sub

The seven lines of the InitializeComponent procedure assign values to the properties of your Form1
class. All the properties of the form and controls are now set directly in code. When you change the value
of a property of the form or a control through the Properties window, an entry is added to
InitializeComponent that assigns that value to the property. Previously, while examining the Prop-
erties window, you set the Text property of the form to Professional VB.NET Intro, which caused the
following line of code to be added automatically:

Me.Text = "Professional VB.NET"

The properties of the form class that are set in InitializeComponent by default are shown in the
following table:

Property Description

Suspend Layout Specifies that the form should not make updates to what is displayed to
the user. It is called so that as each change is made, the form doesn’t
seem to appear in pieces.

AutoScaleDimensions Initializes the size of the font used to lay out the form at design time. At
runtime, the font that is actually rendered is compared with this
property, and the form is scaled accordingly.

AutoScaleMode Indicates that the form will use fonts that are automatically scaled
based on the display characteristics of the runtime environment

ClientSize Sets the area in which controls can be placed (the client area). It is the
size of the form minus the size of the title bar and form borders.

Name This property is used to set the textual name of the form.

ResumeLayout This tells the form that it should resume the normal layout and
displaying of its contents.

562

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 563

Chapter 13: Visual Studio 2008

Code Regions
Source files in Visual Studio allow you to collapse blocks of code. The idea is that in most cases you can
reduce the amount of onscreen code, which seems to separate other modules within a given class, by
collapsing the code so it isn’t visible; this feature is known as outlining. For example, if you are com-
paring the load and save methods and in between you have several other blocks of code, then you can
effectively ‘‘hide’’ this code, which isn’t part of your current focus.

By default, there is a minus sign next to every method (sub or function). This makes it easy to hide or
show code on a method-by-method basis. If the code for a method is hidden, the method declaration is
still shown and has a plus sign next to it indicating that the body code is hidden. This feature is very
useful when a developer is working on a few key methods in a module and wishes to avoid scrolling
through many screens of code that are not relevant to the current task.

It is also possible to hide custom regions of code. The #Region directive is used for this within the IDE,
though it has no effect on the actual application. A region of code is demarcated by the #Region directive
at the top and the #End Region directive at the end. The #Region directive that is used to begin a region
should include a description. The description appears next to the plus sign shown when the code is
minimized.

The outlining enhancement was probably inspired by the fact that the Visual Studio designers generate
a lot of code when a project is started. Being able to see the underpinnings of your generated UI does
make it is easier to understand what is happening, and possibly to manipulate the process in special
cases. However, as you can imagine, it can become problematic; hence the #Region directive, which can
be used to organize groups of common code and then visually minimize them.

Visual Studio 2008 developers, but not Express Edition developers, can also control outlining throughout
a source file. Outlining can be turned off by selecting Edit ➪ Outlining ➪ Stop Outlining from the Visual
Studio menu. This menu also contains some other useful functions. A section of code can be temporarily
hidden by highlighting it and selecting Edit ➪ Outlining ➪ Hide Selection. The selected code will be
replaced by an ellipsis with a plus sign next to it, as if you had dynamically identified a region within the
source code. Clicking the plus sign displays the code again.

Tabs versus MDI
You may have noticed in Figure 13-17 that the Code View and Form Designer windows open in a tabbed
environment. This environment is the default for working with the code windows inside Visual Studio,
but you can toggle this setting, which enables you to work with a more traditional MDI-based interface.
Such an interface opens each code window within a separate frame instead of anchoring it to the tabbed
display of the integrated development environment (IDE).

To change the arrangement that is used between the tabbed and MDI interface, use the Options dialog
box (accessible via Tools ➪ Options); this setting is available as one of the environment settings. You can
also force the development environment to use the MDI as opposed to the tabbed interface (for a single
session) by using the command-line option /mdi when Visual Studio is started.

Running ProVB_VS
Now that you’ve reviewed the elements of your generated project, let’s test the code before continuing.
To run an application from within Visual Studio, you have several options; the first is to click the Start

563

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 564

Chapter 13: Visual Studio 2008

button, which looks like the Play button on a tape recorder. Alternatively, you can go to the Debug menu
and select Start. Finally, the most common way of launching applications is to press F5.

Once the application starts, an empty form will be displayed with the standard control buttons (in the
upper-right corner) from which you can control the application. The form name should be Professional
VB.NET Intro, which you applied earlier. At this point, the sample doesn’t have any custom code to
examine, so the next step is to add some simple elements to this application.

Customizing the Text Editor
In addition to being able to customize the overall environment provided by Visual Studio, you can cus-
tomize several specific elements related to your development environment. Both Visual Studio 2008 and
Visual Basic 2008 Express Edition have a rich set of customizations related to a variety of different envi-
ronment and developer settings. Admittedly, Visual Studio 2008’s feature set results in a larger number
of available options for editing, but rest assured that the Express Edition contains many more options for
editing than most people expect. A good example that’s common to both IDEs is the way the text editor
allows for much more customization. If you’ve ever had to show code to an audience — for example,
in a group code review — the capability to adjust things such as font size and other similar options
is great.

To leverage Visual Studio’s settings, go to the Tools menu and select Options to open the Options dia-
log box, shown in Figure 13-18. Within the dialog box, make sure the Show All Settings check box is
selected. Next, select the Text Editor folder, and then select the All Languages folder. This section enables
you to make changes to the text editor that are applied across every supported development language.
Additionally, you can select the Basic folder to make changes that are specific to how the text editor will
behave when you edit VB source code.

Figure 13-18

From this dialog box, it is possible to modify the number of spaces that each tab will insert into your
source code and to manage several other elements of your editing environment. One little-known but
useful capability of the text editor is line numbering. Checking the Line numbers check box will cause
the editor to number all lines, which provides an easy way to unambiguously reference lines of code.

564

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 565

Chapter 13: Visual Studio 2008

Visual Studio 2008 also provides a visual indicator so you can track your changes as you edit. Enabling
the Track Changes setting under the Text Editor options causes Visual Studio to provide a colored indi-
cator in places where you have modified a file. This indicator is a colored bar at the left margin of your
display. It shows which portions of a source file have been recently edited and whether those changes
have been saved to disk.

IntelliSense, Code Expansion, and Code Snippets
One of the reasons Microsoft Visual Studio is one of the most popular development environments is that
it has been designed to support developer productivity. That sounds really good, but let’s back it up.
People who are unfamiliar with Visual Studio might just assume that ‘‘productivity’’ refers to organizing
and starting projects. Certainly, as shown with the project templates and project settings discussed so far,
this is true, but those features don’t speed your development after you’ve created the project.

This section covers three features that target your productivity while writing code. They are of differ-
ing value and are specific to Visual Studio. The first, IntelliSense, has always been a popular feature of
Microsoft tools and applications. The second feature, code expansion, is another popular feature avail-
able since Visual Studio 2005: It enables you to type a keyword, such as ‘‘select,’’ and then press the Tab
key to automatically insert a generic select-case code block, which you can then customize. Finally, going
beyond this, you can use the right mouse button and insert a code snippet at the location of your mouse
click. As you can tell, each of these builds on the developer productivity capabilities of Visual Studio.

IntelliSense
IntelliSense has been enhanced in Visual Studio 2008. In the past you needed to first identify a class or
property in order to use IntelliSense. With Visual Studio 2008, IntelliSense starts with the first letter you
type so that you quickly identify classes, commands, and keywords that you need. Once you’ve selected
a class or keyword, IntelliSense continues, enabling you to not only work with the methods of a class,
but also automatically display the list of possible values associated with an enumerated list of properties
when one has been defined. IntelliSense also provides a tooltiplike list of parameter definitions when you
are making a method call.

Figure 13-19 illustrates how IntelliSense becomes available with the first character you type. Note that
the drop-down window has two tabs on the bottom; one is optimized for the items that you are likely
to want, while the other shows you everything that is available. In addition, IntelliSense works with
multiword commands. For example, if you type Exit and a space, IntelliSense displays a drop-down
list of keywords that could follow Exit. Other keywords that offer drop-down lists to present available
options include Goto, Implements, Option, and Declare. IntelliSense generally displays more tooltip
information in the environment than before and helps developers match up pairs of parentheses, braces,
and brackets.

Finally, note that IntelliSense is based on your editing context. While editing a file, there may come a
point at which you are looking for a specific item to show up in IntelliSense but when you repeatedly
type slightly different versions nothing appears. IntelliSense has recognized that you aren’t in a method
or are outside of the scope of a class, so it has removed items that are inappropriate for your current
location in your source code from the list of items available from IntelliSense.

Code Expansion
Going beyond IntelliSense is code expansion. Code expansion recognizes that certain keywords are
consistently associated with other lines of code. At the most basic level, this occurs when you declare

565

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 566

Chapter 13: Visual Studio 2008

a new Function or Sub: Visual Studio automatically inserts the End Sub or End Function line once you
press Enter. Essentially, Visual Studio is expanding the declaration line to include its matching endpoint.
However, real code expansion goes further than this.

Figure 13-19

With real code expansion, you can type a keyword such as For, ForEach, Select, or any of a number of
Visual Basic keywords. If you then use the Tab key, Visual Studio will attempt to recognize that keyword
and insert the block of code that you would otherwise need to remember and type yourself. For example,
instead of needing to remember how to format the control values of a Select statement, you can just
type this first part of the command and then press Tab to get the following code block:

Select Case VariableName
Case 1

Case 2

Case Else
End Select

Unfortunately, this is a case where just showing you the code isn’t enough. That’s because the code that
is inserted has active regions within it that represent key items you will customize. Thus, Figure 13-20
provides a better representation of what is inserted when you expand the Select keyword into a full
Select Case statement.

When the block is inserted the editor automatically positions your cursor in the first highlighted block —
VariableName. When you start typing the name of the variable that applies, the editor automatically
clears that static VariableName string, which is acting as a placeholder. Once you have entered the vari-
able name you want, you can just press Tab. At that point the editor automatically jumps to the next
highlighted item. This capability to insert a block of boilerplate code and have it automatically respond
to your customization is a great feature.

566

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 567

Chapter 13: Visual Studio 2008

Figure 13-20

Code expansion enables you to quickly shift between the values that need to be customized, but these
values are also linked where appropriate, as in the next example. Another code expansion shortcut creates
a new property in a class. If at the class level you type the word property followed by Tab, you will find
the code shown in Figure 13-21 inserted into your code. On the surface this code is very similar to what
you see when you expand the Select statement. Note that although you type property, even the internal
value is part of this code expansion.

Figure 13-21

The difference, however, is that the same value String in Figure 13-21 is repeated for the property. The
value you see is actually not the default; the default everywhere you see String in Figure 13-21 is
Integer. However, when you change the first such entry from Integer to String, Visual Studio automat-
ically updates all three locations because it knows they are linked. Using the code shown in Figure 13-21,

567

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 568

Chapter 13: Visual Studio 2008

update the property value to be m_Count. Press Tab and change the type to Integer; press Tab again
and label the new property Count. This gives you a simple property on this form for use later when
debugging.

The completed code should look like the following block. Note that one final change was to initialize the
value of the m_count value to zero so that it would be initialized when first referenced:

Private m_count As Integer = 0
Public Property Count() As Integer

Get
Return m_count

End Get
Set(ByVal value As Integer)

m_count = value
End Set

End Property

This capability to fully integrate the template supporting the expanded code with the highlighted ele-
ments, helping you navigate to the items you need to edit, makes code expansion such a valuable tool.

Code Snippets
You can, with a click of your mouse, browse a library of code blocks, which, as with code expansion, you
can insert into your source file. However, unlike code expansion, these snippets aren’t triggered by a
keyword. Instead, you right-click and (as shown in Figure 13-22) select Insert Snippet from the context
menu. This starts the selection process for whatever code you want to insert.

Figure 13-22

The snippet library is installed with Visual Studio and is fully expandable, as discussed later in this
chapter. Snippets are categorized by the function on which each is focused. For example, all the code you
can reach via code expansion is also available as snippets, but snippets go well beyond that list. There are
snippet blocks for XML-related actions, for operating system interface code, for items related to Windows

568

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 569

Chapter 13: Visual Studio 2008

Forms, and, of course, a lot of data-access-related blocks. The whole idea is that, unlike code expansion,
which enhances the language in a way similar to IntelliSense, code snippets are blocks of code focused
on functions developers often write from scratch.

As shown in Figure 13-23, the insertion of a snippet triggers the creation of a placeholder tag and a
context window showing the categories of snippets. Each of the folders can contain a combination of
snippet files or subdirectories containing still more snippet files. Visual Basic 2008 Express contains a
subset of the folders provided with Visual Studio 2008. Visual Studio includes additional categories not
shown in Figure 13-23. In addition, Visual Studio includes the folder My Code Snippets, to which you
can add your own custom snippet files.

Figure 13-23

Selecting a folder enables you to select from one of its subfolders or a snippet file. Once you select the
snippet of interest, Visual Studio inserts the associated code into your source file. Figure 13-24 shows
the result of adding an operating system snippet to some sample code. The specific snippet in question
is the code within the sub ReviewAppErrors. The selected snippet was Windows Operating System>
Event Logs>Read Entries Created by a Particular Application from the Event Log, which isn’t
included with Visual Basic 2008 Express, although the code is still valid.

As you can see, this code snippet isn’t just a block of code that can be used anywhere. Instead, it is specific
to reading the Application Log, and its use in the ReviewAppErrors method is based on the idea that
many applications log their errors to the Event Log so that they can be reviewed either locally or from
another machine in the local domain. The key, however, is that the snippet has pulled in the necessary
class references, many of which might not be familiar to you, and has placed them in context. This speeds
not only the time spent typing this code, but also the time spent recalling exactly which classes need to
be referenced and which methods need to be called and customized.

Finally, it is also possible to shortcut the menu tree. Specifically, if you know the shortcut for a snip-
pet, you can type that and press Tab to have Visual Studio insert that snippet. For example, typing
evReadApp followed by pressing Tab will insert the same snippet shown in Figure 13-24.

569

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 570

Chapter 13: Visual Studio 2008

Figure 13-24

Tools such as code snippets and especially code expansion are even more valuable when you work in
multiple languages. Keep in mind, however, that Visual Studio isn’t limited to the features that come in
the box. It’s possible to extend Visual Studio not only with additional controls and project templates, but
also with additional editing features.

Additional Components for Visual Studio 2008
You might be interested in two additional tools that work with Visual Studio. Even better, both are free.
The first is a tool for creating your own Visual Basic snippets. As discussed, snippets can be powerful
tools when you need to replicate relatively small but commonly used blocks of code that will be cus-
tomized. While Visual Studio ships with several such snippets, Microsoft probably hasn’t thought of the
snippet you want the most.

This is where the first tool comes in: a Snippet Editor for Visual Basic code snippets. This editor doesn’t
actually live within Visual Studio 2008; it just updates the snippet files you want to use from Visual
Studio. Behind the scenes, snippets are actually XML files with embedded text that represents the code
used in the snippet. What the Snippet Editor does is read that XML and interpret all of the embedded
logic related to things such as replacement blocks. This tool makes it possible for Visual Basic developers
to create custom snippets without worrying about the XML formatting details. It is available from MSDN
at http://msdn2.microsoft.com/en-us/vbasic/ms789085.aspx.

The second tool is a true add-in to Visual Basic. When Microsoft was announcing features for .NET 2.0, it
was apparent that Visual Basic and C# had different feature lists. As time went by, the developers in each
community started to better understand what these features represented, and in many cases demanded
their inclusion. One such feature was native support in C# for refactoring, the ability to modify a variable
name — for example, to take ‘‘i’’ and call it ‘‘loopControl’’ so that it’s more readable. Modifying code to
improve structure, performance, and maintainability is referred to generically as refactoring.

Traditionally, such changes might make code more maintainable but were often more risk than reward;
as a result they seldom were made. The problem, of course, is that a human tends to miss that one
remaining reference to the old version of that method or variable name. More important, it was a

570

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 571

Chapter 13: Visual Studio 2008

time-consuming task to find all of the correct references. Fortunately, the compiler knows where these
are, and that’s the idea behind automated refactoring: You tell Visual Studio what you want to change
and it goes through your code and makes all the necessary changes, using the same rules the compiler
uses to compile your code.

This is a great maintenance tool; unfortunately, by the time most Visual Basic developers understood
what it implied, it was too late for the Visual Basic team to implement a solution in Visual Studio 2005.
However, the team did do better than just say, ‘‘So sad, too bad.’’ They found a commercial product
that actually had more features than what the C# team was developing from scratch. Then they bought
a license for every Visual Studio developer, allowing free download of the tool. This solution worked
so well for everyone involved that they chose to continue it in Visual Studio 2008. With refactoring, you
can quickly clean up gnarly, hard-to-read code and turn it into well-structured logic that’s much more
maintainable. The free version of the refactoring tool is available at www.devexpress.com/Products/NET/
IDETools/VBRefactor/.

Enhancing a Sample Application
To start enhancing the application, you are going to use the control Toolbox. Close the Form1.
designer.vb file and switch your display to the Form1.vb [Design] tab. The Toolbox window is avail-
able whenever a form is in Design mode. By default, the Toolbox, shown in Figure 13-25, lives on the
left-hand side of Visual Studio as a tab. When you click this tab, the control window expands and you
can drag controls onto your form. Alternatively, if you have closed the Toolbox tab, you can go to the
View menu and select Toolbox.

Figure 13-25

If you haven’t set up the Toolbox to be permanently visible, it will slide out of the way and disappear
whenever focus is moved away from it. This helps maximize the available screen real estate. If you

571

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 572

Chapter 13: Visual Studio 2008

don’t like this feature and want the Toolbox to be permanently visible, just click the pushpin icon on the
Toolbox’s title bar.

The Toolbox contains literally dozens of standard controls, which are categorized so it’s easier to find
them. Figure 13-25 shows the result of dragging a Button control from the Toolbox and depositing it on
the form: a new button displaying the text ‘‘Button1.’’ Adding another button would trigger the default
naming and text of ‘‘Button2.’’

Before customizing the first control added to this form, take a closer look at the Visual Studio Toolbox.
The tools are broken out by category, but this list of categories isn’t static. Visual Studio 2005 Standard
and above editions enable you to create your own custom controls. When you create such controls,
the IDE will — after they have been compiled — automatically add them to the display when you are
working in the same solution as the controls. These would be local references to controls that become
available within the current solution.

Additionally, depending on whether you are working on a Web or a Windows Forms application, your
list of controls in the Toolbox will vary. Windows Forms has a set of controls that leverages the power of
the Windows operating system. Web applications, conversely, tend to have controls oriented to working
in a disconnected environment.

It’s also possible to have third-party controls in your environment. Such controls can be registered with
Visual Studio and are then displayed within every project you work on. Controls can add their own
categories to the Toolbox so that they are grouped together and therefore easy to find.

Return to the button you’ve dragged onto the form; it’s ready to go in all respects. However, Visual Studio
has no way of knowing how you want to customize it. Start by going to the Properties
window and changing its text property to ‘‘Hello World.’’ You can then change the button’s (Name)
property to ButtonHelloWorld. Having made these changes, double-click the button in the display view.
Double-clicking tells Visual Studio that you want to add an event handler to this control, and by default
Visual Studio adds an On_Click event handler for buttons. The IDE then shifts the display to the Code
view so that you can customize this handler (Figure 13-26 shows the code for this event handler being
edited).

Although the event handler can be added through the designer, it’s also possible to add event handlers
from Code view. After you double-click the button, Visual Studio will transfer you to code view and
display your new event handler. Notice that in Code view there are drop-down lists on the top of the
edit window. The boxes indicate the current object on the left — in this case, your new button — and
the current method on the right — in this case, the click-event handler. You can add new handlers for
other events on your button or form using these drop-down lists.

The drop-down list on the left-hand side contains the objects for which event handlers can be added. The
drop-down list on the right-hand side contains all the events for the selected object. For now, you have
created a new handler for your button’s click event, so let’s look at customizing the code associated with
this event.

Customizing the Code
With the code window open to the newly added event handler for the ‘‘Hello World’’ button, you can
start to customize this handler. Note that adding a control and event handler involves elements of gen-
erated code. Visual Studio adds code to the Form1.Designer.vb file. These changes occur in addition to
the default method implementation you see in the editable portion of your source code.

572

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 573

Chapter 13: Visual Studio 2008

Adding XML Comments
One of the features of Visual Studio is the capability to generate an XML comments template for Visual
Basic. XML comments are a much more powerful feature than you probably realize, because they are
also recognized by Visual Studio for use in IntelliSense. To add a new XML comment to your handler,
go to the line before the handler and type three single quotation marks: ‘’‘. This triggers Visual Studio
to replace your single quotation marks with the following block of comments. You can trigger these
comments in front of any method, class, or property in your code:

’’’ <summary>
’’’
’’’ </summary>
’’’ <param name="sender"></param>
’’’ <param name="e"></param>
’’’ <remarks></remarks>

Note that Visual Studio has provided a template that offers a place to include a summary of what this
method does. It also provides placeholders to describe each parameter that is part of this method. Not
only are the comments entered in these sections available within the source code, when it’s compiled
you’ll also find an XML file in the project directory, which summarizes all your XML comments and can
be used to generate documentation and help files for the said source code. By the way, if you refactor
a method and add new parameters, the XML comments also support IntelliSense for the XML tags that
represent your parameters.

Customizing the Event Handler
Now customize the code for the button handler, as this method doesn’t actually do anything by default.
Start by adding a new line of code to increment the Count property you added to the form earlier. Next,
use the System.Windows.Forms.MessageBox class to open a message box and show the message indicat-
ing the number of times the Hello World button has been pressed. Fortunately, because that namespace
is automatically imported into every source file in your project, thanks to your project references, you
can reference the MessageBox.Show method directly. The Show method has several different parameters;
and as shown in Figure 13-26, not only does the IDE provide a tooltip for the list of parameters, it also
provides help regarding the appropriate value for individual parameters.

The completed call to MessageBox.Show should look similar to the following code block. Note that the
underscore character is used to continue the command across multiple lines. In addition, unlike previous
versions of Visual Basic, for which parentheses were sometimes unnecessary, in .NET the syntax best
practice is to use parentheses for every method call:

Count += 1
MessageBox.Show(""Hello World shown " + Count.ToString() + " times."", _

"Hello World Message Box", _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Once you have entered this line of code, you may notice a squiggly line underneath some portions of
your text. This occurs when there is an error in the line you have typed. In previous versions of Visual
Basic, the development environment would interrupt your progress with a dialog box, but with .NET,
the IDE works more like the latest version of Word. Instead of interrupting your progress, it highlights
the problem and allows you to continue working on your code. This is a feature of Visual Basic that isn’t
available in other .NET languages such as C#. Visual Basic is constantly reviewing your code to ensure

573

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 574

Chapter 13: Visual Studio 2008

that it will compile; and when it encounters a problem it immediately notifies you of the location without
interrupting your work.

Figure 13-26

Reviewing the Code
Now that you have created a simple Windows application, let’s review the elements of the code that
have been added by the IDE. Following is the entire Form1.Designer.vb source listing. Highlighted in
this listing are the lines of code that have changed since the original template was used to generate this
project:

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1 Inherits System.Windows.Forms.Form

’Form overrides dispose to clean up the component list.
<System.Diagnostics.DebuggerNonUserCode()> _
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing AndAlso components IsNot Nothing Then
components.Dispose()

End If
MyBase.Dispose(disposing)

End Sub

’Required by the Windows Form Designer

574

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 575

Chapter 13: Visual Studio 2008

Private components As System.ComponentModel.Icontainer
’NOTE: The following procedure is required by the Windows Form Designer
’It can be modified using the Windows Form Designer.
’Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()

Me. ButtonHelloWorld = New System.Windows.Forms.Button()
Me.SuspendLayout()
’
’ButtonHelloWorld
’
Me.ButtonHelloWorld.Location = New System.Drawing.Point(112, 112)
Me.ButtonHelloWorld.Name = "ButtonHelloWorld"
Me.ButtonHelloWorld.Size = New System.Drawing.Size(75, 23)
Me.ButtonHelloWorld.TabIndex = 0
Me.ButtonHelloWorld.Text = "Hello World"
Me.ButtonHelloWorld.UseVisualStyleBackColor = True

’
’Form1
’
Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 13.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font Me.ClientSize =

New System.Drawing.Size(292, 273)

Me.Controls.Add(Me.ButtonHelloWorld)

Me.Name = "Form1"
Me.Text = "Professional VB.NET"
Me.ResumeLayout(False)

End Sub

Friend WithEvents ButtonHelloWorld As System.Windows.Forms.Button

End Class

After the class declaration in the generated file, the first change made to the code is the addition of a new
variable to represent the new button:

Friend WithEvents ButtonHelloWorld As System.Windows.Forms.Button

When any type of control is added to the form, a new variable is added to the form class. Controls are
represented by variables; and, just as form properties are set in code, form controls are added in code. The
Button class in the System.Windows.Forms namespace implements the button control on the Toolbox.
Each control added to a form has a class that implements the functionality of the control. For the standard
controls, these classes are usually found in the System.Windows.Forms namespace. The WithEvents
keyword has been used in the declaration of the new variable so that it can respond to events raised by
the button.

The bulk of the code changes are in the InitializeComponent procedure. Eight lines of code have been
added to help set up and display the button control. The first addition to the procedure is a line that
creates a new instance of the Button class and assigns it to the button variable:

Me.ButtonHelloWorld = New System.Windows.Forms.Button()

575

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 576

Chapter 13: Visual Studio 2008

Before a button is added to the form, the form’s layout engine must be paused. This is done using the
next line of code:

Me.SuspendLayout()

The next four lines of code set the properties of the button. The Location property of the Button class
sets the location of the top-left corner of the button within the form:

Me.ButtonHelloWorld.Location = New System.Drawing.Point(112, 112)

The location of a control is expressed in terms of a Point structure. Next, the Name property of the button
is set:

Me.ButtonHelloWorld.Name = "ButtonHelloWorld"

The Name property acts in exactly the same way as it did for the form, setting the textual name of the
button. The Name property has no effect on how the button is displayed on the form; it is used to recognize
the button’s context within the source code. The next three lines of code assign values to the TabIndex,
Text, and UseVisualStyleBackColor properties of the button:

Me.ButtonHelloWorld.TabIndex = 0
Me.ButtonHelloWorld.Text = "Hello World"
Me.ButtonHelloWorld.UseVisualStyleBackColor = True

The TabIndex property of the button is used to set the order in which the control is selected when a user
cycles through the controls on the form using the Tab key. The higher the number, the later the control
gains focus. Each control should have a unique number for its TabIndex property. The Text property of a
button sets the text that appears on the button. Finally, the UseVisualStyleBackColor property indicates
that when this button is drawn, it uses the current visual style. This is a Boolean value and typically you
can accept this default, but you can customize the background so that a given button doesn’t default to
the current visual style.

Once the properties of the button have been set, it needs to be added to the form. This is accomplished
with the next line of code:

Me.Controls.Add(Me.ButtonHelloWorld)

The System.Windows.Forms.Form class (from which your Form1 class is derived) has a property called
Controls that keeps track of all of the child controls of the form. Whenever you add a control to a form
in the designer, a line similar to the preceding one is added automatically to the form’s initialization
process.

Finally, near the bottom of the initialization logic is the final code change. The form is given permission
to resume the layout logic:

Me.ResumeLayout(False)

576

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 577

Chapter 13: Visual Studio 2008

In addition to the code that has been generated in the Form1.Designer.vb source file, you have created
code that lives in the Form1.vb source file:

Imports System.Windows.Forms
Public Class Form1

’’’ <summary>
’’’
’’’ </summary>
’’’ <param name="sender"></param>
’’’ <param name="e"></param>
’’’ <remarks></remarks>
Private Sub ButtonHelloWorld_Click (ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles ButtonHelloWorld.Click

MessageBox.Show("Hello World", _
"Hello World Message Box", _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

End Sub
End Class

This code reflects the event handler added for the button. The code contained in the handler was already
covered, with the exception of the naming convention for event handlers. Event handlers have a nam-
ing convention similar to that in previous versions of Visual Basic: The control name is followed by an
underscore and then the event name. The event itself may also have a standard set of parameters. At this
point, you can test the application, but let’s first look at your build options.

Building Applications
For this example, it is best to build your sample application using the Debug build configuration. The
first step is to ensure that Debug is selected as the active configuration in the Configuration drop-down
list box discussed in the previous section. Visual Studio provides an entire Build menu with the various
options available for building an application. There are essentially two options for building applications:

❑ Build — This option uses the currently active build configuration to build the project or solution,
depending upon what is available.

❑ Publish — For Visual Basic developers, this option starts the process of doing a release build, but
note that it also ties in with the deployment of your application, in that you are asked to provide
an URL where the application will be published.

The Build menu supports building for either the current project or the entire solution. Thus, you can
choose to build only a single project in your solution or all of the projects that have been defined as part
of the current configuration. Of course, anytime you choose to test-run your application, the compiler will
automatically perform a compilation check to ensure that you run the most recent version of your code.

You can either select Build from the menu or use the Ctrl+Shift+B keyboard combination to initiate a
build. When you build your application, the Output window along the bottom edge of the development

577

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 578

Chapter 13: Visual Studio 2008

environment will open. As shown in Figure 13-27, it displays status messages associated with the build
process. This window indicates your success in building the application. Once your application has been
built successfully, you will find the executable file located in the targeted directory. By default, for .NET
applications this is the \bin subdirectory of your project directory.

Figure 13-27

If you encounter any problems building your application, Visual Studio provides a separate window
to help track them. If an error occurs, the Task List window will open as a tabbed window in the same
region occupied by the Output window shown in Figure 13-27. Each error triggers a separate item in the
Task List; if you double-click an error, Visual Studio automatically repositions you on the line with
the error. Once your application has been built successfully, you can run it.

Running an Application in the Debugger
As discussed earlier, there are several ways to start your application. Starting the application launches
a series of events. First, Visual Studio looks for any modified files and saves those files automatically. It
then verifies the build status of your solution and rebuilds any project that does not have an updated
binary, including dependencies. Finally, it initiates a separate process space and starts your application
with the Visual Studio debugger attached to that process.

When your application is running, the look and feel of Visual Studio’s IDE changes, with different win-
dows and button bars becoming visible (see Figure 13-28). While your solution and code remain visible,
the IDE displays additional windows such as the Call Stack, Locals, and Watch windows. Not all of
these windows are available to users of Visual Studio Express Edition. These windows are used by the
debugger for reviewing the current value of variables within your code.

The power of the Visual Studio debugger is its interactive debugging. To demonstrate this, with your
application running, select Visual Studio as the active window. Change your display to the Form1.vb
Code view (not Design view) and click in the border alongside the line of code you added to incre-
ment the count when the button is clicked. Doing this creates a breakpoint on the selected line (refer to
Figure 13-28). Return to your application and then click the ‘‘Hello World’’ button. Visual Studio takes
the active focus, returning you to the code window, and the line with your breakpoint is now selected.

Breakpoints
You are seeing a breakpoint in action. The key to working with Visual Studio is recognizing the value
of the debugger. It is, in fact, more important than any of the other developer productivity features of
Visual Studio. Once you are on this breakpoint you have control of every aspect of your running code.
By hovering over the property Count, as shown in Figure 13-28, Visual Studio provides a debug tooltip
showing you the current value of this property. This ‘‘hover over’’ feature works on any variable in your
local environment and is a great way to get a feel for the different values without needing to go to another
window. You can do this for any local variable. Windows such as Locals and Autos display similar
information on your variables, and you can use these to update those properties while the application
is running.

578

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 579

Chapter 13: Visual Studio 2008

Figure 13-28

Next, move your mouse and hover over the parameter sender and you can see a reference to this object.
More important, you see a small plus sign on the right-hand side, which if clicked expands the pop-up to
show details about the properties of this object. As shown in Figure 13-29, this is true even for parameters
like sender, which you didn’t define. However, Figure 13-29 illustrates a key point when looking at
variable data. Notice how by expanding the top-level objects you can eventually get to the properties
inside those objects. Next to some of those properties, on the right-hand side, is a little magnifying glass.
That icon tells you that Visual Studio will open the potentially lengthy string value in any one of three
visualization windows. When working with complex XML or other complex data, these visualizers offer
significant productivity benefits by enabling you to review data.

Once you are at this breakpoint, you can control your application by leveraging the Debug toolbar but-
tons. These buttons, shown in Figure 13-30, provide several options for managing the flow of your
application. From the left you find the following: a run button, a pause button, a stop button, and a
button that looks like a carriage return next to a set of lines. That fourth button represents stepping into
code. The toolbar has three buttons showing arrows in relation to a series of lines: Step-In, Step-Over,
and Step-Out, respectively.

Step-In tells the debugger to jump to whatever line of code is first within the next method or property
you call. Keep in mind that if you pass a property value as a parameter to a method, then the first such
line of code is in the Get method of the parameter. Once there, you may want to step out. Stepping out
of a method tells the debugger to execute the code in the current method and return you to the line that
called this method. Thus, you could step out of the property and then step in again to get into the method
you are actually interested in debugging.

Of course, sometimes you don’t want to step into a method; this is where the Step-Over button comes in.
It enables you to call whatever method(s) are on the current line and step to the next sequential line of

579

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 580

Chapter 13: Visual Studio 2008

code in the method you are currently debugging. The final button, Step-Out, is useful if you know what
the code in a method is going to do but want to find out which code called the current method. Stepping
out takes you directly to the calling code block.

Figure 13-29

Figure 13-30

Each of the buttons shown on the debugging toolbar in Figure 13-30 has an accompanying shortcut key
for experienced developers who want to move quickly through a series of breakpoints. Of course, the
value of breakpoints goes beyond what you can do with them at runtime. Visual Basic 2008 Express
Edition does not support the advanced properties of breakpoints, but Visual Studio provides additional
properties for working with them. As shown in Figure 13-31, it’s also possible to add specific properties
to your breakpoints. The context menu shows several possible options. You can disable breakpoints that
you don’t currently want to stop your application flow. You can also move a breakpoint, although it’s
usually easier to just click and delete the current location, and then click and create a new breakpoint at
the new location.

More important, it’s possible to specify that a given breakpoint should only execute if a certain value
is defined (or undefined). In other words, you can make hitting a given breakpoint conditional, and a
pop-up window enables you to define this condition. Similarly, if you’ve ever wanted to stop on, for
example, the thirty-seventh iteration of a loop, you know the pain of repeatedly stopping at a break-
point inside a loop. Visual Studio enables you to specify that a given breakpoint should only stop your
application after some specified number of hits.

The next option is one of the more interesting options if you need to carry out a debug session in a
live environment. You can create a breakpoint on the debug version of code and then add a filter that

580

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 581

Chapter 13: Visual Studio 2008

Figure 13-31

ensures you are the only user to stop on that breakpoint. For example, if you are in an environment
where multiple people are working against the same executable, then you can add a breakpoint that
won’t affect the other users of the application.

Similarly, instead of just stopping at a breakpoint, you can also have the breakpoint execute some other
code, possibly even a Visual Studio macro, when the given breakpoint is reached. These actions are rather
limited and are not frequently used, but in some situations this capability can be used to your advantage.

Note that breakpoints are saved when a solution is saved by the IDE. There is also a Breakpoints window,
which provides a common location for managing breakpoints that you may have set across several
different source files.

Finally, at some point you are going to want to debug a process that isn’t being started from Visual
Studio — for example, if you have an existing website that is hosting a DLL you are interested in debug-
ging. In this case you can leverage Visual Studio’s capability to attach to a running process and debug
that DLL. At or near the top (depending on your settings) of the Tools menu in Visual Studio is the
Attach to Process option. (It is visible in Figure 13-35 later in this chapter.) This menu option opens a
dialog showing all of your processes. You could then select the process and have the DLL project you
want to debug loaded in Visual Studio. The next time your DLL is called by that process, Visual Studio
will recognize the call and hit a breakpoint set in your code.

Other Debug-Related Windows
As noted earlier, when you run an application in Debug mode, Visual Studio .NET 2008 can open a series
of windows related to debugging. Each of these windows provides a view of a limited set of the overall
environment in which your application is running. From these windows, it is possible to find things such
as the list of calls (stack) used to get to the current line of code or the present value of all the variables

581

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 582

Chapter 13: Visual Studio 2008

currently available. Visual Studio has a powerful debugger that is fully supported with IntelliSense, and
these windows extend the debugger.

Output
Recall that the build process puts progress messages in this window. Similarly, your program can also
place messages in it. Several options for accessing this window are discussed in later chapters, but at the
simplest level the Console object echoes its output to this window during a debug session. For example,
the following line of code can be added to your sample application:

Console.WriteLine("This is printed in the Output Window")

This line of code will cause the string This is printed in the Output Window to appear in the Output
window when your application is running. You can verify this by adding this line in front of the com-
mand to open the message box. Then, run your application and have the debugger stop on the line where
the message box is opened. If you check the contents of the Output window, you will find that your string
is displayed.

Anything written to the Output window is shown only while running a program from the environment.
During execution of the compiled module, no Output window is present, so nothing can be written to it.
This is the basic concept behind other objects such as Debug and Trace, which are covered in more detail
in Chapter 8.

Call Stack
The Call Stack window lists the procedures that are currently calling other procedures and waiting for
their return. The call stack represents the path through your code that leads to the currently executing
command. This can be a valuable tool when you are trying to determine what code is executing a line of
code that you didn’t expect to execute.

Locals
The Locals window is used to monitor the value of all variables currently in scope. This is a fairly
self-explanatory window that shows a list of the current local variables, with the value next to each item.
As in previous versions of Visual Studio, this display enables examination of the contents of objects and
arrays via a tree-control interface. It also supports the editing of those values, so if you want to change a
string from empty to what you thought it would be, just to see what else might be broken, then feel free
to do so from here.

Watch Windows
There are four Watch windows, numbered Watch 1 to Watch 4. Each window can hold a set of variables
or expressions for which you want to monitor the value. It is also possible to modify the value of a
variable from within a Watch window. The display can be set to show variable values in decimal or
hexadecimal format. To add a variable to a Watch window, right-click the variable in the code editor and
then select Add Watch from the pop-up menu.

Immediate Window
The Immediate window, as its name implies, enables you to evaluate expressions. It becomes available
while you are in Debug mode. This is a powerful window, one that can save or ruin a debug session. For

582

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 583

Chapter 13: Visual Studio 2008

example, using the sample from earlier in this chapter, you can start the application and press the button
to stop on the breakpoint. Go to the Immediate window and enter ?Button1.Text = ‘‘Click Me’’ and press
return. You should get a response of false as the Immediate window evaluates this statement.

Notice the preceding ?, which tells the debugger to evaluate your statement, rather than execute it. Repeat
the preceding text but omit the question mark: Button1.Text = ‘‘Click Me’’. Press F5 or click the Run
button to return control to your application, and notice the caption on your button. From the Immediate
window you have updated this value. This window can be very useful if you are working in Debug mode
and need to modify a value that is part of a running application.

Autos
Finally, as the chapter prepares to transition to features that are only available in Visual Studio and not
Visual Basic 2008 Express, there is the Autos window. The Autos window displays variables used in the
statement currently being executed and the statement just before it. These variables are identified and
listed for you automatically, hence the window’s name. This window shows more than just your local
variables. For example, if you are in Debug mode on the line to open the MessageBox in the ProVB_VS
sample, then the MessageBox constants referenced on this line are shown in this window. This window
enables you to see the content of every variable involved in the currently executing command. As with
the Locals window, you can edit the value of a variable during a debug session. However, this window
is in fact specific to Visual Studio and not available to users of Visual Basic 2008 Express.

Useful Features of Visual Studio 2008
The focus of most of this chapter has been on creating a simple application, working in either Visual
Basic 2008 Express Edition or Visual Studio 2008. It’s now time to leave the set of features supported by
the Express Edition and move on to some features that are available only to Visual Studio developers.
These features include, but are not limited to, the following items, beginning with features available to
all Visual Studio 2008 developers.

When Visual Studio 2008 is first started, you configure your custom IDE profile. Visual Studio enables
you to select either a language-specific or task-specific profile and then change that profile whenever
you desire.

Configuration settings are managed through the Tools ➪ Import and Export Settings menu option. This
menu option opens a simple wizard, which first saves your current settings and then allows you to
select an alternate set of settings. By default, Visual Studio ships with settings for Visual Basic, Web
Development, and C#, to name a few, but by exporting your settings you can create and share your own
custom settings files.

The Visual Studio settings file is an XML file that enables you to capture all your Visual Studio con-
figuration settings. This might sound trivial, but it is not. This feature enables the standardization of
Visual Studio across different team members. The advantages of a team sharing settings go beyond just
a common look and feel.

Build Configurations
Prior to .NET, a Visual Basic project had only one set of properties. There was no way to have one set
of properties for a debug build and a separate set for a release build. As a result, you had to manually

583

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 584

Chapter 13: Visual Studio 2008

change any environment-specific properties before you built the application. This has changed with
the introduction of build configurations, which enable you to have different sets of project properties
for debug and release builds. Visual Studio does not limit you to only two build configurations. It’s
possible to create additional custom configurations. The properties that can be set for a project have
been split into two groups: those that are independent of build configuration and therefore apply to all
build configurations, and those that apply only to the active build configuration. For example, the Project
Name and Project Location properties are the same irrespective of what build configuration is active,
whereas the code optimization options vary depending on the active build configuration. This isn’t a
new concept, and it has been available to Visual C++ developers for some time, but .NET was the first
time it was available for VB developers.

The default settings for developers who choose to customize Visual Studio 2008 based on Visual Basic
settings do not include the two build configuration settings in the project property pages. By default,
Visual Basic applications are built in Debug mode until they are deployed. This enables the Visual Basic
developer to be unaware of the build configuration settings. However, if a project’s build type is changed,
then the VB developer is by default unaware and unable to change the setting.

To display these settings in Visual Studio, select Tools ➪ Options. On the Options dialog, select the
Projects and Solutions tree item; and on the settings for projects and solutions, select the ‘‘Show advanced
build configurations’’ check box. This updates the user interface to properly display the build configura-
tions, even though your other settings reflect those of a Visual Basic development environment.

The advantage of multiple configurations is that it’s possible to turn off optimization while an application
is in development and add symbolic debug information that helps locate and identify errors. When you
are ready to ship the application, you can switch to the release configuration and create an executable
that is optimized for production.

At the top of Figure 13-32 is a drop-down list box labeled Configuration. Typically, four options are
listed in this box: the currently selected configuration, Active; the Debug and Release options; and a final
option, All Configurations. When changes are made on this screen, they are applied only to the selected
configuration(s). Thus, on the one hand, when Release is selected, any changes are applied only to the
settings for the Release build. If, on the other hand, All Configurations is selected, then any changes made
are applied to all of the configurations, Debug, and Release. Similarly, if Active is selected, then in the
background the changes are made to the underlying configuration that is currently active.

Alongside this is a Platform drop-down. Typically, you should not change this setting; its purpose is to
enable you to optimize the generation of your MSIL for a specific processor. For example, 32-bit proces-
sors have different optimization than 64-bit AMD processors, which differ from Intel’s 64-bit Itanium
processors. While the .NET CLR enables you to abstract these differences, Visual Studio enables you to
target a specific platform’s performance characteristics. In many cases, under Visual Studio 2008 this
drop-down no longer has any options because .NET automatically handles processor targeting at JIT
compilation.

The window below the two drop-downs displays the individual properties that are dependent on the
active build configuration. The first such setting is the location where your project’s binary files are sent.
Notice that VB now defaults to separate bin/debug and bin/release directories, so you can keep sep-
arate copies of your executables. Below this is the Advanced button, which opens a window containing
some low-level compiler optimizations. In most cases, you won’t need to change these settings, but they
are available for those working with low-level components.

584

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 585

Chapter 13: Visual Studio 2008

Figure 13-32

Below these settings is the All Configurations section. This label is somewhat misleading, as it actually
means ‘‘all of the available configuration settings.’’ Of course, that’s a bit long, but the point is that while
these settings can be different for each configuration, the grid contains all of the primary configuration
settings.

All of these settings are project-specific, but when you are working with a solution it is possible to have
more than one project in the same solution. Although you are forced to manage these settings indepen-
dently for each project, there is another form of project configuration related to multiple projects. You are
most likely to use this when working with integrated Setup projects, where you might want to build only
the Setup project when you are working on a release build.

To customize which projects are included in each build configuration, you need the Configuration Man-
ager for the solution. Projects are assigned to build configurations through the Configuration Manager.
You can access the Configuration Manager from the Build menu by selecting Configuration Manager.
Alternatively, the Configuration Manager can be opened using the drop-down list box to the right of
the Run button on the Visual Studio toolbar. The Active Configuration drop-down box contains the
following options: Debug, Release, and Configuration Manager. The first two default options are
the currently available configurations. Selecting the bottom option, Configuration Manager, opens the
dialog box shown in Figure 13-33.

The Configuration Manager contains an entry for each project in the current solution. You can include
or exclude a project from the selected configuration by clearing the check box in the Build column of
the grid. This is a valuable capability when a solution has multiple projects, as time isn’t wasted wait-
ing while a project that isn’t being worked on is recompiled. The build configuration is commonly used
when a Setup project is added to a solution. The normal plan is to rebuild only the Setup package when
a release version of the actual application project is created. Note that regardless of the build configura-
tion, you can build any assembly by right-clicking that project and selecting the Build option from the
pop-up menu.

585

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 586

Chapter 13: Visual Studio 2008

Figure 13-33

The Task List
The Task List is a great productivity tool that tracks not only errors but also pending changes and
additions. It’s also a good way for the Visual Studio environment to communicate information that the
developer needs to know, such as any current errors. The Task List is displayed by selecting Task List
from the View menu. It offers two views, Comments and User Tasks, and it displays either group of tasks
based on the selection in the drop-down box that is part of this window.

The Comment option is used for tasks embedded in code comments. This is done by creating a standard
comment with the apostrophe and then starting the comment with the Visual Studio keyword TODO. The
keyword can be followed with any text that describes what needs to be done. Once entered, the text of
these comments shows up in the Task List. Note that users can create their own comment tokens in the
options for Visual Studio via Tools ➪ Options ➪ Environment ➪ Task List. Other predefined keywords
include HACK and UNDONE.

Besides helping developers track these pending coding issues as tasks, leveraging comments embedded
in code results in another benefit. Just as with errors, clicking a task in the Task List causes the code editor
to jump to the location of the task without hunting through the code for it. Also of note, though we are
not going to delve into it, the Task List is integrated with Team Foundation Server if you are using this
for your collaboration and source control.

The second type of tasks are user tasks. These may not be related to a specific item within a single file.
Examples are tasks associated with resolving a bug, or a new feature. It is possible to enter tasks into
the Task List manually. Within the Task List is an image button showing a red check mark. Pressing this
button creates a new task in the Task List, where you can edit the description of your new task.

In early versions of Visual Studio, the Task List window was used to display compilation errors, but
under Visual Studio 2005 the Error List became a separate window.

The Command Window
The Command window can be opened from the Other Windows section of the View menu. When
opened, the window displays a > prompt. This is a command prompt at which you can execute

586

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 587

Chapter 13: Visual Studio 2008

commands — specifically, Visual Studio commands. While Visual Studio is designed to be a GUI
environment with limited shortcuts, the Command window enables you to type — with the assistance of
IntelliSense — the specific command you want.

The Command window can be used to access Visual Studio menu options and commands by typing
them instead of selecting them in the menu structure. For example, type File.AddNewProject and press
Enter — the dialog box to add a new project will appear. Similarly, if you type Debug.Start, you initiate
the same build and start actions that you would from the Visual Studio UI.

Server Explorer
As development has become more server-centric, developers have a greater need to discover and manip-
ulate services on the network. The Server Explorer is a feature in Visual Studio that makes this easier.
Visual Interdev started in this direction with a Server Object section in the Interdev toolbox. The Server
Explorer in Visual Studio is more sophisticated in that it enables you to explore and even alter your appli-
cation’s database or your local registry values. With the assistance of an SQL Database project template
(part of the Other Project types), it’s possible to fully explore and alter an SQL Server database. You can
define the tables, stored procedures, and other database objects as you might have previously done with
the SQL Enterprise Manager.

You open the Server Explorer in much the same way you open the control Toolbox. When you hover
over or click the Server Explorer’s tab, the window expands from the left-hand side of the IDE. Once
it is open, you will see a display similar to the one shown in Figure 13-34. Note that this display has
two top-level entries. The first, Data Connections, is the starting point for setting up and configuring the
database connection. If you installed SQL Server Express, then this database and its connection string
have already been loaded into your list of available data connections. You can also right-click on the
top-level Data Connections node and define new SQL Server connection settings that will be used in
your application to connect to the database. The Server Explorer window provides a way to manage and
view project-specific database connections such as those used in data binding.

The second top-level entry, Servers, focuses on other server data that may be of interest to you and your
application. When you expand the list of available servers, you have access to several server resources.
The Server Explorer even provides the capability to stop and restart services on the server. Note the
wide variety of server resources that are available for inspection or use in the project. Having the Server
Explorer available means you don’t have to go to an outside resource to find, for example, what message
queues are available.

By default, you have access to the resources on your local machine; but if you are in a domain, it is pos-
sible to add other machines, such as your Web server, to your display. Use the Add Server option to
select and inspect a new server. To explore the Event Logs and registry of a server, you need to add
this server to your display. Use the Add Server button in the button bar to open the dialog and iden-
tify the server to which you would like to connect. Once the connection is made, you can explore the
properties of that server.

Recording and Using Macros in Visual Studio 2008
Visual Studio macros are part of the environment and are available to any language. Macro options
are accessible from the Tools ➪ Macros menu, as shown in Figure 13-35. The concept of macros is sim-
ple: Record a series of keystrokes and/or menu actions, and then play them back by pressing a certain
keystroke combination.

587

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 588

Chapter 13: Visual Studio 2008

Figure 13-34

Figure 13-35

588

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 589

Chapter 13: Visual Studio 2008

For example, suppose that one particular function call with a complex set of arguments is constantly
being called on in code, and the function call usually looks the same except for minor variations in the
arguments. The keystrokes to code the function call could be recorded and played back as necessary,
which would insert code to call the function, which could then be modified as necessary.

Macros can be far more complex than this, containing logic as well as keystrokes. The macro capabilities
of Visual Studio are so comprehensive that macros have their own IDE (accessed via Tools ➪ Macros ➪

Macros IDE).

Macros can also be developed from scratch in this environment, but more commonly they are recorded
using the Record Temporary Macro option on the Macros menu and then renamed and modified in the
development environment. Here is an example of recording and modifying a macro:

1. Start a new Windows Application project.

2. In the new project, add a button to Form1, which was created with the project.

3. Double-click the button to get to its Click event routine.

4. Select Tool ➪ Macros ➪ Record Temporary Macro. A small toolbar will appear on top of
the IDE with a button to control the recording of a macro (Pause, Stop, and Cancel).

5. Press Enter and then type the following line of code:

Console.WriteLine("Macro test")

6. Press Enter again.

7. In the small toolbar, press the Stop button.

8. Select Tools ➪ Macros ➪ Macro Explorer. The Macro Explorer will appear (in the location
normally occupied by the Solution Explorer), with the new macro in it. You can name the
macro anything you like.

9. Right-click the macro and select Edit to get to the Macro Editor. You will see the following
code in your macro:

DTE.ActiveDocument.Selection.NewLine()
DTE.ActiveDocument.Selection.Text = "Console.WriteLine(""Macro test"")"
DTE.ActiveDocument.Selection.NewLine()

The code that appears in step 9 may vary depending on how you typed in the line. For example, if you
made a mistake and backspaced, those actions will have their own corresponding lines of code. As a
result, after you record a macro, it is worthwhile to examine the code and remove any unnecessary lines.

The code in a macro recorded this way is just standard VB code, and it can be modified as desired.
However, there are some restrictions regarding what you can do inside the macro IDE. For example,
you cannot refer to the namespace for setting up database connections, because this might constitute a
security violation.

To run a macro, you can just double-click it in the Macro Explorer or select Tools ➪ Macros ➪ Run
Macro. You can also assign a keystroke to a macro in the Keyboard dialog box in the Tools ➪ Options ➪

Environment folder.

One final note on macros is that they essentially enable you to generate code that can then be transferred
to a Visual Studio Add-In project. An Add-In project is a project designed to extend the properties of

589

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 590

Chapter 13: Visual Studio 2008

Visual Studio. To create a new Add-In project, open the New Project dialog and select Other Project
Types — Extensibility. You can then create a Visual Studio Add-In project. Such a project enables you
to essentially share your macro as a new feature of Visual Studio. For example, if Visual Studio 2008
didn’t provide a standard way to get formatted comments, you might create an add-in that enables you
to automatically generate your comment template so you wouldn’t need to retype it repeatedly.

Class Diagrams
One of the features introduced with Visual Studio 2005 was the capability to generate class diagrams. A
class diagram is a graphical representation of your application’s objects. By right-clicking on your project
in the Solution Explorer, you can select View Class Diagram from the context menu. Alternatively, you
can choose to Add a New item to your project. In the same window where you can add a new class,
you have the option to add a new class diagram. The class diagram uses a .cd file extension for its source
files. It is a graphical display, as shown in Figure 13-36.

Figure 13-36

Adding such a file to your project creates a dynamically updated representation of your project’s classes.
As shown in Figure 13-36, the current class structures for even a simple project are immediately repre-
sented when you create the diagram. It is possible to add one class diagram per subdirectory in your
project. The class diagram graphically displays the relationships between objects — for example, when
one object contains another object or even object inheritance. When you change your source code the
diagram is also updated. In other words, the diagram isn’t something that you create once at the start
of your project and then allow to become out of date as your actual implementation changes the class
relationships.

More important, you can at any time open the class diagram, make changes to one or more of your
existing objects, or create new objects and define their relationship to your existing objects, and when

590

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 591

Chapter 13: Visual Studio 2008

done Visual Studio will automatically update your existing source files and create new source files as
necessary for the newly defined objects.

As shown in Figure 13-36, the class diagram files (*.cd) open in the same main display area used for the
Visual Studio UI designer and viewing code. They are, however, a graphical design surface that behaves
more like Visio than the User Interface designer. Individual objects can be compressed or have their
property and method details exposed. Additionally, items such as the relationships between classes can
be shown graphically instead of being represented as properties.

In addition to the editing surface, when working with the Class Designer a second window is displayed.
As shown in Figure 13-36, the Class Details window is generally located in the same space as your Out-
put, Tasks, and other windows. The Class Details window provides detailed information about each
of the properties and methods of the classes you are working with in the Class Designer. You can add
and edit methods, properties, fields, and even events associated with your classes. While you can’t write
code from this window, you can update parameter lists and property types. The Class Diagram tool is an
excellent tool for reviewing your application structure.

Team System
The focus of this chapter has been on how you, as a Visual Basic developer, can leverage Visual Studio
2008. At the top end of the Visual Studio 2008 product line is the full Team Suite, and just below that
are the various Team Editions. These are part of the umbrella of products referred to as Team System. In
order to reduce confusion, this section takes a brief look at the tools from Team Suite that are part of the
Visual Studio 2008 Team Edition for Software Developers. These tools are focused less on languages and
developing code than on managing development and the development of applications.

Architecturally, Team System has two main elements: the server-side components, which operate under
Team Foundation Server, and the client components, which are grouped under the Team Suite umbrella.
Team Foundation Server (TFS) is in a sense the replacement for Visual Source Safe (VSS), although think-
ing of it only in those terms is a bit like thinking of the modern automobile as the replacement for the
horse and carriage. Note that unlike Visual Source Safe, released in 2005, TFS was updated with a 2008
release and will be updated again in the future as part of the next release of the Team System tools.
Understandably, the focus of TFS is on server-side components, but TFS includes a client installation
package. This package ships with the server, but includes add-ins to Visual Studio as well as Visual
Studio Tools for Office documents that you need in order to work with the server products.

Team Suite is a set of components that are integrated with and ship with Visual Studio 2008. These
components were initially categorized into three roles: Architects, Developers, and Testers. Team Suite
consolidates the tools appropriate for all these roles in a single product. Since its original release,
Microsoft has announced and started offering technology previews for database developers. These tools
are also available to users of Team Suite. The underlying concept is that each role needs certain tools in
order to better carry out the associated daily tasks, and in some cases these tools overlap between roles.

While having a single product that incorporates all these tools is nice, cost can become an issue. Thus,
Microsoft introduced the idea of Team Editions. To minimize the cost to the developer, these provide
the same server components access to all of the roles, but on the client side they include only the tools
appropriate for a specific role. Thus, from the standpoint of TFS and the server components of Team
Suite, there are no differences between Team Suite and a Team Edition. The only differences exist in the
tools provided as part of the client’s version of Visual Studio.

591

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 592

Chapter 13: Visual Studio 2008

Team Foundation Server (TFS)
The server components of Team System are not directly integrated into Visual Studio 2008, but it is
appropriate to mention a couple of key attributes of TFS that extend it beyond VSS. Similar to VSS, the
primary role most developers see for TFS is that of source control. This is the capability to ensure that
if multiple people are working on the same project and with the same set of source files, then no two of
them can make changes to the same file at the same time.

Actually, that’s a bit of an oversimplification. The default mode for TFS is to allow two people to work
on the same file, and then have the second person attempting to save changes merge his or her changes
with the previously saved changes. The point of this is to ensure that developers check files in and out
of source control so that they don’t overwrite or lose each other’s changes. In terms of its features and
usability compared with VSS, TFS is much more capable of supporting remote team members. A project
that literally takes hours to download remotely from VSS can download in a few minutes from TFS.

However, that covers just the source control features, and as mentioned previously TFS goes well beyond
source control. The most obvious way is that TFS approaches project development from the role of the
project manager. It doesn’t consider a Visual Studio project file to represent the definition of a project.
Instead, it recognizes that a project is based on a customer or contract relationship and may be made up
of several seemingly unrelated projects in Visual Studio. Thus, when you define a project you create an
area where all of the projects and solutions and their associated source files can be stored.

As part of the creation process you select a process template — and third-party templates are available —
and create a SharePoint website based on that template. The SharePoint website becomes the central
point of collaboration for the project’s team. In addition to hosting the documentation associated with
your selected software development process, this site acts as a central location for task lists, requirements,
Microsoft project files, and other materials related to your project. In essence, TFS leverages SharePoint
to add a group collaboration element to your projects.

As important as this is, an even more important capability TFS supports is that of a build lab. TFS pro-
vides another optional product called Team Build, which leverages the Visual Studio build engine to
enable you to schedule automated builds. This isn’t just a simple scheduling service; the Team Build
engine not only retrieves and compiles your application files, but also sends update notices regarding
the status of the build, and can be instructed to automatically leverage some of the Team Suite tools
such as Code Analysis and Unit Testing. The capability to automate your builds and deploy them on a
daily basis to a test environment encourages processes that focus on product quality and mirror industry
best practices.

Finally, TFS ships with the Team Explorer. This is a Visual Studio add-in on steroids. It includes not only
new menu items for Visual Studio, but also a new window similar in concept to the Solution Explorer
but that instead provides access to your TFS projects. It also provides a series of windows in Visual
Studio, some of which are related to source control, and others related to Tasks. TFS is in many ways
the single most important tool in the Team System product line, even though it doesn’t truly exist within
Visual Studio.

Be aware that since TFS 2008 shipped with Visual Studio 2008, there is a new version of both TFS,
including Team Build, which was enhanced significantly, and Team Explorer. The Team Explorer 2008
client is what you should integrate with Visual Studio 2008 to connect to either a TFS 2005 or a TFS
2008 server.

592

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 593

Chapter 13: Visual Studio 2008

Team Editions
While TFS is available to all users of one of the versions of Team System, on the client side there are
several different editions. As noted, Team Suite contains everything, but what about the role-based edi-
tions? There are currently three versions of the Team Edition packages: Team Edition for Architects, Team
Edition for Software Developers, and Team Edition for Software Testers. These packages are described
in detail on Microsoft’s website, but here is a thumbnail review of the contents of each.

Team Edition for Architects isn’t just focused on software architects. This edition contains tools oriented
to the interaction of different applications, and the interaction between physical servers and the compo-
nents that are installed on those servers. The architect tools essentially work at a level above the Class
Designer. These tools enable you to define applications that can then become Visual Studio projects. The
designers support designating the security requirements for deploying these applications and enable
the architect to compare the requirements of a given application with the settings on a physical server.
The goal is to enable an architect to determine quickly whether a new application will work when it is
actually deployed into production, and to understand how different applications will interact.

Team Edition for Software Developers is an excellent subset of tools for developers. Details of this edition
are the focus of the following sections in this chapter. In short, the Developers edition provides tools to
analyze the quality of your source code, to test an application’s performance in relation to the system
resources it consumes, and to create automated unit tests. This last feature is in many ways the most
important feature for improving your code quality.

Team Edition for Software Testers doesn’t focus on documenting how an application should work so
much as on coding and automating tests. It has all of the same unit testing capabilities of the Developers
edition but includes additional test tools for Web applications and for load testing Web applications. It
also includes some basic tools for documenting and defining tests; but just as with Team Build, the focus
is on creating and customizing automated tests.

Team Edition for Developers
This set of tools, which has been integrated with Visual Studio, is focused on the needs of the application
developer. Unlike the Architect tools, those for developers are to a large extent taken from existing, free
tools. However, unlike those tools, the Team Suite versions have been fully integrated with Visual Studio
and TFS. Don’t be fooled by the fact that many of these tools are based on freely available tools; many
modifications and improvements are included.

Code Analysis
Code analysis, or static code analysis, is a tool for reviewing your source code — although that’s not
quite how it works. The basic paradigm reflects the fact that there are certain common best practices
when writing code, and that once these best practices have been documented, a tool can be written that
examines source code and determines whether these practices have been followed. Visual Studio’s static
code analysis is incorporated into your project settings for Windows Forms–based projects, as shown in
Figure 13-37. For Web applications, there isn’t a project file to hold the project settings, so it is possible to
configure and run static code analysis from the website menu in Visual Studio.

In fact, the tool doesn’t actually look at your source code. Instead, it uses reflection; and once your project
has been compiled, it queries the MSIL code your project generates. While this may seem surprising,

593

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 594

Chapter 13: Visual Studio 2008

remember that this tool is looking for several best practices, which may be implemented in different
ways in your source code but will always compile in a standard manner.

Figure 13-37

Figure 13-37 shows the optional Code Analysis screen. Note that even when you have the code analysis
tools available, they are by default not enabled for your project. This is because enabling code analysis
significantly extends your compile time. In most cases you’ll want to enable these settings for a build or
two, and then disable the checks for most of your debug builds. As you can see, to enable analysis you
merely check the Enable Code Analysis check box.

Below this check box is a new check box for Visual Studio 2008. One of the code analysis issues for which
Microsoft was criticized was that if you used the standard project template to create your project and
then ran Code Analysis, you would get certain warnings. The solution Microsoft chose was to enable
you to automatically bypass checking their generated code, which at least enables you to avoid having to
manually mark all of the issues related to the generated code as being suppressed.

Once you have enabled the code analysis checks, you also have the option to define exactly which rules
you want to apply. The checks are divided into different categories of rules. Note that each of the cate-
gories can be enabled or disabled as part of your code analysis. You can expand the display to list the
rules in each category.

When expanded, next to each category and rule is a check box. By default, Visual Studio issue warnings
if your code fails. This enables you to have some rule violations act as compilation errors instead of
warnings. You can also enable or disable having the analyzer check individual rules. Outside of the
scope of this chapter is the capability to actually identify within your source code those items that may
be flagged by the code analyzer but that are valid exceptions to the rule being checked.

594

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 595

Chapter 13: Visual Studio 2008

Performance Tools
Performance checks are something every developer wants. Visual Studio provides dynamic code analysis,
or performance, tools for your application. These tools are available from the Analyze menu, shown in
Figure 13-38. The performance tools provide two runtime environments to measure the performance of
your application: Sampling and Instrumented. Note that if you are working within a virtual PC, then you
need to use the instrumented version of the performance tools.

Figure 13-38

Sampling for performance testing is a non-intrusive method of checking your application performance.
Essentially, Visual Studio starts your application normally, but behind the scenes it is interfaced into
the system performance counters. As your application runs, the performance monitoring engine captures
system performance, and when your application completes it provides reports describing that perfor-
mance. Details about what your application was actually doing to cause a behavior isn’t available, but
you can get a realistic feel of the impact on the system.

Instrumentation, conversely, is an intrusive form of performance monitoring. Choosing to make an
instrumentation run the performance tools triggers the addition of special MSIL commands into your
compiled executable. These calls are placed at the start and finish of methods and properties within
your executable. Then, as your code executes, the performance engine can gauge how long it takes for
specific calls within your application to execute.

Keep in mind that both methods of performance testing affect the underlying performance of the appli-
cation. It is true that running a performance monitor of any type has built-in overhead that affects your
application, but the goal of performance testing isn’t to know the exact timing marks of your application,
but rather to identify areas that deviate significantly from the norm, and, more important, to establish a
baseline from which you can track any significant changes as code is modified.

595

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 596

Chapter 13: Visual Studio 2008

Unit Tests
Automated unit tests are arguably the most important of the tools provided to the developer as part of
Team Edition. To create a new Unit Test, select New Test from the Test menu in Visual Studio. This opens
the Add New Test dialog, shown in Figure 13-39. Note that the dialog shown isn’t from Visual Studio
2008 Team Edition for Software Developers, but from Visual Studio 2008 Team Suite, the difference
being several more project templates, representing the full suite of templates available to a software
tester. Developers will normally only see the Unit Test and Unit Test Wizard templates available in this
screen. Given this, developers should work with the Unit Test Wizard to generate new tests. This wizard
walks you through the process of generating a new test project.

Figure 13-39

Once you have completed the final step in the wizard to define your test project, you are presented with
the screen shown in Figure 13-40. This screen shows each of your project’s classes, and expands into the
methods and properties available in that class. Note that the screen shown is based on the ProVB_VS
sample application, which consists of a single form. Displayed are several inherited methods in addition
to the custom methods on the form. In fact, the custom methods are not shown in the figure. This screen
enables you to review those properties and methods that are part of the My namespace. Specifically, you
can run tests against the settings and resources that you expect will be included in your project.

What’s missing is any type of review of the actual UI elements with which users of your application
would interact. The unit test engine that ships with Team System does not support actual UI testing;
it is focused on testing methods that exist in your code. However, this screen enables Visual Studio
to generate the source code associated with testing your application. Clicking the OK button triggers
the generation of these tests, which are grouped in a new test project. Shown in Figure 13-41 is the newly
generated ProVB_VS_Test project.

596

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 597

Chapter 13: Visual Studio 2008

Figure 13-40

Figure 13-41

The creation of a Unit Test project is not a trivial event. Even though it occurs as quickly as any other
project template, the results are significant. First, notice in the Solution Explorer shown in Figure 13-41
that another project has been added to the ProVB_VS solution. This new test project includes a documen-
tation file, AuthoringTests.txt, with tips and instructions for writing unit tests. In addition, this screen

597

Evjen-91361 c13.tex V2 - 04/02/2008 5:36pm Page 598

Chapter 13: Visual Studio 2008

shows a subset of the contents of the Form1Test.vb source file. It is opened to some of the comments
accompanying the methods stubs to implement the tests for your selected methods.

Unit tests present a unique challenge — because you are writing test code, they are an expensive feature
to initially implement. Therefore, even though automated unit tests are valuable, organizations often
have trouble committing to their development. Nonetheless, a well-written set of tests more than pays
for itself. How do you estimate that cost? As a rule of thumb, consider estimating as much time for
writing tests as you expect to spend writing the code to be tested.

Summary
In this chapter, you have taken a dive into the versions and features of Visual Studio. This chapter was
intended to help you explore the new Visual Studio IDE. It demonstrated how powerful the features of
the IDE are, even in the freely available Visual Basic 2008 Express Edition. Following are some of the key
points covered in this chapter:

❑ How to create projects, and the different project templates available

❑ Code regions and how you can use them to conceal code

❑ Versions of Visual Studio 2008

❑ The properties and settings of your Visual Studio 2008 projects

❑ Running an application in Debug mode and working with breakpoints

❑ Building configurations and modifying the build configuration of your project

❑ The Class Designer

❑ Team System: Team Foundation Server and Team Suite

❑ Tools in Visual Studio 2008 Team Edition for Developers

❑ Automated unit tests

You’ve seen that Visual Studio 2008 is highly customizable and comes in a variety of flavors. Numerous
windows can be hidden, docked, or undocked. They can be layered in tabs and moved within the IDE.
Visual Studio also contains many tools, including some that extend its core capabilities. Keep in mind
that whether you are using Visual Basic 2008 Express Edition or Visual Studio 2008 Team Suite, the core
elements associated with compiling your application are the same.

598

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 599

Working with SQL Server

Most of the relationship between a developer and an SQL Server relates to querying or saving data,
but Visual Studio 2008 provides a couple of ways to work with databases: SQL Server Compact
Edition and SQL CLR.

While Visual Basic has always included tools for working with the various editions and versions
of SQL Server, Visual Studio 2008 includes a new member of the SQL Server family: SQL Server
Compact Edition (SQLCE). SQLCE is a lightweight version of the database that requires minimal
installation and configuration to use. It runs on both Windows and devices running Windows CE.
SQLCE is particularly suited for creating local caches of a larger remote database, which may be
used to improve performance when querying rarely changing tables or for the creation of partially
connected solutions when working with data. In combination with various synchronization sce-
narios, SQLCE can provide developers with a powerful tool for enabling their applications to work
both connected to the main database and offline (still storing records until the next connection).

SQL Server 2005 added integration with the .NET Framework. This provided two main benefits.
First, you can use Visual Basic to create elements in the database, such as user-defined types, stored
procedures, and functions. These objects may work alone or in concert with Transact-SQL objects.
Second, you can expose Web services from your databases, enabling .NET and other client applica-
tions to execute code on the database.

Transact-SQL (T-SQL), while well-featured, lacks a number of features that are common in general-
purpose languages such as Visual Basic. VB includes better support for looping and conditional
statements than T-SQL. In addition to these language features, the .NET Framework is available
for use with Visual Basic, meaning you have access to tools for network access, string handling,
mathematical processing, internationalization, and more. Therefore, if your stored procedures need
access to features such as these, it may be beneficial to look at using VB as the language, not T-SQL.

This chapter describes how you can use Visual Basic to create applications that save data to
SQLCE databases, and how to create database objects in SQL Server 2005. It covers some of the
synchronization methods you can take advantage of to create partially connected applications. This
chapter also covers the capability of hosting CLR objects and Web services within SQL Server and
how you can create these objects using Visual Basic.

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 600

Chapter 14: Working with SQL Server

SQL Server Compact Edition
The main benefits of SQL Server Compact Edition over its larger cousins are size and ease of deployment.
The database engine consists of a set of DLLs with a total size of less than 2MB. Installation can be done
either by including these DLLs in the output of your project or by including the SQL Server Compact
Edition MSI file as part of your deployment project. This MSI can be included when deploying your
application with ClickOnce. After it is installed, you get most of the benefits of SQL Server, including
multi-user access, the query processor, and referential integrity. All the data and log files for the database
are stored in a single file (with the extension SDF). This file can be encrypted for security purposes with a
simple password. The database file will grow as needed to support the stored data and may be compacted
if necessary. If these benefits remind you of ‘‘the old days’’ of storing your data in Jet (Microsoft Access)
databases, it should. SQLCE provides the same rapid development and deployment model you used to
enjoy, along with better compatibility and upgradeability between the server and client databases.

SQLCE is not without its limitations, however. Designed to be small and portable, it does place
restrictions on the size and types of data you can store. Those limitations include the following:

❑ The maximum database size is 4GB, although this requires you to change the connection string
(see the section ‘‘Connecting to a SQL Server Compact Edition Database’’). By default, the
maximum database size is 256MB (128MB on devices).

❑ Maximum row size is 8060 bytes, although, as with the other editions of SQL Server, this does
not include the size of blob or text fields.

❑ By default, SQLCE does not work with ASP.NET. This can be enabled, but it is not recommen-
ded, except in cases of simple sites with limited data access needs. This is primarily for
concurrency. While SQLCE supports multiple users, it is not quite as reliable as some of the other
SQL Server implementations. To enable SQLCE on ASP.NET, you should make the following
method call before attempting to open a connection to the SQLCE database:

AppDomain.CurrentDomain.SetData("SQLServerCompactEditionUnderWebHosting",
true)

❑ No stored procedures, views, functions, or user-defined types

When it is working in a standalone situation, SQLCE is almost identical to its larger SQL versions. You
still connect to the database with a class that inherits DbConnection and use classes that inherit from
DbDataAdapter and DbCommand to query it. SQLCE differs, however, in that you don’t use the classes
in System.Data.SqlClient. Instead, you use the classes in the namespace System.Data.SqlServerCe.
There you will find SqlCeConnection, SqlCeCommand, and SqlCeDataAdapter. The code that follows
shows a simple example of accessing a SQLCE database:

Using conn As New SqlCeConnection(My.Settings.productsConnectionString)
conn.Open()
Using cmd As _

New SqlCeCommand("SELECT ProductName, UnitPrice FROM Products", conn)
Using reader As SqlCeDataReader = cmd.ExecuteReader

While reader.Read
Console.WriteLine("{0}: {1:c}", _

reader.GetString(0), _
reader.GetDecimal(1))

600

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 601

Chapter 14: Working with SQL Server

End While
End Using

End Using
End Using

If you use the provider-agnostic classes added in the .NET Framework 2.0, then the code becomes even
more like the SQL Server equivalent:

Dim fact As DbProviderFactory
Dim prov As String = My.Settings.productsProvider
fact = DbProviderFactories.GetFactory(prov)
Using conn As DbConnection = fact.CreateConnection()

conn.ConnectionString = My.Settings.productsConnectionString
conn.Open()
Using cmd As DbCommand = fact.CreateCommand

With cmd
.CommandText = "SELECT ProductName, UnitPrice FROM Products"
.CommandType = CommandType.Text
.Connection = conn
Using reader As DbDataReader = cmd.ExecuteReader

While reader.Read
Console.WriteLine("{0}: {1:c}", _

reader.GetString(0), _
reader.GetDecimal(1))

End While
End Using

End With
End Using

End Using

The simplest possible way to use a SQL Server Compact Edition database in your application is to use it
as a standalone database. While you get none of the benefits of synchronization, you do get the benefit of
the simpler (and smaller) deployment for SQLCE. However, the true power of SQLCE comes into play
when you use it along with synchronization. This enables you to more easily create applications that
work both offline and online.

Connecting to a SQL Server Compact Edition Database
As with other editions of SQL Server, the key to connecting to a SQLCE database is in the connection
string. However, because SQLCE does not have the same features in terms of server and integrated
security, different options are used to connect to the database, the most important of which are described
in the following table. Only the data source and password values can be set within the IDE.

Option Description

Provider name System.Data.SqlServerCe

Data source Points to the SDF file. As this file is normally included in the project, the
value can be written using the DataDirectory shortcut: DataSource =
|DataDirectory|\DatabaseName.sdf;

Password The password used to encrypt the database

601

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 602

Chapter 14: Working with SQL Server

Option Description

Max buffer size The maximum amount of memory that is used before SQLCE flushes the
changes to disk, measured in kilobytes. The default value is 640, which
should be enough for everyone.

Max database size The maximum size for the database, measured in megabytes. The default
value is 256MB (128MB when SQLCE is running on devices), and the
maximum value is 4096MB (4GB).

Mode How the database file will be opened. This value can be Read only, Read
Write, Exclusive, or Shared Read. The default, Read Write, should be
used, unless you have particular needs for your database.

Autoshrink threshold As SQLCE databases will grow on demand, there may be situations
when you need them to shrink on demand as well, such as when a large
amount of data is deleted or a complex operation needing temporary
tables completes. When this occurs, this setting identifies when, and by
how much, the database should shrink. By default, SQLCE will shrink a
database when 60 percent of the available space is empty. Normally, you
will not need to change this setting unless space is at a premium.

Using SQLCE as a local standalone database can be useful when creating small, easily deployed applica-
tions. You can see this by creating a simple application to store contact data in a SQLCE database:

1. Create a new Windows Forms project named Contacts, and add a new local database to your
application (see Figure 14-1).

Figure 14-1

2. Once you have added the new database, Visual Studio will also add a new DataSet to the
project and start the Data Source Configuration Wizard. As you are not using the database to

602

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 603

Chapter 14: Working with SQL Server

retrieve server data, the DataSet will initially be blank (see Figure 14-2). Click Finish to add
the new DataSet. You will add the tables later.

Figure 14-2

3. Double-click on the Contacts.sdf file in your project to open it in the Server Explorer win-
dow. You can now add a new table to the database, as shown in Figure 14-3 and described in
the following table.

Figure 14-3

603

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 604

Chapter 14: Working with SQL Server

Column Data Type Comments

Id Int This should also be set to not allow null values, and as the
primary key for the table. Remember to set Identity to true.

FirstName NVarChar(50) Allow nulls should be set to false.

LastName NVarChar(50) Allow nulls should be set to false.

Email NVarChar(100) Allow nulls should be set to true.

4. Double-click the DataSet added earlier to open the designer and drag the newly created
table onto the surface (see Figure 14-4).

Figure 14-4

5. Open the Data Sources window in Visual Studio. You should see the ContactsDataSet, with
the Contacts table. Drag the Contacts table onto the form to create a DataGridView control
and a navigator (see Figure 14-5). You should now be able to run the application and add
some data.

6. If you look at the contents of the Contacts.sdf file, you may become dismayed, as no data
is visible. This is because it is not the database actually being written to. If you look in the
/bin/debug folder for the application, you will see the actual database, which contains the
data added (see Figure 14-6).

Synchronizing Data
Although you can use SQLCE as a standalone database, it really shines when it is used in combination
with a remote database and synchronization. Synchronization enables the developer to reduce the net-
work traffic required when querying the database, while still keeping up-to-date data on the client. It
may be one-way synchronization, pulling the most recent server changes down to the client, or it may
be bidirectional, keeping both client and server synchronized. The best choice depends on the situation.
You would want to use synchronization in your applications in a number of scenarios:

604

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 605

Chapter 14: Working with SQL Server

Figure 14-5

Figure 14-6

❑ Remote data mirror applications — These applications use the local database only as a local
copy of the master database, likely as a subset of data. In this scenario, shown in Figure 14-7,
data flows only one way: from the server database to the client. Most commonly, this would be
product information, news, or customer data that the clients would read but not change.

❑ Remote data entry applications — These include Sales or Field Force Automation (SFA and
FFA) applications, such as the classic ‘‘traveling salesman’’ applications. In this scenario,
a given data row goes only in a single direction: reference data down, inserts up, as shown in
Figure 14-8. As with the remote data mirror applications, a subset of data is typically installed on
the client workstation, generally the catalog information and any reference data required, before
the application goes off the network. The sales agent then goes out, making sales. Occasionally,
the application is reconnected to the network, when new customer and sales data are uploaded
to the main database, and updated catalog data is sent to the client.

❑ Simple queuing applications — These applications are a special case of the preceding scenario.
The applications write exclusively to the local database and use the synchronization to push
the changed data to the server database. The difference here is partly intent; here the local
database is used as a temporary holding space. A periodic synchronization moves data between
server and client when the two are connected. This scenario, shown in Figure 14-9, improves the
overall performance of the application, particularly when you have a slow connection between
server and client. It also provides access to the application even when the network is not
available.

605

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 606

Chapter 14: Working with SQL Server

Data flows
from

server to
client only

Figure 14-7

Reference
data from

server

Client inserts
submitted on

synchronization

Application stores data
locally while offline

Disconnected Connected

Figure 14-8

606

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 607

Chapter 14: Working with SQL Server

Data from
server

When network is
available, data is
pushed to server

periodically

Application stores
data locally

Figure 14-9

❑ Remote database applications — These applications treat the remote database as though it were
a ‘‘master’’ copy of the data. In this scenario, shown in Figure 14-10, data may be changed either
at the client or the server, and the changes flow in both directions. This is the most dangerous
scenario for synchronization clients because the data may have been changed differently in two
(or more) locations. Therefore, some form of conflict resolution is required, as well as policies
that specify which changes take precedence (for example, last change overrides the data, some-
one must manually process all conflicts to select the valid data, or the data change made by the
highest person in the organization chart wins). It is best to avoid or limit this scenario if at all
possible when building a synchronization scenario.

Because each synchronization scenario requires different decisions, SQLCE supports three different tech-
nologies for defining the synchronization:

❑ Remote Data Access (RDA) — RDA is the simplest means of configuring synchronization between
SQLCE and one of its larger brethren. With RDA, you create a new virtual directory under IIS.
The virtual directory includes the SQL Server CE Agent DLL. Client applications then initiate
the synchronization. Data can be pulled or pushed out of a single table, and you can query for
a subset of the data. While this method is tempting, Microsoft has announced that it is unlikely
this technology will go much further; they won’t be adding any additional features to it. Instead,
developers are encouraged to make use of Sync Services.

607

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 608

Chapter 14: Working with SQL Server

Reference
data from

server

Changes from both
server and
client(s)

synchronized

Application stores data
locally while offline

Disconnected Connected

Figure 14-10

❑ Merge replication — This is the replication system built into SQL Server. It is a DBA-centric
model, whereby the database administrator configures the data shared between the applica-
tions. The SQL Server Agent then schedules the synchronization between server and client(s).
This form of synchronization is powerful, but it is also the most complex to configure. It requires
permissions to create the publications and synchronization schedule on the server, as well as to
create the subscriptions on the client. Creating merge replication publications is supported only
on SQL Server Standard Edition and higher, so you can’t create a merge replication between SQL
Server Express and SQLCE.

❑ Sync Services — This is a new set of classes that were available separately for earlier versions of
Visual Studio but are now included with Visual Studio 2008. Sync Services provide the simplicity
of RDA with the robustness of merge replication. They make it incredibly easy to create an appli-
cation that uses the SQLCE database as a local cache. With a bit of additional code, you can also
use it for bidirectional synchronization.

Here’s an example of using Sync Services to create a one-way synchronization:

1. Create a new Windows Forms project (here it is called LocalCache).

2. Add a new Local Database Cache item to the project (see Figure 14-11). As this will be used
to cache data from the pubs database, it is called PubsCache.

608

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 609

Chapter 14: Working with SQL Server

Figure 14-11

3. The Local Database Cache item enables you to easily configure Sync Services, as it starts the
Data Synchronization Wizard. The first step of the wizard is to configure the two connection
strings: for server and client. Create a new server connection string to the pubs database
used in Chapter 9. Once this is done, the wizard will add a new SQLCE database to the
project and create the client connection (see Figure 14-12).

Figure 14-12

4. The next step in configuring the synchronization is to add the tables that will be synchro-
nized. Click the Add button in the lower left-hand corner of the dialog and select the Stores
and Titles tables (see Figure 14-13).

609

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 610

Chapter 14: Working with SQL Server

Figure 14-13

5. Sync Services may need to make changes to your database to enable some of its functional-
ity. In order to identify new or updated records, it needs to add fields. By default, these are
called CreationDate and LastEditDate. In addition, deleted records are moved to a tomb-
stone table, rather than completely deleted. If you already have columns defined for these
purposes, you can select them instead. Alternatively, you can have the synchronization pull
down the full copy of the table with each synchronization, which may be a useful alternative
if the tables are fairly small. Click OK to return to the Configure Data Synchronization dialog
(see Figure 14-14).

Figure 14-14

610

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 611

Chapter 14: Working with SQL Server

6. When you click OK, you should briefly see a dialog appear showing the progress of the
synchronization, followed by the appearance of the Data Source Configuration Wizard
(see Figure 14-15). Select all the tables and click Finish to create the local DataSet and
return to the IDE.

Figure 14-15

You should see a number of changes, including the newly added sync file, as well as the
local SQLCE database and the DataSet. If you chose to add the columns and tables for
tracking the changes to the database, you will also see two SQL files per table added: one
to apply those changes to the database (this has already been run) and one to remove those
changes.

7. Open the designer for the DataSet and the Server Explorer. If you have not previously
created a connection to the server-side pubs database, add one now. Drag the sales table
from the server-side pubs database to the DataSet designer (see Figure 14-16). In this
case, you will write to the server-side table, but use the data in the local database as a cache
for the less frequently changing stores and titles data. This should improve the overall
performance of the application, as it reduces the need to constantly retrieve the data for
those two tables.

8. Before adding a control to display the sales data on the form, you must make a few changes
to the data source. Open the Data Sources window. Change the control used to display the
sales table to a DetailsView, the control for the ord_num column to a Label, and the con-
trols for the stor_id and title_id to ComboBox (see Figure 14-17). This enables you to create a
form displaying a single record at a time, with drop-down fields for the two columns that are
being synchronized.

9. You can now drag the sales table onto the form from the Data Sources window. This creates
the DetailsView control, as well as a BindingNavigator. It also creates the connections

611

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 612

Chapter 14: Working with SQL Server

necessary for navigating through the data. Drag the stores table from the Data Sources win-
dow onto the stor_id ComboBox. This adds a connection to the local data. It also sets the visi-
ble text of the ComboBox to the name of each store, rather than simply displaying the store’s
id value. Repeat this with the titles table and the title_id ComboBox. The form should now
look similar to what is shown in Figure 14-18, and you should be able to run the application
and navigate through the data.

Figure 14-16

Figure 14-17

612

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 613

Chapter 14: Working with SQL Server

Figure 14-18

10. You’re ready to add the synchronization code to the application, but there needs to be some
way of triggering it. Add a new button to the Navigator by clicking just after the Save button.
Set the properties of the new button as shown in the following table.

Property Value

Name SyncButton

DisplayStyle Text

Text Sync

11. Double-click the newly created SyncButton to add the code to perform the synchronization.
What code do you need to add? Fortunately, the developers have written the majority of
it for you. Right-click the PubsCache.sync file and select View Designer to see the designer.
Click the Show Code Example link in the lower right corner to display the required code (see
Figure 14-19).

Figure 14-19

613

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 614

Chapter 14: Working with SQL Server

12. Click the Copy Code to the Clipboard button to copy the code. Add the code to the
SyncButton click event as shown in the following code. In addition to the code from the dia-
log that performs the actual synchronization, you need to add the lines to reload your data
into the DataSet (highlighted in the following code):

Private Sub SyncButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles SyncButton.Click
Dim syncAgent As PubsCacheSyncAgent = New PubsCacheSyncAgent()
Dim syncStats As Microsoft.Synchronization.Data.SyncStatistics = _

syncAgent.Synchronize()

Me.TitlesTableAdapter.Fill(Me.PubsDataSet.titles)
Me.StoresTableAdapter.Fill(Me.PubsDataSet.stores)

End Sub

13. Run the application (see Figure 14-20). You should be able to view and edit the sales data.
Make a change to one of the stores or titles on the server. You should be able to see the
change only after you have clicked the Sync button.

Figure 14-20

While there is no designer support in Visual Studio 2008 for creating bidirectional synchronization,
you can extend the one-way sync created with the Local Database Cache object to provide
two-way sync.

Right-click on the PubsCache.sync file in the Solution Explorer and select View Code. The editor opens
with a newly created partial class for the synchronization agent. Change the SyncDirection property for
each of the synchronized tables that you want to be bidirectional, as shown in the following code. Once
this is done, changes created at the client also appear at the server after synchronization.

Partial Public Class PubsCacheSyncAgent
Private Sub OnInitialized()

Me.titles.SyncDirection = _
Microsoft.Synchronization.Data.SyncDirection.Bidirectional

614

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 615

Chapter 14: Working with SQL Server

’ other tables as desired

End Sub
End Class

The addition of Sync Services and SQL Server Compact Edition provide the Visual Basic developer with
yet another client-side tool for configuration and data. You get a powerful and well-tested data storage
and query mechanism without sacrificing much in terms of disk or memory overhead.

CLR Integration in SQL Server 2005
As the Developer Division within Microsoft works on the .NET Framework and Visual Basic, other
teams within SQL Server work on the new version of SQL Server. The SQL teams wanted to leverage the
Framework, so they set about integrating the Common Language Runtime (CLR) into SQL Server 2005.
This integration means that developers can use Visual Basic code within the context of SQL Server. It no
longer means that success as a DBA is dependent on knowing T-SQL. In addition, it no longer means
that complex data access code must be written outside the database. The benefit to both groups is more
flexibility in choosing a development language, and more capabilities for your database programming.

CLR integration is disabled by default on SQL Server 2005 and later. This is a safety measure, as most
users won’t need the features it provides. Not enabling it means one less avenue for attack by hackers.
In order to enable creating SQL objects using Visual Basic, you need to enable the integration. This is
done by executing the following SQL statement in a query window in the SQL Management console.
This is not a decision that should be made lightly. Enabling any feature means that hackers also have the
feature available to them. Enabling a feature as powerful as CLR integration means that if compromised,
your server can become a dangerous tool. There are limits to the use of the .NET Framework available,
however.

sp_configure ’clr enabled’, 1
GO
RECONFIGURE WITH OVERRIDE
GO

Now that you’ve likely been scared away from enabling CLR integration, be aware that it is an incredibly
useful tool in some circumstances. T-SQL, for all of its power, is a relatively limited language compared
with Visual Basic. It lacks many of the conditional or looping constructs that developers are used to, such
as the with statement. In addition, debugging has traditionally been fairly weak with T-SQL. Finally, the
ability to use external libraries in T-SQL is limited. You can get around these limits by using Visual Basic
to replace T-SQL when appropriate.

Deciding between T-SQL and Visual Basic
Once you have enabled CLR integration with your database, your next set of decisions revolves around
when to use T-SQL and the native services of SQL Server versus when to use Visual Basic and the .NET
Framework. Your final choice should be based on the needs of the application, rather than because a
technology is new or interesting. The following table outlines some of the common scenarios for building
applications with SQL Server.

615

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 616

Chapter 14: Working with SQL Server

Scenario T-SQL Visual Basic

User-defined
types

Generally should be the first, if
not only, choice

Can be used if you need to
integrate with other managed code,
or if the UDT needs to provide
additional methods. Also a good
idea if the UDT will be shared with
external VB code.

Functions and
stored
procedures

Use if the code is to process data
in bulk, or with little procedural
code

Use if the code requires extensive
procedural processing or
calculations, or if you need access
to external libraries, such as the
.NET Framework

Extended stored
procedures

Typically, the main method used
to provide new functionality to
SQL Server. For example, the
xp_sendmail procedure enables
sending e-mail from T-SQL.
Generally, extended stored
procedures should be avoided in
favor of creating the procedures
in managed code. This is partly
due to the complexity of creating
secure extended procedures, but
mostly because they may be
removed from a future version
of SQL Server.

Use if you need access to external
code or libraries, such as the .NET
Framework. Depending on your
needs, the code may be limited to
working within the context of SQL
Server, or it may access external
resources, such as network services.
The benefits of better memory
management and security make VB
a better choice for creating these
extended stored procedures.

Code location T-SQL code can only exist
within SQL Server. This enables
optimizations of queries.

VB code may exist either within
SQL Server or on the client. This
may mean that you can typically
take code from the client and adapt
it for running within SQL Server. In
this case, the code would execute
closer to the data, generally
increasing performance. In
addition, the hardware running
SQL Server typically performs
better than the average desktop,
again meaning that the code will
execute faster.

Web services T-SQL supports the creation of
Web services to make any
function or stored procedure
available via SOAP.

Functions and stored procedures
written in VB may be exposed as
Web services from SQL Server. The
better support for XML handling
and procedural logic may mean
that it is easier to create these Web
services in Visual Basic.

616

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 617

Chapter 14: Working with SQL Server

Scenario T-SQL Visual Basic

XML handling T-SQL has been extended to
provide some capability for
reading and writing XML. These
extensions only provide the
capability to work with the XML
as a whole, however.

Provides excellent XML handling,
both for working with the
document as a whole and via
streaming APIs. Generally, if you
need to do a lot of XML handling,
using Visual Basic will make your
life a lot easier.

Creating User-Defined Types
One feature of SQL Server that does not usually get the attention it deserves is the capability to create
user-defined types (UDTs). These enable developers to define new types that may be used in columns,
functions, stored procedures, and so on. They can make database development easier by applying specific
constraints to values, or simply to better identify the intent of a column. For example, when presented
with a table containing a column of type varchar(11), you may still be unsure as to the purpose of the
value; but if that column is instead of type ssn, you would recognize this (if you are in the U.S.) as a
social security number.

With SQL Server 2005, you can create UDTs using Visual Basic. In addition to the normal benefits of
user-defined types, UDTs written in VB have another benefit — they may also provide functionality in
the form of methods, which means that you can extend the functionality of your database by providing
these methods.

UDTs written using Visual Basic are implemented as structures or classes. Since Visual Studio defaults
to creating UDTs as structures, this will be assumed here, but keep in mind that you can create them as
classes as well. The properties or fields of the structure become the subtypes of the UDT. Public methods
are also accessible, just as they would be in a VB application.

In addition to the normal code used when writing structures, you must also implement other items to
make your UDT work with SQL Server. First, your structure should have the attribute Microsoft
.SqlServer.Server.SqlUserDefinedType. This attribute identifies the structure as being a SQL Server
UDT. In addition, marking the class with the Serializable attribute is highly recommended. The
SqlUserDefinedType attribute has a number of parameters that provide information affecting how SQL
Server works with the type. These parameters are described in the following table:

Parameter Value Description

Format Native or UserDefined Identifies the serialization format. If you use
Native (the default when you create your UDT
with Visual Studio), then it uses the SQL Server
serialization model. If you set it to
UserDefined, you must also implement
Microsoft.SqlServer.Server
.IBinarySerialize.

617

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 618

Chapter 14: Working with SQL Server

Parameter Value Description

This interface includes methods for reading and
writing your data type. Generally, using Native
is safe enough unless your data type requires
special handling to avoid saving it incorrectly.
For example, if you were storing a media
stream, you would likely set that as
UserDefined to avoid writing the stream
incorrectly.

IsByteOrdered Boolean True if the data is stored in byte order, false if it
is stored using some other order. If this is true,
then you can use the default comparison
operators with the type, as well as use it as a
primary key. The ability to compare two values
is a great indicator for how you should use this
parameter. If it is possible to define one
instance of this UDT as being larger than
another, then IsByteOrdered is likely true. If it
is not, such as with a latitude value, then
IsByteOrdered is false.

IsFixedLength Boolean This should be set to true if all instances of this
type are the same size. If the UDT includes only
fixed-size elements, such as int, double, or
char(20), then this is true. If it includes
variable-sized elements, such as varchar(50)
or text, then it should be false. This is a marker
to enable optimizations by the SQL Server
query processor.

ValidationMethodName String Name of a method to be used to validate the
data in the UDT. This method is used when
loading the UDT, and should return true if the
data is valid.

MaxByteSize Integer, with a
maximum of 8000

Defines the maximum size of the UDT, in bytes

In addition to this attribute, each user-defined type also needs to implement the shared method Parse,
and the instance method ToString. These methods enable conversion between your new data type and
the interim format, SqlString. Finally, you should also implement INullable in your structure, although
this is not a requirement. This interface requires the addition of the IsNull property, which enables your
UDT to deal with null values, either stored in the database or passed from the client.

If you are using Visual Studio to create your UDTs, then it’s best to create and debug all of your UDTs
before you begin to use them, especially if you need to use them in any table columns. This is because VB
drops all of the objects you create in a SQL Server project when deploying your project. If you have any
tables that use any user-defined types, then you will be unable to drop the UDT, and therefore deploy the

618

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 619

Chapter 14: Working with SQL Server

changes you’ve made. If you need to make changes, you may receive an error similar to ‘‘Cannot drop
type ‘Location’ because it is currently in use.’’ This error causes the deploy step of your project to fail.
If this happens, then change the column type or temporarily drop the table. You can then redeploy the
UDT as needed. Don’t forget to change the column back, or recreate the table.

While you can write code that integrates with SQL Server using any DLL, Visual Studio provides the
SQL Server Project (see Figure 14-21). This project type generates a DLL, but also connects the DLL to
the database.

Figure 14-21

When you create a new SQL Server Project, Visual Studio prompts you to identify the database that will
host the DLL. At this point, you can either select an existing database connection or create a new one.
Visual Studio also asks whether you want to enable SQL/CLR debugging on the connection. Typically,
you will want to enable this on development servers, but keep in mind that when debugging, the server
is limited to the single connection. Once the project is created, you can add the various database types via
the Project menu. Deploying the project loads the created DLL into the database. You can confirm that it
is loaded by looking at the Assemblies folder in the Server Explorer (see Figure 14-22).

The following code example shows a simple Location user-defined type written in Visual Basic. This
type identifies a geographic location. We will use it throughout the remainder of the chapter to track the
location of customers and stores. The Location type has two main properties: Latitude and Longitude.
Create this file by selecting Add User-defined Type from the Project menu.

SQL Server 2008 includes a new Geography data type. This type includes the functionality of the
Location type, including the ability to calculate the distance between two locations based on latitude
and longitude. However, as it would render this demo short, it isn’t used here. Instead, included is some
information about how the tasks could be accomplished using the Geography data type.

619

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 620

Chapter 14: Working with SQL Server

Figure 14-22

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

<Serializable()> _
<Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native)> _
Public Structure Location

Implements INullable

Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull
Get

If Me.Latitude = Double.NaN OrElse Me.Longitude = Double.NaN Then
_isNull = True

Else
_isNull = False

End If

Return _isNull

End Get
End Property

Public Shared ReadOnly Property Null As Location
Get

Dim result As Location = New Location
result._isNull = True
result.Latitude = Double.NaN
result.Longitude = Double.NaN
Return result

End Get
End Property

Public Overrides Function ToString() As String

Return String.Format("{0}, {1}", Latitude, Longitude)

End Function

620

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 621

Chapter 14: Working with SQL Server

Public Shared Function Parse(ByVal s As SqlString) As Location

If s.IsNull Then
Return Null

End If

Dim result As Location = New Location
Dim temp() As String = s.Value.Split(CChar(","))
If (temp.Length > 1) Then

result.Latitude = Double.Parse(temp(0))
result.Longitude = Double.Parse(temp(1))

End If
Return result

End Function

Public Function Distance(ByVal loc As Location) As Double
Dim result As Double
Dim temp As Double
Dim deltaLat As Double
Dim deltaLong As Double
Const EARTH_RADIUS As Integer = 6378 ’kilometers
Dim lat1 As Double
Dim lat2 As Double
Dim long1 As Double
Dim long2 As Double

’convert to radians
lat1 = Me.Latitude * Math.PI / 180
long1 = Me.Longitude * Math.PI / 180
lat2 = loc.Latitude * Math.PI / 180
long2 = loc.Longitude * Math.PI / 180

’formula from http://mathforum.org/library/drmath/view/51711.html
deltaLong = long2 - long1
deltaLat = lat2 - lat1
temp = (Math.Sin(deltaLat / 2)) ^ 2 + _

Math.Cos(lat1) * Math.Cos(lat2) * (Math.Sin(deltaLong / 2)) ^ 2
temp = 2 * Math.Atan2(Math.Sqrt(temp), Math.Sqrt(1 - temp))
result = EARTH_RADIUS * temp

Return result
End Function

Private _lat As Double
Private _long As Double
Private _isNull As Boolean
Public Property Latitude() As Double

Get
Return _lat

End Get
Set(ByVal value As Double)

_lat = value
End Set

End Property

621

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 622

Chapter 14: Working with SQL Server

Public Property Longitude() As Double
Get

Return _long
End Get
Set(ByVal value As Double)

_long = value
End Set

End Property

End Structure

In addition to the Latitude and Longitude properties, the Location type also defines a Distance
method. This is used to identify the distance between two locations. It uses the formula for calculating
the distance between two points on a sphere to calculate the distance. This formula is clearly described
at the ‘‘Ask Dr. Math’’ forum (see mathforum.org/dr.math). As the Earth is not a perfect sphere, this
calculation is only an estimate, but it should be close enough for our needs.

The Geography data type includes a number of standard methods defined by the Open Geospatial Con-
sortium. This standard ensures that your code is portable across multiple implementations. In the case of
distance, this can be calculated using the STDistance method (all of the methods defined in the standard
begin with ‘‘ST’’).

Now that you have created the Location type, you can use it in the definition of a table. Here we will
create part of an e-commerce application to demonstrate the use of Location and other SQL Server
features.

Imagine that you are creating an application for an online store that also has physical locations. When a
customer orders a product, you must obviously ship it from some location. Major online sellers typically
have large warehouses that they can use to fulfill these orders. However, they are usually limited to ship-
ping from these warehouses. Other companies have physical stores that stock many of the items available
for order. Wouldn’t it make sense that if one of those stores has stock and is closer to the customer, you
would use the stock in the store to fulfill the order from the website? It would save on shipping costs, and
it would get the product to the customer faster. This would save you money, and lead to happier cus-
tomers who are more likely to order from you again. This hypothetical scenario would likely be called
into play many times throughout the day; therefore, moving it to a stored procedure would be useful to
improve performance. The calculations would be closer to the data, and the database server itself could
perform optimizations on it if needed.

Open the database using SQL Management Studio or the Server Explorer in Visual Studio. Create a table
called Stores. This table will be used to track the physical store locations. Figure 14-23 shows the layout
of this table. Note that the new Location data type should appear at the bottom of the list of data types; it
is not inserted in alphabetical order.

The id column is defined as an identity column and is the primary key. Don’t bother adding any data
to the table yet, unless you know the appropriate latitude and longitude for each location. We’ll create a
function for calculating the location in a moment.

In addition to the Stores table, create two other tables: one for products (see Figure 14-24), and the other
to track the stock (see Figure 14-25) available in each store.

622

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 623

Chapter 14: Working with SQL Server

Figure 14-23

Figure 14-24

Figure 14-25

As with the Stores table, the id column for the Products table is an identity field. The Name field
will contain the name of the product, and Price reflects the unit price of each item. A typical product
table would likely have other columns as well; this table has been kept as simple as possible for this
example.

The Stock table will provide the connection between the Stores and Products tables. It uses the combina-
tion of the two primary keys as its key (see Figure 14-25). This means that each combination of store and
product has a single entry, with the quantity of the product per store.

Now that the tables are in place for the sample, we’ll turn our attention to creating a way to determine
the location, using a SQL Server function written in Visual Basic.

Creating Functions
Functions are a feature of SQL Server that enable a simple calculation that returns either a scalar value or
a table of values. These functions differ from stored procedures in that they are typically used to perform
some calculation or action, rather than specifically act on a table. You can create functions in either T-SQL
or Visual Basic.

623

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 624

Chapter 14: Working with SQL Server

When creating functions with Visual Basic, you define a class with one or more methods. Methods
that you want to make available as SQL Server functions should be marked with the Microsoft
.SqlServer.Server.SqlFunctionAttribute attribute. SQL Server will then register the methods, after
which they may be used in your database. The SqlFunction attribute takes a number of optional param-
eters, shown in the following table.

Parameter Value Description

DataAccess Either DataAccessKind.None
or DataAccessKind.Read

Set to DataAccessKind.Read if the
function will access data stored in the
database.

SystemDataAccess Either
SystemDataAccessKind.None
or
SystemDataAccessKind.Read

Set to SystemDataAccessKind.Read if the
function will access data in the system
tables of the database.

FillRowMethodName String The name of the method that will return
each row of data. This is only used if the
function returns tabular data.

IsDeterministic Boolean Set to true if the function is
deterministic — that is, if it will always
produce the same result, given the same
input and database output. (A random
function would obviously not be
deterministic). The default is false.

IsPrecise Boolean Set to true if the function does not use
any floating-point calculations. The
default is false.

TableDefinition String Provides the table definition of the return
value. Only needed if the function returns
tabular data.

By default, SQL Server 2005 loads Visual Basic objects into a safe environment. This means that they
cannot call external code or resources. In addition, Code Access Security (CAS) limits access to some
aspects of the .NET Framework. You can change this behavior by explicitly setting the permission level
under which the code will run. The following table outlines the available permission levels.

Permission Level Safe External Unsafe

Code access Limited to code running within
the SQL Server context

Ability to access
external resources

Unlimited

Framework access Limited Limited Unlimited

Verifiability Yes Yes No

Native code No No Yes

624

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 625

Chapter 14: Working with SQL Server

You should use the minimum permission level needed to get your code to run. Typically, this means only
the Safe level, which enables access to the libraries providing data access, XML handling, mathematic
calculations, and other commonly needed capabilities.

If you need access to other network resources, such as the ability to call out to external Web services or
SMTP servers, then you should enable the External permission level. This also provides all the capabili-
ties provided by the Safe permission level.

Only enable the Unsafe permission level in the rarest of circumstances, when you need access to native
code. Code running within this permission level has full access to any code available to it, so it may
represent a potential security hole for your application.

If you attempt to deploy a VB DLL that requires external access, you will receive this lengthy — but not
entirely helpful — error message:

CREATE ASSEMBLY for assembly ’FooStore’ failed because assembly ’FooStore’ is not
authorized for PERMISSION_SET = EXTERNAL_ACCESS. The assembly is authorized
when either of the following is true: the database owner (DBO) has EXTERNAL ACCESS
ASSEMBLY permission and the database has the TRUSTWORTHY database property on; or the
assembly is signed with a certificate or an asymmetric key that has a corresponding
login with EXTERNAL ACCESS ASSEMBLY permission.

The error message provides the steps required to enable external access. At this point, you have two
options:

❑ Provide the External Access Assembly permission to the user account associated with the
database owner — You should not do this unless the second option is not possible. This cre-
ates a dangerous security hole in your database. It would mean that any Visual Basic code run-
ning on the server has external access permissions, and complete access to the database.

❑ Sign the assembly, create an account that uses this signature, and then provide the External
Access Assembly permission to that account — This is the preferred method for enabling safe
external access by a Visual Basic assembly. By signing your assembly and giving the assembly
(and the user id associated with the signature) permission, you are limiting the amount of code
that can access other servers.

The following steps outline how to provide external access permissions to a VB assembly using Visual
Studio. First, you set the permission level to External, as shown in Figure 14-26, and provide a name for
the owner of the assembly. This is done using the database page of the project’s property pages.

Once you have enabled external access for your Visual Basic code, you also need to sign your assembly.
Sign the assembly on the Signing tab of the properties dialog (see Figure 14-27). Use an existing key file
or create a new one.

Once you have signed and built the assembly, the next steps are to create a key in the database based on
the signature of the assembly, and to create a user who will be associated with the key. This is done using
a T-SQL query. Run the following query in SQL Management Studio:

USE master
GO
CREATE ASYMMETRIC KEY FooStoreKey

625

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 626

Chapter 14: Working with SQL Server

FROM EXECUTABLE FILE = ’C:\FooStore.dll’
GO

CREATE LOGIN FooUser
FROM ASYMMETRIC KEY FooStoreKey

GRANT EXTERNAL ACCESS ASSEMBLY TO FooUser
GO

Figure 14-26

Figure 14-27

Creating a new asymmetric key must be done from the master database. The DLL listed in the FROM
EXECUTABLE FILE clause should be the DLL you have just created in Visual Basic; adjust the path in
the SQL statement to match the location of your DLL. Once the key is created, you can create a new
login based on this key and provide that user with external access. You should also add that login to the
database and give it permission to access the desired objects.

626

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 627

Chapter 14: Working with SQL Server

Now that the assembly is capable of accessing external sites, we are ready to begin coding the function
that will convert the addresses to latitude and longitude (that is, geocode the address). Several companies
sell databases or services that provide this capability. However, Yahoo! has a free Web service that will
geocode addresses (see the Resources section at the end of this chapter for the URL). It can be called up
to 5,000 times a day, more than enough for this sample (but probably not enough for a real store).

The Geocode service is accessed by sending a GET request to http://api.local.yahoo.com/
MapsService/V1/geocode with the following parameters.

Parameter Description

appid (Required) The unique string used to identify each application using the service.
Note that this parameter name is case-sensitive. For testing purposes, you can use
YahooDemo (used by the Yahoo samples themselves). However, your own
applications should have unique application IDs. You can register them at
http://api.search.yahoo.com/webservices/registerapplication.

street (Optional) The street address you are searching for. This should be URL-encoded.
That is, spaces should be replaced with + characters, and high ASCII or characters
such as < , /, > , etc., should be replaced with their equivalent using ‘%##’ notation.

city (Optional) The city for the location you are searching for. This should be
URL-encoded, although this is really only necessary if the city name contains spaces
or high ASCII characters.

state (Optional) The U.S. state (if applicable) you are searching for. Either the two-letter
abbreviation or full name (URL-encoded) will work.

zip (Optional) The U.S. ZIP code (if applicable) you are searching for. This can be in
either 5-digit or 5+4-digit format.

location (Optional) A free-form field of address information containing the URL-encoded
and comma-delimited request. This provides an easier method for querying, rather
than setting the individual values listed above. For example:
location=1600+Pennsylvania+Avenue+NW,+Washington,+DC

The following code shows the full source for the fnGetLocation function:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Xml
Imports System.Text

Partial Public Class UserDefinedFunctions

’Replace YahooDemo with your key
Private Const YAHOO_APP_KEY As String = "YahooDemo"
Private Const BASE_URL As String = _

627

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 628

Chapter 14: Working with SQL Server

"http://api.local.yahoo.com/MapsService/V1/geocode"

<Microsoft.SqlServer.Server.SqlFunction()> _
Public Shared Function fnGetLocation(ByVal street As SqlString, _

ByVal city As SqlString, _
ByVal state As SqlString, _
ByVal zip As SqlString) As Location

Dim result As New Location
Dim query As New StringBuilder

’uses Yahoo geocoder to geocode the location
’limited to 5000 calls/day

’construct URL

’ URL should look like:
’ http://api.local.yahoo.com/MapsService/V1/geocode?
’ appid=YahooDemo&street=701+First+Street&city=Sunnyvale&state=CA

query.AppendFormat("{0}?appid={1}", BASE_URL, YAHOO_APP_KEY)
If Not street.IsNull Then

query.AppendFormat("&street={0}", street)
End If
If Not city.IsNull Then

query.AppendFormat("&city={0}", city)
End If
If Not state.IsNull Then

query.AppendFormat("&state={0}", state)
End If
If Not zip.IsNull Then

query.AppendFormat("&zip={0}", zip)
End If

’Debug.Print(query.ToString())

’send request

Using r As XmlReader = XmlReader.Create(query.ToString())
’parse output
While r.Read

If r.IsStartElement("Latitude") Then
’ longitude directly follows latitude in the result xml
result.Latitude = Double.Parse(r.ReadElementString)
result.Longitude = Double.Parse(r.ReadElementString)
Exit While

End If
End While

End Using

Return result
End Function

End Class

628

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 629

Chapter 14: Working with SQL Server

Most of the code in the preceding sample is used to create the appropriate URL to create the query. The
query should look as follows:

http://api.local.yahoo.com/MapsService/V1/geocode?appid=YahooDemo&street=
701+First+Street&city=Sunnyvale&state=CA&country=USA

While the YahooDemo appid will work for testing, there is a good chance that it will not work at times.
The query is limited to 5,000 requests for each appid, so if several people call the geocoder in a day, the
request will fail. Therefore, you should request your own appid for testing, and replace the preceding
appid with your own, which you can request at the following Web page:

http://api.search.yahoo.com/webservices/register_application

Notice that the preceding code uses a StringBuilder to construct the query. Why
not simply concatenate strings to create the query? There are several reasons, but
the most important is performance. Because strings in Visual Basic are immutable,
concatenation requires the creation of new strings each time. For example, the
simple expression Dim s As String = "Hello" & "world" actually requires three
strings, two of which would be immediately discarded. The StringBuilder class
has been built for the purpose of avoiding this repeated creation and disposal of
objects, and the resulting code offers much better performance than simple
concatenation.

Once the query is constructed, an XmlReader is used to execute the query. The resulting XML from a call
to Yahoo’s geocoder looks like the following:

<?xml version="1.0" ?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:maps"
xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">
<Result precision="address"

warning="The exact location could not be found,
here is the closest match: 701 First Ave, Sunnyvale, CA 94089">

<Latitude>37.416384</Latitude>
<Longitude>-122.024853</Longitude>
<Address>701 FIRST AVE</Address>
<City>SUNNYVALE</City>
<State>CA</State>
<Zip>94089-1019</Zip>
<Country>US</Country>

</Result>
</ResultSet>

While you could load all of this into an XmlDocument for processing, the XmlReader is generally faster.
In addition, because all that is really needed are the two values for latitude and longitude, using the
XmlReader enables the code to extract these two values quickly, and without the overhead of loading all
the other data. As the XmlReader class implements IDisposable, you should ensure the correct handling

629

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 630

Chapter 14: Working with SQL Server

and disposal of the class by either setting the object to nothing in a Try . . . Finally block, or by using the
Using statement:

Using r As XmlReader = XmlReader.Create(query.ToString())
’parse output
While r.Read

If r.IsStartElement("Latitude") Then
’ longitude directly follows latitude in the result xml
result.Latitude = Double.Parse(r.ReadElementString)
result.Longitude = Double.Parse(r.ReadElementString)
Exit While

End If
End While

End Using

As shown in Chapter 10, you create the XmlReader using the shared Create method. This method has a
number of overridden versions. In this case, the string version of the URL is used to create the XmlReader.
The code then loops through the resulting XML until the start element for the Latitude element is found.
As we know, the two values are next to each other; the code may then access them and stop reading.
Figure 14-28 shows testing this new function in SQL Server Management Studio.

Figure 14-28

Using the User-Defined Function
Even though the fnGetLocation function is written in Visual Basic, you can still use this function from
T-SQL. This means that you can use either VB or T-SQL for a given SQL Server object, whichever is
better suited to the scenario. The following code shows the procedure used to insert new stores.

630

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 631

Chapter 14: Working with SQL Server

This procedure is written in T-SQL, but it calls the function written in Visual Basic. Alternately, you
could create an insert trigger that calls the function to determine the store’s location.

CREATE PROCEDURE dbo.procInsertStore
(

@name nvarchar(50),
@street nvarchar(512),
@city nvarchar(50),
@state char(2),
@zip varchar(50)

)
AS

/* need to populate location */
DECLARE @loc AS Location;

SET @loc = dbo.fnGetLocation(@street, @city, @state, @zip);

INSERT INTO Stores (Name, Street, City, State, Zip, GeoLocation)
OUTPUT INSERTED.id

VALUES (@name, @street, @city, @state, @zip, @loc);

RETURN @@IDENTITY

The stored procedure uses the function and user-defined type just as it would use the same objects written
in T-SQL. Before storing the store data, it calls the Web service to determine the latitude and longitude of
the location, and then stores the data in the table.

We are now ready to add data to the three tables. Add a few stores (see Figure 14-29) using the stored
procedure. The actual data is not that important, but having multiple stores relatively close to one another
will be useful later.

Figure 14-29

Similarly, add a number of items to the Products table (see Figure 14-30). Once again, the data itself is not
important, only that you have a variety of items from which to choose.

Finally, add the data to the Stock table (see Figure 14-31). Use a single entry for each combination of store
and product. Make certain that you have a variety of quantities on hand for testing.

Now that we have some data to work with, and a function for determining the latitude and longitude
of any address, we’re ready to examine how to create a stored procedure in Visual Basic to locate the
nearest store with available stock to the customer.

631

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 632

Chapter 14: Working with SQL Server

Figure 14-30

Figure 14-31

Creating Stored Procedures
Just as with user-defined types and functions, you identify methods as being stored procedures
with an attribute. In the case of stored procedures, this is Microsoft.SqlServer.Server
.SqlProcedureAttribute. This attribute is basically a marker attribute; no additional parameters have
any dramatic effect on the behavior of the code.

632

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 633

Chapter 14: Working with SQL Server

When creating a stored procedure in Visual Basic, you should keep a few considerations in mind. First,
and likely most important, is the context. You are no longer running as a separate piece of code, but
within SQL Server. Tasks that require long processing mean that whatever resources you are using will
be unavailable to other code, which could cause your database to become less responsive, leading to
more slowdowns. Therefore, always remain conscious of the resources you are using, and the amount of
time you lock them.

The second major consideration when creating stored procedures in VB is the connection to the data.
When writing standalone VB code that accesses data, you need to create a connection to a class that
implements IDbConnection, frequently SqlConnection or OleDbConnection. The connection string used
then identifies the database, user id, and so on. However, in a stored procedure, you are running within
the context of SQL Server itself, so most of this information is superfluous, which makes connecting to
the datasource much easier.

Using connection As New SqlConnection("context connection=true")
...’work with the data here
End Using

The connection string is now reduced to the equivalent of ‘‘right where the code is running.’’ The user
id, database, and other parameters are implied by the context under which the code is running.

Once you have connected to the database, the rest of the code is basically the same as you are used to
performing with other ADO.NET code. This means that migrating code that accesses SQL Server to run
as a stored procedure is fairly easy: Change the connection string used to connect to the database, and
add the SqlProcedure attribute.

Returning Data from the Stored Procedure
Once you have performed the manipulations required to get your data, you obviously need to send it
back to the user. With normal ADO.NET, you would create a DataSet or SqlDataReader, and use the
methods and properties of the class to extract the data. However, the data access code running within a
stored procedure is running in the context of SQL Server, and the stored procedure must behave in the
same way as other stored procedures. In addition, your stored procedure may actually be called from
T-SQL, which has no knowledge of either the DataSet or IDataReader data types. Therefore, you must
change your code slightly to achieve this behavior.

When returning data using ADO.NET, you typically have a few options. The first option depends on
whether you need to return a single value or one or more rows of data.

Returning a Single Value
If you are returning a single value from the stored procedure, then you create your stored procedure as
a subroutine. The data you return should be a ByRef parameter of the subroutine. Finally, you need to
mark this parameter as an out-parameter using the System.Runtime.InteropServices.Out attribute.
For example, if you were attempting to create a stored procedure that returned the total value of all the
items available at a selected store, then you would create something similar to the following procedure:

Imports System
Imports System.Data
Imports System.Data.SqlClient

633

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 634

Chapter 14: Working with SQL Server

Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Runtime.InteropServices

Partial Public Class StoredProcedures
<Microsoft.SqlServer.Server.SqlProcedure()> _

Public Shared Sub procGetStoreInventoryValue(ByVal storeID As Int32, _
<Out()> ByRef totalValue As Single)

Dim query As String = "SELECT SUM(Products.Price * Stock.Quantity) " & _
"FROM Products INNER JOIN Stock ON " & _
"Products.id = Stock.ProductID " & _
"WHERE Stock.StoreID = @storeID"

Using conn As New SqlConnection("context connection = true")
conn.Open()
Using cmd As New SqlCommand(query, conn)

cmd.Parameters.Add("@storeID", SqlDbType.Int).Value = storeID
totalValue = CSng(cmd.ExecuteScalar())

End Using
End Using

End Sub
End Class

Because this stored procedure doesn’t really do any processing of the data, or
mathematical calculations, it would probably be best created using T-SQL.

The procedure is fairly basic: It uses the current connection to execute a block of SQL and returns the
value from that SQL. As before, the SqlConnection and SqlCommand values are created using the new
Using statement. This ensures that they are disposed of, freeing the memory used, when the code block
is completed.

Just as when working with ByRef parameters in other code, any changes made to the variable within
the procedure are reflected outside the method. The Out attribute extends this to identify the parameter
as a value that needs to be marshaled out of the application. It is needed to change the behavior of
the ByRef variable. Normally, the ByRef variable is an In/Out value. You must at least have it
available when you make the call. By marking it with the Out attribute, you mark it as not having
this requirement.

Returning Multiple Values
Things become slightly more complex if you want to return one or more rows of data. In a sense, your
code needs to replicate the data transfer that would normally occur when a stored procedure is executed
within SQL Server. The data must somehow be transferred to the TDS (Tabular Data Stream). How do
you create this TDS? Fortunately, SQL Server 2005 provides you with a way, via the SqlPipe class. The
SqlContext class provides access to the SqlPipe class via its Pipe property. As shown in the following
table, the SqlPipe class has several methods that may be used to return data to the code that called the
stored procedure:

634

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 635

Chapter 14: Working with SQL Server

Method Description

ExecuteAndSend Takes a SqlCommand, executes it, and sends back the result. This is the most
efficient method that may be used to return data, as it does not need to
generate any memory structures.

Send(SqlDataReader) Takes a SqlDataReader and streams out the resulting data to the client.
This is slightly slower than the preceding method, but recommended if
you need to perform any processing on the data before returning.

Send(SqlDataRecord) Returns a single row of data to the client. This is a useful method if you are
generating the data and need to send back only a single row.

Send(String) Returns a message to the client. This is not the same as a scalar string
value, however. Instead, this is intended for sending informational
messages to the client. The information sent back may be retrieved using
the InfoMessage event of the SqlConnection.

SendResultsStart Used to mark the beginning of a multi-row block of data. This method
takes a SqlDataRecord that is used to identify the columns that will be sent
with subsequent SendResultsRow calls. This method is most useful when
you must construct multiple rows of data before returning to the client.

SendResultsRow Used to send a SqlDataRecord back to the client. You must already have
called SendResultsStart using a matching SqlDataRecord or an
exception will occur.

SendResultsEnd Marks the end of the transmission of a multi-row block of data. This can
only be called after first calling SendResultsStart, and likely one or more
calls to SendResultsRow. If you fail to call this method, then any other
attempts to use the SqlPipe will cause an exception.

If all you want to do is execute a block of SQL and return the resulting data, then use the ExecuteAndSend
method. (Actually, in this case, you should probably be using T-SQL, but there may be cases that justify
doing this in VB). This method avoids the overhead involved in creating any memory structures to hold
the data in an intermediate form. Instead, it streams the data just as it would if the procedure were written
in T-SQL.

The next most commonly used method for returning data is the version of the Send method that takes a
SqlDataReader. With this method, your code can return a block of data pointed at by a SqlDataReader.
This method, as well as the version of Send that takes a SqlDataRecord, are commonly used when some
processing of the data is needed before returning. They do require that some memory structures be
created, so they are not as fast at returning data as the ExecuteAndSend method.

The version of Send taking a SqlDataRecord object can be a handy method for constructing and returning
a single row of data (or when using SendResultsRow).

The SqlDataRecord class is new with the Microsoft.SqlServer.Server namespace, and represents
a single row of data. Why a new data type? Why not just leverage DataSet? The creators needed an
object that was capable of being converted into the tabular data stream format used by SQL Server,

635

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 636

Chapter 14: Working with SQL Server

and the DataSet would need to have this functionality added to it. There are two ways to return a
SqlDataRecord. If only a single row of data needs to be returned, then you use the Send(SqlDataRecord)
method. If multiple records will be returned, then you use the SendResultsStart, SendResultsRow, and
SendResultsEnd methods (see below). In each case, you are responsible for creating and populating the
values for each column in the SqlDataRecord.

Columns within a SqlDataRecord are defined using the SqlMetaData class. Each column requires the
definition of an instance of a separate SqlMetaData object, with the constructor of SqlDataRecord taking
a parameter array of these objects. Each SqlMetaData object defines the type, size, and maximum length
(if appropriate) of the data for the column. The following code shows the creation of a SqlDataRecord
with four columns:

Dim rec As SqlDataRecord
rec = New SqlDataRecord(_

new SqlMetaData("col1", SqlDbType.Int), _
new SqlMetaData("col2", SqlDbType.VarChar, 25), _
new SqlMetaData("col3", SqlDbType.Float), _
new SqlMetaData("col4", SqlDbType.Text, 512))

You can retrieve data from each of the columns in two ways. You can use the GetValue method, which
returns the value stored in the nth column of the SqlDataRecord as an object, or you can return the
data as a particular data type using one of the many GetPNG methods, where PNG is the type required.
For example, to return the value stored in the second column of the preceding example as a string, you
would use GetString(1). Similarly, there are SetValue and SetPNG methods for setting the value of each
column. Once you have created your SqlDataRecord and populated its values, you return it to the client
by passing it to the Send method of the SqlPipe, as shown in the following code:

rec.SetInt32(0, 42)
rec.SetString(1, "Some string")
rec.SetFloat(2, 3.14)
rec.SetString(3, "Some longer string")

SqlContext.Pipe.Send(rec)

The version of the Send method that takes a string is slightly different from the other two variants. Rather
than return data, the intent of the Send(String) version is to return information back to the calling
application; it’s the equivalent of the T-SQL print statement. You can receive this data by adding a
handler to the InfoMessage event of the SqlConnection.

The final three methods of the SqlPipe used for returning multiple rows of data are used together.
SendResultsStart marks the beginning of a set of rows, SendResultsRow is used to send each row, and
SendResultsEnd marks the end of the set of rows.

In addition to marking the start of the block of data, SendResultsStart is used to define the structure
of the returned data. This is done by using a SqlDataRecord instance. Once you have called
SendResultsStart, the only valid methods of SqlPipe that you can use are SendResultsRow and
SendResultsEnd. Calling any other method will cause an exception. The records you send back with
each call of SendResultsRow should match the structure defined in the SendResultsStart method. In
fact, to conserve server resources, it is a good idea to use the same SqlDataRecord instance for all of
these calls. If you create a new SqlDataRecord with each row, then you are wasting memory, as each

636

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 637

Chapter 14: Working with SQL Server

of these objects will be marked for garbage collection. Therefore, the basic process for using these three
methods would work similarly to the following (the cols variable points to a prepared collection of
SqlMetaData objects):

Dim rec As New SqlDataRecord(cols)
SqlContext.Pipe.SendResultsStart(rec)
For I As Integer = 1 To 10

’populate the record
rec.SetInt32(0, I)
rec.SetString(1, "Row #" & I.ToString())
rec.SetFloat(2, I * Math.PI)
rec.SetString(3, "Information about row #" & I.ToString())
SqlContext.Pipe.SendResultsRow(rec)

Next
SqlContext.Pipe.SendResultsEnd()

The following code shows the complete class, including the stored procedure for determining the nearest
store with available stock:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Collections.Generic

Partial Public Class StoredProcedures
<Microsoft.SqlServer.Server.SqlProcedure()> _
Public Shared Sub procGetClosestStoreWithStock(ByVal street As SqlString, _

ByVal city As SqlString, _
ByVal state As SqlString, _
ByVal zip As SqlString, _
ByVal productID As SqlInt32, _
ByVal quantity As SqlInt32)

Dim loc As Location
Dim query As String = "SELECT id, Name, Street, City, " & _

"State, Zip, GeoLocation " & _
"FROM Stores INNER JOIN Stock on Stores.id = Stock.StoreId " & _
"WHERE Stock.ProductID = @productID " & _
"AND Stock.Quantity > @quantity " & _
"ORDER BY Stock.Quantity DESC"

Dim dr As SqlDataReader
Dim result As SqlDataRecord = Nothing

’get location of requested address

loc = UserDefinedFunctions.fnGetLocation(street, city, state, zip)

Using connection As New SqlConnection("context connection=true")
connection.Open()
’pipe is used to return data to the user
Dim pipe As SqlPipe = SqlContext.Pipe

637

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 638

Chapter 14: Working with SQL Server

’get stores with stock
Using cmd As New SqlCommand(query, connection)

With cmd.Parameters
.Add("@productID", SqlDbType.Int).Value = productID
.Add("@quantity", SqlDbType.Int).Value = quantity

End With

dr = cmd.ExecuteReader()

’find the closest store
Dim distance As Double
Dim smallest As Double = Double.MaxValue
Dim storeLoc As Location
Dim rowData(6) As Object
While (dr.Read)

dr.GetSqlValues(rowData)
storeLoc = DirectCast(rowData(6), Location)
distance = loc.Distance(storeLoc)
If distance < smallest Then

result = CopyRow(rowData)
smallest = distance

End If
End While

pipe.Send(result)
End Using

End Using

End Sub

Private Shared Function CopyRow(ByVal data() As Object) As SqlDataRecord
Dim result As SqlDataRecord
Dim cols As New List(Of SqlMetaData)

’set up columns
cols.Add(New SqlMetaData("id", SqlDbType.Int))
cols.Add(New SqlMetaData("Name", SqlDbType.NVarChar, 50))
cols.Add(New SqlMetaData("Street", SqlDbType.NVarChar, 512))
cols.Add(New SqlMetaData("City", SqlDbType.NVarChar, 50))
cols.Add(New SqlMetaData("State", SqlDbType.Char, 2))
cols.Add(New SqlMetaData("Zip", SqlDbType.VarChar, 50))
result = New SqlDataRecord(cols.ToArray())

’copy data from row to record
result.SetSqlInt32(0, DirectCast(data(0), SqlInt32))
result.SetSqlString(1, DirectCast(data(1), SqlString))
result.SetSqlString(2, DirectCast(data(2), SqlString))
result.SetSqlString(3, DirectCast(data(3), SqlString))
result.SetSqlString(4, DirectCast(data(4), SqlString))
result.SetSqlString(5, DirectCast(data(5), SqlString))

Return result
End Function

End Class

638

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 639

Chapter 14: Working with SQL Server

There are three basic steps to the stored procedure. First, it needs to determine the location of the inputted
address. Next, it needs to find stores with available stock — that is, with stock greater than the requested
amount. Finally, it needs to find the store on that list that is closest to the inputted address.

Getting the location of the address is probably the easiest step, as you already have the fnGetLocation
function. Rather than needing to create and use a SqlConnection, however, since the function is a shared
method of the UserDefinedFunctions class, you can use it directly from your code. Here you can see
another benefit in the way that the VB-SQL interaction was designed. The code is the same that we
would have used in a system written completely in VB, but in this case it is actually calling a SQL Server
scalar function.

Obtaining the list of stores with stock is simply a matter of creating a SqlCommand and using it to create
a SqlDataReader. Again, this is basically the same step you would take in any other VB application. The
difference here is that the code will execute within SQL Server. Therefore, the SqlConnection is defined
using the connection string "context connection = true".

The final step in the stored procedure — finding the nearest store — requires some mathematical calcula-
tions (within the Location.Distance method). While the previous two steps could have been performed
easily in straight T-SQL, it is this step that would have been the most awkward to perform using that lan-
guage. The code loops through each row in the list of stores with available stock. Because all of the values
from each row are needed, the GetSqlValues method copies the current row to an array of Object values.
Within this array is the GeoLocation column, and we can cast this value to a Location object. After this
is done, the Distance method may be used to determine the distance between the input address and the
store’s address. When the minimum distance has been determined, the Send(SqlDataRecord) method of
the SqlPipe class is used to write the data to the output stream, returning it to the calling function.

The CopyRow function is used to create the SqlDataRecord to return. The first step in creating a
SqlDataRecord is to define the columns of data. The constructor for the SqlDataRecord requires an
array of SqlMetaData objects that define each column. The preceding code uses the List generic collection
to make defining this array easier. Once the columns are defined, the data returned from the GetValues
method is used to populate the columns of the new SqlDataRecord.

Exposing Web Services from SQL Server
Another new feature of SQL Server 2005 was the addition of support for exposing Web services directly
from the server. This means that there is no requirement for IIS on the server, as the requests are received
and processed by SQL Server. You define what ports will be used to host the Web service. The structure
of the Web service is defined based on the parameters and return data of the function or stored procedure
you use as the source of the Web service.

Exposing Web services directly from SQL Server 2005 is supported only on the Standard and higher
editions. The Express and Compact editions do not support creating Web services in this manner.

When you are architecting a scenario and plan to expose Web services from SQL Server, you should keep
in mind at least one important question: Why do you think you need to expose this database functional-
ity outside of the SQL Server? It’s not a trivial question. It means that you plan on hanging data off of the
server, possibly for public access. That’s a potentially dangerous scenario not to be taken lightly. Most of
the scenarios for which it makes sense to provide Web services directly from a SQL Server involve sys-
tems entirely behind a firewall, where Web services are used as the conduit between departments. This

639

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 640

Chapter 14: Working with SQL Server

would be useful if the target departments were using another platform or database, or where security
considerations prevented them from directly accessing the SQL Server.

Following is the basic syntax of the CREATE ENDPOINT command. Although both AS HTTP and AS TCP
are shown, only one can occur per create endpoint command.

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS HTTP (

PATH = ’url’,
AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS } [,...n]),
PORTS = ({ CLEAR | SSL} [,... n])

[SITE = {’*’ | ’+’ | ’webSite’ },]

[, CLEAR_PORT = clearPort]

[, SSL_PORT = SSLPort]
[, AUTH_REALM = { ’realm’ | NONE }]
[, DEFAULT_LOGON_DOMAIN = { ’domain’ | NONE }]
[, COMPRESSION = { ENABLED | DISABLED }]
)

AS TCP (
LISTENER_PORT = listenerPort
[, LISTENER_IP = ALL | (<4-part-ip> | <ip_address_v6>)]
)

FOR SOAP(

[{ WEBMETHOD [’namespace’ .] ’method_alias’

(NAME = ’database.owner.name’
[, SCHEMA = { NONE | STANDARD | DEFAULT }]
[, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]

)
} [,...n]]
[BATCHES = { ENABLED | DISABLED }]
[, WSDL = { NONE | DEFAULT | ’sp_name’ }]
[, SESSIONS = { ENABLED | DISABLED }]
[, LOGIN_TYPE = { MIXED | WINDOWS }]
[, SESSION_TIMEOUT = timeoutInterval | NEVER]
[, DATABASE = { ’database_name’ | DEFAULT }
[, NAMESPACE = { ’namespace’ | DEFAULT }]
[, SCHEMA = { NONE | STANDARD }]
[, CHARACTER_SET = { SQL | XML }]
[, HEADER_LIMIT = int]
)

The main points to consider when creating an endpoint are as follows:

❑ What stored procedure or function (or UDF) will you be exposing as a Web service? This is iden-
tified in the WebMethod clause. There may be multiple Web methods exposed from a single end-
point. If so, each will have a separate WebMethod parameter listing. This parameter identifies the
database object you will expose, and allows you to give it a new name.

640

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 641

Chapter 14: Working with SQL Server

❑ What authentication will clients need to use? Typically, if your clients are part of the same
network, then you use integrated or NTLM authentication. If clients are coming across the
Internet or from non-Windows, then you may want to use Kerberos, Digest, or Basic
authentication.

❑ What network port will the service use? The two basic options when creating an HTTP endpoint
are CLEAR (using HTTP, typically on port 80) or SSL (using HTTPS, typically on port 443). Gen-
erally, use SSL if the data transmitted requires security and you are using public networks. Note
that Internet Information Services (IIS) and other web servers also use these ports. If you have
both IIS and SQL Server on the same machine, you should alternate ports (using CLEAR_PORT
or SSL_PORT) for your HTTP endpoints. When creating TCP endpoints, select a LISTENER_-
PORT that is unused on your server. HTTP offers the broadest reach and largest number of pos-
sible clients, while TCP offers better performance. If you are making the Web service available
over the Internet, you would generally use HTTP and TCP within the firewall, where you can
control the number and type of clients.

To continue our example, you can make the procGetClosestStoreWithStock procedure available as a
Web service using the following code:

CREATE ENDPOINT store_endpoint
STATE = STARTED

AS
HTTP(

PATH = ’/fooStore’,
AUTHENTICATION = (INTEGRATED),

PORTS = (CLEAR),
CLEAR_PORT = 8888,

SITE = ’localhost’
)

FOR
SOAP(

WEBMETHOD ’GetNearestStore’ (name = ’fooStore.dbo.procGetClosestStoreWithStock’),

WSDL = DEFAULT,
SCHEMA = STANDARD,

DATABASE = ’fooStore’, NAMESPACE = ’http://fooStore.com/webmethods’

);

Endpoints are created within the master database, as they are part of the larger SQL Server system, and
not stored within each database. The endpoint defined in the preceding code creates a SOAP wrapper
around the procGetClosestStoreWithStock stored procedure, making it available as GetNearestStore.
Integrated security is used, which means that any users need network credentials on the SQL Server. If
this service were available over the Internet, you might use Digest or Basic instead. As the server is also
running IIS, this example moved the port for the service to 8888.

Once the service has been created you can create clients based on the WSDL of the service.

641

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 642

Chapter 14: Working with SQL Server

Accessing the Web Service
SQL Server makes some of the work easier when hosting Web services. The WSDL for the service is
automatically generated. Many SOAP tools, such as Visual Studio, enable the creation of wrapper classes
based on the WSDL for the service.

The WSDL for a SQL Server Web service may be a little daunting when you first see it, as it’s quite
lengthy. This is primarily because the WSDL includes definitions for the various SQL Server data types
as well as for the Web services you create. Figure 14-32 shows part of the WSDL, the part created for the
procGetClosestStoreWithStock procedure.

Figure 14-32

As you can see from the WSDL, two main structures are defined: GetNearestStore and
GetNearestStoreResponse. The GetNearestStore document is what is sent to the Web service. It
includes definitions of each of the columns sent, along with the expected data types and sizes.

GetNearestStoreResponse is the return document. In the preceding sample, you can see that it is of type
SqlResultStream. This type, also defined in the WSDL, is the tabular data stream returned from SQL
Server. It consists of the return value from the stored procedure and any result sets of data. This will be
converted to an Object array by the SOAP wrapper classes. You can then convert these data blocks to
other types.

When creating a Web service, it’s a good idea to create a simple form that can be used to test the service.
Add a new Windows Forms project to the solution (or create a new Project/Solution). Select the Add
Service Reference command from the Solution Explorer. Click the Advanced button on the Add Service
Reference dialog and select Add Web Reference. From the Add Web Reference dialog, select the fooStore
service (see Figure 14-33).

642

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 643

Chapter 14: Working with SQL Server

Figure 14-33

Once you have the connection to the Web service, you’re ready to begin laying out the fields of the
test form. Most of the fields are TextBox controls, with the exception of the Product ComboBox and the
DataGridView on the bottom. The following table describes the properties set on the controls:

Control Property Value

TextBox Name StreetField

TextBox Name CityField

TextBox Name StateField

MaxLength 2

TextBox Name ZipField

MaxLength 11

ComboBox Name ProductList

TextBox Name QuantityField

Button Name GetNearestStoreButton

Text &Get Nearest Store

DataGridView Name ResultGrid

AllowUserToAddRows False

AllowUserToDeleteRows False

ReadOnly True

Organize the controls on the form in any way you find aesthetically pleasing. Figure 14-34 shows one
example.

643

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 644

Chapter 14: Working with SQL Server

Figure 14-34

The code for the test form is as follows:

Imports System.Data
Imports System.Data.SqlClient

Public Class MainForm

Private Sub GetNearestStoreButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles GetNearestStoreButton.Click
Using svc As New fooStore.store_endpoint

Dim result() As Object
Dim data As New DataSet

svc.Credentials = System.Net.CredentialCache.DefaultCredentials
result = svc.GetNearestStore(Me.StreetField.Text, _

Me.CityField.Text, _
Me.StateField.Text, _
Me.ZipField.Text, _
CInt(Me.ProductList.SelectedValue), _
CInt(Me.QuantityField.Text))

If result IsNot Nothing Then
data = DirectCast(result(0), DataSet)
Me.ResultGrid.DataSource = data.Tables(0)

End If

End Using
End Sub

Private Sub MainForm_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
Dim ds As New DataSet

644

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 645

Chapter 14: Working with SQL Server

Using conn As New SqlConnection(My.Settings.FooStoreConnectionString)
Using da As New SqlDataAdapter("SELECT id, Name FROM PRODUCTS", conn)

da.Fill(ds)
With Me.ProductList

.DataSource = ds.Tables(0)

.ValueMember = "id"

.DisplayMember = "Name"
End With

End Using
End Using

End Sub
End Class

The test form consists of two methods. The Load method is used to retrieve the data that populates the
product drop-down. The call to the Web service takes place in the Button click event. This method calls
the Web service wrapper, passing in the values entered on the form. Recall that the Web service returns
two result sets: the data and the return value.

Run the test application. Enter an address close to one of the stores, and select a product and quantity you
know to be available. Click the Get Nearest Store button. After a brief delay, the store’s address should
appear (see Figure 14-35). Try again with a larger quantity or different product so that another store is
returned. Depending on the stock available at each of the store locations, the nearest store may not be all
that near.

Figure 14-35

Summary
The addition of SQL Server Compact Edition to the SQL family gives you a new, but familiar, place to
store data. Rather than create yet another XML file to store small amounts of data, you can make use of
the powerful storage and query functionality of SQL Server. In addition, when you combine it with Sync

645

Evjen-91361 c14.tex V2 - 04/01/2008 4:15pm Page 646

Chapter 14: Working with SQL Server

Services, disconnected and partly connected applications become remarkably easy to create and deploy.
One of the most potentially useful changes made to SQL Server lately is the capability to move your code
into the database. By integrating the Common Language Runtime with SQL Server, developers now have
a choice when creating data access code between T-SQL and VB.

While the implications of having your database run VB code can be a little unnerving, the benefits you
receive in terms of flexibility and power may be just what you need in some applications. Visual Basic
provides several tools that are not normally available when working with T-SQL, such as access to the
.NET Framework’s classes. While you should only use VB in stored procedures and other database struc-
tures when it’s appropriate, in those cases you can dramatically improve the scalability, performance,
and functionality of your database applications.

Resources

❑ SQL Server Developer Center (http://msdn.microsoft.com/sql) — Main developer resource
for information on the features of SQL Server

❑ Ask Dr. Math (http://mathforum.org/library/drmath) — Great resource for mathematic
algorithms

❑ Yahoo! Developer Center (http://developer.yahoo.com/dotnet) — Information on accessing
Yahoo!’s services using Visual Basic

646

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 647

Windows Forms

Windows Forms is a part of the .NET Framework that is used to create user interfaces for local
applications, often called Win32 clients. Windows Forms does not change in moving from Visual
Basic 2005 to Visual Basic 2008. Accordingly, the version number used for Windows Forms in Visual
Studio 2008 is still 2.0.

The pace of change in Windows Forms is slowing because of the advent of Windows Presentation
Foundation (WPF). Visual Studio 2008 is the first version of Visual Studio with a capable visual
designer for WPF. Going forward, you can expect continued innovation in WPF, but not much in
Windows Forms. However, that does not imply that you should abandon Windows Forms or be
reluctant to write programs in it. Windows Forms still has many advantages over WPF.

Those advantages include a more complete set of controls and a mature, easy-to-use designer. The
result is faster development in Windows Forms compared to WPF. WPF has advantages of its own,
of course. These are discussed in Chapter 17, which provides an introduction to WPF.

This chapter summarizes the changes in Windows Forms 2.0 compared to the earlier 1.0 and 1.1
versions that were present in Visual Studio 2002 and 2003. This enables those with some experience
in previous versions of Windows Forms to quickly identify key changes. Then the chapter looks at
the behavior of forms and controls, with emphasis on those elements that are most important for
routine application development.

Chapter 16 includes more advanced treatment of certain aspects of Windows Forms. After gaining
a basic understanding of the key capabilities in this chapter, you’ll be ready to go on to the more
advanced concepts in that chapter.

Changes in Windows Forms Version 2.0
If you have already used Windows Forms 1.0 or 1.1, much of the material in this chapter will be
familiar to you. To help you quickly focus on the new capabilities in Windows Forms 2.0, here is a
summary of changes and additions.

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 648

Chapter 15: Windows Forms

Changes to Existing Controls
Changes to existing controls in Windows Forms 2.0 are minor, but are helpful additions of functionality.
Some changes apply to all controls because they are part of the base Control class in Windows Forms
2.0. Other changes apply only to specific controls.

Smart Tags
Many controls in Windows Forms 2.0 display a small triangle, or glyph, toward the top, right side of the
control when highlighted in the visual designer. This is a new feature called a smart tag. If you click this
glyph, you get a pop-up dialog with common operations for the control. Many of the features that you
access through the property box can also be accessed through the smart tag. In general, this chapter uses
the Properties window for manipulating properties, but you should be aware of the smart tag shortcut
for commonly used features.

AutoCompletion in Text Boxes and Combo Boxes
Text boxes and combo boxes have new properties for autocompletion of text entries. This capability
could be added manually or with third-party controls in previous versions, but is now built in. The
AutoCompleteMode property controls how autocompletion works in the control, while the
AutoCompleteSource and AutoCompleteCustomSource properties tell the control where to get entries
for autocompletion.

An example of autocompletion in action is shown later, in the section entitled ‘‘Advanced Capabilities
for Data Entry.’’

New Properties for All Controls
The base Control class, which is a base class for all Windows Forms controls, has several new properties
in Windows Forms 2.0. Because all controls inherit from this class, all Windows Forms controls gain these
new properties and the new functionality that goes along with them.

Two of the new properties, Padding and Margin, are most useful when used in conjunction with some
new controls, TableLayoutPanel and FlowLayoutPanel. Those two properties are discussed later in the
chapter. The other new properties are discussed here. They include MaximumSize, MinimumSize, and
UseWaitCursor.

MaximumSize and MinimumSize Properties
The MaximumSize and MinimumSize properties specify the control’s maximum and minimum height and
width, respectively. Forms had these properties in Windows Forms 1.0 and 1.1, but now all controls
have them.

If the maximum height and width are both set to the default value of 0, then there is no maximum.
Similarly, if the minimum height and width are set to zero, then there is no minimum. The form or
control can be any size.

If these properties are set to anything else, then the settings become limits on the size of the control. For
example, if the MaximumSize height and width are both set to 100, then the control cannot be bigger than
100 × 100 pixels. The visual designer will not make the control any larger on the form design surface.
Attempting to set the height or width of the control in code at runtime to a value greater than 100 will
cause it to be set to 100 instead.

648

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 649

Chapter 15: Windows Forms

The MaximumSize and MinimumSize properties can be reset at runtime to enable sizing of the controls out-
side the limits imposed at design time. However, the properties have a return type of Size, so resetting
either property requires creating a Size structure. For example, you can reset the MinimumSize property
for a button named Button1 with the following line of code:

Button1.MinimumSize = New Size(20, 20)

This sets the new minimum width and height to 20 pixels.

The Size structure has members for Height and Width, which can be used to fetch the current mini-
mum or maximum sizes for either height or width. For example, to find the current minimum height for
Button1, use the following line of code:

Dim n As Integer = Button1.MinimumSize.Height

UseWaitCursor Property
Windows Forms interfaces can use threading or asynchronous requests to allow tasks to execute in the
background. When a control is waiting for an asynchronous request to finish, it is helpful to indicate that
to the user by changing the mouse cursor when the mouse is inside the control. Normally, the cursor
used is the familiar hourglass, which is called the WaitCursor in Windows Forms.

For any control, setting the UseWaitCursor property to True causes the cursor to change to the hour-
glass (or whatever is being used for the WaitCursor) while the mouse is positioned inside the control.
This allows a control to visually indicate that it is waiting for something. The typical usage is to set
UseWaitCursor to True when an asynchronous process is begun and then set it back to False when the
process is finished and the control is ready for normal operation again.

New Controls
Windows Forms 2.0 includes a number of new controls. Some are brand-new controls that offer com-
pletely new functionality. Others are replacements for existing controls, offering additional functionality.

WebBrowser Control
Even smart client applications often need to display HTML or browse websites. Windows Forms 1.0 or 1.1
did not include a true Windows Forms control for browsing. The legacy ActiveX browsing control built
into Windows could be used via interoperability, but this had drawbacks for deployment and versioning.

The legacy ActiveX control is still the ultimate foundation for browsing capability, but Windows Forms
2.0 includes an intelligent Windows Forms wrapper that makes it much easier to use and deploy the
control.

MaskedTextbox Control
Windows Forms 1.0 offered replacements for almost all of the controls available in Visual Basic 6, but one
notable exception was the MaskedEdit control. In Windows Forms 1.0 and 1.1, masked edit capabilities
were available only through third-party controls or by doing your own custom development.

That omission has now been rectified. The MaskedTextbox control resembles the old MaskedEdit control
in functionality. It allows a mask for input and a variety of useful properties to control user interaction

649

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 650

Chapter 15: Windows Forms

with the control. More information on this control is available in the section ‘‘Advanced Capabilities for
Data Entry.’’

TableLayoutPanel and FlowLayoutPanel Controls
Browser-based user interfaces are good at dynamically arranging controls at runtime, because browser
windows can be different sizes for different users. Forms-based interfaces have traditionally lacked
such capabilities. Dynamic positioning can be done in forms, but it requires writing a lot of sizing and
positioning logic.

Two new controls in Windows Forms 2.0 mimic layout capabilities in a browser, offering better options
for dynamic positioning of controls: FlowLayoutPanel and TableLayoutPanel. Both are containers than
can automatically reposition controls that are placed in them, based on the current space available in the
container.

An example illustrating usage of both controls is included in the section ‘‘Dynamic Sizing and Positioning
of Controls.’’

Replacements for Older Windows Forms Controls
The Toolbar, MainMenu, ContextMenu, and StatusBar controls in Windows Forms 1.0 and 1.1 offered
basic functionality. These controls are still available in Windows Forms 2.0, but in most cases you
won’t want to use these controls because new replacements offer significantly enhanced capabilities.
Because the old versions are still available, the new versions have different names. The table that follows
summarizes these replacements:

Old Control New Control Most Important New Capabilities

Toolbar ToolStrip Enables many new types of controls on the toolbar. Supports
rafting, which enables the toolbar to be detached by the user
and float over the application. It also enables users to add or
remove buttons or other toolbar elements, and includes new
cosmetics, enabling toolbars to look like those in Office 2003.

MainMenu MenuStrip Both new menu controls inherit from ToolStrip, which
enables new cosmetics and more flexible placement.

ContextMenu ContextMenuStrip

StatusBar StatusStrip Inherits from ToolStrip, which allows new cosmetics and
makes it easier to embed other controls in a status bar

Splitter SplitContainer Less difficult to set up

The old versions no longer show up by default in the Toolbox. If you want to use them in new projects,
then you must add them to the Toolbox by right-clicking on the Windows Forms Toolbox tab, selecting
Choose Items, and placing a check mark on the older control that you want added to the Toolbox. How-
ever, you’ll probably only want to use the older controls for compatibility with older projects, using the
improved versions for new development.

650

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 651

Chapter 15: Windows Forms

These controls are covered in more detail, including examples, in the sections ‘‘Toolbars and the New
ToolStrip Control,’’ ‘‘Menus,’’ and ‘‘Dynamic Sizing and Positioning of Controls.’’

Default Instances of Forms
In VB6 and earlier, a form named Form1 could be shown by merely including the following line:

Form1.Show

This capability was not available in Visual Basic 2002 and 2003. Instead, a form was treated like any other
class, and had to be instantiated before use. Typical code to show a form in Windows Forms 1.0 and 1.1
looked like this:

Dim f As New Form1()
f.Show

This technique is still recommended because it fits object-oriented conventions, but the first form returned
to Visual Basic starting with the 2005 version, with the minor change of parentheses at the end of the call:

Form1.Show()

Showing a form without instancing it, as in the first form shown, is referred to as using the default
instance of the form. That default instance is available from anywhere in a project containing a form.
There is only one default instance, and any reference to it will bring up the same underlying instance of
the form.

Another way to get to the default instance of a form is through the new My namespace. The following line
has exactly the same effect, showing the default instance of a form:

My.Forms.Form1.Show()

The System.Windows.Forms Namespace
You’ve already seen how namespaces are used to organize related classes in the .NET Framework.
The main namespace used for Windows Forms classes is System.Windows.Forms. The classes in this
namespace are contained in the System.Windows.Forms.dll assembly.

If you choose a Windows application project or Windows Control Library project in VS.NET, a reference
to System.Windows.Forms.dll is added by default. In some other cases, such as creating a library that
will work with controls, you need to add that reference manually. (You can learn more about creating
controls in Windows Forms in Chapter 16.)

Using Forms
A form is just a special kind of class in Windows Forms. A class becomes a form based on inheritance. A
form must have the System.Windows.Forms class in its inheritance tree, which causes the form to have
the behavior and object interface a form requires.

651

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 652

Chapter 15: Windows Forms

The previous section on changes to Windows Forms 2.0 mentioned that forms can be used by referring to
a default instance. However, the preferred technique is to treat a form like any other class, which means
creating an instance of the form and using the instance. Typical code would look like this:

Dim f As New Form1
f.Show()

There is one circumstance in which loading a form the same way as a class instance yields undesirable
results. Let’s cover that next.

Showing Forms via Sub Main
When a form is instanced via the technique just described, it is referenced by an object variable, which
establishes an object reference to the instance. References are covered in detail in Chapter 2.

References can disappear as object variables go out of scope or are set to other references or to Nothing.
When all object references to a form are gone, the form is disposed of and therefore vanishes. This is
particularly apparent if you want to start your application with a Sub Main, and then show your first
form inside Sub Main. You might think the following would work:

’ This code will not work in any .NET version of VB!!
Sub Main()

’ Do start up work here
’ After start up work finished, show the main form...
Dim f As New Form1
f.Show()

End Sub

If you try this, however, Form1 briefly appears and then immediately vanishes, and the application
quits. That’s because the object variable f went out of scope, and it was the only reference
to the form that was shown. Therefore, the form was destroyed because it had no references pointing
to it.

To get around this behavior, you could use the default instance as the startup form, but there’s a bet-
ter way that stays within good object-oriented conventions. Replace the line that shows the form, as
shown here:

’ This code will work fine in VB 2008

Sub Main()

’ Do start up work here
Dim f As New Form1

Application.Run(f)

End Sub

Now Sub Main will transfer control to the form, and the form won’t vanish when Sub Main ends.

652

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 653

Chapter 15: Windows Forms

Setting the Startup Form
Instead of using Sub Main as your application entry point, you can also define a startup form, which is
the form that is loaded first when your application begins. To define the startup form, open the Prop-
erties dialog box for the project and set the Startup form setting. Do this using the Project ➪ Properties
menu. You can also invoke the window by right-clicking the project name in the Solution Explorer and
selecting Properties from the context menu. The Properties dialog for a Windows application is shown in
Figure 15-1.

Figure 15-1

If the Properties menu item doesn’t appear under your Project menu, open the Solution Explorer
(Ctrl+Alt+L), highlight the project name (it will be in bold font), and then try again.

Startup Location
Often, you’ll want a form to be centered on the screen when it first appears. VB.NET does this automati-
cally for you when you set the StartPosition property. The following table shows the settings and their
meanings:

StartPosition Value Effect

Manual Shows the form positioned at the values defined by the form’s
Location property

CenterScreen Shows the form centered on the screen

WindowsDefaultLocation Shows the form at the window’s default location

653

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 654

Chapter 15: Windows Forms

StartPosition Value Effect

WindowsDefaultBounds Shows the form at the window’s default location, with the window’s
default bounding size

CenterParent Shows the form centered in its owner

Form Borders
Forms have a number of border options in Windows Forms. The FormBorderStyle property is used to
set the border option, and the options can affect the way a form can be manipulated by the user. The
options available for FormBorderStyle include the following:

❑ None — No border, and the user cannot resize the form

❑ FixedSingle — Single 3-D border, and the user cannot resize the form

❑ Fixed3D — 3-D border, and the user cannot resize the form

❑ FixedDialog — Dialog-box-style border, and the user cannot resize the form

❑ Sizeable — Same as FixedSingle, except that the user can resize the form

❑ FixedToolWindow — Single border, and the user cannot resize the form

❑ SizeableToolWindow — Single border, and the user can resize the form

Each of these has a different effect on the buttons that appear in the title bar of the form. For details, check
the help topic for the FormBorderStyle property.

Always on Top — The TopMost Property
Some forms need to remain visible at all times, even when they don’t have the focus, e.g., floating toolbars
and tutorial windows. In Windows Forms, forms have a property called TopMost. Set it to True to have a
form overlay other forms even when it does not have the focus.

Note that a form with TopMost set to True is on top of all applications, not just the hosting application. If
you need a form to only be on top of other forms in the application, then this capability is provided by
an owned form.

Owned Forms
As with the TopMost property, an owned form floats above the application but it does not interfere with
using the application. An example is a search-and-replace box. However, an owned form is not on top of
all forms, just the form that is its owner.

When a form is owned by another form, it is minimized and closed with the owner form. Owned forms
are never displayed behind their owner form, but they do not prevent their owner form from gaining the
focus and being used. However, if you want to click on the area covered by an owned form, the owned
form has to be moved out of the way first.

654

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 655

Chapter 15: Windows Forms

A form can only have one ‘‘owner’’ at a time. If a form that is already owned by Form1 is added to the
owned forms collection for Form2, then the form is no longer owned by Form1.

There are two ways to make a form owned by another form. It can be done in the owner form or in the
owned form.

AddOwnedForm Method
In the owner form, another form can be made owned with the AddOwnedForm method. The following
code makes an instance of Form2 become owned by Form1. This code would reside somewhere
in Form1 and would typically be placed just before the line that shows the instance of Form2 to
the screen:

Dim frm As New Form2
Me.AddOwnedForm(frm)

Owner Property
The relationship can also be set up in the owned form. This is done with the Owner property of the form.
Here is a method that would work inside Form2 to make it owned by a form that is passed in as an
argument to the function:

Public Sub MakeMeOwned(frmOwner As Form)
Me.Owner = frmOwner

End Sub

Because this technique requires a reference to the owner inside the owned form, it is not used as often as
using the AddOwnedForm method in the Owner form.

OwnedForms Collection
The owner form can access its collection of owned forms with the OwnedForms property. Here is code to
loop through the forms owned by a form:

Dim frmOwnedForm As Form
For Each frmOwnedForm In Me.OwnedForms

Console.WriteLine(frmOwnedForm.Text)
Next

The owner form can remove an owned form with the RemoveOwnedForm property. This could be done in
a loop like the previous example, with code like the following:

Dim frmOwnedForm As Form
For Each frmOwnedForm In Me.OwnedForms

Console.WriteLine(frmOwnedForm.Text)

Me.RemoveOwnedForm(frmOwnedForm)

Next

This loop would cause an owner form to stop owning all of its slaved forms. Note that those ‘‘deslaved’’
forms would not be unloaded, they would simply no longer be owned.

655

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 656

Chapter 15: Windows Forms

Making Forms Transparent and Translucent
Windows Forms offers advanced capabilities to make forms translucent, or parts of a form transparent.
You can even change the entire shape of a form.

The Opacity Property
The Opacity property measures how opaque or transparent a form is. A value of 0 percent makes the
form fully transparent. A value of 100 percent makes the form fully visible. Any value greater than 0 and
less than 100 makes the form partially visible, as if it were a ghost. Note that an opacity value of 0 percent
disables the capability to click the form.

Very low levels of opacity, in the range of 1 or 2 percent, make the form effectively invisible, but still allow
the form to be clickable. This means that the Opacity property has the potential to create mischievous
applications that sit in front of other applications and ‘‘steal’’ their mouse clicks and other events.

Percentage values are used to set opacity in the Properties window, but if you want to set the Opacity
property in code, you must use values between 0 and 1 instead, with 0 equivalent to 0 percent and 1
equivalent to 100 percent.

Tool and dialog windows that should not completely obscure their background are one example of a
usage for Opacity. Setting expiration for a ‘‘free trial’’ by gradually fading out the application’s user
interface is another.

The following block of code shows how to fade a form out and back in when the user clicks a button
named Button1. You may have to adjust the Step value of the array, depending on your computer’s
performance:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

Dim i As Double
For i = -1 To 1 Step 0.005

’ Note - opacity is a value from 0.0 to 1.0 in code
’ Absolute value is used to keep us in that range
Me.Opacity = System.Math.Abs(i)
Me.Refresh

Next i
End Sub

The TransparencyKey Property
Instead of making an entire form translucent or transparent, the TransparencyKey property enables you
to specify a color that will become transparent on the form. This enables you to make some sections of a
form transparent, while other sections are unchanged.

For example, if TransparencyKey is set to a red color and some areas of the form are that exact shade of
red, then they will be transparent. Whatever is behind the form shows through in those areas; and if you
click in one of those areas, you are actually clicking the object behind the form.

TransparencyKey can be used to create irregularly shaped ‘‘skin’’ forms. A form can have its
BackgroundImage property set with an image, and by just painting a part of the image with the
TransparencyKey color, you can make parts of the form disappear.

656

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 657

Chapter 15: Windows Forms

The Region Property
Another way to gain the capability of ‘‘skins’’ is by using the Region property of a form. The Region
property allows a shape for a form to be encoded as a ‘‘graphics path,’’ thereby changing the shape from
the default rectangle to another shape. A path can contain line segments between points, curves, and
arcs, and outlines of letters, in any combination.

The following example changes the shape of a form to an arrow. Create a new Windows application.
Set the FormBorderStyle property of Form1 to None. Then place the following code in the Load event
for Form1:

Dim PointArray(6) As Point
PointArray(0) = New Point(0, 40)
PointArray(1) = New Point(200, 40)
PointArray(2) = New Point(200, 0)
PointArray(3) = New Point(250, 100)
PointArray(4) = New Point(200, 200)
PointArray(5) = New Point(200, 160)
PointArray(6) = New Point(0, 160)
Dim myGraphicsPath As _
System.Drawing.Drawing2D.GraphicsPath = _

New System.Drawing.Drawing2D.GraphicsPath

myGraphicsPath.AddPolygon(PointArray)
Me.Region = New Region(myGraphicsPath)

When the program is run, Form1 will appear in the shape of a right-pointing arrow. If you lay out the
points in the array, you will see that they have become the vertices of the arrow.

Visual Inheritance
By inheriting from System.Windows.Forms.Form, any class automatically gets all the properties, meth-
ods, and events that a form based on Windows Forms is supposed to have. However, a class does not
have to inherit directly from the System.Windows.Forms.Form class to become a Windows form. It can
become a form by inheriting from another form, which itself inherits from System.Windows.Forms.Form.
In this way, controls originally placed on one form can be directly inherited by a second form. Not only is
the design of the original form inherited, but also any code associated with these controls (the processing
logic behind an Add New button, for example). This means you can create a base form with process-
ing logic required in a number of forms, and then create other forms that inherit the base controls and
functionality.

VB 2008 provides an Inheritance Picker tool to aid in this process. Note, however, that a form must
be compiled into either an .exe or .dll file before it can be used by the Inheritance Picker. Once that
is done, adding a form that inherits from another form in the project can be achieved by selecting
Project ➪ Add Windows Form and then choosing the template type of Inherited Form in the resulting
dialog.

Scrollable Forms
Some applications need fields that will fit on a single screen. While you could split the data entry into
multiple screens, an alternative is a scrollable form.

657

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 658

Chapter 15: Windows Forms

You can set your forms to automatically have scrollbars when they are sized smaller
than the child controls they contain. To do so, set the AutoScroll property of your
form to True. When you run your program, resize the form to make it smaller than the
controls require and presto — instant scrolling.

You cannot have both Autoscroll and IsMdiContainer set to True at the same time.
MDI containers have their own scrolling functionality. If you set Autoscroll to
True for an MDI container, then the IsMdiContainer property will be set to False,
and the form will cease to be an MDI container.

MDI Forms
MDI (Multiple Document Interface) forms are forms that are created to hold other forms. The MDI form
is often referred to as the parent, and the forms displayed within the MDI parent are often called children.
Figure 15-2 shows a typical MDI parent with several children displayed within it.

Figure 15-2

Creating an MDI Parent Form
In Windows Forms, a regular form is converted to an MDI parent form by setting the IsMDIContainer
property of the form to True. This is normally done in the Properties window at design time.

A form can also be made into an MDI parent at runtime by setting the IsMDIContainer property to True
in code, but the design of an MDI form is usually different from that of a normal form, so this approach
is not often needed.

658

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 659

Chapter 15: Windows Forms

Differences in MDI Parent Forms between VB6 and VB 2008
In VB6, an MDI parent form can only contain controls that have a property called Align, which is similar
to the Dock property in Windows Forms. These controls, such as a PictureBox, can then contain other
controls.

In Windows Forms, an MDI parent can contain any control that a regular form can contain. Buttons,
labels, and the like can be placed directly on the MDI surface. Such controls appear in front of any MDI
child forms that are displayed in the MDI client area.

It is still possible to use controls such as PictureBoxes to hold other controls on a Windows Forms
MDI parent. These controls can be docked to the side of the MDI form with the Dock property, which is
discussed in the section ‘‘Dynamic Sizing and Positioning of Controls.’’

MDI Child Forms
In Windows Forms, a form becomes an MDI child at runtime by setting the form’s MDIParent property to
point to an MDI parent form. This makes it possible to use a form as either a standalone form or an MDI
child in different circumstances. In fact, the MDIParent property cannot be set at design time — it must
be set at runtime to make a form an MDI child. (Note that this is completely different from VB6, where it
was necessary to make a form an MDI child at design time.)

Any number of MDI child forms can be displayed in the MDI parent-client area. The currently active
child form can be determined with the ActiveForm property of the MDI parent form.

An MDI Example in VB 2008
To see these changes to MDI forms in action, try the following exercise. It shows the basics of creating an
MDI parent and making it display an MDI child form:

1. Create a new Windows application. It will have an empty form named Form1. Change both
the name of the form and the form’s Text property to MDIParentForm.

2. In the Properties window, set the IsMDIContainer property for MDIParentForm to True.
This designates the form as an MDI container for child windows. (Setting this property also
causes the form to have a different default background color.)

3. From the Toolbox, drag a MenuStrip control to the form. Create a top-level menu item called
File with submenu items called New MDI Child and Quit. Also create a top-level menu item
called Window. The File ➪ New MDI Child menu option creates and shows new MDI child
forms at runtime; the Window menu keeps track of the open MDI child windows.

4. In the Component Tray at the bottom of the form, click the MenuStrip item and select
Properties. In the Properties window, set the MDIWindowListItem property to
WindowToolStripMenuItem. This enables the Window menu to maintain a list of open MDI
child windows, with a check mark next to the active child window.

5. Create an MDI child form to use as a template for multiple instances. Select Project ➪ Add
Windows Form and click the Add button in the Add New Item dialog box. That results in a
new blank form named Form2. Place any controls you like on the form. As an alternative, you
can reuse any of the forms created in previous exercises in this chapter.

659

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 660

Chapter 15: Windows Forms

6. Return to MDIParentForm. In the menu editing bar, double-click the New MDI Child option
under File. The Code Editor will appear, with the cursor in the event routine for that menu
option. Place the following code in the event:

Protected Sub NewMdiChildToolStripMenuItem _Click(ByVal sender As Object,
ByVal e As System.EventArgs)

’ This line may change if you are using a form with a different name.
Dim NewMDIChild As New Form2()
’Set the Parent Form of the Child window.
NewMDIChild.MDIParent = Me
’Display the new form.
NewMDIChild.Show()

End Sub

7. In the menu editing bar for MDIParentForm, double-click the Quit option under File. The
Code Editor will appear, with the cursor in the event routine for that menu option. Place the
following code in the event:

Protected Sub QuitToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

End

End Sub

8. Run and test the program. Use the File ➪ New MDI Child option to create several child
forms. Note how the Window menu option automatically lists them with the active one
checked and allows you to activate a different one.

Arranging Child Windows
MDI parent forms have a method called LayoutMDI that automatically arranges child forms in the familiar
cascade or tile layout. For the preceding example, add a menu item to your Windows menu called Tile
Vertical and insert the following code into the menu item’s Click event to handle it:

Me.LayoutMdi(MDILayout.TileVertical)

To see an example of the rearrangement, suppose that the MDI form in Figure 15-2 is rearranged with
the MDILayout.TileVertical option. It would then look similar to the image in Figure 15-3.

Dialog Forms
In VB6 and earlier, forms were shown with the Show method, and this technique is still used in Windows
Forms. In both VB6 and VB 2008, the Show method by default displays modeless forms, which are forms
that enable the user to click off them onto another form in the application.

Applications also sometimes need forms that retain control until their operation is finished. That is, you
can’t click off such a form onto another form. Such a form is called a modal form.

660

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 661

Chapter 15: Windows Forms

Figure 15-3

In VB6, showing a modal form required using a special parameter on the Show method. Showing a form
modally is done differently in Windows Forms, with the ShowDialog method. The following code shows
a modal dialog in Windows Forms, assuming the project contains a form with a type of DialogForm:

Dim frmDialogForm As New DialogForm
frmDialogForm.ShowDialog()

DialogResult
When showing a dialog form, you’ll often need to get information about what action the user selected.
This was often done with a custom property in VB6, but Windows Forms has a built-in property for
that purpose. When a form is shown with the ShowDialog method, the form has a property called
DialogResult to indicate its state.

The DialogResult property can take the following enumerated results:

❑ DialogResult.Abort

❑ DialogResult.Cancel

❑ DialogResult.Ignore

❑ DialogResult.No

❑ DialogResult.None

❑ DialogResult.OK

❑ DialogResult.Retry

❑ DialogResult.Yes

When the DialogResult property is set, the dialog is hidden as a byproduct. That is, setting the
DialogResult property causes an implicit call to the Hide method of the dialog form, so that control
is released back to the form that called the dialog.

661

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 662

Chapter 15: Windows Forms

The DialogResult property of a dialog box can be set in two ways. The most common way is to asso-
ciate a DialogResult value with a button. Then, when the button is pressed, the associated value is
automatically placed in the DialogResult property of the form.

To set the DialogResult value associated with a button, the DialogResult property of the button is
used. If this property is set for the button, then it is unnecessary to set the DialogResult in code when
the button is pressed.

Here is an example that uses this technique. In Visual Studio 2008, start a new VB Windows application.
On the automatic blank form that comes up (named Form1), place a single button and set its Text property
to Dialog.

Now add a new Windows form by selecting Project ➪ Add Windows Form and name it DialogForm.vb.
Place two buttons on DialogForm and set the following properties for the buttons:

Property Value for First Button Value for Second Button

Name OKButton CancelButton

Text OK Cancel

DialogResult OK Cancel

Do not put any code in DialogForm at all. The form should look like the one shown in Figure 15-4.

Figure 15-4

On the first form, Form1, place the following code in the Click event for Button1:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim frmDialogForm As New DialogForm()
frmDialogForm.ShowDialog()

’ You’re back from the dialog - check user action.
Select Case frmDialogForm.DialogResult

Case DialogResult.OK
MsgBox("The user pressed OK")

Case DialogResult.Cancel
MsgBox("The user pressed cancel")

End Select
frmDialogForm = Nothing

End Sub

Run and test the code. When a button is pressed on the dialog form, a message box should be displayed
(by the calling form) indicating the button that was pressed.

662

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 663

Chapter 15: Windows Forms

The second way to set the DialogResult property of the form is in code. In a Button_Click event, or
anywhere else in the dialog form, a line like the following can be used to set the DialogResult property
for the form and simultaneously hide the dialog form, returning control to the calling form:

Me.DialogResult = DialogResult.Ignore

This particular line sets the dialog result to DialogResult.Ignore, but setting the dialog result to any of
the permitted values also hides the dialog form.

Forms at Runtime
The life cycle of a form is like that of all objects. It is created and later destroyed. Forms have a visual
component, so they use system resources, such as handles. These are created and destroyed at interim
stages within the lifetime of the form. Forms can be created and will hold state as a class, but will not
appear until they are activated. Likewise, closing a form doesn’t destroy its state.

The following table summarizes the states of a form’s existence, how you get the form to that state, the
events that occur when the form enters a state, and a brief description of each:

Code Events Fired Notes

MyForm = New Form1 Load The form’s New method will be called (as will
InitializeComponent).

MyForm.Show or HandleCreated Use Show for modeless display.

MyForm.ShowDialog Load Use ShowDialog for modal display.

VisibleChanged The HandleCreated event only fires the first time the
form is shown or after it has previously been closed.

Activated

MyForm.Activate Activated A form can be activated when it is visible but does
not have the focus.

MyForm.Hide Deactivate Hides the form (sets the Visible property to False) .

VisibleChanged

MyForm.Close Deactivate Closes the form and calls Dispose to release the
window’s resources

Closing During the Closing event, you can set the
CancelEventArgs.Cancel property to True to abort
the close.

Closed

VisibleChanged

HandleDestroyed Also called when the user closes the form using the
control box or X button

Disposed The Deactivate event will only fire if the form is
currently active.

663

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 664

Chapter 15: Windows Forms

Code Events Fired Notes

Note: There is no longer an Unload event. Use the
Closing or Closed event instead.

MyForm.Dispose None Use the Close method to finish using your form.

MyForm = Nothing None Releasing the reference to the form flags it for garbage
collection. The garbage collector calls the form’s
Finalize method.

Controls
The controls included in Windows Forms provide basic functionality for a wide range of applications.
This section covers the features that all controls use (such as docking) and summarizes the standard
controls available to you. Important changes from pre-.NET versions of Visual Basic (VB6 and earlier) are
briefly mentioned.

Control Tab Order
The VS 2008 design environment enables you to set the tab order of the controls on a form simply by
clicking them in sequence. To activate the feature, open a form in the designer and select View ➪ Tab
Order. This will place a small number in the upper-left corner of each control on your form, representing
the tab index of that control.

To set the values, simply click on each control in the sequence you want the tab flow to operate. The
screen shot in Figure 15-5 shows a simple form with the tab order feature enabled.

In Windows Forms 2.0, it is possible to have two or more controls with the same tab index value. At
runtime, Visual Basic will break the tie by using the z-order of the controls. The control that is highest in
the z-order receives the focus first. The z-order is a ranking number that determines which controls are
in front of or behind other controls. (The term comes from the z-axis, which is an axis perpendicular to
the traditional x-axis and y-axis.) The z-order can be changed by right-clicking the control and selecting
Bring to Front.

Figure 15-5

664

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 665

Chapter 15: Windows Forms

Dynamic Sizing and Positioning of Controls
Windows Forms 2.0 includes a variety of ways to enable dynamic user interfaces. Not only can controls be
set to automatically stretch and reposition themselves as a form is resized, they can also be dynamically
arranged inside some special container controls intended for that purpose. This section covers all these
ways of enabling dynamic sizing and positioning of controls.

Docking
Docking refers to gluing a control to the edge of a parent control. Good examples of docked controls are
menu bars and status bars, which are typically docked to the top and bottom of a form, respectively. All
visual controls have a Dock property.

To work through an example, create a new Windows application and place a Textbox on a form. Set the
Text property of the TextBox to I’m Getting Docked. The result when you show the form should look
something like Figure 15-6.

Figure 15-6

Suppose that you need to glue this TextBox to the top of the form. To do this, view the Dock property of
the label. If you pull it down, you’ll see a small graphic like the one shown in Figure 15-7.

Figure 15-7

Simply click the top section of the graphic to stick the label at the top of the form. The other sections
give you other effects. (A status bar would use the bottom section, for example. Clicking the box in the
middle causes the control to fill the form.) The TextBox control will immediately ‘‘stick’’ to the top of
your form. When you run your program and stretch the window sideways, you’ll see the effect shown in
Figure 15-8.

If you try to dock multiple controls to the same edge, Windows Forms must decide
how to break the tie. Precedence is given to controls in reverse z-order. That is, the
control that is furthest back in the z-order will be the first control next to the edge. If
you dock two controls to the same edge and want to switch them, then right-click
the control you want docked first and select Send to Back.

665

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 666

Chapter 15: Windows Forms

Figure 15-8

If you want a gap between the edge of your form and the docked controls, set the DockPadding property
of the parent control. You can set a different value for each of the four directions (Left, Right, Top,
Bottom). You can also set all four properties to the same value using the All setting.

Anchoring
Anchoring is similar to docking except that you can specifically define the distance that each edge of
your control will maintain from the edges of a parent. To see it in action, add a button to the form in the
docking example. The result should look like what is shown in Figure 15-9.

Figure 15-9

Dropping down the Anchor property of the button gives you the graphic shown in Figure 15-10.

Figure 15-10

The four rectangles surrounding the center box enable you to toggle the anchor settings of the control.
Figure 15-10 shows the default anchor setting of Top, Left for all controls.

When the setting is on (dark gray), the edge of the control maintains its original distance from the edge
of the parent as the parent is resized. If you set the anchor to two opposing edges (such as the left and
right edges), the control stretches to accommodate this, as shown in Figure 15-11.

666

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 667

Chapter 15: Windows Forms

Figure 15-11

One of the most common uses of anchoring is to set the Anchor property for buttons in the lower-right
portion of a form. Setting the Anchor property of a button to Bottom, Right causes the button to maintain
a constant distance from the bottom-right corner of the form.

You can also set the Anchor property in code. The most common scenario for this would be for a control
created on-the-fly. To set the Anchor property in code, you must add the anchor styles for all the sides
to which you need to anchor. For example, setting the Anchor property to Bottom, Left would require a
line of code like this:

MyControl.Anchor = Ctype(AnchorStyles.Bottom + AnchorStyles.Right, AnchorStyles)

Sizable Containers
Early versions of Windows Forms used the Splitter control to allow resizing of containers. This control
is still available in Windows Forms 2.0, but it doesn’t appear by default in the Toolbox. In its place is a
replacement control, SplitContainer, that provides the same functionality with less work on your part.

A single SplitContainer acts much like two panels with an appropriately inserted Splitter. You can
think of it as a panel with two sections separated by a movable divider so that the relative sizes of the
sections can be changed by a user.

To use a SplitContainer, simply drop it on a form, resize it, and position the draggable divider to the
appropriate point. If you want the divider to be horizontal instead of vertical, you change the
Orientation property. Then you can place controls in each subpanel in any way you like. It is com-
mon to insert a control such as a TreeView or ListBox, and then dock it to its respective subpanel. This
enables users to resize such contained controls. A typical example of a SplitContainer in action is shown
in Figure 15-12.

Figure 15-12

667

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 668

Chapter 15: Windows Forms

The cursor in Figure 15-12 shows that the mouse is hovering over the divider, allowing repositioning of
the divider by dragging the mouse. A SplitContainer may be nested inside another SplitContainer.
This enables you to build forms in which several parts are resizable relative to each other.

FlowLayoutPanel Control
The FlowLayoutPanel enables the dynamic layout of controls contained within it, based on the size of the
FlowLayoutPanel. This is quite a departure from traditional Windows Forms layout, in which controls
in a container are positioned solely according to their Top and Left properties.

FlowLayoutPanel works conceptually much like a simple HTML page shown in a browser. The controls
placed in the FlowLayoutPanel are positioned in sequence horizontally until there’s not enough space for
the next control, which then wraps further down for another row of controls. The following walk-through
demonstrates this capability.

Start a new Windows application project. On the blank Form1 included in the new project, place a
FlowLayoutPanel control toward the top of the form, making it a bit less wide than the width of the
form. Set the Anchor property for the FlowLayoutPanel to Top, Left, and Right. Set the BorderStyle
property for the FlowLayoutPanel to FixedSingle so it’s easy to see.

Place three Button controls in the FlowLayoutPanel, keeping their default sizes. The form you create
should look like the one shown in Figure 15-13.

Figure 15-13

Run the application. The initial layout will be similar to the design-time layout. However, if you resize
the form to about two thirds of its original width, the layout of the buttons changes. Because there is
no longer enough room for them to be arranged side by side, the arrangement automatically switches.
Figure 15-14 shows the form in three configurations: first with its original width, then narrower so that
only two buttons fit in the FlowLayoutPanel, and finally so narrow that the buttons are all stacked in the
FlowLayoutPanel.

Figure 15-14

668

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 669

Chapter 15: Windows Forms

Note that no logic of any kind was added to the form — the FlowLayoutPanel handles the repositioning
of the buttons automatically. In fact, any position information you set for the button controls is ignored
if they are placed in a FlowLayoutPanel.

Padding and Margin Properties
To assist in positioning controls in the FlowLayoutPanel, all controls have a new property called Margin.
There are settings for Margin.Left, Margin.Right, Margin.Top, and Margin.Bottom. These settings
determine how much space is reserved around a control when calculating its automatic position in a
FlowLayoutPanel.

You can see the Margin property in action by changing the Margin property for one or more of the buttons
in the previous example. If you change all the Margin settings for the first Button to 10 pixels, for example,
and run the application, the form will look like the one shown in Figure 15-15.

Figure 15-15

The first button now has a 10-pixel separation from all the other controls in the FlowLayoutPanel, as well
as a 10-pixel separation from the edges of the FlowLayoutPanel itself.

The Padding property is for the FlowLayoutPanel or other container control. When a control is embed-
ded into a FlowLayoutPanel, the Padding.Left, Padding.Right, Padding.Top, and Padding.Bottom
properties of the FlowLayoutPanel determine how far the control should be positioned from the inside
edge of the container.

You can see the Padding property in action by changing the Padding property for the FlowLayoutPanel
in the previous example. If you set all Padding settings to 20 pixels, and reset the Margin property for the
first Button back to the default, then the form will look like what is shown in Figure 15-16 in the visual
designer.

Figure 15-16

Notice that all the controls in the FlowLayoutPanel are now at least 20 pixels from the edges.

669

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 670

Chapter 15: Windows Forms

The Padding property is also applicable to other container controls, if the contained controls have their
Dock property set. If the settings for Padding are not zero, then a docked control will be offset from the
edge of the container by the amount specified by the Padding property.

TableLayoutPanel Control
Another control that uses dynamic layout of child controls is the TableLayoutPanel. This control consists
of a table of rows and columns, resulting in a rectangular array of cells. You can place one control in each
cell. However, that control can itself be a container, such as a Panel or FlowLayoutPanel.

The dimensions of the columns and rows can be controlled by setting some key properties. For columns,
set the number of columns with the ColumnCount property, and then control each individual column
with the ColumnStyles collection. When you click the button for the ColumnStyles collection, you get a
designer window that enables you to set two key properties for each column: SizeType and Width.

SizeType can be set to one of the following enumerations:

❑ Absolute — Sets the column width to a fixed size in pixels

❑ AutoSize — Indicates that the size of the column should be managed by the TableLayoutPanel,
which allocates width to the column depending on the widest control contained in the column

❑ Percent — Sets what percentage of the TableLayoutPanel to use for the width of the column

The Width property is only applicable if you do not choose a SizeType of AutoSize. It sets either the
number of pixels for the width of the column (if the SizeType is Absolute) or the percentage width for
the column (if the SizeType is Percent).

Similarly, for rows, there is a RowCount property to set the number of rows, and a RowStyles collection
to manage the size of the rows. Each row in RowStyles has a SizeType, which works the same way as
SizeType does for Columns except that it manages the height of the row instead of the width of a column.
The Height property is used for rows instead of a Width property, but it works in a corresponding way.
Height is either the number of pixels (if SizeType is Absolute) or a percentage of the height of the
TableLayoutPanel (if SizeType is Percent). If SizeType is AutoSize, then a row is sized to the height of
the tallest control in the row.

An advanced UI layout technique is to first create a TableLayoutPanel, and then embed a
FlowLayoutPanel in some of the cells of the TableLayoutPanel. This allows several controls to be con-
tained in a cell and repositioned as the size of the cell changes.

A step-by-step example of using a TableLayoutPanel, with an embedded FlowLayoutPanel, is included
in the next chapter in the section ‘‘Creating a Composite UserControl.’’

Panel and GroupBox Container Controls
Of course, not all applications need the dynamic layout of the containers just discussed. Windows Forms
includes two controls that are static containers, in which the positions and layout of the contained con-
trols are not adjusted at all.

In VB6, the Frame control was used for this purpose. However, Windows Forms has two such containers,
with minor differences between them: the GroupBox control and the Panel control.

670

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 671

Chapter 15: Windows Forms

These two are similar in the following ways:

❑ They can serve as a container for other controls.

❑ If they are hidden or moved, then the action affects all the controls in the container.

The GroupBox control is the one that most closely resembles an old VB6 Frame control visually. It acts
much like a VB6 Frame control too, with one significant exception: There is no way to remove its border. It
always has a border, and it can have a title, if needed. The border is always set the same way. Figure 15-17
shows a form with a GroupBox control containing three RadioButtons.

Figure 15-17

The Panel control has three major differences from GroupBox:

❑ It has options for displaying its border in the BorderStyle property, with a default of no border.

❑ It has the capability to scroll if its AutoScroll property is set to True.

❑ It cannot set a title or caption.

Figure 15-18 shows a form containing a Panel control with its BorderStyle property set to FixedSingle,
with scrolling turned on by setting AutoScroll to True, and with a CheckedListBox that is too big to
display all at once (which forces the Panel to show a scrollbar).

Figure 15-18

Extender Providers
Windows Forms has a family of components that can only be used in association with visual controls.
These components are known as extender providers. They work with the Visual Studio IDE to cause new
properties to appear in the Properties window for controls on the form.

Extender providers have no visible manifestation except in conjunction with other controls, so they
appear in the component tray. The three extender providers available with Windows Forms 2.0 are the
HelpProvider, the ToolTip, and the ErrorProvider. All three work in basically the same way. Each
extender provider implements the properties that are ‘‘attached’’ to other controls. The best way to see
how this works is to go through an example, so let’s do that with a ToolTip component.

671

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 672

Chapter 15: Windows Forms

ToolTip
The ToolTip is the simplest of the built-in extender providers. It adds just one property to each control:
ToolTip on ToolTip1 (assuming the ToolTip control has the default name of ToolTip1). This property
works in very much the same way the ToolTipText property works in VB6, and in fact replaces it.

To see this in action, create a Windows Forms application. On the blank Form1 that is created for the
project, place a couple of buttons. Take a look at the Properties window for Button1. Notice that it does
not have a ToolTip property of any kind.

Drag over the ToolTip control, which will be placed in the component tray. Go back to the Properties
window for Button1. A property named ToolTip on ToolTip1 is now present. Set any string value you
like for this property.

Run the project and hover the mouse pointer over Button1. You will see a tooltip containing the string
value you entered for the ToolTip on ToolTip1 property.

Other properties of the ToolTip component enable you to control other characteristics of the tooltip, such
as the initial delay before the tooltip appears.

New in Windows Forms 2.0 is the capability to change the shape of tooltips to a ‘‘balloon.’’ This is done
by setting the IsBalloon property of the Tooltip component to True. Instead of a hovering rectangular
tooltip, the tooltip has a rounded rectangular outline with a pointer to the control it is associated with,
not unlike the dialog balloons in a comic strip. Figure 15-19 shows an example.

Figure 15-19

HelpProvider
The HelpProvider enables controls to have associated context-sensitive help available by pressing F1.
When a HelpProvider is added to a form, all controls on the form get the following new properties,
which show up in the controls’ Properties window:

Property Usage

HelpString on
HelpProvider1

Provides a pop-up tooltip for the control when F1 is pressed while the
control has the focus. If the HelpKeyword and HelpNavigator properties
(described later) are set to provide a valid reference to a help file, then
the HelpString value is ignored in favor of the help file information.

HelpKeyword
onHelpProvider1

Provides a keyword or other index to use in a help file for
context-sensitive help for this control. The HelpProvider1 control has a
property that indicates which help file to use. This replaces the
HelpContextID property in VB6.

672

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 673

Chapter 15: Windows Forms

Property Usage

HelpNavigator
onHelpProvider1

Contains an enumerated value that determines how the value in
HelpKeyword is used to refer to the help file. There are several possible
values for displaying such elements as a topic, an index, or a table of
contents in the help file.

ShowHelp onHelpProvider1 Determines whether the HelpProvider control is active for this control

Filling in the HelpString property immediately causes the control to provide tooltip help when F1 is
pressed while the control has the focus. The HelpProvider control has a property to point to a help file
(either an HTML help file or a Win32 help file), and the help topic in the HelpTopic property points to a
topic in this file.

ErrorProvider
The ErrorProvider component presents a simple, visual way to indicate to a user that a control on a form
has an error associated with it. The added property for controls on the form when an ErrorProvider is
used is called Error on ErrorProvider1 (assuming the ErrorProvider has the default name of
ErrorProvider1). Setting this property to a string value causes the error icon to appear next to a control.
In addition, the text appears in a tooltip if the mouse hovers over the error icon.

Figure 15-20 shows a screen with several text boxes, and an error icon next to one (with a tooltip). The
error icon and tooltip are displayed and managed by an ErrorProvider.

Figure 15-20

The ErrorProvider component’s default icon is a red circle with an exclamation point. When the Error
property for the text box is set, the icon blinks for a few moments, and hovering over the icon causes the
tooltip to appear. Writing your own code to set the Error property is explained in the section ‘‘Working
with Extender Providers in Code.’’

Properties of Extender Providers
In addition to providing other controls with properties, extender providers also have properties of their
own. For example, the ErrorProvider has a property named BlinkStyle. When it is set to NeverBlink,
the blinking of the icon is stopped for all controls affected by the ErrorProvider.

Other properties of the ErrorProvider enable you to change things such as the icon used and where the
icon appears in relation to the field containing the error. For instance, you might want the icon to appear
on the left side of a field instead of the default right side. You can also have multiple error providers on
your form. For example, you might wish to give users a warning, rather than an error. A second error
provider with a yellow icon could be used for this feature.

673

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 674

Chapter 15: Windows Forms

Working with Extender Providers in Code
Setting the Error property in the previous example can be done with the Properties window, but this
is not very useful for on-the-fly error management. However, setting the Error property in code is not
done with typical property syntax. By convention, extender providers have a method for each extended
property they need to set, and the arguments for the method include the associated control and the
property setting. To set the Error property in the previous example, the following code was used:

ErrorProvider1.SetError(txtName, "You must provide a location!")

The name of the method to set a property is the word Set prefixed to the name of the property. The pre-
ceding line of code shows that the Error property is set with the SetError method of the ErrorProvider.

There is a corresponding method to get the value of the property, and it is named with Get prefixed to
the name of the property. To determine the current Error property setting for txtName, you would use
the following line:

sError = ErrorProvider1.GetError(txtName)

Similar syntax is used to manipulate any of the properties managed by an extender provider. The discus-
sion of the tooltip provider earlier mentioned setting the tooltip property in the Properties window. To
set that same property in code, the syntax would be as follows:

ToolTip1.SetToolTip(Button1, "New tooltip for Button1")

Advanced Capabilities for Data Entry
Windows Forms 2.0 includes some advanced capabilities for data entry that were not available in earlier
versions. Textbox and Combobox controls in 2.0 have autocompletion capabilities, and a MaskedTextbox
control allows entry of formatted input such as phone numbers.

Autocompletion
Responsive user interfaces help users accomplish their purposes, thereby making them more productive.
One classic way to do this is with autocompletion.

An example of autocompletion is IntelliSense in Visual Studio. Using IntelliSense, the user only has to
type in a few letters, and Visual Studio presents a list of probable entries matching those letters. If the
desired entry is found, the user only needs to select it, rather than type the entire entry.

Autocompletion is available in Windows Forms 2.0 with text boxes and combo boxes. Both use a set of
properties to control how autocompletion works and from where the list of entries available to the user
comes.

To see autocompletion in action, create a Windows application project. Drag a Textbox from the toolbox
onto the blank Form1 created for the project. Set the AutoCompleteMode for the text box to Suggest in
the Properties window. Then set the AutoCompleteSource to CustomSource. Finally, click the button in
the setting window for AutoCompleteCustomSource. You’ll see a window for adding entries that is very
similar to the window for entering items for a list box or combo box.

674

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 675

Chapter 15: Windows Forms

Enter the following items into the dialog:

Holder
Holland
Hollis
Holloway
Holly
Holstein
Holt

Start the project and type Hol into the text box. As soon as you start typing, a drop-down will appear that
contains entries matching what you’ve typed, including all seven elements in the list. If you then type
another 1, the list will decrease to four elements that begin with Holl. If you then type an o, the list will
contain only the entry Holloway.

The AutoCompleteMode has two other modes. The Append mode does not automatically present a drop-
down, but instead appends the rest of the closest matching entry to the text in the Textbox or ComboBox,
and highlights the untyped characters. This allows the closest matching entry to be placed in the text area
without the user explicitly selecting an entry.

The SuggestAppend mode combines Suggest and Append. The current best match is displayed in the text
area, and the drop-down with other possibilities is automatically displayed. This mode is the one most
like IntelliSense.

You can also set the list of items to be included in the autocompletion list at runtime, which is the most
common usage scenario. A list of items from a database table would typically be loaded for autocomple-
tion. Here is typical code to create a list of items and attach the list to a combo box:

Dim autoCompleteStringCollection1 As New AutoCompleteStringCollection
Dim nReturn As Integer
nReturn = autoCompleteStringCollection1.Add("Holder")
nReturn = autoCompleteStringCollection1.Add("Holland")
nReturn = autoCompleteStringCollection1.Add("Hollis")
nReturn = autoCompleteStringCollection1.Add("Holloway")
ComboBox1.AutoCompleteCustomSource = autoCompleteStringCollection1

For this sample to work properly, the Combobox control’s AutoCompleteSource property must be set to
CustomSource.

Several built-in lists are available for use with autocompletion. Instead of setting AutoCompleteSource to
CustomSource, you can set it to sources such as files in the file system, or URLs recently used in Internet
Explorer. See the documentation for AutoCompleteSource for additional options; or, if you are using
AutoCompleteSource in code, IntelliSense will show the options available.

MaskedTextbox Control
The MaskedTextbox control fulfills the same function as the old VB6 MaskedEdit control. If you have
used MaskedEdit in VB6, the MaskedTextbox will feel quite familiar.

After dragging a MaskedTextbox control to a form, you typically want to first set the mask associated
with the control. You can do this in the Properties window by selecting the Mask property, but you can

675

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 676

Chapter 15: Windows Forms

also click the smart tag (right-pointing arrow) on the right side of the MaskedTextbox. In either case, you
can either construct a mask manually or select one of the commonly used masks from a list.

If you need to create your own mask, you need to design it based on the following set of formatting
characters:

Mask Character Description

Digit placeholder

. Decimal placeholder. The actual character used is the one specified as the decimal
placeholder in your international settings. This character is treated as a literal for
masking purposes.

, Thousands separator. The actual character used is the one specified as the
thousands separator in your international settings. This character is treated as a
literal for masking purposes.

: Time separator. The actual character used is the one specified as the time separator
in your international settings. This character is treated as a literal for masking
purposes.

/ Date separator. The actual character used is the one specified as the date separator
in your international settings. This character is treated as a literal for masking
purposes.

\ Treat the next character in the mask string as a literal. This enables you to include
the #, &, A, and ? characters in the mask. This character is treated as a literal for
masking purposes.

& Character placeholder. Valid values for this placeholder are ANSI characters in the
following ranges: 32–126 and 128–255.

> Converts all the characters that follow to uppercase

< Converts all the characters that follow to lowercase

A Alphanumeric character placeholder (entry required), e.g., a–z, A–Z, or 0–9

a Alphanumeric character placeholder (entry optional)

9 Digit placeholder (entry optional), e.g., 0–9

C Character or space placeholder (entry optional). This operates exactly like the &
placeholder and ensures compatibility with Microsoft Access.

? Letter placeholder, e.g., a–z or A–Z

Literal All other symbols are displayed as literals — that is, as themselves.

Literal characters are simply inserted automatically by the MaskedTextbox control. If you have literal
characters for the parentheses in a phone number, for example, the user need not type these in order for
them to show up in the text area of the control.

676

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 677

Chapter 15: Windows Forms

As an example of a mask, suppose that you have an account number that must consist of exactly two
uppercase letters and five digits. You could construct a mask of >??00000. The first character forces all
letters to uppercase. The two question marks specify two required alphabetic characters, and the five
zeros specify five required digits.

Once you have set the Mask for the MaskedTextbox, all entries in the control will be coerced to the Mask
pattern. Keystrokes that don’t conform will be thrown away.

Validating Data Entry
Most controls that you place on a form require that its content be validated in some way. A text box might
require a numeric value only or simply require that the user provide any value and not leave it blank.

The ErrorProvider component discussed earlier makes this task significantly easier than it was in
previous versions. To illustrate the use of an ErrorProvider in data validation, create a new Windows
application project and change the Text property for the blank Form1 to Data Validation Demo.
Then place two text boxes on the form that will hold a user ID and password, as shown in
Figure 15-21.

Figure 15-21

Name the first text box UserNameTextBox and name the second text box PasswordTextBox. Drag an
ErrorProvider onto the form, which will cause it to appear in the component tray. In the next section,
you’ll add the code that simply verifies that the user has filled in both text boxes and gives a visual
indication, via the ErrorProvider, if either of the fields has been left blank.

The Validating Event
The Validating event fires when your control begins its validation. It is here that you need to place the
code that validates your control, and set a visual indication for an error. Insert the following code to see
this in action:

Private Sub UserNameTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles UserNameTextBox.Validating

If userNameTextbox.Text = "" Then
ErrorProvider1.SetError(UserNameTextBox, "User Name cannot be blank")

Else
ErrorProvider1.SetError(UserNameTextBox, "")

End If
End Sub

677

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 678

Chapter 15: Windows Forms

Private Sub PasswordTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles PasswordTextBox.Validating

If passwordTextbox.Text = "" Then
ErrorProvider1.SetError(PasswordTextBox, "Password cannot be blank")

Else
ErrorProvider1.SetError(PasswordTextBox, "")

End If
End Sub

Run the program and then tab between the controls without entering any text to get the error message.
You’ll see an icon blink next to each of the text box controls; and if you hover over an error icon, you’ll
see the appropriate error message.

There is also a Validated event that fires after a control’s Validating event. It can be used, for example,
to do a final check after other events have manipulated the contents of the control.

The CausesValidation Property
The CausesValidation property determines whether the control will participate in the validation
events on the form. A control with a CausesValidation setting of True (it is True by default) has two
effects:

❑ The control’s Validating/Validated events fire when appropriate.

❑ The control triggers the Validating/Validated events for other controls.

It is important to understand that the validation events fire for a control not when the focus is lost but
when the focus shifts to a control that has a CausesValidation value of True.

To see this effect, set the CausesValidation property of the password text box in your application to
False (be sure to leave it True for the user ID and OK button). When you run the program, tab off the
user ID text box and again to the OK button. Notice that it isn’t until the focus reaches the OK button that
the validating event of the user ID text box fires. Also notice that the validating event of the Password
field never fires.

Ultimately, if you determine that the control is not valid, you need to specify what happens. That may
include setting the focus to the control that needs attention (as well as indicating the error with an
ErrorProvider).

Toolbars and the New ToolStrip Control
As mentioned in the summary of new features in Windows Forms 2.0, the ToolStrip control replaces
the Toolbar control from Windows Forms 1.0 and 1.1. ToolStrip has many improvements. It supports
movement to sides of a form other than the place where it was laid out, and you have much more flex-
ibility in placing items on the toolbar. It also integrates better with the IDE to assist in creating toolbars
and manipulating the many settings available.

The ToolStrip does not sit alone on a form. When a ToolStrip is dragged onto a form, the container that
actually sits on the form is called a RaftingContainer. This container handles the positioning so that the
toolbar created by a ToolStrip can be dragged to other parts of the form.

678

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 679

Chapter 15: Windows Forms

The ToolStrip sits inside the RaftingContainer and is the container for toolbar elements. It handles the
sizing of the toolbar, movement of toolbar elements, and other general toolbar functions.

The items on the toolbar must be from a set of controls specially designed to serve as toolbar items. All
of these items inherit from the ToolStripItem base class. The controls available for toolbar items are as
follows:

Control Description

ToolStripButton Replicates the functionality of a regular Button for a toolbar

ToolStripLabel Replicates the functionality of a regular Label for a toolbar

ToolStripSeparator A visual toolbar element that displays a vertical bar to separate other
groups of elements (no user interaction)

ToolStripComboBox Replicates the functionality of a regular ComboBox for a toolbar. This
item must be contained within a ToolStripControlHost (see below).

ToolStripTextBox Replicates the functionality of a regular TextBox for a toolbar. This
item must be contained within a ToolStripControlHost (see below).

ToolStripControlHost A hosting container for other controls that reside on a ToolStrip. It
can host any of the following controls: ToolStripComboBox,
ToolStripTextBox, other Windows Forms controls, or user controls.

ToolStripDropDownItem A hosting container for toolbar elements that feature drop-down
functionality. It can host a ToolStripMenuItem, a
ToolStripSplitButton, or a ToolStripDropDownButton.

ToolStripDropDownButton A button that supports drop-down functionality. Clicking the button
shows a list of options from which the user must select the one
desired. This item is used when the user needs to select from a group
of options, none of which is used a large majority of the time.

ToolStripSplitButton A combination of a regular button and a drop-down button. This
item is often used when there is a frequently used option to click, but
you also need to offer users other options that are less frequently
used.

ToolStripMenuItem A selectable option displayed on a menu or context menu. This item
is typically used with the menu controls that inherit from the
ToolStrip, discussed later in this chapter in the section ‘‘Menus.’’

Note that almost any control can be hosted on a toolbar using the ToolStripControlHost. However, for
buttons, text boxes, labels, and combo boxes, it is much easier to use the ToolStrip version instead of the
standard version.

Creating a ToolStrip and Adding Toolbar Elements
Try an example to see how to build a toolbar using the ToolStrip control. Create a new Windows appli-
cation. Add a ToolStrip control to the blank Form1 that is included with the new project. Make the form
about twice its default width so that you have plenty of room to see the ToolStrip as you work on it.

679

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 680

Chapter 15: Windows Forms

The ToolStrip is positioned at the top of the form by default. It does not contain any elements, although
if you highlight the ToolStrip control in the component tray, a ‘‘menu designer’’ will appear in the
ToolStrip.

The easiest way to add multiple elements to the ToolStrip is to use the designer dialog for the ToolStrip.
Highlight the ToolStrip in the component tray and click the button in the Properties window for the
Items property. You’ll see a designer dialog like the one shown in Figure 15-22.

Figure 15-22

The drop-down in the upper-left corner contains the different types of items that can be placed
on the toolbar. The names in the drop-down are the same as the names in the table of controls except that
the ‘‘Toolstrip’’ prefix is not present. Add one each of the following types, with the setting
specified:

❑ Button — Set the Text property to Go. Set the DisplayStyle property to Text.

❑ ComboBox — Leave the Text property blank. Set DropDownStyle to DropDownList. Open the
Items dialog and add the names of some colors.

❑ SplitButton — Set the Text property to Options. Set the Display property to Text.

❑ TextBox — Leave the Text property blank.

Click OK. The ToolStrip will look like the one shown in Figure 15-23.

You can now handle events on any of these toolbar elements the same way you would any other controls.
You can double-click to get a Click event routine or access the event routines through the drop-downs
in the Code Editor.

To make the Toolstrip more dynamic, it must be embedded in a ToolStripContainer. You can do that
manually by dragging one over and putting the Toolstrip in it, but the easy way to do it is to click the
smart tag on the Toolstrip and then select Embed in ToolStripContainer. This causes a
ToolStripContainer to appear on your form. Set the Dock property for the ToolStripContainer to
Fill and it will provide a surface for the Toolstrip that includes all four edges of the form.

680

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 681

Chapter 15: Windows Forms

Run your program. Using the mouse, grab the dotted handle on the far left edge of the toolbar. If you
drag this to the right, then the toolbar will be repositioned. If you drag it to other positions on the form,
then the entire toolbar will dock to different edges of the form.

Figure 15-23

Allowing the User to Move Toolbar Elements
By default, the AllowItemReorder property of the ToolStrip is set to False. If you change that to True,
then the elements on the toolbar can be moved around in relation to one another (reordered) at runtime.

Change the AllowItemReorder property to True for the ToolStrip and run your program again. Hold
down the Alt key and drag elements on the toolbar around. They will assume new positions on the
toolbar when you drop them.

Creating a Standard Set of Toolbar Elements
If you need a toolbar that has the typical visual elements for cut, copy, paste, and so on, it is not necessary
to create the elements. The designer will do it for you.

Create a new form in your project and drag a ToolStrip onto it. As before, it will be positioned at the
top and will not contain any elements. With the ToolStrip highlighted in the component tray, click the
Item property. Below the properties in the Properties window, a link named Insert Standard Items will
appear. Click that link; elements will be inserted into the ToolStrip, making it look like the one shown
in Figure 15-24.

Figure 15-24

Menus
Menus are added to a form in Windows Forms 2.0 by dragging controls called MenuStrip or
ContextMenuStrip onto your form. MenuStrip implements a standard Windows-style menu at the top
of the form. ContextMenuStrip allows a pop-up menu with a right mouse button click.

These controls are actually subclasses of the ToolStrip, so much of the information you learned earlier
in this chapter about working with the ToolStrip also applies to the MenuStrip and ContextMenuStrip.
When dragged onto the form, these controls appear in the component tray just as the ToolStrip does,
and you access the designer for these controls the same way you do for the ToolStrip. However, because

681

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 682

Chapter 15: Windows Forms

these are menus, the most common way to add items is to type them directly into the menu designer that
appears when the control is highlighted.

The menu designer is extremely intuitive — the menu appears on your form just as it would at runtime,
and you simply fill in the menu items you need. Each item can be renamed, and each can have a Click
event associated with it.

Adding Standard Items to a Menu
If your form’s menu needs to have the standard top-level options (File, Edit, and so on) and the typical
options under these items, then you can have all these usual options inserted for you automatically.

To see this capability in action, drag a MenuStrip to a form and then click the smart tag (the right arrow
at the right edge) for the MenuStrip to bring up the designer dialog. Click the Insert Standard Items link
at the bottom of the dialog.

Icons and Checkmarks for Menu Items
Each menu item has an Image property. Setting this property to an image causes the image to appear
on the left side of the text for the menu option. You can see this property in use by looking at the stan-
dard items inserted in the preceding example. The File ➪ Save option has an icon of a diskette, which is
produced by setting the image property of that item.

Items can also have check marks beside them. This is done by changing the Checked property of the item
to True. You can do this at design time or runtime, enabling you to manipulate the check marks on menus
as necessary.

Context Menus
To implement a context menu for a form or any control on a form, drag a ContextMenuStrip to the form
and add the menu items. Items are added and changed the same way as they are with the MenuStrip.

To hook a context menu to a control, set the control’s ContextMenuStrip property to the
ContextMenuStrip menu control you want to use. Then, when your program runs and you right-click in
the control, the context menu will pop up.

Dynamically Manipulating Menus at Runtime
Menus can be adjusted at runtime using code. Context menus, for instance, may need to vary depending
on the state of your form. The following walk-through shows how to add a new menu item to a context
menu and how to clear the menu items.

Create a new Windows application. On the blank Form1 for the project, drag over a MenuStrip control.
Using the menu designer, type in a top-level menu option of File. Under that option, type in options for
Open and Save.

Now place a button on the form. Double-click the button to get its Click event, and place the following
code into the event:

Dim NewItem As New ToolStripMenuItem
NewItem.Text = "Save As"
’ Set any other properties of the menu item you like.

682

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 683

Chapter 15: Windows Forms

FileToolStripMenuItem.DropDownItems.Add(NewItem)
AddHandler NewItem.Click, _

AddressOf Me.NewMenuItem_Click

Add the event handler referenced in this code at the bottom of the form’s code:

Private Sub NewMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

MessageBox.Show("New menu item clicked!")
End Sub

If you now run the program and look at the menu, it will only have File and Save options. Clicking the
button will cause a new Save As item to be added to the menu, and it will be hooked to the event routine
called NewMenuItem_Click.

Common Dialogs
Windows Forms provides you with seven common dialog controls. Each control opens a predefined form
that is identical to the one used by the operating system.

These dialogs cannot be shown modeless. They have a ShowDialog method to show them modally. That
method returns one of the standard DialogResult values, as discussed earlier in this chapter.

OpenFileDialog and SaveFileDialog
These two controls open the standard dialog control that enables users to select files on the system. They
are quite similar except for the buttons and labels that appear on the actual dialog box when it is shown
to the user. Each prompts the user for a file on the system by allowing the user to browse the files and
folders available.

Use the following properties to set up the dialog boxes:

Property Comments

InitialDirectory Defines the initial location that is displayed when the dialog opens, e.g.,
OpenFileDialog1.InitialDirectory = "C:\Program Files"

Filter String that defines the Files of Type list. Separate items using the pipe character.
Items are entered in pairs; the first of each pair is the description of the file type,
and the second half is the file wildcard, e.g., OpenFileDialog1.Filter = "All
Files$|*.* |Text Files|*.txt|Rich Text Files|*.rtf"

FilterIndex Integer that specifies the default filter item to use when the dialog box opens.
For example, with the preceding filter used, defaults to text files as follows:
OpenFileDialog1.FilterIndex = 2

RestoreDirectory Boolean value that, when True, forces the system’s default directory to be
restored to the location it was in when the dialog box was first opened. This is
False by default.

683

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 684

Chapter 15: Windows Forms

Property Comments

Filename Holds the full name of the file that the user selected, including the path

ShowDialog Displays the dialog

The following code opens the standard dialog box, asking the user to select a file that currently exists on
the system, and simply displays the choice in a message box upon return:

OpenFileDialog1.InitialDirectory = "C:\"
OpenFileDialog1.Filter = "Text files|*.txt|All files|*.*"
OpenFileDialog1.FilterIndex = 1
OpenFileDialog1.RestoreDirectory = True
If OpenFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

MessageBox.Show("You selected """ & OpenFileDialog1.FileName & """")
End If

ColorDialog Control
As the name implies, this control gives the user a dialog box from which to select a color. Use the follow-
ing properties to set up the dialog boxes as follows:

ColorDialog1.Color = TextBox1.BackColor
ColorDialog1.AllowFullOpen = True
If ColorDialog1.ShowDialog()= Windows.Forms.DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color
End If

Property Comments

Color The System.Drawing.Color that the user selected. You can also use this to set the
initial color selected when the user opens the dialog.

AllowFullOpen Boolean value that, when True, allows the user to select any color. If False, then the
user is restricted to the set of default colors.

ShowDialog Displays the dialog

FontDialog Control
This control displays the standard dialog box, allowing a user to select a font. Use the following proper-
ties to set up the dialog boxes:

Property Comments

Font The System.Drawing.Font that the user selected. Also used to set the initial font.

ShowEffects Boolean value that, when True, makes the dialog box display the text effects
options of underline and strikeout.

684

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 685

Chapter 15: Windows Forms

Property Comments

ShowColor Boolean value that, when True, makes the dialog box display the combo box of
the font colors. The ShowEffects property must be True for this to have an effect.

FixedPitchOnly Boolean value that, when True, limits the list of font options to only those that
have a fixed pitch (such as Courier or Lucida console).

ShowDialog Displays the dialog

Using these properties looks like this:

FontDialog1.Font = TextBox1.Font
FontDialog1.ShowColor = True
FontDialog1.ShowEffects = True
FontDialog1.FixedPitchOnly = False
If FontDialog1.ShowDialog()= Windows.Forms.DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

Printer Dialog Controls
There are three more common dialog controls: PrintDialog, PrintPreviewDialog, and PageSetup-
Dialog. They can all be used to control the output of a file to the printer, and you can use these in con-
junction with the PrintDocument component to run and control print jobs.

Drag and Drop
Implementing a drag-and-drop operation in the .NET Framework is accomplished by a short sequence
of events. Typically, it begins in a MouseDown event of one control, and always ends with the DragDrop
event of another.

To demonstrate the process, begin with a new Windows application. Add two list boxes to your form,
and add three items to the first using the Items Property Designer. This application enables you to drag
the items from one list box into the other.

The first step in making drag and drop work is specifying whether or not a control will accept a drop. By
default, all controls reject such an act and do not respond to any attempt by the user to drop something
onto them. In this case, set the AllowDrop property of the second list box (the one without the items
added) to True.

The next item of business is to invoke the drag-and-drop operation. This is typically done in the
MouseDown event of the control containing the data you want to drag (although you’re not restricted
to it). The DoDragDrop method is used to start the operation. This method defines the data that will be
dragged and the type of dragging that is allowed. Here, you’ll drag the text of the selected list box item,
and permit both a move and a copy of the data to occur.

685

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 686

Chapter 15: Windows Forms

Switch over to the code window of your form and add the following code to the MouseDown event of
ListBox1:

Private Sub ListBox1_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles ListBox1.MouseDown

Dim DragDropResult As DragDropEffects
If e.Button = MouseButtons.Left Then

DragDropResult = ListBox1.DoDragDrop(_
ListBox1.Items(ListBox1.SelectedIndex), _
DragDropEffects.Move Or DragDropEffects.Copy)

’ Leave some room here to check the result of the operation
’ (You’ll fill it in next).

End If
End Sub

Notice the comment about leaving room to check the result of the operation. You’ll fill that in shortly.
For now, calling the DoDragDrop method has gotten you started.

The next step involves the recipient of the data — in this case, ListBox2. Two events here are important
to monitor: DragEnter and DragDrop.

As you can guess by the name, the DragEnter event occurs when the user first moves over the recipient
control. The DragEnter event has a parameter of type DragEventArgs that contains an Effect property
and a KeyState property.

The Effect property enables you to set the display of the drop icon for the user to indicate whether
a move or a copy occurs when the mouse button is released. The KeyState property enables you to
determine the state of the Ctrl, Alt, and Shift keys. It is a Windows standard that when both a move or
a copy can occur, a user is to indicate the copy action by holding down the Ctrl key. Therefore, in this
event, you check the KeyState property and use it to determine how to set the Effect property.

Add the following code to the DragEnter event of ListBox2:

Private Sub ListBox2_DragEnter(ByVal sender As Object, _
ByVal e As DragEventArgs) _
Handles ListBox2.DragOver

If e.KeyState = 9 Then ’ Control key
e.Effect = DragDropEffects.Copy

Else
e.Effect = DragDropEffects.Move

End If
End Sub

Note that you can also use the DragOver event if you want, but it will fire continuously as the mouse
moves over the target control. In this situation, you only need to trap the initial entry of the mouse into
the control.

686

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 687

Chapter 15: Windows Forms

The final step in the operation occurs when the user lets go of the mouse button to drop the data at its
destination. This is captured by the DragDrop event. The parameter contains a property holding the data
that is being dragged. It’s now a simple process of placing it into the recipient control as follows:

Private Sub ListBox2_DragDrop(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DragEventArgs) _
Handles ListBox2.DragDrop

ListBox2.Items.Add(e.Data.GetData(DataFormats.Text))
End Sub

One last step: You can’t forget to manipulate ListBox1 if the drag and drop was a move. Here’s where
you’ll fill in the hole you left in the MouseDown event of ListBox1. Once the DragDrop has occurred, the
initial call that invoked the procedure returns a result indicating what ultimately happened. Go back to
the ListBox1_MouseDown event and enhance it to remove the item from Listbox1 if it was moved (and
not simply copied):

Private Sub ListBox1_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles ListBox1.MouseDown

Dim DragDropResult As DragDropEffects

If e.Button = MouseButtons.Left Then
DragDropResult = ListBox1.DoDragDrop(_

ListBox1.Items(ListBox1.SelectedIndex), _
DragDropEffects.Move Or DragDropEffects.Copy)

’ If operation is a move (and not a copy), then remove then
’ remove the item from the first list box.
If DragDropResult = DragDropEffects.Move Then
ListBox1.Items.RemoveAt(ListBox1.SelectedIndex)

End If

End If
End Sub

When you’re done, run your application and drag the items from Listbox1 into Listbox2. Try a copy by
holding down the Ctrl key when you do it. The screen shot in Figure 15-25 shows the result after Item1
has been moved and Item3 has been copied a few times.

Figure 15-25

687

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 688

Chapter 15: Windows Forms

Summary of Standard Windows.Forms Controls
Windows Forms, of course, contains most of the controls that you are accustomed to using in pre-.NET
versions of Visual Basic. This section lists the basic controls that are generally quite intuitive and don’t
warrant a full example to explain. Where appropriate, the important differences from pre-.NET versions
of Visual Basic are noted.

❑ Button

❑ Known as CommandButton in VB6 and earlier

❑ Now uses the Text property instead of Caption

❑ Can now display both an icon and text simultaneously. The image is set using the Image
property (instead of Picture). The image position can be set using the ImageAlign
property (left, right, center, and so on).

❑ Text on the button can be aligned using the TextAlign property.

❑ Can now have different appearances using the FlatStyle property

❑ No longer has the Default and Cancel properties. These are now managed by the form
itself using the AcceptButton and CancelButton properties.

❑ CheckBox

❑ Now uses the Text property instead of Caption

❑ Can now appear as a toggle button using the Appearance property

❑ Check box and text can now be positioned within the defined area using the CheckAlign
and TextAlign properties

❑ Uses the CheckState property instead of Value

❑ Has a FlatStyle property controlling the appearance of the check box

❑ CheckedListBox

❑ A list box that has check boxes beside each item (see Listbox)

❑ ComboBox

❑ Like the new ListBox control, it can now hold a collection of objects instead of an array of
strings (see ListBox).

❑ Now has a MaxDropDownItems property that specifies how many items to display when the
list opens

❑ DateTimePicker

❑ Formerly known as a DTPicker in VB6 and earlier

❑ DomainUpDown

❑ A simple one-line version of a list box

❑ Can hold a collection of objects and will display the ToString result of an item in the
collection

❑ Can wrap around the list to give a continuous scrolling effect using the Wrap property

688

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 689

Chapter 15: Windows Forms

❑ HScrollBar

❑ Unchanged

❑ ImageList

❑ Same as previous versions, but with an improved window for managing the images within
the list. The MaskColor property is now TransparentColor.

❑ Label

❑ Essentially the same as previous versions

❑ Caption is now Text

❑ Can now display an image and text

❑ Has automatic sizing capability. Set the AutoSize property to True for automatic horizontal
sizing (this is the default value of the property).

❑ The TextAlign property is especially useful. The text of a label beside a text box in VB6
would always be a few pixels higher than the text in the text box. Now, by setting the
label’s TextAlign property so that the vertical alignment is Middle, this problem is
solved.

❑ Can now specify whether a mnemonic should be interpreted (if UseMnemonic is True, then
the first ampersand (&) in the Text property specifies underlining the following character
and having it react to the Alt key shortcut, placing the focus on the next control in the tab
order that can hold focus, such as a text box).

❑ LinkLabel

❑ Identical to a label, but behaves like a hyperlink with extra properties, such as
LinkBehavior (for example, HoverUnderline), LinkColor, and ActiveLinkColor

❑ ListBox

❑ A list box can now hold a collection of objects, instead of an array of strings. Use the
DisplayMember property to specify what property of the objects to display in the list, and
the ValueMember property to specify what property of the objects to use as the values of
the list items. (This is similar to the ItemData array from previous versions.) For example, a
combo box could store a collection of employee objects, and display to the user the Name
property of each, as well as retrieve the EmployeeId as the value of the item currently
selected.

❑ Can no longer be set to display check boxes using a Style property. Use the
CheckedListBox control instead.

❑ ListView

❑ Same functionality as the VB6 version but with an improved Property Editor that enables
you to define the list view item collection and its sub-items at design time

❑ Sub-items can have their own font display properties.

❑ New HeaderStyle property instead of HideColumnHeaders

❑ MonthCalendar

❑ Formerly known as MonthView

689

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 690

Chapter 15: Windows Forms

❑ NotifyIcon

❑ Gives a form an icon in the system tray

❑ Tooltip of the icon is set by the Text property of the control

❑ Pop-up menus are set using a ContextMenu control (see the ‘‘Menus’’ section earlier in
chapter).

❑ NumericUpDown

❑ A single-line text box that displays a number and up/down buttons that increment
/decrement the number when clicked

❑ PictureBox

❑ Image property defines the graphic to display instead of Picture

❑ Use the SizeMode property to autostretch or center the picture.

❑ ProgressBar

❑ Now has a Step method that automatically increments the value of the progress bar by the
amount defined in the Step property

❑ RadioButton

❑ Formerly known as OptionButton

❑ Use the Checked property to specify value (formerly Value).

❑ Use CheckAlign and TextAlign to specify where the radio button and text appear in
relation to the area of the control.

❑ RichTextBox

❑ Has properties not available in VB6, such as ZoomFactor, WordWrap, DetectURLs, and
AutoWordSelection

❑ Use the Lines array to get or set specific individual lines of the control’s text.

❑ TabControl

❑ Formerly known as the TabStrip control

❑ Now has a TabPages collection of TabPage objects. A TabPage object is a subclass of the
Panel control specialized for use in the TabControl.

❑ Uses the Appearance property to display the tabs as buttons, if desired (formerly the Style
property of the TabStrip control)

❑ TextBox

❑ Now has a CharacterCasing property that can automatically adjust the text entered into
uppercase or lowercase

❑ ReadOnly property now used to prevent the text from being edited. This used to be the
Locked property. (The Locked property now determines whether the control can be moved
or resized.)

❑ Now has Cut, Copy, Paste, Undo, and ClearUndo methods

690

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 691

Chapter 15: Windows Forms

❑ Timer

❑ This is essentially unchanged from previous versions.

❑ The timer is now disabled by default.

❑ You cannot set the interval to zero to disable it.

❑ TrackBar

❑ Formerly known as the Slider control in VB6, it is essentially unchanged.

❑ TreeView

❑ Same functionality as in VB6 but with a new Node Tree Editor that enables you to visually
design the tree

❑ VScrollBar

❑ Unchanged

Retired Controls
The following list outlines the controls from VB6 that you won’t find in Windows Forms and how to
reproduce their functionality:

❑ Spinner

❑ Use the DomainUpDown or NumericUpDown control.

❑ Line and Shape

❑ Windows Forms has no Line or Shape control, nor any immediate equivalent. A ‘‘cheap’’
way of reproducing a horizontal or vertical line is to use a label control. Set its background
color to that of the line you want, and then set either the Size.Height or Size.Width
value to 1.

❑ Diagonal lines and shapes must be drawn using GDI+ graphics methods.

❑ DirListBox, FileListBox, DriveListBox

❑ You would typically use these controls to create a file system browser similar to
Windows Explorer. Windows Forms has no equivalent controls. You can use the
OpenFileDialog and SaveFileDialog (see the previous section) to meet your needs in
most circumstances.

❑ Image

❑ Use the PictureBox control.

Handling Groups of Related Controls
Occasionally it is necessary for a set of controls to be treated as a group. For example, a set of RadioButton
controls might be related, and you might want to channel the Click event for all the controls in the group
to the same event handler.

691

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 692

Chapter 15: Windows Forms

In VB6 and earlier, that functionality required a control array, but Windows Forms 2.0 does not support
control arrays. However, .NET offers greatly enhanced control over event handling, and it’s easy to route
events from multiple controls to a single handler.

To have a single method handle multiple events from controls, you must attach those controls’ events to
the handler. You can do that with multiple controls specified in a Handles clause or by using AddHandler
for each control. Unless controls are being added to your form on-the-fly, using additional controls in the
Handles clause is usually preferable. Here is an example of a declaration for a Click event that handles
three RadioButton controls:

Private Sub RadioButton3_Click(ByVal sender As Object, _
ByVal e As EventArgs) _
Handles RadioButton1.Click, _
RadioButton2.Click, RadioButton3.Click

There is no Index property as in old-style control arrays in VB6. Instead, simply use the Sender parameter
of the event handler to determine which control originated the event.

A simple example is helpful to see how to set this up. Create a new Windows application and set the
Text property of the blank Form1 to Add Dynamic Control Demo. Then add two buttons to the form, as
shown in Figure 15-26.

Figure 15-26

Double-click Button1 to switch over to the code that handles the Button1.Click event. To make this
method respond to the Button2.Click event as well, simply add the Button2.Click event handler to
the end of the Handles list, and then add some simple code to display a message box indicating what
button triggered the event:

’ Note the change in the method name from Button1_Click. Since
’ two objects are hooked up, it’s a good idea to avoid having the
’ method specifically named to a single object.
Private Sub Button_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles Button1.Click, Button2.Click

Dim buttonClicked As Button
buttonClicked = CType(sender, Button)
’ Tell the world what button was clicked
MessageBox.Show("You clicked " & buttonClicked.Text)

End Sub

692

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 693

Chapter 15: Windows Forms

Run the program and click the two buttons. Each one will trigger the event and display a message box
with the appropriate text from the button that was clicked.

Adding Controls at Runtime
Another capability that control arrays provided in VB6 and earlier was making it easy to add controls
to a form at runtime. That’s also easy to do in Windows Forms, even without control arrays. Here is
an example that enhances the preceding program to add a third button dynamically at runtime. Add
another button to your form that will trigger the addition of Button3, as shown in Figure 15-27.

Figure 15-27

Name the new button AddNewButton and add the following code to handle its Click event:

Private Sub AddNewButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles addNewButton.Click

Dim newButton As Button

’ Create the new control
newButton = New Button()

’ Set it up on the form
newButton.Location = New System.Drawing.Point(184, 12)
newButton.Size = New System.Drawing.Size(75, 23)
newButton.Text = "Button3"

’ Add it to the form’s controls collection
Me.Controls.Add(newButton)

’ Hook up the event handler.
AddHandler newButton.Click, AddressOf Me.Button_Click

End Sub

When the AddNewButton button is clicked, the code creates a new button, sets its size and position, and
then does two essential things. First, it adds the button to the form’s controls collection; second, it con-
nects the Click event of the button to the method that handles it.

With this done, run the program and click the AddNewButton button. Button3 will appear. Then, sim-
ply click Button3 to prove that the Click event is being handled. You should get the result shown in
Figure 15-28.

693

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 694

Chapter 15: Windows Forms

Figure 15-28

Other Handy Programming Tips
Here are some other handy programming tips for using Windows Forms:

❑ Switch the focus to a control — Use the .Focus method. To set the focus to TextBox1, for
example, use the following code:

TextBox1.Focus()

❑ Quickly determine the container control or parent form — With the use of group boxes and
panels, controls are often contained many times. You can now use the FindForm method to
immediately get a reference to the form. Use the GetContainerControl method to access the
immediate parent of a control.

❑ Traverse the tab order — Use the GetNextControl method of any control to get a reference to
the next control on the form in the tab order.

❑ Convert client coordinates to screen coordinates (and back) — Want to know where a control
is in screen coordinates? Use the PointToScreen method. Convert back using the PointToClient
method.

❑ Change the z-order of controls at runtime — Controls now have both BringToFront and
SendToBack methods.

❑ Locate the mouse pointer — The control class now exposes a MousePosition property that
returns the location of the mouse in screen coordinates.

❑ Manage child controls — Container controls, such as a group box or panel, can use the
HasChildren property and Controls collection to determine the existence of, and direct refer-
ences to, child controls, respectively.

❑ Maximize, minimize, or restore a form — Use the form’s WindowState property.

Summary
Windows Forms is still an excellent technology for the development of rich client and smart client inter-
faces. While Windows Presentation Foundation will experience more innovation in coming generations
of the .NET platform, at present it’s significantly easier to develop on Windows Forms. The maturity of
the designer and control set in Windows Forms makes it a good choice for many client-based applica-
tions, and Windows Forms will be supported indefinitely on the .NET platform.

694

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 695

Chapter 15: Windows Forms

Becoming a capable Windows Forms developer requires becoming familiar with the controls that are
available, including their properties, events, and methods. This takes time. If you are inexperienced with
form-based interfaces, you can expend a fair amount of time using the reference documentation to find
the control capabilities you need. However, that investment is worthwhile, both because it allows you
to be a proficient Windows Forms developer and also because many of the concepts will carry over
into WPF.

Many professional Windows Forms developers need to go beyond just creating forms and laying out
controls. Complex applications often also require creating new controls or enhancing built-in controls.
Accordingly, the next chapter discusses how to create and modify Windows Forms controls, along with
some additional advanced Windows Forms topics.

695

Evjen-91361 c15.tex V1 - 04/01/2008 4:19pm Page 696

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 697

Windows Forms
Advanced Features

The previous chapter discussed the basics of Windows Forms 2.0. These capabilities are sufficient
for straightforward user interfaces for systems written in VB 2008, along with the built-in capabili-
ties of forms and controls available in Windows Forms 2.0.

However, as applications become larger and more complex, it becomes more important to use the
advanced capabilities of the .NET environment to better structure the application. Poorly struc-
tured large systems tend to have redundant code. Repeated code patterns end up being used (in
slightly different variations) in many, many places in an application, which has numerous bad
side effects — longer development time, less reliability, more difficult debugging and testing, and
tougher maintenance.

Examples of needs that often result in repeated code include ensuring that fields are entered by
the user, that the fields are formatted correctly, and that null fields in the database are handled
correctly. Proper object-oriented design can encapsulate such functionality, making it unnecessary
to use repeated code. Using the full object-oriented capabilities of the .NET environment, plus
additional capabilities specific to Windows Forms programming, you can componentize your logic,
allowing the same code to be used in numerous places in your application.

This chapter discusses techniques for componentizing code in Windows Forms applications. It is
assumed that you have already read Chapters 2 and 3 on inheritance and other object-oriented
techniques available in .NET before working with this chapter.

Packaging Logic in Visual Controls
As shown in the last chapter, Windows Forms user interfaces are based on using controls. A control
is simply a special type of .NET class (just as forms are). As a fully object-oriented programming
environment, VB 2008 gives you the capability to inherit and extend classes, and controls are no
exception. Therefore, it is possible to create new controls that extend what the built-in controls
can do.

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 698

Chapter 16: Windows Forms Advanced Features

There are four primary sources of controls for use on Windows Forms interfaces:

❑ Controls packaged with the .NET Framework (referred to in this chapter as built-in controls)

❑ Existing ActiveX controls that are imported into Windows Forms (these are briefly
discussed in Chapter 25)

❑ Third-party .NET-based controls from a software vendor

❑ Custom controls that are created for a specific purpose in a particular project or
organization

If you can build your application with controls from the first three categories, so much the better.
Using prewritten functionality that serves the purpose is generally a good idea. However, this
chapter assumes you need more than such prepackaged functionality.

If you are primarily familiar with versions of Visual Basic before the .NET era (VB6 and earlier),
you know that the only technique available then for such packaging was the UserControl class.
While UserControl is also available in Windows Forms (and is much improved), this is only one of
several techniques available for writing visual controls.

Custom Controls in Windows Forms
There are three basic techniques for creating custom Windows Forms controls in .NET, corresponding to
three different starting points. This range of options offers the flexibility to choose a technique that allows
an appropriate balance between simplicity and flexibility:

❑ You can inherit from an existing control.

❑ You can build a composite control (using the UserControl class as your starting point).

❑ You can write a control from scratch (using the very simple Control class as your starting point).

These options are in rough order of complexity, from simplest to most complex. Let’s look at each one
with a view to understanding the scenarios in which each one is useful.

Inheriting from an Existing Control
The simplest technique starts with a complete Windows Forms control that is already developed. A new
class is created that inherits the existing control. This new class has all the functionality of the base class
from which it inherits, and the new logic can be added to create additional functionality in this new
class or, indeed, to override functionality from the parent (when permitted).

Here are some typical scenarios where it might make sense to extend an existing Windows Forms control:

❑ A text box used for entry of American-style dates

❑ A self-loading list box, combo box, or data grid

❑ A Combobox control that had a mechanism to be reset to an unselected state

❑ A NumericUpDown control that generates a special event when it reaches 80 percent of its
maximum allowed value

698

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 699

Chapter 16: Windows Forms Advanced Features

Each of these scenarios starts with an existing control that simply needs some additional functionality.
The more often such functionality is needed in your project, the more sense it makes to package it in a
custom control. If a text box that needs special validation or editing will be used in only one place, then it
probably doesn’t make sense to create an inherited control. In that case, it’s probably sufficient to simply
add some logic in the form where the control is used to handle the control’s events and manipulate the
control’s properties and methods.

Building a Composite Control
In some cases, a single existing control does not furnish the needed functionality, but a combination of
two or more existing controls does. Here are some typical examples:

❑ A set of buttons with related logic that are always used together (such as Save, Delete, and
Cancel buttons on a file maintenance form)

❑ A set of text boxes to hold a name, address, and phone number, with the combined information
formatted and validated in a particular way

❑ A set of option buttons with a single property exposed as the chosen option

As with inherited controls, composite controls are only appropriate for situations that require the same
functionality in multiple places. If the functionality is only needed once, then simply placing the relevant
controls on the form and including appropriate logic right in the form is usually better.

Composite controls are the closest relative to VB6 UserControls, and they are sometimes referred to
as UserControls. In fact, the base class used to create composite controls is the UserControl class in
Windows Forms.

Writing a Control from Scratch
If a control needs special functionality not available in any existing control, then it can be written from
scratch to draw its own visual interface and implement its own logic. This option requires more work, but
it enables you to do just about anything within .NET and Windows Forms, including very sophisticated
user interfaces.

To write a control from scratch, it is necessary to inherit from the Control class, which provides basic
functionality such as properties for colors and size. With this basic functionality already built in, your
required development tasks include adding any specific properties and methods needed for the control,
writing rendering logic that will paint the control to the screen, and handling mouse and keyboard input
to the control.

Inheriting from an Existing Control
With this background on the options for creating custom controls, the next step is to look in depth at
the procedures used for their development. First up is creating a custom control by inheriting from an
existing control and extending it with new functionality. This is the simplest method for the creation of
new controls, and the best way to introduce generic techniques that apply to all new controls.

After you look at the general steps needed to create a custom control via inheritance, an example illus-
trates the details. It is important to understand that many of the techniques described for working with

699

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 700

Chapter 16: Windows Forms Advanced Features

a control created through inheritance also apply to the other ways that a control can be created. Whether
inheriting from the Control class, the UserControl class, or from an existing control, a control is a .NET
class. Creating properties, methods, and events, and coordinating these members with the Visual Studio
designers, is done in a similar fashion, regardless of the starting point.

Process Overview
Here are the general stages involved in creating a custom control via inheritance from an existing control.
This is not a step-by-step recipe, just an overview. A subsequent example provides more detail on the
specific steps, but those steps follow these basic stages:

1. Create or open a Windows Control Library project and add a new custom control to the
project. The class that is created will inherit from the System.Windows.Forms.Control base
class. The line that specifies the inherited class must be changed to inherit from the control
that is being used as the starting point.

2. The class file gets new logic added as necessary to add new functionality. Then the project is
compiled with a Build operation in order to create a DLL containing the new control’s code.

3. The control is now ready to be used. It can be placed in the Windows Forms Toolbox with
the Choose Items option in Visual Studio 2008. From that point forward, it can be dragged
onto forms like any other control.

Stage 2, of course, is where the effort lies. New logic for the custom control may include new properties,
methods, and events. It may also include intercepting events for the base control and taking special
actions as necessary. These tasks are done with standard .NET coding techniques.

Several coding techniques are specific to developing Windows Forms controls, such as using particular
.NET attributes. While our example includes adding routine properties and events, we focus on these
special techniques for programming controls.

Writing Code for an Inherited Control
This section discusses how to place new logic in an inherited control, with special emphasis on techniques
that go beyond basic object orientation. A detailed example using the techniques follows this section.

Creating a Property for a Custom Control
Creating a property for a custom control is just like creating a property for any other class. It is neces-
sary to write a property procedure, and to store the value for the property somewhere, most often in a
module-level variable, which is often called a backing field.

Properties typically need a default value — that is, a value the property takes on automatically when the
control is instantiated. Typically, this means setting the backing field that holds the property value to
some initial value. That can be done when the backing field is declared, or it can be done in the
constructor for the control.

Here’s the code for a typical simple property for a custom control:

Dim _nMaxItemsSelected As Integer = 10
Public Property MaxItemsSelected() As Integer

700

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 701

Chapter 16: Windows Forms Advanced Features

Get
Return _nMaxItemsSelected

End Get
Set(ByVal Value As Integer)
If Value < 0 Then

Throw New ArgumentException("Property value cannot be negative")
Else

_nMaxItemsSelected = Value
End If

End Set
End Property

After a property is created for a control, it automatically shows up in the Properties window for the
control. If your Properties window is arranged alphabetically, you will see it in the list. If your window
is arranged by category, then the new property will appear in the Misc category. However, you can use
some additional capabilities to make the property work better with the designers and the Properties
window in Visual Studio.

Coordinating with the Visual Studio IDE
Controls are normally dragged onto a visual design surface, which is managed by the Visual Studio IDE.
In order for your control to work effectively with the IDE, it must be able to indicate the default value of
its properties. The IDE needs the default value of a property for two important capabilities:

❑ To reset the value of the property (done when a user right-clicks the property in the Properties
window and selects Reset)

❑ To determine whether to set the property in designer-generated code. A property that is at its
default value does not need to be explicitly set in the designer-generated code.

There are two ways for your control to work with the IDE to accomplish these tasks. For properties
that take simple values, such as integers, Booleans, floating-point numbers, or strings, .NET provides
an attribute. For properties that take complex types, such as structures, enumerated types, or object
references, two methods need to be implemented.

Attributes
You can learn more about attributes in Chapter 4, but a short summary of important points is included
here. Attributes reside in namespaces, just as components do. The attributes used in this chapter are in the
System.ComponentModel namespace. To use attributes, the project must have a reference to the assem-
bly containing the namespace for the attributes. For System.ComponentModel, that’s no problem — the
project automatically has the reference.

However, the project will not automatically have an Imports statement for that namespace. Attributes
could be referred to with a full type name, but that’s a bit clumsy. To make it easy to refer to the attributes
in code, put the following line at the beginning of all modules that need to use the attributes discussed in
this chapter:

Imports System.ComponentModel

That way, an attribute can be referred to with just its name. For example, the DefaultValue attribute,
discussed in detail below, can be declared like this:

701

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 702

Chapter 16: Windows Forms Advanced Features

< DefaultValue(4)> Public Property MyProperty() As Integer

All the examples in this chapter assume that the Imports statement has been placed at the top of the
class, so all attributes are referenced by their short name. If you get a compile error on an attribute, then
it’s likely that you’ve omitted that line.

An attribute for a property must be on the same line of code as the property declaration. Of course, line
continuation characters can be used so that an attribute is on a separate physical line but still on the same
logical line in the program. For example, the last example could also be written as follows:

< DefaultValue(4)> _
Public Property MyProperty() As Integer

Setting a Default Value with an Attribute
The .NET Framework contains many attributes. Most are used to tag classes, properties, and methods
with metadata — that is, information that some other entity, such as a compiler or the Visual Studio IDE,
might need to know.

For example, the DefaultValue attribute tells the Visual Studio IDE the default value of a property. We
can change the preceding code for a simple property to include a DefaultValue attribute. Here are the
first few lines, showing the change to the property declaration that applies the attribute:

Dim mnMaxItemsSelected As Integer = 10

<DefaultValue(10)> Public Property MaxItemsSelected() As Integer

Get
Return mnMaxItemsSelected

...

Including the DefaultValue attribute enables the Properties window to reset the value of the property
back to the default value. That is, if you right-click the property in the Properties window and select Reset
from the pop-up context menu, the value of the property returns to 10 from any other value to which it
was set.

Another effect of the attribute can be seen in the code generated by the visual designer. If the preceding
property is set to any value that is not the default, a line of code appears in the designer-generated code
to set the property value. This is called serializing the property.

For example, if the value of MaxItemsSelected is set to 5, then a line of code something like this appears
in the designer-generated code:

MyControl.MaxItemsSelected = 5

If the property has the default value of 10 (because it was never changed or it was reset to 10), then the
line to set the property value is not present in the designer-generated code. That is, the property does not
need to be serialized in code if the value is at the default.

To see serialized code, you need to look in the partial class that holds the Windows Forms designer-
generated code. This partial class is not visible in the Solution Explorer by default. To see it, press the
Show All Files button in the Solution Explorer.

702

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 703

Chapter 16: Windows Forms Advanced Features

Alternate Techniques for Working with the IDE
The last sample property returned an Integer. Some custom properties return more complex types, such
as structures, enumerated types, or object references. These properties cannot use a simple DefaultValue
attribute to take care of resetting and serializing the property. An alternate technique is needed.

For complex types, designers check to see whether a property needs to be serialized by using a method
on the control containing the property. The method returns a Boolean value that indicates whether a
property needs to be serialized (True if it does, False if it does not).

For the following examples, suppose a control has a property named MyColor, which is of type Color.
The Color type is a structure in Windows Forms, so the normal DefaultValue attribute can’t be used
with it. Further suppose the backing variable for the property is named _MyColor.

In this case, the method to check serialization would be called ShouldSerializeMyColor. It would
typically look something like the following code:

Public Function ShouldSerializeMyColor() As Boolean
If Color.Equals(_MyColor, Color.Red) Then
Return False

Else
Return True

End If
End Function

This is a good example of why a DefaultValue attribute can’t work for all types. There is no equality
operator for the Color type, so you have to write appropriate code to perform the check to determine
whether the current value of the MyColor property is the default. In this case, that’s done with the Equals
method of the Color type.

If a property in a custom control does not have a related ShouldSerializeXXX method or a DefaultValue
attribute, then the property is always serialized. Code for setting the property’s value is always included
by the designer in the generated code for a form, so it’s a good idea to always include either a
ShouldSerializeXXX method or a DefaultValue attribute for every new property created for a control.

Providing a Reset Method for a Control Property
The ShouldSerialize method only takes care of telling the IDE whether to serialize the property value.
Properties that require a ShouldSerialize method also need a way to reset a property’s value to the
default. This is done by providing a special reset method. In the case of the MyColor property, the reset
method is named ResetMyColor. It would look something like the following:

Public Sub ResetMyColor()
_MyColor = Color.Red

End Sub

Other Useful Attributes
DefaultValue is not the only attribute that is useful for properties. The Description attribute is also
one that should be used consistently. It contains a text description of the property, and that description

703

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 704

Chapter 16: Windows Forms Advanced Features

shows up at the bottom of the Properties windows when a property is selected. To include a Description
attribute, the declaration of the preceding property would appear as follows:

<DefaultValue(100), _
Description("This is a pithy description of my property")> _
Public Property MyProperty() As Integer

Such a property will look like Figure 16-1 when highlighted in the Properties window.

Figure 16-1

Another attribute you will sometimes need is the Browsable attribute. As mentioned earlier, a new prop-
erty appears in the Properties window automatically. In some cases, you may need to create a property
for a control that you do not want to show up in the Properties window. In that case, you use a Browsable
attribute set to False. Here is code similar to the last, making a property nonbrowsable in the Properties
window:

<Browsable(False)> _
Public Property MyProperty() As Integer

One additional attribute you may want to use regularly is the Category attribute. Properties can be
grouped by category in the Properties window by pressing a button at the top of the window. Standard
categories include Behavior, Appearance, and so on. You can have your property appear in any of those
categories, or you can make up a new category of your own. To assign a category to a property, use code
like this:

<Category("Appearance")> _
Public Property MyProperty() As Integer

There are other attributes for control properties that are useful in specific circumstances. If you under-
stand how the common ones discussed here are used, then you can investigate additional attributes for
other purposes in the documentation.

Defining a Custom Event for the Inherited Control
Events in .NET are covered in Chapter 2. To recap, for controls, the process for creating and handling an
event includes these steps:

704

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 705

Chapter 16: Windows Forms Advanced Features

1. Declare the event in the control. The event can have any arguments that are appropriate, but
it cannot have named arguments, optional arguments, or arguments that are ParamArrays.
Though not required, normally you will want to follow the same convention as events in the
.NET Framework, which means an event declaration similar to this:

Public Event MyEvent(ByVal sender As Object, e As EventArgs)

2. Elsewhere in the control’s code, implement code to raise the event. The location and circum-
stances of this code vary depending on the nature of the event, but a typical line that raises
the preceding event looks like the following code:

RaiseEvent MyEvent(Me, New EventArgs)

3. The form that contains the control can now handle the event. The process for doing that
is the same as handling an event for a built-in control.

As the preceding example shows, the standard convention in .NET is to use two arguments for an event:
Sender, which is the object raising the event, and e, which is an object of type EventArgs or a type that
inherits from EventArgs. This is not a requirement of the syntax (you can actually use any arguments
you like when you declare your event), but it’s a consistent convention throughout the .NET Framework,
so it is used in this chapter. It is suggested that you follow this convention as well, because it will make
your controls consistent with the built-in controls in their operation.

The following example illustrates the concepts discussed. In this example, you create a new control that
contains a custom property and a custom event. The property uses several of the attributes discussed.

A CheckedListBox Limiting Selected Items
This example inherits the built-in CheckedListBox control and extends its functionality. If you are not
familiar with this control, it works just like a normal ListBox control except that selected items are
indicated with a check in a check box at the front of the item, rather than by highlighting the item.

To extend the functionality of this control, the example includes the creation of a property called
MaxItemsToSelect. This property holds a maximum value for the number of items that a user can select.
The event that fires when a user checks an item is then monitored to determine whether the maximum
has already been reached.

If selection of another item would exceed the maximum number, then the selection is prevented, and an
event is fired to let the consumer form know that the user has tried to exceed the maximum limit. The
code that handles the event in the form can then do whatever is appropriate. In this case, a message box
is used to tell the user that no more items can be selected.

The DefaultValue, Description, and Category attributes are placed on the MaxItemsToSelect property
to coordinate with the IDE.

Here is the step-by-step construction of our example:

1. Start a new Windows Control Library project in Visual Studio and name it MyControls. In
the Solution Explorer, select the UserControl1.vb file, right-click it, and delete it.

705

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 706

Chapter 16: Windows Forms Advanced Features

2. Select Project ➪ Add New Item, and select the item template called Custom Control. Name
the item LimitedCheckedListBox.

3. Click the button in the Solution Explorer to show all files for the project. Bring up the file
LimitedCheckedListBox.Designer.vb, which is found by clicking the plus sign next to
LimitedCheckedListBox.vb. (If you don’t see a plus sign next to LimitedChecked
ListBox.vb, click the Show All Files button at the top of the Solution Explorer.)

4. At the top of the LimitedCheckedListbox.Designer.vb code, look for the line that reads
Inherits System.Windows.Forms.Control.

5. Change that line to read Inherits System.Windows.Forms.CheckedListbox.

6. Add the following declarations at the top of the code (before the line declaring the class):

Imports System.ComponentModel

This enables you to utilize the attributes required from the System.ComponentModel
namespace.

7. The code for LimitedCheckedListBox.vb will contain an event for painting the control.
Since you are not using a control that draws its own surface, delete that event. (It won’t hurt
to leave it, but you don’t need it.)

8. Begin adding code specifically for this control. First, implement the MaxItemsToSelect prop-
erty. A module-level variable is needed to hold the property’s value, so insert this line just
under the class declaration line:

Private _nMaxItemsToSelect As Integer = 4

9. Create the code for the property itself. Insert the following code into the class just above the
line that says End Class:

<DefaultValue(4), Category("Behavior"), _
Description("The maximum number of items allowed to be checked")> _
Public Property MaxItemsToSelect() As Integer

Get
Return _nMaxItemsToSelect

End Get
Set(ByVal Value As Integer)
If Value < 0 Then

Throw New ArgumentException("Property value cannot be negative")
Else

_nMaxItemsToSelect = Value
End If

End Set
End Property

This code sets the default value of the MaxItemsToSelect property to 4, and sets a descrip-
tion for the property to be shown in the Properties window when the property is selected
there. It also specifies that the property should appear in the Behavior category when
properties in the Properties window are sorted by category.

706

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 707

Chapter 16: Windows Forms Advanced Features

10. Declare the event that will be fired when a user selects too many items. The event is named
MaxItemsExceeded. Just under the code for step 9, insert the following line:

Public Event MaxItemsExceeded(Sender As Object, e As EventArgs)

11. Insert code into the event routine that fires when the user clicks on an item. For the
CheckedListBox base class, this is called the ItemCheck property. Open the left-hand drop-
down box in the code window and select the option LimitedCheckedListBox Events. Then,
select the ItemCheck event in the right-hand drop-down box of the code window. The
following code will be inserted to handle the ItemCheck event:

Private Sub LimitedCheckedListBox_ItemCheck(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles MyBase.ItemCheck

End Sub

12. The following code should be added to the ItemCheck event to monitor it for too many
items:

Private Sub LimitedCheckedListBox_ItemCheck(ByVal sender As Object, _
ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
Handles MyBase.ItemCheck

If (Me.CheckedItems.Count >= _nMaxItemsToSelect) _
And (e.NewValue = CheckState.Checked) Then
RaiseEvent MaxItemsExceeded(Me, New EventArgs)
e.NewValue = CheckState.Unchecked

End If

End Sub

13. Build the project to create a DLL containing the LimitedCheckedListBox control.

14. Add a new Windows Application project to the solution (using the File ➪ Add Project ➪

New Project menu) to test the control. Name the new project anything you like. Right-click
the project in the Solution Explorer, and select Set as Startup Project in the pop-up menu.
This will cause your Windows application to run when you press F5 in Visual Studio.

15. Scroll to the top of the controls in the Toolbox. The LimitedCheckedListBox control should
be there.

16. The Windows Application will have a Form1 that was created automatically. Drag a
LimitedCheckedListBox control onto Form1, just as you would a normal list box. Change
the CheckOnClick event for the LimitedCheckedListBox to True (to make testing easier).
This property was inherited from the base CheckedListBox control.

17. In the Items property of the LimitedCheckedListBox, click the button to add some items.
Insert the following list of colors: Red, Yellow, Green, Brown, Blue, Pink, and Black. At this
point, your Windows Application Project should have a Form1 that looks something like
Figure 16-2.

707

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 708

Chapter 16: Windows Forms Advanced Features

Figure 16-2

18. Bring up the code window for Form1. In the left-hand drop-down box above the code win-
dow, select LimitedCheckedListBox1 to get to its events. Then, in the right-hand drop-down
box, select the MaxItemsExceeded event. The empty event will look like the following code:

Private Sub LimitedCheckedListBox1_MaxItemsExceeded(_
ByVal sender As System.Object, e As System.EventArgs) _
Handles LimitedCheckedListBox1.MaxItemsExceeded

End Sub

19. Insert the following code to handle the event:

MsgBox("You are attempting to select more than " & _
LimitedCheckedListBox1.MaxItemsToSelect & _
" items. You must uncheck some other item " & _
" before checking this one.")

20. Start the Windows Application project. Check and uncheck various items in the list box
to verify that the control works as intended. You should get a message box whenever you
attempt to check more than four items. (Four items is the default maximum, and it was not
changed.) If you uncheck some items, then you can check items again until the maximum is
once again exceeded. When finished, close the form to stop execution.

21. If you want to check the serialization of the code, look at the designer-generated code in
the partial class for Form1 (named LimitedCheckedListBox.Designer.vb), and examine
the properties for LimitedCheckedListBox1. Note that there is no line of code that sets
MaxSelectedItems. Remember that if you don’t see the partial class in the Solution Explorer,
then you’ll need to press the Show All button at the top of the Solution Explorer.

22. Go back to the Design view for Form1 and select LimitedCheckedListBox1. In the Properties
window, change the MaxSelectedItems property to 3.

23. Return to the partial class and look again at the code that declares the properties for
LimitedCheckedListBox1. Note that there is now a line of code that sets MaxSelectedItems
to the value of 3.

24. Go back to the Design view for Form1 and select LimitedCheckedListBox1. In the Proper-
ties window, right-click the MaxSelectedItems property. In the pop-up menu, select Reset.
The property will change back to a value of 4, and the line of code that sets the property you
looked at in the last step will be gone.

These last few steps showed that the DefaultValue attribute is working as it should.

708

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 709

Chapter 16: Windows Forms Advanced Features

The Control and UserControl Base Classes
In the earlier example, a new control was created by inheriting from an existing control. As is standard
with inheritance, this means the new control began with all the functionality of the control from which it
inherited. Then new functionality was added.

This chapter didn’t discuss the base class for this new control (CheckedListBox) because you probably
already understand a lot about the properties, methods, events, and behavior of that class. However, you
are not likely to be as familiar with the base classes used for the other techniques for creating controls, so
it’s appropriate to discuss them now.

Two generic base classes are used as a starting point to create a control. It is helpful to understand some-
thing about the structure of these classes to know when the use of each is appropriate.

The classes discussed in this chapter are all in the System.Windows.Forms namespace. There are simi-
larly named classes for some of these in the System.Web.UI namespace (which is used for Web Forms),
but these classes should not be confused with anything discussed in this chapter.

The Control Class
The Control class is contained within the System.Windows.Forms namespace and contains base func-
tionality to define a rectangle on the screen, provide a handle for it, and process routine operating system
messages. This enables the class to perform such functions as handling user input through the keyboard
and mouse. The Control class serves as the base class for any component that needs a visual representa-
tion on a Win32-type graphical interface. Besides built-in controls and custom controls that inherit from
the Control class, the Form class also ultimately derives from the Control class.

In addition to these low-level windowing capabilities, the Control class also includes such visually
related properties as Font, ForeColor, BackColor, and BackGroundImage. The Control class also has
properties that are used to manage layout of the control on a form, such as docking and anchoring.

The Control class does not contain any logic to paint to the screen except to paint a background color
or show a background image. While it does offer access to the keyboard and mouse, it does not contain
any actual input processing logic except for the ability to generate standard control events such as Click
and KeyPress. The developer of a custom control based on the Control class must provide all of the
functions for the control beyond the basic capabilities provided by the Control class.

A standard set of events is also furnished by the Control class, including events for clicking the control
(Click, DoubleClick), for keystroke handling (KeyUp, KeyPress, KeyDown), for mouse handling (MouseUp,
MouseHover, MouseDown, etc.), and drag-and-drop operations (DragEnter, DragOver, DragLeave,
DragDrop). Also included are standard events for managing focus and validation in the control (GotFocus,
Validating, Validated). See the help files on the Control class for details on these events and a compre-
hensive list.

The UserControl Class
The built-in functionality of the Control class is a great starting point for controls that will be built from
scratch, with their own display and keyboard handling logic. However, the Control class has limited
capability for use as a container for other controls.

709

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 710

Chapter 16: Windows Forms Advanced Features

That means that composite controls do not typically use the Control class as a starting point. Composite
controls combine two or more existing controls, so the starting point must be able to manage contained
controls. The class that meets this requirement is the UserControl class. Because it ultimately derives
from the Control class, it has all of the properties, methods, and events discussed earlier for that class.

However, the UserControl class does not derive directly from the Control class. It derives from the
ContainerControl class, which, in turn, derives from the ScrollableControl class.

As the name suggests, the ScrollableControl class adds support for scrolling the client area of the
control’s window. Almost all the members implemented by this class relate to scrolling. They include
AutoScroll, which turns scrolling on or off, and controlling properties such as AutoScrollPosition,
which gets or sets the position within the scrollable area.

The ContainerControl class derives from ScrollableControl and adds the capability to support and
manage child controls. It manages the focus and the capability to tab from control to control. It includes
properties such as ActiveControl to point to the control with the focus, and Validate, which validates
the most recently changed control that has not had its validation event fired.

Neither ScrollableControl nor ContainerControl are usually inherited from directly; they add func-
tionality that is needed by their more commonly used child classes: Form and UserControl.

The UserControl class can contain other child controls, but the interface of UserControl does not auto-
matically expose these child controls in any way. Instead, the interface of UserControl is designed to
present a single, unified interface to outside clients such as forms or container controls. Any object inter-
face that is needed to access the child controls must be specifically implemented in your custom control.
The following example demonstrates this.

A Composite UserControl
Our earlier example showed inheriting an existing control, which was the first of the three techniques
for creating custom controls. The next step up in complexity and flexibility is to combine more than one
existing control to become a new control. This is similar to the process of creating a UserControl in VB6,
but it is easier to do in Windows Forms.

The main steps in the process of creating a UserControl are as follows:

1. Start a new Windows Control Library project and assign names to the project and the class
representing the control.

2. The project will contain a design surface that looks a lot like a form. You can drag controls
onto this surface just as you would a form. Writing code that works with the controls, such
as event routines, is done the same way as with a form, but with a few extra considerations
that don’t apply to most forms. In particular, it is important to handle resizing when the
UserControl is resized. This can be done by using the Anchor and Dock properties of the
constituent controls, or you can create resize logic that repositions and resizes the controls
on your UserControl when it is resized on the form containing it. Another option is to use
FlowLayoutPanel and/or TableLayoutPanel controls to do automatic layout.

710

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 711

Chapter 16: Windows Forms Advanced Features

3. Create properties of the UserControl to expose functionality to a form that will use it. This
typically means creating a property to load information into and get information out of the
control. Sometimes properties to handle cosmetic elements are also necessary.

4. Build the control and use it in a Windows application exactly as you did for the inherited
controls discussed earlier.

There is a key difference between this type of development and inheriting a control, as shown in the
preceding examples. A UserControl will not by default expose the properties of the controls it contains.
It exposes the properties of the UserControl class plus any custom properties that you give it. If you
want properties for contained controls to be exposed, you must explicitly create logic to expose them.

Creating a Composite UserControl
To demonstrate the process of creating a composite UserControl, the next exercise builds one that is
similar to what is shown in Figure 16-3. The control is named ListSelector.

Figure 16-3

This type of layout is common in wizards and other user interfaces that require selection from a long list
of items. The control has one list box holding a list of items that can be chosen (on the left), and another
list box containing the items chosen so far (on the right). Buttons enable items to be moved back
and forth.

Loading this control means loading items into the left list box, which we will call SourceListBox. Get-
ting selected items back out involves exposing the items that are selected in the right list box, named
TargetListBox.

The buttons in the middle that transfer elements back and forth are called AddButton, AddAllButton,
RemoveButton, and ClearButton, from top to bottom, respectively.

There are several ways to handle this kind of interface element in detail. A production-level version
would have the following characteristics:

❑ Buttons would gray out (disable) when they are not appropriate. For example, btnAdd would not
be enabled unless an item were selected in lstSource.

❑ Items could be dragged and dropped between the two list boxes.

711

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 712

Chapter 16: Windows Forms Advanced Features

❑ Items could be selected and moved with a double-click.

Such a production-type version contains too much code to discuss in this chapter. For simplicity, the
exercise has the following limitations:

❑ Buttons do not gray out when they should be unavailable.

❑ Drag-and-drop is not supported. (Implementation of drag-and-drop is discussed in Chapter 15,
if you are interested in adding it to the example.)

❑ No double-clicking is supported.

This leaves the following general tasks to make the control work, which are detailed in the step-by-step
exercise that follows:

1. Create a UserControl and name it ListSelector.

2. Add the list boxes and buttons to the ListSelector design surface, using a
TableLayoutPanel and a FlowLayoutPanel to control layout when the control is resized.

3. Add logic to transfer elements back and forth between the list boxes when buttons are
pressed. (More than one item may be selected for an operation, so several items may need to
be transferred when a button is pressed.)

4. Expose properties to enable the control to be loaded, and for selected items to be fetched by
the form that contains the control.

Resizing the Control
As shown in Figure 16-3, there are three main areas of the control: the two Listbox controls and a
vertical strip between them that holds the buttons. As the control is resized, these areas need to also be
appropriately resized.

If the ListSelector control gets too small, then there won’t be enough room for the buttons and the list
boxes to display properly, so it needs to have a minimum size. That’s enforced by setting the MinimumSize
property for the UserControl in the designer. The MinimumSize property is inherited from the Control
class (as discussed in the previous chapter).

The rest of the resizing is handled by using a TableLayoutPanel that contains three columns, one for
each of the three areas. That is, the first column of the TableLayoutPanel will hold SourceListBox, the
second column will hold the buttons, and the third column will hold TargetListBox. The capabilities
of the TableLayoutPanel enable the middle column to be a fixed size, and the left and right columns to
share all remaining width.

The middle column could contain a standard Panel to hold the buttons, but it’s a bit easier to use a
FlowLayoutPanel because it automatically stacks the buttons.

Exposing Properties of Contained Controls
Most of the controls contained in the composite control in this exercise do not need to expose their inter-
faces to the form that will use the composite control. The buttons, for example, are completely private to
the ListSelector — none of their properties or methods need to be exposed.

712

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 713

Chapter 16: Windows Forms Advanced Features

The easiest way to load up the control is to expose the Items property of the source list box. Similarly,
the easiest way to allow access to the selected items is to expose the Items property of the target list
box. The Items property exposes the entire collection of items in a list box, and can be used to add, clear,
or examine items. No other properties of the list boxes need to be exposed.

The exercise also includes a Clear method that clears both list boxes simultaneously. This allows the
control to be easily flushed and reused by a form that consumes it.

Stepping Through the Example
Here is the step-by-step procedure to build our composite UserControl:

1. Start a new Windows Control Library project and name it ListSelector.

2. Right-click on the UserControl1.vb module that is generated for the project and select
Rename. Change the name of the module to ListSelector.vb. This automatically changes
the name of your class to ListSelector.

3. Go to the design surface for the control. Increase the size of the control to about 300 x 200.
Then drag a TableLayoutPanel onto the control and set the Dock property of the
TableLayoutPanel to Fill.

4. Click the smart tag (the triangular glyph in the upper-right corner) of the TableLayoutPanel.
A menu will appear. Select Edit Rows and Columns.

5. Highlight Column2 and click the Insert button. The TableLayoutPanel will now have three
columns. In the new column just inserted (the new Column2), the width will be set to an
absolute size of 20 pixels. Change that width to 100 pixels. The dialog containing your
column settings should now look like Figure 16-4.

6. Click the Show drop-down menu in the upper-left corner and select Rows. Press the Delete
button to delete a row because you need only one row in the control. Click OK. The design
surface for the control should now look similar to Figure 16-5.

Figure 16-4

713

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 714

Chapter 16: Windows Forms Advanced Features

Figure 16-5

7. Drag a Listbox into the first cell and another one into the third cell. Drag a FlowLayoutPanel
into the middle cell. For all three of these, set the Dock property to Fill.

8. Drag four buttons into the FlowLayoutPanel in the middle. At this point your control should
look like the one shown in Figure 16-6.

Figure 16-6

9. Change the names and properties of these controls as shown in the following table:

Original Name New Name Properties to Set for Control

Listbox1 SourceListBox

Listbox2 TargetListBox

Button1 AddButton Text = ‘‘Add >‘‘
Size.Width = 90

Button2 AddAllButton Text = ‘‘Add All >>‘‘
Size.Width = 90

Button3 RemoveButton Text = ‘‘< Remove’’
Margin.Top = 20
Size.Width = 90

Button4 ClearButton Text = ‘‘<< Clear’’
Size.Width = 90

714

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 715

Chapter 16: Windows Forms Advanced Features

10. In the Properties window, click the drop-down at the top and select ListSelector so that
the properties for the UserControl itself appear in the Properties window. Set the
MinimumSize height and width to 200 pixels each.

11. Create the public properties and methods of the composite control. In this case, you need the
following members:

Member Purpose

Clear method Clears both list boxes of their items

SourceItems property Exposes the items collection for the source list box

SelectedItems property Exposes the items collection for the target list box

The code for these properties and methods is as follows:

<Browsable(False)> _
Public ReadOnly Property SourceItems() As ListBox.ObjectCollection

Get
Return SourceListBox.Items

End Get
End Property

<Browsable(False)> _
Public ReadOnly Property SelectedItems() As ListBox.ObjectCollection

Get
Return TargetListBox.Items

End Get
End Property

Public Sub Clear()
SourceListBox.Items.Clear()
TargetListBox.Items.Clear()

End Sub

Remember that your class must have an Imports for System.ComponentModel at the top so
that the attributes can be identified by the compiler.

12. Put logic in the class to transfer items back and forth between the list boxes and clear the
target list box when the Clear button is pressed. This logic manipulates the collections of
items in the list boxes, and is fairly brief. You need one helper function to check whether an
item is already in a list box before adding it (to avoid duplicates). Here are the click events
for each of the buttons, with the helper function at the top:

Private Function ItemInListBox(ByVal ListBoxToCheck As ListBox, _
ByVal ItemToCheck As Object) As Boolean

Dim bFound As Boolean = False
For Each Item As Object In ListBoxToCheck.Items

If Item Is ItemToCheck Then
bFound = True
Exit For

End If
Next
Return bFound

715

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 716

Chapter 16: Windows Forms Advanced Features

End Function

Private Sub AddButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles AddButton.Click

For Each SelectedItem As Object In SourceListBox.SelectedItems
If Not ItemInListBox(TargetListBox, SelectedItem) Then

TargetListBox.Items.Add(SelectedItem)
End If

Next
End Sub

Private Sub AddAllButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles AddAllButton.Click

For Each SelectedItem As Object In SourceListBox.Items
If Not ItemInListBox(TargetListBox, SelectedItem) Then

TargetListBox.Items.Add(SelectedItem)
End If

Next
End Sub

’ For both the following operations, we have to go through the
’ collection in reverse because we are removing items.

Private Sub RemoveButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles RemoveButton.Click

For iIndex As Integer = TargetListBox.SelectedItems.Count - 1 To 0
Step -1

TargetListBox.Items.Remove(TargetListBox.SelectedItems(iIndex))
Next iIndex

End Sub

Private Sub ClearButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ClearButton.Click

For iIndex As Integer = TargetListBox.Items.Count - 1 To 0 Step -1
TargetListBox.Items.Remove(TargetListBox.Items(iIndex))

Next iIndex
End Sub

The logic in the Click events for RemoveButton and ClearButton needs a bit of explanation.
Because items are being removed from the collection, it is necessary to go through the collec-
tion in reverse. Otherwise, the removal of items will confuse the looping enumeration and a
runtime error will be generated.

13. Build the control. Then create a Windows Application project to test it in. You can drag the
control from the top of the Toolbox, add items in code (via the Add method of the
SourceItems collection), resize, and so on. When the project is run, the buttons can be used
to transfer items back and forth between the list boxes, and the items in the target list box can
be read with the SelectedItems property.

Keep in mind that you can also use the techniques for inherited controls in composite controls, too. You
can create custom events, apply attributes to properties, and create ShouldSerialize and Reset methods

716

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 717

Chapter 16: Windows Forms Advanced Features

to make properties work better with the designer. (That wasn’t necessary here because our two properties
were ReadOnly.)

Building a Control from Scratch
If your custom control needs to draw its own interface, you should use the Control class as your starting
point. Such a control gets a fair amount of base functionality from the Control class. A partial list of
properties and methods of the Control class was included earlier in the chapter. These properties arrange
for the control to automatically have visual elements such as background and foreground colors, fonts,
window size, and so on.

However, such a control does not automatically use any of that information to actually display any-
thing (except for a BackgroundImage, if that property is set). A control derived from the Control class
must implement its own logic for painting the control’s visual representation. In all but the most trivial
examples, such a control also needs to implement its own properties and methods to gain the functiona-
lity it needs.

The techniques used in the earlier example for default values and the ShouldSerialize and Reset meth-
ods all work fine with the controls created from the Control class, so that capability is not discussed
again. Instead, this section focuses on the capability that is very different in the Control class — the logic
to paint the control to the screen.

Painting a Custom Control with GDI+
The base functionality used to paint visual elements for a custom control is in the part of .NET called
GDI+. A complete explanation of GDI+ is too complex for this chapter, but an overview of some of the
main concepts is needed here.

What Is GDI+?
GDI+ is an updated version of the old GDI (Graphics Device Interface) functions provided by the
Windows API. GDI+ provides a new API for graphics functions, which then takes advantage of the
Windows graphics library.

The System.Drawing Namespace
The GDI+ functionality can be found in the System.Drawing namespace and its subnamespaces. Some
of the classes and members in this namespace will look familiar if you have used the Win32 GDI func-
tions. Classes are available for such items as pens, brushes, and rectangles. Naturally, the System.Drawing
namespace makes these capabilities much easier to use than the equivalent API functions.

With the System.Drawing namespace, you can manipulate bitmaps and use various structures for dealing
with graphics such as Point, Size, Color, and Rectangle. Also included are numerous classes for use
in drawing logic. The first three such classes you need to understand represent the surface on which
drawing takes place, and the objects used to draw lines and fill shapes:

❑ Graphics — Represents the surface on which drawing is done. Contains methods to draw items
to the surface, including lines, curves, ellipses, text, and so on.

❑ Pen — Used for drawing line-based objects

❑ Brush — Used for filling shapes (includes its subclasses)

717

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 718

Chapter 16: Windows Forms Advanced Features

The System.Drawing namespace includes many other classes and some subsidiary namespaces. Let’s
look at the Graphics class in a bit more detail.

The System.Drawing.Graphics Class
Many of the important drawing functions are members of the System.Drawing.Graphics class. Methods
such as DrawArc, FillRectangle, DrawEllipse, and DrawIcon have self-evident actions. More than
40 methods provide drawing-related functions in the class.

Many drawing members require one or more points as arguments. A point is a structure in the
System.Drawing namespace. It has X and Y values for horizontal and vertical positions, respectively.
When a variable number of points are needed, an array of points may be used as an argument. The next
example uses points.

The System.Drawing.Graphics class cannot be directly instantiated. It is only supposed to be manip-
ulated by objects that can set the Graphics class up for themselves. There are several ways to get a
reference to a Graphics class, but the one most commonly used in the creation of Windows controls is
to get one out of the arguments in a Paint event. That technique is used in a later example. For now, to
understand the capabilities of GDI+ a little better, let’s do a quick example on a standard Windows Form.

Using GDI+ Capabilities in a Windows Form
Here is an example of a form that uses the System.Drawing.Graphics class to draw some graphic ele-
ments on the form’s surface. The example code runs in the Paint event for the form, and draws an ellipse,
an icon (which it gets from the form itself), and two triangles: one in outline and one filled.

Start a Windows Application project in VB 2008. On the Form1 that is automatically created for the project,
place the following code in the Paint event for the form:

’ Need a pen for the drawing. We’ll make it violet.
Dim penDrawingPen As New _

System.Drawing.Pen(System.Drawing.Color.BlueViolet)

’ Draw an ellipse and an icon on the form
e.Graphics.DrawEllipse(penDrawingPen, 30, 100, 30, 60)
e.Graphics.DrawIcon(Me.Icon, 90, 20)

’ Draw a triangle on the form.
’ First have to define an array of points.
Dim pntPoint(2) As System.Drawing.Point

pntPoint(0).X = 150
pntPoint(0).Y = 100

pntPoint(1).X = 150
pntPoint(1).Y = 150

pntPoint(2).X = 50
pntPoint(2).Y = 70

e.Graphics.DrawPolygon(penDrawingPen, pntPoint)

’ Do a filled triangle.
’ First need a brush to specify how it is filled.

718

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 719

Chapter 16: Windows Forms Advanced Features

Dim bshBrush As System.Drawing.Brush
bshBrush = New SolidBrush(Color.Blue)

’ Now relocate the points for the triangle.
’ We’ll just move it 100 pixels to the right.
pntPoint(0).X += 100
pntPoint(1).X += 100
pntPoint(2).X += 100
e.Graphics.FillPolygon(bshBrush, pntPoint)

Start the program. The form that appears will look like the one shown in Figure 16-7.

Figure 16-7

To apply GDI+ to control creation, you create a custom control that displays a ‘‘traffic light,’’ with red,
yellow, and green signals that can be displayed via a property of the control. GDI+ classes will be used
to draw the traffic light graphics in the control.

Start a new project in VB 2008 of the Windows Control Library type and name it TrafficLight. The created
module has a class in it named UserControl1. We want a different type of control class, so you need to
get rid of this one. Right-click on this module in the Solution Explorer and select Delete.

Next, right-click on the project and select Add New Item. Select the item type of Custom Control and
name it TrafficLight.vb.

As with the other examples in this chapter, it is necessary to include the Imports statement for the name-
space containing the attribute you will use. This line should go at the very top of the code module for
TrafficLight.vb:

Imports System.ComponentModel

The TrafficLight control needs to know which ‘‘light’’ to display. The control can be in three states: red,
yellow, or green. An enumerated type will be used for these states. Add the following code just below
the previous code:

Public Enum TrafficLightStatus
statusRed = 1

719

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 720

Chapter 16: Windows Forms Advanced Features

statusYellow = 2
statusGreen = 3

End Enum

The example also needs a module-level variable and a property procedure to support changing and
retaining the state of the light. The property is named Status. To handle the Status property, first place
a declaration directly under the last enumeration declaration that creates a module-level variable to hold
the current status:

Private mStatus As TrafficLightStatus = TrafficLightStatus.statusGreen

Then, insert the following property procedure in the class to create the Status property:

<Description("Status (color) of the traffic light")> _
Public Property Status() As TrafficLightStatus

Get
Status = mStatus

End Get
Set(ByVal Value As TrafficLightStatus)

If mStatus <> Value Then
mStatus = Value
Me.Invalidate()

End If
End Set

End Property

The Invalidate method of the control is used when the Status property changes, which forces a redraw
of the control. Ideally, this type of logic should be placed in all of the events that affect the rendering of
the control.

Now add procedures to make the property serialize and reset properly:

Public Function ShouldSerializeStatus() As Boolean
If mStatus = TrafficLightStatus.statusGreen Then

Return False
Else

Return True
End If

End Function

Public Sub ResetStatus()
Me.Status = TrafficLightStatus.statusGreen

End Sub

Place code to do painting of the control, to draw the ‘‘traffic light’’ when the control repaints. We will use
code similar to that used previously. The code generated for the new custom control will already have a
blank OnPaint method inserted. You just need to insert the following highlighted code into that event,
below the comment line that says Add your custom paint code here:

Protected Overrides Sub OnPaint(ByVal pe As _
System.Windows.Forms.PaintEventArgs)

720

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 721

Chapter 16: Windows Forms Advanced Features

MyBase.OnPaint(pe)

’Add your custom paint code here

Dim grfGraphics As System.Drawing.Graphics
grfGraphics = pe.Graphics

’ Need a pen for the drawing the outline. We’ll make it black.
Dim penDrawingPen As New _

System.Drawing.Pen(System.Drawing.Color.Black)

’ Draw the outline of the traffic light on the control.
’ First have to define an array of points.
Dim pntPoint(3) As System.Drawing.Point

pntPoint(0).X = 0
pntPoint(0).Y = 0

pntPoint(1).X = Me.Size.Width - 2
pntPoint(1).Y = 0

pntPoint(2).X = Me.Size.Width - 2
pntPoint(2).Y = Me.Size.Height - 2

pntPoint(3).X = 0
pntPoint(3).Y = Me.Size.Height - 2

grfGraphics.DrawPolygon(penDrawingPen, pntPoint)

’ Now ready to draw the circle for the "light"
Dim nCirclePositionX As Integer
Dim nCirclePositionY As Integer
Dim nCircleDiameter As Integer
Dim nCircleColor As Color

nCirclePositionX = Me.Size.Width * 0.02
nCircleDiameter = Me.Size.Height * 0.3
Select Case Me.Status

Case TrafficLightStatus.statusRed
nCircleColor = Color.OrangeRed
nCirclePositionY = Me.Size.Height * 0.01

Case TrafficLightStatus.statusYellow
nCircleColor = Color.Yellow
nCirclePositionY = Me.Size.Height * 0.34

Case TrafficLightStatus.statusGreen
nCircleColor = Color.LightGreen
nCirclePositionY = Me.Size.Height * 0.67

End Select

Dim bshBrush As System.Drawing.Brush
bshBrush = New SolidBrush(nCircleColor)
’ Draw the circle for the signal light
grfGraphics.FillEllipse(bshBrush, nCirclePositionX, _

nCirclePositionY, nCircleDiameter, nCircleDiameter)
End Sub

721

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 722

Chapter 16: Windows Forms Advanced Features

Build the control library by selecting Build from the Build menu. This will create a DLL in the /bin
directory where the control library solution is saved.

Next, start a new Windows Application project. Drag a TrafficLight control from the top of the Toolbox
onto the form in the Windows Application project. Notice that its property window includes a Status
property. Set that to statusYellow. Note that the rendering on the control on the form’s design surface
changes to reflect this new status. Change the background color of the TrafficLight control to a darker
gray to improve its contrast. (The BackColor property for TrafficLight was inherited from the
Control class.)

At the top of the code for the form, place the following line to make the enumerated value for the traffic
light’s status available:

Imports TrafficLight.TrafficLight

Add three buttons (named btnRed, btnYellow, and btnGreen) to the form to make the traffic light control
display as red, yellow, and green. The logic for the buttons looks something like the following:

Private Sub btnRed_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRed.Click

TrafficLight1.Status = TrafficLightStatus.statusRed
End Sub

Private Sub btnYellow_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnYellow.Click

TrafficLight1.Status = TrafficLightStatus.statusYellow
End Sub

Private Sub btnGreen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGreen.Click

TrafficLight1.Status = TrafficLightStatus.statusGreen
End Sub

In the Solution Explorer, right-click your test Windows Application, and select Set as Startup Project.
Then press F5 to run. When your test form comes up, you can change the ‘‘signal’’ on the traffic light by
pressing the buttons. Figure 16-8 shows a sample screen.

Of course, you can’t see the color in a black-and-white screen shot, but as you might expect from its
position, the circle is red. The ‘‘yellow light’’ displays in the middle of the control, and the ‘‘green light’’
displays at the bottom. These positions are all calculated in the Paint event logic, depending on the value
of the Status property.

Figure 16-8

722

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 723

Chapter 16: Windows Forms Advanced Features

For a complete example, it would be desirable for the control to allow the user to change the Status by
clicking on a different part of the ‘‘traffic light.’’ That means including logic to examine mouse clicks,
calculate whether they are in a given area, and change the Status property if appropriate. In the code
available for download for this book, the TrafficLight example includes such functionality.

Attaching an Icon for the Toolbox
By default, the icon that appears in the Toolbox next to your control’s name is a gear-shaped icon.
However, you can attach an icon to a control for the Toolbox to display. There are two ways to do that.

Windows Forms includes a ToolboxBitmap attribute that can specify an icon for a class. It can be used in
several ways, and you can see examples in the help file for the ToolboxBitmap attribute.

The easy way to attach an icon to your control is to let Visual Studio do it for you. Simply locate
or draw the icon you want to use, and add it to the project containing your control. Then rename the icon
so that it has the same name as your control but an extension of ico instead of vb.

For example, to attach an icon to the TrafficLight control in the preceding example, find an icon you
like, place it in your project, and name it TrafficLight.ico. Then Visual Studio will attach the icon to
your control during the compilation process; and when your control is added to the Toolbox, your icon
will be used instead of the gear-shaped one.

Custom icons are displayed for a control in the Toolbox only when the control is added with the Toolbox’s
Choose Items option. Controls that appear in the Toolbox at the top because their project is currently
loaded do not exhibit custom icons. They always have a blue, gear-shaped icon.

Embedding Controls in Other Controls
Another valuable technique for creating custom controls is to embed other controls. In a sense, the
UserControl does this; but when a UserControl is used as the base class, by default it only exposes
the properties of the UserControl class. Instead, you may want to use a control such as Textbox or Grid
as the starting point, but embed a Button in the Textbox or Grid to obtain some new functionality.

The embedding technique relies on the fact that in Windows Forms, all controls can be containers for
other controls. Visual Basic developers are familiar with the idea that Panels and GroupBoxes can be
containers, but in fact a TextBox or a Grid can also be a container of other controls.

This technique is best presented with an example. The standard ComboBox control does not have a way
for users to reset to a ‘‘no selection’’ state. Once an item is selected, setting to that state requires code that
sets the SelectedIndex to -1.

This exercise creates a ComboBox that has a button to reset the selection state back to ‘‘no selection.’’ That
enables users to access that capability directly. Now that you have worked with several controls in the
examples, rather than proceed step by step, we’ll just show the code for such a ComboBox and discuss
how the code works:

Public Class SpecialComboBox
Inherits ComboBox

723

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 724

Chapter 16: Windows Forms Advanced Features

Dim WithEvents btnEmbeddedButton As Button

Public Sub New()

Me.DropDownStyle = ComboBoxStyle.DropDownList

’ Fix up the embedded button.
btnEmbeddedButton = New Button
btnEmbeddedButton.Width = SystemInformation.VerticalScrollBarWidth
btnEmbeddedButton.Top = 0
btnEmbeddedButton.Height = Me.Height - 4
btnEmbeddedButton.BackColor = SystemColors.Control
btnEmbeddedButton.FlatStyle = FlatStyle.Popup
btnEmbeddedButton.Text = "t"
Dim fSpecial As New Font("Wingdings 3", Me.Font.Size - 1)
btnEmbeddedButton.Font = fSpecial

btnEmbeddedButton.Left = Me.Width - btnEmbeddedButton.Width - _
SystemInformation.VerticalScrollBarWidth

Me.Controls.Add(btnEmbeddedButton)
btnEmbeddedButton.Anchor = CType(AnchorStyles.Right _

Or AnchorStyles.Top Or AnchorStyles.Bottom, AnchorStyles)
btnEmbeddedButton.BringToFront()

End Sub

Private Sub btnEmbeddedButton_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnEmbeddedButton.Click

Me.SelectedIndex = -1
Me.Focus

End Sub

Private Sub BillysComboBox_DropDownStyleChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.DropDownStyleChanged

If Me.DropDownStyle <> ComboBoxStyle.DropDownList Then
Me.DropDownStyle = ComboBoxStyle.DropDownList
Throw New _

InvalidOperationException("DropDownStyle must be DropDownList")
End If

End Sub
End Class

As in the first example in the chapter, this example inherits from a built-in control. Thus, it immediately
gets all the capabilities of the standard ComboBox. All you need to add is the capability to reset the
selected state.

To do that, you need a button for the user to press. The class declares the button as a private object named
btnEmbeddedButton. Then, in the constructor for the class, the button is instantiated, and its properties
are set as necessary. The size and position of the button need to be calculated. This is done using the size
of the ComboBox and a special system parameter called SystemInformation.VerticalScrollBarWidth.
This parameter is chosen because it is also used to calculate the size of the button used to drop down
a combo box. Thus, your new embedded button will be the same width as the button that the regular
ComboBox displays for dropping down the list.

724

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 725

Chapter 16: Windows Forms Advanced Features

Of course, you need to display something in the new button to indicate its purpose. For simplicity, the
preceding code displays a lowercase ‘‘t’’ using the WingDings 3 font (which all Windows systems should
have installed). This causes a left-pointing triangle to appear, as shown in Figure 16-9, which is a screen
shot of the control in use.

Figure 16-9

The button is then added to the Controls collection of the ComboBox. You may be surprised to learn that
a ComboBox even has a Controls collection for embedded controls, but all controls in Windows Forms
have one.

Finally, the Anchor property of the new button is set to maintain the position if the SpecialComboBox is
resized by its consumer.

Besides the constructor, only a couple of small routines are needed. The click event for the button must
be handled, and in it the SelectedIndex must be set to -1. In addition, because this functionality is only
for combo boxes with a style of DropDownList, the DropDownStyleChanged event of the ComboBox must
be trapped, and the style prevented from being set to anything else.

Summary
This chapter discussed how to create custom controls in Windows Forms, enabling you to consolidate
logic used throughout your user interfaces. The full inheritance capabilities in .NET and the classes in
the Windows Forms namespace allow several options for creating controls. It is probably best to start by
overriding these controls in order to learn the basics of creating properties and coordinating them with
the designer, building controls and testing them, and so on. These techniques can then be extended by
creating composite controls, as illustrated by the examples in the chapter.

We also discussed creating a control from scratch, using the base Control class. In the course of writing
a control from scratch, it was necessary to discuss the basics of GDI+, but if you are going to do extensive
work with GDI+, you will need to seek out additional resources to aid in that effort.

The key concept that you should take away from this chapter is that Windows Forms controls are a great
way both to package functionality that will be reused across many forms and to create more dynamic,
responsive user interfaces much more quickly with much less code.

725

Evjen-91361 c16.tex V2 - 04/01/2008 4:24pm Page 726

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 727

Windows Presentation
Foundation

Windows Presentation Foundation (WPF) — previously known as Avalon — is the next-generation
presentation library and development paradigm for user interfaces. It was introduced with Win-
dows Vista as a key architectural component in the .NET 3.0 Framework. This chapter introduces
you to the WPF programming model and discusses key elements you’ll need to know in order to
work with WPF. Rest assured you will be creating applications that leverage the features of WPF
in the future. Visual Studio introduces a fully enabled development environment for creating and
customizing WPF-based applications.

The libraries that make up WPF were released in conjunction with the release of Windows Vista —
not the commercial and much-publicized public launch of Vista in January 2007, but the initial
release of Vista to enterprise partners in November 2006. The libraries shipped with Vista and
coincidentally with Microsoft Office 2007, but what you may or may not have noticed at the time
was the lack of development tools.

However, with Visual Studio 2008, not only are there tools for the .NET 3.5 libraries, but also tools
for all of the .NET 3.0 libraries. Additionally, Microsoft released the Expression suite of tools, in
particular Blend, which you’ll also need if you are going to create custom WPF applications.

This chapter covers several key areas, including the following:

❑ The WPF strategy

❑ Why you should use WPF

❑ Creating a WPF application

❑ XAML

❑ Implementing a custom WPF application

❑ Customizing the user interface

❑ Using Blend for custom graphics and behavior

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 728

Chapter 17: Windows Presentation Foundation

This chapter introduces a basic WPF application and then focuses on the underlying XAML that’s used
to declare WPF and other applications. Then it picks up with a custom WPF Windows framework appli-
cation that you can leverage. The goal is to introduce you to WPF in a manner that should be familiar
to Windows Forms developers and then expand on what additional items WPF brings to the equation.
This chapter will not make you an expert WPF developer — WPF is too large a topic to fully cover in a
single chapter — but it does provide a good starting place.

What, Where, Why, How — WPF Strategy
When .NET was released, most people realized that in terms of application development, a paradigm
shift was occurring. The release of WPF was the first step in yet another paradigm shift, this one focusing
on how user interfaces are designed and implemented. Therefore, it’s appropriate to take a little time
to look at not only where the user interface models are coming from, but also where they are going.
Understanding that will enable you to see how WPF fits in, and not only why you’ll want WPF in the
future, but also how you can start leveraging it today.

The original user interfaces were punch cards for input and hard copy text for output. OK, maybe that’s
going a little too far back. Instead, let’s jump ahead to the part of the user interface’s resume that applies
to where we’re going today. The 1980s through 1990s saw several computer and software manufacturers
introduce the graphical user interface (GUI). These GUI environments, while implemented differently
on different platforms, became a part of the operating system. For Windows, this is the User32.dll and
its companion UI classes. The original Visual Basic 1.0 was designed to enable developers to interact
in a simple manner with these files, unlike C++, which referenced the raw User32.dll interfaces for
everything.

Over time, Visual Basic’s simple drag-and-drop approach to creating the forms users would access as
part of an application in that GUI environment helped make it the most popular development language.
However, with Web migrations, the paradigm started to shift. The Web introduced its own way of cre-
ating forms — one that used HTML. The HTML model is more declarative and doesn’t guarantee the
behavior of the components in the user interface. For example, the HTML page may declare it wants a
text box, but it’s up to the browser to interpret and provide the code that creates the actual object. The
HTML control model is supported on Windows by Internet Explorer and by third-party tools such as
Firefox and Netscape.

.NET ushered in the next stage of client UI implementation with ASP.NET and Windows Forms. Chang-
ing the UI model wasn’t a primary focus of .NET; .NET introduced new tools for the UI. .NET shipped
with two user-interface implementations: ASP.NET’s HTML-based UI and the desktop-centric Windows
Forms. It’s important to realize that Windows Forms isn’t based on the same code that User32 windows
are, even though the programming model whereby the designer adds the code to a portion of the appli-
cation’s source is similar. The managed environment represents both the second and third programming
models for developing user interfaces under Windows. Of course, other platforms include still other GUI
models, but these three GUI models — User32.dll, ASP.NET, and Windows Forms — represent the ones
Microsoft supported as of .NET 2.0.

Thus, Microsoft was left repeating many user-interface controls with three distinct implementations, a
cost noticeable to even an organization as large as Microsoft. For developers, including those at Microsoft,
the pain starts with the fact that a user interface can’t be transported seamlessly between a Web-based
version of an application and a local desktop version of the same application, or across platforms. For

728

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 729

Chapter 17: Windows Presentation Foundation

example, Microsoft can’t design a UI for Outlook and reuse it for Outlook Web Access (OWA). Instead, it
needs a different team of developers with different skills to create the OWA interface, and have you seen
a remotely downloadable Windows Forms–based OWA application?

Let’s face it: There wasn’t much economic incentive to create both a Windows Forms–based and ASP
.NET-based user interface for the same application. Until such a task is almost painless, people will
continue to select an environment and then build their application targeting that model. In some cases
where an application is successful, a follow-up task may be to attempt to reproduce the user interface for
another target UI, but that is the exception, not the rule. Thus, while there are several options for creating
a user interface, they represent ‘‘either-or’’ decisions.

This is where the WPF model comes in. WPF is a more declarative way of designing interfaces. The idea is
that you can use a declaration to describe your user interface and then compile or include that definition
with either a desktop or Web or even another operating system version of your application. WPF uses
XML to declare the user-interface elements, relying on a standard known as the Extensible Application
Markup Language (XAML). This standard is pronounced ‘‘zamel’’ (rhymes with camel). It enables you to
layer elements and include elements such as colors and 3-D shapes.

XAML goes well beyond what you normally expect to find in an HTML UI, yet at the same time the
format should feel somewhat familiar to those who know HTML and/or XML. As for the implementation
of code to interpret XAML UI declarations, Microsoft introduced the components that make up WPF with
the release of Vista.

Raster Graphics and Vector Graphics
Currently, when you create a Windows Forms control you decide how large, in pixels, that button should
be. A similar action is taken with regard to HTML forms, where you can specify either a size in pixels or
a percentage of the screen. In both cases, the computer simply lays out a square or rounded square based
on a flat set of pixels. It does the same with other images you use, working with what are known as raster
graphics. Raster graphics are a collection of points on the surface of a screen that represent an image.

The alternative form of graphics is known as vector graphics. A vector is a line with a point of origin
that continues forward in space from that point of origin. Vector graphics aren’t based on a collection
of points, but rather on a series of vectors. A plane representing the surface of your screen is placed in
the path of these vectors, which define a set of points, and that is what you see on your screen. Vector
graphics provide much better and more realistic image manipulation. Note that while you can incorpo-
rate a raster image with vector graphics, because you can place the raster image in your virtual plane, the
reverse isn’t feasible.

WPF is the first forms-based engine that relies on this vector-based model. The good news is that you
can create user interfaces that truly look fantastic. The bad news is that you need to account for the
fact that computing a series of vectors and the plane that intersects those vectors requires more CPU
or Graphical Processing Unit (GPU) cycles. Thus, like the Vista UI, all WPF user interfaces require a bit
more computing horsepower. However, unlike Vista, for which certain graphical features are disabled
if your computer doesn’t natively have that horsepower, for WPF that isn’t the case. Because WPF is
compatible with Windows XP, it isn’t limited to those scenarios in which a powerful GPU is available
to offload that processing. After all, Windows Vista was the first operating system to support leveraging
the GPU, so system performance only degrades when you run a WPF application on Windows XP or an
older computer that isn’t able to support something such as the Glass display settings.

729

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 730

Chapter 17: Windows Presentation Foundation

However, those concerns aside, one of the main appeals of the WPF model is the graphical capabilities.
Built around raster graphics and enhanced GPU processor support, WPF enables a much more appealing
user interface. You can hide the native Windows frame, as you’ll see later in this chapter, make round
buttons, and essentially begin to create a truly custom user interface, one that in an artistically designed
application has the user saying ‘‘wow’’ in a truly memorable experience.

Should Your Next Windows Project Use WPF?
Microsoft will, of course, need to support all its previous GUI models in addition to WPF for the fore-
seeable future. However, Microsoft is motivated by the same aspects the rest of us can leverage — better
graphics and the idea that a single application can have a UI that runs in multiple environments. Accord-
ingly, Microsoft announced that enhancements to the .NET-based Windows Forms class libraries would
not be occurring. While this UI model would receive maintenance and security-related updates, there
would be no future new development on that set of libraries.

Does this mean you should automatically plan on moving to WPF for your next Windows application?
Well, that depends on several factors. If you want to target a desktop that isn’t running Windows XP
or Windows Vista, then you can’t use WPF. In addition, as noted earlier regarding the change related
to graphics, if you don’t want to see a performance drop for clients running operating systems such
as Windows XP or Windows Server 2003, then you again need to target Windows Forms instead of
WPF. Moreover, unlike Windows Forms — which has a mature control set, including items such as
DataGridView, Timers, ErrorProvider, and common dialog controls — the WPF control gallery is still in
its first release. The array of controls added since the original release of .NET 3.0 with the release of Visual
Studio 2008 is rather impressive, but you may still find yourself returning to these standard dialogs or to
the WindowsFormsHost control to encapsulate a Windows Forms user control.

You’ll also see in this chapter that many of the really cool graphic capabilities that WPF provides come at
the cost of limited behavior support. Thus, a simple setting such as Transparency expects you to provide
a lot of manual code to implement standard Windows behavior. Additionally, in order to achieve a fancy
design, you’ll need — not want, but need — a XAML generation tool such as Microsoft Blend. Complex
graphics are still complex, and a tool is required to create these items. The Blend tool, although available
to developers, is really focused on graphic designers and doesn’t provide a Visual Studio look and feel.

Overall, unless you are looking to leverage high-end graphics, you may find that even though WPF is the
UI model of the future, the next version of your application is best served by using Windows Forms and
perhaps leveraging the WPF interop libraries described in Chapter 18. However, this chapter is going to
help you get started with WPF so that you can continue to work toward this next-generation application
interface, which is based on a powerful graphic engine and includes built-in multimedia support.

Creating a WPF Application
The previous edition of this book, Professional Visual Basic 2005 with .NET 3.0, focused on going through
the manual steps of creating a basic WPF application and manually updating the build file to create
that application. These steps were appropriate because at the time WPF didn’t have a native IDE and
code-generation toolset. Most early WPF applications were built by hand or with minor conversation
tools that could output graphics as XAML. With the release of Visual Studio 2008, WPF, like the other
.NET 3.0 technologies, gained a true IDE and, with the availability of Blend, a powerful design tool. The
focus is now on creating applications with Visual Studio 2008 and then customizing the design surface
with Blend.

730

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 731

Chapter 17: Windows Presentation Foundation

Be aware that while working in Blend it is very easy to spend a lot of time adjusting colors or fades,
or adding simple animations. This can chew up an application development budget in nothing flat. In
addition, it is possible to create design elements in Blend that are, unfortunately, incompatible or difficult
to manipulate once you are trying to hook that design into your application logic. Accordingly, it is
recommended that you define the initial application layout and then get the application operational.
Only after you have completed the business integration and gotten the control elements working as
required should you return to the design surface to provide complex graphics and behavior on top of
your application.

Thus, the next step is to use Visual Studio to generate your WPF application and then go from a basic
application into Blend to enhance graphic support. This application will go through three phases in this
chapter, so three different projects are associated with it. For now we will create the first project, after
which we transition to either the _Step_2 or _Step_3 version of the sample project. In each case, the
project will contain the completed code for that portion of the project, but because this code is going to
transform rather dramatically over the course of the chapter, this format provides you with a series of
check points while going through this chapter yourself.

Begin by using the File menu in Visual Studio 2008 and select the option to create a new project. Navigate
to the new Visual Basic Window section of the New Project dialog, as shown in Figure 17-1.

Figure 17-1

For the purposes of this chapter you can create a .NET 3.5 application called ProVB_WPF. This applica-
tion could also be created as a .NET 3.0 application, but in that case we wouldn’t have access to .NET
3.5 features such as LINQ. Additionally, note that the list of available templates for WPF applications
disappears if you choose to target a .NET 2.0 baseline.

Similar to other project templates, Visual Studio opens in the main window you’ve just declared, but
unlike Windows Forms, this isn’t just a design surface. The first thing to notice is that there isn’t a line of
VB code in this project, just a few XAML snippets. As shown in Figure 17-2, the default application does
not look entirely different from that of a Windows Form, except when it comes to the design surface. In
Windows Forms, the design surface generates code that is placed in the myWindow.Designer.vb file. The
generated file *.designer.vb is a partial class definition that Visual Studio uses to hold the definition of
each control you place onto the form, as well as the form itself.

731

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 732

Chapter 17: Windows Presentation Foundation

Figure 17-2

However, with WPF and XAML, that partial class definition is instead a collection of XML declarations
that define your window and its behavior. More important, although parts may be generated, that XAML
file isn’t considered generated code; instead, it is a fully editable definition, and as such is available in
the same display as the graphical representation of your display. You’ll find that as you work with your
design surface, Visual Studio 2008 automatically updates the XAML file; and similarly when you edit the
XAML file, Visual Studio 2008 automatically updates the design surface.

The design surface shown in Figure 17-2 has several features specific to WPF. The first you’ll find in
the upper left-hand corner as you look at the screen. That scrollbar enables you to zoom in on a specific
portion of your interface. You can choose to limit your view to just a portion of the overall window
by zooming in for a closer look at how elements are aligned. Alternatively, you can ‘‘back’’ away from
your overall window to look at the entire display, even when that design is larger then the design area
available on your screen.

The second item to note about the display relates to the relationship between the currently top design
surface in the display and the XAML tab located below it. Between these two tabs, in the middle of the
screen, is a pair of up and down arrows. These arrows aren’t just there for decoration to indicate that
these two surfaces are related, but rather to swap the location of each of these two surfaces. Thus, if you
are working with the XAML and directly making changes to it, you can shift that to the top of the display
and reduce the graphical display.

However, having the code located above or below your design surface may not be your preferred display.
That’s where the three little icons located on the tab bar come in. The first two are a vertical line and a
horizontal line, respectively. These buttons indicate that you can choose to place the XAML code and the
design surface in a side-by-side display mode or in a top-bottom design mode, respectively. The third
button, which shows double down arrows, enables you to collapse the combined display so that the tabs
are along the bottom or the right side of the design display. Thus, if you prefer to maximize the available
display surface, you can create a display similar to what you have when editing ASP.NET Web pages.

732

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 733

Chapter 17: Windows Presentation Foundation

Of course, you are probably wondering about the XAML that is shown in Figure 17-2 and that defines
your main window. This is one of two XAML files that are generated with your project. This XAML file
has a top-level node of Window that tells the compiler that it defines a window. The top-level node ties
this window to the class Window1, which matches the default filename, as shown in the following code:

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Window1" Height="300" Width="300">
<Grid>

</Grid>
</Window>

Because the XML namespace declarations are shared between this file and the second XAML file, let’s
jump to the remaining attributes of the window. By default, the window is given a title that matches the
class same, as in Windows Forms, and the default size is a Height of 300 and a Width of 300. In addition to
these attributes, the Window node that declares the actual main window contains a single control, a grid.
The grid is the default control in the window because it provides developers with the most consistent
design experience from Windows Forms.

Next, let’s review the second XAML file, application.xaml. This file contains the application definition.
Like your Visual Basic Windows Forms code, the Application object represents the application to the
CLR. It is this object that represents the base reference for things such as garbage collection, and it is
registered as the primary process. Because the Application object is implemented as an object in the
System.Windows namespace, it supports properties, methods, and events just like any other class. The
contents of application.xaml are shown in the following:

<Application x:Class="Application"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
StartupUri="Window1.xaml">
<Application.Resources>

</Application.Resources>
</Application>

This file is a good place to take a moment to discuss the basics of XAML. As you can see, this file starts
with a reference to an x:Class declaration as an attribute of the Application node. The x: represents an
alias similar to what you find in Visual Basic, where the x: indicates that Class is defined in the schema
http://schemas.microsoft.com/winfx/2006/xaml, the XAML schema. You’ll notice there is a second
declaration for http://schemas.microsoft.com/winfx/2006/xaml/presentation. This second declara-
tion is the one that references the actual WPF libraries. The last item in the attributes of the Application
node is a StartupUri. This property tells the compiler that when this application is started, the next step
is to open the file Window1.xaml in order to find the definition of the window to be displayed.

Similar to a traditional Windows Forms application, the application doesn’t actually define a window;
instead, it defines the application context, and then it calls another class to create the window. However,
this file is a great place to add XAML resources that will apply across your application. Resources refers
to the fact that in WPF it is possible to declare the color, shape, and behavior (in terms of hover over,
mouse down, etc.) of your controls. Placing these XAML declarations in the Application.Resources

733

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 734

Chapter 17: Windows Presentation Foundation

section of the application definition is a natural way to share them across all of that type of control in
your application. However, before continuing with this discussion of shared resources, it’s important to
understand XAML itself so that you’ll have a better understanding of the XML node declarations.

Leveraging WPF with XAML
The ProVB_WPF example doesn’t have much purpose yet, but it makes it easier to keep the discussion of
XAML in context. The next step is to take a more detailed look at just what XAML is and how it relates
to WPF. XAML is a markup-based protocol. Similar to SOAP and several other XML-based formats, the
XAML specification describes a potentially open standard for describing user-interface elements. WPF is
Microsoft’s implementation of this standard. Currently, XAML isn’t an open standard and it’s unknown
whether XAML will ever be a true open standard. However, the .NET implementation separates the
definition of the XAML elements from the implementation of WPF, which means that creating an open
standard is a possibility for XAML.

Regardless of whether XAML ever actually becomes an open standard, Microsoft has implemented WPF
using a minimum of two XML namespaces. As noted in the application.xaml file, one namespace is
focused on the definition of XAML, and the second is focused on WPF’s custom classes. Returning to the
ProVB_WPF Application.xaml file, the following namespace declaration is included:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

The preceding line is similar to an Imports statement for XML in that it indicates a set of nodes and key-
words that will be used within the associated XML file. In this case, the winfx/2006/xaml/presentation
namespace contains the definition of WPF — not the definition of XAML keywords, but rather the defi-
nition of WPF, which is why you see statements such as Application.Window in that XML. The classes
contained in the presentation namespace are the .NET implementation of WPF. The XAML file contains
declarations referencing these classes, either as part of the XAML standard or as part of WPF. To start
working with commands and controls that are part of the XAML standard, a second namespace reference
is needed:

xmlns:x=http://schemas.microsoft.com/winfx/2006/xaml

This second reference is used throughout all XAML files to declare the actual XAML language standard.
By convention, it is aliased as x:. For those of you who may not have done much XML development, this
means that within the XAML you’ll see things such as x:Class, x:Code, and other similar nodes. The x: is
required to indicate that what follows is an element of the XAML languages, as opposed to, for example,
WPF or some other .NET library. The x: nodes are the actual XAML declarations. What is important to
remember is that the XAML namespace can be and is used for things other than just WPF. As you’ll see
in Chapter 27, Windows Workflow Foundation is based on XAML; it has its own /workflows namespace.

XAML Language Basics
XAML is defined as a language consisting of a collection of elements, attributes, and related objects.
These objects are referenced from the XAML namespace, which by convention precedes each class with
an x:. .NET extends and maps these declarative structures into .NET.

734

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 735

Chapter 17: Windows Presentation Foundation

Before getting to the syntax, take a look at the three categories of XML statement you will find within
the XAML namespace: attribute, markup extension, and XAML directive. Each is a separate category of
language element.

Within XML, attributes refer to named properties that are associated with a given XML node. Thus, the
XML node object might have several attributes such as ID, Name, Text, and so on associated with it.
These attributes in XML live within the definition of the XML node. They are not contained within the
XML node but its definition, as shown here:

<object id="myObject"></object>

Within XAML, the list of attributes includes those in the following table. Be aware that the term ‘‘object’’
in the following snippets can be replaced with one of several WPF objects, including Application,
Window, Button, Brush, and so on:

XAML Attributes Description and Example

x:Class Used to reference the root class for an XAML document. Each
document can be associated with a single root object.
<object x:Class="Window"></object>

x:ClassModifier Modifies the class definition for a given XAML document.
Specifically, it enables you to indicate that a given class doesn’t
provide a public interface. Public is the default.
<object x:Class="Window" x:ClassModifier="Friend"></object>

x:FieldModifier Unlike classes, which are by default public, fields within objects are
by default assigned with the modifier Friend. If you have added an
object within XAML that you want available to other classes (within
your code behind), then the FieldModifier needs to declare this
field with the modifier of Friend. This property can only be used
with objects that also have the x:Name attribute shown here: <object
x:Name="LoginWindow" x:FieldModifier="Public"></object>

x:Key Some objects, such as the Dictionary object and other collection
objects, allow items to be indexed via a key. Such a key must be
named, and this attribute is used to provide a unique key name.
Note that most XAML applications leverage a resource dictionary,
which is a common use of this attribute. Keys need to be unique
within the scope of the object to which they are applicable.
<object.Resources> <SolidColorBrush x:Key="string"/>
</object.Resources>

x:Name Similar to a key, but used more for the naming of objects within the
scope of an application. Such objects are not public by default, but
typically represent the controls and related user-interface objects
used by your application. <object x:Name="LoginWindow">
</object>

735

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 736

Chapter 17: Windows Presentation Foundation

XAML Attributes Description and Example

x:Shared This actually maps to what Visual Basic users understand the keyword Shared to
mean. By default, if your application requests an object from your XAML
resources, then you will get the same instance of the requested resource. You can
use this property such that each time a given object is requested, a new instance
of that object is created. <ResourceDictionary><object x:shared="false"/>
</ResourceDictionary

x:Subclass This attribute can be used in conjunction with an x:Class declaration. It
essentially enables your XAML to inherit from another class; however, as a
Visual Basic user you won’t use this attribute because you can do this in a much
more natural manner in the code-behind source file associated with your class.
<object x:Class="class" x:Subclass="namespace.subclass"></object>

x:TypeArguments This attribute enables you to create a collection of x:Type markup extensions.
This collection acts as the parameters to the constructor for a generic class to
ensure that the associated types are defined with the constructor. This attribute
must be used with a class declaration, and the associated class must be a generic.
<object x:class="PageFunction" x:TypeArguments="{x:Type=type1}">
</object>

Notice that none of the preceding attributes are actually referenced as a node within XML. Instead, they
modify the properties associated with a node. Thus, the attributes are modifiers, as opposed to the next
category of elements: markup extensions. As implied by the word ‘‘extensible’’ in the name Extensible
XML, one of the features of this model is that the format allows for the definition of extensions. These
extensions expand on the base elements associated with that markup definition. XAML includes a limited
number of such extensions. Unlike an attribute, a markup extension can be used to create an XML node or
a collection of XML attributes. When used to create a node, the markup extension allows for the definition
of property values within this node. When used to allow for the creation of a collection of attributes, it
can be recognized by the surrounding curly braces, as shown in the preceding TypeArguments definition.
Markup extensions for XAML are shown in the following table:

XAML Markup
Extension Description and Example

x:Array Used to provide support for arrays. The array declaration allows for the assignment
of a data type, to support strong typing and the inclusion of a series of
elements.<x:Array Type="object"> <myObject1/> <myObject2/></x:Array>

x:Null Nothing in Visual Basic, but the extension is implemented based on the C#/C++
keyword of null. Will set an object property to null, which may or may not be the
default state when that object property is created. x:Null has no additional
modifiers and is typically implemented as a node, as opposed to an attribute, as it
references the value of its parent node.
<object><object.property><x:Null/></object.property></object>

736

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 737

Chapter 17: Windows Presentation Foundation

XAML Markup
Extension Description and Example

x:Static Supports the reference of constant values, shared properties of objects, and
enumeration values. Similar to an attribute, it is most commonly used as an
attribute with the format X:static "{namespace.class}" This extension is used to
gain access to common values that are defaults for your application — for example,
to the system colors used by the operating system. <object Background=
"{x:Static SystemColors.ControlBrush}"></object>

x:Type As previously introduced with the x:Typename attribute, the x:Type extension
allows for the specification of a type when creating an object that is a generic.
However, it has a second use: the specification of a property type. Thus, if you
create an object that has properties, then the x:Type extension is used to specify the
type associated with that property. <object><object.property> <x:Type
TypeName="namespace.class"/></object.property></object>

Don’t let that last extension confuse you; there are two ways that markup extensions are used — either as
attributes contained within curly braces or as nodes that may contain their own attributes and properties.
Some, such as x:Static, always appear as attributes; others, such as x:Null and x:Array, always appear
as nodes; and of course x:Type can be found in either location. Up until now, all the XAML language
elements have been used to operate within the definition of XML. That is, they define attributes and
nodes, and as long as you understand the definition of the keyword, you can understand the data it
references.

However, at times you need to truly reference data. For example, none of the preceding extensions would
support embedding other XML data into your XAML file or referencing code directly from within your
XAML file. These two capabilities are available based on XAML directives. XAML directives enable you
to embed elements that don’t follow the XML formatting rules. There are two such directives:

XAML Directive Description and Example

x:Code Enables you to embed Visual Basic code directly into your XAML file.
However, although you can do it, you shouldn’t: It’s considered a very
poor coding practice — not only because it isolates code outside of a
code-behind file, but also because such code makes the XAML dependent
on a language for compilation, and is isolated and more difficult to debug
and maintain. However, you may come across such an element. In general,
it is considered best to further nest any embedded code within an x:Code
block within a CDATA block, as shown in the following sample, so that the
XAML parsing engine doesn’t attempt to parse the code. Thus, a code
block will look similar to this: <object><x:Code> <![CDATA[// code
instructions, usually enclosed by CDATA . . . Sub MyMethod() End Sub
]]></x:Code></object>

737

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 738

Chapter 17: Windows Presentation Foundation

XAML Directive Description and Example

x:XData The second item that isn’t standard XAML that you might want to embed
within your XAML document is another XML document. For example, you
might want to display an e-mail message or a Word document that has been
converted to XML, so you might want this data to be within your XAML
document. The key point is that you don’t want this additional XML to
accidentally use the same tag information associated with your XAML. Thus,
you need to provide an x:XData directive containing your root data node,
which contains your custom data. Note that in most cases the ‘‘object’’’ node
in this sample will be a System.Windows.Data.XMLDataProvider as opposed
to a Window or some other object. A sample of this is shown here:
<object><x:XData> <dataItems xmlns="yourNamespace"> . . .

</dataItems><elementDataRoot></x:XData></object>

As you can see, the scope of the XML definition for what you’re going to see within a XAML file is not that
complex. You’re probably wondering where all the controls, windows, and even the application object
that we’ve already seen in action are. These items, while defined as part of the WPF implementation, are
not part of the core XAML language definition. They are the WPF extensions, and the reason why you
added a second namespace reference to the Presentation folder. Everything else you see in XAML that
falls into this second category is also available for reference from your .NET application, so let’s take a
look at the integration of XAML and Visual Basic.

Implementing a Custom WPF Application
It is possible to do much of your WPF programming using XAML, but the next step is to examine how
XAML can be integrated with code. After all, at some point you probably expect to start seeing some
Visual Basic code again. Until now the ProVB_WPF sample has been a pure XAML application, so first we
will make a quick plan for what this application will do and then we will create a first-cut implementa-
tion. For demonstration purposes, we will create a simple photo-viewing application. The user should be
able to select a folder containing one or more images and then view those images, moving forward and
backward through the list.

For now, that will be the limit of the requirements; later, after the basic application is operational, you
can expand the scope to customize the look and feel further. Begin by modifying the ‘‘empty’’ window.
Of course, it’s not really empty. The window actually has a grid within it, so you can start with that and
create three sections. After selecting the grid, hover over the left-hand border of your window. You’ll see
a point appear within the border that sends a guide line horizontally across the window. Select a point
about 40 pixels from the top and a second point around 40 pixels from the bottom, dividing your grid
into three sections.

Don’t worry about being exactly on 40, because after you’ve selected your two points you are going to
switch to the XAML view. Now, instead of the previous default display, you have code similar to what
appears in the following block:

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

738

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 739

Chapter 17: Windows Presentation Foundation

Title="ProVB_WPF" Height="335" Width="415" Name="MainWindow">
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="45" />
<RowDefinition Height="215*" />
<RowDefinition Height="40" />

</Grid.RowDefinitions>

</Grid>
</Window>

This may look familiar because the preceding code includes a few edits that you can reproduce at this
point. Note that the title of the window has been modified to match the project name. On this same line,
you can see that the default size of the window has changed, and that the name of this instance of the
Window1 class is now MainWindow. These are relatively minor in comparison to the newly added lines in
this file.

The XAML now includes a new section related to the Grid.RowDefinitions. This section contains the
specification of sections within the points in the grid. When you selected those points in the designer, you
were defining these sections. The default syntax associated with the height of each section is the number
of pixels followed by an asterisk. The asterisk indicates that when the window is resized, this row should
also resize. For this application, only the center section should resize, so the asterisk has been removed
from the top and bottom row definitions.

This provides a set of defined regions that can be used to align controls within this form. Thus, the next
step is to add some controls to the form and create a basic user interface. In this scenario, the actions
should be very familiar to any developer who has worked with either Windows Forms or ASP.NET
forms.

Controls
WPF provides an entirely different set of libraries for developing applications. However, although these
controls exist in a different library, how you interact with them from Visual Basic is generally the same.
Each control has a set of properties, events, and methods that you can leverage. The XAML file may
assign these values in the declarative format of XML, but you can still reference the same properties on
the instances of the objects that the framework creates within your Visual Basic code.

Starting with the top section, drag the following from the Toolbox onto the form: a label, a text box, and a
button control. These can be aligned into this region in the same order they were added. Ensure that the
label is bound to the left side and top of the window, while the button is bound to the right side and top
of the window. Meanwhile, the text box should be bound to the top and both sides of the window so that
as the window is stretched, the width of the text box increases. The resulting XAML should be similar to
this:

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="ProVB_WPF" Height="335" Width="415" Name="MainWindow">
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="45" />

739

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 740

Chapter 17: Windows Presentation Foundation

<RowDefinition Height="215*" />
<RowDefinition Height="40" />

</Grid.RowDefinitions>

<Label Margin="0,11,0,0" Name="Label1" HorizontalAlignment="Left" Width="80"
Height="23" VerticalAlignment="Top">Image Path:</Label>

<TextBox Margin="81,13,92,0" Name="TextBox1" Height="21"
VerticalAlignment="Top" />

<Button HorizontalAlignment="Right" Margin="0,11,9,11" Name="ButtonBrowse"
Width="75">Images ...</Button>

</Grid>
</Window>

As shown in the newly added lines, each control is assigned a name and defines a set of editable prop-
erties. Note that these names can be addressed from within the code and that you can handle events
from each control based on that control’s named instance. For now, however, just adjust the text within
the label to indicate that the text box to its immediate right will contain a folder path for images, and
adjust the button control. Place a new label on the button control’s Images and rename the control to
ButtonBrowse. There is obviously more to do with this button, but for now you can finish creating the
initial user interface.

Next, add the following controls in the following order. First, add an Image control. To achieve a design
surface similar to the one shown in Figure 17-3, drop the Image control so that it overlaps both the middle
and bottom sections of the grid display. Now add three buttons to the bottom portion of the display. At
this point the controls can be aligned. You can do this through a combination of editing the XAML
directly and positioning things on the screen. For example, expand the image control to the limits of the
two bottom grid rows using the design surface; similarly, align the buttons visually on the design surface.

Figure 17-3

740

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 741

Chapter 17: Windows Presentation Foundation

As shown in the figure, the separations for the two row definitions are described in the design surface,
and each of the buttons has a custom label. Note that the Next button is followed by a pair of greater than
symbols, but the Prev button is missing a matching set of less than symbols. The problem is that the less
than and greater than symbols have special meaning in XAML, so it can be difficult to use them in the
XAML. Therefore, one of the changes to be made in the Visual Basic code is the addition of these symbols
to the button label.

First, however, review the XAML code and ensure that, for example, the Image control is assigned to
Grid.Row 1 and that the property Grid.RowSpan is 2. Unlike the items that were in Grid.Row 0, the items
in other rows of the grid must be explicitly assigned. Similarly, the name and caption of each button in
the bottom row of the grid are modified to reflect that control’s behavior. These and similar changes are
shown in the following XAML:

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="ProVB_WPF" Height="335" Width="415" Name="MainWindow">
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="45" />
<RowDefinition Height="215*" />
<RowDefinition Height="40" />

</Grid.RowDefinitions>
<Label Margin="0,11,0,0" Name="Label1" HorizontalAlignment="Left" Width="80"

Height="23" VerticalAlignment="Top">Image Path:</Label>

<TextBox Margin="81,13,92,0" Name="TextBox1" Height="21"
VerticalAlignment="Top" />

<Button HorizontalAlignment="Right" Margin="0,11,9,11" Name="ButtonBrowse"
Width="75">Images ...</Button>

<Image Grid.Row="1" Grid.RowSpan="2" Margin="0,0,0,0" Name="Image1"
Stretch="Fill" />

<Button Grid.Row="2" HorizontalAlignment="Right" Margin="0,0,15,8"
Name="ButtonNext" Width="75" Height="23" VerticalAlignment="Bottom">Next >>
</Button>

<Button Grid.Row="2" HorizontalAlignment="Left" Margin="15,0,0,8"
Name="ButtonPrev" Width="75" Height="23" VerticalAlignment="Bottom">
Prev</Button>

<Button Grid.Row="2" Margin="150,0,150,8" Name="ButtonLoad" Height="23"
VerticalAlignment="Bottom">View Images</Button>

</Grid>
</Window>

Note in the shaded sections the description of the new controls. The Image control is first, and it is posi-
tioned in Grid.Row number 1, which, because .NET arrays are always zero-based, is the second row. The
second attribute on this node indicates that it will span more then a single row in the grid. For now, this
control uses the default name, and it has been set so that it will stretch to fill the area that contains it.

741

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 742

Chapter 17: Windows Presentation Foundation

Following the Image control are the definitions for the three buttons along the bottom of the display.
For now, these buttons will control the loading of images; over the course of this chapter, these buttons
will be either removed or redone significantly. The order of these buttons isn’t important, so following
their order in the file, the first button is like the others positioned in the final row of the grid. This button
has been placed on the right-hand side of this area and is bound to the bottom and right corners of the
display. Its name has been changed to ButtonNext and its label is Next >>.

The next button is the Prev button, which has been placed and bound to the left-hand side and bottom
of the display. Its name has been changed to ButtonPrev, and its display text has been changed to read
Prev. As noted, the arrow symbols are not in the button name; and, as you can test in your own code,
attempting to add them here causes an error.

Finally, there is the ButtonLoad button, which is centered in the display area. It has been bound to both
sides of the display to maintain its position in the center. The label for this button is View Images, which is,
of course, the goal of this application. However, in order for that to happen, you need an event handler for
this button; in fact, you need several event handlers in order to get the basic behavior of the application
in place.

Event Handlers
Begin by adding some event handlers to the application. In previous versions of Visual Studio you could
click on a control and Visual Studio would automatically generate the default event handler for that
control in your code. Fortunately, WPF also provides this behavior, so generate the following event
handlers:

❑ Double-click on the title bar of the form to generate the Window1_Loaded event handler.

❑ Double-click on the Images button to create the ButtonBrowse_Click
handler.

❑ Double-click on the Load button to create the ButtonLoad_Click handler.

❑ Double-click on the Prev button to create the ButtonPrev_Click handler.

❑ Double-click on the Next button to create the ButtonNext_Click handler.

To create each of these handlers, you need to return to the design display and click on the associated
control, but after they are created you can stay in code mode for most of this section. Take a look at the
ButtonBrowse_Click event handler’s method stub:

Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonBrowse.Click

End Sub

The preceding code was reformatted with line extension characters to improve readability, but this is
essentially what each of your event handlers looks like. As a Visual Basic developer, you should find this
syntax very familiar. Note that the method name has been generated based on the control name and the
event being handled. The parameter list is generated with the ‘‘sender’’ and e parameter values, although
the e value now references a different object in the System.Windows namespace. Finally, defined here is
the VB-specific Handles syntax that indicates this method is an event handler and which specific event
or events it handles.

742

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 743

Chapter 17: Windows Presentation Foundation

While this is a very familiar, powerful, and even recommended way of defining event handlers with
VB and WPF, it isn’t the only way. WPF allows you to define event handlers within your XAML code.
To be honest, if this were a book on C#, we would probably spend a fair amount of time covering the
advantages of that type of event handler declaration. After all, C# doesn’t support the direct association
of the event handler declaration with the method handling the event; as a result, C# developers prefer to
declare their event handlers in XAML.

Visual Basic provides a default implementation of WPF that encourages less coupling of the UI and
business logic than C# does.

However, one of the goals of XAML is the separation of the application logic from the UI, and placing
the names of event handlers in the UI actually couples the UI to the business logic. It shouldn’t matter to
the UI whether the Click event or the DoubleClick or any other event is being handled by custom logic.
Therefore, although this section introduces the way to define events directly in XAML, the recommenda-
tion is to define event handlers with the code that implements the handler.

In order to demonstrate this in the code, return to the design view for your form. Select the Images button
and position your cursor just after the word Button, which names this node. Press the spacebar. You’ll see
that you have IntelliSense, indicating which properties and events are available on this control. Typing
a c adjusts the IntelliSense display so that you see the Click event. Select this event by pressing Tab and
you’ll see the display shown in Figure 17-4.

Figure 17-4

As shown here, not only does the XAML editor support full IntelliSense for selecting properties and
events on a control, when an event is selected, it displays a list of possible methods that can handle this
event. Of particular note is the first item in the list, which enables you to request that a new event handler

743

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 744

Chapter 17: Windows Presentation Foundation

be created in your code. Selecting this item tells Visual Studio to generate the same event handler stub
that you created by double-clicking on the control; however, instead of placing the Handles clause on
this method, the definition of this method as an event handler is kept in the XAML.

This causes two issues. First, if you are looking only at the code, then nothing explicitly indicates whether
a given method in your code is in fact an event handler. This makes maintaining the code a bit (not a lot)
more difficult to maintain. Second, if you have handled an event that is specific to Windows as opposed
to the Web, then your XAML won’t be portable. Neither of these side effects is desirable. Thus, given
the VB syntax for defining events as part of the method declaration, the code in this chapter avoids the
embedded XAML style of declaring standard Windows event handlers. At this point, you could run
your application. It won’t do anything except allow you to close it, but you can verify that it behaves as
expected and save your work.

Adding Behavior
It’s almost time to make this UI do something, but there is one more step before you start working with
code. As part of this application, you want to allow users to select the directory from which images
should be displayed. In theory, you could (and in practice, at some time probably would) write a custom
interface for selecting or navigating to the images directory. However, for this application that isn’t
important, and you want a quick and easy solution.

Unfortunately, WPF doesn’t offer any native control that supports providing a quick and easy view into
the file system. However, Windows Forms does, and in this case you want to leverage this control. The
good news is that you can, and the even better news is that you don’t need the Windows interop library
in order to do so. Because something like the Browse Folders dialog isn’t a control hosted on your form,
you can reference it from your code. Thus, although you need the Windows Forms Integration Library
and the WindowsFormsHost control discussed in Chapter 18 for any UI-based controls, in this case the
code just needs to reference the System.Windows.Forms library.

Because the System.Windows.Forms library isn’t automatically included as a reference in a WPF appli-
cation, you need to manually add a reference to this library. Open the My Project display and select
the References tab. Click the Add button to open the Add Reference dialog and then select the System
.Windows.Forms library, as shown in Figure 17-5. You can’t add controls to your WPF form without
leveraging the Windows.Forms.Integration library, but you can, behind the scenes, continue to refer-
ence controls and features of Windows Forms.

With this additional reference, you can begin to place some code into this application. Start with the
window_loaded event. This event is where you’ll define the default path for the image library, set up
the label for the Prev button, and change the default property of the grid control so that it handles the
images the way you want:

Private Sub Window1_Loaded(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles MyBase.Loaded

’ Append the << to the text for the button since these are _
’ reserved characters within XAML
ButtonPrev.Content = "<< " + ButtonPrev.Content.ToString()
’ Set the default path from which to load images
TextBox1.Text = _

Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)

744

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 745

Chapter 17: Windows Presentation Foundation

’ Have the images maintain their aspect ration
Image1.Stretch = Stretch.Uniform

End Sub

Figure 17-5

The preceding implementation handles these three tasks. It takes the content of the ButtonPrev control
and appends the two less than symbols to the front of the string so that both buttons are displayed
uniformly. Of course, long term, this code is going to be disposed of, but for now it helps illustrate
that while controls such as Button may seem familiar from Windows Forms, these controls are in fact
different. The WPF version of the Button control doesn’t have a text property; it has a content property.
The content property is, in fact, an untyped object reference. In the case of this application, you know
this content is a string to which you can append additional text. However, this code is neither a good
idea nor easily maintained, so this is just a temporary solution.

Next, the code updates the text property of the TextBox control used on the form. This text box dis-
plays the folder for the images to display. In order to provide a dynamic path, the code leverages the
Environment class to get a folder path. To this shared method the code passes a shared environment
variable: Environment.SpecialFolder.MyPictures. This variable provides the path to the current user’s
My Pictures folder (on Vista, the Pictures folder). By using this value, the code automatically points to a
directory where the current user would be expected to have images.

Finally, to again demonstrate that any of the WPF classes can in fact be modified within your code, this
code sets a property on the image control. Specifically, it updates the Stretch property of the Image
control to ensure that images are resized with their aspect maintained. Thus, if an image is square, then
when your image control becomes a rectangle, the image remains square. The Stretch.Uniform value
indicates that aspect should be maintained, while other members of the Windows.Stretch enumeration
provide alternative behavior.

745

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 746

Chapter 17: Windows Presentation Foundation

The next step is to implement your first button handler, the ButtonBrowse_Click handler. When this
button is clicked, the application should open the Folder Browse dialog, displaying the currently selected
folder as the default. The user should be allowed to navigate to an existing folder or create a new folder.
When the dialog is closed, the application should, if the user selected a new folder, update the folder’s
text box to display this new location:

Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonBrowse.Click

Dim folderDialog As System.Windows.Forms.FolderBrowserDialog = _
New System.Windows.Forms.FolderBrowserDialog()

folderDialog.Description = "Select the folder for images."
folderDialog.SelectedPath = TextBox1.Text
Dim res As System.Windows.Forms.DialogResult = _

folderDialog.ShowDialog()
If res = System.Windows.Forms.DialogResult.OK Then

TextBox1.Text = folderDialog.SelectedPath
End If

End Sub

The preceding code block declares an instance of the System.Windows.Forms.FolderBrowserDialog
control. As noted when the reference was added, this control isn’t part of your primary window display,
so you can create an instance of this dialog without needing the Windows.Forms.Interface library.
It then sets a description indicating to users what they should do while in the dialog, and updates the
current path for the dialog to reflect the currently selected folder. The dialog is then opened and the result
assigned directly into the variable res. This variable is of type System.Windows.Forms.DialogResult
and is checked to determine whether the user selected the OK or Cancel button. If OK was selected, then
the currently selected folder is updated.

Now it’s time to start working with the images. That means you need to retrieve a list of images and
manipulate that list as the user moves forward and backward through it. You could constantly return to
the source directory to find the next and previous images, but you will get much better performance by
capturing the list locally and keeping your current location in the list. This implies two local variables;
and because you want these variables available across different events, you need to declare them as
member variables to your class:

Class Window1
Private m_imageList As String() = {}
Private m_curIndex As Integer = 0

Private Sub Window1_Loaded(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles MyBase.Loaded

’ Append the << to the text for the button since these are _
’ reserved characters within XAML
ButtonPrev.Content = "<< " + ButtonPrev.Content.ToString()
’ Set the default path from which to load images
TextBox1.Text = _

Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)
’ Have the images maintain their aspect ration
Image1.Stretch = Stretch.Uniform

End Sub

746

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 747

Chapter 17: Windows Presentation Foundation

Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonBrowse.Click

Dim folderDialog As System.Windows.Forms.FolderBrowserDialog = _
New System.Windows.Forms.FolderBrowserDialog()

folderDialog.Description = "Select the folder for images."
folderDialog.SelectedPath = TextBox1.Text
Dim res As System.Windows.Forms.DialogResult = _

folderDialog.ShowDialog()
If res = System.Windows.Forms.DialogResult.OK Then

TextBox1.Text = folderDialog.SelectedPath
End If

End Sub

Private Sub ButtonLoad_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonLoad.Click

Image1.Source = Nothing
m_imageList = System.IO.Directory.GetFiles(TextBox1.Text, "*.jpg")
m_curIndex = 0
If m_imageList.Count > 0 Then

Image1.Source = _
New System.Windows.Media.Imaging.BitmapImage(_

New System.Uri(m_imageList(m_curIndex)))
End If

End Sub

The beginning of the preceding code adds two new properties to class Window1. Both values are private
variables that have not been exposed as public properties. They are being made available for use in the
image-handling buttons. Your code should look similar to the preceding code. The second shaded section
is an implementation of the ButtonLoad event handler. This event handler is called when the user clicks
ButtonLoad, and the first thing it does is clear the current image from the display. It then leverages the
System.IO.Directory class, calling the shared method GetFiles to retrieve a list of files. For simplicity,
this call screens out all files that don’t have the extension .jpg. In a full production application, this call
would probably use a much more complex screening system to gather all types of images and potentially
feed a folder navigation control so that users could change the selected folder or even add multiple
folders at once.

Once the list of files is retrieved and assigned to the private variable m_imageList, the code clears the
current index and determines whether any files were returned for the current directory. The screenshots
in this chapter have three images in the folder in order to obtain a small array; however, if no images
are present, then the code exists without displaying anything. Here, presume an image is available. The
code uses the System.Windows.Media.Imaging class to load an image file as a bitmap. It does this by
accepting the URI or path to that image, a path that was returned as an array from your call to GetFiles.
Note that the BitmapImage call doesn’t need an image formatted as a bitmap, but instead converts the
chosen image to a bitmap format that can then be directly referenced by the source property of the Image
control:

Private Sub ButtonPrev_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonPrev.Click

If m_imageList.Count > 0 Then

747

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 748

Chapter 17: Windows Presentation Foundation

m_curIndex -= 1
If m_curIndex < 0 Then

m_curIndex = m_imageList.Count - 1
End If
Image1.Source = New System.Windows.Media.Imaging.BitmapImage(_

New System.Uri(m_imageList(m_curIndex)))
End If

End Sub

Private Sub ButtonNext_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonNext.Click

If m_imageList.Count > 0 Then
m_m_curIndex += 1
If m_curIndex > m_imageList.Count - 1 Then

m_curIndex = 0
End If
Image1.Source = New System.Windows.Media.Imaging.BitmapImage(_

New System.Uri(m_imageList(m_curIndex)))
End If

End Sub
End Class

After the code to load an image has been added, implementing the ButtonPrev and ButtonNext event
handlers is fairly simple. In both cases the code first checks to ensure that one or more images are avail-
able in the m_imageList. If so, then the code either decrements or increments the m_curIndex value,
indicating the image that should currently be displayed. In each case the code ensures that the new index
value is within the limits of the array. For example, if it is below 0, then it is reset to the last image index;
and if it is greater than the last used index, the counter is reset to 0 to return it to the start of the list.

The next logical step is to run the application. Clicking the Run button within Visual Studio ensures that
your application starts. If you have images loaded in your Pictures folder, then you can open the first of
these images in the application. If not, then you can navigate to another directory such as the Samples
folder using the Images button. At this point, you’ll probably agree that the sample application shown in
Figure 17-6 looks just like a typical Windows Forms application — so much so in fact that the next steps
are included to ensure that this doesn’t look like a Windows Forms application.

However, before adding new features, there is a possibility that when you loaded your image, your
application didn’t display the image quite like the one shown in Figure 17-6; in fact, it might look more
like the image shown in Figure 17-7. If, when you worked on your own code, you added the Image
control after adding the View, Prev, and Next buttons, then your buttons — in particular, the View
Images button — might be completely hidden from view. This is caused by the way in which WPF layers
and loads controls, and to resolve it you need to change the order in which the controls are loaded in
your XAML. Before doing that, however, this is a good place to discuss layers and the WPF layering and
layout model.

Layout
WPF supports a very robust model for control layout, which it achieves by leveraging the capability to
layer controls and by providing a set of controls directly related to layout. Combined with the capability
to define a reasonable set of layout information for each control, what you wind up with is an adaptable
environment that can, at the extreme, provide unique behavior.

748

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 749

Chapter 17: Windows Presentation Foundation

Figure 17-6

How does the process work? Within each control are the basic elements associated with the sizing of that
control. As with past versions of Windows Forms, included is the concept of height and width and the
four associated limitations: MaxHeight, MaxWidth, MinHeight, and MinWidth. Additionally, as shown in
this chapter, it is possible to bind controls to window borders.

The layout properties aren’t the focus of this section, however. More important is the concept of layered
controls. What happens when you layer an image on top of something such as a grid? Recall how the
Image control you defined was bound to the four borders of its display area. In fact, the control isn’t
bound to the limits of the window per se; it is bound to the limits of the grid control upon which it is
explicitly layered. This layering occurs because the Image control is defined as part of the content of the
grid. That content is actually a collection containing each of the layered controls for the selected control.

When it comes to layout and layering, keep in mind that if a control is explicitly layered on top of another
control as part of its content, then its display boundaries are by default limited by the containing control’s
boundaries.

You can override this behavior using the ClipToBounds property, the LayoutClip property, and the
GetLayoutClip method of the container. Note, however, that the default behavior of WPF controls is to
set ClipToBounds to false and then use the LayoutClip property and the GetLayoutClip method to
specify the actual clipping bounds. Resetting and manually managing the clipping behavior enables a
control to be drawn outside the bounds of its parent container. That behavior is beyond the scope of this
chapter, as the process is somewhat involved and the preferred behavior, when available, is to clip within
the region of the parent control.

The fact that your control can be drawn beyond the limits of its container is an important concept. It
means your controls are no longer ‘‘contained,’’ but rather are truly layered. This may sound trivial, but
the implications are significant. Under previous UI models, an object had a container of some sort. For
example, a panel could contain other controls of certain types, but not necessarily all types. A button’s
content was generally text unless you had a button configured for images, but you couldn’t really find
a button configured to contain, for example, a drop-down list box, unless you wrote a custom display
implementation.

749

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 750

Chapter 17: Windows Presentation Foundation

By moving to a more layered approach, you can create a single control that handles text, images, and
other controls. The technique chosen to accomplish that was for those controls that support layering to
include a content presenter control. Thus, when you indicated that the Image control in ProVB_WPF should
stretch, it stretched in accordance with the grid control. Were you to change the XAML definition of the
grid control and give it a fixed height or width, then even though the window might change, the Image
control would still be bound to the limits of the grid control.

This behavior is explicit layering, and it is only available with certain control types. For example, WPF
provides a series of different ‘‘panel’’ controls that are used to provide a framework for control layout.
The grid is probably the one most familiar to .NET Windows Forms developers because it maps most
closely to the default behavior of Windows Forms. Other similar controls include StackPanel, Canvas,
DockPanel, ToolBar, and Tab-related controls. Each of these provides unique layout behavior. Because
these are available as controls, which you can nest, you can combine these different layout paradigms
within different sections of a single form, which enables you to group controls and achieve a common
layout behavior of related controls.

To be clear, however, explicit layering or nesting isn’t just available with panel controls; another WPF
example is the Button control. The button has a layer of generic button code — background color, bor-
der, size, and so on — that is managed within the display for the button. Then the button has a content
presenter within its definition that takes whatever was placed into the button’s content property and
calls the presentation logic for that control. This enables the button and many other controls to contain
other controls of any type.

You can place a button on a form and bind it to the form’s borders, and then place other controls on the
form. Because the button exposes a content property, it supports explicit layering, and other controls
can in fact be placed within the content of the button. Thus, whenever a user clicks on the surface of the
form, a click event is raised to the underlying button that is the owner of that content. The fact that WPF
controls forward events up the chain of containers is an important factor to consider when capturing
events and planning for application behavior. The formal name for this behavior is routed events.

Routed events are a key new concept introduced with WPF, and they are important in the sense that as
you add controls to your UI, you create a hierarchy. In the example thus far, this hierarchy is rather flat:
There is a window, and then a grid, and each of the controls is a child of the grid. However, you can
make this hierarchy much deeper, and routed events enable the controls at the top of the hierarchy to be
notified when something changes in the controls that are part of their content structure.

In addition to these explicit concepts of layering, hierarchy, and routed events, WPF also has the concept
of implicit layering. An implicit layer describes the scenario when you have two different controls defined
to occupy the same space on your form. In the case of the example code, recall that the image was defined
to overlay both of the row definitions, including the one containing the three Image control buttons. Thus,
these controls were defined to display in the same area, which isn’t a problem for WPF, but which in the
current design isn’t ideal for display purposes either.

The key idea is that there is implicit layering and explicit layering. In case you didn’t see the same behav-
ior that’s been described in terms of the loaded image hiding the control buttons, you’ll need to modify
the XAML code. Note that the code available for download implements the solution correctly, so if you
are following along with the sample code you’ll need to modify the XAML in Window1.xaml. The incorrect
version of this XAML is as follows:

<Grid>
<Grid.RowDefinitions>

750

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 751

Chapter 17: Windows Presentation Foundation

<RowDefinition Height="45" />
<RowDefinition Height="215*" />
<RowDefinition Height="40" />

</Grid.RowDefinitions>
<Label Margin="0,11,0,0" Name="Label1" HorizontalAlignment="Left" Width="80"

Height="23" VerticalAlignment="Top">Image Path:</Label>
<TextBox Margin="81,13,92,0" Name="TextBox1" Height="21"

VerticalAlignment="Top" />
<Button HorizontalAlignment="Right" Margin="0,11,9,0" Name="ButtonBrowse"

Width="75" Height="23" VerticalAlignment="Top">Images ...</Button>

<Button Grid.Row="2" HorizontalAlignment="Right" Margin="0,0,15,8"
Name="ButtonNext" Width="75" Height="23" VerticalAlignment="Bottom">Next >></Button>

<Button Grid.Row="2" HorizontalAlignment="Left" Margin="15,0,0,8"
Name="ButtonPrev" Width="75" Height="23" VerticalAlignment="Bottom"> Prev</Button>

<Button Grid.Row="2" Margin="150,0,150,8" Name="ButtonLoad" Height="23"
VerticalAlignment="Bottom">View Images</Button>

<Image Grid.Row="1" Grid.RowSpan="2" Margin="0,0,0,0" Name="Image1"
Stretch="Fill" />

</Grid>

In the preceding XAML, the buttons are defined and loaded, and the image control isn’t defined until
later. As a result, the Image control is considered to be layered on top of the button controls. When the
application starts, you might expect that Image control to immediately block the buttons, but it doesn’t.
That’s because there is no image to display, so the Image control essentially stays out of the way, enabling
the controls that would otherwise be behind it to both be displayed and receive input. WPF fully supports
the concept of transparency, as demonstrated later in this chapter.

When there is something to display, the resulting image can block the same buttons that were used to
load it, as shown in Figure 17-7. Because the image isn’t part of the content for any of these buttons, none
of the click events that would occur on the image at this point are raised to those buttons, so the buttons
that are hidden don’t respond. This is different behavior from what you get when you layer controls, and
much closer to what a Windows Forms developer might expect. As a result, you need to be aware, just
as with other user interfaces, of which order controls overlap in the same display area that’s loaded.

Figure 17-7

751

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 752

Chapter 17: Windows Presentation Foundation

Thus, everything you’ve done in the past, both with Windows Forms and ASP.NET, is still possible. On
the surface, the WPF controls have more in common with existing programming models than might at
first seem apparent.

Now that we have uttered heresy against this new UI paradigm, it’s time to examine what is meant by a
paradigm shift with the XAML model. As noted, it starts with a new set of classes and a new declarative
language, but it continues with being able to have much finer control over your application’s UI behavior.

Customizing the User Interface
While you can create a user interface that looks disappointingly similar to a Windows Forms application,
the real power of WPF is the customization it enables you to create for your application. At this point,
our example moves from the ProVB_WPF application to the second application, ProVB_WPF_Step_2. The
goal here is to provide, through Visual Studio 2008, an even cleaner interface — not one that leverages
all of WPF’s power, but one that at least reduces the Windows Forms look and feel of this application.

The first step is to change some of the application, so for starters, a text box with the name of the selected
directory is redundant. You don’t expect users to type that name, but rather to select it, so you can instead
display the currently selected directory on the actual button label. Accordingly, the current label and text
box controls in the form can be removed. Additionally, both at load and following a change to the selected
folder, instead of waiting for the user to request the image folder, just have the application query and pull
the initial image into the application.

Carrying out these changes is relatively simple. The first step is to adjust the existing button handler for
the View Images button. Because this button will be deleted but the actions that the handler implements
are still needed, change the method definition from being an event handler with associated parameters
to being a private method that doesn’t require any parameters:

Private Sub LoadImages()

Next, this method needs to be called when a new directory is chosen, so update the event handler for the
ButtonBrowse_Click to include a call to this method when the name of the directory is updated.

Now you can get rid of the Label and TextBox controls. Eliminating the Label control is easy, as it isn’t
referenced in the code, but the TextBox poses a challenge. You can replace the TextBox control with a
reference to the content of the Button control, but in this case you’ve jumped from the frying pan into the
fire in terms of maintenance. Face it: The button content over time could be anything.

From a coding standpoint, it makes much more sense to store the current path as part of your local
business data. Then, if the goal is to have the label of that button display the current path, fine; but if
for some reason that changes, then you can minimize the changes required to your application code.
Therefore, add a new private value to your class:

Private m_curImagePath As String = ""

Now replace all of the references to TextBox1.Text with the new value of m_curImagePath in your code.
There are likely more than you would expect, and not using the button’s label for this task should make
more sense at this point. Next, you need to update the button label for when the m_curImagePath value

752

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 753

Chapter 17: Windows Presentation Foundation

changes. This occurs only in two places: in the Window1_Loaded event handler and in the ButtonBrowse_
Click event handler.

Finally, update the code in the load event. There are three actions in the current method, and two of
them should be eliminated. The first is where the code is adding the ‘‘<<’’ to the ButtonPrev label. This
label is going to become an image, so get rid of this assignment statement. Similarly, setting the Stretch
property of the Image control within this event is duplicate effort. Instead, update the XAML and set that
property to the desired value directly in the XAML. When you are done, the code for your class and its
first three methods should look similar to the following code, given that there were no changes to the
event handlers for ButtonPrev and ButtonNext:

Class Window1
Private m_imageList As String() = {}
Private m_curIndex As Integer = 0

Private m_curImagePath As String = ""

Private Sub Window1_Loaded(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles MyBase.Loaded

’ Set the default path from which to load images and load them
m_curImagePath = _

Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)
ButtonBrowse.Content = m_curImagePath
LoadImages()

End Sub

Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles ButtonBrowse.Click

Dim folderDialog As System.Windows.Forms.FolderBrowserDialog = _
New System.Windows.Forms.FolderBrowserDialog()

folderDialog.Description = "Select the folder for images."
folderDialog.SelectedPath = m_curImagePath
Dim res As System.Windows.Forms.DialogResult = _

folderDialog.ShowDialog()
If res = System.Windows.Forms.DialogResult.OK Then

m_curImagePath = folderDialog.SelectedPath
ButtonBrowse.Content = m_curImagePath
LoadImages()

End If
End Sub

Private Sub LoadImages()
Image1.Source = Nothing
m_imageList = System.IO.Directory.GetFiles(m_curImagePath, "*.jpg")
m_curIndex = 0
If m_imageList.Count > 0 Then

Image1.Source = New System.Windows.Media.Imaging.BitmapImage(_
New System.Uri(m_imageList(m_curIndex)))

End If
End Sub

753

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 754

Chapter 17: Windows Presentation Foundation

Now that you have updated your code, it’s time to clean up the XAML. First, delete the Label and
TextBox controls and move the button that is currently on the right-hand side of the top section to the
left-hand side. Next, bind the window to both sides of the display and expand its size to allow it to
display the full path. Of course, this is ugly, which means it will be changed as part of the upcoming UI
changes. Next, delete the ShowImages button from the design surface. At this point you could stop, but
to help prepare for other design changes you are going to make, review the placement of the Prev and
Next buttons. Currently, these buttons are tied to the bottom portion of the grid; instead, get rid of that
third grid row definition and center the Prev and Next buttons on the side of the image. At this point, the
designer should look similar to what is shown in Figure 17-8.

Figure 17-8

This is a much simpler and cleaner interface. The XAML is as follows:

<Grid>
<Grid.RowDefinitions>

<RowDefinition Height="25" />
<RowDefinition Height="215*" />

</Grid.RowDefinitions>
<Button HorizontalAlignment="Stretch" Margin="0,0,100,2" Name="ButtonBrowse" >

Images Folder</Button>
<Image Grid.Row="1" Margin="0,0,0,0" Name="Image1" Stretch="Uniform" />
<Button Grid.Row="1" HorizontalAlignment="Right" Name="ButtonNext"

VerticalAlignment="Center" Margin="0,0,15,8" Width="75">Next</Button>
<Button Grid.Row="1" HorizontalAlignment="Left" Name="ButtonPrev"

VerticalAlignment="Center" Margin="17,113,0,116" Width="75"> Prev</Button>
</Grid>

This indicates that the Grid now has only two row definitions, and the Image control was updated to be
located in row 1, as were the Prev and Next buttons.

754

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 755

Chapter 17: Windows Presentation Foundation

Now you are ready to address the next set of changes to make this application look and behave more like
a WPF application. One is to get rid of the ‘‘ugly’’ Windows frame around the application. (Your designer
may want to skin this application later, and that frame just won’t support the look desired.) Second, the
designer wants the Prev and Next buttons modified so that they are circular instead of square and use
images instead of text; and just to be consistent, the designer would like those buttons hidden except
when the user hovers over them.

Removing the Frame
Removing the Windows frame from your application is actually fairly easy to do, as you only need
to set two properties on your form. The first is WindowStyle, which is set to "None"; the second is
AllowTransparency, which is set to "True". You can accomplish that by adding the following line before
the closing bracket of your window attributes:

WindowStyle="None" AllowsTransparency="True">

Once you’ve added this line to your XAML, run the application in the debugger. This is a good point
to test not only what happens based on this change, but also the other changes you made to reduce the
number of controls in your application. The result is shown in Figure 17-9. You probably notice that there
are no longer any controls related to moving, resizing, closing, or maximizing your window. In fact, if
you don’t start the application within the Visual Studio debugger, you’ll need to go to the Task Manager
in order to end the process, as you haven’t provided any way to end this application through the user
interface.

Figure 17-9

In order to be able to skin this application, you need to provide some controls that implement many of
the baseline window behaviors that most form developers take for granted. This isn’t as hard as it might
sound. The main challenge is to add a series of buttons for maximizing and restoring your application
window, closing the application, and, of course, resizing the application. Because your designer wants to
skin the application, you decide that the best way to handle the resize capability is with a single hotspot
in the bottom right corner that represents the resize capability.

755

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 756

Chapter 17: Windows Presentation Foundation

However, your first task is to provide a way to move the window. To do that you are going to add a
rectangular area that maps to the top Grid.Row. This rectangle supports capturing the mouse down
event and then responds if the user drags the window with the mouse button down. Because moving
the window is essentially a mouse down and drag activity, as opposed to a click event, the Rectangle
is a quick and easy way to implement this feature. It takes only a single line of XAML added as the first
control in the grid:

<Rectangle Name="TitleBar" HorizontalAlignment="Stretch" Margin="0,0,0,0"
Stroke="Black" Fill="Green" VerticalAlignment="Stretch" />

Now, of course, you’ve filled the default rectangle with a beautiful green color to help with visibility,
leaving the black border around the control. These two elements help you see where the rectangle is
prior to taking this XAML into a designer and cleaning it up. Aside from this, however, having a control
is only half the equation; the other half is detecting and responding to the drag event.

This is done with the following event handler, which is added using VB:

Private Sub Rectangle_MouseLeftButtonDown(ByVal sender As Object, _
ByVal e As System.Windows.Input.MouseButtonEventArgs) _
Handles TitleBar.MouseLeftButtonDown

Me.DragMove()
End Sub

To recap, that’s a single line of code in the handler calling the built-in method on the Window base
class — DragMove. This method handles dragging the window to a new location. Right now the han-
dler only looks for the dragging to occur from a control named TitleBar, but you could change this to
something else or even change which control was called Titlebar.

Having resolved the first issue, you can move to the second: implementing the three buttons required
for Minimize, Maximize, and Close. In each case the action required only occurs after a Click event.
One of the unique characteristics of a button is that it detects a Click event, so it is the natural choice for
implementing these actions. The buttons in this case should be images, so the first step is to create a few
simple images.

Four image references have been added to the example project. Yes, these images are ugly, but the goal
here isn’t to create flashy design elements. You can literally spend days tweaking minor UI elements,
which shouldn’t be your focus. The focus here is on creating the elements that can be used in the UI. The
color of the buttons, whether the Close button looks like the Windows icon, and so on are irrelevant at
this point. What you care about here is providing a button with basic elements that a designer can later
customize. As a rule, don’t mix design and implementation.

The simplest way for an engineer to create graphics is with the world-famous Paint program. That’s right,
nothing fancy but reasonably meaningful. Create the four necessary .jpg files as 24 × 24 pixel images,
and include an image for the resize handle for the window. Next, access the MyProject page and select
the Resources tab. Then, select each of your .jpg files and add them as Image resources to the project, as
shown in Figure 17-10.

Note that Visual Studio automatically places these items in the Resources folder for your project. Next,
verify that in the properties for each file, the Build Action property is set to Resource. In order for these

756

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 757

Chapter 17: Windows Presentation Foundation

resources to be referenced from within your XAML, they need to be designated as resources, not just
located in this folder. Now do a complete build of your project so the resources are compiled.

Figure 17-10

At this point you can move back to the XAML designer and add the three buttons for Minimize, Max-
imize, and Close. For your purposes, they should reside in the upper-right corner of the display and
be around the same size as your new graphics. Drag a button onto the design surface and then edit the
XAML to place it in the upper-right corner and size it to a height and width of 20 pixels. After doing this,
one easy way to proceed is to simply copy that first button and paste two more buttons just like it into
the XAML. Then all you need to do is change the button names and locations. Voilà — three buttons.

Of course, your goal is for these buttons to have images on them, so you need to add an Image con-
trol to the form and then move it so that it becomes the content for the first button. In this case, just
bind the button to the borders of the button and then add a source to the button. Here, the source
is the local reference to your .jpg resource, so in the case of ButtonClose, the source value is set to
/Resources/20by_Exit.jpg. Add an Image control to the other two buttons and reference the associated
resource in order to get the XAML here:

<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,1,0"
Name="ButtonClose" VerticalAlignment="Top">

<Image Margin="0,0,0,0" Name="Image2" Stretch="Fill"
Source="/Resources/20by_Exit.JPG"/>

</Button>
<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,25,0"

Name="ButtonMax" VerticalAlignment="Top" >
<Image Margin="0,0,0,0" Name="Image3" Stretch="Fill"

Source="/Resources/20by_Max.JPG"/>
</Button>

757

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 758

Chapter 17: Windows Presentation Foundation

<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,47,0"
Name="ButtonMin" VerticalAlignment="Top" >

<Image Margin="0,0,0,0" Name="Image4" Stretch="Fill"
Source="/Resources/20by_Min.JPG"/>

</Button>

At this point the basic XAML elements needed in order to implement a custom shell on this application
are in place. Note that each button has a specific name: ButtonClose, ButtonMax, and ButtonMin. You’ll
need these, and the design can’t change them because you’ll use the button names to handle the Click
event for each button. In each case, you need to carry out a simple action:

Private Sub ButtonMin_Click(ByVal sender As Object, _
ByVal e As RoutedEventArgs) _
Handles ButtonMin.Click

Me.WindowState = WindowState.Minimized
End Sub

Private Sub ButtonMax_Click(ByVal sender As Object, _
ByVal e As RoutedEventArgs) _
Handles ButtonMax.Click

If (Me.WindowState = WindowState.Maximized) Then
Me.WindowState = WindowState.Normal

Else
Me.WindowState = WindowState.Maximized

End If
End Sub

Private Sub ButtonClose_Click(ByVal sender As Object, _
ByVal e As RoutedEventArgs)
Handles ButtonClose.Click

Me.Close()
End Sub

The code is fairly simple. After all, it’s not as if the methods you need aren’t still available; all you are
doing is providing part of the plumbing that will enable your custom UI to reach these methods. Thus,
to minimize the button’s Click event, merely reset the window state to minimized. The real plumbing,
however, was prebuilt for you as part of the way WPF layers controls. Keep in mind that when users click
the minimize button, they are actually clicking on an image. WPF routes the Click event that occurred
on that image.

When you hear about routed events and how powerful they are, remember that they are a capability
built into the way that WPF layers and associates different controls. The routing mechanism in this case
is referred to as bubbling because the event bubbles up to the parent; however, note that routed events
can travel both up and down the control hierarchy.

For the ButtonMax event handler, the code is significantly more complex. Unlike minimizing a window,
which has only one action when the button is pressed, the maximize button has two options. The first
time it is pressed it takes the window from its current size and fills the display. If it is then pressed again,
it needs to detect that the window has already been maximized and instead restore that original size.
As a result, this event handler has an actual If statement that checks the current window state and then
determines which value to assign.

758

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 759

Chapter 17: Windows Presentation Foundation

Finally, the ButtonClose event handler has that one line of code that has been with VB developers pretty
much since the beginning: Me.Close, telling the current window it’s time to close. As noted, there isn’t
much magic here; the actual ‘‘magic’’ occurs with resizing.

Up until this point, changing the default window frame for a set of custom controls has been surprisingly
easy. Now, however, if you are working on your own, you are about to hit a challenge. You need a control
that will respond to the user’s drag action and enable the user to drag the window frame while providing
you with updates on that status.

There isn’t a tool in the Visual Studio Toolbox for WPF that does this, but there are things such as splitter
windows and other resizable controls that have this behavior. WPF was written in such a way that most
of what you consider ‘‘controls’’ are actually an amalgamation of primitive single-feature controls. In
this case, the primitive you are looking for is called a Thumb. The Thumb control is a WPF control, and it is
located in the System.Windows.Controls.Primitives namespace.

Fortunately, you can directly reference this control from within your XAML, and once you have added it
to your XAML, handling the events is just as simple as it is with your other custom UI elements. However,
this control can’t contain another control, and its default look is blank. For the moment, examine the
XAML that is used to create an instance of this control on your form:

<Thumb Grid.Row="1" Cursor="ScrollAll" Name="ThumbResize" Height="20" Width="20"
HorizontalAlignment="Right" VerticalAlignment="Bottom" Margin="0,0,0,0" />

Note a few items of customization. Because the typical location to resize from in most UI models is the
lower right corner, this control is placed in the lower right corner and aligned to the bottom and left
edges of the bottom grid row. The control itself is sized to match the other buttons used to control the
window’s behavior. The name ThumbResize is used to indicate the control, and in this case the property
Cursor is set. The Cursor property enables you to control the display of the mouse cursor when it moves
over the control. There are several options in the enumeration of standard mouse cursors, and for this
control arrows are displayed in every direction.

Before you change the default display any further, it makes sense to wire up an event handler. This
enables you to test the control’s behavior. Just as with the other event handlers, double-clicking on the
control in the designer generates a default event handler for the control. In this case, the event to be
handled is the DragDelta event. As the name implies, this event fires every time the potential size of
the display area is changed. There are multiple ways to handle resizing. For this application, having
the window redisplay as the user drags the mouse is feasible because the amount of time to update the
display is short.

If that weren’t the case, then you would want to override two additional events: DragStarted and
DragOver. These events enable you to catch the window’s start size and the final size based on the end of
the user’s action. You would then only resize the form in the DragOver event instead of in the DragDelta
event. You would still need to override DragDelta because it is in this event that you monitor whether
the window’s minimum and/or maximum size constraints have been met:

Private Sub ThumbResize_DragDelta(ByVal sender As System.Object, _
ByVal e As Primitives.DragDeltaEventArgs) _
Handles ThumbResize.DragDelta

Me.Height += e.VerticalChange
If (Me.Height < Me.MinHeight) Then

759

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 760

Chapter 17: Windows Presentation Foundation

Me.Height = Me.MinHeight
End If
Me.Width += e.HorizontalChange
If (Me.Width < Me.MinWidth) Then

Me.Width = Me.MinWidth
End If

End Sub

The preceding block of code illustrates the code for this event handler. Notice that in this case the
parameter e is specific to the DragDeltaEventArgs structure. This structure enables you to retrieve the
current totals for both the vertical and horizontal change of the current drag location from the current
window’s frame.

This code enables you to see the visible window as the window is dragged because each time the event is
fired, the Height and Width of the window are updated with the changes so that the window is resized.
Note that this code handles checking the minimum height and width of your window. The code to check
for the maximum size is similar. At this point, you can rerun the application to verify that the event is
handled correctly and that as you drag the thumb, the application is resized.

Once you have the ThumbResize control working, the next step is to customize the display of this control.
Unlike a button or other more advanced controls, this control won’t allow you to associate it with an
image or have content. As one of the primitive control types, you are limited to working with things such
as the background color; and just assigning a color to this control really doesn’t meet your needs. Thus,
this is an excellent place to talk about another WPF feature: resources.

Resources
Typically, there comes a point where you want to include one or more resources with your application.
A resource can be anything, including a static string, an image, a graphics element, and so on. In this
case, you want to associate an image with the background of a control that would otherwise not support
an image. Resources enable you to set up a more complex structure than just a color that can then be
assigned to a control’s property. For this simple example you’ll create a simple application-level resource
that uses an image brush, and then have your control reference this resource.

As noted in the introduction to XAML syntax, the definition for x:Key included the label object.
Resources. The implication is that objects of different types can include resources. The scope of a
resource, then, is defined by the scope of the object with which it is defined. For a resource that will
span your application, you can in fact define that resource within your application XAML. Resources
that are to be available within a given window are defined in the XAML file for that window. The fol-
lowing XAML demonstrates adding a resource to the application file of the sample application created
earlier:

<Application x:Class="Application"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

StartupUri="Window1.xaml">
<Application.Resources>

<ImageBrush x:Key="ResizeImage"
ImageSource="/Resources/20by_Arrows.JPG">

</ImageBrush>

760

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 761

Chapter 17: Windows Presentation Foundation

</Application.Resources>
</Application>

Here, you are going to create a new ImageBrush. An image brush, as you would expect, accepts an image
source and then it ‘‘paints’’ this image onto the surface where it is applied. In the XAML, notice that you
assign an x:Key value. As far as XAML is concerned, this name is the identity of the resource. Once this
has been assigned, other controls and objects within your XAML can reference this resource and apply
it to an object or property. Thus, you need to add a reference to this resource to your definition of the
ThumbResize control. This should result in a change to your XAML similar to this:

<Thumb Grid.Row="1" Cursor="ScrollAll" HorizontalAlignment="Right" Height="20"
Background="{StaticResource ResizeImage}" Name="ThumbResize"
Margin="0,0,0,0" Width="20" VerticalAlignment="Bottom" />

This change involves what is assigned to the background property of your Thumb control. As you look
through XAML files, you will often see references to items such as StaticResources, and these can
become fairly complex when you start to work with a tool such as Blend. However, this example should
help you recognize what you are seeing when you look at more complex XAML files. You will also see
references to dynamic resources, which are discussed later in this chapter in conjunction with depen-
dency properties.

Resources can be referenced by several different controls and even other resources. However, resources
aren’t the only, or most maintainable, resource in all instances. Because a resource must be referenced
within each object that uses it, it doesn’t scale well across several dozen controls. In addition, during
maintenance, each time someone edited a XAML file that applied resources to every control, they would
also need to be careful to add that resource to any new controls. Fortunately, XAML borrows other
resource types based on the basic idea of style sheets. WPF supports other types of resources, including
templates and styles, which are discussed later in this chapter. Unlike styles and resources, templates are
applied to all objects of the same type. Coverage of templates is beyond the scope of this chapter, but
they work similarly to resources except that the settings they define are automatically applied to every
control of a given type.

This juncture is an excellent point to test your application. When you start the application, you should
see something similar to Figure 17-11. As noted earlier, at this point the application isn’t exactly going
to win a beauty contest (although the baby might). What you have achieved is a custom framework
that enables you to literally treat an application UI as a blank slate, while still providing the standard
Windows services that users have come to expect. This is important as you start to create applications
that truly push the UI design envelope.

Customizing the Buttons
Your next task is to adjust the buttons in the application. Recall that the ButtonPrev and ButtonNext
controls need to be round and only appear when the mouse is over them. This requires both XAML
updates and new event handlers to hide the buttons. The second task results from the fact that when the
mouse hovers over a button, Windows automatically changes the color of that button. This is a problem
because the graphic guru doesn’t want Windows changing the color of elements in the display.

We’ll begin with making the current buttons round and changing them to use images instead of text.
Making the buttons round in Visual Studio isn’t as hard as it sounds. You can clip the button display and

761

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 762

Chapter 17: Windows Presentation Foundation

thus quickly create a round button. The easiest way to do this is to place the button on a Panel control
and then clip the display region of the panel. You might be tempted to clip the button or place it within
a border region, but neither of these actions will work as expected.

Figure 17-11

What you need to leverage is the capability to layer controls and a panel control for each of these buttons.
In this case, placing a panel on the display and then telling the panel that its contents have been clipped
to fit within a geometric shape enables the clipped control to be displayed with the desired shape. Addi-
tionally, when it comes to hiding the button and only showing it when the mouse is over the control, the
container is the control you need to detect the MouseEnter event. Instead of adding a panel to your appli-
cation window, you are welcome to try the following: Go to the ButtonPrev XAML and set its visibility
to Hidden. Next, from within the XAML, add a new event handler for the MouseEnter event and generate
the stub. Within this stub, add a single line of code to make the button visible and set a breakpoint on
this line of code.

Now start your application. Do you see any good way of knowing when the mouse is over the area
where the control should be? No matter how many times you move across the area where the control
should be, your MouseEnter event handler isn’t called. Similarly, you can stop your application and
change the visibility setting on the button from Hidden to Collapsed. Restart the application. You’ll
get the same result. In fact, short of attempting to track where the mouse is over your entire applica-
tion and then computing the current location of the buttons to determine whether the mouse’s current
position happens to fall in that region, there isn’t a good way to handle this aside from adding another
control. If you chose to run this experiment, you should remove the reference to the event handler from
your XAML — you can leave the button visibility set to either Hidden or Collapsed — and the event
handler code.

The UI trick is that the panel, or in this case the StackPanel control that you use, supports true back-
ground transparency. Thus, even though it doesn’t display, it does register for handling events. Thus, the
StackPanel acts not only as a way to clip the display area available to the button, but also as the control
that knows when the button should be visible. You’ll create MouseEnter and MouseLeave event handlers
for the StackPanel, and these will then tell ButtonNext when to be visible and when to be hidden.

762

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 763

Chapter 17: Windows Presentation Foundation

First, add a StackPanel control to your display. This stack panel, once it has been added to your design
surface, will be easier to manipulate from within the XAML display. Ensure that the StackPanel was cre-
ated in the second grid row. Then ensure that it has both an open and a close tag, and position these tags
so they encapsulate your existing ButtonNext declaration. At this point, the ButtonNext declaration is
constrained by the StackPanel’s display region. Next, ensure that most of the layout settings previously
associated with the button are instead associated with the StackPanel:

<StackPanel Background="Transparent" Margin="0,0,25,0" Height="75" Width="75"
Name="StackPanelNext" Grid.Row="1" HorizontalAlignment="Right"
VerticalAlignment="Center" >

<Button Grid.Row="1" Height="75" Width="75" HorizontalAlignment="Center"
VerticalAlignment="Center" Name="ButtonNext" Visibility="Hidden">Next</Button>
</StackPanel>

The preceding snippet shows how the Margin property that was set on the button is now associated with
the StackPanel. Similarly, the StackPanel has the VerticalAlignment and HorizontalAlignment set-
tings that were previously defined on the button. The Button now places both its vertical and horizontal
alignment settings to Stretch because it is mainly concerned with filling the available area. Finally, note
that both the ButtonNext control and the StackPanelNext control are given a Height and Width of 75
pixels, making them square.

Before you address that issue, it makes sense to set up the event handlers to show and hide ButtonNext;
otherwise, there won’t be anything in the display. Within the code you can create an event handler for
the MouseLeave event and associate it with Handles StackPanelNext.MouseLeave. If you previously
attempted to capture the MouseEnter event with the button itself, you already have that method and all
you need to do is add the Handles clause to the event definition:

Private Sub StackPanelNext_MouseEnter(ByVal sender As System.Object, _
ByVal e As System.Windows.Input.MouseEventArgs) _
Handles StackPanelNext.MouseEnter

ButtonNext.Visibility = Windows.Visibility.Visible
End Sub

Private Sub StackPanelNext_MouseLeave(ByVal sender As System.Object, _
ByVal e As System.Windows.Input.MouseEventArgs) _
Handles StackPanelNext.MouseLeave

ButtonNext.Visibility = Windows.Visibility.Hidden
End Sub

At this point, test your code and ensure that it compiles. If so, make a test run and see whether the button
is hidden and reappears as you mouse over the area where it should be located. If everything works,
you are almost ready to repeat this logic for ButtonPrev. First, however, add the clip region to your
StackPanel control so that the button displays as a circle instead of as a square.

The Clip property wants a geometry for the display region. Creating this requires that you define
another object and then assign this object to that property. Since you’ll want to report this geomet-
ric definition for both buttons, the most efficient way of doing this is to add a resource to your win-
dow. Go to the top of your Window1 XAML, just below the attributes for the window. Add a new XML

763

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 764

Chapter 17: Windows Presentation Foundation

node for <Window.Resources></Window.Resources>. Between the start and end tags, create a new
EllipseGeometry object. A radius is the distance from the center to the edge of a circle, so define your
X and Y radius properties as 34. This is less than the distance between any edge and the center of your
stack panel. Next, center the ellipse on the point 36, 36 — placing it near the center of your StackPanel
and far enough from the edges that neither radius reaches all the way to one of the edges. The resulting
XAML is shown in the following code block:

<Window.Resources>
<EllipseGeometry x:Key="RoundPanel" Center="36, 36" RadiusX="34" RadiusY="34">

</EllipseGeometry>
</Window.Resources>

Define the Clip property for your StackPanel to reference this new resource. As shown in the sample
code, the name for this resource is RoundPanel. Then, add the following property definition to your
StackPanelNext control:

Clip="{StaticResource RoundPanel}"

Next, add the images that will be used on these buttons. From the Resources tab of the MyProject screen,
add two new images: LeftArrow.jpg and RightArrow.jpg. The images here were created with Microsoft
Paint. Of course, both images are also square, but from the standpoint of what will be visible this doesn’t
matter. Once the images have been loaded, the last step is to add an Image control to the ButtonNext
content, similar to what was done earlier for your Minimize, Maximize, and Close buttons:

<Image Margin="0,0,0,0" Stretch="Fill"
Source="/Resources/RightArrow.jpg"></Image>

Once you have defined this you can then copy the StackPanel definition you’ve set up around
ButtonNext and replicate it around ButtonPrev. You’ll need to customize the location settings and then
create event handlers for the StackPanelPrev mouse events that update the visibility of the ButtonPrev
control. The code block that follows shows the complete XAML file to this point:

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="ProVB_WPF" Height="335" Width="415" Name="MainWindow"
WindowStyle="None" AllowsTransparency="True">
<Window.Resources>

<EllipseGeometry x:Key="RoundPanel" Center="36, 36" RadiusX="34" RadiusY="34">
</EllipseGeometry>

</Window.Resources>
<Grid>

<Grid.RowDefinitions>
<RowDefinition Height="25" />
<RowDefinition Height="215*" />

</Grid.RowDefinitions>
<Rectangle Name="TitleBar" HorizontalAlignment="Stretch" Margin="0,0,0,0"

Stroke="Black" Fill="Green" VerticalAlignment="Stretch" />
<Button HorizontalAlignment="Stretch" Margin="0,0,130,2" Name="ButtonBrowse"

>Images Folder</Button>

764

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 765

Chapter 17: Windows Presentation Foundation

<Button Height="20" Width="23" HorizontalAlignment="Right" Margin="0,1,1,0"
Name="ButtonClose" VerticalAlignment="Top">

<Image Margin="0,0,0,0" Name="Image2" Stretch="Fill" Source="/Resources/
20by_Exit.JPG"/>

</Button>
<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,25,0"

Name="ButtonMax" VerticalAlignment="Top" >
<Image Margin="0,0,0,0" HorizontalAlignment="Center" Name="Image3"

Stretch="Fill" Source="/Resources/20by_Max.JPG"/>
</Button>
<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,47,0"

Name="ButtonMin" VerticalAlignment="Top" >
<Image Margin="0,0,0,0" Name="Image4" Stretch="Fill" Source="/Resources/

20by_Min.JPG"/>
</Button>

<Image Grid.Row="1" Margin="0,0,0,0" Name="Image1" Stretch="Uniform" />

<StackPanel Background="Transparent" VerticalAlignment="Center"
Margin="0,0,25,0" Height="75" Name="StackPanelNext" Grid.Row="1"
HorizontalAlignment="Right" Width="75" Clip="{StaticResource RoundPanel}">

<Button Grid.Row="1" HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Name="ButtonNext" Height="75" Width="75"
Visibility="Hidden">

<Image Margin="0,0,0,0" Stretch="Fill" Source="/Resources/
RightArrow.jpg"></Image>

</Button>
</StackPanel>
<StackPanel Background="Transparent" VerticalAlignment="Center"

Margin="25,0,0,0" Height="75" Name="StackPanelPrev" Grid.Row="1"
HorizontalAlignment="Left" Width="75" Clip="{StaticResource RoundPanel}">

<Button Grid.Row="1" HorizontalAlignment="Left" VerticalAlignment="Center"
Name="ButtonPrev" Height="75" Width="75" Visibility="Hidden">

<Image Margin="0,0,0,0" Stretch="Fill" Source="/Resources/i
LeftArrow.jpg"></Image>

</Button>
</StackPanel>

<Thumb Grid.Row="1" Cursor="ScrollAll" Background="{StaticResource
ResizeImage}" Height="20" Width="20" HorizontalAlignment="Right" Margin="0,0,0,0"
Name="ThumbResize" VerticalAlignment="Bottom" />

</Grid>
</Window>

Next, test run the application. Figure 17-12 shows the application with the mouse over the Prev button,
causing that button to appear.

That completes the steps for the code in the ProVB_WPF_Step_2 project.

Expression Blend
The remaining task is to enable the mouse cursor to move over one of the buttons without highlighting it.
This task illustrates two things about WPF. The first is how styles work. More important, however, this
task illustrates a key point: If you want to create a customer user interface with WPF, you need Blend.

765

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 766

Chapter 17: Windows Presentation Foundation

As you’ll see, it is almost a requirement for you to have Blend in order to accomplish what might on the
surface seem like a simple task.

Before proceeding, save a backup copy of your application thus far. The sample code that is provided for
download branches at this point, and moving forward the changes that are shown are available from the
ProVB_WPF_Step_3 project.

Figure 17-12

What probably isn’t obvious is that every project has an implicit style definition if you don’t override it.
For example, when you added a button to your form, how did it know that its background should be a
gradient silver-like color? Where did those hover over and mouse down effects come from?

Dependency Properties
The answer is that every control is associated with one or more styles. As part of your work, you can
create a style just as you created a resource. Styles can be assigned similarly to resources — that is, either
by referencing them by name when assigning a new style to an instance of a control, or by creating a style
that is associated with all instances of a given type. In either case, the Style property of a control is what
is known as a dependency property.

When you hear the term dependency your initial reaction may be that this means the property has a
dependency on some other item. However, in the context of WPF, a better way to think of the term
dependency is that ‘‘it depends on who set that specific value in the object that defines that property.’’
A dependency property isn’t dependent on some external item; the property’s value varies over time
depending upon the last update to the property.

Going into the details of why this occurs is beyond the scope of this chapter. However, dependency
properties are coupled with change notification logic, and play a significant role in things such as ani-
mation and 3-D layout. For the purposes of this chapter, it’s only necessary to understand a few things
about dependency properties. First, they reference resources and styles as dynamic resources, not static
resources. Second, they are identified in the documentation of the WPF components. Finally, as stated
already, the Style property is in fact a dependency property.

766

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 767

Chapter 17: Windows Presentation Foundation

Styles
Styles essentially leverage the concept of resources. With a style you have the option of either referencing
all objects of a common type and setting the default style for that control type or creating a custom style
that is specific to those control instances that reference it. In short, styles provide a mechanism for you to
apply a theme across an application and to override that theme in those specific instances where you want
to. If another developer later adds new elements to your application, the default styles are automatically
applied.

Styles are defined like resources; in fact, they are defined within the same section of your XAML file in
which resources are defined. As with resources, when you define a style at the application level, the style
can be applied across all of the windows in the application. Conversely, if a style is meant to target only
the objects in a given window, page, or user control, then it makes sense to define them at that level.

Rather than provide a simple example of a style, in this case the goal is to understand where the hover
effect for a standard button comes from, so the following code block provides the default style assigned
to each control of type Button. As you might guess, this style was retrieved using Blend; it isn’t available
via Visual Studio. With Blend, you can request that it allow you to edit these default templates, and you
can do so such that your changes will be used only on those controls for which you explicitly assign your
custom style.

<Style x:Key="ButtonFocusVisual">
<Setter Property="Control.Template">
<Setter.Value>

<ControlTemplate>
<Rectangle SnapsToDevicePixels="true" Stroke="Black" StrokeDashArray="1 2"

StrokeThickness="1" Margin="2"/>
</ControlTemplate>

</Setter.Value>
</Setter>

</Style>
<LinearGradientBrush x:Key="ButtonNormalBackground" EndPoint="0,1" StartPoint="0,0">

<GradientStop Color="#F3F3F3" Offset="0"/>
<GradientStop Color="#EBEBEB" Offset="0.5"/>
<GradientStop Color="#DDDDDD" Offset="0.5"/>
<GradientStop Color="#CDCDCD" Offset="1"/>

</LinearGradientBrush>
<SolidColorBrush x:Key="ButtonNormalBorder" Color="#FF707070"/>
<Style x:Key="ButtonStyle1" TargetType="{x:Type Button}">

<Setter Property="FocusVisualStyle" Value="{StaticResource ButtonFocusVisual}"/>
<Setter Property="Background" Value="{StaticResource ButtonNormalBackground}"/>
<Setter Property="BorderBrush" Value="{StaticResource ButtonNormalBorder}"/>
<Setter Property="BorderThickness" Value="1"/>
<Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.

ControlTextBrushKey}}"/>
<Setter Property="HorizontalContentAlignment" Value="Center"/>
<Setter Property="VerticalContentAlignment" Value="Center"/>
<Setter Property="Padding" Value="1"/>
<Setter Property="Template">
<Setter.Value>

<ControlTemplate TargetType="{x:Type Button}">

767

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 768

Chapter 17: Windows Presentation Foundation

<Microsoft_Windows_Themes:ButtonChrome SnapsToDevicePixels="true"
x:Name="Chrome" Background="{TemplateBinding Background}" BorderBrush="{
TemplateBinding BorderBrush}" RenderDefaulted="{TemplateBinding IsDefaulted}"
RenderMouseOver="{TemplateBinding IsMouseOver}" RenderPressed="{TemplateBinding
IsPressed}">

<ContentPresenter SnapsToDevicePixels="{TemplateBinding
SnapsToDevicePixels}" HorizontalAlignment="{TemplateBinding
HorizontalContentAlignment}" Margin="{TemplateBinding Padding}"
VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
RecognizesAccessKey="True"/>

</Microsoft_Windows_Themes:ButtonChrome>
<ControlTemplate.Triggers>

<Trigger Property="IsKeyboardFocused" Value="true">
<Setter Property="RenderDefaulted" TargetName="Chrome" Value="true"/>

</Trigger>
<Trigger Property="ToggleButton.IsChecked" Value="true">
<Setter Property="RenderPressed" TargetName="Chrome" Value="true"/>

</Trigger>
<Trigger Property="IsEnabled" Value="false">
<Setter Property="Foreground" Value="#ADADAD"/>

</Trigger>
</ControlTemplate.Triggers>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

There are two lines of interest in the preceding code block. The first concerns the actual button style
defined. Styles often reference other resources, and similar to early C compilers, references must be
defined before they are actually referenced. Thus, the Style defined in the preceding code block is actu-
ally the last Style entry that starts thus:

<Style x:Key="ButtonStyle1" TargetType="{x:Type Button}">

This line indicates that this set of resources defines a style with the key ButtonStyle1. Because this style
is defined with a key, it is not a default style applied to all controls of the target type. Styles always
define a target type because different control types expect different specific values defined within all of
the detailed elements of a style.

To have every control button use the same style, instead of providing a key for the style ButtonStyle1,
you provide only the type definition. If at some point you want objects of different types to share certain
characteristics, this can be done by defining a resource and then applying it to the style for each of the
types. If these styles are then designated without a key, then they are by default applied to every object
of that type.

All of that is great, but the goal is to find a way to remove the default highlight that occurs as you mouse
over a button. The good news is that the hook that causes that behavior is in fact included in this file;
the bad news is that it references a template that is then assigned to that behavior. The following line of
XAML shows that the RenderMouseOver property is being associated with the template IsMouseOver:

RenderMouseOver="{TemplateBinding IsMouseOver}"

768

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 769

Chapter 17: Windows Presentation Foundation

It is this template that causes the button to change its look to reflect this state. Thus, to have a button
without this default behavior, you need to either define a new template or delete this line of XAML from
your custom style.

You could, of course, take the preceding code block, make the necessary change, and paste it into your
application’s XAML. Certainly that will work if you also carry out the other steps that you need. How-
ever, long term, the preceding block of XAML is specific to controls of the type Button. Moreover, all of
the preceding code was in fact generated from within Blend, so if you needed to customize the runtime
behavior of another control type, you would have to find some way to generate the default style for that
control.

This is where Blend becomes a requirement. Blend enables you to open your application directly. If,
as assumed here, you are using Visual Studio 2008, then you can’t open your projects using the current
release of Blend. Blend 1.0 targets project files based on the Visual Studio 2005 format. In order to directly
open your projects, you must have installed Service Pack 1 for Blend 1.0, which can open Visual Studio
2008 projects.

Normally when you open Blend, you can select any control in your application and generate the XAML
for the default style. Blend will automatically integrate this style information into your XAML file,
enabling you to proceed efficiently. However, in order to better understand styles, you are going to
manually extract some style information generated by Blend for use within Visual Studio 2008.

Figure 17-13 shows the startup screen for Expression Blend. The only reason this screen is being shown is
to highlight the fact that, of the three potential tabs in this window, the Samples tab is selected. This tab
shows the list of samples that ship with Blend. These samples are not installed on disk with Blend. If you
choose to open one of these samples, Blend generates the associated project at that time. What you need
to know is that if you then modify anything in that project, even something as simple as adding a space
to a XAML file, Blend will ask whether you want to create a copy of that sample on your local disk.

Figure 17-13

769

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 770

Chapter 17: Windows Presentation Foundation

Once Blend opens, you are presented with what is probably best described as a rather dark and busy
user interface. Fortunately, you can change the coloring. From the Tools menu, select Options. As shown
in Figure 17-14, this opens the Options window. The first screen is the Theme setting. Changing this from
Expression Dark to Expression Light enables you to see the interface in the same format for which the
screens are being captured for this chapter. There don’t seem to be any settings to reduce how much
information the tool presents at once. In fact, this is one tool that, as these screenshots will demonstrate,
isn’t actually usable at 1024 × 768.

Figure 17-14

Once you’ve opened the tool, the next step is to open or create a project. Although you have a Visual
Studio 2008 project, you’ll want to create a new project to follow this demonstration on the default styling
of a button. Use the File menu and select a new project. When the New Project dialog opens, you have the
option to select a language, but because you only care about the XAML that will be generated, it doesn’t
matter which language or project name you select.

Once you have a new project, the main display area presents a clean white canvas, as shown in
Figure 17-15. In order to add a button to this canvas, ensure that the Button control is selected in the
toolbar. Unlike the Visual Studio toolbar, which lists each control, Blend groups the controls by category,
from which you select a control. When you want to add that control to your display, you first click and
hold the mouse button on that category to open the list of controls for that category. You then verify or
select the control you wish to create.

Once you have selected the control, it displays above that category in the toolbar. You then take your
mouse and draw that control onto your form. The Blend interface is not a drag and drop interface for
adding controls. For this example, you’ll select the button control and then draw that control onto your
user interface.

770

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 771

Chapter 17: Windows Presentation Foundation

Figure 17-15

Notice that unlike the Visual Studio editor that places both the design surface and the source XAML in
the same display, Blend has room for only one of these surfaces. On the right-hand side of the display
are the tabs that enable you to move between the design surface and the source XAML. You could edit
a complete XAML file through this interface, but for now the only goal is to generate and retrieve the
default style information associated with your control. Therefore, once you’ve added your button to this
display, the next step is to ensure that it is selected on the design surface.

After you’ve added a button to your display surface, as shown in Figure 17-16, it is time to look for the
XAML associated with the default style of that button. To generate this XAML, you need to first ensure
that the control is selected. Next, as shown in Figure 17-16, open the Object menu, select the Edit Style
menu option, and then select the Edit a Copy menu option.

Once you have selected this menu item, you’ll be taken to the Create Style Resource dialog shown in
Figure 17-17. This dialog enables you to customize the type of style declaration that is generated and to
determine what level of scope this resource should have.

As Figure 17-17 shows, when you generate your style to include a key, it is specific to those controls that
reference it. However, you can choose to generate a style that applies to all instances of a given control.
The other option allows you to generate a resource that is defined at and within your application scope.
The default is to create a resource at the level of the current window. Both of these options are acceptable;

771

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 772

Chapter 17: Windows Presentation Foundation

however, the designers of Blend foresaw that in the case of very large projects these files could start to
become extremely large and unwieldy. As a result, Blend allows you to create a resource dictionary as
part of your project.

Figure 17-16

Figure 17-17

In short, you can choose to create a new file that is referenced by either your application or window
XAML file, and that contains and isolates your custom style and other resource definitions. The advan-
tages of this method include not only a smaller file size for your key files, but the capability to separate
the different resources into different files for scenarios in which multiple people are working on the same
project. For example, one designer could work on customizing the style for buttons while another person
is customizing the style of the drop-down lists.

772

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 773

Chapter 17: Windows Presentation Foundation

For this example, call the new style NoHover and click OK. Once you complete this dialog, Blend generates
the same style definition that was included earlier. You’ll need to use the XAML tab, shown earlier
in Figure 17-16, to switch to the source view; and just as you’ve seen previously when you created a
resource manually, Blend adds all of the XAML for your default button behavior into this file.

Copy this text from Blend and return to Visual Studio. In Visual Studio, paste the text from Blend directly
into the XAML for Window1.XAML. This places the new style definition into your project and immediately
triggers an error. Typically when this is generated, and in fact in the sample project you just created in
Blend, the Blend engine takes care of hooking your custom style into the project. The first step in this
process is adding a reference to the classes that define that style. Thus, you need to add a new reference
to your project. Figure 17-18 shows the MyProject References page with a newly added reference.

Figure 17-18

The reference at the project level to the PresentationFramework.Aero libraries allows you various source
files to reference this library. However, there is still one more step. You need to reference this library from
within the XAML for Window1. Go to the definition of the window and its attributes at the top of your
XAML file and add another xmlns, also known as an XML namespace declaration:

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:Microsoft_Windows_Themes="clr-namespace:Microsoft.Windows.Themes;
assembly=PresentationFramework.Aero"

Title="ProVB_WPF" Height="335" Width="415" Name="MainWindow"
WindowStyle="None" AllowsTransparency="True">

773

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 774

Chapter 17: Windows Presentation Foundation

The highlighted line is the line that needs to be added to your source file. Once this line is added you’ll
find that the XAML errors that occurred when you pasted the new style definition into your window go
away. This is the same reference that you added to your project, but in this case you are defining for the
XML compiler where to find things such as the definition for Chrome. As with the project reference, Blend
typically handles this automatically for you.

At this point there is only one more manual step in this process. Although you’ve added a new style
to your project, you haven’t referenced that style anywhere. For the purpose of this version, you are just
going to add that style definition to the ButtonBrowse definition. Doing so works just like other resources
you’ve referenced, but in this case the assignment to the Style property is for a dynamic resource:

<Button Style="{DynamicResource NoHover}" HorizontalAlignment="Stretch"
Margin="0,0,130,2" Name="ButtonBrowse" >Images Folder</Button>

You should then be able to compile and run the application and get a result similar to what is shown
in Figure 17-19. Notice that many of the graphics have been updated to be less stark, and include some
basic color gradients. I did this by closing Visual Studio and reopening the project in Blend. Just as
with Visual Studio, you can open the solution file for ProVB_WPF_Step_3. Blend displays your project
on the right-hand side, in a window just like the Visual Studio Solution Explorer, although the tab is
named Project. Open your Window1.xaml file. On the right-hand side you’ll see the tree that represents
the controls used in your XAML.

Figure 17-19

Selecting, for example, the button, you want to then select the Properties tab, which is located next to
your Project tab. Once you have opened this, you have access to many of the display properties of your
control. In the case of ButtonBrowse, I modified its background brush to be transparent. I did this by first
selecting the Brushes section and then selecting the background. I then made certain that a solid brush
was selected from the row of buttons so that I would see the color selector. There are four color options:
Red, Green, and Blue (RGB) are self-explanatory. The remaining value is the A channel, which reflects

774

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 775

Chapter 17: Windows Presentation Foundation

transparency. Setting this to 100 means that you can’t see through that item; setting this to 0 means that
a given value is invisible.

I set the button background to be transparent, and then repositioned it to be centered better in the title
bar. Next, I selected that rectangle called Title Bar to edit its display properties. I went to the brushes
section of the Properties again, but this time I selected a gradient brush for the background. This results
in the color display, but below it you have what looks similar to the ruler in Word. The ruler in Word
is where you manage page elements such as page borders and tabs, and setting gradient colors works
similarly.

On the left side of the toolbar is a little tag; if you drag this tag to the right, the default black color con-
tinues and the gradient section of the display decreases. Similarly, on the right-hand side of the display
is a tag is associated with white. To change the default colors, you select that tag and then edit the color
resources, just as you edit the A channel for transparency, only this time you focus on the RGB values.
However, a gradient brush isn’t limited to two color tags; in the ProVB_WPF_Step_3 project, the left corner
of the title bar is green and the right side is blue.

To replicate this requires four tags on your gradient bar, and to add those tags you simply click on the
bar. Just like adding tabs in Word, you can easily define additional color transition points. By defining
the two inner tags as white and adjusting their position near the edges of the ButtonBrowse display, you
can create a white background for the button while creating a gradient on either side of the title bar.

For the three control buttons, I first created a blue gradient background for each button. However,
because the buttons actually display images, this background isn’t visible, so I expanded each button
and selected the image associated with the display of that button. Each image has an opacity property.
The opacity property is another way of referencing the A channel for the color system, and by reducing
the opacity from 100 percent to 50 percent, the blue background for each button is visible. The result is a
version of the application that matches the final code in ProVB_WPF_Step_3 and looks similar to what is
shown in Figure 17-19.

The next step is to separate out the custom window framework that was the focus of the ProVB_
WPF_Step_2 project created earlier in this chapter. This can act as a base set of application classes that
can be reused across multiple different applications. You can leverage the main application in Window1
just for managing your window and take the logic associated with its contents for displaying images and
move that into a user control.

WPF User Controls
As for the specific controls available in WPF, you’ve seen in this chapter that several are available,
although even those like the button that seem familiar may not work as expected. The fact is that WPF
controls need to fit a different paradigm than the old Windows Forms model. In that model, a control
could be associated with data, and in some cases undergo minor customization to its look and feel. Under
WPF, the concept of a grid is used. It isn’t, however, similar to the old Windows Forms DataGridView in
any way. The WPF grid is a much more generic grid that enables you to truly customize almost every-
thing about its behavior.

Part of the goal of WPF is to make it immaterial which environment your application will work in, Web or
desktop. For example, consider a couple of the bottom-layer elements. The one used most in this chapter
is the Window control. As demonstrated in the first ProVB_WPF example, a window includes a frame and
a title in addition to its content area. You might want to apply a layout grid or a panel — for example,

775

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 776

Chapter 17: Windows Presentation Foundation

a stack panel — within this content area. Conversely, you could take a different tack and place a user
control within this window. In fact, in most cases this is the recommended path because of the other
low-level WPF element — the Page.

A Page control is, of course, the base UI element for a Web application, so it’s easy to see how this
paradigm of the content area can support the layering of two different user-interface implementations.
Once you have defined the base elements of your user interface you can leverage user controls, which are
equally happy on the desktop or in the browser. Of course, creating applications that flexible is a bit more
challenging, unless you are leveraging services. In other words, instead of targeting the file system, you
would target a service that might be local or remote and that would be focused on the appropriate file sys-
tem. Then the application is running on a local computer. It can encapsulate the pages in a Window control;
and when hosted in a browser, it can use those same user controls within the framework of a Page.

Aside from some standard user interface controls, the WPF Toolbox contains nearly all of the controls
that you can find in every other Windows-based user interface model, such as tabs, toolbars, tooltips, text
boxes, drop downs, expanders, and so on. It should also be noted that the WPF namespace consists of
several graphics, ink, and even data and data-bound controls.

Accordingly, the key to working with WPF is taking these basic controls and using WPF user control
projects to create the building blocks that you will then use to create your custom user interfaces. If
the example in this chapter demonstrated anything, it is how time consuming making changes to the
XAML can be.

Summary
A good exercise moving forward with the demonstration code from this chapter is to combine this
code with the Photo Book example provided with Blend. You could combine these elements for a
dynamic page-turning image viewer. The Photo Book sample application includes an excellent user
control, Photobook.xaml, that encapsulates the page-turning effect. Of course, that control is currently
implemented to reference local resources, and the application relies on the Windows default frame. The
challenge isn’t just to leverage this control but to enhance it, to perhaps leverage the full
Windows.Media.MediaPlayer control so that you could display not only saved images but also
recordings.

This chapter focused on familiarizing you with WPF and XAML. WPF implements a new application
development paradigm for user interfaces. You can start designing and planning the next versions of
your applications to use these new controls. Keep in mind that this single chapter hasn’t covered all the
new features you can potentially leverage with WPF — that would require an entire book. Instead, you
should now have an understanding of the base principals of the WPF programming model and how it
integrates with Visual Basic.

WPF is the user interface paradigm of the future for .NET developers. However, while the graphic sup-
port is more powerful, certain elements of this model require you to handle more of what traditionally
was thought of as standard window behavior. It is hoped that this chapter has clarified several key
concepts that you need to know when working with WPF:

❑ XAML is a declarative standard for defining your user interface.

❑ WPF-based applications leverage traditional programming languages such as Visual Basic.

776

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 777

Chapter 17: Windows Presentation Foundation

❑ WPF separates the UI creator from the business logic developer.

❑ Creating the custom window behaviors, while sometimes required, is not especially difficult.

❑ Visual Basic is uniquely positioned with literal XML strings to dynamically generate and display
XAML elements as part of your application.

❑ Blend is a required tool if you are trying to design a custom user interface that includes custom
display characteristics.

This chapter focused on the WPF libraries within the context of building new applications. At this point
you are probably wondering about your existing applications. Chapter 18 continues working with the
WPF libraries, but looks at how to leverage WPF elements in an existing application.

777

Evjen-91361 c17.tex V1 - 04/01/2008 4:28pm Page 778

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 779

Integrating WPF
and Windows Forms

Windows Presentation Foundation (WPF) was introduced in the preceding chapter as Microsoft’s
next-generation solution to graphical user-interface development. In terms of user interfaces, the
transition to this new model will be similar in significance and paradigm shift to the shift from
COM-based Visual Basic to Visual Basic .NET. In other words, the paradigms and syntax famil-
iar to developers of Windows applications are changing, and most of the changes are not back-
wardly compatible. Currently, there are no plans for an automated migration from any existing
user-interface paradigm, forms, or Web, to the new WPF format.

You will need to transition existing application source code to a new technology paradigm. Per-
haps not this year or next, but at some point the WPF paradigm will be used to update the look
and feel of existing applications. How will this transition compare to the last major .NET-related
transition — the one from COM? The original version of Visual Studio .NET included a tool to aid
in migrating code from the COM-based world to .NET. No migration tool will be provided to tran-
sition existing user interfaces to WPF, which should be considered a good thing, considering the
history of the current migration tools.

Instead, Microsoft learned the lesson that migration is both difficult and time consuming and
is best done at the developer’s pace. This is seen in the new Power Pack tools for Visual Basic,
which Microsoft first released in 2006. These tools, which are now on version 2.0, are covered in
Appendix B and are similar in concept to the interop methodology that Microsoft has chosen to
follow with WPF. Microsoft is providing libraries that enable user-interface developers to inte-
grate these two interface models. In the long run, this integration will probably go the way of
COM-Interop, which is to say it will be available but carry such a stigma that people will only
use it when absolutely necessary.

This chapter takes you through several key areas of Windows Forms integration, including the
following:

❑ The Integration Library — code-named Crossbow

❑ Using WPF controls in Windows Forms

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 780

Chapter 18: Integrating WPF and Windows Forms

❑ Using Windows Forms controls in WPF

❑ Interop limitations

The focus of this chapter is how to use these libraries to best enable you to both leverage WPF with
your existing code and leverage your existing code and related Forms-based code with your new WPF
applications. Just as with COM-Interop, the point of this tool is to help you, the developer, transition your
application from Windows Forms to WPF over time, while working with time and budget constraints that
all developers face and potentially waiting on the availability of a control that isn’t available in WPF.

The Integration Library
Crossbow was the code name for the project to provide a library that enables WPF applications to
host Windows Forms controls and vice versa. The Crossbow project’s focus was to provide a .NET
library that developers could leverage; what it created was the WindowsFormsIntegration library.
WindowFormsIntegration.dll supports the Windows.Forms.Integration namespace. This namespace
provides the tools necessary for using WPF and Windows Forms in a single application. At the core of
this namespace are the two classes ElementHost and WindowsFormHost. These two classes provide for
interoperability in the WPF and the Windows Forms environment, respectively.

With Visual Studio 2008, the WindowsFormsIntegration.dll is located with the other .NET library
classes and is imported like any other common namespace. It’s the last item in the list of .NET refer-
ences for most Windows Forms applications. Once it’s imported, you’ll find that the appropriate control
class
for your project type — ElementHost or WindowsFormHost — is available in its respective designer.

The next step in looking at this library is to review a list of the classes and the delegate that make up the
Windows.Forms.Integration namespace:

Class Description

ChildChangedEventArgs This class is used when passing event arguments to
the ChildChanged event. This event occurs on both the
WindowsFormsHost and ElementHost classes when the
content of the Child property is changed.

ElementHost This is the core class for embedding WPF controls within
Windows Forms. Using the Child property, you identify
the top-level object (probably some type of panel) that
will be hosted, and via this object define an area that will
be controlled by that object. The object referenced by the
host can contain other controls, but the host references
only this one.

IntegrationExceptionEventArgs This is the base class for the Integration and Property
Mapping exception classes. It provides the common
implementation used by these classes.

LayoutExceptionEventArgs This class enables you to return information related to a
Layout error within a host class to the hosting
environment, Windows Forms, or WPF.

780

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 781

Chapter 18: Integrating WPF and Windows Forms

Class Description

PropertyMap A property on each of the host classes. It provides a way
for a Windows Form to handle a change that occurs to
one of the properties of a hosted control — for example,
if the size of the ElementHost control has changed and
the form needs to carry out some other action due to this
change. The same capability exists for WPF applications
hosting a WindowsFormHost control.

PropertyMappingExceptionEventArgs Similar to the layout exception class, this enables a
hosted control to return information related to an
exception to the hosting environment.

WindowsFormsHost This is the primary control when a WPF application
wants to host Windows Forms controls. Similar to
ElementHost, the actual Windowsformshost object
contains only a single child — typically, a user control.
This control can then contain an array of controls, but it
is this class that acts as the virtual Windows Form that is
referencing the user control.

PropertyTranslator This is the only delegate in this namespace. It is used
within your Visual Basic code to enable you to translate
properties from a WindowsFormsHost control to a WPF
ElementHost control (and vice versa). Essentially, you
provide it with the property to be updated and the value
to update that property with, and this method passes
that value across the boundary from one UI model to the
other. It works in conjunction with the PropertyMap
class.

These classes enable your application to host controls within its display area. As noted, when you add
the appropriate host class to your display area, the host class contains a child control. Each host con-
tains only a single child control. The 1-to-1 relationship enables the integration library to assign the
display area allocated to the host directly to the child and not be concerned with maintaining position-
ing multiple children but instead be focused on a single target child. Thus, when you assign a control to
a WindowsFormsHost, behind the scenes the Margin, Docking, AutoSizing, and Location properties of
the WindowsFormsHost control are automatically applied to the Child control. The host controls don’t
contain a great deal of logic on the workings of what they are hosting; instead, they just act as an interop
layer. The properties of the child are controlled via the host, and that control can, via user controls and
panels, act as a native host for the other controls that you want to display within the host control.

Similar to the WindowsFormsHost, the ElementHost control automatically controls the display character-
istics associated, including the following properties: Height, Width, Margin, HorizontalAlignment, and
VerticalAlignment. In both cases, the host control acts as the virtual display area for the hosted control,
and you should manage that display area via the host control, not the child it contains. Even though both
controls are targeted at area controls such as user controls and panels, their purpose is to access controls
and features across the UI display models.

781

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 782

Chapter 18: Integrating WPF and Windows Forms

Hosting WPF Controls in Windows Forms
Hosting WPF controls within your existing Windows Forms–based applications enables you to introduce
new functionality that requires the capabilities of WPF without forcing you to entirely rewrite your
application. This way, even as you work on upgrading an existing application to WPF, you aren’t forced
to take on a single large project. As for the integration itself, it isn’t page- or window-based, although you
can introduce new WPF windows to an existing application. The integration is focused on enabling you
to incorporate new user controls into your existing Windows Forms application.

Accordingly, the model is based around the idea that you can encapsulate the functionality of a set of
WPF UI features as a user control. This has a couple of key advantages, the first being that if you’ve
been working with .NET, you are already familiar with user controls and how they function. Once again,
the paradigms of previous user-interface models appear and are reused within WPF. The second big
advantage to modeling this around user controls is that as more of your application moves to WPF, you
don’t have to rewrite the user controls you create today when later they are used within a pure WPF
environment.

With this goal in mind of creating a control that can later be moved from being hosted within a Win-
dows Form application to running unchanged within a WPF application, you can turn your attention to
creating a sample solution.

Creating a WPF Control Library
The first step is to open Visual Studio 2008 and go to the New Project dialog. From here, select the Win-
dows category of Templates and create a new Windows Forms application. For example purposes, you
can name this ProVBWinForm_Interop. As discussed in Chapter 13, Visual Studio uses the template to
create a new Windows Forms project, and you can accept the default of targeting .NET 3.5. At this point,
using the File menu, add a second project to your solution.

Again select the Windows category of Templates and create a new WPF user control library. For
demonstration purposes, use the name WpfInteropCtrl. When you are done, the Visual Studio Solu-
tion Explorer will look similar to what is shown in Figure 18-1. The next step is to add the customization
to the newly created WPF library, after which the Windows Form application will be updated to reference
the integration library and the new WPF user control.

The first customization is to the grid, which is by default in the display area. For this example, you
will change the background color of the grid that fills your control’s display. You will also add a new
Image control to the grid and bind it to the edges using the margin property, not the height or width
properties.

The complete XAML is shown in the following code block:

<UserControl x:Class="UserControl1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Height="300" Width="300">
<Grid Background="LightSteelBlue">

<Image Margin="10,10,10,10" Name="Image1" />
</Grid>

</UserControl>

782

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 783

Chapter 18: Integrating WPF and Windows Forms

Figure 18-1

Now that you have completed your work in XAML, it’s time for some code to accompany your control.
As you can imagine, this WPF control is fairly simple in that you merely want it to display an image. This
means you need a property that represents the path to the image to be displayed, some logic to load that
image, the capability to respond to changes in size, and, for the purposes of custom code, the capability
to prevent increasing the size of the image beyond its original size.

To meet these requirements you add a public property Image to your control that represents the path
to the image that will be loaded. Within the Set logic for this property, you load the image. As noted in
the following code block, the internal value has been set to a specific picture, but to be thorough, take a
minute to review the accessors.

The Get and Set property accessors have been defined, with the Set accessor being customized. Note
that after assigning the path for the current image to the internal value, this accessor then creates a new
local image object and attempts to load the selected image path as a bitmap. WPF comes with converters
for several common image types, but because this is demo code, no real checking is done to ensure the
validity of the path passed in.

Thus, this logic is located within a Try-Catch block, and if the image load fails, the image value in the
control is set to nothing. However, if a valid image path is provided, then the code loads the image and
calls the local ResizeMargins method to handle adding margins based on the size of the image. Similarly,
the SizeChanged event has been handled in this code, and it calls the same private method to ensure that
the image is not stretched beyond its original size:

<UserControl x:Class="UserControl1"
Class UserControl1

’ The default directory and image path are native to Windows Vista.
’ On other operating systems select an appropriate directory.
Private m_Image As String = _

"C:\Users\Public\Pictures\Sample Pictures\Green Sea Turtle.jpg"

Public Property Image() As String

783

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 784

Chapter 18: Integrating WPF and Windows Forms

Get
Return m_Image

End Get
Set(ByVal value As String)

m_Image = value
Dim image As BitmapImage
Try

image = New Windows.Media.Imaging.BitmapImage(_
New Uri("file:///" + m_Image))

’ Add path validation prior to loading the selected file...
Image1.Source = image
’ Resize Margins if appropriate
ResizeMargins(image)

Catch
Image1.Source = Nothing
Return

End Try
End Set

End Property

Private Sub UserControl1_SizeChanged(ByVal sender As Object, _
ByVal e As System.Windows.SizeChangedEventArgs) _
Handles Me.SizeChanged

If Image1.Source IsNot Nothing Then
ResizeMargins(CType(Image1.Source, _

Windows.Media.Imaging.BitmapImage))
End If

End Sub

Public Sub ResizeMargins(ByVal image As Windows.Media.Imaging.BitmapImage)
’ ActualHeight and ActualWidth represent the size of the image control
’ whether margin is set or not. If the actual size is greater than the
’ size of the image reset margins to the max size of the image.
Dim imgH As Double = image.Height
Dim ctrlH As Double = Me.ActualHeight
Dim marginHorizontal As Double
If imgH > ctrlH Then

marginHorizontal = 0
Else

marginHorizontal = (ctrlH - imgH) / 2
End If

Dim imgW As Double = image.Width
Dim ctrlW As Double = Me.ActualWidth
Dim marginSide As Double
If imgW > ctrlW Then

marginSide = 0
Else

marginSide = (ctrlW - imgW) / 2
End If
Image1.Margin = New Thickness(marginSide, marginHorizontal, _

marginSide, marginHorizontal)
End Sub

End Class</UserControl>

784

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 785

Chapter 18: Integrating WPF and Windows Forms

The remaining custom code is in fact the ResizeMargins method. This method is reasonably simple. It
takes the size of the image itself and compares this to the size of the control Image1. Note that this code
references the ActualHeight property. Unlike the Height property, which for controls that are docked
doesn’t provide a valid size, the ActualHeight property reflects the current size of the Image1 control.
If the control size is larger than the original size of the image, then the code adjusts the margins to fill in
around the image.

This completes the definition of your sample WPF control library, so compile your application to ensure
that no errors are pending.

The Windows Forms Application
The next step is to customize the Windows Forms application. Begin by adding the five required refer-
ences that enable you to embed and manipulate this control. They are the four framework libraries —
Windows.Forms.Integration, PresentationCore, PresentationFramework, and WindowsBase — and a
project reference to your custom WpfInteropCtrl library. Open the project properties for your
ProVBWinForm_Interop project and go to the References tab.

Choose Add References, and in the list of available .NET libraries you’ll find all four framework refer-
ences available. Other presentation libraries are also available from this screen, and depending on what
you intend to do in your application you can choose to add other library references to your project as
well. Finally, switch to the Project References tab and add a reference to your local project.

Laying Out Controls on the Form
Now go to the Design mode for the Form1.vb file that was created by the Windows Forms template
when you created this project. Extend the default size of the design surface with the size of your control
in mind, allocating enough room to align three rows of Windows Forms controls above your custom user
control.

Starting at the top, you are going to add a new Button control to the upper-right corner of the display.
The label on this button will be ‘‘Select Folder,’’ and the button should be resized to display its full size.
Next, add a FolderBrowserDialog control to your window; this control doesn’t have a display element
and will be shown below your form. Now add a Label control below your button and change its display
text to ‘‘Image:’’. Once this is in place, add a ComboBox control to the right of this label. Accept the default
name of ComboBox1 and specify that this control should expand as the form widens.

Next, add a Label control to the right of your button, and use the text ‘‘Mask:’’. To the right of the
‘‘Mask:’’ label, add a new combo box, ComboBox2, in the sample code. Go to the context menu for this
ComboBox and select Edit Items to open the edit window. Within this screen add the three options that
will make up the image mask options: No Mask, Ellipse, and Rectangle. Ensure that this control is also
bound to the form’s width.

Below the image ComboBox, in a third row on your Windows Form. add a Label control with the text
‘‘Margin:’’ and a TextBox control with the name TextBoxMargin. Set the default value for this TextBox
to 10 and limit its length to 4 characters in the properties display. Similarly, alongside this text box, add
another Label control with the text ‘‘Corner Radius,’’ and a second TextBox control called
TextBoxRounding. Set the default value for this second text box to 50.

785

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 786

Chapter 18: Integrating WPF and Windows Forms

At this point, add the ElementHost control to your form. Your first reaction might be to drag and drop
your UserControl1 directly onto the form surface. Doing this will appear to work until the first time
you run your project, at which point an error will occur in the designer. This may be repaired in a future
release, but for now the correct step is to go to the Toolbox and drag and drop the control ElementHost1
onto your form. Resize the control to fill up the area in the display. Next, drag and drop your custom
UserControl1 onto the display area of ElementHost1 and use the control’s context menu to have it dock
with the parent container.

The design view for Form1 should look similar to the one shown in Figure 18-2. Note the expanded
Properties pane. This is currently set to display/edit the properties for ElementHost1, focusing on its
reference to the user control.

Figure 18-2

Adding Custom Code to the Form
The next step is to add some custom code to this form. The form will allow you to select a folder con-
taining images and then display any of those images. Additionally, you will have the capability to place
a mask over the image to provide a custom ‘‘frame’’ around the displayed image. The goal is to demon-
strate not only adding a control, but also a scenario in which you need to map one of the ElementHost’s
properties within your code.

The next listing provides the basis for your customization. The first item is to hold onto the current
directory path. The private value is defined on the form class, and a default path for images on Vista
is assigned to this property. Next, the Load event for the form is handled. Within the Load event the

786

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 787

Chapter 18: Integrating WPF and Windows Forms

code will get the list of files from the default directory and then load ComboBox1 with this list of files. It
will select the first file from the list, and then ensure that no mask is selected. Finally, the sample code
calls the method AddPropertyMapping. This call is currently commented on, and you will uncomment it
after the reason for mapping a property is illustrated.

The next method shown in this code block is the event handler for the button’s Click event. This event
handler opens a folder browsing dialog using the control FolderBrowserDialog1. It uses the current
path as the default for this dialog, and if the user selects a new directory for images, it loads the new list
of files into the ComboBox. Note that it doesn’t change the selected image, so a user won’t see a new image
automatically displayed when the list of files is loaded.

Public Class Form1
’ The default directory path is native to Windows Vista.
’ On other operating systems select an appropriate directory.
Private m_path As String = "C:\Users\Public\Pictures\Sample Pictures"
Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles MyBase.Load

For Each filename As String In System.IO.Directory.GetFiles(m_path)
ComboBox1.Items.Add(filename)

Next
ComboBox1.SelectedIndex = 0
Me.ComboBox2.SelectedIndex = 0

‘AddPropertyMapping()
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

FolderBrowserDialog1.SelectedPath = m_path
If (FolderBrowserDialog1.ShowDialog() = _

Windows.Forms.DialogResult.OK) Then
If Not m_path = FolderBrowserDialog1.SelectedPath Then

m_path = FolderBrowserDialog1.SelectedPath
ComboBox1.Items.Clear()
For Each filename As String In _

System.IO.Directory.GetFiles(m_path)
ComboBox1.Items.Add(filename)

Next
End If

End If
End Sub

Private Sub ComboBox1_SelectedIndexChanged(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles ComboBox1.SelectedIndexChanged

Dim x As WpfInteropCtrl.UserControl1 = _
CType(ElementHost1.Child, WpfInteropCtrl.UserControl1)

x.Image = ComboBox1.SelectedItem.ToString
End Sub

End Class

787

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 788

Chapter 18: Integrating WPF and Windows Forms

Finally, the preceding code includes the SelectedIndexChanged event handler, which is called when a
user selects a new item from the list of available image files. This event handler retrieves the selected
image path and passes this path to the child of the ElementHost1 control. Because the child object is
in fact an instance of the class WpfInteropCtrl.UserControl, the generic child property can be cast to
this object, which supports the public property defined as part of the user control’s definition, discussed
earlier.

At this point, if you are following along with the text, you should save, build, and run your project. The
project will work, although to be honest at this point it isn’t doing too much. It illustrates that you can, in
fact, host classes from the System.Windows.Controls namespace in an ElementHost control.

Custom Display Masking
The next part of this demonstration involves altering the display of the ElementHost content based on
code located within the Windows form. Accordingly, the next block of code uses a geometric shape to
overlay a mask above the selected display, making it possible to round the corners or the entire image.
The application of the mask occurs based on the second ComboBox control that was added to the form.

This control was assigned three values, and when one of the values is selected, it triggers the ComboBox2
.SelectedIndexChanged event, which has been handled in this code. The code follows a best practice
and calls a private method that implements the appropriate action based on which value was selected.
The method ApplyMask uses a Select Case statement to identify which of the three fixed maps has been
selected and then either disables the clipping region or enables a clipping region of the appropriate shape.

The clipping region is a WPF property available on WPF controls. The Clip property enables you to over-
lay a given control with a geometric shape that masks out portions of the targeted control. This example
implements two simple masks: an ellipse and a rectangle. Selecting to not have a mask sets the Clip
property for the Child object within the control ElementHost1 to Nothing. However, selecting a mask to
screen out a portion of the display results in the code calling one of a pair of methods, EllipseMask and
RectMask, each of which is focused on a single geometric shape.

These two methods share the majority of their logic, first getting the available display area from
ElementHost1’s Child property. Both then use the TextBoxMargin to allow the user to change the size
of the margin surrounding the clip region. Note that in both cases the margin isn’t applied in the same
manner as setting a margin in WPF was.

Under WPF, a Margin property is defined as a thickness or distance between the edge of the control and
the edge of the display for each of the four sides. Thus, both the left and right or top and bottom values
are the same. However, in the case of a clipping region, the code is defining the size of a rectangle. Thus,
the size of the rectangle needs to account for the fact that moving the top of the image 10 pixels lower
means that the box needs to be 20 pixels smaller on the length of the side so that the 10 pixels from the
top balance the 10 matching pixels on the bottom. This is why the margin is doubled when describing
the height and width and not doubled when defining the upper-left corner location.

Private Sub ComboBox2_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ComboBox2.SelectedIndexChanged

ApplyMask()
End Sub

Private Sub ApplyMask()

788

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 789

Chapter 18: Integrating WPF and Windows Forms

Select Case ComboBox2.SelectedIndex
Case 0

ElementHost1.Child.Clip = Nothing
TextBoxMargin.Enabled = False
TextBoxRounding.Enabled = False

Case 1
EllipseMask()
TextBoxMargin.Enabled = True
TextBoxRounding.Enabled = False

Case 2
RectMask()
TextBoxMargin.Enabled = True
TextBoxRounding.Enabled = True

Case Else
’ An error has occurred. Pick the top entry and try again...
ComboBox2.SelectedIndex = 0

End Select
End Sub

Private Sub EllipseMask()
Dim width As Double = ElementHost1.Child.RenderSize.Width
Dim height As Double = ElementHost1.Child.RenderSize.Height
Dim margin As Double = Convert.ToDouble(TextBoxMargin.Text)

If width = 0 Then
width = ElementHost1.Width

End If

If height = 0 Then
height = ElementHost1.Height

End If
If (margin * 2) > height Or (margin * 2) > width Then

ElementHost1.Child.Clip = Nothing
Else

ElementHost1.Child.Clip = New Windows.Media.EllipseGeometry(_
New Windows.Rect(margin, margin, _
width - (margin * 2), height - (margin * 2)))

End If
End Sub

Private Sub RectMask()
Dim width As Double = ElementHost1.Width
Dim height As Double = ElementHost1.Height
Dim margin As Double = Convert.ToDouble(TextBoxMargin.Text)

If (margin * 2) > height Or (margin * 2) > width Then
ElementHost1.Child.Clip = Nothing

Else
Dim rect As New Windows.Media.RectangleGeometry(_

New Windows.Rect(margin, margin, _
width - (margin * 2), height - (margin * 2)))

rect.RadiusX = Convert.ToDouble(TextBoxRounding.Text)
rect.RadiusY = rect.RadiusX
ElementHost1.Child.Clip = rect

End If

789

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 790

Chapter 18: Integrating WPF and Windows Forms

End Sub

Private Sub TextBoxMargin_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles TextBoxMargin.TextChanged

Dim margin As Double
If Double.TryParse(TextBoxMargin.Text, margin) Then

ApplyMask()
Else

TextBoxMargin.Text = 0
End If

End Sub

Private Sub TextBoxRounding_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles TextBoxRounding.TextChanged

Dim margin As Double
If Double.TryParse(TextBoxRounding.Text, margin) Then

ApplyMask()
Else

TextBoxRounding.Text = 0
End If

End Sub

Aside from the margin, note that in the RectMask function the code also applies the value from the
TextBoxRounding control to the RadiusX and RadiusY properties on the rectangle. These properties
cause the corners of the rectangle to be rounded, so when the rectangle mask is selected, the user is able
to apply a value that changes the amount of corner rounding.

Figure 18-3

790

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 791

Chapter 18: Integrating WPF and Windows Forms

Finally, the preceding code block includes two additional event handlers, one for each of the two text
boxes on the form. The first one handles events related to the margin’s width, and the second event
is related to the radius for rounded corners on your rectangle map. In both cases they call the same
ApplyMask method, which is called when you select a mask.

Now it’s time to build and run your application. After building and running your control, you should see
a display similar to the one shown in Figure 18-3. Superficially, this application works and allows you
to apply different masks and resize these masks. Notice that you are now modifying your WPF controls
from within your Windows Forms application.

However, apply a mask and then resize your main frame. Notice how even though the image was resized,
the mask remained static. Your application isn’t recognizing a change in the size of control ElementHost1
or the need to recalculate the size and location of the mask.

Using a Mapped Property of a WPF Control
There are a couple of potential solutions to this problem; however, for the purposes of this chapter,
which focuses on demonstrating the features of the WindowsFormsIntegration library, the solution
described here uses a mapped property on your control. The ability to access the mapped properties
of WPF controls is one of the features of this library that provides you with greater flexibility. One of
the available properties on control ElementHost1, the PropertyMap collection, enables you to select one
or more of the ElementHost1 properties and essentially register for a custom event handler. This is not
an event handler in the traditional Windows Forms sense of the word, but rather the assignment of a
delegate that is called when that property is changed.

The first step is to go to the load event described earlier in this chapter and uncomment the line that
is calling the method AddPropertyMapping. Once you have uncommented this line, add the functions
shown in the block of code that follows. The first of these is, in fact, the custom function
AddPropertyMapping. This function simply calls the Add method on the PropertyMap collection to assign
a new delegate in the form of a PropertyTranslator from the Windows.Forms.Integration library that
will be called when the Size property of control ElementHost1 is changed. Note that by assigning this
value at the end of the Form1_Load event handler, your application will now make this call whenever the
size of the control changes.

’ The AddPropertynMapping method assigns a custom
’ mapping for the Size property.
Private Sub AddPropertyMapping()

ElementHost1.PropertyMap.Add(_
"Size", _
New Integration.PropertyTranslator(AddressOf OnEHSizeChange))

End Sub

’’’ <summary>
’’’ Called when the ElementHost control’s size is changed
’’’ </summary>
’’’ <param name="h"></param>
’’’ <param name="propertyName"></param>
’’’ <param name="value"></param>
’’’ <remarks>A change of this property requires the form hosting this
’’’ control to adjust the clipping region, so the Property Mapper
’’’ in the Integration library is used to map an "event" handler.</remarks>

791

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 792

Chapter 18: Integrating WPF and Windows Forms

Private Sub OnEHSizeChange(ByVal h As Object, _
ByVal propertyName As String, ByVal value As Object)

ApplyMask()
End Sub

The second method in the preceding block of code is the actual OnEHSizeChange method. Note that this
method has three parameters:

❑ The first is the actual object that has been changed.

❑ The second is the name of the property, so multiple properties could call the same delegate in
your Windows Forms code.

❑ The third is the new value of that property.

For the purposes of this demonstration, because this method will only be called for a single property on
a single object, and because the new value will already be assigned within the control, the only thing
this method needs to do is call the same ApplyMask method that is called elsewhere to correctly apply
the mask to the image. Save, build, and run your example code again and notice how the mapping of
the property has allowed your form to detect when a property on control ElementHost1, or potentially
even on one of the WPF controls within your ElementHost control, has changed. As an exercise, consider
changing this example to detect when the image hosted in control Image1 changes.

This example illustrates how you can create a new WPF component that can be incorporated into an
existing Windows Forms application. You can start the process of migrating your application to WPF
while still focusing the majority of your available resources on adding new capabilities to your existing
application. Migration in this context means you are not forced to attempt to spend the majority of your
cycles rewriting your entire existing interface. Instead, you can integrate these two display methodolo-
gies. The preceding example demonstrates one way of working with a WPF control within a Windows
Forms application.

Other methods for carrying out the same tasks, including adding WPF controls within the context of
the same project, are also possible. However, defining WPF controls within a Windows Forms project
reduces your ability to migrate your control into a larger WPF model. Using the method demon-
strated in this chapter makes that transition easy, as you’ll just be hosting Windows Forms controls
in WPF.

Hosting Windows Forms Controls in WPF
In the case of WPF hosting Windows Forms controls, you might choose to do this if you have an existing
application that relies on certain controls that have not yet been implemented in WPF. For example, the
following table lists some of the controls that are not directly supported in WPF:

BindingNavigator DataGridView DateTimePicker

ErrorProvider HelpProvider ImageList

LinkLable MaskedTextBox MonthCalendar

NotifyIcon PrintDocument PropertyGrid

792

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 793

Chapter 18: Integrating WPF and Windows Forms

In addition to these controls that aren’t directly supported, still other controls may behave differently in
this release. For example, the ComboBox control in WPF doesn’t provide built-in support for
AutoComplete. In other cases, such as the HelpProvider (F1 Help), a control isn’t supported because
the WPF provides an alternative implementation. Even if you have an application in which the existing
user interface takes advantage of one of the preceding control’s features, it is understandable that you
might be interested in integrating your existing investment in the next version of your application.

However, there is a real possibility that if you have heavily leveraged a DataGridView control, you will
want to reuse your existing control, rather than attempt to design a custom replacement.

To walk through the process of using the WindowsFormsHost control, create a new WPF Windows
Application called ProVBWPFInterop. Once you have that application, go to the File menu and use
the Add option to add a second project to this solution. This time, pick a Windows Control Library called
WinFormInteropCtrl. Again, Visual Studio will execute the template to create a new project. At this point
you will have access to a new control called UserControl1. Go to the designer for this new user control
and add a Button control and a DataGridView control to the design surface, as shown in Figure 18-4.

Figure 18-4

Figure 18-4 shows one way to arrange these controls. For the purposes of this demonstration, the Button
control is static; it is there to demonstrate a formatting issue. Next, manually add the two columns shown
in the grid through Visual Studio 2008. The first column will wind up holding string values representing
the available images; this control represents a complex grid but is not meant to be one. Resize the grid to
fit within the display area of your user control. This demonstration focuses on display characteristics, so
there is no need to edit the default code-behind or provide an action for the click event of the button.

793

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 794

Chapter 18: Integrating WPF and Windows Forms

After you have created a new UserControl1, build the project so that the WinFormInteropCtrl has been
compiled and then close this window. The next step is to update your WPF project with the appropriate
references. Three references need to be added. From the Project Settings window, select the References
tab. Add references to the .NET assemblies System.Windows.Forms and Windows.Forms.Integration.
Finally, add a reference to the WinFormInteropCtrl project. After adding these three references, close the
Project Settings window and recompile the project.

Having created a new user control and added the references, open the Window1.xaml file that’s created
with this template. In that XAML file you’ll see the ‘‘Window’’ declaration. This declaration in Visual
Studio imports two namespaces, as discussed in Chapter 17. You’ll want to change the title of the form
to reflect the new form title.

Next, switch to design view and add a button to the upper-right corner of the display. This button will
illustrate two concepts. First, just as with the Windows Forms example, where the code leveraged some
of the WPF classes outside the context of the interop form, this WPF form is going to leverage the same
FolderBrowseDialog that was used in the preceding Windows form. Second, it will help show that
although WPF and Windows Forms share the same control, a button, the default display of that control
is very different, a problem that can be corrected. Label this button Select Folder and add an event
handler for its click event.

Next, add a second button to the upper-right corner of the display. Align the buttons, label this as a
Close button, and then set up an event handler for this button’s click event. Next, drag and drop a
WindowsFormsHost control onto the display. The control should be docked to the bottom bounds of the
display below the two buttons.

Unlike the Windows Forms project earlier in this chapter, the WPF design surface currently does not
support adding your custom user control to this display. At this point you can review the XAML view
within Visual Studio to compare your XAML to the XAML shown in the following listing. Additionally,
your overall display should look similar to Figure 18-5.

<Window x:Class="Window1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="ProVB WPF Interop" Height="300" Width="450" Name="Window1">
<Grid>

<Button Height="23" HorizontalAlignment="Left" Margin="14,14,0,0"
Name="Button1" VerticalAlignment="Top"
Width="100">Select Folder</Button>

<Button Height="23" HorizontalAlignment="Right" Margin="0,14,26,0"
Name="Button2" VerticalAlignment="Top"
Width="75">Close</Button>

<my:WindowsFormsHost Margin="0,50,0,0" Name="WindowsFormsHost1"
xmlns:my="clr-namespace:System.Windows.Forms.Integration;assembly=
WindowsFormsIntegration" />

</Grid>
</Window>

Once you have set up your application’s look, it’s time to start handling some of the code. You’ll notice
in the code that follows there is again a default directory that is the images directory on Vista. The
next method is the Window1_Loaded method. This method is called once when your form is initially
loaded, and it’s a great place to create an instance of your custom user control and assign it as the child

794

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 795

Chapter 18: Integrating WPF and Windows Forms

Figure 18-5

of WindowsFormsHost1. There is also a line that has been commented out in this initial listing; you will
uncomment that line after the first time you test run your application.

The majority of this code is associated with the Button1.Click event handler. In this case, for brevity, the
application doesn’t automatically load the contents of the directory. Instead when you first click Button1,
you’ll be allowed to select the default folder and then have it load the contents of that folder. Notice that
although the grid was created with two columns, this sample code merely loads the document name for
demonstration purposes into the grid that is part of your custom user control:

Class Window1
’ The default directory path is native to Windows Vista.
’ On other operating system’s select an appropriate directory.
Private m_path As String = "C:\Users\Public\Pictures\Sample Pictures"

Private Sub Window1_Loaded(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles MyBase.Loaded

WindowsFormsHost1.Child = New WinFormInteropCtrl.UserControl1()
‘System.Windows.Forms.Application.EnableVisualStyles()

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles Button1.Click

Dim FolderBrowserDialog1 As New System.Windows.Forms.FolderBrowserDialog()
FolderBrowserDialog1.SelectedPath = m_path
If (FolderBrowserDialog1.ShowDialog() = Windows.Forms.DialogResult.OK) Then

m_path = FolderBrowserDialog1.SelectedPath
Dim uc As WinFormInteropCtrl.UserControl1 = _

CType(WindowsFormsHost1.Child, WinFormInteropCtrl.UserControl1)
Dim roid As Integer

795

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 796

Chapter 18: Integrating WPF and Windows Forms

For Each control As System.Windows.Forms.Control In uc.Controls
If TypeOf control Is System.Windows.Forms.DataGridView Then

Dim grid As System.Windows.Forms.DataGridView = control
grid.Rows.Clear()
For Each filename As String In _

System.IO.Directory.GetFiles(m_path)
roid = grid.Rows.Add()
grid.Rows(roid).Cells(0).Value = filename

Next
End If

Next
End If

End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.Windows.RoutedEventArgs) _
Handles Button2.Click

Me.Close()
End Sub

End Class

Finally, note that the last method is the event handler for the Button2.Click event. As you might expect,
this event handles closing the window, an important capability if you hide the outer frame of your
window.

At this point you can run the application. If you are using the downloadable package, you should see
the results shown in Figure 18-6. If you are creating your own copy of the project, you should see similar
results; however, the button in WindowsFormsHost1 should have the incorrect styling.

Figure 18-6

796

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 797

Chapter 18: Integrating WPF and Windows Forms

The first item that should jump out at you is that the WinFormInteropCtrl has lost the Windows XP
visual styling. Referring back to Figure 18-6, you can confirm that this styling was present in the designer
for this control. To resolve this issue, go to the code-behind file for your Window1.xaml file,
Window1.xaml.vb. Within the Window1_Loaded method, either before or after the call to create your user
control as the child of the control WindowsFormsHost1, add the following line of code:

System.Windows.Forms.Application.EnableVisualStyles()

Rerun the application. The visual styling is now correct, but you should also be able to see that WPF and
Windows Forms render this style differently on a similar control. Thus, you’ll want to ensure that you
minimize the number of similar controls you reference on different sides of the host boundary. In this
case, you simply needed to manually reset the display settings for your control to indicate that it should
use the XP styling; however, this styling issue provides an excellent introduction to the next topic.

Private Sub Window1_Initialized(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Initialized

Me.WindowStyle = Windows.WindowStyle.None
Me.AllowsTransparency = True

End Sub

One of the options discussed in the preceding chapter that focused on WPF was the capability to change
the window style so that the traditional border and controls in the frame were hidden. Once this is
done, it is possible to enable transparency and really work on creating a custom look and feel for your
application. However, you’ll note that the preceding code is commented out in the online materials.
That’s because this code is there to illustrate one of the limitations of the WindowsFormsHost control.

If you enable this code, you’ll find that instead of getting your interop control to display, the WPF
rendering engine does not render anything. Thus, while the limitations include not being able to use
certain types of transparency with the control, this provides a much better illustration of how using a
WindowsFormsHost control can impact your overall application look and feel.

Integration Limitations
The challenge with integration is that these two display models don’t operate under the same paradigm.
The Windows Forms world and the WindowsFormsHost are based on window handles, also known as
HWnd structures. WPF, conversely, has only a single HWnd to define its display area for the operating
system and then avoids using HWnds. The thing to remember, then, is that when you are working with
encapsulating a control, that control — be it WPF or Windows Forms — will be affected by the environ-
ment in which it is hosted.

For example, if you host a WPF control inside a Windows Forms application, then the ability to control
low-level graphical display characteristics such as opacity or background may be limited by the rules for
Windows Forms. Unlike WPF, which layers control characteristics supporting the display of a control at a
layer below the current control, Windows Forms controls are contained; when the control doesn’t paint a
background on your WPF control, the display may see that region as not painted and use a black or
white background instead. Note that setting the AllowTransparency property for a control is supported
when hosting WPF controls on a Windows Form. You can play with the background color used for the
ElementHost control introduced earlier in this chapter to get a feel for this issue.

797

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 798

Chapter 18: Integrating WPF and Windows Forms

Recognizing that the host control is often limited by the underlying environment containing it is a good
guide to predicting limitations. Although sometimes the actual characteristics of the parent application
framework might come as a surprise, as you gain more experience with WPF you’ll be able to pre-
dict where issues are likely to exist. For example, you can create both window- and page-based WPF
applications, but these applications work on entirely different models. For example, a page-based WPF
application is stateless. To support this stateless nature in those instances where it finds itself used in a
page-based WPF application, the WindowsFormsHost control fully refreshes the contained control each
time the page is refreshed — losing any user input that you might expect to remain within a Windows
Forms control.

Another issue can arise with the advanced scaling capabilities of WPF. While Windows Forms con-
trols are scalable, Windows Forms doesn’t support the concept of scaling down to 0 and then restoring
properly.

Similarly, be aware of the message loop, current control focus, and property mapping of hosted controls.
The host controls support passing messages to the controls they contain, but across the application the
ordering of messages may not occur in the expected order. Similarly, when a WindowsFormsHost control
has passed focus to a contained control and then the form is minimized, the host control may lose track
of which control within its Child has that focus. As a result, even though the unseen host has the current
focus within your WPF application, there is no visible control with that focus. Finally, there are additional
potential issues with property mapping other than the background color issue described earlier, so you
need to watch the behavior of these controls carefully and be prepared to manually map properties as
shown in this chapter’s first example.

The preceding list is not a complete list of potential issues you may encounter when attempting to inte-
grate these two distinct user-interface implementations. One final warning is that you can’t nest host
controls. Both Windows Forms and WPF can contain multiple-host controls within a given window, but
each of these host controls must be separate and of the same type. Thus, you can’t create a WPF applica-
tion containing a WindowsFormsHost control that contains an ElementHost control. If you’re integrating
controls, try to minimize the number of user controls or panels containing the host controls so that you
don’t accidentally attempt to nest the embedded host controls in another layer of integration.

Summary
This chapter extended the coverage of WPF with regard to how you can leverage WPF within your
Windows Forms applications and, conversely, how you can leverage existing Forms based components
to work with WPF applications. The chapter introduced the Windows.Forms.Integration library and the
ability to have WPF and Windows Forms components provide an application user interface. This library
is similar to other transitional libraries in that the focus is on supporting business needs and not on
complete support for the features of WPF by Windows Forms components within the WPF environment.
Key points from this chapter include the following:

❑ It is possible to start a migration to a WPF-based application interface using the Windows.Forms
.Integration library and the ElementHost class.

❑ Such an interface enables you to embed enhanced image processing into an existing Windows
Forms application.

798

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 799

Chapter 18: Integrating WPF and Windows Forms

❑ Using the WindowsFormsHost class enables you to embed a complex business or third-party
control that you are not ready to replace within a WPF application.

❑ Using the integration library, you can support key business-driven components, but it may affect
the visual appeal of your user interface.

While this chapter introduced the Windows Forms integration library, you may have noticed that the
overall tone isn’t describing this as the next great feature. This isn’t because the integration library didn’t
require significant effort to create or wasn’t well designed. This library is an excellent resource — in
the limited area for which it was designed: to support your transition from Windows Forms to WPF.
Using this library across a few releases of your application as you migrate to a WPF-based user interface
is an excellent way to manage complexity, but always remember that you want to fully commit to the
WPF-based paradigms, which means moving beyond this library.

Finally, if you do have the opportunity to create a complete new user interface and can avoid the added
complexity associated with working with this integration class, then you should.

799

Evjen-91361 c18.tex V1 - 04/01/2008 4:34pm Page 800

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 801

Working with ASP.NET 3.5

The introduction of ASP.NET 1.0/1.1 changed the Web programming model, and ASP.NET 3.5 is
just as revolutionary in the way it increases the productivity of .NET developers. The primary goal
of ASP.NET is to enable you to build powerful, secure, and dynamic applications using the least
possible amount of code. This chapter covers some of the exciting features provided by ASP.NET 3.5
and most of what the ASP.NET technology offers.

The Goals of ASP.NET
ASP.NET 3.5 is a substantial release of the product and an integral part of the .NET Framework 3.5.
This release of ASP.NET heralds a new wave of development for AJAX-enabled applications and
provides a new means of coding a rich application.

ASP.NET 3.5 has specific goals to achieve. These goals are focused around developer productiv-
ity, administration, and management, as well as performance and scalability. After working with
ASP.NET, you will find that these goals have indeed been achieved.

Developer Productivity
Much of ASP.NET’s focus is on productivity. Huge productivity gains were made with the release
of ASP.NET 1.x — could it be possible to expand further on those gains?

The ASP.NET development team’s ongoing goal has been to eliminate much of the tedious coding
that ASP.NET originally required and to make common ASP.NET tasks easier. After the release of
the first version of ASP.NET, the Microsoft team developing ASP.NET has had the goal of reducing
by two-thirds the number of lines of code required for an ASP.NET application. It succeeded: you
will be amazed at how quickly you can create your applications in ASP.NET 3.5.

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 802

Chapter 19: Working with ASP.NET 3.5

Administration and Management
The initial release of ASP.NET focused on the developer, and little thought was given to the people who
had to administer and manage all the ASP.NET applications that were built and deployed. Instead of
working with consoles and wizards as they did in the past, administrators and managers of these new
applications now had to work with unfamiliar XML configuration files such as machine.config and
web.config.

To remedy this situation, if you are using Windows XP, ASP.NET includes a Microsoft Management
Console (MMC) snap-in that enables Web application administrators to edit configuration settings easily
on-the-fly through IIS. If you are using Windows Vista, the IIS Manager has been enhanced to give you
the same capabilities that the MMC snap-in included.

Performance and Scalability
The Microsoft team set out to provide the world’s fastest Web application server. One of the most excit-
ing performance features of ASP.NET 3.5 is the caching capability aimed at exploiting Microsoft’s SQL
Server. This feature is called SQL cache invalidation. Before ASP.NET 2.0, it was possible to cache the
results that came from SQL Server and to update the cache based on a time interval — for example,
every 15 seconds or so. This meant that end users might see stale data if the result set changed sometime
during that 15-second interval.

In some cases, this time interval result set is unacceptable. Ideally, the result set stored in the cache is
destroyed if any underlying change occurs in the source from which the result set is retrieved — in
this case, SQL Server. Ever since ASP.NET 2.0, you can make this happen with the use of SQL cache
invalidation. When the result set from SQL Server changes, the output cache is triggered to change, and
the end user always sees the latest result set. The data presented is never stale.

ASP.NET 3.5 provides 64-bit support, which means you can run your ASP.NET applications on 64-bit
Intel or AMD processors. In addition, because ASP.NET 3.5 is fully backwardly compatible with
ASP.NET 1.0/1.1 and 2.0, you can now take any former ASP.NET application, recompile it on the .NET
Framework 3.5, and run it on a 64-bit processor.

The ASP.NET Compilation System
In ASP.NET, code is constructed and compiled in an interesting way. Compilation in ASP.NET 1.0 was
always tricky. You could build an application’s code-behind files using ASP.NET and Visual Studio,
deploy it, and then watch as the .aspx files were compiled page by page as each page was requested. If
you made any changes to the code-behind file in ASP.NET 1.0, it was not reflected in your application
until the entire application was rebuilt, which meant that the same page-by-page request had to be done
again before the entire application was recompiled.

Everything regarding how ASP.NET 1.0 worked with classes and compilation changed with the release of
ASP.NET 2.0. The mechanics of the ASP.NET compilation system actually begin with how a page is struc-
tured. In ASP.NET 1.0, you constructed your pages either by using the code-behind model or by placing
all the server code inline between <script> tags on your .aspx page. Most pages were constructed using
the code-behind model because this was the default when using Visual Studio .NET 2002 or 2003. It was
quite difficult to create your page using the inline style in these IDEs. If you did, then you were deprived

802

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 803

Chapter 19: Working with ASP.NET 3.5

of the use of IntelliSense, which can be quite a lifesaver when working with the tremendously large
collection of classes that the .NET Framework offers.

ASP.NET 3.5 offers a code-behind model because the .NET Framework 2.0 (the core of the .NET Frame-
work 3.5) offers the capability to work with partial classes (also called partial types). Upon compilation,
the separate files are combined into a single offering. This gives you much cleaner code-behind pages.
The code that was part of the Web Form Designer Generated section of your classes is separated from the
code-behind classes that you create yourself. Contrast this with the ASP.NET 1.0 .aspx file’s requirement
to derive from its own code-behind file to represent a single logical page.

ASP.NET 3.5 applications can include an \App_Code directory in which you place your class’s source.
Any class placed here is dynamically compiled and reflected in the application. Unlike ASP.NET 1.0,
you do not use a separate build process when you make changes. This enables a ‘‘just save and hit’’
deployment model like the one in classic ASP 3.0. Visual Studio Web Developer also automatically pro-
vides IntelliSense for any objects placed in the \App_Code directory, whether you are working with the
code-behind model or are coding inline.

ASP.NET 3.5 provides you with tools that enable you to precompile your ASP.NET applications — both
.aspx pages and code-behind — so that no page within your application experiences latency when it is
retrieved for the first time. This is also a great way to discover any errors in the pages without invoking
every page. Precompiling your ASP.NET 3.5 applications is as simple as using aspnet_compiler.exe
and employing some of the available flags. As you precompile your entire application, you receive error
notifications if errors are found anywhere within it. Precompilation also enables you to deliver only the
created assembly to the deployment server, thereby protecting your code from snooping, unwanted
changes, and tampering after deployment.

Health Monitoring for Your ASP.NET Applications
The built-in health-monitoring capabilities are rather significant features designed to make it easier to
manage a deployed ASP.NET application. Health monitoring provides what the term implies — the
capability to monitor the health and performance of your deployed ASP.NET applications.

ASP.NET health monitoring is built around various health-monitoring events (referred to as Web events)
occurring in your application. Using the health-monitoring system enables you to perform event logging
for Web events such as failed logins, application starts and stops, or any unhandled exceptions. The event
logging can occur in more than one place, so you can log to the Event Log or even back to a database. In
addition to performing this disk-based logging, you can also use the system to e-mail health-monitoring
information.

Besides working with specific events in your application, you can use the health-monitoring system to
take health snapshots of a running application. As with most systems built into ASP.NET 3.5, you can
extend the health-monitoring system and create your own events for recording application information.

Reading and Writing Configuration Settings
Using the WebConfigurationManager class, you can read from and write to the server or application con-
figuration files. This means that you can write and read settings in the machine.config or the web.config
files that your application uses.

803

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 804

Chapter 19: Working with ASP.NET 3.5

The capability to read and write to configuration files is not limited to working with the local machine
in which your application resides. You can also perform these operations on remote servers and
applications.

Of course, a GUI technique exists for performing these read or change operations on the configuration
files at your disposal. Most exciting, however, is that the built-in GUI tools that provide this functionality
(such as the ASP.NET MMC snap-in available for Windows XP) use the WebConfigurationManager class
that is also available for building custom administration tools.

Localization
ASP.NET 3.5 makes it easy to localize applications. In addition to using Visual Studio, you can create
resource files (.resx) that enable you to dynamically change the pages you create based upon the culture
settings of the requester.

ASP.NET also provides the capability to provide resources either application-wide or just to particu-
lar pages in your application through the use of two application folders: App_GlobalResources and
App_LocalResources.

The items defined in any .resx files you create are then accessible directly in the ASP.NET server controls
or programmatically, using expressions such as the following:

<%= Resources.Resource.Question %>

This system is straightforward and simple to implement.

Objects for Accessing Data
One of the more code-intensive tasks in ASP.NET 1.0 was data retrieval. In many cases, this meant
working with several objects. If you have been working with ASP.NET for a while, you know that it is
an involved process to display data from a Microsoft SQL Server table within a DataGrid server control.
For instance, you first had to create a number of new objects, including a SqlConnection object followed
by a SqlCommand object. When those objects were in place, you then created a SqlDataReader to populate
your DataGrid by binding the result to the DataGrid. In the end, a table appeared containing the contents
of the data you were retrieving (such as the Customers table from the Northwind database).

Ever since version 2.0, ASP.NET eliminates this intensive procedure with the inclusion of a set of objects
that work specifically with data access and retrieval. These data controls are so easy to use that you can
access and retrieve data to populate your ASP.NET server controls without writing any code. Even better,
this functionality is not limited to Microsoft’s SQL Server. In fact, several data-source server controls
are at your disposal, and you can create your own. In addition to the SqlDataSource server control,
ASP.NET 3.5 includes the AccessDataSource, XmlDataSource, ObjectDataSource, and SiteMapData
Source server controls. ASP.NET 3.5 also introduces the new LinqDataSource control, which enables
you to work with the LINQ configurations that you design within your applications.

804

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 805

Chapter 19: Working with ASP.NET 3.5

The IDE for Building ASP.NET 3.5 Pages
With ASP.NET 1.0/1.1, you can build your ASP.NET application using Notepad, Visual Studio .NET
2002 and 2003, as well as the hobbyist-focused ASP.NET Web Matrix. In ASP.NET 2.0, you were able to
use Visual Studio 2005. ASP.NET 3.5 adds another IDE to the Visual Studio family — Visual Studio 2008.
Visual Studio 2008 offers some dramatic enhancements to how you build your ASP.NET applications.

Visual Studio 2008 now enables you to target the version of the framework for which you are building
(see Figure 19-1).

Figure 19-1

In the New Web Site dialog, you are provided with a drop-down list in the top right-hand corner that
enables you to choose which version of the framework your ASP.NET should be compiled against.

In addition to this change, AJAX has now become an integrated part of Visual Studio. Prior to Visual
Studio 2008, ASP.NET AJAX Extensions was available only as a separate add-on that would be integrated
with Visual Studio 2005. It is now completely built into the IDE with the release of Visual Studio 2008.

IntelliSense has always been an important tool used by .NET developers to help them quickly build
their applications. With the release of Visual Studio 2008, this capability has also been extended; VS 2008
now supports JavaScript IntelliSense as well as inline JavaScript validation. This means that if your
JavaScript is not correct in the document window, then you will see red and green squiggly lines under
the corresponding code.

In addition to enhanced support for JavaScript and CSS, the IDE now has full support for WCF. This is
true not only for building new WCF services, but also for consuming them. For instance, in addition to
the Add Reference and Add Web Reference capabilities, a new Add Service option is available when you
right-click on the project within the VS 2008 Solution Explorer.

805

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 806

Chapter 19: Working with ASP.NET 3.5

Note that like Visual Studio 2005, the new Visual Studio 2008 builds applications using a file-based
system, not the project-based system used by Visual Studio .NET. When using Visual Studio .NET in the
past, you had to create new projects (for example, an ASP.NET Web Application project). This process
created a number of project files in your application in addition to the Default.aspx page. Because
everything was based on a singular project, it was very difficult to develop applications in a team
environment.

Conversely, Web projects in Visual Studio 2008 are based on a file-system approach. No project files are
included in your project, which makes it easy for multiple developers to work on a single application
without bumping into each other. Other changes are those to the compilation system discussed earlier.
You can build your ASP.NET pages using either the inline model or the code-behind model. Both offer
full IntelliSense capabilities. This, in itself, is powerful and innovative. Figure 19-2 shows IntelliSense
running from an ASP.NET page that is being built using the inline model.

Figure 19-2

Another feature of Visual Studio 2008 borrowed from the ASP.NET Web Matrix is that you do not need
IIS on your development machine. Visual Studio 2008 has a built-in web server that enables you to launch
pages from any folder in your system with relative ease.

Building ASP.NET Applications
If you are new to ASP.NET and are building your first set of applications in ASP.NET 3.5, you may be
amazed by all the wonderful new server controls it provides. You may marvel at how it enables you to
work with data more effectively using the new data providers, and you are sure to be impressed with
how easily you can build in security and personalization.

The outstanding capabilities of ASP.NET 3.5 do not end there, however. This section looks at many
exciting additions that facilitate working with ASP.NET pages and applications. One of the first steps
you, as the developer, should take when starting a project is to become familiar with the foundation you
are building on and the options available for customizing that foundation.

806

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 807

Chapter 19: Working with ASP.NET 3.5

Application Location Options
With ASP.NET 3.5, you have the option — using Visual Studio 2008 — to create an application with a
virtual directory mapped to IIS, or a standalone application outside the confines of IIS. Whereas Visual
Studio .NET forced developers to use IIS for all Web applications, Visual Studio 2008 includes a built-in
web server that you can use for development, much like the one used in the past with the ASP.NET Web
Matrix.

This built-in web server was previously presented to developers as a code sample called Cassini. In
fact, the code for this mini web server is freely downloadable from the ASP.NET team website found at
www.asp.net.

The Built-in Web Server
By default, Visual Studio 2008 builds applications without the use of IIS. You can see this when you select
File ➪ New Web Site in the IDE. By default, the location provided for your application is C:\Users\
<username>\Documents\Visual Studio 2008\WebSites if you are using Windows Vista (shown in
Figure 19-3). It is not C:\Inetpub\wwwroot\ as it would have been in Visual Studio .NET 2002/2003.
By default, any site that you build and host inside C:\Users\<username>\Documents\Visual Studio
2008\WebSites (or any other folder you create) uses the built-in web server that is part of Visual Studio
2008. If you use the built-in web server from Visual Studio 2008, you are not locked into the WebSites
folder; you can create any folder you want in your system.

Figure 19-3

To change this default, you have a handful of options. Click the Browse button in the New Web Site
dialog. This brings up the Choose Location dialog, shown in Figure 19-4.

If you continue to use the built-in web server that Visual Studio 2008 provides, you can choose a new
location for your Web application from this dialog. To do so, select a new folder and save your .aspx
pages and any other associated files to this directory. When using Visual Studio 2008, you can run your
application completely from this location. This way of working with the ASP.NET pages you create
is ideal if you don’t have access to a web server, as you can build applications that don’t reside on a
machine with IIS. This means that you can even develop ASP.NET applications on operating systems
such as Windows XP Home Edition.

807

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 808

Chapter 19: Working with ASP.NET 3.5

Figure 19-4

IIS
From the Choose Location dialog, you can also change where your application is saved and which type
of web server your application employs. To use IIS (as you probably did when you used Visual Studio
.NET 2002/2003), select the Local IIS button in the dialog. This changes the results in the text area to
display a list of all the virtual application roots on your machine.

To create a new virtual root for your application, highlight Default Web Site. Three buttons appear at the
top of the dialog (see Figure 19-5). From left to right, the first button in the top-right corner of the dialog
is for creating a new Web application — or a virtual root. This button is shown as a globe inside a box.
The second button enables you to create virtual directories for any of the virtual roots you created. The
third button is a Delete button, which you can use to delete any selected virtual directories or virtual
roots on the server.

After you have created the virtual directory you want, click the Open button. Visual Studio 2008 then
goes through the standard process to create your application. Now, however, instead of depending on the
built-in web server from ASP.NET 3.5, your application will use IIS. When you invoke your application,
the URL now consists of something like http://localhost/MyWeb/Default.aspx, which means it is
using IIS.

FTP
Not only can you choose the type of web server for your Web application when you create it using the
Choose Location dialog, you can also decide where to locate your application. The previous options built
applications that resided on your local server. The FTP option enables you to actually store and even code
your applications while they reside on a server somewhere else in your enterprise — or on the other side

808

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 809

Chapter 19: Working with ASP.NET 3.5

of the planet. You can also use the FTP capabilities to work on different locations within the same server.
This built-in capability provides a wide range of possible options and represents a major enhancement to
the IDE. Previously difficult to accomplish, this task is now quite simple, as illustrated in Figure 19-6.

Figure 19-5

Figure 19-6

To create your application on a remote server using FTP, simply provide the server name, the port to use,
and the directory — as well as any required credentials. If the correct information is provided, then Visual
Studio 2008 accesses the remote server and creates the appropriate files for the start of your application,
just as if it were doing the job locally. From this point on, you can open your project and connect to the
remote server using FTP.

809

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 810

Chapter 19: Working with ASP.NET 3.5

Websites Requiring FrontPage Extensions
The last option in the Choose Location dialog is the Remote Site option (see Figure 19-7). Clicking this
button provides a dialog that enables you to connect to a remote or local server that utilizes FrontPage
Extensions.

Figure 19-7

The ASP.NET Page Structure Options
ASP.NET 3.5 provides two paths for structuring the code of your ASP.NET pages. The first path utilizes
the code-inline model. This model should be familiar to classic ASP 2.0/3.0 developers because all the
code is contained within a single .aspx page. The second path uses ASP.NET’s code-behind model,
which enables the separation of the page’s business logic from its presentation logic. In this model, the
presentation logic for the page is stored in an .aspx page, whereas the logic piece is stored in a separate
class file: .aspx.vb or .aspx.cs.

One of the major complaints about Visual Studio .NET 2002 and 2003 is that it forces you to use the
code-behind model when developing your ASP.NET pages because it does not understand the code-
inline model. The code-behind model in ASP.NET was introduced as a new way to separate the
presentation code and business logic. Example 1 (named because it is referred to later) shows a typical
.aspx page generated using Visual Studio .NET 2002 or 2003:

Example 1

<%@ Page Language="vb" AutoEventWireup="false" Codebehind="WebForm1.aspx.vb"
Inherits="WebApplication.WebForm1"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

<title>WebForm1</title>
<meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.1">
<meta name="CODE_LANGUAGE" content="Visual Basic .NET 7.1">

810

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 811

Chapter 19: Working with ASP.NET 3.5

<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="vs_targetSchema"

content="http://schemas.microsoft.com/intellisense/ie5">
</HEAD>
<body>

<form id="Form1" method="post" runat="server">
<P>What is your name?

<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>

<asp:Button id="Button1" runat="server" Text="Submit"></asp:Button></P>
<P><asp:Label id="Label1" runat="server"></asp:Label></P>

</form>
</body>

</HTML>

Example 2, shown next, shows the code-behind file created within Visual Studio .NET 2002/2003 for the
.aspx page:

Example 2

Public Class WebForm1
Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

’This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub
Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
Protected WithEvents Button1 As System.Web.UI.WebControls.Button
Protected WithEvents Label1 As System.Web.UI.WebControls.Label

’NOTE: The following placeholder declaration is required by the Web Form
Designer.

’Do not delete or move it.
Private designerPlaceholderDeclaration As System.Object

Private Sub Page_Init(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Init
’CODEGEN: This method call is required by the Web Form Designer
’Do not modify it using the code editor.
InitializeComponent()

End Sub

#End Region

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
’Put user code to initialize the page here

End Sub

811

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 812

Chapter 19: Working with ASP.NET 3.5

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
Label1.Text = "Hello " & TextBox1.Text

End Sub
End Class

In this code-behind page from ASP.NET 1.0/1.1, you can see that a lot of the code that developers never
have to deal with is hidden in the #Region section of the page. Because ASP.NET 3.5 is built on top
of .NET 3.5, which in turn is utilizing the core .NET 2.0 Framework, it can take advantage of the .NET
Framework’s partial class capability. Partial classes enable you to separate your classes into multiple class
files, which are then combined into a single class when the application is compiled. Because ASP.NET 3.5
combines all this page code for you behind the scenes when the application is compiled, the code-behind
files you work with in ASP.NET 3.5 are simpler in appearance and the model is easier to use. You are
presented with only the pieces of the class that you need.

Inline Coding
With the .NET Framework 1.0/1.1, developers went out of their way (and outside Visual Studio .NET)
to build their ASP.NET pages inline and avoid the code-behind model that was so heavily promoted
by Microsoft and others. Visual Studio 2008 (as well as Visual Web Developer 2008) enables you to
build your pages easily using this coding style. To build an ASP.NET page inline instead of using the
code-behind model, you simply select the page type from the Add New Item dialog and ensure that
the Place Code in Separate File check box is unchecked. You can access this dialog by right-clicking the
project or the solution in the Solution Explorer and selecting Add New Item (see Figure 19-8).

Figure 19-8

812

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 813

Chapter 19: Working with ASP.NET 3.5

In fact, many page types have options for both inline and code-behind styles. The following table shows
your inline options when selecting files from this dialog:

File Options Using Inline Coding File Created

Web Form .aspx file

AJAX Web Form .aspx file

Master Page .master file

AJAX Master Page .master file

Web User Control .ascx file

Web Service .asmx file

By using the Web Form option with a few controls, you get a page that encapsulates not only the presen-
tation logic, but also the business logic:

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<script runat="server">
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = "Hello " & Textbox1.Text
End Sub

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Simple Page</title>
</head>
<body>

<form id="form1" runat="server">
What is your name?

<asp:Textbox ID="Textbox1" Runat="server"></asp:Textbox>

<asp:Button ID="Button1" Runat="server" Text="Submit"
OnClick="Button1_Click" />

<p><asp:Label ID="Label1" Runat="server"></asp:Label></p>
</form>

</body>
</html>

From this example, you can see that all the business logic is encapsulated in between <script> tags. The
nice feature of the inline model is that the business logic and the presentation logic are contained within
the same file. Some developers find that having everything in a single viewable instance makes working
with the ASP.NET page easier.

813

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 814

Chapter 19: Working with ASP.NET 3.5

Visual Studio 2008 also provides IntelliSense when working with the inline coding model and
ASP.NET 3.5. Before .NET 2.0, this capability did not exist. Visual Studio .NET 2002/2003 forced you
to use the code-behind model; and even if you rigged it so your pages were using the inline model,
you lost all IntelliSense capabilities.

Code-Behind Model
The other option for constructing your ASP.NET 3.5 pages is to build your files using the new code-
behind model. We say ‘‘new’’ because even though the concept of the code-behind model is the same
as it was in previous versions, the code-behind model used in ASP.NET 3.5 is quite different.

The preferred method is the code-behind model, rather than the inline model. Using this method employs
the proper segmentation between presentation and business logic in many cases. Many of the examples
in the ASP.NET chapters use an inline coding model because the inline model works well for showing
an example in a book in one listing. Therefore, even though the example uses an inline coding style, it is
recommended that you employ the code-behind model.

To create a new page in your ASP.NET solution that uses the code-behind model, select the page type
you want from the New File dialog. To build a page using the code-behind model, first select the page
in the Add New Item dialog and ensure that the Place Code in Separate File check box is checked. The
following table shows the options for pages that use the code-behind model:

File Options Using Code-Behind File Created

Web Form .aspx file .aspx.vb or .aspx.cs file

AJAX Web Form .aspx file .aspx.vb or .aspx.cs file

Master Page .master file .master.vb or .master.cs file

AJAX Master Page .master.vb or .master.cs file

Web User Control .ascx file.ascx.vb or .ascx.cs file

Web Service .asmx file.vb or .cs file

The idea of using the code-behind model is to separate the business logic and presentation logic into
separate files. This makes it easier to work with your pages, especially if you are working in a team
environment where visual designers work on the UI of the page and coders work on the business logic
that sits behind the presentation pieces. In the earlier code labeled Examples 1 and 2, you saw how
pages using the code-behind model in ASP.NET 1.0/1.1 were constructed. To see the difference in
ASP.NET 3.5, look at how its code-behind pages are constructed in the following two examples, the
first for the presentation piece and the second for the code-behind piece:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

814

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 815

Chapter 19: Working with ASP.NET 3.5

<head runat="server">
<title>Simple Page</title>

</head>
<body>

<form id="form1" runat="server">
What is your name?

<asp:Textbox ID="Textbox1" Runat="server"></asp:Textbox>

<asp:Button ID="Button1" Runat="server" Text="Submit"
OnClick="Button1_Click" />

<p><asp:Label ID="Label1" Runat="server"></asp:Label></p>
</form>

</body>
</html>

Code-behind example:

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Label1.Text = "Hello " & TextBox1.Text
End Sub

End Class

The .aspx page using this ASP.NET 3.5 code-behind model has some attributes in the Page directive that
you should pay attention to when working in this mode. The first is the CodeFile attribute. This is an
attribute in the Page directive and is meant to point to the code-behind page used with this presentation
page. In this case, the value assigned is Default.aspx.vb or Default.aspx.cs. The second attribute
needed is the Inherits attribute. This attribute was available in previous versions of ASP.NET but was
infrequently used before ASP.NET 2.0. This attribute specifies the name of the class that is bound to the
page when the page is compiled. The directives are simple enough in ASP.NET 3.5.

Take another look at the preceding code-behind page. It is rather simple in appearance because of the
partial class capabilities that .NET 3.5 provides. You can see that the class created in the code-behind file
uses partial classes, employing the Partial keyword in Visual Basic 2008. This enables you to simply
place the methods that you need in your Page class. In this case, you have a button-click event and
nothing else.

ASP.NET 3.5 Page Directives
ASP.NET directives are part of every ASP.NET page. You can control the behavior of your ASP.NET
pages by using these directives. Here is an example of the Page directive:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

Eleven directives are at your disposal in your ASP.NET pages or user controls. You use these directives
in your applications whether the page uses the code-behind model or the inline coding model. Basically,

815

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 816

Chapter 19: Working with ASP.NET 3.5

these directives are commands that the compiler uses when the page is compiled. Directives are simple
to incorporate into your pages, and are written in the following format:

<%@ [Directive] [Attribute=Value] %>

A directive is opened with <%@ and closed with %>. It is best to put these directives at the top of your
pages or controls because this is traditionally where developers expect to see them (although the page
still compiles if the directives are located elsewhere. Of course, you can also add more than a single
attribute to your directive statements, as shown here:

<%@ [Directive] [Attribute=Value] [Attribute=Value] %>

The following table describes the directives at your disposal in ASP.NET 3.5:

Directive Description

Assembly Links an assembly to the page or user control to which it is associated

Control Page directive meant for use with user controls (.ascx)

Implements Implements a specified .NET Framework interface

Import Imports specified namespaces into the page or user control

Master Enables you to specify a master page — specific attributes and values to
use when the page parses or compiles. This directive can be used only with
master pages (.master).

MasterType Associates a class name to a page in order to get at strongly typed
references or members contained within the specified master page

OutputCache Controls the output caching policies of a page or user control

Page Enables you to define page-specific attributes and values to use when the
page parses or compiles. This directive can be used only with ASP.NET
pages (.aspx).

PreviousPageType Enables an ASP.NET page to work with a postback from another page in
the application

Reference Links a page or user control to the current page or user control

Register Associates aliases with namespaces and class names for notation in custom
server control syntax

ASP.NET Page Events
ASP.NET developers consistently work with various events in their server-side code. Many of the events
that they work with pertain to specific server controls. For instance, if you want to initiate an action when

816

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 817

Chapter 19: Working with ASP.NET 3.5

the end user clicks a button on your Web page, you create a button-click event in your server-side code,
as shown in the following example:

Protected Sub Button1_Click(sender As Object, e As EventArgs) _
Handles Button1.Click

Label1.Text = TextBox1.Text
End Sub

In addition to the server controls, developers also want to initiate actions at specific moments when the
ASP.NET page is being either created or destroyed. The ASP.NET page itself has always had a number
of events for these instances. Following is a list of all the page events you could use in ASP.NET 1.0/1.1:

❑ AbortTransaction

❑ CommitTransaction

❑ DataBinding

❑ Disposed

❑ Error

❑ Init

❑ Load

❑ PreRender

❑ Unload

One popular page event from this list is Load, which is used in VB as shown in the following code (called
Example 4 for later reference):

Example 3

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Response.Write("This is the Page_Load event")
End Sub

Besides the page events just shown, ASP.NET 3.5 provides the following events beyond the ones offered
in ASP.NET 1.0/1.1:

❑ InitComplete — Indicates that initialization of the page is completed

❑ LoadComplete — Indicates that the page has been completely loaded into memory

❑ PreInit — Indicates the moment immediately before a page is initialized

❑ PreLoad — Indicates the moment before a page has been loaded into memory

❑ PreRenderComplete — Indicates the moment directly before a page has been rendered in the
browser

817

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 818

Chapter 19: Working with ASP.NET 3.5

You construct these page events just as you did the previously shown page events. For example, you use
the PreInit event as follows:

<script runat="server" language="vb">
Protected Sub Page_PreInit(ByVal sender As Object, _

ByVal e As System.EventArgs)

Page.Theme = Request.QueryString("ThemeChange")
End Sub

</script>

If you create an ASP.NET 3.5 page and turn on tracing, you can see the order in which the main page
events are initiated:

1. PreInit

2. Init

3. InitComplete

4. PreLoad

5. Load

6. LoadComplete

7. PreRender

8. PreRenderComplete

9. Unload

With the addition of these options, you can work with the page and the controls on the page at many
different points in the page-compilation process.

ASP.NET Application Folders
When you create ASP.NET applications, note that ASP.NET 3.5 uses a file-based approach. You can add
as many files and folders as you want within your application without recompiling each and every time a
new file is added to the overall solution. ASP.NET 3.5 includes the capability to automatically precompile
your ASP.NET applications dynamically.

ASP.NET 1.0/1.1 compiled everything in your solution into a DLL. This is no longer necessary be-
cause ASP.NET applications now have a defined folder structure. By using the ASP.NET defined folders,
you can have your code automatically compiled for you, your application themes accessible through-
out your application, and your globalization resources available whenever you need them. The following
sections show how these defined folders work.

\App_Code Folder
The \App_Code folder is meant to store your classes, .wsdl files, and typed datasets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the \App_Code folder is that when you place something inside it, Visual Studio 2008 automatically

818

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 819

Chapter 19: Working with ASP.NET 3.5

detects this and compiles it if it is a class (such as a .vb file), automatically creates your XML Web service
proxy class (from the .wsdl file), or automatically creates a typed dataset for you from your .xsd files.

After the files are automatically compiled, these items are then immediately available to any of your
ASP.NET pages in the same solution. Let’s look at how to employ a simple class in your solution using the
\App_Code folder. Create an \App_Code folder by right-clicking the solution and choosing Add ASP.NET
Folder ➪ App_Code. Note that Visual Studio 2008 treats this folder differently than the other folders in
your solution. The \App_Code folder appears in a different color (gray), with a document pictured next to
the folder icon (see Figure 19-9).

Figure 19-9

After the \App_Code folder is in place, right-click the folder and select Add New Item. The Add New
Item dialog that appears provides a few options for the types of files that you can place within this folder.
These include an AJAX-enabled WCF Service, a Class file, a LINQ to SQL Class, a Text file, a DataSet, a
Report, and a Class Diagram if you are using Visual Studio 2008. Visual Web Developer 2008 offers only
the Class file, the Text file, and the DataSet file. For the first example, select the file of type Class and
name the class Calculator.vb or Calculator.cs. The following listing shows how the Calculator class
should appear:

Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

End Class

Simply save this file and it is now available for use in any pages in your solution. To see this in action,
create a simple .aspx page that contains a single Label server control. The following example shows the
code to place within the Page_Load event to make this new class available:

<%@ Page Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

819

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 820

Chapter 19: Working with ASP.NET 3.5

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim myCalc As New Calculator()
Label1.Text = myCalc.Add(12, 12)

End Sub
</script>

When you run this .aspx page, note that it utilizes the Calculator class without any problem, with no
need to compile the class before use. In fact, right after saving the Calculator class in your solution or
moving the class to the \App_Code folder, you also immediately receive IntelliSense capability on the
methods that the class exposes (as illustrated in Figure 19-10).

Figure 19-10

To see how Visual Studio 2008 works with the \App_Code folder, open the Calculator class again in the
IDE and add a Subtract method. Your class should now appear as shown here:

Imports Microsoft.VisualBasic

Public Class Calculator
Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return (a + b)
End Function

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) _
As Integer

Return (a - b)
End Function

End Class

820

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 821

Chapter 19: Working with ASP.NET 3.5

After adding the Subtract method to the Calculator class, save the file and return to your .aspx page.
Note that the class has been recompiled by the IDE, and the new method is now available to your
page (see Figure 19-11). You see this directly in IntelliSense.

Figure 19-11

Everything placed in the \App_Code folder is compiled into a single assembly. The class files placed
within the \App_Code folder are not required to use a specific language. For example, even if all the
pages of the solution are written in Visual Basic 2008, the Calculator class in the \App_Code folder of
the solution can be built in C# (Calculator.cs).

Because all the classes contained in this folder are built into a single assembly, you cannot have classes of
different languages sitting in the root \App_Code folder, as in the following example:

\App_Code
Calculator.cs
AdvancedMath.vb

Having two classes made up of different languages in the \App_Code folder (as shown here) causes an
error to be thrown. It is impossible for the assigned compiler to work with two different languages.
Therefore, in order to work with multiple languages in your \App_Code folder, you must make some
changes to the folder structure and the web.config file.

First, add two new subfolders to the \App_Code folder: a \VB folder and a \CS folder. This gives you the
following folder structure:

\App_Code
\VB

Add.vb
\CS

Subtract.cs

821

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 822

Chapter 19: Working with ASP.NET 3.5

This still will not correctly compile these class files into separate assemblies, at least not until you make
some additions to the web.config file. Most likely, you do not have a web.config file in your solution
at the moment, so add one through the Solution Explorer. After it is added, change the <compilation>
node so that it is structured as shown here:

<compilation>
<codeSubDirectories>

<add directoryName="VB"></add>
<add directoryName="CS"></add>

</codeSubDirectories>
</compilation>

Now that this is in place in your web.config file, you can work with each of the classes in your ASP.NET
pages. In addition, any C# class placed in the CS folder is now automatically compiled just like any of the
classes placed in the VB folder. Because you can add these directories in the web.config file, you are not
required to name them VB and CS; you can use whatever names you want.

\App_Data Folder
The \App_Data folder holds the data stores used by the application. It is a good spot to centrally store
all the data stores your application might use. The \App_Data folder can contain Microsoft SQL Express
files (.mdf files), Microsoft Access files (.mdb files), XML files, and more.

The user account utilized by your application has read and write access to any of the files contained
within the \App_Data folder. By default, this is the ASP.NET account. Another reason to store all your
data files in this folder is that much of the ASP.NET system — from the membership and role manage-
ment systems to the GUI tools such as the ASP.NET MMC snap-in, the new IIS Manager, and ASP.NET
Web Site Administration Tool — is built to work with the \App_Data folder.

\App_Themes Folder
Themes are a way of providing a common look and feel to your site across every page. You implement
a theme by using a .skin file, CSS files, and images used by the server controls of your site. All these
elements can make a theme, which is then stored in the \App_Themes folder of your solution. By storing
these elements within the \App_Themes folder, you ensure that all the pages within the solution can take
advantage of the theme and easily apply its elements to the controls and markup of the page.

\App_GlobalResources Folder
Resource files are string tables that can serve as data dictionaries for your applications when they require
changes to content based on things such as changes in culture. You can add Assembly Resource files
(.resx) to the \App_GlobalResources folder, and they are dynamically compiled and made part of the
solution for use by all your .aspx pages in the application. When using ASP.NET 1.0/1.1, you had to
use the resgen.exe tool and compile your resource files to a .dll or .exe for use within your solution.

822

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 823

Chapter 19: Working with ASP.NET 3.5

It is considerably easier to deal with resource files in ASP.NET 3.5. Simply place your application-wide
resources in this folder to make them instantly accessible.

\App_LocalResources
Even if you are not interested in constructing application-wide resources using the \App_Global
Resources folder, you may want resources that can be used for a single .aspx page. You can do this very
simply by using the \App_LocalResources folder.

Add page-specific resource files to the \App_LocalResources folder by constructing the name of the
.resx file in the following manner:

❑ Default.aspx.resx

❑ Default.aspx.fi.resx

❑ Default.aspx.ja.resx

❑ Default.aspx.en-gb.resx

The resource declarations used on the Default.aspx page are retrieved from the appropriate file in
the \App_LocalResources folder. By default, the Default.aspx.resx resource file is used if another
match is not found. If the client is using a culture specification of fi-FI (Finnish), however, then the
Default.aspx.fi.resx file is used instead.

\App_WebReferences
The \App_WebReferences folder is a new name for the Web References folder used in earlier versions of
ASP.NET. Using the \App_WebReferences folder, you have automatic access to the remote Web services
referenced from your application.

\App_Browsers
The \App_Browsers folder holds .browser files, which are XML files used to identify the browsers mak-
ing requests to the application, and to understand the capabilities of these browsers. You can find a list
of globally accessible .browser files at C:\Windows\Microsoft.NET\Framework\v2.0.50727\CONFIG\
Browsers. If you want to change any part of these default browser definition files, just copy the appro-
priate .browser file from the Browsers folder to your application’s \App_Browsers folder and change the
definition.

Global.asax
To add a new item to your ASP.NET application, you use the Add New Item dialog. From here, you
can add a Global Application Class to your applications. This adds a Global.asax file, which is used

823

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 824

Chapter 19: Working with ASP.NET 3.5

by the application to hold application-level events, objects, and variables — all of which are accessible
application-wide. Active Server Pages developers had something similar with the Global.asa file.

Your ASP.NET applications can have only a single Global.asax file, which supports a number of items.
When it is created, you are given the following template:

<%@ Application Language="VB" %>

<script runat="server">

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
’ Code that runs on application startup

End Sub

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
’ Code that runs on application shutdown

End Sub

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
’ Code that runs when an unhandled error occurs

End Sub

Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
’ Code that runs when a new session is started

End Sub

Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
’ Code that runs when a session ends.
’ Note: The Session_End event is raised only when the sessionstate mode
’ is set to InProc in the Web.config file. If session mode is
’ set to StateServer
’ or SQLServer, the event is not raised.

End Sub

</script>

Just as you can work with page-level events in your .aspx pages, you can work with overall application
events from the Global.asax file. In addition to the events listed in this code example, the following list
details some of the events you can structure inside this file:

❑ Application_Start — Called when the application receives its first request. This is an ideal spot
in your application to assign any application-level variables or state that must be maintained
across all users.

❑ Session_Start — Similar to the Application_Start event except that this event is fired when an
individual user accesses the application for the first time. For instance, the Application_Start
event fires once when the first request comes in, which gets the application going, but
Session_Start is invoked for each end user who requests something from the application for
the first time.

❑ Application_BeginRequest — Although it is not listed in the preceding template provided by
Visual Studio 2008, the Application BeginRequest event is triggered before each and every

824

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 825

Chapter 19: Working with ASP.NET 3.5

request that comes its way. This means that before a request coming into the server is processed,
Application_BeginRequest is triggered and dealt with before any processing of the request
occurs.

❑ Application_AuthenticateRequest — This is triggered for each request and enables you to set
up custom authentications for a request.

❑ Application_Error — Triggered when an error is thrown anywhere in the application by any
user. This is an ideal spot to provide application-wide error handling or an event recording an
error to the server’s Event Logs.

❑ Session_End — When running in InProc mode, this event is triggered when an end user leaves
the application.

❑ Application_End — Triggered when the application comes to an end. Most ASP.NET develop-
ers won’t often use this event because ASP.NET does such a good job of closing and cleaning
up any objects left around.

In addition to the global application events to which the Global.asax file provides access, you can also
use the following directives in this file, just as you can with other ASP.NET pages:

❑ @Application

❑ @Assembly

❑ @Import

These directives perform in the same way when they are used with other ASP.NET page types. An
example of using the Global.asax file is shown in the next code example. It demonstrates how to log
when the ASP.NET application domain shuts down. When this happens, the ASP.NET application
abruptly comes to an end, so place any logging code in the Application_End method of the Global
.asax file:

<%@ Application Language="VB" %>
<%@ Import Namespace="System.Reflection" %>
<%@ Import Namespace="System.Diagnostics" %>

<script runat="server">

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
Dim MyRuntime As HttpRuntime = _

GetType(System.Web.HttpRuntime).InvokeMember("_theRuntime", _
BindingFlags.NonPublic Or BindingFlags.Static Or _
BindingFlags.GetField, _
Nothing, Nothing, Nothing)

If (MyRuntime Is Nothing) Then
Return

End If
Dim shutDownMessage As String = _

CType(MyRuntime.GetType().InvokeMember("_shutDownMessage", _
BindingFlags.NonPublic Or BindingFlags.Instance Or _
BindingFlags.GetField, _
Nothing, MyRuntime, Nothing), System.String)

825

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 826

Chapter 19: Working with ASP.NET 3.5

Dim shutDownStack As String = _
CType(MyRuntime.GetType().InvokeMember("_shutDownStack", _
BindingFlags.NonPublic Or BindingFlags.Instance Or _
BindingFlags.GetField, _
Nothing, MyRuntime, Nothing), System.String)

If (Not EventLog.SourceExists(".NET Runtime")) Then
EventLog.CreateEventSource(".NET Runtime", "Application")

End If

Dim logEntry As EventLog = New EventLog()
logEntry.Source = ".NET Runtime"
logEntry.WriteEntry(String.Format(_

"shutDownMessage={0}\r\n\r\n_shutDownStack={1}", _
shutDownMessage, shutDownStack), EventLogEntryType.Error)

End Sub

</script>

With this code in place in your Global.asax file, start your ASP.NET application. Next, do something to
cause the application to restart. For example, you could make a change to the web.config file while the
application is running. This triggers the Application_End event, resulting in the addition to the Event
Log shown in Figure 19-12.

Figure 19-12

826

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 827

Chapter 19: Working with ASP.NET 3.5

ASP.NET Server Controls
In the past, one of the difficulties in working with classic ASP was that you were completely in charge
of the entire HTML output from the browser by virtue of the server-side code you wrote. Although
this might seem ideal, it created a problem because each browser interpreted the HTML given to it in a
slightly different way.

The two main browsers at the time were Internet Explorer and Netscape Navigator. This meant that not
only did developers have to be cognizant of the browser type to which they were outputting HTML, they
also had to take into account which versions of those particular browsers might be making a request to
their application. Some developers resolved the issue by creating two separate applications. When an
end user made an initial request to the application, the code made a browser check to see what browser
type made the request. Then, the ASP page redirected the request: down one path for an IE user or down
another path for a Netscape user.

Because requests came from so many different versions of the same browser, developers typically
designed for the lowest possible version that might be used to visit the site. Everyone loses when the
lowest common denominator is used as the target. This technique ensures that the page is rendered
properly in most browsers making a request, but it forces developers to dumb down their applications.
If applications are built for the lowest common denominator, then developers can’t take advantage of the
more advanced features offered by newer browser versions.

ASP.NET server controls overcome these obstacles. When using the server controls provided
by ASP.NET, you are not specifying the HTML to be output from your server-side code. Rather,
you are specifying the functionality you want to see in the browser, letting the ASP.NET determine
the output to be sent to the browser.

When a request comes in, ASP.NET examines the request to see which browser type is making it, as
well as the version of the browser, and then it produces HTML output specific to that browser. This
process is accomplished by processing a User Agent header retrieved from the HTTP request to sniff the
browser. This means that you can now build for the best browsers out there without worrying about
whether features will work in the different browsers making requests to your applications. Because of
these capabilities, these server controls are often referred to as smart controls.

Types of Server Controls
ASP.NET provides two distinct types of server controls: HTML server controls and web server controls.
Each type of control is quite different; and as you work with ASP.NET, you will see that much of the
focus is on the web server controls. This does not mean that HTML server controls have no value. They
do provide you with many capabilities — some that web server controls do not.

If you are wondering which is the better control type to use, it depends on what you are trying to achieve.
HTML server controls map to specific HTML elements. You can place an HtmlTable server control on

827

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 828

Chapter 19: Working with ASP.NET 3.5

your ASP.NET page that works dynamically with a <table> element. On the other hand, web server
controls map to specific functionality that you want on your ASP.NET pages. This means an <asp:Panel>
control might use a <table> or an <IFrame> element — it depends on the capability of the requesting
browser.

The following table summarizes some advice regarding when to use HTML server controls and when to
use web server controls:

Control Type Use This Control Type . . .

HTML Server When converting traditional ASP 3.0 Web pages to ASP.NET Web pages
and speed of completion is a concern. It is a lot easier to change your
HTML elements to HTML server controls than it is to change them to web
server controls.

When you prefer a more HTML-type programming model.

When you want to explicitly control the code that is generated for the
browser.

Web Server When you require a richer set of functionality to achieve complicated page
requirements.

When you are developing Web pages that will be viewed by a multitude of
browser types and that require different code based upon these types.

When you prefer a more Visual Basic–type programming model that is
based on the use of controls and control properties.

Of course, some developers like to separate certain controls from the rest and place them in their own
categories. For instance, you may see references to the following types of controls:

❑ List controls — Enable data to be bound to them for display purposes of some kind

❑ Rich controls — Controls, such as the Calendar control, that display richer content and capa-
bilities than other controls

❑ Validation controls — Controls that interact with other form controls to validate the data that
they contain

❑ Mobile controls — Specific to output to devices such as mobile phones, PDAs, and more

❑ User controls — Not really controls, but page templates that you can work with as you would a
control on your ASP.NET page

❑ Custom controls — Controls that you build yourself and use in the same manner as the supplied
ASP.NET server controls that are included with the default install of ASP.NET 3.5

When you are deciding between HTML server controls and web server controls, remember that no
hard-and-fast rules exist about which type to use. You might find yourself working with one control
type more than another, but certain features are available in one control type that might not be available
in the other. If you are trying to accomplish a specific task and do not see a solution with the control type
you are using, another control type may very well hold the answer. Keep in mind that you can mix and

828

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 829

Chapter 19: Working with ASP.NET 3.5

match these control types. Nothing prevents you from using both HTML server controls and web server
controls on the same page or within the same application.

Building with Server Controls
You have a couple of ways to use server controls to construct your ASP.NET pages. You can use tools that
are specifically designed to work with ASP.NET 3.5 that enable you to visually drag and drop controls
onto a design surface and manipulate the behavior of the control, or you can work with server controls
directly through code input.

Working with Server Controls on a Design Surface
Visual Studio 2008 enables you to visually create an ASP.NET page by dragging and dropping visual
controls onto a design surface. You can get to this visual design option by clicking the Design tab at
the bottom of the IDE when viewing your ASP.NET page. You can also show the Design mode and the
Source code view in the same document window. This is a new feature available in Visual Studio 2008.
When the Design view is present, you can place the cursor on the page in the location where you want
the control to appear and then double-click the control you want in the Toolbox window of Visual Studio.
Unlike the 2002 and 2003 versions of Visual Studio, Visual Studio 2008 (like Visual Studio 2005) does an
excellent job of not touching your code when switching between the Design and Source tabs.

In the Design view of your page, you can highlight a control, and the properties for the control appear
in the Properties window. For example, Figure 19-13 shows a Button control selected, with its properties
displayed in the Properties window on the right.

Figure 19-13

Changing the properties in the window changes the appearance or behavior of the highlighted control.
Because all controls inherit from a specific base class (WebControl), you can highlight multiple controls
at the same time and change the base properties of all the controls at once by holding down the Ctrl key
as you make your control selections.

829

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 830

Chapter 19: Working with ASP.NET 3.5

Coding Server Controls
You also can work from the code page directly. Because many developers prefer this, it is the default
when you first create your ASP.NET page. Hand-coding your own ASP.NET pages may seem to be a
slower approach than simply dragging and dropping controls onto a design surface, but it isn’t as slow as
you might think. You get plenty of assistance in coding your applications from Visual Studio 2008. As you
start typing in Visual Studio, the IntelliSense features kick in and help you with code auto-completion.
Figure 19-14, for example, shows an IntelliSense drop-down list of possible code completion statements
that appeared as the code was typed.

Figure 19-14

The IntelliSense focus is on the most commonly used attribute or statement for the control or piece of
code that you are working with. Using IntelliSense effectively as you work is a great way to code with
speed.

Like Design view, the Source view of your page enables you to drag and drop controls from the Toolbox
onto the code page itself. For example, dragging and dropping a TextBox control onto the code page
produces the same results as dropping it on the design page:

<asp:TextBox ID="TextBox1" Runat="server"></asp:TextBox>

You can also highlight a control in Source view, or simply place your cursor in the code statement of
the control, and the Properties window displays the properties of the control. You can apply properties
directly in the Properties window of Visual Studio, and these properties are dynamically added to the
code of your control.

Working with Server Control Events
ASP.NET uses more of a traditional Visual Basic event model than classic ASP. Instead of working with
interpreted code, you are actually coding an event-based structure for your pages. Classic ASP used

830

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 831

Chapter 19: Working with ASP.NET 3.5

an interpreted model: When the server processed the Web page, the code of the page was interpreted
line by line in a linear fashion whereby the only ‘‘event’’ implied was the page loading. This meant that
occurrences you wanted to initiate early in the process were placed at the top of the page.

Today, ASP.NET uses an event-driven model. Items or coding tasks are initiated only when a particular
event occurs. A common event in the ASP.NET programming model is Page_Load, shown here:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
’ Code actions here

End Sub

Not only can you work with the overall page — as well as its properties and methods at particular
moments in time via page events — you can also work with the server controls contained on the page
through particular control events. For example, one common event for a button on a form is Button_
Click, illustrated here:

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
’ Code actions here

End Sub

The event shown here is fired only when the end user actually clicks the button on the form that has
an OnClick attribute value of Button1_Click. Therefore, not only does the event handler exist in the
server-side code of the ASP.NET page, but that handler is also hooked up using the OnClick property of
the server control in the associated ASP.NET page markup, as shown here:

<asp:Button ID="Button1" Runat="server" Text="Button"
OnClick="Button1_Click" />

How do you fire these events for server controls? You have a couple of ways to go about it. The first
way is to pull up your ASP.NET page in Design view and double-click the control for which you want to
create a server-side event. For instance, double-clicking a Button server control in Design view creates the
structure of the Button1_Click event within your server-side code, whether the code is in a code-behind
file or inline. This creates a stub handler for that server control’s most popular event.

That said, be aware that a considerable number of additional events are available to the Button control
that you cannot access by double-clicking the control. To access them, pull up the page that contains the
server-side code, select the control from the first drop-down list at the top of the IDE, and then choose
the particular event you want for that control in the second drop-down list. Figure 19-15 shows the event
drop-down list displayed. You might, for example, want to work with the Button control’s PreRender
event, rather than its Click event. The handler for the event you choose is placed in your server-
side code.

The second way to create server-side events for your server controls is from the Properties window of
Visual Studio. This works only from Design view of the page. In Design view, highlight the server control
that you want to work with. The properties for the control will appear in the Properties window, along
with an icon menu. One of the icons, the Events icon, is represented by a lightning bolt within the IDE
(see Figure 19-16).

Clicking the Events icon pulls up a list of events available for the control. Simply double-click one of the
events to have that event structure created in your server-side code. After you have an event structure in
place, you can program specific actions you want to occur when the event is fired.

831

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 832

Chapter 19: Working with ASP.NET 3.5

Figure 19-15

Events

Figure 19-16

832

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 833

Chapter 19: Working with ASP.NET 3.5

Manipulating Pages and Server Controls with
JavaScript

Developers generally like to include some of their own custom JavaScript functions in their ASP.NET
pages. You have a couple of ways to do this. The first is to apply JavaScript directly to the controls on
your ASP.NET pages. For example, the following simple Label server control displays the current date
and time:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
TextBox1.Text = DateTime.Now.ToString()

End Sub

The problem is that the date and time displayed are correct for the web server that generated the page.
If the user is in the Pacific time zone (PST) and the web server is in the Eastern time zone (EST), the page
won’t be correct for that viewer. To ensure that the time is correct for anyone visiting the site, regardless
of where they reside in the world, you can employ JavaScript to work with the TextBox control:

<%@ Page Language="VB" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Using JavaScript</title>
</head>
<body onload="javascript:document.forms[0][’TextBox1’].value=Date();">

<form id="form1" runat="server">
<div>

<asp:TextBox ID="TextBox1" Runat="server" Width="300"></asp:TextBox>
</div>
</form>

</body>
</html>

In this example, even though you are using a standard TextBox server control from the web server control
family, you can access this control using JavaScript that is planted in the onload attribute of the <body>
element. The value of the onload attribute actually points to the specific server control via an anonymous
function by using the value of the ID attribute from the server control: TextBox1. You can get at other
server controls on your page by employing the same methods. This bit of code produces a text box with
the current date and time inside of it.

ASP.NET uses the Page.ClientScript property to register and place JavaScript functions on your ASP
.NET pages. Three of these methods are reviewed here. Other methods and properties are available
through the ClientScript object (which references an instance of System.Web.UI.ClientScript
Manager), but these are the most useful ones. You can find the rest in the SDK documentation.

The Page.RegisterStartupScript and Page.RegisterClientScriptBlock methods from the
.NET Framework 1.0/1.1 are now considered obsolete. Both of these options for registering scripts
required a key/script set of parameters. Because two separate methods were involved, key name colli-
sions were common. The Page.ClientScript property is meant to bring all the script registrations
under one umbrella, making your code less error-prone.

833

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 834

Chapter 19: Working with ASP.NET 3.5

Using Page.ClientScript.RegisterClientScriptBlock
The RegisterClientScriptBlock method enables you to place a JavaScript function at the top of the
page. This means that the script is in place for the startup of the page in the browser. Its use is
shown here:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim myScript As String = _
"function AlertHello() { alert(’Hello ASP.NET’); }"

Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), "MyScript", _
myScript, True)

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Adding JavaScript</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Button ID="Button1" Runat="server" Text="Button"
OnClientClick="AlertHello()" />

</div>
</form>

</body>
</html>

You create the JavaScript function AlertHello as a string called myScript. Then, using the Page.Client
Script.RegisterClientScriptBlock method, you program the script to be placed on the page. The two
possible constructions of the RegisterClientScriptBlock method are as follows:

❑ RegisterClientScriptBlock (type, key, script)

❑ RegisterClientScriptBlock (type, key, script, script tag specification)

The preceding example specifies the type as Me.GetType, the key, the script to include, and then a
Boolean value setting of True so that .NET places the script on the ASP.NET page with <script> tags
automatically. When running the page, you can view the source code for the page to see the results:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head><title>

Adding JavaScript
</title></head>
<body>

<form method="post" action="JavaScriptPage.aspx" id="form1">
<div>
<input type="hidden" name="__VIEWSTATE"

834

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 835

Chapter 19: Working with ASP.NET 3.5

value="/wEPDwUKMTY3NzE5MjIyMGRkiyYSRMg+bcXi9DiawYlbxndiTDo=" />
</div>

<script type="text/javascript">
<!--
function AlertHello() { alert(’Hello ASP.NET’); }// -->
</script>

<div>
<input type="submit" name="Button1" value="Button"
onclick="AlertHello();"
id="Button1" />

</div>
</form>

</body>
</html>

From this, you can see that the script specified was indeed included on the ASP.NET page before the
page code. Not only were the <script> tags included, but the proper comment tags were added around
the script (so older browsers will not break).

Using Page.ClientScript.RegisterStartupScript
The RegisterStartupScript method is similar to the RegisterClientScriptBlock method. The big
difference is that the RegisterStartupScript places the script at the bottom of the ASP.NET page
instead of at the top. In fact, the RegisterStartupScript method even takes the same constructors
as the RegisterClientScriptBlock method:

❑ RegisterStartupScript (type, key, script)

❑ RegisterStartupScript (type, key, script, script tag specification)

What difference does it make where the script is registered on the page? A lot, actually! If you have a bit
of JavaScript that is working with one of the controls on your page, in most cases you want to use the
RegisterStartupScript method instead of RegisterClientScriptBlock. For example, you would use
the following code to create a page that includes a simple <asp:TextBox> control that contains a default
value of Hello ASP.NET:

<asp:TextBox ID="TextBox1" Runat="server">Hello ASP.NET</asp:TextBox>

Then use the RegisterClientScriptBlock method to place a script on the page that utilizes the value in
the TextBox1 control:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myScript As String = "alert(document.forms[0][’TextBox1’].value);"
Page.ClientScript.RegisterClientScriptBlock(Me.GetType(), "myKey", myScript, _

True)
End Sub

Running this page results in the JavaScript error shown in Figure 19-17.

835

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 836

Chapter 19: Working with ASP.NET 3.5

Figure 19-17

The error occurs because the JavaScript function fired before the text box was even placed on the screen.
Therefore, the JavaScript function did not find TextBox1, which caused an error to be thrown by the page.
Now try the RegisterStartupScript method shown here:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
Dim myScript As String = "alert(document.forms[0][’TextBox1’].value);"
Page.ClientScript.RegisterStartupScript(Me.GetType(), "myKey", myScript, _

True)
End Sub

This approach puts the JavaScript function at the bottom of the ASP.NET page, so when the JavaScript
actually starts, it finds the TextBox1 element and works as planned, as shown in Figure 19-18.

Figure 19-18

Using Page.ClientScript.RegisterClientScriptInclude
The final method is RegisterClientScriptInclude. Many developers place their JavaScript inside a .js
file, which is considered a best practice because it makes it very easy to make global JavaScript changes to

836

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 837

Chapter 19: Working with ASP.NET 3.5

the application. You can register the script files on your ASP.NET pages using the RegisterClientScript
Include method, shown here:

Dim myScript As String = "myJavaScriptCode.js"
Page.ClientScript.RegisterClientScriptInclude("myKey", myScript)

This creates the following construction on the ASP.NET page:

<script src="myJavaScriptCode.js" type="text/javascript"></script>

Summary
This chapter covered a lot of ground. It discussed many aspects of ASP.NET applications as a whole and
the options you have when building and deploying these applications. With the help of Visual Studio
2008, you have a number of options regarding which web server to use when building your application
and whether to work locally or remotely through the built-in FTP capabilities.

ASP.NET 3.5 and Visual Studio 2008 make it easy to build your pages using an inline coding model or a
code-behind model that is simpler to use and easier to deploy. You also learned about the fixed folders
that ASP.NET 3.5 has to make your life easier. These folders make their resources available dynamically
with no work on your part. Finally, you saw some of the outstanding JavaScript options that you have
at your disposal. The next chapter examines some of the more advanced systems available to you in
ASP.NET 3.5.

837

Evjen-91361 c19.tex V1 - 04/01/2008 4:41pm Page 838

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 839

ASP.NET 3.5 Advanced
Features

ASP.NET is an exciting technology. It enables the creation and delivery of remotely generated
applications (Web applications) accessible via a simple browser — a container that many are rather
familiar with. The purpose of Web-based applications (in our case, ASP.NET applications) is to
deliver only a single instance of the application to the end user over HTTP. This means that the end
users viewing your application will always have the latest and greatest version at their disposal.
Because of this, many companies today are looking at ASP.NET to not only deliver the company’s
website, but also to deliver some of their latest applications for their employees, partners, and
customers.

The last chapter looked at some of the basics of ASP.NET 3.5. This chapter continues that explo-
ration, showing you some additional and exciting technologies that you will find in ASP.NET 3.5,
including master pages, configuration, data access, and more.

This chapter touches upon many topics, as ASP.NET has become a rather large offering with many
possibilities and capabilities. Sit back, pull up that keyboard, and enjoy!

Applications and Pages
The previous chapter looked at the structure of ASP.NET pages and their life cycle. You can do quite
a bit with the applications and pages in ASP.NET to change how they behave or how you compile
and deliver them. This section looks at some of these possibilities.

Cross-Page Posting
In Active Server Pages 2.0/3.0 (also called classic ASP), values from forms were usually posted to
other pages. These pages were typically steps in a process that the end user worked through. With
the introduction of ASP.NET, pages in this environment posted back results to themselves in a step
called a postback. One of the most frequent requests of Web developers in the ASP.NET world has

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 840

Chapter 20: ASP.NET 3.5 Advanced Features

been the capability to do postbacks, not only to the page from which the values originated, but also
to other pages within the application. You can easily accomplish this cross-page posting functionality in
ASP.NET 3.5, which makes it possible to post page values from one page (Page1.aspx) to an entirely
different page (Page2.aspx). Normally, when posting to the same page (as with ASP.NET 1.0/1.1), you
could capture the postback in a postback event, as shown here:

If Page.IsPostBack Then
’ do work here

End If

Now look at Page1.aspx and see how you accomplish cross-page posting with ASP.NET 3.5:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = "Your name is: " & TextBox1.Text & "
" & _
"Your appointment is on: " & _
Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Cross-Page Posting</title>
</head>
<body>

<form id="form1" runat="server">
<div>

What is your name?

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

When is your appointment?

<asp:Calendar ID="Calendar1" runat="server">
</asp:Calendar>

<asp:Button ID="Button1" OnClick="Button1_Click" runat="server"
Text="Do a PostBack to this Page" />

<asp:Button ID="Button2" runat="server"
Text="Do a PostBack to Another Page" PostBackUrl="~/Page2.aspx" />

<asp:Label ID="Label1" runat="server"></asp:Label>

</div>
</form>

</body>
</html>

840

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 841

Chapter 20: ASP.NET 3.5 Advanced Features

With Page1.aspx, there is nothing really different about this page — except for the Button2 server
control. This page contains a new attribute, which you will find with the Button, ImageButton, and
LinkButton controls — the PostBackUrl attribute. The value of this attribute points to the location of
the file that this page should post to. In this case, the PostBackUrl attribute states that this page should
post to Page2.aspx. This is the only thing needed on the Page1.aspx to cause it to post back to another
page. As for Button1, this is a simple button that causes the page to post back to itself, as was the case
even in ASP.NET 1.x. The event handler for this postback is in the OnClick attribute within the Button1
control. Pressing this button causes the page to post back to itself and to populate the Label1 control at
the bottom of the page.

Clicking on the second button, though, will post to the second page, which is shown here:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim pp_TextBox1 As TextBox
Dim pp_Calendar1 As Calendar

pp_TextBox1 = CType(PreviousPage.FindControl("TextBox1"), TextBox)
pp_Calendar1 = CType(PreviousPage.FindControl("Calendar1"), Calendar)

Label1.Text = "Your name is: " & pp_TextBox1.Text & "
" & _
"Your appointment is on: " & _
pp_Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Second Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" runat="server"></asp:Label>
</div>
</form>

</body>
</html>

In this page, the first step is the creation in the Page_Load event of instances of both the TextBox and
Calendar controls. From here, these instances are populated with the values of these controls on the pre-
vious page (Page1.aspx) by using the PreviousPage.FindControl method. The String value assigned
to the FindControl method is the ID value of the ASP.NET server control from the originating page
(in this case, TextBox1 and Calendar1). Once you have assigned the values to these control instances,
you can then start working with the new controls and their values as if they were posted from the
same page.

841

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 842

Chapter 20: ASP.NET 3.5 Advanced Features

You can also expose the server controls and other items as properties from Page1.aspx, as illustrated in
this partial code sample:

<%@ Page Language="VB" %>

<script runat="server">

Public ReadOnly Property pp_TextBox1() As TextBox
Get

Return TextBox1
End Get

End Property

Public ReadOnly Property pp_Calendar1() As Calendar
Get

Return Calendar1
End Get

End Property

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Label1.Text = "Your name is: " & TextBox1.Text & "
" & _
"Your appointment is on: " & Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

Once you have exposed the properties you want from Page1.aspx, you can easily get at these properties
in the cross-page postback by using the new PreviousPageType page directive, as shown in the following
example:

<%@ Page Language="VB" %>
<%@ PreviousPageType VirtualPath="~/Page1.aspx" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

Label1.Text = "Your name is: " & PreviousPage.pp_TextBox1.Text & _
"
" & _
"Your appointment is on: " & _
PreviousPage.pp_Calendar1.SelectedDate.ToLongDateString()

End Sub
</script>

After your properties are on Page1.aspx, you can access them easily by strongly typing the PreviousPage
property on Page2.aspx by using the PreviousPageType directive. The PreviousPageType directive
specifies the page from which the post will come. Using this directive enables you to specifically point
at Page1.aspx. This is done using the VirtualPath attribute of the PreviousPageType directive. The
VirtualPath attribute takes a String whose value is the location of the directing page.

Once this association has been made, you can then use the PreviousPage property. The pp_TextBox1
and pp_Calendar1 properties that were created on Page1.aspx are now present in Visual Studio 2008’s

842

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 843

Chapter 20: ASP.NET 3.5 Advanced Features

IntelliSense (see Figure 20-1). Working with the PreviousPage property is a bit easier and is less error
prone than using weak typing.

Figure 20-1

One thing to guard against is a browser hitting a page that is expecting information from a cross-page
post; this action causes errors if the information the second page is expecting is not there. You have
always had to guard against pages that were looking for postback information — even when dealing
with ASP.NET pages (1.0/1.1) that performed postbacks to themselves. With standard pages that are
not cross-page posting, you could protect your code from this postback behavior through the use of the
Page.IsPostBack property, as shown here:

If Page.IsPostBack Then
’ code here

End If

When cross-page posting, use the Page.IsCrossPagePostBack property:

<%@ Page Language="VB" %>
<%@ PreviousPageType VirtualPath="~/Page1.aspx" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

If Not PreviousPage Is Nothing And _
PreviousPage.IsCrossPagePostBack Then

Label1.Text = "Your name is: " & PreviousPage.pp_TextBox1.Text & _
"
" & _
"Your appointment is on: " & _
PreviousPage.pp_Calendar1.SelectedDate.ToLongDateString()

843

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 844

Chapter 20: ASP.NET 3.5 Advanced Features

Else
Response.Redirect("Page1.aspx")

End If
End Sub

</script>

In this example, if someone hits this page without going to Page1.aspx first to get cross-posted to
Page2.aspx, then the request will be checked to determine whether the request is a cross post. If it is
(checked using the Page.IsCrossPagePostBack property), then the code is run; otherwise, the request
is redirected to Page1.aspx.

ASP.NET Compilation
With ASP.NET, you can observe this compilation process and how it works when you hit one of the
ASP.NET pages you have built for the first time. You will notice that it takes a few seconds for the page
to be generated. When an ASP.NET page is referenced in the browser for the first time, the request is
passed to the ASP.NET parser that creates the class file in the language of the page. It is passed to the
parser based on the file’s extension (.aspx) because ASP.NET realizes that this file extension type is
meant for its handling and processing. After the class file has been created, it is compiled into a DLL
and then written to the disk of the Web server. At this point, the DLL is instantiated and processed, and
output is generated for the initial requester of the ASP.NET page. This process is detailed in Figure 20-2.

Parse Generate

Response Page
Class

.ASPX
File

Generated
Page
Class

Code-
Behind
Class

Request Compile

Instantiate,
process, and

render

ASP.NET
Engine

Figure 20-2

On the next request, great things happen. Instead of going through the entire process again for the second
and subsequent requests, the request simply causes an instantiation of the already created DLL, which
sends out a response to the requester (see Figure 20-3).

844

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 845

Chapter 20: ASP.NET 3.5 Advanced Features

Parse Generate

Response Page
Class

.ASPX
File

Generated
Page
Class

Code-
Behind
Class

Request Compile

Instantiate,
process, and

render

ASP.NET
Engine

2nd Request

2nd Request
Instantiation

Figure 20-3

Previously, because of the mechanics of this process, if you made changes to your .aspx code-behind
pages, then it was necessary to recompile your application. This was quite a pain if you had a larger
site and didn’t want your end users to experience the extreme lag that occurs when an .aspx page is
referenced for the first time after compilation. Many developers, consequently, began to develop their
own tools that automatically hit every single page within the application to remove this first-time lag hit
from the end user’s browsing experience.

ASP.NET 3.5 provides a few ways to precompile your entire application with a single command that
you can issue through a command line. One type of compilation is referred to as in-place precompilation.
In order to precompile your entire ASP.NET application, you must use the aspnet_compiler.exe tool
that comes with ASP.NET. To do so, open the command prompt window and navigate to C:\Windows\
Microsoft.NET\Framework\v2.0.50727\. From there you can work with the aspnet_compiler tool.
You can also access this tool directly by pulling up the Visual Studio 2008 command prompt window.
Choose Start ➪ All Programs ➪ Microsoft Visual Studio 2008 ➪ Visual Studio Tools ➪ Visual Studio 2008
Command Prompt.

After you get the command prompt, use the aspnet_compiler.exe tool to perform an in-place precom-
pilation using the following command:

aspnet_compiler -p "C:\Inetpub\wwwroot\WROX" -v none

In the example just shown, -v is a command for the virtual path of the application, which is provided by
using \WROX. The next command is –p, which points to the physical path of the application. In this case, it
is C:\Websites\WROX. Finally, the last bit, C:\Wrox, is the location of the compiler output. The following
table describes the possible commands for the aspnet_compiler.exe tool:

845

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 846

Chapter 20: ASP.NET 3.5 Advanced Features

Command Description

-m Specifies the full IIS metabase path of the application. If you use the -m command,
then you cannot use the -v or -p command.

-v Specifies the virtual path of the application to be compiled. If you also use the -p
command, then the physical path is used to find the location of the application.

-p Specifies the physical path of the application to be compiled. If this is not specified,
then the IIS metabase is used to find the application.

-u When this command is utilized, it specifies that the application is updateable.

-f Specifies overwriting the target directory if it already exists

-d Specifies that the debug information should be excluded from the compilation
process

[targetDir] Specifies the target directory in which the compiled files should be placed. If this is
not specified, then the output files are placed in the application directory.

After compiling the application, you can go to C:\Wrox to see the output. Here you see all the files
and file structures that were in the original application, but if you look at the content of one of the files,
the file is simply a placeholder. In the actual file is the following comment:

This is a marker file generated by the precompilation tool
and should not be deleted!

In fact, you find a Code.dll file in the bin folder where all the page code is located. Because it is in a DLL
file, it provides great code obfuscation as well. From here on, all you do is move these files to another
server using FTP or Windows Explorer, and you can run the entire Web application from these files.
When you have an update to the application, you simply provide a new set of compiled files. Sample
output is displayed in Figure 20-4.

Figure 20-4

Note that this compilation process does not compile every type of Web file. In fact, it compiles only the
ASP.NET-specific file types, omitting from the compilation process the following types of files:

846

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 847

Chapter 20: ASP.NET 3.5 Advanced Features

❑ HTML files

❑ XML files

❑ XSD files

❑ web.config files

❑ Text files

You cannot do much to get around this, except in the case of the HTML files and the text files. For these
file types, just change the file extensions of these file types to .aspx; they are then compiled into the
Code.dll like all the other ASP.NET files.

Master Pages
Many Web applications are built so that each page of the application has some similarities. For instance, a
common header might be used on every page of your application. Similarly, there may be other common
page elements, including navigation sections, advertisements, footers, and more. In fact, individual Web
pages rarely have their own unique look and feel. Most people prefer uniformity in their applications in
order to give end users a consistent experience in a multi-paged application.

What is needed for these types of applications is a way to provide a template that can be used by your
pages — a sort of visual inheritance (such as you can achieve with Windows Forms). With a feature that
was first introduced in ASP.NET 2.0 called master pages, you can now employ visual inheritance in your
Web applications.

The use of master pages means that you are working with a template file (the master page), which has
a .master extension. Once a .master page is created, you can then take a content page, with an .aspx
extension, and create an association between the two files. Doing this enables ASP.NET to combine the
two files into a single Web page to display in a browser, as illustrated in Figure 20-5.

Master Page
MyMaster.master

M

Content Page
Default.aspx

C

Combined Page
Default.aspx

MC

Figure 20-5

847

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 848

Chapter 20: ASP.NET 3.5 Advanced Features

The following sections describe how you make this work, beginning with the master page.

Creating a Master Page
The first step is to create a template that will end up being your master page. You can build a master
page using any text editor (such as Notepad), but it is far easier to use Visual Studio 2008 or Visual Web
Developer, as described here.

Start within the Solution Explorer. Right-click on the solution and select Add New Item. In the Add New
Item dialog is an option to add a master page to the solution, as shown in Figure 20-6.

Figure 20-6

Your master page options are quite similar to those when working with a standard .aspx page. You
can create master pages to be inline or you can have master pages that utilize the code-behind model. If
you wish to use the code-behind model, then make sure that you have the ‘‘Place code in separate file’’
check box checked in the dialog — otherwise, leave it blank. Creating an inline master page produces a
single .master file. Using the code-behind model produces a .master file in addition to a .master.vb
or .master.cs file. You also have the option of nesting your master page within another master page by
selecting the Select Master Page option.

A master page should be built so that it contains one or more content regions that are utilized by the con-
tent pages. The following master page example (named Wrox.master) contains two of these
content areas:

<%@ Master Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<script runat="server">

848

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 849

Chapter 20: ASP.NET 3.5 Advanced Features

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Wrox</title>
<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>

</head>
<body>

<form id="form1" runat="server">
<div>

<table cellpadding="3" border="1">
<tr bgcolor="silver">

<td colspan="2"><h1>The Wrox Company Homepage</h1></td>
</tr>
<tr>

<td>
<asp:ContentPlaceHolder ID="ContentPlaceHolder1"
runat="server">

</asp:ContentPlaceHolder>
</td>
<td>

<asp:ContentPlaceHolder ID="ContentPlaceHolder2"
runat="server">

</asp:ContentPlaceHolder>
</td>

</tr>
<tr>

<td colspan="2">Copyright 2008 - Wrox</td>
</tr>

</table>
</div>
</form>

</body>
</html>

The first thing to notice is the < % Master % > directive at the top of the page instead of the standard
< % Page % > directive. This specifies that this is a master page and cannot be generated without a content
page associated with it. It is not a page that you can pull up in the browser. In this case, the Master
directive simply uses the Language attribute and nothing more, but it has a number of other attributes at
its disposal to fine-tune the behavior of the page.

The idea is to code the master page as you would any other .aspx page. This master page contains a
simple table and two areas that are meant for the content pages. These areas are defined with the use
of the ContentPlaceHolder server control. This page contains two such controls. It is only in these two
specified areas where content pages will be allowed to interject content into the dynamically created page
(as shown shortly).

The nice thing about working with master pages is that you are not limited to working with them in the
Code view of the IDE; Visual Studio 2008 also enables you to work with them in Design view as well, as
shown in Figure 20-7. In this view, you can work with the master page by simply dragging and dropping
controls onto the design surface, just as you would with any typical .aspx page.

849

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 850

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-7

Creating the Content Page
Now that there is a master page in your project that you can utilize, the next step is to create a content
page that does just that. Right-click on the solution from within the Solution Explorer of Visual Studio
2008 and select Add New Item. This time, though, you are going to add a typical Web Form to the project.
However, before you click the Add button, be sure to check the Select Master Page check box in the
dialog. This informs VS 2008 that you are going to build a content page that will be associated with a
master page. Doing this pulls up a new dialog that enables you to select a master page to associate with
this new file, as shown in Figure 20-8.

Figure 20-8

850

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 851

Chapter 20: ASP.NET 3.5 Advanced Features

In this case, if you have been following along with the example, you should only have a single master
page available in the dialog, though it is possible to have as many different master pages as you wish in
a single project. Select the Wrox.master page and press the OK button.

The page created has only a single line of code to it:

<%@ Page Language="VB" MasterPageFile="~/Wrox.master" Title="Untitled Page" %>

This file is quite a bit different from a typical .aspx page. First, there is none of the default HTML code,
script tags, and DOCTYPE declarations that are the norm. Second, note the addition of the MasterPageFile
attribute in the Page directive. This new attribute makes the association to the master page that will be
used for this content page. In this case, it is the Wrox.master file created earlier.

There isn’t much to show while in the Source view of Visual Studio when looking at a content page;
the real power of master pages can be seen when you switch to the Design view of the same page (see
Figure 20-9).

Figure 20-9

This view shows you the entire template and the two content areas that this content page is allowed to
deal with. All the grayed-out areas are off-limits and do not allow for any changes from the content page,
whereas the available areas allow you to deal with any type of content you wish. For instance, not only
can you place raw text in these content areas, you can also add anything that you would normally place
into a typical .aspx page. For example, create a simple form in one of the content areas and place an
image in the other. The code is shown here:

<%@ Page Language="VB" MasterPageFile="~/Wrox.master" Title="My Content Page" %>

<script runat="server">

851

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 852

Chapter 20: ASP.NET 3.5 Advanced Features

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)
Label1.Text = "Hello " & Textbox1.Text

End Sub
</script>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
runat="server">
Enter in your name:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:Button ID="Button1" runat="server" Text="Submit"
OnClick="Button1_Click" />

<asp:Label ID="Label1" runat="server" Font-Bold="True"></asp:Label>

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder2"
runat="server">

<asp:Image ID="Image1" runat="server" ImageUrl="wrox_logo.gif" />
</asp:Content>

Even from this simple example, you can see the differences between a content page and a regular .aspx
page. Most important, this page does not contain any <form> element or any of the <html> structure that
you would normally see in a typical Web form. All of this content is instead stored inside the master
page itself.

This content page contains two Content server controls. Each of these Content server controls maps to a
specific <asp:ContentPlaceHolder> control from the master page. This association is made through the
use of the ContentPlaceHolderID attribute of the Content control:

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
runat="Server"> ... </asp:Content>

Just as with typical .aspx pages, you can create any event handlers you may need for your content page.
This particular example uses a button-click event for when the end user submits the form. Running this
example produces the results shown in Figure 20-10.

Figure 20-10

852

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 853

Chapter 20: ASP.NET 3.5 Advanced Features

Declaring the Master Page Application-Wide
As shown in the examples thus far, we have been declaring the master page from the content page
through the use of the MasterPageFile attribute of the Page directive:

<%@ Page Language="VB" MasterPageFile="~/Wrox.master" Title="My Content Page" %>

You can apply this attribute to each of your content pages or you can make this declaration in the
web.config file of your application, as shown here:

<configuration>
<system.web>

<pages masterPageFile="~/Wrox.master"></pages>
</system.web>

</configuration>

From the <pages> node in the web.config file, you declare that all your content pages will use a specific
master page using the masterPageFile attribute. Doing this means that your content pages can simply
use the following Page directive construction:

<%@ Page Language="VB" Title="My Content Page" %>

The nice thing about making the master page declaration in the web.config file is you do not have to
make this declaration on any of your solution’s content pages; if you later decide to change the template
and associate all the content pages to a brand-new master page, you can change every content page
instantaneously in one spot.

Doing this has no effect on the regular .aspx pages in your solution. They will still function as normal.
Moreover, if you have a content page that you wish to associate with a master page other than the one
specified in the web.config file, then you simply use the MasterPageFile attribute in the Page directive
of the page. This will override any declaration that you may have in the web.config file.

Providing Default Content in Your Master Page
Earlier, you saw how to use a basic ContentPlaceHolder control. In addition to using it as shown, you
can also create ContentPlaceHolder controls that contain default content:

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
Here is some default content!

</asp:ContentPlaceHolder>

For default content, you can again use whatever you want, including any other ASP.NET server controls.
A content page that uses a master page containing one of these ContentPlaceHolder controls can then
either override the default content — by just specifying content (which overrides the original content
declared in the master page) — or keep the default content contained in the control.

Data-Driven Applications
ASP.NET 3.5 provides some unique data-access server controls that make it easy for you to get at the
data you need. As data for your applications finds itself in more and more types of data stores, it can
sometimes be a nightmare to figure out how to get at and aggregate these information sets onto a Web

853

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 854

Chapter 20: ASP.NET 3.5 Advanced Features

page in a simple and logical manner. ASP.NET data source controls are meant to work with a specific
type of data store by connecting to the data store and performing operations such as inserts, updates, and
deletes — all on your behalf. The following table details the new data source controls at your disposal:

Data Source Control Description

SqlDataSource Enables you to work with any SQL-based database, such as Microsoft SQL
Server or even Oracle

AccessDataSource Enables you to work with a Microsoft Access file (.mbd)

ObjectDataSource Enables you to work with a business object or a Visual Studio 2008 data
component

LinqDataSource Enables you to use LINQ to query everything from in-memory collections to
databases. This is a new control of ASP.NET 3.5.

XmlDataSource Enables you to work with the information from an XML file or even a
dynamic XML source (e.g., an RSS feed)

SiteMapDataSource Enables you to work with the hierarchical data represented in the site map file
(.sitemap)

ASP.NET itself provides a number of server controls that you can use for data-binding purposes. That
means you can use these data source controls as the underlying data systems for a series of controls with
very little work on your part. These data-bound controls in ASP.NET include the following:

❑ <asp:GridView>

❑ <asp:DataGrid>

❑ <asp:DetailsView>

❑ <asp:FormView>

❑ <asp:TreeView>

❑ <asp:Menu>

❑ <asp:DataList>

❑ <asp:ListView>

❑ <asp:Repeater>

❑ <asp:DropDownList>

❑ <asp:BulletedList>

❑ <asp:CheckBoxList>

❑ <asp:RadioButtonList>

❑ <asp:ListBox>

❑ <asp:AdRotator>

The newest control in this group is the ListView control, introduced in ASP.NET 3.5. Another popular
control in this group is the GridView control, which, when introduced in the .NET Framework 2.0, made

854

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 855

Chapter 20: ASP.NET 3.5 Advanced Features

the DataGrid control more or less obsolete. The GridView control enables paging, sorting, and editing
with very little work on your part. The next section looks at using the GridView control with SQL Server
and taking advantage of these advanced features.

Using the GridView and SqlDataSource Controls
For an example of using these two controls together to display some information, let’s turn to Visual
Studio 2008. Start a new page and drag and drop a GridView control onto the design surface of the page.
Pulling up the smart tag for the control on the design surface, you can click the Auto Format link to give
your GridView control a better appearance, rather than the default provided.

Next, drag and drop an SqlDataSource control onto the design surface. This control is a middle-tier com-
ponent, so it appears as a gray box on the design surface. The first step is to configure the SqlDataSource
control to work with the data you want from your Microsoft SQL Server instance (see Figure 20-11).

Figure 20-11

Working through the configuration process for the SqlDataSource control, you must choose your data
connection and then indicate whether you want to store this connection in the web.config file (shown in
Figure 20-12), which is highly advisable.

Within this configuration process, you also choose the table you are going to work with, and test out the
queries that the wizard generates. For this example, choose the Customers table and select every row by
checking the * check box, as shown in Figure 20-13.

After working through the configuration process, you will notice that your web.config file has changed
to include the connection string:

<configuration>

<connectionStrings>
<add name="NorthwindConnectionString"
connectionString="Data Source=.\SQLEXPRESS;

AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
Integrated Security=True;User Instance=True"

providerName="System.Data.SqlClient" />
</connectionStrings>

<system.web>
...

</system.web>
</configuration>

855

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 856

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-12

Figure 20-13

856

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 857

Chapter 20: ASP.NET 3.5 Advanced Features

Once you have configured the SqlDataSource control, the next step is to tie the GridView control to this
SqlDataSource control instance. This can be done through the GridView control’s smart tag, as shown in
Figure 20-14. You can also enable paging and sorting for the control in the same form.

Figure 20-14

The code generated by the wizard (it is also how you would code it yourself) is shown here:

<%@ Page Language="VB" %>

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>GridView Example</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:GridView ID="GridView1" runat="server" BorderWidth="1px"
BackColor="White" GridLines="Vertical"
CellPadding="3" BorderStyle="Solid" BorderColor="#999999"
ForeColor="Black" DataSourceID="SqlDataSource1"
DataKeyNames="CustomerID" AutoGenerateColumns="False"
AllowPaging="True"
AllowSorting="True">

<FooterStyle BackColor="#CCCCCC"></FooterStyle>
<PagerStyle ForeColor="Black" HorizontalAlign="Center"
BackColor="#999999"></PagerStyle>

<HeaderStyle ForeColor="White" Font-Bold="True"
BackColor="Black"></HeaderStyle>

<AlternatingRowStyle BackColor="#CCCCCC"></AlternatingRowStyle>
<Columns>

<asp:BoundField ReadOnly="True" HeaderText="CustomerID"
DataField="CustomerID"
SortExpression="CustomerID"></asp:BoundField>

<asp:BoundField HeaderText="CompanyName"
DataField="CompanyName"
SortExpression="CompanyName"></asp:BoundField>

<asp:BoundField HeaderText="ContactName"

857

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 858

Chapter 20: ASP.NET 3.5 Advanced Features

DataField="ContactName"
SortExpression="ContactName"></asp:BoundField>

<asp:BoundField HeaderText="ContactTitle"
DataField="ContactTitle"
SortExpression="ContactTitle"></asp:BoundField>

<asp:BoundField HeaderText="Address" DataField="Address"
SortExpression="Address"></asp:BoundField>

<asp:BoundField HeaderText="City" DataField="City"
SortExpression="City"></asp:BoundField>

<asp:BoundField HeaderText="Region" DataField="Region"
SortExpression="Region"></asp:BoundField>

<asp:BoundField HeaderText="PostalCode" DataField="PostalCode"
SortExpression="PostalCode"></asp:BoundField>

<asp:BoundField HeaderText="Country" DataField="Country"
SortExpression="Country"></asp:BoundField>

<asp:BoundField HeaderText="Phone" DataField="Phone"
SortExpression="Phone"></asp:BoundField>

<asp:BoundField HeaderText="Fax" DataField="Fax"
SortExpression="Fax"></asp:BoundField>

</Columns>
<SelectedRowStyle ForeColor="White" Font-Bold="True"
BackColor="#000099"></SelectedRowStyle>

</asp:GridView>
<asp:SqlDataSource ID="SqlDataSource1" runat="server"
SelectCommand="SELECT * FROM [Customers]"

ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>">
</asp:SqlDataSource>

</div>
</form>

</body>
</html>

First, consider the SqlDataSource control, which has some important attributes to pay attention to.
The first is the SelectCommand attribute. This is the SQL query that you will be using. In this case, it is a
Select * From [Customers] query (meaning you are grabbing everything from the Customers table of
the Northwind database). The second attribute to pay attention to is the ConnectionString attribute. The
interesting aspect of this attribute is the use of < %$ ConnectionStrings:NorthwindConnectionString
% > to get at the connection string. This value points at the settings placed inside the web.config file for
those who do not want to hard-code their connection strings directly in the code of their pages. If you
did want to do this, you would use something similar to the following construction:

ConnectionString="Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
Integrated Security=True;User Instance=True"

Looking now at the GridView control, you can see how easy it is to add paging and sorting capabilities to
the control. It is simply a matter of adding the attributes AllowPaging and AllowSorting to the control
and setting their values to True (they are set to False by default):

<asp:GridView ID="GridView1" runat="server" BorderWidth="1px"
BackColor="White" GridLines="Vertical"
CellPadding="3" BorderStyle="Solid" BorderColor="#999999"

858

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 859

Chapter 20: ASP.NET 3.5 Advanced Features

ForeColor="Black" DataSourceID="SqlDataSource1"
DataKeyNames="CustomerID" AutoGenerateColumns="False" AllowPaging="True"
AllowSorting="True">

<!-- Inner content removed for clarity -->
</asp:GridView>

Each of the columns from the Customers table of the Northwind database is defined in the control
through the use of the <asp:BoundField> control, a subcontrol of the GridView control. The BoundField
control enables you to specify the header text of the column through the use of the HeaderText attribute.
The DataField attribute actually ties the values displayed in this column to a particular value from the
Customers table, and the SortExpression attribute should use the same values for sorting — unless you
are sorting on a different value than what is being displayed.

Ultimately, your page should look similar to what is shown in Figure 20-15.

Figure 20-15

Allowing Editing and Deleting of Records with GridView
Now let’s expand upon the previous example by allowing for the editing and deleting of records that
are displayed in the GridView. If you are using the Visual Studio 2008 SqlDataSource Configuration
Wizard to accomplish these tasks, then you need to take some extra steps beyond what was shown in the
preceding GridView example.

Go back to the SqlDataSource control on the design surface of your Web page and pull up the control’s
smart tag. Select the Configure Data Source option to reconfigure the SqlDataSource control to enable
the editing and deletion of data from the Customers table of the Northwind database.

When you come to the Configure the Select Statement screen (see Figure 20-16), click the Advanced
button.

859

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 860

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-16

This will pull up the Advanced SQL Generation Options dialog, shown in Figure 20-17.

Figure 20-17

As shown in this dialog, select the Generate Insert, Update, and Delete statements check box. This will
instruct the SqlDataSource control to not only handle the simple Select query, but also the Update and
Delete queries. Press OK and then work through the rest of the wizard.

Return to the GridView control’s smart tag and select Refresh Schema. You will also now find check boxes
in the smart tag for editing and deleting rows of data. Make sure both of these check boxes are checked,
as shown in Figure 20-18.

860

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 861

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-18

Now look at what changed in the code. First, the SqlDataSource control has changed to allow for the
updating and deletion of data:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
SelectCommand="SELECT * FROM [Customers]"
ConnectionString="<%$ ConnectionStrings:AppConnectionString1 %>"
DeleteCommand="DELETE FROM [Customers] WHERE [CustomerID] =

@original_CustomerID"
InsertCommand="INSERT INTO [Customers] ([CustomerID], [CompanyName],

[ContactName], [ContactTitle], [Address], [City], [Region], [PostalCode],
[Country], [Phone], [Fax]) VALUES (@CustomerID, @CompanyName,
@ContactName, @ContactTitle, @Address, @City,
@Region, @PostalCode, @Country, @Phone, @Fax)"

UpdateCommand="UPDATE [Customers] SET [CompanyName] = @CompanyName,
[ContactName] = @ContactName,
[ContactTitle] = @ContactTitle, [Address] = @Address, [City] =
@City, [Region] = @Region, [PostalCode] = @PostalCode,
[Country] = @Country, [Phone] = @Phone,
[Fax] = @Fax WHERE [CustomerID] = @original_CustomerID">

<DeleteParameters>
<asp:Parameter Type="String" Name="CustomerID">
</asp:Parameter>

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Type="String" Name="CompanyName">
</asp:Parameter>
<asp:Parameter Type="String" Name="ContactName">
</asp:Parameter>
<asp:Parameter Type="String" Name="ContactTitle">
</asp:Parameter>
<asp:Parameter Type="String" Name="Address"></asp:Parameter>
<asp:Parameter Type="String" Name="City"></asp:Parameter>
<asp:Parameter Type="String" Name="Region"></asp:Parameter>
<asp:Parameter Type="String" Name="PostalCode">
</asp:Parameter>
<asp:Parameter Type="String" Name="Country"></asp:Parameter>
<asp:Parameter Type="String" Name="Phone"></asp:Parameter>
<asp:Parameter Type="String" Name="Fax"></asp:Parameter>
<asp:Parameter Type="String" Name="CustomerID">

861

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 862

Chapter 20: ASP.NET 3.5 Advanced Features

</asp:Parameter>
</UpdateParameters>
<InsertParameters>

<asp:Parameter Type="String" Name="CustomerID">
</asp:Parameter>
<asp:Parameter Type="String" Name="CompanyName">
</asp:Parameter>
<asp:Parameter Type="String" Name="ContactName">
</asp:Parameter>
<asp:Parameter Type="String" Name="ContactTitle">
</asp:Parameter>
<asp:Parameter Type="String" Name="Address"></asp:Parameter>
<asp:Parameter Type="String" Name="City"></asp:Parameter>
<asp:Parameter Type="String" Name="Region"></asp:Parameter>
<asp:Parameter Type="String" Name="PostalCode">
</asp:Parameter>
<asp:Parameter Type="String" Name="Country"></asp:Parameter>
<asp:Parameter Type="String" Name="Phone"></asp:Parameter>
<asp:Parameter Type="String" Name="Fax"></asp:Parameter>

</InsertParameters>
</asp:SqlDataSource>

Second, other queries have been added to the control. Using the DeleteCommand, InsertCommand, and
UpdateCommand attributes of the SqlDataSource control, these functions can now be performed just
as Select queries were enabled through the use of the SelectCommand attribute. As you can see in
the queries, many parameters are defined within them. These parameters are then assigned through
the <DeleteParameters>, <UpdateParameters>, and <InsertParameters> elements. Within each of
these subsections, the actual parameters are defined through the use of the <asp:Parameter> control,
where you also assign the data type of the parameter (through the use of the Type attribute) and the
name of the parameter.

Besides these changes to the SqlDataSource control, only one small change has been made to the
GridView control:

<Columns>

<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True"></asp:CommandField>

<asp:BoundField ReadOnly="True" HeaderText="CustomerID"
DataField="CustomerID"
SortExpression="CustomerID"></asp:BoundField>

<asp:BoundField HeaderText="CompanyName" DataField="CompanyName"
SortExpression="CompanyName"></asp:BoundField>

<asp:BoundField HeaderText="ContactName" DataField="ContactName"
SortExpression="ContactName"></asp:BoundField>

<asp:BoundField HeaderText="ContactTitle" DataField="ContactTitle"
SortExpression="ContactTitle"></asp:BoundField>

<asp:BoundField HeaderText="Address" DataField="Address"
SortExpression="Address"></asp:BoundField>

<asp:BoundField HeaderText="City" DataField="City"
SortExpression="City"></asp:BoundField>

862

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 863

Chapter 20: ASP.NET 3.5 Advanced Features

<asp:BoundField HeaderText="Region" DataField="Region"
SortExpression="Region"></asp:BoundField>
<asp:BoundField HeaderText="PostalCode" DataField="PostalCode"
SortExpression="PostalCode"></asp:BoundField>
<asp:BoundField HeaderText="Country" DataField="Country"
SortExpression="Country"></asp:BoundField>
<asp:BoundField HeaderText="Phone" DataField="Phone"
SortExpression="Phone"></asp:BoundField>
<asp:BoundField HeaderText="Fax" DataField="Fax"
SortExpression="Fax"></asp:BoundField>

</Columns>

The only change needed for the GridView control is the addition of a new column from which editing
and deleting commands can be initiated. This is done with the <asp:CommandField> control. From this
control, you can see that we also enabled the Edit and Delete buttons through a Boolean value. Once
built and run, your new page will look like the one shown in Figure 20-19.

Figure 20-19

Don’t Stop There!
Due to limited space, this chapter can only present one example, but many other DataSource controls are
at your disposal. The ObjectDataSource control is rather powerful for those who wish to enforce a strict
n-tier model and separate the data retrieval logic into an object that the GridView and other data-bound
controls can work with. The XmlDataSource control is one control that you will most likely find yourself
using a lot, as more and more data is being stored as XML, including dynamic data (such as Web logs via
RSS). These DataSource controls are fine-tuned for the type of data stores for which they are targeted, so
you will find a lot of benefit in exploring their capabilities in detail.

863

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 864

Chapter 20: ASP.NET 3.5 Advanced Features

Navigation
Developers rarely build Web applications that are made up of just a single page instance. Instead,
applications are usually made up of multiple pages that are all related to each other in some fashion.
Some applications have a workflow through which end users can work from page to page, while other
applications have a navigation structure that allows for free roaming throughout the pages. Some-
times the navigation structure of a site becomes complex, and managing this complexity can be rather
cumbersome.

ASP.NET includes a way to manage the navigational structure of your Web applications. Using this
system, you first define your navigational structure through an XML file that can then be bound to a
couple of different server controls focused on navigation.

This makes it relatively easy when you have to introduce changes to the structure of your navigation
or make name changes to pages contained within this structure. Instead of going from page to page
throughout your entire application, changing titles or page destinations, you can now make these changes
in one place — an XML file — and the changes are instantaneously reflected throughout your application.

The first step in working with the ASP.NET navigation system is to reflect your navigational structure
in the web.sitemap file, the XML file that will contain the complete site structure. For instance, suppose
you want the following site structure:

Home
Books
Magazines

U.S. Magazines
European Magazines

This site structure has three levels to it, with multiple items in the lowest level. You can reflect this in the
web.sitemap file as follows:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

<siteMapNode url="default.aspx" title="Home"
description="The site homepage">

<siteMapNode url="books.aspx" title="Books"
description="Books from our catalog" />
<siteMapNode url="magazines.aspx" title="Magazines"
description="Magazines from our catalog">

<siteMapNode url="magazines_us.aspx" title="U.S. Magazines"
description="Magazines from the U.S." />

<siteMapNode url="magazines_eur.aspx" title="European Magazines"
description="Magazines from Europe" />

</siteMapNode>
</siteMapNode>

</siteMap>

To create a web.sitemap file in Visual Studio 2008, go to the Add New Items dialog and select the Site
Map option. You can place the preceding content in this file. To move a level down in the hierarchy, nest
<siteMapNode> elements within other < siteMapNode > elements. A <siteMapNode> element can contain
several different attributes, as defined in the following table:

864

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 865

Chapter 20: ASP.NET 3.5 Advanced Features

Attribute Description

Title The title attribute provides a textual description of the link. The String value
used here is the text used for the link.

Description The description attribute not only reminds you what the link is for, it is also used
for the ToolTip attribute on the link. The ToolTip attribute is the yellow box that
appears next to the link when the end user hovers the cursor over the link for a
couple of seconds.

Url The url attribute describes where the file is located in the solution. If the file is in
the root directory, then simply use the filename, such as default.aspx. If the file is
located in a subfolder, then be sure to include the folders in the String value used
for this attribute, e.g., MySubFolder/MyFile.aspx.

Roles If ASP.NET security trimming is enabled, you can use the roles attribute to define
which roles are allowed to view and click the provided link in the navigation.

Using the SiteMapPath Server Control
One of the available server controls that works with a web.sitemap file is the SiteMapPath control. This
control provides a popular structure found on many Internet websites. Sometimes called breadcrumb
navigation, this feature is simple to implement in ASP.NET.

To see an example of this control at work, we’ll create a page that would be at the bottom of the site
map structure. Within the project that contains your web.sitemap file, create an ASP.NET page named
magazines_us.aspx. On this page, simply drag and drop a SiteMapPath control onto the page. You will
find this control under the Navigation section in the Visual Studio Toolbox. This control’s code looks as
follows:

<asp:SiteMapPath ID="SiteMapPath1" runat="server"></asp:SiteMapPath>

What else do you need to do to get this control to work? Nothing. Simply build and run the page to see
the results shown in Figure 20-20.

Figure 20-20

The SiteMapPath control defines the end user’s place in the application’s site structure. It shows the
current page the user is on (U.S. Magazines), as well as the two pages above it in the hierarchy.

865

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 866

Chapter 20: ASP.NET 3.5 Advanced Features

The SiteMapPath control requires no DataSource control, as it automatically binds itself to any .sitemap
file it finds in the project, and nothing is required on your part to make this happen. The SiteMapPath’s
smart tag enables you to customize the control’s appearance too, so you can produce other results, as
shown in Figure 20-21.

Figure 20-21

The code for this version of the SiteMapPath control is as follows:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" PathSeparator=" : "
Font-Names="Verdana" Font-Size="0.8em">
<PathSeparatorStyle Font-Bold="True"
ForeColor="#507CD1"></PathSeparatorStyle>

<CurrentNodeStyle ForeColor="#333333"></CurrentNodeStyle>
<NodeStyle Font-Bold="True" ForeColor="#284E98"></NodeStyle>
<RootNodeStyle Font-Bold="True" ForeColor="#507CD1"></RootNodeStyle>

</asp:SiteMapPath>

This example illustrates that a lot of style elements and attributes can be used with the SiteMapPath
control. Many options at your disposal enable you to create breadcrumb navigation that is unique.

Menu Server Control
Another navigation control enables end users of your application to navigate throughout the pages
based upon information stored within the web.sitemap file. The Menu server control produces a compact
navigation system that pops up sub-options when the user hovers the mouse over an option. The result
of the Menu server control when bound to the site map is shown in Figure 20-22.

Figure 20-22

866

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 867

Chapter 20: ASP.NET 3.5 Advanced Features

To build this, you must be working off of the web.sitemap file created earlier. After the web.sitemap file
is in place, place a Menu server control on the page, along with a SiteMapDataSource control:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1">
</asp:Menu>
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />

The SiteMapDataSource control automatically works with the application’s web.sitemap file. In addition
to the SiteMapDataSource control, the other item included is the Menu server control, which uses the
typical ID and runat attributes, in addition to the DataSourceID attribute, to connect this control with
what is retrieved from the SiteMapDataSource control.

Like the other controls provided by ASP.NET, you can easily modify the appearance of this control. By
clicking the Auto Format link in the control’s smart tag, you can give the control the ‘‘classic’’ look and
feel. This setting produces the result shown in Figure 20-23.

Figure 20-23

As with the other controls, a lot of sub-elements contribute to the changed look of the control’s style:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"
Font-Names="Verdana" Font-Size="0.8em" BackColor="#B5C7DE"
ForeColor="#284E98"
StaticSubMenuIndent="10px" DynamicHorizontalOffset="2">

<StaticSelectedStyle BackColor="#507CD1"></StaticSelectedStyle>
<StaticMenuItemStyle HorizontalPadding="5"
VerticalPadding="2"></StaticMenuItemStyle>
<DynamicMenuStyle BackColor="#B5C7DE"></DynamicMenuStyle>
<DynamicSelectedStyle BackColor="#507CD1"></DynamicSelectedStyle>
<DynamicMenuItemStyle HorizontalPadding="5"
VerticalPadding="2"></DynamicMenuItemStyle>
<DynamicHoverStyle ForeColor="White" Font-Bold="True"
BackColor="#284E98"></DynamicHoverStyle>
<StaticHoverStyle ForeColor="White" Font-Bold="True"
BackColor="#284E98"></StaticHoverStyle>

</asp:Menu>

The TreeView Server Control
The last navigation server control to look at is the TreeView control. This control enables you to render
a hierarchy of data. The TreeView control is not only meant for displaying what is contained within the

867

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 868

Chapter 20: ASP.NET 3.5 Advanced Features

.sitemap file; you can also use this control to represent other forms of hierarchical data, such as data that
you might store in a standard XML file.

You may have encountered a similar TreeView control in .NET when using the IE Web controls, which
also contained a TreeView control. That previous TreeView control was limited to working only in
Microsoft’s Internet Explorer, whereas the new TreeView control works in a wide variety of browsers.

The TreeView control is similar to the Menu control in that it will not bind automatically to the
web.sitemap file, but instead requires an underlying DataSource control. The code for displaying the
contents of the .sitemap file is shown in the following example:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="SiteMapDataSource1">
</asp:TreeView>
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />

As with the Menu control example, a SiteMapDataSource is needed. After a basic SiteMapDataSource
control is in place, position a TreeView control on the page and set the DataSourceId property to
SiteMapDataSource1. This simple construction produces the result shown in Figure 20-24.

Figure 20-24

Remember that by using the Auto Format link from the control’s smart tag, you can format the TreeView
control in a wide variety of ways.

The TreeView is not meant only for site maps; as mentioned, it can build upon any underlying hierarchi-
cal data set. For instance, you can display a hierarchical data structure from a standard XML file just as
easily. Suppose you have the following XML file:

<?xml version="1.0" encoding="utf-8" ?>
<Hardware>

<Item Category="Motherboards">
<Option Choice="Asus" />
<Option Choice="Abit" />

</Item>
<Item Category="Memory">

<Option Choice="128mb" />
<Option Choice="256mb" />
<Option Choice="512mb" />

</Item>

868

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 869

Chapter 20: ASP.NET 3.5 Advanced Features

<Item Category="Hard Drives">
<Option Choice="40GB" />
<Option Choice="80GB" />
<Option Choice="100GB" />

</Item>
<Item Category="Drives">

<Option Choice="CD" />
<Option Choice="DVD" />
<Option Choice="DVD Burner" />

</Item>
</Hardware>

It’s obvious that this XML file is not meant for site navigation, but for options from which end users
can make selections. As stated, the TreeView control is quite extensible. For example, the following code
creates a page that uses the preceding XML file:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

If TreeView1.CheckedNodes.Count > 0 Then
Label1.Text = "We are sending you information on:<p>"

For Each node As TreeNode In TreeView1.CheckedNodes
Label1.Text += node.Text & " " & node.Parent.Text & "
"

Next
Else

label1.Text = "You didn’t select anything. Sorry!"
End If

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>The TreeView Control</title>
</head>
<body>

<form id="form1" runat="server">
<div>

Please select the following items that you are interesting in:

<asp:TreeView ID="TreeView1" runat="server"
DataSourceID="XmlDataSource1" ShowLines="True">

<DataBindings>
<asp:TreeNodeBinding TextField="Category"
DataMember="Item"></asp:TreeNodeBinding>

<asp:TreeNodeBinding ShowCheckBox="True" TextField="Choice"
DataMember="Option"></asp:TreeNodeBinding>

</DataBindings>
</asp:TreeView>

869

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 870

Chapter 20: ASP.NET 3.5 Advanced Features

<asp:Button ID="Button1" runat="server"
Text="Submit Choices" OnClick="Button1_Click" />

<asp:Label ID="Label1" runat="server"></asp:Label>
<asp:XmlDataSource ID="XmlDataSource1" runat="server"
DataFile="~/Hardware.xml">

</asp:XmlDataSource>
</div>
</form>

</body>
</html>

This example uses an XmlDataSource control instead of the SiteMapDataSource control. The
XmlDataSource control associates itself with the XML file shown earlier (Hardware.xml) through the
use of the DataFile attribute.

The TreeView control then binds itself to the XmlDataSource control through the use of the DataSourceID
attribute, which here is pointed to XmlDataSource1. Another interesting addition in the root TreeView
node is the ShowLines attribute, set to True. This feature of the TreeView causes every node in the hier-
archy to show its connection to its parent node through a visual line.

When working with XML files, which can basically be of any construction, you must bind the nodes
of the TreeView control to specific values that come from the XML file. This is done through the use of
the <DataBindings> element. This element encapsulates one or more TreeNodeBinding objects. Two
of the more important available properties of a TreeNodeBinding object are DataMember and TextField.
The DataMember property points to the name of the XML element that the TreeView control should look
for. The TextField property specifies the XML attribute of that particular XML element. If you do this
correctly with the use of the <DataBindings> construct, you get the result shown in Figure 20-25.

In the button click event from our example, you can see how easy it is to iterate through each of the
checked nodes from the TreeView selection by creating instances of TreeNode objects. These selections
are made from one of the TreeNodeBinding objects, which sets the ShowCheckBox property to True.

Membership and Role Management
ASP.NET contains a built-in membership and role management system that can be initiated either
through code or through the ASP.NET Web Site Administration Tool. This is an ideal system for authen-
ticating users to access a page or even your entire site. This management system not only provides a new
API suite for managing users, but also provides you with some server controls that interact with this API.

As the first step in setting up your site’s security and the user roles, open the ASP.NET Web Site Admin-
istration Tool. You can launch this tool through a button in the Visual Studio 2008 Solution Explorer or
by clicking Website ➪ ASP.NET Configuration in the Visual Studio menu. When the tool opens in the
document window, click the Security tab, shown in Figure 20-26.

Click the link to start the Security Setup Wizard, shown in Figure 20-27.

870

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 871

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-25

Figure 20-26

871

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 872

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-27

The wizard first asks whether your application will be available on the public Internet or hosted on an
intranet. If you select Internet, then your website will be enabled with Forms Authentication. If you
select Intranet, then your site will be configured to work with Windows Integrated Authentication. For
our example, select the Internet option.

Working through the wizard, you are also asked whether you are going to work with role management.
Enable role management by checking the appropriate check box and add a role titled Manager. After this
step, you can begin to enter users into the system. Fill out information for each user you want in the
system, as shown in Figure 20-28.

The next step is to create the access rules for your site. You can pick specific folders and apply the rules for
the folder. In this example, anyone in the Manager role would have access to the site, while anonymous
users would be denied access (see Figure 20-29).

Click the Finish button to exit the wizard. If you refresh the Solution Explorer in Visual Studio, a new
data store (an SQL Server Express Edition .mdf file) appears in the App_Data folder. This is where all of
the user and role information is stored. Note that you can configure both of the systems (the membership
and role management systems) to work with other data stores besides these SQL Express data files. For
example, you can configure these systems to work with a full-blown version of Microsoft’s SQL Server.
Notice in the Solution Explorer that if you didn’t already have a web.config file, you have one now. The
contents added to the web.config file includes the following:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<system.web>
<authorization>

<allow roles="Manager" />
<deny users="?" />

</authorization>

872

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 873

Chapter 20: ASP.NET 3.5 Advanced Features

<roleManager enabled="true" />
<authentication mode="Forms" />

</system.web>
</configuration>

Figure 20-28

Figure 20-29

This shows all the settings that were enabled. The <authorization> section allows for users who are in
the role of Manager, and denies all anonymous users (defined with a question mark). The <roleManager>
element turns on the role management system, while the <authentication> element turns on forms
authentication. Now, let’s utilize these configurations.

873

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 874

Chapter 20: ASP.NET 3.5 Advanced Features

Create a login page, as everyone will access any page in this application as an anonymous user first. The
login page enables people to enter their credentials in order to be authorized in the Manager role created
earlier.

ASP.NET includes a slew of controls that make working with the membership and role management
systems easier. On the login page (Login.aspx), place a simple Login server control:

<asp:Login ID="Login1" runat="server"></asp:Login>

The nice thing here is that you have to do absolutely nothing to tie this Login control to the .mdf database
created earlier through the wizard. Now access another page in the application (other than the
Login.aspx page) and start up that page. This example starts up Default.aspx (which only contains
a simple text statement), but looking at Figure 20-30 you can see from the URL specified in the browser
that I was redirected to Login.aspx because I wasn’t yet authenticated.

Figure 20-30

The Login.aspx page enables me to enter my credentials, which then authorize me in the Manager role.
Pressing the Login button causes the browser to redirect me to the appropriate page. I am now authenti-
cated and authorized for the site!

Personalization
Many Web applications have features that allow for personalization of some kind. This might be as
simple as greeting a user by name, or it might deal with more advanced issues such as content placement.
Whatever the case, personalization techniques have always been tricky. Developers have used anything
from cookies, sessions, or database entries to control the personalization that users can perform on their
pages.

ASP.NET includes an easy to use and configure personalization system. It is as simple as making entries
in the web.config file to get the personalization system started. Like the membership and role manage-
ment systems, the personalization system also uses an underlying data store. The next example continues
to work with the SQL Server Express Edition .mdb file.

This example creates two properties, FirstName and LastName, both of type String. First, alter the
web.config file as shown here:

874

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 875

Chapter 20: ASP.NET 3.5 Advanced Features

<?xml version="1.0"?>
<configuration>

<system.web>
<profile>

<properties>
<add name="FirstName" type="System.String" />
<add name="LastName" type="System.String" />

</properties>
</profile>

</system.web>
</configuration>

Now that the profile properties we are going to store for each user are configured in the web.config file,
the next step is to build a simple ASP.NET page that utilizes these property settings. Create a simple page
that contains two TextBox controls that ask end users for their first and last name. We will then input the
values collected into the personalization engine via a button Click event. The code for this page is as
follows:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Profile.FirstName = TextBox1.Text
Profile.LastName = TextBox1.Text

Label1.Text = "First name: " & Profile.FirstName & _
"
Last name: " & Profile.LastName

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Welcome Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

First name:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

Last name:

<asp:TextBox ID="TextBox2" runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Submit Information"
OnClick="Button1_Click" />

<asp:Label ID="Label1" runat="server"></asp:Label>

</div>
</form>

</body>
</html>

875

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 876

Chapter 20: ASP.NET 3.5 Advanced Features

When this page is posted back to itself, the values placed into the two text boxes are placed into the
personalization engine and associated with this particular user through the use of the Profile object.
When working with the Profile object in Visual Studio, note that the custom properties you created are
provided to you through IntelliSense. Once stored in the personalization engine, they are then available
to you on any page within the application through the use of the same Profile object.

Configuring ASP.NET in IIS on Vista
If you are using IIS as the basis of your ASP.NET applications, you will find that it is quite easy to con-
figure the ASP.NET application directly through the Internet Information Services (IIS) Manager if you
are using Windows Vista. To access the ASP.NET configurations, open IIS and expand the Web Sites
folder, which contains all the sites configured to work with IIS. Remember that not all your websites are
configured to work in this manner because it is also possible to create ASP.NET applications that make
use of the new ASP.NET built-in Web server.

Once you have expanded the IIS Web Sites folder, right-click one of the applications in this folder. You
will notice that the available options for configuration appear in the IIS Manager (see Figure 20-31).

Figure 20-31

The options available to you enable you to completely configure ASP.NET or even configure IIS itself.
The focus of this chapter is on the ASP.NET section of the options. In addition to the options you can
select from the available icons, you can also configure some basic settings of the application by clicking
the Basic Settings link in the Actions pane on the right-hand side of the IIS Manager. When clicking the
Basic Settings link, you will get the Edit Web Site dialog box shown in Figure 20-32.

Changes you make in the IIS Manager are actually being applied to the web.config file of your
application; making changes to the Default website (the root node) enables you edit the
machine.config file.

876

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 877

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-32

This dialog enables you to change the following items:

❑ Web site name: The name of the website. In the case of Figure 20-32, naming the website ‘‘Wrox’’
means that the URL will be http://[IP address or domain name]/Wrox.

❑ Application pool: The application pool you are going to use for the application. Note that you
have three options by default: DefaultAppPool (which uses the .NET Framework 2.0 and
an integrated pipeline mode), Classic .NET AppPool (which uses the .NET Framework 2.0 and a
classic pipeline mode), and ASP.NET 1.1 (which uses the .NET Framework 1.1 as it states and
a classic pipeline mode).

❑ Physical path: The folder location where the ASP.NET application can be found. In this case, it is
C:\Wrox.

The sections that follow describe some of the options available to you through the icons in the IIS
Manager.

Working with the ASP.NET Provider Model
Ever since the beginning days of ASP.NET, users wanted to be able to store sessions by means other
than the three methods: InProc, StateServer, and SQLServer. One such request was for a provider that
could store sessions in an Oracle database. This might seem like a logical thing to add to ASP.NET in the
days of ASP.NET 1.1, but if the team added a provider for Oracle, they would soon get requests to add
even more providers for other databases and data storage methods. For this reason, instead of building
providers for every possible scenario, the developers designed a provider model that enabled them to
add any providers they wished. Thus was born the new provider model introduced in ASP.NET 2.0.

ASP.NET includes a lot of systems that require state storage of some kind. In addition, instead of record-
ing state in a fragile mode (the way sessions are stored by default), many of these new systems require
their state to be stored in more concrete data stores such as databases or XML files. This also enables a
longer-lived state for the users visiting an application — something else that is required by these new
systems.

The systems found in ASP.NET today that require advanced state management include the following:

❑ Membership

❑ Role management

877

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 878

Chapter 20: ASP.NET 3.5 Advanced Features

❑ Site navigation

❑ Personalization

❑ Health-monitoring Web events

❑ Web parts personalization

❑ Configuration file protection

The membership system enables ASP.NET to work from a user store of some kind to create, delete, or
edit application users. Because it is apparent that developers want to work with an unlimited amount of
different data stores for their user store, they need a means to easily change the underlying user store for
their ASP.NET applications. The provider model found in ASP.NET is the answer.

Out of the box, ASP.NET provides two membership providers that enable you to store user informa-
tion: SQL Server and the Active Directory membership providers (found at System.Web.Security
.SqlMembershipProvider and System.Web.Security.ActiveDirectoryMembershipProvider, respec-
tively). In fact, for each of the systems (as well as for some of the ASP.NET 1.x systems), a series of
providers is available to alter the way the state of that system is recorded. Figure 20-33 illustrates these
providers.

DPAPIProtectedConfigurationProvider

SqlPersonalizationProvider

SqlMembershipProvider

ActiveDirectoryMembershipProvider

AuthorizationRoleMembershipProvider

SqlRoleProvider

WindowsTokenRoleProvider

XmlSiteMapProvider

SqlProfileProvider

RSAProtectedConfigurationProvider

WmiWebEventProvider

TraceWebEventProvider

SqlWebEventProvider

TemplatedMailWebEventProvider

SimpleMailWebEventProvider

EventLogWebEventProvider

SqlSessionStateStore

OutOfProcSessionStateStore

InProcSessionStateStore

ASP.NET RoleWebEvents

WebParts

Configuration Membership

SiteMapSessionState

Profile

Figure 20-33

As shown in the diagram, ASP.NET provides a large number of providers out of the box. Some systems
have only a single provider (such as the profile system, which includes only a provider to connect to
SQL Server), whereas other systems include multiple providers (such as the WebEvents provider, which
includes six separate providers). The next section describes how to set up SQL Server to work with
several of the providers presented in this chapter. You can use SQL Server 7.0, 2000, 2005, or 2008 for the
back-end data store for many of the providers presented (although not all of them). After this explanation
is an overview of the available providers built into ASP.NET.

878

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 879

Chapter 20: ASP.NET 3.5 Advanced Features

Working with Microsoft SQL Server from 7.0 to 2008
Quite a number of providers work with SQL Server. For instance, the membership, role management,
personalization, and other systems work easily with SQL Server. However, all these systems work
with the new Microsoft SQL Server Express Edition file (.mdf) by default instead of with one of the
full-blown versions of SQL Server, such as SQL Server 7.0, SQL Server 2000, SQL Server 2005, or SQL
Server 2008.

To work with either Microsoft SQL Server 7.0, 2000, 2005, or 2008, you must set up the database using the
aspnet_regsql.exe tool. Working with aspnet_regsql.exe creates the necessary tables, roles, stored
procedures, and other items needed by the providers. To access this tool, open the Visual Studio 2008
command prompt by selecting Start ➪ All Programs ➪ Visual Studio 2008 ➪ Visual Studio Tools ➪

Visual Studio 2008 Command Prompt. This gives you access to the ASP.NET SQL Server Setup Wizard.
The ASP.NET SQL Server Setup Wizard is an easy to use tool that facilitates setup of SQL Server to
work with many of the systems built into ASP.NET, such as the membership, role management, and
personalization systems. The Setup Wizard provides two ways for you to set up the database: using a
command-line tool or using a GUI tool.

The ASP.NET SQL Server Setup Wizard Command-Line Tool
The command-line version of the Setup Wizard gives developers optimal control over how the database
is created. Working from the command line using this tool is not difficult, so don’t be intimidated by it.

You can get at the actual tool, aspnet_regsql.exe, from the Visual Studio command prompt if you
have Visual Studio 2008. At the command prompt, type aspnet regsql.exe -? to get a list of all the
command-line options at your disposal for working with this tool.

The following table describes some of the available options for setting up your SQL Server instance to
work with the personalization framework:

Command Option Description

-? Displays a list of available option commands

-W Uses the Wizard mode. This uses the default installation if no other
parameters are used.

-S <server> Specifies the SQL Server instance to work with

-U <login> Specifies the username for logging in to SQL Server. If you use this, then you
also use the -P command.

-P <password> Specifies the password to use for logging in to SQL Server. If you use this,
then you also use the -U command.

-E Provides instructions for using the current Windows credentials for
authentication

-C Specifies the connection string for connecting to SQL Server. If you use this,
then you don’t need to use the -U and -P commands because they are
specified in the connection string itself.

879

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 880

Chapter 20: ASP.NET 3.5 Advanced Features

Command Option Description

-A all Adds support for all the available SQL Server operations provided by
ASP.NET, including membership, role management, profiles, site counters,
and page/control personalization

-A p Adds support for working with profiles

_R all Removes support for all the available SQL Server operations that have been
previously installed. These include membership, role management, profiles,
site counters, and page/control personalization.

-R p Removes support for the profile capability from SQL Server

-d <database> Specifies the database name to use with the application services. If you don’t
specify a database name, then aspnetdb is used.

/sqlexportonly
<filename>

Instead of modifying an instance of a SQL Server database, use this command
in conjunction with the other commands to generate a SQL script that adds or
removes the features specified. This command creates the scripts in a file that
has the name specified in the command.

To modify SQL Server to work with the personalization provider using this command-line tool, you enter
a command such as the following:

aspnet_regsql.exe -A all -E

After you enter the preceding command, the command-line tool creates the features required by all the
available ASP.NET systems. The results are shown in the tool itself, as illustrated in Figure 20-34.

Figure 20-34

When this action is completed, you can see that a new database, aspnetdb, has been created in the SQL
Server Enterprise Manager of Microsoft SQL Server 2005 (the database used for this example). You now
have the appropriate tables for working with all the ASP.NET 3.5 systems that are able to work with SQL
Server (see Figure 20-35).

One advantage of using the command-line tool, rather than the GUI-based version of the ASP.NET SQL
Server Setup Wizard, is that you can install in the database just the features you’re interested in working
with, instead of installing everything (as the GUI-based version does). For instance, if you want only

880

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 881

Chapter 20: ASP.NET 3.5 Advanced Features

the membership system to interact with SQL Server 2005 — not any of the other systems (such as role
management and personalization) — then you can configure the setup so that only the tables, roles,
stored procedures, and other items required by the membership system are established in the database.
To set up the database for the membership system only, use the following on the command line:

aspnet_regsql.exe -A m -E

Figure 20-35

The ASP.NET SQL Server Setup Wizard GUI Tool
Instead of working with the tool through the command line, you can also work with a GUI version of the
same wizard. To access the GUI version, type the following at the Visual Studio command prompt:

aspnet_regsql.exe

At this point, the ASP.NET SQL Server Setup Wizard welcome screen appears, as shown in Figure 20-36.

Figure 20-36

881

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 882

Chapter 20: ASP.NET 3.5 Advanced Features

Clicking the Next button gives you a new screen that offers two options: one to install management
features into SQL Server and the other to remove them (see Figure 20-37).

Figure 20-37

From here, choose ‘‘Configure SQL Server for application services’’ and click Next. The third screen (see
Figure 20-38) asks for the login credentials to SQL Server and the name of the database to perform the
operations. The Database option is <default> — meaning the wizard creates a database called aspnetdb.
If you want to choose a different folder, such as the application’s database, choose the appropriate option.

After you have made your server and database selections, click Next. The screen shown in Figure 20-39
asks you to confirm your settings. If everything looks correct, click the Next button — otherwise, click
Previous and correct your settings.

When this is complete, you get a notification that everything was set up correctly.

Connecting Your Default Provider to a New SQL Server Instance
After you set up the full-blown Microsoft SQL Server to work with the various systems provided by
ASP.NET 3.5, you create a connection string to the database in your machine.config or web.config file,
as shown in the following code:

<configuration>

<connectionStrings>
<add name="LocalSql2005Server"
connectionString="Data Source=127.0.0.1;Integrated Security=SSPI" />

</connectionStrings>

</configuration>

882

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 883

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-38

Figure 20-39

You may want to change the values provided if you are working with a remote instance of SQL Server,
rather than an instance that resides on the same server as the application. Changing this value in the
machine.config file changes how each ASP.NET application uses this provider. Applying this setting in
the web.config file causes only the local application to work with this instance.

After the connection string is set up, look further in the <providers> area of the section you are going
to work with. For instance, if you are using the membership provider, then you want to work with the
<membership> element in the configuration file. The settings to change SQL Server are shown here:

<configuration>

<connectionStrings>
<add name="LocalSql2005Server"
connectionString="Data Source=127.0.0.1;Integrated Security=SSPI" />

883

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 884

Chapter 20: ASP.NET 3.5 Advanced Features

</connectionStrings>

<system.web>

<membership defaultProvider="AspNetSql2005MembershipProvider">
<providers>

<add name="AspNetSql2005MembershipProvider"
type="System.Web.Security.SqlMembershipProvider,

System.Web, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"

connectionStringName="LocalSql2005Server"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
applicationName="/"
requiresUniqueEmail="false"
passwordFormat="Hashed"
maxInvalidPasswordAttempts="5"
minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="1"
passwordAttemptWindow="10"
passwordStrengthRegularExpression="" />

</providers>
</membership>

</system.web>

</configuration>

With these changes in place, the SQL Server 2005 instance is now one of the providers available for
use with your applications. The name of this instance is AspNetSql2005MembershipProvider. You can
see that this instance also uses the connection string of LocalSql2005Server, which was defined earlier.

Pay attention to some important attribute declarations in the preceding configuration code. For example,
the provider used by the membership system is defined via the defaultProvider attribute found in the
main <membership> node. Using this attribute, you can specify whether the provider is one of the built-in
providers or whether it is a custom provider that you have built yourself or received from a third party.
With the code in place, the membership provider now works with Microsoft SQL Server 2005 (as shown
in this example) instead of the Microsoft SQL Server Express Edition files.

ASP.NET AJAX
AJAX is definitely the current hot buzzword in the Web application world. AJAX is an acronym for
Asynchronous JavaScript and XML, and in Web application development it signifies the capability to build
applications that make use of the XMLHttpRequest object.

The creation and inclusion of the XMLHttpRequest object in JavaScript and the fact that most upper-level
browsers support it led to the creation of the AJAX model. AJAX applications, although they have been
around for a few years, gained popularity after Google released a number of notable, AJAX-enabled
applications such as Google Maps and Google Suggest. These applications clearly demonstrated the
value of AJAX.

884

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 885

Chapter 20: ASP.NET 3.5 Advanced Features

Shortly thereafter, Microsoft released a beta for a new toolkit that enabled developers to incorporate
AJAX features in their Web applications. This toolkit, code-named Atlas and later renamed ASP.NET
AJAX, makes it extremely simple to start using AJAX features in your applications today.

The ASP.NET AJAX toolkit was not part of the default .NET Framework 2.0 install. If you are using the
.NET Framework 2.0, it is an extra component that you must download from the Internet.

Understanding the Need for AJAX
Today, if you are going to build an application, you have the option of creating either a thick-client or
a thin-client application. A thick-client application is typically a compiled executable that end users can
run in the confines of their own environment — usually without any dependencies elsewhere (such as
an upstream server). Generally, the technology to build this type of application is the Windows Forms
technology, or MFC in the C++ world. A thin-client application is typically one that has its processing and
rendering controlled at a single point (the upstream server), and the results of the view are sent down as
HTML to a browser to be viewed by a client. To work, this type of technology generally requires that the
end user be connected to the Internet or an intranet of some kind.

Each type of application has its pros and cons. The thick-client style of application is touted as more fluid
and more responsive to an end user’s actions. In a Web-based application, for many years the complaint
has been that every action by an end user takes numerous seconds and results in a jerky page refresh.
In turn, the problem with a thick-client style of application has always been that the application sits on
the end user’s machine and any patches or updates to the application require you to somehow upgrade
each and every machine upon which the application sits. In contrast, the thin-client application, or the
Web application architecture, includes only one instance of the application. The application in this case
is installed on a Web server, and any updates that need to occur happen only to this instance. End users
who are calling the application through their browsers always get the latest and greatest version of the
application. That change model has a lot of power to it.

With this said, it is important to understand that Microsoft is making huge inroads into solving this
thick- or thin-client problem, and you now have options that completely change this model. For instance,
the Windows Presentation Foundation technology recently offered by Microsoft and the new Silverlight
technology blur the lines between the two traditional application styles.

Even with the existing Windows Forms and ASP.NET technologies to build the respective thick- or thin-
client applications, each of these technologies is advancing to a point where it is even blurring the lines
further. ASP.NET AJAX in particular is further removing any of the negatives that would have stopped
you from building an application on the Web.

ASP.NET AJAX makes your Web applications seem more fluid than ever before. AJAX-enabled appli-
cations are highly responsive and give the end user immediate feedback and direction through the
workflows that you provide. The power of this alone makes the study of this new technology and its
incorporation into your projects of the utmost importance.

Before AJAX
So, what is AJAX doing to your Web application? First, let’s take a look at what a Web page does when
it does not use AJAX. Figure 20-40 shows a typical request and response activity for a Web
application.

885

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 886

Chapter 20: ASP.NET 3.5 Advanced Features

Windows Server

ASP.NET
Processing Engine

Request Response

End User’s Internet
Browser (e.g. IE7)

End User’s Client Computer

Figure 20-40

In this case, an end user makes a request from his or her browser to the application that is stored on your
Web server. The server processes the request, and ASP.NET renders a page, which is then sent to the
requestor as a response. The response, once received by the end user, is displayed within the end user’s
browser.

From here, many events that take place within the application instance as it sits within the end user’s
browser cause the complete request and response process to reoccur. For instance, the end user might
click a radio button, a check box, a button, a calendar, or anything else, and this action causes the entire
Web page to be refreshed or a new page to be provided.

AJAX Changes the Story
Conversely, an AJAX-enabled Web page includes a JavaScript library on the client that takes care of
issuing the calls to the Web server. It does this when it is possible to send a request and get a response for
just part of the page and using script; the client library updates that part of the page without updating the
entire page. An entire page is a lot of code to send down to the browser to process each and every time.
With only part of the page being processed . . . [to resolve dangling modifier], the end user experiences
what some people term ‘‘fluidity’’ in the page, which makes the page seem more responsive. The amount
of code required to update just a portion of a page is less and produces the responsiveness the end user
expects. Figure 20-41 shows a diagram of how this works.

First, the entire page is delivered in the initial request and response. From there, any partial updates
required by the page are performed using the client script library. This library can make asynchronous
page requests and update just the portion of the page that needs updating. One major advantage to this

886

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 887

Chapter 20: ASP.NET 3.5 Advanced Features

is that a minimal amount of data is transferred for the updates to occur. Updating a partial page is better
than recalling the entire page for what is just a minor change.

Windows Server

ASP.NET
Processing Engine

Request
Response

Asynchronous
Response

Asynchronous
Request

End User's Internet
Browser (e.g. IE7)

ASP.NET AJAX Library

End User's Client Computer

Figure 20-41

AJAX is dependent upon a few technologies in order for it to work:

❑ The first is the XMLHttpRequest object. This object enables the browser to communicate to a
back-end server and has been available in the Microsoft world since Internet Explorer 5 through
the MSXML ActiveX component.

❑ The other major component is JavaScript. This technology provides the client-side initiation to
communication with the back-end services and takes care of packaging a message to send to any
server-side services.

❑ Another aspect of AJAX is support for DHTML and the Document Object Model (DOM). These
are the pieces that will change the page when the asynchronous response is received from the
server.

❑ The last piece is the data being transferred from the client to the server. This is done in XML or,
more important, JavaScript Object Notation (JSON).

Support for the XMLHttpRequest object gives JavaScript functions within the client script library the
capability to call server-side events. As stated, typically HTTP requests are issued by a browser. It is also
the browser that takes care of processing the server’s response, and then usually regenerates the entire
Web page in the browser after a response is issued.

If you use the XMLHttpRequest object from your JavaScript library, you do not actually issue full-page
requests from the browser. Instead, you use a client-side script engine (which is basically a JavaScript
function) to initiate the request and to receive the response. Because you are not issuing a request and
response to deal with the entire Web page, you can skip a lot of the page processing because it is not
needed. This is the essence of an AJAX Web request.

887

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 888

Chapter 20: ASP.NET 3.5 Advanced Features

This opens the door to a tremendous number of possibilities. Microsoft has provided the necessary
script engines to automate much of the communication that must take place in order for AJAX-style
functionality to occur.

ASP.NET AJAX and Visual Studio 2008
Prior to Visual Studio 2008, the ASP.NET AJAX product used to be a separate installation that you were
required to install on your machine and the Web server that you were working with. This release gained
in popularity quite rapidly and is now a part of the Visual Studio 2008 offering. Not only is it a part of
the Visual Studio 2008 IDE, the ASP.NET AJAX product is also baked into the .NET Framework 3.5.
This means that to use ASP.NET AJAX, you don’t need to install anything if you are working with
ASP.NET 3.5.

If you are using an ASP.NET version prior to the ASP.NET 3.5 release, then you need to visit
www.asp.net/AJAX to get the components required to work with AJAX.

Because ASP.NET AJAX is now part of the ASP.NET framework, when you create a new Web application
you don’t have to create a separate type of ASP.NET application. Instead, all ASP.NET applications
that you create are AJAX-enabled.

If you have already worked with ASP.NET AJAX prior to this 3.5 release, there is really nothing new to
learn. The entire technology is seamlessly integrated.

Overall, Microsoft has fully integrated the entire ASP.NET AJAX experience so you can easily use Visual
Studio and its visual designers to work with your AJAX-enabled pages and even have the full debugging
story that you would want to have with your applications. Using Visual Studio 2008, you can now debug
the JavaScript that you are using in the pages.

In addition, note that Microsoft focused a lot of attention on cross-platform compatibility with ASP.NET
AJAX. The AJAX-enabled applications that you build upon the .NET Framework 3.5 can work within all
the major up-level browsers available (e.g., Firefox and Opera).

Client-Side Technologies
There are actually two parts to the ASP.NET AJAX story. The first is a client-side framework and a set
of services that are completely on the client-side. The other part of the story is a server-side framework.
Remember that the client side of ASP.NET AJAX is all about the client communicating asynchronous
requests to the server side of the offering.

For this reason, Microsoft offers a Client Script Library, which is a JavaScript library that takes care of the
required communications. The Client Script Library is presented in Figure 20-42.

The Client Script Library provides a JavaScript, object-oriented interface that is reasonably consistent
with aspects of the .NET Framework. Because browser compatibility components are built in, any work
that you build in this layer or (in most cases) work that you let ASP.NET AJAX perform for you here
will function with a multitude of different browsers. In addition, several components support a rich UI
infrastructure capable of producing many things that would otherwise take some serious time to build
yourself.

888

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 889

Chapter 20: ASP.NET 3.5 Advanced Features

Controls and Components

Client Script Library

Client Application
Services

Browser Integration

Component Model and UI Framework

Base Class Library

Script Core

Browser Compatibility

HTML,
Script,

ASP.NET AJAX
Markup

Service Proxies

Figure 20-42

The interesting thing about the client-side technologies provided by ASP.NET AJAX is that they are
completely independent of ASP.NET. In fact, any developer can freely download the Microsoft AJAX
Library (again from asp.net/AJAX) and use it with other Web technologies such as PHP (www.php.net)
and Java Server Pages (JSP). That said, the entire Web story is actually a lot more complete with the
server-side technologies provided with ASP.NET AJAX.

Server-Side Technologies
As an ASP.NET developer, you will most likely be spending most of your time on the server-side aspect
of ASP.NET AJAX. Remember that ASP.NET AJAX is all about the client-side technologies talking back
to the server-side technologies. You can actually perform quite a bit on the server side of ASP.NET AJAX.

The server-side framework knows how to deal with client requests, such as putting responses in the
correct format. The server-side framework also takes care of the marshalling of objects back and forth
between JavaScript objects and the .NET objects that you are using in your server-side code. Figure 20-43
illustrates the server-side framework provided by ASP.NET AJAX.

When you have the .NET Framework 3.5, you have the ASP.NET AJAX Server Extensions on top of the
core ASP.NET 2.0 Framework, the Windows Communication Foundation, as well as ASP.NET-based
Web services (.asmx).

Developing with ASP.NET AJAX
Some Web developers are used to working with ASP.NET, and have experience working with server-side
controls and manipulating these controls on the server-side. Other developers concentrate on the client
side and work with DHTML and JavaScript to manipulate and control the page and its behaviors.

889

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 890

Chapter 20: ASP.NET 3.5 Advanced Features

ASP.NET AJAX Server Controls

App Services Bridge

ASP.NET AJAX Server Extensions

Page Framework
Server Controls

ASP.NET AJAX
ASP.NET Pages Web Services

Application Services

ASP.NET

Figure 20-43

ASP.NET AJAX was designed for both types of developers. If you want to work more on the server side
of ASP.NET AJAX, you can use the new ScriptManager control and the new UpdatePanel control to
AJAX-enable your current ASP.NET applications with little work on your part. All this work can be done
using the same programming models that you are quite familiar with in ASP.NET. In turn, you can also
use the Client Script Library directly and gain greater control over what is happening on the client’s
machine. In the next section, you’ll build a simple Web page that makes use of AJAX.

Building a Simple ASP.NET Page with AJAX
For this example, you will be adding some simple controls. Two of the controls to add are typical
ASP.NET server controls — another Label and Button server control. In addition to these controls, you
are going to add some ASP.NET AJAX controls.

In the Visual Studio 2008 Toolbox is a new section titled AJAX Extensions, as shown in Figure 20-44.

Figure 20-44

From AJAX Extensions, add a ScriptManager server control to the top of the page and include the second
Label and Button control inside the UpdatePanel control. The UpdatePanel control is a template server
control that enables you to include any number of items within it (just as other templated ASP.NET server
controls). When you have your page set up, it should look something like what is shown in Figure 20-45.

890

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 891

Chapter 20: ASP.NET 3.5 Advanced Features

Figure 20-45

The code for this page is as follows:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)
Label1.Text = DateTime.Now.ToString()

End Sub

Protected Sub Button2_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)
Label2.Text = DateTime.Now.ToString()

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>My ASP.NET AJAX Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
<asp:Label ID="Label1" runat="server"></asp:Label>

<asp:Button ID="Button1" runat="server"
Text="Click to get machine time"
onclick="Button1_Click" />

891

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 892

Chapter 20: ASP.NET 3.5 Advanced Features

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>
<asp:Label ID="Label2" runat="server" Text=""></asp:Label>

<asp:Button ID="Button2" runat="server"
Text="Click to get machine time using AJAX"
onclick="Button2_Click" />

</ContentTemplate>
</asp:UpdatePanel>

</div>
</form>

</body>
</html>

When this page is pulled up in the browser, it has two buttons. The first button causes a complete page
postback and updates the current time in the Label1 server control. Clicking on the second button causes
an AJAX asynchronous postback. Clicking this second button updates the current server time in the
Label2 server control. When you click the AJAX button, the time in Label1 will not change at all, as it is
outside of the UpdatePanel. The result is presented in Figure 20-46.

Figure 20-46

When you first pull up the page from the preceding listing, the code is quite different from the page that
would be built if you weren’t using AJAX. The following code listing shows the page results that you see
by using AJAX:

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>
My ASP.NET AJAX Page

</title></head>
<body>

<form name="form1" method="post" action="Default.aspx" id="form1">
<div>
<input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="/wEPDwULLTE4NzE5NTc5MzRkZDRIzHpPZg4GaO9Hox9A/RnOflkm" />

892

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 893

Chapter 20: ASP.NET 3.5 Advanced Features

</div>

<script type="text/javascript">
//<![CDATA[
var theForm = document.forms[’form1’];
if (!theForm) {

theForm = document.form1;
}
function __doPostBack(eventTarget, eventArgument) {

if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
theForm.__EVENTTARGET.value = eventTarget;
theForm.__EVENTARGUMENT.value = eventArgument;
theForm.submit();

}
}
//]]>
</script>

<script src="/AJAXWebSite/WebResource.axd?d=o84znEj-
n4cYi0Wg0pFXCg2&t=633285028458684000" type="text/javascript"></script>

<script src="/AJAXWebSite/ScriptResource.axd?
d=FETsh5584DXpx8XqIhEM50YSKyR2GkoMoAqraYEDU5_
gi1SUmL2Gt7rQTRBAw56lSojJRQe0OjVI8SiYDjmpYmFP0
CO8wBFGhtKKJwm2MeE1&t=633285035850304000"
type="text/javascript"></script>

<script type="text/javascript">
//<![CDATA[
if (typeof(Sys) === ’undefined’) throw new Error(’ASP.NET AJAX client-side

framework failed to load.’);
//]]>
</script>

<script src="/AJAXWebSite/ScriptResource.axd?
d=FETsh5584DXpx8XqIhEM50YSKyR2GkoMoAqraYEDU5_
gi1SUmL2Gt7rQTRBAw56l7AYfmRViCoO2lZ3XwZ33TGiC
t92e_UOqfrP30mdEYnJYs09ulU1xBLj8TjXOLR1k0&t=633285035850304000"
type="text/javascript"></script>

<div>
<script type="text/javascript">

//<![CDATA[
Sys.WebForms.PageRequestManager._initialize(’ScriptManager1’,
document.getElementById(’form1’));
Sys.WebForms.PageRequestManager.getInstance()._updateControls([’tUpdatePanel1’],
[], [], 90);
//]]>
</script>

<input type="submit" name="Button1" value="Click to get machine time"
id="Button1" />

<div id="UpdatePanel1">

893

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 894

Chapter 20: ASP.NET 3.5 Advanced Features

<input type="submit" name="Button2"
value="Click to get machine
time using AJAX" id="Button2" />

</div>
</div>

<div>

<input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION"
value="/wEWAwLktbDGDgKM54rGBgK7q7GGCMYnNq57VIqmVD2sRDQqfnOsgWQK" />
</div>

<script type="text/javascript">
//<![CDATA[
Sys.Application.initialize();
//]]>
</script>
</form>
</body>
</html>

From there, if you click Button1 and perform the full-page postback, you get this entire bit of code back
in a response — even though you are interested in updating only a small portion of the page! However,
if you click Button2 — the AJAX button — you send the request shown here:

POST /AJAXWebSite/Default.aspx HTTP/1.1
Accept: */*
Accept-Language: en-US
Referer: http://localhost.:62203/AJAXWebSite/Default.aspx
x-microsoftAJAX: Delta=true
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Cache-Control: no-cache
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR
2.0.50727; Media Center PC 5.0; .NET CLR 1.1.4322; .NET CLR 3.5.21004; .NET CLR
3.0.04506)
Host: localhost.:62203
Content-Length: 334
Proxy-Connection: Keep-Alive
Pragma: no-cache

ScriptManager1=UpdatePanel1%7CButton2&__EVENTTARGET=&__EVENTARGUMENT=&__
VIEWSTATE=%2FwEPDwULLTE4NzE5NTc5MzQPZBYCAgQPZBYCAgMPDxYCHgRUZXh0BRQxMS8zLzI
wMDcgMjoxNzo1NSBQTWRkZHZxUyYQG0M25t8U7vLbHRJuKlcS&__
EVENTVALIDATION=%2FwEWAwKCxdk9AoznisYGArursYYI1844
hk7V466AsW31G5yIZ73%2Bc6o%3D&Button2=Click%20to%20get%20machine
%20time%20using%20Ajax

894

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 895

Chapter 20: ASP.NET 3.5 Advanced Features

The response for this request is shown here:

HTTP/1.1 200 OK
Server: ASP.NET Development Server/9.0.0.0
Date: Sat, 03 Nov 2007 19:17:58 GMT
X-AspNet-Version: 2.0.50727
Cache-Control: private
Content-Type: text/plain; charset=utf-8
Content-Length: 796
Connection: Close

239|updatePanel|UpdatePanel1|
11/3/2007 2:17:58 PM

<input type="submit" name="Button2"
value="Click to get machine
time using AJAX" id="Button2" />

|172|hiddenField|__VIEWSTATE|/wEPDwULLTE4NzE5NTc5MzQPZBYCAgQPZBYEAgM
PDxYCHgRUZXh0BRQxMS8zLzIwMDcgMjoxNzo1NSBQTWRkAgcPZBYCZg9kFgICAQ8PFgI
fAAUUMTEvMy8yMDA3IDI6MTc6NTggUE1kZGQ4ipZIg91+XSI/dqxFueSUwcrXGw==|56
|hiddenField|__EVENTVALIDATION|/wEWAwKCz4mbCAK7q7GGCAKM54rGBj8b4/mkK
NKhV59qX9SdCzqU3AiM|0|asyncPostBackControlIDs|||0|postBackControlIDs
|||13|updatePanelIDs||tUpdatePanel1|0|childUpdatePanelIDs|||12|panels
ToRefreshIDs||UpdatePanel1|2|asyncPostBackTimeout||90|12|formAction||
Default.aspx|22|pageTitle||My ASP.NET AJAX Page|

Clearly, the response is much smaller than an entire Web page! In fact, the main part of the response
is only the code contained within the UpdatePanel server control and nothing more. The items at the
bottom deal with the ViewState of the page (as it has now changed) and some other small page changes.

Summary
This chapter and the previous chapter offered a whirlwind tour of ASP.NET 3.5 and some of the applica-
tion features that you can provide to the projects you develop. ASP.NET is highly focused on the area of
developer productivity, and works very hard at providing you access to the features and functions that
most websites need to employ today. This chapter covered the following ASP.NET technologies:

❑ Cross-page posting

❑ ASP.NET compilation techniques

❑ Master pages

❑ The data source controls

❑ The navigation system and some of the navigation server controls

❑ Membership and role management

❑ The new ASP.NET AJAX capabilities

895

Evjen-91361 c20.tex V2 - 04/01/2008 4:52pm Page 896

Chapter 20: ASP.NET 3.5 Advanced Features

A nice aspect of the features presented is that you can either utilize the wizards that are built into the
underlying technology or simply skip these wizards and employ the technologies yourself. Either way
is fine. Another useful aspect of the technologies introduced is that they all enable a huge amount of
customization. You can alter the behavior and output of these technologies to achieve exactly what
you need. If you want to dig deeper into ASP.NET, be sure to take a look at Professional ASP.NET 3.5
(Wiley, 2008).

896

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 897

Silverlight Development

One of the newer technologies out there is Silverlight 1.0, which was released in September of 2007.
At the time of this writing, Silverlight 1.0 is the only production release of the product. However,
Silverlight 2.0 will be released in the first half of 2008.

Silverlight is a lightweight browser plug-in from Microsoft that, much like Adobe’s Flash, will allow
for greater fluidity in your applications, thereby providing a rich user experience like no other in
ASP.NET. The base of Silverlight is XAML — a new markup language for creating applications by
Microsoft, such as WPF (Windows Presentation Foundation) applications.

You can build Silverlight applications using Microsoft’s new Expression Blend IDE, as well as the
new Visual Studio 2008. This chapter looks at the basics of Silverlight and how to build a Silverlight
application.

Looking at Silverlight
Silverlight is not tied to Microsoft’s Internet Explorer. It cannot be. If an application is going to
work on the Web, then it has to work in a multitude of browsers. For this reason, Silverlight is a
cross-browser platform for the applications you build. It is a standalone environment and has no
dependency for items, such as the .NET Framework, on the client machine.

However, even though you are using XAML to build your Silverlight applications, you’re not
required to have the .NET Framework 3.0 or 3.5 on the client. Instead, the XAML is loaded into
the browser and run in the context of the Silverlight plug-in.

Silverlight browser requirements
Silverlight will not run in every browser on the market. The following list shows which popular
browsers Silverlight 1.0 can work with today:

❑ Microsoft’s Internet Explorer 6 and later

❑ Firefox 1.5.0.8 and later (running on Windows or the Mac)

❑ Safari 2.0.4 and later (running on the Mac)

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 898

Chapter 21: Silverlight Development

Following are the operating systems that can run Silverlight:

❑ Windows XP SP2

❑ Windows Vista

❑ Mac OS X (10.4.8 or better)

You might be wondering why Linux is not on this list. Novell is building a Silverlight plug-in for the
Linux environment called Moonlight — a Mono-based implementation of Silverlight.

You can find more information on Moonlight at www.mono-project.com/Moonlight.

Two versions of Silverlight
At the time of writing, Silverlight 1.0 has been out for a couple of months. Though revolutionary, this first
version of the product supports a model that uses JavaScript programming to interact with the Silverlight
objects.

The big change coming with Silverlight 2.0 is that you are going to be able to use managed code (such as
Visual Basic) to interact with the Silverlight objects.

Both versions use XAML to control the output to the browser. The difference between the two versions
of Silverlight is that JavaScript is used to control the behaviors on the page for version 1.0, and managed
code is used for version 2.0.

Installing Silverlight
If you are an end user and you access a Silverlight application (a page on the Internet that makes use of
the Silverlight plug-in), then you will be prompted to download the Silverlight plug-in. Obviously, this
only occurs when end users don’t have the plug-in installed yet on their machines.

For instance, if you direct your browser to the URL www.silverlight.net, which is the URL for the main
Silverlight page, you will be prompted to install Silverlight, as shown in Figure 21-1.

Installing Silverlight is quick and simple. It takes about 20 seconds to perform this 1.3 MB install. Pressing
the Click to Install button on the page will give you a File Download security warning (as shown in
Figure 21-2). In this case, simple press the Run button.

The Silverlight application will install, and you will get a notification of the install process, as shown in
Figure 21-3.

This install process shows what percentage you have installed as well as the version of Silverlight that
you are installing (shown in the lower right-hand corner of the dialog).

Once you’ve installed it, you’ll be able to right-click on any Silverlight component on the page and view
the Silverlight configuration by making the appropriate selection from the provided menu.
On the Silverlight Web page, you can see this by right-clicking on the upper menu. You will then see
the Silverlight Configuration dialog, shown in Figure 21-4.

898

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 899

Chapter 21: Silverlight Development

Figure 21-1

Figure 21-2

Figure 21-3

899

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 900

Chapter 21: Silverlight Development

Figure 21-4

Developing Silverlight Applications
When you open Visual Studio 2008, you won’t find a Silverlight application template in the list of avail-
able options when you create a new project. In order to get that, you need to download the Silverlight
SDK from the Silverlight.net website.

On the Silverlight.net website, click the Get Started option in the menu at the top of the page. The window
shown in Figure 21-5 will appear.

Figure 21-5

900

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 901

Chapter 21: Silverlight Development

From this site, the following items can be downloaded:

Runtimes:

❑ Microsoft Silverlight 1.0 for the Mac or Windows

❑ A version of Microsoft Silverlight 2.0

Developer Tools:

❑ Microsoft Visual Studio 2008

❑ The Microsoft Silverlight Tools for Visual Studio 2008

Designer Tools:

❑ Microsoft’s Expression Blend

❑ Expression Encoder

❑ Expression Design

Software Development Kits:

❑ Microsoft Silverlight 1.0 Software Development Kit

❑ Microsoft Silverlight 2.0 Software Development Kit

Assuming you have already installed Visual Studio 2008, you need to install the Silverlight Tools for
Visual Studio. Installing this toolset will add the Silverlight Project option to your instance of Visual
Studio 2008.

Building a simple Silverlight application
Now that you have installed everything that’s needed to build a Silverlight application, the next step is to
build a simple application that makes use of the Silverlight plug-in. The first step is select the Silverlight
Project template that is now available in Visual Studio 2008 from the install you just did of the Silver-
light Tools for Visual Studio.

Choosing the Silverlight Project Template
Within Visual Studio 2008, select File ➪ New Project. You will find the Silverlight Project option in the
New Project dialog that appears, as shown in Figure 21-6.

The Silverlight Project option is only available as a .NET Framework 3.5 project, and the default name of
the project is SilverlightProject1, as shown in the figure. Selecting the OK button will create the project
for you.

The Silverlight Solution
Once you have created your application, you will find a series of files contained within the project. The
SilverlightProject1 solution is presented in Figure 21-7.

901

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 902

Chapter 21: Silverlight Development

Figure 21-6

Figure 21-7

Within this solution are references to agclr (the CLR imbedded in the Silverlight container), mscorlib,
System, System.Core, System.Silverlight, and System.Xml.Core. The Silverlight parts to focus on
within this application are the Page.xaml and Page.xaml.vb files. These are embedded in the container
on the client. The test client, in this case, is the TestPage.html page. Here is a description of the pages
included in the solution shown in Figure 21-7.

902

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 903

Chapter 21: Silverlight Development

File Description

Page.xaml The default XAML file that contains the XAML-markup needed for the page. The
object defined in this file is what is presented in the Silverlight container.

Page.xaml.vb The code-behind page for the XAML file

Silverlight.js Contains the core JavaScript library that works with the client to ensure that the
Silverlight plug-in is installed on the machine. If not, then an Install Silverlight
button will be presented to the client.

TestPage.html A test Web page that hosts the Silverlight plug-in and contains the appropriate
references to the required JavaScript files

TestPage.html.js The JavaScript page that is associated with the TestPage.html page

Looking at the Page.xaml file, you will see the following:

<Canvas x:Name="parentCanvas"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="Page_Loaded"
x:Class="SilverlightProject1.Page;

assembly=ClientBin/SilverlightProject1.dll"
Width="640"
Height="480"
Background="White"
>

</Canvas>

The Canvas control is the container in which you can place any number of child elements. From this bit
of code, you can see that the Canvas control has an assigned name:

X:Name="parentCanvas"

There is also an event handler in the code with the Loaded attribute:

Loaded="Page_Loaded"

Finally, other points to pay attention to are the style attributes of Width, Height, and Background:

Width="640"
Height="480"
Background="White"

In version 2.0 of Silverlight, the code-behind page for the .xaml file is a .xaml.vb file. In version 1.0 of
Silverlight, you use JavaScript as your code-behind page, so your code-behind file would be .xaml.js.

903

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 904

Chapter 21: Silverlight Development

The example in this chapter uses the 2.0 version of Silverlight, and the code for the Page.xaml.vb file is
presented here:

Partial Public Class Page
Inherits Canvas

Public Sub Page_Loaded(ByVal o As Object, ByVal e As EventArgs)
’ Required to initialize variables
InitializeComponent()

End Sub

End Class

In this case, you have a Page class that inherits from Canvas. Any page events that you are going to put
on your page would happen here on this code-behind page.

The Page.xaml and the Page.xaml.vb files are the files that constitute the Silverlight portion of the appli-
cation. The other two pages, TestPage.html and TestPage.html.js, are sample pages used to host the
Silverlight player. The TestPage.html page is presented in the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>

<title>Silverlight Project Test Page </title>

<script type="text/javascript" src="Silverlight.js"></script>
<script type="text/javascript" src="TestPage.html.js"></script>
<style type="text/css">

.silverlightHost { width: 640px; height: 480px; }
</style>

</head>

<body>
<div id="SilverlightControlHost" class="silverlightHost" >

<script type="text/javascript">
createSilverlight();

</script>
</div>

</body>
</html>

This page loads two JavaScript files: Silverlight.js and TestPage.html.js. Keep in mind that the
Silverlight.js file is used to detect whether or not the client has Silverlight installed on his or her
computer, whereas TestPage.html.js is used for any JavaScript functions that you need on the page.
The TestPage.html.js file is presented here:

// JScript source code

//contains calls to silverlight.js, example below loads Page.xaml

904

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 905

Chapter 21: Silverlight Development

function createSilverlight()
{
Silverlight.createObjectEx({

source: "Page.xaml",
parentElement: document.getElementById("SilverlightControlHost"),
id: "SilverlightControl",
properties: {

width: "100%",
height: "100%",
version: "1.1",
enableHtmlAccess: "true"

},
events: {}

});

// Give the keyboard focus to the Silverlight control by default
document.body.onload = function() {

var silverlightControl = document.getElementById(’SilverlightControl’);
if (silverlightControl)
silverlightControl.focus();

}

}

This page works with the Silverlight player and assigns the page that this player is to work with when
the object is created.

The Silverlight Canvas
You can view the canvas you are working with by changing the background color of the <Canvas>
element, as shown in the following example:

<Canvas x:Name="parentCanvas"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="Page_Loaded"
x:Class="SilverlightProject1.Page;

assembly=ClientBin/SilverlightProject1.dll"

Width="350"
Height="350"
Background="Black"

>

</Canvas>

In this case, the Width and Height properties were changed to 350 pixels, and the Background property
value was changed to Black. This would produce the results shown in Figure 21-8.

This shows the Silverlight canvas as it is presented in the browser. In this case, the entire canvas is repre-
sented as a black square.

905

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 906

Chapter 21: Silverlight Development

Figure 21-8

Silverlight Examples
Silverlight’s capabilities enable you to do quite a bit, including video, animation, vector-based graph-
ics, and much more — obviously more than what can be represented in a single chapter. The next few
sections provide an overview of Silverlight through some basic examples that will help you understand
your Silverlight application.

A simple Hello World! example
This example creates a Hello World! application. The only requirement here is that you change the
Page.xaml file as follows:

<Canvas x:Name="parentCanvas"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="Page_Loaded"
x:Class="SilverlightProject1.Page;

assembly=ClientBin/SilverlightProject1.dll"
Width="640"
Height="480"
Background="White"
>

<Ellipse Height="200" Width="200" Canvas.Left="30" Canvas.Top="30"
Stroke="Black" StrokeThickness="10" Fill="Yellow">

</Ellipse>

<TextBlock Canvas.Left="5" Canvas.Top="5" Text="Hello World!"
FontFamily="Arial" FontSize="20" FontWeight="Bold"></TextBlock>

</Canvas>

In this example, the canvas contains two elements. The first is a circle represented with the <Ellipse>
element. The ellipse, or circle, is given a size with the Height and Width attributes. Both of these attributes
are assigned a value of 200.

906

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 907

Chapter 21: Silverlight Development

Important attributes to understand are the Canvas.Left and Canvas.Top attributes used in this example.
These attributes define the location of the element on the page. Figure 21-9 shows how these
attributes work.

Canvas.Top 30 PIXELS FROM THE TOP

Canvas.Left 30 PIXELS FROM THE LEFT
CANVAS

Figure 21-9

As shown in Figure 21-9, Canvas.Left defines the number of pixels that the element is positioned from
the left side of the canvas. Canvas.Top defines the number of pixels that the element is positioned
from the top of the canvas.

The Stroke and StrokeThickness attributes work with the border of the ellipse. The Stroke attribute is
given a value of Black and the StrokeThickness is set at 10 pixels. Finally, the Fill attribute defines the
color used inside of the ellipse itself. This attribute is set to Yellow.

In addition to the yellow ellipse defined with the <Ellipse> element, there is a second element — a
<TextBlock> element. Here, a series of attributes works with the text that appears in the element itself:

<TextBlock Canvas.Left="5" Canvas.Top="5" Text="Hello World!"
FontFamily="Arial" FontSize="20" FontWeight="Bold"></TextBlock>

Just like the <Ellipse> element, this element also contains Canvas.Left and Canvas.Top attributes
to define its position within the canvas. When this page is run, you will get what is presented in
Figure 21-10.

Figure 21-10

907

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 908

Chapter 21: Silverlight Development

Both elements are positioned as defined in the example.

Working with multiple elements
As shown in the preceding example, the canvas contains two elements — an Ellipse control and a
TextBlock control. Each of these controls was laid onto the canvas using various attributes. The following
example demonstrates what happens when these elements overlap:

<Canvas x:Name="parentCanvas"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="Page_Loaded"
x:Class="SilverlightProject1.Page;

assembly=ClientBin/SilverlightProject1.dll"
Width="640"
Height="480"
Background="White"
>

<Ellipse Height="200" Width="200" Canvas.Left="30" Canvas.Top="30"
Stroke="Black" StrokeThickness="10" Fill="Yellow">

</Ellipse>

<Ellipse Height="200" Width="200" Canvas.Left="60" Canvas.Top="60"
Stroke="Black" StrokeThickness="10" Fill="Blue">

</Ellipse>

<Ellipse Height="200" Width="200" Canvas.Left="90" Canvas.Top="90"
Stroke="Black" StrokeThickness="10" Fill="Red">

</Ellipse>

</Canvas>

In this case, there are three <Ellipse> elements of different colors (yellow, blue, and red), and each has a
different position on the canvas defined. Running this page will result in the image shown in Figure 21-11
(without the color, of course).

In order to fully appreciate Figures 21-11 through 21-14, you need to see them in color, which can only
be indicated here with callouts. However, if you are following along and creating these code samples
yourself, you will be able to see the colored ellipses discussed here.

In this example, three elements overlap one another. A stack order determines how these elements are
laid upon the canvas, with the yellow ellipse at the back and the red ellipse at the front.

The purpose of this example is to demonstrate that in addition to positioning your elements within the
<Canvas> element, there is also a process for determining how the elements are drawn onto the screen.
The order of the elements is what is important to understand. The first element encountered in the .xaml
document will be drawn first (the yellow ellipse), followed by the second ellipse (blue). The last element
(red) in the document is drawn last.

908

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 909

Chapter 21: Silverlight Development

Blue

Yellow

Red

Figure 21-11

To see this in action, consider the following code:

<Canvas x:Name="parentCanvas"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="Page_Loaded"
x:Class="SilverlightProject1.Page;

assembly=ClientBin/SilverlightProject1.dll"
Width="640"
Height="480"
Background="White"
>

<Ellipse Height="200" Width="200" Canvas.Left="90" Canvas.Top="90"
Stroke="Black" StrokeThickness="10" Fill="Red">

</Ellipse>

<Ellipse Height="200" Width="200" Canvas.Left="30" Canvas.Top="30"
Stroke="Black" StrokeThickness="10" Fill="Yellow">

</Ellipse>

<Ellipse Height="200" Width="200" Canvas.Left="60" Canvas.Top="60"
Stroke="Black" StrokeThickness="10" Fill="Blue">

</Ellipse>

</Canvas>

In this case, the <Ellipse> element (the red ellipse) that was at the bottom is now at the top, meaning that
this element will be drawn before the other two. Running this page will produce the results illustrated in
Figure 21-12.

From this image, you can see that the red ellipse is now at the back of the bunch. The red ellipse is drawn
first, followed by the yellow ellipse, and then the third ellipse (blue) is drawn last and put on top of
the stack.

909

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 910

Chapter 21: Silverlight Development

Blue

Yellow

Red

Figure 21-12

Events and Silverlight
Now that you can draw items directly onto the canvas for a Silverlight application, the next step is to
enable some type of end-user interaction with the elements on this canvas. For this you will find a series
of attributes for your elements that can be directly tied to specific events in the Page.xaml.vb code-behind
page.

The first step for this example is to create a rectangle on the canvas using the <Rectangle> element:

<Canvas x:Name="parentCanvas"
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Loaded="Page_Loaded"
x:Class="SilverlightProject1.Page;

assembly=ClientBin/SilverlightProject1.dll"
Width="640"
Height="480"
Background="White"
>

<Rectangle Opacity="1" Canvas.Left="100" Canvas.Top="100" Width="200"
Height="200" x:Name="myRec"
MouseLeftButtonDown="RectangleClick">
<Rectangle.Fill>

<LinearGradientBrush StartPoint="0.9, 0.05" EndPoint="0.9, 0.9">
<LinearGradientBrush.GradientStops>

<GradientStop Color="Black" Offset="0"/>
<GradientStop Color="Blue" Offset="0.50"/>
<GradientStop Color="Purple" Offset="1"/>

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Rectangle.Fill>
<Rectangle.Stroke>

910

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 911

Chapter 21: Silverlight Development

<SolidColorBrush Color="Black"></SolidColorBrush>
</Rectangle.Stroke>

</Rectangle>

</Canvas>

This is a normal <Rectangle> element. Instead of a standard use of the Fill attribute with something
like Fill = "Yellow", this uses a <LinearGradientBrush> element to provide a gradient of color from
black, to blue, and finally to purple. Then a stroke (border) is set to black around the entire rectangle.

Earlier, you saw that the <Canvas> element had a name value that was provided with the x:Name attribute:

x:Name="parentCanvas"

Note that in this example the <Rectangle> element is also provided a name:

x:Name="myRec"

This action makes it possible to reference the element in the code-behind of the Page.xaml page.

Next is a series of attributes geared to working with code-behind events. This example makes use of the
MouseLeftButtonDown attribute and is provided a value of RectangleClick, which is the name of
the event you will use in the code-behind page.

The available attributes you can use here include the following:

❑ KeyDown

❑ KeyUp

❑ Loaded

❑ LostFocus

❑ MouseEnter

❑ MouseLeave

❑ MouseLeftButtonDown

❑ MouseLeftButtonUp

❑ MouseMove

Now that the <Rectangle> element has a MouseLeftButtonDown attribute in it, the next step is to change
the Page.xaml.vb code-behind page to make use of this declaration. Currently, your code-behind page
should appear as follows:

Partial Public Class Page
Inherits Canvas

Public Sub Page_Loaded(ByVal o As Object, ByVal e As EventArgs)
’ Required to initialize variables
InitializeComponent()

911

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 912

Chapter 21: Silverlight Development

End Sub

End Class

You first need to wire the event handler that will be built shortly. This can be done within the
Page_Loaded subroutine:

Partial Public Class Page
Inherits Canvas

Public Sub Page_Loaded(ByVal o As Object, ByVal e As EventArgs)
’ Required to initialize variables
InitializeComponent()

AddHandler myRec.MouseLeftButtonDown, AddressOf RectangleClick

End Sub

End Class

Here, an AddHandler is utilized to add an event handler for the myRec.MouseLeftButtonDown property.
This is then assigned a value of RectangleClick. Remember that the myRec value comes from the name
of the <Rectangle> element that was defined in the Page.xaml page. The RectangleClick routine can
then be added to the code-behind page:

Partial Public Class Page
Inherits Canvas

Public Sub Page_Loaded(ByVal o As Object, ByVal e As EventArgs)
’ Required to initialize variables
InitializeComponent()

AddHandler myRec.MouseLeftButtonDown, AddressOf RectangleClick
End Sub

Private Sub RectangleClick(ByVal sender As Object, _
ByVal args As MouseEventArgs)

Dim rectanglePaintBrush As New SolidColorBrush()
rectanglePaintBrush.Color = Colors.Red

myRec.Fill = rectanglePaintBrush
myRec.Width = 300
myRec.StrokeThickness = 10

End Sub

End Class

In this case, a subroutine called RectangleClick()is created, which then changes the structure of the
<Rectangle> element. First, an instance of a SolidColorBrush object is created and assigned a color of
Color.Red. Then the Fill property of the myRec rectangle is assigned this instance, meaning the rectangle
on the page should turn red when the end user clicks the left mouse button on the rectangle itself.

912

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 913

Chapter 21: Silverlight Development

In addition to changing the color of the rectangle, the width and the stroke’s thickness are altered using
myRec.Width and myRec.StrokeThickness, respectively. When the page is first loaded, the end user will
see what is presented in Figure 21-13.

Figure 21-13

The rectangle is positioned on the page as specified using Canvas.Top and Canvas.Left. It contains a
gradient of color from black to blue to purple. Finally, there is a thin, black border around the rectangle.

The next step requires an end user to interact with the rectangle. Clicking on the rectangle with your left
mouse button will instantly change the rectangle as shown in Figure 21-14.

Figure 21-14

In this case, the rectangle is extended, the color changes, and the thickness of the border is changed. The
change happens instantly when the mouse button is clicked.

913

Evjen-91361 c21.tex V1 - 04/01/2008 4:56pm Page 914

Chapter 21: Silverlight Development

Summary
Silverlight is an outstanding way to bring a rich user experience to your browser-based applications.
It is a browser plug-in designed to compete with Flash. This chapter took a look at Silverlight from a
developer’s perspective, while a designer would instead focus on the user of Microsoft’s Expression
Blend (for better graphics than what was achieved in this chapter).

Silverlight 1.0 focuses on the use of JavaScript as the code-behind of the XAML pages that you build,
whereas Silverlight 2.0 brings a more ‘‘managed’’ experience to the developer. In Silverlight 2.0, you will
be able to build XAML pages that have a managed .vb file behind them, as demonstrated in this chapter.

914

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 915

Visual Studio Tools for
Office

This chapter introduces the Visual Studio Tools for Office (VSTO) project templates. VSTO has been
around as an add-in to Visual Studio for several releases. Visual Studio 2008 includes it as part of
the standard installation of all versions of Visual Studio Professional and above. The VSTO package
isn’t so much a set of new menus as it is templates and DLLs that enable you to integrate custom
business logic into Microsoft Office products.

VSTO has been somewhat neglected in the .NET development world. The main Office client appli-
cations that most people think about to target, Word and Excel, have supported customization
through Visual Basic for Applications (VBA) since long before .NET, so for most developers the
power of VSTO hasn’t really been leveraged. With the release of Office 2007 and the new project
types available in Visual Studio 2008, you can expect Outlook to start to take center stage in terms
of Office-based application customization.

More important, Visual Studio 2008 not only introduces VSTO as a mainline set of tools with Visual
Studio Professional Edition and above, but also provides one of the largest deltas in terms of new
features from previous versions of anything in Visual Studio 2008. These new features are intended
to provide much more end-to-end use of VSTO to enable the creation of business applications.

This chapter introduces you to the role of the VSTO family of tools and demonstrates three
different implementation examples. The topics in this chapter include the following:

❑ VSTO releases

❑ Office business application architecture

❑ VBA-VSTO interop

❑ Creating a document template (Word)

❑ Creating an Office add-in (Excel)

❑ Outlook form regions

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 916

Chapter 22: Visual Studio Tools for Office

These tools are available as part of Visual Studio 2008 Professional and are focused on enabling you to
move from a goal of ‘‘this project will create a custom grid with the following capabilities’’ to a goal
of ‘‘this project will enable users to leverage Excel 2007 and surface our business application data in
the robust Excel table management system, where users can customize and save the data back into our
custom line-of-business data store.’’ Developers and customers often talk about how nice it would be to
embed Excel in their application. Now, as you’ll see in this chapter, the real solution is the reverse — your
application can be embedded in Excel.

Examining the VSTO Releases
With Visual Studio 2005, the VSTO package was available as an add-in to Visual Studio. VSTO has been
around since early in the .NET tools life cycle. That original package targeted Office 2003, which was the
most recent version of Office at the time Visual Studio 2007 was released. There were five templates, two
each for Word and Excel document-level customizations and then a single template for creating Outlook
add-ins.

With the release of Office 2007, Microsoft provided an update to the Visual Studio 2005 environment
called VSTO 2005 SE, where SE stood for Second Edition. This update essentially enabled VSTO to access
some of the same templates for Office 2007; however, access to, say, the Office 2007 Ribbon was limited
in this set of tools. The requirement to manually create and edit an XML file to define a custom Ribbon
bar made approaching this solution somewhat intimidating. However, VSTO 2005 SE was just an interim
release until the VSTO team could put together a more complete package for Visual Studio 2008.

With the release of Visual Studio 2008, the number of available options enabling you to extend the stan-
dard features of Office VSTO has exploded. As shown in Figure 22-1, the number of project templates
referencing the Microsoft Office System far exceeds the five offered in 2005. Moreover, note that Visual
Studio 2008 supports templates for both Office 2003 and Office 2007. There are in fact twice as many
Office 2003 templates in Visual Studio 2008 as there were in VSTO 2005.

Figure 22-1

916

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 917

Chapter 22: Visual Studio Tools for Office

Figure 22-1 shows a template for creating a workflow project that targets SharePoint 2007. Note that
under Visual Studio 2008, the types of VSTO projects available include not only client-based templates,
but also server-based templates. The two workflow templates available in the Office 2007 collection are
also available as part of the template collection in the Workflow category.

This chapter bypasses working with examples of the Office 2003 packages, not because there is anything
wrong with them but simply to devote the most coverage to the current version of Office. Note that the
project templates can all be created while targeting the .NET 2.0 Framework. Conversely, all the Office
2007 projects require you to target .NET 3.5; there are no .NET 3.0 targeted projects in the package.

Office Automation versus VSTO
In any discussion of VSTO, it’s important to distinguish between Office automation and VSTO. Office
automation is a term that actually refers to your ability to create a custom application that references
Word or Excel or some other Office application. In this case, the user of your custom application can start
and send data to your application. This type of automation does not necessarily involve VSTO or VBA.

Office automation relies on the custom application having a reference to Office and then sending infor-
mation into or retrieving information from that application without Office being customized. This type of
automation leverages COM-based interop to the Office components and doesn’t fall into the same cate-
gory of application as VSTO. A VSTO application is one in which the actual Office application is aware of
and connected to the custom logic. Thus, when a user of an application that supports Office automation
wants to retrieve data from an Excel spreadsheet, that user exits Excel, goes to that custom application,
asks it to connect to the currently running instance of Excel, and attempts to retrieve the data. This type
of automation tends to treat Office as more of a black box.

VSTO applications are built into Office. They can and do display UI elements directly within applica-
tions such as Word, and they can and do leverage the same automation elements and interop assemblies
that Office automation clients leverage. The key difference is that VSTO applications are directly inte-
grated with the application process (threads) and have direct access to UI elements that are part of the
application.

When it comes to the Office Primary Interop Assemblies (PIA) for Office 2003, the Office installer did not
automatically include these when Office 2003 was installed. As a result, if at some point you choose to
do either a VSTO or Office automation project for an Office 2003 project, you’ll want to include the redis-
tributable for these assemblies. The PIA for Office 2003 is available from Microsoft Downloads, currently
located at www.microsoft.com/downloads/details.aspx?familyid = 3c9a983a-ac14-4125-8ba0-
d36d67e0f4ad&displaylang = en.

VSTO Project Types
While the difference between a Word project and an Excel project is no doubt self-evident to you, the
difference between an Add-In and a Document project might not be. In short, each of the different VSTO
project types targets not only a given client or server Office application, but also a different way of cus-
tomizing that application. In the case of Add-In projects, the project type enables you to customize the
application. The main project types for VSTO are as follows:

❑ Add-In — This template enables you to create an extension to an Office project that is loaded
every time that product is started. Add-ins, as with Visual Studio add-ins, are code that is regis-
tered with the application and started every time that application is started. Add-ins are needed

917

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 918

Chapter 22: Visual Studio Tools for Office

for some applications such as Outlook in which an inbound customized message would need the
add-in support on the client to recognize the customizations in order to load the document (mail
message) correctly.

❑ Document/Workbook — These are two separate templates, associated with Word and Excel,
respectively. The key aspect of these templates is that the code associated with your custom
logic is embedded in a specific document file. The model is much closer to the model exposed
by the original VBA customization in these products. In fact, there is even a way to interoperate
between Document/Workbook projects and VBA projects. If you open Word or Excel and select
a new document or a document that doesn’t include this logic, the custom code isn’t loaded. On
the one hand, this makes these projects lower risk in that you are less likely to disable a client’s
system. On the other hand, without a central location such as SharePoint to host these custom
documents, the application model is much weaker.

❑ Template — These projects are similar to the Document/Workbook model in that you are defin-
ing code that lives in a single template. This template and code are loaded only when a user
chooses to use it from within Office.

❑ Workflow — These templates target the SharePoint workflow engine. This chapter doesn’t go
into much detail on these project types, as the process of creating custom workflow projects is
described in Chapter 27. The templates in this section are not generic Windows Workflow Foun-
dation (WF) templates, but rather are specific to creating workflows installed and run on MOSS
2007 (SharePoint 3.0).

A Word Add-In template is a project template that enables you to create a custom actions pane and
a custom menu and/or ribbon bar for Word. The Add-In project types host code that will run each
time that Word (or the selected application) is started. Thus, it doesn’t matter which document the user
chooses to open or the underlying template that is part of the current document — the code in the Add-In
will be loaded.

This doesn’t mean that an Add-In template can’t be document specific. In the case of Outlook, the only
available template is an Add-In template. This is because of the nature of the extensions to Outlook,
which loads a complete collection of ‘‘documents’’ (i.e., e-mail messages) when it is started. As such, the
document model isn’t directly used in Outlook, although Outlook does support custom Outlook Form
Regions.

What makes an Outlook Form Region (OFR) different from a Document or Template model VSTO exten-
sion? Well, the OFR is part of an add-in to Outlook, so if a new message is received that references that
custom OFR, Outlook is ready to load the custom application logic. The potential challenges of OFR mes-
sages are discussed later in this chapter. The OFR customization provides a very powerful, compelling
application model, but as a result it also has key requirements in order for it to function correctly.

Office Business Application Architecture
The Office Business Application (OBA) model is one that Microsoft is beginning to promote as a product.
Indeed, if you go to www.microsoft.com/oba, you’ll find yourself redirected to the OBA product site at
Microsoft. However, there isn’t a license or a product called OBA that you can order in a box. Rather,
the OBA model is conceptual, explaining how you can leverage the components that make up Microsoft
Office to create a custom business logic solution. Instead of building applications from scratch, you can
integrate the functionality of Excel for managing table data into your business logic using VSTO (not that
VSTO is the only enabling technology associated with an OBA).

918

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 919

Chapter 22: Visual Studio Tools for Office

The OBA model has been made possible by a combination of several changes to Microsoft Office that
have occurred over the years. When products such as Word and Excel were originally rolled into the
larger ‘‘Office’’ product group, it was primarily a licensing arrangement. The original Office designation
was a little like MSDN in that it enabled you to purchase a group of products for a lower price than
purchasing each independently. Aside from some limited integration points, such as using the Word
engine to edit Outlook messages, these products were independent.

However, over time integration has gone beyond COM-based document integration. Arguably one of the
key enabling technologies within the Office integration and collaboration framework is SharePoint. Other
servers in the Office suite also fill this role in specialized areas — for example, Office Communication
Server. This chapter doesn’t cover SharePoint in depth, or its far more functional upgrade, Microsoft
Office SharePoint Server (MOSS).

SharePoint provides a central location from which you can host customized Office documents. It also
enables you to host custom workflow logic and provides a central location for e-mail and notification
messages related to business processes. Feature-rich versions of MOSS include capabilities such as Excel
Services and other advanced capabilities.

Because of these benefits, the OBA model builds around a central server. As noted, this might be a Share-
Point server if the goal is to create a custom workflow to monitor an internal business process. However,
it doesn’t have to be SharePoint. As shown in Figure 22-2, you might choose to create your OBA to lever-
age data stored in a line-of-business (LOB) system such as SAP, PeopleSoft, SQL Server, or any of several
other business and data systems. Often these systems have either limited or no custom user interface. As
a result, the user interface may or may not include features that your customers are familiar with from
Office. Given that millions of people are familiar with Office and its interface, taking this data and placing
it into that interface is the OBA model.

Visual Studio Tools for Office & .NET

Outlook PowerPoint Excel

Typical Business User

Word Other Office
Products

SharePoint SQL Server
SAP,

PeopleSoft,
CRM

Web Services,
WCF EndPoints

Figure 22-2

919

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 920

Chapter 22: Visual Studio Tools for Office

This brings up the second key enabling technology: the ease with which you can now import and export
data and behavior to the Office client applications via VSTO. In fact, even with SharePoint it is the VSTO
piece that truly enables you to integrate your custom business application into the Office client tools.
VSTO enables you to retrieve data either from a database via ADO.NET or LINQ or to communicate
with XML Web Services and WCF. Once you have the data, you can enable your users to leverage their
experience with the Office user interface to manipulate that data. As you’ll see in this chapter, with the
release of Visual Studio 2008 on top of Office 2007, you can now interface your LOB processes and data
into every one of the Microsoft Office client applications.

This should give you a better idea of what an OBA is and how it provides an architectural pattern that
you can use to create a business application using VSTO. In addition to the Microsoft.com line pro-
vided at the start of this section, you can also find more information at the Microsoft-sponsored site
www.obacentral.com.

Finally, if you want to see an example of an OBA built against Office 2003 and Windows SharePoint
Services (WSS) 2.0, take a look at Team System. The Team Explorer install for Team Foundation Server
not only provides a set of add-ins for Visual Studio, but also provides support for a set of custom VSTO
document applications. Every time you create a new Team Foundation Server (TFS) project, a new WSS
project site is created. The site will contain several VSTO-based documents for Word and Excel. These
illustrate how to use VSTO and the OBA model for your custom applications.

Of course, VSTO wasn’t the original or even now the only way to create custom logic within an Office
client application. Since the early days of COM, both Microsoft Word and Microsoft Excel have supported
Visual Basic for Applications (VBA). Fortunately, ongoing improvements occurring within VSTO can be
integrated with existing VBA.

Working with Both VBA and VSTO
The VBA model for Office document customization was limited at best. For starters, it is only available
in Word and Excel. However, the VBA application model is not yet retired. That bears repeating: VBA is
still a viable and supported set of tools for customizing the Microsoft Office experience. As with all such
changes in technology, there are certain things that VSTO does that VBA wasn’t designed to do and to
a certain degree is not capable of doing. However, there are also certain VBA optimizations within the
existing tools with which VSTO can’t currently compete.

Office 2007 is also known as Office version 12. Microsoft has committed to keeping VBA through Office
version 14, which is still quite a way off. Thus, instead of doing a blanket conversion, you’ll be able to
interoperate with existing code. Just like the WPF interop library and the Visual Basic 6.0 interop library,
VSTO and VBA have an interop library. Microsoft suggests that companies with complex VBA solutions
will probably want to update these Document/Workbook style solutions with VSTO features, but not
necessarily attempt to convert working code and features. Thus, your new VSTO code may call existing
VBA functions; and similarly, your existing VBA code may start calling your VSTO objects.

There are, of course, limitations to this model, and it isn’t one that’s recommended for new development.
When it comes to the ability to call VBA from VSTO, you can call the Run method on the Office object
model. This method accepts the name of a VBA method and a list of parameters. There is no IntelliSense,
as what you are doing is making a dynamic runtime call. An example of this call is as follows:

Dim result As Integer = Me.Application.Run("MyFunctionAdd", 1, 2)

920

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 921

Chapter 22: Visual Studio Tools for Office

That’s it — no special steps or hoops, just a standard call. Of course, your document or workbook needs
to actually include the VBA function MyFunctionAdd, but that should be apparent. Also note that when
you combine VBA and VSTO, you have to handle permissions for both, so plan to spend a little more
time building your installation package and permissions. In addition, when you create your first custom
VSTO Document or Workbook project, you’ll get the warning shown in Figure 22-3.

Figure 22-3

At this point, you may not know whether you want to enable VBA interop within Visual Studio and your
VSTO projects. If you’ve worked with VBA in the past or think you might need to do any VBA, consider
enabling access to the VBA project system. As noted in the dialog, while turning this off completely is
meant to act as a first layer of defense against the spread of macro viruses, your project will still maintain
protection via other layers of security. Keep in mind that this option is available only to Word Document
and Excel Workbook templates.

While this chapter isn’t going to focus on security, sometimes — such as when you are enabling VBA
macro interop — you do require a few specific settings. While it’s possible to call VSTO from VBA in
Office 2007, it isn’t the default. Note the reference to ‘‘Office 2007.’’ With Office 2007 it’s possible to enable
macros, and as part of the creation of a VSTO project on a macro-enabled document, by changing a couple
of document properties in your VSTO project you can reference your VSTO methods and properties from
VBA code. This process only begins after you have enabled macros within your document.

Your first step in enabling macros in a document is to ensure that the file is saved as a .docm file instead
of a .docx file. The same is true for Excel, where the file type needs to be .xlsm as opposed to .xlsx. By
default, documents saved with the extension .docx do not allow macros, so open Word 2007 and press Alt
+ F11 to open the VBA editor for your document. You can add an actual macro or something as simple as
a comment inside a default event handler. Alternatively, you can select a document that already contains
a macro. Once this is complete, you need to save your document. For this example, call your document
VBAInterop. Then, select the .docm document type, as shown in Figure 22-4.

If you accidentally attempt to save your document as a .docx, the file system should warn you that it is
about to clear your macros. The message box will allow you to return to the Save As window and change
the document type to a macro-enabled document.

Next, you need to ensure that Word considers your macro available whenever the document is opened.
This demo was written on the Vista operating system with Office 2007. In this environment you need to
change your Trust settings for Office. Once you have added your comment macro and saved your .docm

921

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 922

Chapter 22: Visual Studio Tools for Office

file, within Word (you may need to reopen the document) you should see a notification that a macro in
the document has been prevented from running.

Figure 22-4

At this point you can choose to enable the macro. However, that choice is for the currently running
instance only. If you closed and reopened the document, you would again be presented with that prompt.
To make the change permanent, you need to either use the link in the lower-left corner of that display or
traverse the menus to access the Trust Center for Word.

To traverse the menus, go to the Office button in the upper-left corner of your document and open the
menu associated with this button. On the bottom of the menu is a button labeled Word Options. Select
this button to open the Word Options dialog. On the left side of that dialog is an item labeled Trust Center
that is similar to the link mentioned earlier. This opens the Trust Center dialog, shown in Figure 22-5

Figure 22-5

922

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 923

Chapter 22: Visual Studio Tools for Office

For the VBA interop to work, go to the Macro Settings in the Word/Excel Trust Center and update the
Macro Settings to always enable all macros. Yes, you essentially need to turn off the security for macros
on your development machine (unless you are using digitally signed macros — which isn’t the case for
this example).

Once you have saved your document, it’s time to open Visual Studio 2008 and create a new Office 2007
Word Document project, which in this case you can also name VBAInterop, as shown in Figure 22-6.

Figure 22-6

This brings up a second dialog, which is where you need to change from the default process. Normally,
you would create a new document in the dialog shown in Figure 22-7. However, in this case you actually
want to import your macro-enabled document VBAInterop.docm. By default, the Browse button limits
the display of available files to those with the .docx extension, so you need to change the default in the
file browse window to .docm in order to see your document.

Clicking OK triggers Visual Studio to generate your project. When the generation is complete, Visual
Studio will display your Word document within the main window, and in the lower right-hand corner
you should have your Properties window. This window, shown in Figure 22-8, has two new Interop
properties at the bottom. You need to modify both these properties from their default of False to the
new value of True.

These properties cause your VSTO project to regenerate and insert a new property within your project’s
macro file. To test this, you can start your project; once the project builds, you’ll see Word start and it
will open your custom document. Once your document is open, press Alt-F11 to open the Macro Editor.
Above your custom code should be the newly generated property value. The resulting code if you merely
entered a comment should look similar to the following:

Property Get CallVSTOAssembly() As VBAInterop.ThisDocument
Set CallVSTOAssembly = GetManagedClass(Me)

End Property

923

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 924

Chapter 22: Visual Studio Tools for Office

Private Sub Document_New()
’ This is a placeholder comment.

End Sub

Figure 22-7

Figure 22-8

924

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 925

Chapter 22: Visual Studio Tools for Office

The code in this block shows the newly generated property that associates your VBA environment
with the VSTO code that you are creating. You can then proceed to the placeholder comment in the
Document_New method where you initially entered a comment to maintain your macro’s existence. Within
this method, on a new line, make a call to CallVSTOAssembly, and you’ll see that you have full Intel-
liSense for the list of available methods and properties, as shown in Figure 22-9. Note that because
you didn’t create any custom code in your VSTO solution during this process, the options shown in
Figure 22-9 reflect those which are generated as part of your project template.

Figure 22-9

There are a few additional steps in order to enable VBA to connect to VSTO, but for those who are already
working with VBA these steps won’t be a significant challenge. After all, it is the development experience
and ability to continue to leverage existing resources that really drive this interop feature. The fact that
this feature is so natural for a VBA developer — who may want to leverage key new capabilities such
as WCF, WF, or possibly even WPF-based graphics in Excel — means that you can expect to be able to
leverage your existing VBA code for several more years. When you do ‘‘migrate,’’ the process is one that
you control and can carry out in stages based on your requirements and decisions, not some overriding
conversion process.

Creating a Document Template (Word)
The previous section introduced you to creating a document template from the standpoint of interoper-
ating with VBA, but unless you have an existing VBA application, in most cases you’ll just create a new,
clean Word Document project. These projects focus on a specific document. They are self-contained in
the sense that your changes only affect the user’s system when the user chooses to open a document that
specifically includes your changes.

This is great, as it isolates your changes. When users open Word or Excel they don’t automatically load
your customization. This way, your code won’t impact the overall performance of their system — not

925

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 926

Chapter 22: Visual Studio Tools for Office

that most developers care about this. The model also means that customizations for Application A aren’t
competing with Application B, which is in some ways a bigger challenge with add-ins.

However, this model (shared by VBA) has a limitation. The user must open a copy of the correct docu-
ment to access your custom code. In an uncontrolled environment it may be difficult for a user to find the
most recent version of that code. Sure, the first time your document customization is sent out to 10, 20, or
200,000 users, it’s easy to locate and update the source documents. However, when you need to update
some element of that standalone document, you have a problem.

Fortunately, this is where the OBA model and SharePoint become invaluable. By placing your documents
onto SharePoint, you now have a controlled location from which users can access your VSTO application.
In fact, with SharePoint 3.0 and MOSS 2007 you can actually create a library for copies of your custom
document that uses your document as what is known as a content type. By using your VSTO document
as a SharePoint content type, when users access that SharePoint library and request a ‘‘new’’ document,
they’ll automatically open a new document that leverages your customizations.

An alternative to leveraging SharePoint is illustrated by another way to leverage document-based VSTO
solutions. Your document might be included in a Microsoft or Windows Installer (MSI) package that is
part of a larger installed application. In fact, you might not want users to directly open your customiza-
tions. Instead, your custom application might install your custom document via an MSI, so that updates
can occur in conjunction with your application updates. Then, when a user needs to modify data in a
grid, you might open a custom Excel document, which, rather then save data in Excel automatically,
places the data back into your application data store when the user asks to save.

The first step in creating such a solution is to create a new project. In this case the sample project will be
named ‘‘ProVB_WordDocument.’’ Once you have changed the default name, click OK in the New Project
dialog. This will take you to the Office Project Wizard dialog shown in Figure 22-10.

Figure 22-10

926

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 927

Chapter 22: Visual Studio Tools for Office

Note that you can specify a name for the document but it defaults to the project name you’ve chosen.
That’s because as part of this process, Visual Studio is going to generate a new Office 2007 document and
place that .docx file in your solution directory. When you work on this project, you’ll be customizing that
document. Thus, in many cases you may want to give the document that will host your customization an
end-user-friendly name instead of your project name.

Once this is complete you are returned to the main Visual Studio window with a new project. Unlike
other project types, however, in this case the template creates a Word document and then opens that doc-
ument within Visual Studio. As shown in Figure 22-11, within the Solution Explorer, on the upper-right
side of the display, your project contains a .docx file. Associated with this file is a second .vb file, which
is where some of your custom code may be placed. As shown in Figure 22-11, the Visual Studio user
interface actually encapsulates this document. The Properties window shows the properties for this doc-
ument. Note that unlike when you created your VSTO project from an existing VBA document, there are
no properties to support integration with VBA.

Figure 22-11

Also noteworthy (although not shown) is that if you were to open your project’s properties
and review the references, you’d find that all the Office Primary Interop assemblies you need
in order to work with the Office object model have automatically been added to your project. You no
longer need to try to figure out which COM interop assemblies you’ll need for accessing that interface
from Word.

Adding Content to the Document
Of course, the main feature of Figure 22-11 is that Visual Studio has fully encapsulated the Word user
interface. Note how the Insert tab has been selected in the document. You have full access to all the
features in Word in this mode; and to demonstrate this, let’s adjust the default contents of this document.
Choose the Smart Art category. Then, from within its dialogs, go to the Process tab of the SmartArt

927

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 928

Chapter 22: Visual Studio Tools for Office

Graphic dialog, scroll down, and select the circular equation image. This will add that item to your
document and automatically open an equation editor, as shown in Figure 22-12.

Figure 22-12

You can enter some numbers into the text box for this equation, but there is no built-in
adding logic. Close that text window and return to Visual Studio. Of course, at this point you
haven’t actually added any code to your document, so switch to the code view. By default, VSTO
inserts two event handlers when your project is created. Note that as long as the .docx file is displayed,
you can’t access the ThisDocument.vb file for that document. To switch the view, close the default
.docx display and then right-click on the ThisDocument.vb file in the Solution Explorer and select
Code View from the context menu. Now you should be able to see the code that was created as part
of your project:

Public Class ThisDocument

Private Sub ThisDocument_Startup(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Startup

End Sub

Private Sub ThisDocument_Shutdown(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Shutdown

End Sub

End Class

As the preceding code illustrates, the document has two events available within VSTO. The first handles
the startup event; the second handles the shutdown event. These are the only two that are added to

928

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 929

Chapter 22: Visual Studio Tools for Office

your project by default. You’ll learn more about these shortly, but first add another event. This is the
BeforeSave event, and as you might expect, it fires just before your document is saved:

Private Sub ThisDocument_BeforeSave(ByVal sender As Object, _
ByVal e As Microsoft.Office.Tools.Word.SaveEventArgs) _
Handles Me.BeforeSave

Dim res As DialogResult = MessageBox.Show(_
"Should I save?", "Before Save", _
MessageBoxButtons.YesNo)

If res = DialogResult.No Then
’ This code could call a backend data store and then
’ not save the associated document so the document would remain
’ unchanged.
e.Cancel = True

Else
’ This code would allow you to encourage the user to
’ always save a new copy of the document
e.ShowSaveAsDialog = True

End If
End Sub

The preceding code illustrates a custom override of the BeforeSave event on the document. Note that
after the event handler is declared, the code creates a local variable to hold a dialog result. It then shows a
message box asking the user if it should save. Normally this isn’t something you would do on this event,
but in this case it enables you to see two of the attributes of the SaveEventArgs class.

If the user chooses not to save, then you have the option to not save data. Alternatively, you don’t have
to offer a choice to the user; instead you can simply add code ensuring that the user simultaneously
saves data to a backend data store. Whether you need to call a Web service or update a database, this is
a good place to call that logic. You then can save to the database and decide whether or not you actually
want to update the underlying document. In some cases you might quietly save the data to the database
and never save the document; then, when the document is next opened, you retrieve the data from
the database as part of the startup. This is a particularly useful trick if you don’t trust the file system’s
read-only privileges or want to ensure that data from multiple different users is properly refreshed each
time the document is opened.

Alternatively, you can force the user to perform a ‘‘save as’’ instead of a typical save. This uses the
self-explanatory ShowSaveAsDialog property. The idea, again, is that you might not want the user to
save over the original; to keep that from happening, you can have Word automatically prompt the user
to save the document with a different name. You can also save data to a database or other data store
during this process.

Adding a Ribbon and an Actions Pane
The preceding work provides some baseline code in your application, but it doesn’t provide either a
custom ribbon or custom task pane. Therefore, before testing this, let’s add one of each of these items to
the project. To add either of these controls, right-click on your project in the Solution Explorer and then
select the Add button to open the Add New Item dialog.

As shown in Figure 22-13, when this dialog opens you can select from one or more categories. In order
to manage the available selections, select the Office category. This will reduce the number of available

929

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 930

Chapter 22: Visual Studio Tools for Office

options from dozens to the three that are appropriate for a Word Document project. Start by adding a
new ribbon bar. There are two options: XML and Visual Designer. Select Visual Designer and provide
‘‘DocRibbon’’ for your control’s name.

Figure 22-13

Figure 22-13 shows two alternatives for the Ribbon control, for backward compatibility. If you were
customizing a ribbon bar for Office 2007 under Visual Studio 2007 and VSTO 2005 SE, then you didn’t
have access to a visual designer for the ribbon bar. Instead, you needed to create and edit an XML file,
which would define your ribbon and the controls that were placed on it. There was neither a designer,
nor a tool customized for this task.

With the release of Visual Studio 2008, the VSTO team had an opportunity to create a visual designer
for the ribbon bar. Thus, unless you are working with a legacy XML definition file, you should always
select the ribbon with visual design support. Once you have modified the name of the new control to
DocRibbon, select OK and return to Visual Studio. The control template will generate the control and
open in Design mode.

In Design mode, note that if you open the control Toolbox, you have a new category of controls available
at the top. The Office Ribbon Controls, shown in Figure 22-14, provide a list of controls that you can add
to the default ribbon. Note that these controls are Windows Forms controls, not WPF controls.

Add a button to the default Group1 in the designer. Once the button has been added, go to its prop-
erties and change the label for the button to Hide/Show the Actions Pane. You can optionally add
an icon to the button. For this I went into the Visual Studio directory to retrieve one of the icons that
ship with Visual Studio 2008. If you navigate to the folder where you installed Visual Studio 9.0 and
navigate the folder tree: Common7\VS2008ImageLibrary\1033, within this folder you’ll find a zip file:
VS2008ImageLibrary.zip. Within this zip file are several thousand different images and icons that you
can leverage within your application. Shown in Figure 22-14 is one similar to the shape of the task pane.

For now, skip implementing a handler for this button, as you want to see the default behavior of the
ribbon and the actions pane. Instead, right-click on your project and again request to add a new item. In
the Add New Item dialog, select an actions pane and name it ‘‘DocActionPane.’’ Once you have created
your new actions pane you’ll again be in Visual Studio, this time in the designer for your new pane.

930

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 931

Chapter 22: Visual Studio Tools for Office

Figure 22-14

Unlike the Ribbon control, the designer for the actions pane doesn’t require a special set of controls and
by default has a white background. Unfortunately, I’ve had trouble delineating the edges of the control
in a white-on-white scenario. Therefore, before doing anything else, I proceed to the properties for the
control and select the Background Color property. Visual Studio 2008 opens a small window with three
tabs, as shown in Figure 22-15.

Figure 22-15

This illustrates the default setting for the background, which is the system-defined color for control
surfaces. Specifically, the System tab colors are those defined for your system based on setting your own
visual preferences. The other two tabs present color options the developer has selected. Because I only
want to change the display color while I am working on the design and layout, it’s good to capture the
original color and then go to the highlighted Custom tab and select a nice bright color such as red to
highlight the actual surface area of my actions pane.

Now it’s time to add a simple control to this panel. Once again, drag a button onto the design surface.
Orient it in the upper-left corner and change the label to ‘‘Load.’’ Eventually this button will be used to
load some data into the document, but this is a good time to test run your project using F5. Your project

931

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 932

Chapter 22: Visual Studio Tools for Office

starts and Visual Studio starts Microsoft Word. When Word opens you’ll see your document with the
image that you’ve embedded displayed, as shown in Figure 22-16.

Figure 22-16

Figure 22-16 shows your custom document in Word. Note a few things about the running application at
this point. First, the tab Add-Ins is set to display the custom ribbon bar. This isn’t an error; even though
you have created a custom VSTO Document solution, the customizations you made to the ribbon bar
were automatically placed in this section.

Next, Figure 22-16 also captures the message box that was added to the BeforeSave event earlier. The
Save button in the upper-left corner of the title bar was selected and as a result the event was fired. Below
this you see the custom smart graphics that were added to the document itself. So far, so good, but where
is the document’s actions pane?

Unlike the ribbon bar, which is automatically associated with your custom document when you add it
to your project, the document actions pane needs to be manually associated with your document. As a
result, Figure 22-16 does not show your custom actions pane, so your next step is to add that pane to
your document, and in this case have it shown or hidden based on the selection of the toggle button
added to the ribbon bar. Close the running document and return to Visual Studio once the debugger
has stopped.

Activating the Actions Pane
If you choose to view all files in your project, you can select and open your DocActionPane.Designer.vb
source file. Within this file you’ll find that your DocActionPane class inherits from System.Windows
.Forms.UserControl. That’s right; the document actions pane is just a customized user control.

932

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 933

Chapter 22: Visual Studio Tools for Office

Knowing this tells you that you can in fact include not only individual controls but also panel controls,
such as a tab panel, or other custom user controls in this display area. More important, you can take
a user control that you might be using in your current application logic and use it with no significant
changes within the document’s actions pane. However, anticipating your probable question, the reason
the panel didn’t show up is that both Word and Excel expect you to associate a user control with the
ActionsPane property of your document.

Because the actions pane is actually open for use by any user control in your project, it is up to
you to tell Word which control to assign. View the code for your document in the ThisDocument.vb file.
Earlier you saw that the template created the Startup event handler by default. Add to this handler the
following line:

Private Sub ThisDocument_Startup(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Startup

ActionsPane.Controls.Add(New DocActionPane())

End Sub

That line of code takes the built-in actions pane associated with your document and adds a control to that
pane. Of course, you could also add items such as buttons and text boxes directly to your document’s
actions pane. However, as the control you added demonstrated, the preferred method is to create a
custom user control and add this one control to the embedded actions pane in your document. The New
DocActionPane()literally creates a new instance of your user control and places it onto the actions pane.

However, this isn’t very flexible, in that you want users to be able to show or hide that pane. Instead of
relying on the built-in controls for displaying or hiding the pane, you want to be able to toggle the actions
pane on and off, which is why you have already added a button to the ribbon. That means customizing
the Click handler for your toggle button. Before leaving the ThisDocument.vb display, make sure you
close this file’s editor so that later you’ll be able to get to the document itself.

Next, select DocRibbon and double-click your button to add an event handler for your ToggleButton1
control’s Click event. This is where you want to alter the status of your actions pane’s display. The way
to access the actions pane from the ribbon bar is through the application’s Globals collection. Within
VSTO you’ll find a reference to the current document or workbook within this collection. From here you
have access to objects such as the actions pane. In fact, you can type Globals.ThisDocument.ActionsPane
to get access to the actions pane to which you assigned your user control.

However, while this does give you access to the user control, that control in your display is hosted by a
frame, so even if you add code that sets the Visibility property on the ActionsPane attribute of your
document, it probably won’t have the desired effect. Setting the visibility status on the control only hides
the control; it does not hide the now empty frame that was hosting the control. However, keep in mind
that you can access the actions pane directly, as there may be a point when you want to do more then
just hide and show the actions pane. For example, if you wanted to pass data or set a custom property
on your user control, then you would leverage this object and retrieve your control from the Controls
collection.

For this task you want to hide the entire Document Actions frame, not just the control it contains. The
secret to this is the fact that the frame is considered by Word to be a CommandBar. Therefore, you need to

933

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 934

Chapter 22: Visual Studio Tools for Office

access the CommandBars collection. However, the CommandBars collection has multiple different controls
in it, so you need to retrieve the Document Actions pane from this collection. The most reliable way to
do that is by name, so your Click event handler code should look similar to the following:

Private Sub ToggleButton1_Click(ByVal sender As System.Object, _
ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _
Handles ToggleButton1.Click

If ToggleButton1.Checked = True Then
Globals.ThisDocument.CommandBars("Document Actions").Visible = _

True
ToggleButton1.Label = "Hide Action Pane"

Else
Globals.ThisDocument.CommandBars("Document Actions").Visible = _

False
ToggleButton1.Label = "Show Action Pane"

End If
End Sub

The preceding code is called when the toggle button on your ribbon is clicked. It first determines whether
the toggle button is selected or unselected. The Checked property provides this, and if the button is being
selected, then the next step is to ensure that the Document Actions command bar is visible. Next, the code
updates the text label on the button to ‘‘Hide Action Pane.’’ This provides the user with initial feedback
regarding what the button will do if it is clicked again.

Similarly, the code does the reverse, hiding the command bar and updating the text on the toggle button
to indicate that in order to restore the command bar, the user should press the button again.

Now there is only one other thing to do. By default, because you are assigning a control to the actions
pane, your pane should be displayed. However, it may not be; the user might load an add-in that sup-
presses the Document Actions command bar. Additionally, your toggle button is by default not selected,
which is the state normally associated with the command bar being hidden.

To resolve these issues, you can override the Load event on your ribbon. Within the Load event, check
the visibility status of the command bar and set the appropriate values for the display text and checked
status of your toggle button:

Private Sub DocRibbon_Load(ByVal sender As System.Object, _
ByVal e As RibbonUIEventArgs) _
Handles MyBase.Load

If Globals.ThisDocument.CommandBars("Document Actions").Visible Then
ToggleButton1.Checked = True
ToggleButton1.Label = "Hide Action Pane"

Else
ToggleButton1.Label = "Show Action Pane"

End If
End Sub

Now that you have created the appropriate handlers for your ribbon bar, which will enable you to show
and hide the actions pane, it’s a good time to again test your application. Figure 22-17 shows your custom
document. It shows the Add-Ins ribbon, and your Show/Hide toggle button is selected with the caption
‘‘Hide Action Pane.’’ This correctly reflects that the next time that button is toggled, the display of the
actions pane will be hidden. Notice how the toggle button gives you the visual state by applying the

934

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 935

Chapter 22: Visual Studio Tools for Office

Office color scheme for a selected control. When working with a custom Office application, it’s often
said that your UI will be more intuitive to a user familiar with the workings of Office; this example
demonstrates that.

Figure 22-17

The other item that Figure 22-17 displays is the actual Document Actions window with your actions pane.
You may recall that I changed the background color of the DocActionPane control to red. This should
leave you a little concerned about why that red background (invisible in the figure here in the book) is
near only the top of the window. This challenge is one for which there is only a partial resolution.

Unfortunately, the layout of a .NET control within the Document Actions host is limited. You can ask
that your control fill the display, but this value is ignored. You can ask that it stretch, but this setting
determines whether the size of the control should by default match the display area of its contents. There
simply isn’t a good way to automatically resize your custom display area.

You can return to Visual Studio and increase the height of your background. In fact, you can make the
background tall enough and wide enough to account for a display area of almost any size, but the real
challenge is related to the controls that you place in your display. Unfortunately, you can’t be certain
that as the user resizes Word, the key controls you’ve chosen to place on the actions pane will always be
displayed. However, right now there is only a single button on this control and it isn’t doing anything,
so it’s time to add some logic for placing data into the Word document.

Updating a Content Control
Until now the only thing placed in your Word document was a simple graphic. While this made it appar-
ent that you can in fact customize the content of this VSTO document, it didn’t really demonstrate the
capability to dynamically update the content of the document. The first step is to look at one of the new
features of Office 2007 — content controls. Return to the designer view of your Word document, as shown
in Figure 22-18, and notice the Toolbox. Within this Toolbox is a section titled Word Controls, which has
been expanded.

935

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 936

Chapter 22: Visual Studio Tools for Office

Figure 22-18

The controls shown in this section of the Toolbox are controls that you can apply to your
document. Let’s look at a couple of simple examples. Add some text similar to what you see
in Figure 22-18 (the actual content isn’t that important). Then, on a new line within the document,
add the text ‘‘Document Name:’’ followed by a tab or two. Drag a PlainTextContentControl onto
your document. On the next line, add the label ‘‘Application Name:’’ followed by a tab. Then drag a
RichTextContentControl onto the document. These two controls will provide a simple example of
working with content controls.

On the lower right-hand side of Figure 22-18, you’ll notice the Properties window. It is currently selected
for the second control, but it provides an illustration of a few key content control properties. The first two
are the capability to lock the control or to lock the contents of the control. Locking the control prevents
users of your document from being able to delete the control. Locking the contents enables you to ensure
that the text within the control can’t be modified by the user. Of the other properties shown, the Text
property represents the text that should be displayed in the control, which is customized along with the
Title property.

I customized the Title property because of how you can reference these controls within your code. Keep
in mind that these are controls, which means you can data bind these controls to data you have retrieved,
and you can handle events on these controls. Several chapters have already covered handling events, so
this demo code focuses on having the actions pane interface with these controls.

With that in mind, switch to the Design view for your DocActionPane control. Not that you are going
to make changes to this beautiful design — you just want to double-click your Load button to create an
event handler for the Click event. This will take you to the code view, where you can enter the custom

936

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 937

Chapter 22: Visual Studio Tools for Office

code to update your content controls. The code block that follows includes two methods for accessing
these controls, one of which has been commented out:

Public Class DocActionPane
Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles Button1.Click

’This code could make database calls, process user input etc.
’For Each ctrl As Word.ContentControl In _

Globals.ThisDocument.ContentControls
’ ’This will retrieve all of the embedded content controls.
’ ’Cycle through the list looking for those of interest
’ Select Case ctrl.Title
’ Case "PlainText1"
’ ctrl.Range.Text = My.User.Name
’ Case "RichText1"
’ ctrl.Range.Text = My.Application.Info.ProductName
’ Case Else
’ End Select
’Next

Globals.ThisDocument.PlainTextContentControl1.Text = _
Globals.ThisDocument.Name

Globals.ThisDocument.PlainTextContentControl1.LockContentControl = _
True

Globals.ThisDocument.PlainTextContentControl1.LockContents = True
Globals.ThisDocument.RichTextContentControl1.Text = _

My.Application.Info.ProductName
End Sub

End Class

The event handler starts with a comment related to the fact that at this point you are essentially working
within the confines of a user control. Thus, you can add any data access code or XML processing code
you want into this class. (Because those have already been covered in other chapters, this code focuses
on the content controls.)

The first block of code, which is associated with a For loop, has been commented out because it isn’t
needed or even the preferred solution in this scenario. However, if instead of working with Word this
solution were focused on Excel, and if you were working with cells, each of which might contain a content
control, then the odds are good you would want an efficient way to access this large array of controls. This
loop leverages the Content Controls collection. It also serves to illustrate a couple of key idiosyncrasies
of this control collection.

Unlike what you might expect after the controls are retrieved from the collection, they do not directly
expose all of their properties. In fact, the first missing property is the Name property. Thus, for this code to
work based on identifying specific controls, you would need to use a separate identifier such as Title. In
fact, a title has been added to each of the controls in the document, so if you want to you can uncomment
and run this code. However, in typical scenarios where you use this code, you would be processing an
array of controls and be primarily interested in control type and control location.

937

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 938

Chapter 22: Visual Studio Tools for Office

Control location would be related in Excel to the range associated with that control. Specifically, the
Range property and its property Cells would tell you where on the spreadsheet you were. The Range
property is important for a second reason. Like the control’s Name property, the controls in this array
don’t expose a Text property. Instead, you can access the Text property of the Range in order to update
the text in that control. As noted, however, this code has been commented out because there is a more
direct way to access named properties.

The uncommented lines of code leverage the Globals.ThisDocument object to access by name the con-
trols in your document. This code is not limited to Word and will work for Excel if you have only a
small number of controls in your workbook. Note that the first line updates the value displayed in the
PlainTextContentControl. It replaces the default text (which was formatted with a larger font and
colored red) with the current document name.

Next, the code locks the control and its content. Not that you would necessarily wait until this point to set
those properties, but this is just an illustration of accessing these properties and seeing the results when
you run your document. The final line updates the RichTextContentControl using the My namespace,
this time to retrieve the application name for your project.

At this point you can build and run your code. Once your document is displayed, go to the actions pane
and use the Load button. Your results should look similar to what is shown in Figure 22-19. Note that
the formatting for both the plain text and rich-text controls, which was applied in your source code, has
remained unchanged.

Figure 22-19

Note also that the highlight around your content control is by default visible to the end user. This is why
you may want to lock these controls. In fact, you can attempt to delete or edit the document name to get
a feel for the end-user experience. In case it wasn’t clear, the work shown in this section can be replicated
in an Excel workbook. In fact, the next section looks at using Excel, but instead of doing another VSTO
document, the focus is on creating an add-in.

938

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 939

Chapter 22: Visual Studio Tools for Office

Creating an Office Add-In (Excel)
Unlike the Document/Workbook project, the Add-In project type is installed on the user’s computer and
then loaded for every document that is opened. This introduces a set of different issues and concerns. For
starters, unlike the document project, where you focused on the content of the document or workbook,
in an add-in scenario you don’t have an associated document in your project. Nor can you access the
actions pane, although the Add-In project allows you to access not only the ribbon bar but also a similar
UI feature called the task pane.

Of course, the most important difference is the fact that once your add-in is registered, it will be loaded for
every document that the user accesses. This means that even if the user opens a VSTO document project,
your add-in will be loaded alongside the customizations associated with that document. Similarly, if the
user has multiple add-ins installed, then each one will be loaded for every document the user accesses. In
short, your code has to play well with others and should load with minimal delay. Keep in mind when
working with an add-in that you probably aren’t alone.

Create a new project of the type Excel 2007 Add-In. While in the New Project dialog, name your project
ProVB_ExcelAddIn and select OK. You’ll notice that, unlike when you created a document project and
were deposited within your Office client inside Visual Studio, you are now in a code page. As shown
in Figure 22-20, the code associated with your document looks very similar to what you had with your
document project. However, unlike that project, you don’t have access to the document itself.

Figure 22-20

Just like the document-based project, you have the Startup and Shutdown event handlers and no others,
but you can create any that are available for your application. To begin, access the ribbon bar and task
pane by right-clicking on your project. Select Add New Item to open the Add New Item dialog and
select the Office category. This is where the next difference for an Add-In project becomes apparent: As
illustrated in Figure 22-21, only the two Ribbon templates are available.

939

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 940

Chapter 22: Visual Studio Tools for Office

Figure 22-21

Select the Ribbon (Visual Designer) template and name your new control ‘‘RibbonAddIn.’’ Selecting Add
will add this control to your project; and just as with the document project, you’ll be in the designer for
your ribbon. Leaving the ribbon alone for now, return to your project and again select Add New Item
and return to the dialog shown in Figure 22-21. This time select the Common Items category.

Earlier in this chapter, the Actions Pane template was described as a customized user control. The tem-
plate took a common user control and added some custom properties to enable it to work with the
actions pane. The task pane, conversely, doesn’t need much in the way of customization for the user
control it will use, so simply select the User Control template, use ‘‘TaskPaneUC’’ for your control name,
and click Add.

After you are returned to Visual Studio, drag a button and a label into your new user control’s design
surface. The result should look similar to what is displayed in Figured 22-22. You can provide a custom
label for your button if you choose, but once you have reviewed the layout of your controls, go ahead
and double-click your button to create the event handler for the Click event.

Figure 22-22

940

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 941

Chapter 22: Visual Studio Tools for Office

After adding the event handler, add a simple call to reset the text displayed by the label control, which
is in your user control. In theory, you could add any code you wanted, but in keeping with the idea that
you don’t want to necessarily target or count on anything existing within your document, the goal is just
to ensure that your code is accessible:

Public Class TaskPaneUC
Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles Button1.Click

Label1.Text = "Clicked it."
End Sub

End Class

You could run your project and look for your custom task pane at this point, but by now you can probably
guess that you won’t find it. Just as with the actions pane, you need to associate your custom control with
the collection of available task panes. Unlike the actions pane, for which there is only a single instance,
each Add-In project could in theory want access to its own task pane. To resolve this, when you create an
instance of a task pane, you create an item in a collection and assign it a unique name. This is significant,
because although it wasn’t mentioned earlier, regardless of how badly you want to change the name of
the Document Actions pane, it isn’t possible.

To associate your control with the task pane, switch to your document and take two steps. First, declare
a property for your document that will hold a copy of your task pane. Note that this property has been
declared as a ‘‘Friend’’ member so that other classes in the same project can access it. This will be impor-
tant when you want to reference that control from within your ribbon bar.

Second, code is added to the Startup event handler. The first line assigns your custom user control as a
new entry in the list of available task panes, and passes a copy of that control to the member variable
you created. The second line is temporary; it indicates that your task pane should be visible, so you can
ensure that you are seeing what you expect:

Public Class ThisAddIn
Private m_ProVBTaskPane As Microsoft.Office.Tools.CustomTaskPane

Friend Property ProVBTaskPane() As Microsoft.Office.Tools.CustomTaskPane
Get

Return m_ProVBTaskPane
End Get
Set(ByVal value As Microsoft.Office.Tools.CustomTaskPane)

m_ProVBTaskPane = value
End Set

End Property

Private Sub ThisAddIn_Startup(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles Me.Startup

ProVBTaskPane = Me.CustomTaskPanes.Add(New TaskPaneUC(), _
"Do Not Push Me")

ProVBTaskPane.Visible = True
End Sub

Once you’ve added the preceding code to your project, it’s time to test run your application. Using F5,
build and start your project. Excel 2007 will open and then a blank spreadsheet will open. Your custom

941

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 942

Chapter 22: Visual Studio Tools for Office

task pane should appear on the left-hand side, and once you click the button, your display should look
similar to Figure 22-23.

Figure 22-23

Notice that your custom title for the task pane is displayed. Of course, you could exit Visual Studio right
now and open an Excel spreadsheet that was completely unrelated to your current project. However,
your code has been registered for COM interop, so if you do this your custom task pane appears within
your totally unrelated spreadsheet. This would quickly become annoying, which is why you’ll want to
display your custom task pane only when the user asks for it.

The next step is to customize your ribbon so that it can control your task pane. First, within your
ThisAddIn.vb logic, remove the ProVBTaskPane.Visible = True line of code. Next, go to the designer for
your ribbon and add a new ToggleButton. You can label this button with some descriptive text. Addi-
tionally, select the group control that is already on your ribbon and change the text shown as the label
for that control to something such as ‘‘ProVB Add-In.’’ Double-click on your new button and add the
event handler for the Click event. Within this event you are going to again hide and show the control
and update the display text of the button:

Private Sub ToggleButton1_Click(ByVal sender As System.Object, _
ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _

Handles ToggleButton1.Click
If ToggleButton1.Checked = True Then

Globals.ThisAddIn.ProVBTaskPane.Visible = True
ToggleButton1.Label = "Hide Push Me Pane"

Else
Globals.ThisAddIn.ProVBTaskPane.Visible = False
ToggleButton1.Label = "Show Push Me Pane"

End If
End Sub

The preceding code block should in fact look very similar to what you did within your Document project
earlier in this chapter. However, there is a key difference when it comes to referencing the task pane.

942

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 943

Chapter 22: Visual Studio Tools for Office

Notice that instead of accessing the Command Bars collection to make the entire pane
display clear correctly, you are instead referencing the local Friend property that you declared in
your ThisAddIn class. In addition, instead of a global reference to ThisDocument, you access the
ThisAddIn object.

Similar to working with the earlier project, you will want to modify the Load event. However, there is
an additional consideration here. When your add-in is loaded by Excel, the ribbon bar is loaded before
the core add-in’s Startup event fires. This is important because you can’t just check to see whether your
task pane is visible. First you need to determine whether the task pane exists. Then, if it does, you check
whether it is visible. To do this you create an If statement, which as shown in the following code block
leverages the conditional AndAlso:

Imports Microsoft.Office.Tools.Ribbon

Public Class RibbonAddIn

Private Sub RibbonAddIn_Load(ByVal sender As System.Object, _
ByVal e As RibbonUIEventArgs) _
Handles MyBase.Load

If Globals.ThisAddIn.ProVBTaskPane IsNot Nothing AndAlso _
Globals.ThisAddIn.ProVBTaskPane.Visible Then
ToggleButton1.Checked = True
ToggleButton1.Label = "Hide Push Me Pane"

Else
ToggleButton1.Label = "Show Push Me Pane"

End If

End Sub

Private Sub ToggleButton1_Click(ByVal sender As System.Object, _
ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _

Handles ToggleButton1.Click
If ToggleButton1.Checked = True Then

Globals.ThisAddIn.ProVBTaskPane.Visible = True
ToggleButton1.Label = "Hide Push Me Pane"

Else
Globals.ThisAddIn.ProVBTaskPane.Visible = False
ToggleButton1.Label = "Show Push Me Pane"

End If
End Sub

End Class

If you fail to add that check, you’ll throw an exception as Excel is trying to load. Excel won’t appreciate
this, and it remembers. The next time Excel starts it will warn the user that your add-in caused an error
the last time it tried to load it, and suggest that the user disable your add-in — not exactly the result you
want for your code.

If your code is working, your display should look similar to what is shown in Figure 22-24, which shows
the user interface with the mouse hovering over your new ribbon bar button. If you leave the mouse
there, then you’ll get an Office tip telling you that you can select F1 for help about this control. Using
the F1 key starts the help system and Excel opens a help page describing how you can manage add-ins
within Excel.

943

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 944

Chapter 22: Visual Studio Tools for Office

Figure 22-24

The available help page is a good resource for Office 2007, for which you may need a bit of help finding
the options. You can test the add-in at this point to ensure that it opens and closes the task pane correctly.
However, just as you can manage add-ins from Excel, it is difficult to dispose of them from within Excel.
This is important, because if you start creating add-ins for several different customers, you could wind
up with ten or twenty such add-ins taking up residence on your system. Excel would open only after a
longer and longer delay.

Of course, it’s bad enough that during testing, every time you debug, you’re paying a price to ensure
that your current code is registered properly. Having add-ins piling up could be even more of a problem.
Fortunately, Visual Studio has an easy solution (see Figure 22-25).

Figure 22-25

This same menu option is available across all the different Add-In project types. Selecting this enables
you to easily remove from your system the test add-ins that you make. As annoying as this might be for

944

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 945

Chapter 22: Visual Studio Tools for Office

Excel or Word, when you see the implications of an Outlook Form Region, which relies on an Outlook
add-in, you’ll understand why this clean option is important.

Outlook Form Regions
As previously noted, Visual Studio 2008 VSTO provides templates for every client application in the
Microsoft Office 2007 suite. Some of these, such as Word and Excel, are the traditional favorites for cus-
tomization. Others, such as Power Point, may see very little automation. However, there is a new kid
on the block. Outlook supports an add-in template and as part of this template provides what is sure to
become one of the more popular extension models.

Outlook Form Regions (OFR) provide you with the capability to customize what users see when they
open an e-mail message or a contact or any of several other components within Outlook. As you’ll see
in this section, the OFR is a very flexible framework that enables you to embed anything from an HTML
view to a custom WPF user control in Outlook. Because Outlook is as popular as almost any other Office
client application, this feature will have a broad reach.

OFR provides a canvas that isn’t simply visible alongside your primary focus; the OFR provides a very
configurable UI that enables you to extend or replace the default interface associated with typical compo-
nents in Outlook. Because e-mail has become the ubiquitous office and home communication tool, being
able to customize how key business data is presented in this medium is powerful.

To get started, create a new Outlook add-in project with the name ‘‘ProVB_OFR.’’ Not shown here are
screenshots of the New Project dialog or the initial view in Visual Studio after the template has run, as
the Outlook add-in looks very similar to the Excel add-in discussed earlier. You’ll find yourself in the
code view for your add-in, with the Startup and Shutdown event handlers.

At this point, add your OFR to your project. Right-click on your project and select the Add
option from the context menu to open the Add New Item dialog. As before, go to the Office
category to review the available templates, where you’ll find an Outlook Form Region template (see
Figure 22-26). Give it a meaningful name, such as ‘‘AdjoiningOFR,’’ to reflect the type of form region
you’ll create.

Figure 22-26

945

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 946

Chapter 22: Visual Studio Tools for Office

After clicking the Add button, instead of being returned to Visual Studio, you’ll be presented with the
first screen in the wizard for the New Outlook Form Region. This wizard walks you through several
different options related to your OFR. The first choice, shown in Figure 22-27, is whether you want
to generate your form from scratch or would like to import one of the standard templates that ship
with Outlook.

Figure 22-27

The current example will go through the steps to create a new form region. (Take some time to explore
one or more of the standard forms on your own, as a complete discussion is beyond the scope of this
chapter.) Click Next to be taken to the second step of the wizard — selecting a type of form.

The dialog shown in Figure 22-28 lists four different types of potential region. As you move between the
different options, the wizard will display a graphic to better illustrate how each one affects the default
display. These four options can actually be grouped in two sets. The first two options — Separate and
Adjoining — are form types that modify the built-in components of Excel. At their core, these forms
continue to display the underlying components associated with whatever class they are associated with.
The second group consists of the Replacement and Replace-all regions. These form types replace the
object that would normally display within Outlook.

As noted in the naming of your OFR, the plan is to demonstrate creating an Adjoining form
region, but to demonstrate how Replacement and Replace-all forms actually work, select one of
these two options and click Next. This will take you to a screen where you can name and set some
options related to your OFR. You will return to this screen when you revert to the Adjoining OFR
type. Instead of discussing this now, click Next a second time and move to the next step in the wiz-
ard. This will take you to the screen shown in Figure 22-29, defining the object(s) that will be associated
with your OFR.

946

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 947

Chapter 22: Visual Studio Tools for Office

Figure 22-28

Figure 22-29

947

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 948

Chapter 22: Visual Studio Tools for Office

Keep in mind that Figure 22-29 shows this dialog as it looks when you have selected either a Replacement
or Replace-all OFR type. As noted, these form types replace the underlying class. In Figure 22-29, each
of the built-in classes has been disabled, so you can’t ask to apply your change to one of those existing
types. Instead, your only option is to define a custom class or classes — the best practice is to define a
single class.

This custom message class is one that you would define within your custom add-in. To better explain
what is occurring, let’s use a mail message as an example. Typically, when Outlook receives a mail
message, the message is assigned to the class IPM.Note. The IPM.Note class is what provides all of the
typical display elements that you see in a message within Outlook. If you create a replacement form,
then when that form is sent it is flagged not as a typical message, but instead as an instance of your
custom class.

In other words, the sender of the message needs to be aware of the name of the class used for this type
of OFR. In theory, this is all that the sender needs to be aware of — however, that’s only a theory. The
Replacement and Replace-all form types work fine as long as the initial message is sent to the Microsoft
Exchange Server. However, if you are attempting to trigger a message from, say, SharePoint, there is a
problem. Typically, when SharePoint is installed and configured, the e-mail options are set up such that
SharePoint handles its own messages. However, SharePoint doesn’t allow for sending messages with
custom message types, so when your code attempts to trigger this custom message type from within
SharePoint, the message is sent only if you have configured your SharePoint server to communicate with
an Exchange Server.

There are other unique features to Replacement and Replace-all forms. On the positive side, unlike the
OFRs that modify an existing object type, Replacement and Replace-all forms are only instantiated when
a message of that specific class is received. As discussed later in this section, Adjoining and Separate
forms need to have custom code added that screens when that OFR should be displayed.

Another advantage of Replacement and Replace-all forms is that they give you more control over the
message content. Any text in the underlying body is hidden, which means that you can embed infor-
mation in the message body that will later be used in the form. In addition, these form types also hide
enclosures, so it is possible to enclose, for example, an XML file containing application data and then
retrieve and process this data when the message is opened.

However, for this example you are creating a new Adjoining OFR, so use the Previous button twice
in order to return to the screen shown in Figure 22-27. Change your OFR type from Replacement to
Adjoining and click Next. This should bring you to the screen shown in Figure 22-30. Here you have the
option to provide a display name for your OFR. In order to see the effect of this, place the word ‘‘My’’ at
the start of your class name so that you’ll be able to see where this value is used.

The three check boxes in this dialog represent times when this OFR will, by default, be available in
Outlook. In the case of the first one at least, you might not want to accept that default. ‘‘Inspectors that
are in compose mode,’’ enables you to determine whether someone who is creating a new message or
contact should also see your OFR region by default.

Although the setting is present for all OFR types, it in fact is not applicable to Replacement and
Replace-all. In the case of Replacement and Replace-all forms, Outlook doesn’t automatically offer
these as an option for creating a new message. Instead, users need to access the File menu

948

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 949

Chapter 22: Visual Studio Tools for Office

and select the Forms option to tell Outlook that they are attempting to send a message defined by the
custom type.

However, for Separate and Adjoining forms, Outlook will, if you leave this checked, automatically add
your custom region to the standard new message, contact, appointment, and so on, window. This could
get quite annoying if your users aren’t going to be placing data into that OFR and it is for display only.
Thus, in many cases you’ll clear this first check box. However, if you are customizing a contact to capture
and update new data elements, you would probably want to leave this check box selected.

As for the other two check boxes in Figure 22-30, these refer to displaying your custom OFR, and typically
these remain selected so that your OFR will be visible to display data.

Figure 22-30

Clicking Next takes you to the dialog shown in Figure 22-31. This dialog enables you to select from any
of the standard classes that are used within Outlook. The goal is to enable you to create a custom OFR for
one or more of these classes, although typically you’ll select just one. For now, select just Mail Message
and click Finish to complete the creation of your OFR and return to Visual Studio.

On your return to Visual Studio you’ll be in the designer for your AdjoiningOFR user control. That’s
right, once again you are working with a Windows Forms user control that has been customized by the
VSTO team to provide the characteristics you defined in the preceding wizard. At this point you can
open the Toolbox and drag and drop controls onto the form.

949

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 950

Chapter 22: Visual Studio Tools for Office

Figure 22-31

Figure 22-32 illustrates a few changes that you can make so that your form will be both visible and
have some simple elements you can manipulate. The user control shown in Figure 22-32 has had a new
background color assigned, and has had two label controls dragged onto the form. Label1 has had its
font changed to a much larger size and the background changed to white. The default text in Label1 is
now a zero. To the left of Label1 is Label2, which has had its text updated to read ‘‘Attachment Count.’’

Figure 22-32

950

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 951

Chapter 22: Visual Studio Tools for Office

You still haven’t written any actual code, so this is a great time to test your application. Use F5 to build
and run it. Once the build is complete, Outlook will automatically open. You should see something
similar to what is shown in Figure 22-33.

Figure 22-33

Note that even the original Outlook test message, which was received two days ago, now includes your
custom OFR. In fact, you’ll find that every message you open includes the OFR — which could easily
become annoying, given that in a real application your OFR would probably be targeting a single mes-
sage type. Similarly, if you choose to create a new message, there it is again — an OFR that has only
display information. Once you have satisfied yourself with the impact of this region on Outlook, close
Outlook and return to Visual Studio.

Figure 22-34 provides a view of the default generated code for your OFR. Your goal is
to carry out two tasks: first, make it so that this OFR only displays if the associated message includes
one or more attachments. Second, update Label1 so that the number of attachments is shown
in the OFR.

The first item to note is the Form Region Factory code block, which has been collapsed. There are actu-
ally three generated methods, and it is the method hidden inside this code block where you’ll want to
put the custom logic specifying when this OFR should be visible. When expanded, as shown in the fol-
lowing code block, not only do you have your AdjoiningOFR class, but within this collapsed block is a
second partial class definition that defines an implementation to create your OFR as part of a factory.
Factories are a well-known software pattern wherein the calling application might not know the details
of which class is being created, but only the base-class OFR and the methods and properties exposed at
the base-class level.

951

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 952

Chapter 22: Visual Studio Tools for Office

Figure 22-34

Software patterns are outside the scope of this chapter, but in short, the factory patterns indicate that
there will be a FormRegionInitializing event handler, and that the calling application will be able to
create several different types of OFRs based on which factory has been implemented within each OFR.

Public Class AdjoiningOFR
#Region "Form Region Factory"

<Microsoft.Office.Tools.Outlook.FormRegionMessageClass
(Microsoft.Office.Tools.Outlook.FormRegionMessageClassAttribute.Note)> _
<Microsoft.Office.Tools.Outlook.FormRegionName("ProVB_OFR.AdjoiningOFR")> _
Partial Public Class AdjoiningOFRFactory

’ Occurs before the form region is initialized.
’ To prevent the form region from appearing, set e.Cancel to true.
’ Use e.OutlookItem to get a reference to the current Outlook item.

Private Sub AdjoiningOFRFactory_FormRegionInitializing(_
ByVal sender As Object, _
ByVal e As _

Microsoft.Office.Tools.Outlook.FormRegionInitializingEventArgs) _
Handles Me.FormRegionInitializing

End Sub

End Class

#End Region

’Occurs before the form region is displayed.
’Use Me.OutlookItem to get a reference to the current Outlook item.
’Use Me.OutlookFormRegion to get a reference to the form region.
Private Sub AdjoiningOFR_FormRegionShowing(ByVal sender As Object, _

ByVal e As System.EventArgs) _
Handles MyBase.FormRegionShowing

End Sub

952

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 953

Chapter 22: Visual Studio Tools for Office

’Occurs when the form region is closed.
’Use Me.OutlookItem to get a reference to the current Outlook item.
’Use Me.OutlookFormRegion to get a reference to the form region.
Private Sub AdjoiningOFR_FormRegionClosed(ByVal sender As Object, _

ByVal e As System.EventArgs) _
Handles MyBase.FormRegionClosed

End Sub

End Class

In order to prevent your OFR from being displayed, you need to add custom code to the
FormRegionInitializing event handler. In this case you simply want to determine whether the mes-
sage has one or more attachments. If it doesn’t have any attachments, then you want the OFR to remain
hidden:

Private Sub AdjoiningOFRFactory_FormRegionInitializing(_
ByVal sender As Object, _

ByVal e As Microsoft.Office.Tools.Outlook.FormRegionInitializingEventArgs) _
Handles Me.FormRegionInitializing

Try
Dim mail = CType(e.OutlookItem, Outlook.MailItem)
If Not mail.Attachments.Count > 0 Then

e.Cancel = True
Return

End If
Catch

e.Cancel = True
End Try

End Sub

The preceding code illustrates some of the key elements to screening your OFR. The first thing to note is
that you can access the inbound e-mail message by retrieving the OutlookItem object from the parameter
e. Of course, you need to cast this item, as it is passed as type Object. Once you’ve done this, you have
full access to the Outlook object model for e-mail messages. Thus, you can quickly determine the number
of attachments; and if there are none, you can set the Cancel property to True.

Next up is getting the number of attachments in your message into the OFR. This is a fairly easy task.
Unlike the decision about whether to display the OFR, which occurs when the code is looking to create
that OFR, your ability to influence what is displayed doesn’t occur until the FormRegionShowing event
handler is called. In the code block that follows, instead of retrieving the current e-mail object from a
parameter, it is one of the member values for your OFR:

Private Sub AdjoiningOFR_FormRegionShowing(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles MyBase.FormRegionShowing

Dim mail = CType(Me.OutlookItem, Outlook.MailItem)
Me.Label1.Text = mail.Attachments.Count

End Sub

953

Evjen-91361 c22.tex V2 - 04/02/2008 2:44pm Page 954

Chapter 22: Visual Studio Tools for Office

Thus, the code to get the number of attachments and assign that as the contents of the label boils down
to two lines of custom code. At this point you can rerun the application to test your code. Once Outlook
opens, you should see that the MyAdjoiningPane, which was previously displayed for all messages, is
now gone except in the case of those that have attachments.

What this means is that when you now create a new message, the OFR is still not shown. However, if
you add an attachment and then save that message before sending, you can reopen the saved message
and you’ll see the OFR displayed. Keep in mind that the determination of whether the OFR should be
displayed occurs during the creation of the OFR, and once the OFR has been hidden you can’t change
that setting while the object remains open.

Summary
This chapter looked at VSTO and introduced many of its new features and where it is headed in the
future. It didn’t spend a lot of time talking about how you can add controls and logic to user controls,
but instead focused on how to work with the custom task pane or actions pane, and how to leverage new
capabilities such as content controls. Overall, VSTO’s enhancements are some of the most significant in
Visual Studio 2008. VSTO isn’t just a simple set of extensions that mirrors what you could do in VBA.
In fact, VSTO extends every client in the Office system and provides multiple templates. It provides
flexibility with Word and Excel to customize either at the document level or by creating a custom add-in;
and if you do customize at the document level, it provides the option to interoperate with any existing
VBA code you have in your document.

In addition to Word and Excel, you’ve been introduced to Windows Outlook Form Regions. The OFR
model enables you to send business data directly into the application that everyone uses. The various
OFR models have differing advantages and disadvantages, but each is based on an underlying user
control, which enables you to leverage everything that is available via Windows Forms, including WPF
interop.

Highlights of this chapter included the following:

❑ Office Business Application Architecture as the target of VSTO solutions

❑ How SharePoint can provide additional capabilities when used as the central document store for
document-based VSTO applications

❑ VSTO-VBA interop and the steps to enable VBA to call new VSTO capabilities

❑ A document-based VSTO solution

❑ Customizing the Document Actions pane and the ribbon bar and enabling them to communicate

❑ Working with content controls

❑ Creating an Excel add-in solution and customizing the ribbon bar and task pane

❑ Differences between the OFR types

While the concept of an OBA is relatively recent, you learned that the OBA model is becoming an increas-
ingly important focus for Microsoft. The ability to tie your business logic into applications such as Word,
Excel, and Outlook means that your developers can spend less time creating and maintaining custom
grid controls, and your end users can get started with less time spent in training.

954

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 955

Assemblies

By now, you’ve probably developed some programs in .NET, so you’ve seen the modules produced
by the .NET compilers, which have file extensions of .dll or .exe. Most .NET modules are DLLs,
including class libraries and those that serve as code-behind for ASP.NET. Windows applications,
console applications, and Windows Services are examples of .NET modules that are executables
and thus have an extension of .exe.

These .NET-compiled modules, both DLLs and EXEs, are referred to as assemblies. Assemblies are
the unit of deployment in .NET, containing both compiled code and metadata that is needed by
the .NET common language runtime (CLR) to run the code. Metadata includes information such as
the code’s identity and version, dependencies on other assemblies, and a list of types and resources
exposed by the assembly.

Basic development in .NET doesn’t require you to know any more than that. However, as your
applications become more complex, and as you begin considering such issues as deployment and
maintenance of your code, you need to understand more about assemblies. This chapter addresses
that need, including the following:

❑ What assemblies are and how they are used

❑ The general structure of an assembly

❑ How assemblies can be versioned

❑ The global application cache (GAC), including how and when to use it

❑ How assemblies are located and loaded by the CLR

After you are familiar with these essentials, Chapter 24 uses this information to discuss deployment
in depth.

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 956

Chapter 23: Assemblies

Assemblies
The assembly is used by the CLR as the smallest unit for the following:

❑ Deployment

❑ Version control

❑ Security

❑ Type grouping

❑ Code reuse

An assembly must contain a manifest, which tells the CLR what else is in the assembly. The other elements
can be any of the following three categories:

❑ Type metadata

❑ Microsoft Intermediate Language (MSIL) code

❑ Resources

An assembly can be just one file. Figure 23-1 details the contents of a single-file assembly.

Assembly.dll

Manifest

Type Metadata

MSIL Code

Resources

Figure 23-1

Alternatively, the structure can be split across multiple files, as shown in Figure 23-2. This is just one
example of a multiple-file assembly configuration.

An assembly can only have one manifest section across all the files that make up the assembly. There
is nothing stopping you, however, from having a resource section (or any of the other sections of type
Metadata and MSIL code) in each of the files that make up an assembly.

956

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 957

Chapter 23: Assemblies

Assembly.dll AssemblyRes.dll

Manifest Resources

Type Metadata

MSIL Code

Figure 23-2

The Manifest
The manifest is the part of the assembly that contains a list of the other elements contained in the assem-
bly and basic identification information for the assembly. The manifest contains the largest part of the
information that enables the assembly to be self-describing. Elements listed in the manifest are placed
in appropriate sections. The manifest includes the sections displayed in Figure 23-3. These sections are
covered later in the chapter.

Identity Culture
(Optional)

Version

Strong Name
(Optional)

File List
(Optional)

Referenced
Assemblies

Custom
Assembly
Attributes
(Optional)

Description

...

Name

Figure 23-3

957

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 958

Chapter 23: Assemblies

To look at the manifest for a particular assembly, you can use the IL Disassembler (Ildasm.exe), which
is included with Visual Studio 2008. There is no shortcut on the Programs menu for ildasm.exe, but you
can run it by going to Start ➪ Programs ➪ Microsoft Visual Studio 2008 ➪ Visual Studio Tools ➪ Visual
Studio 2008 Command Prompt, and then typing Ildasm on the resulting command line.

The version of Ildasm.exe in the SDK for .NET Framework 3.5 can examine assemblies created with
earlier versions of the .NET Framework.

When Ildasm.exe loads, you can browse for an assembly to view by selecting File ➪ Open. Once an
assembly has been loaded into Ildasm.exe, it disassembles the metadata contained within the assembly
and presents you with a tree-view layout of the data. Initially, the tree view shows only top-level ele-
ments, as illustrated in Figure 23-4. This example has only one namespace element in the tree, but if an
assembly contains classes in more than one namespace, then additional elements will be shown.

Figure 23-4

The full path of the assembly you are viewing represents the root node. The first node below the root
is called MANIFEST, and as you’ve probably guessed, it contains all the information about the assembly’s
manifest. If you double-click this node, a new window is displayed with the information contained within
the manifest. The manifest for a complex assembly can be rather long. For our example, three sections
of a manifest are shown in Figures 23-5, 23-6, and 23-7. Figure 23-5 shows the top of the manifest, which
contains the external references needed by this assembly, such as other .NET assemblies on which this
assembly depends. If the assembly depends on COM libraries, those will be shown as external modules
and listed before the external assemblies.

Figure 23-6 shows a portion of the manifest further down, containing the beginning of the section for the
actual assembly. The first items listed in the manifest for the assembly itself are the attributes that apply
to the assembly.

Further down are items such as resources that reside in the assembly. Figure 23-7 shows a bitmap named
checkmark8.bmp that is used by this particular assembly.

958

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 959

Chapter 23: Assemblies

Figure 23-5

Figure 23-6

Assembly identity
The section of the manifest for an assembly also contains information used to uniquely identify the
assembly. This section contains some standard information, such as the version number, and may also
contain some optional elements, such as a strong name for the assembly. Assemblies come in two types:
application-private and shared (differences between the two types are covered shortly), and they have
slightly different identity information.

959

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 960

Chapter 23: Assemblies

Figure 23-7

The Version Number
The section of the manifest for an assembly contains a version number, which is indicated by the .ver
directive in Ildasm.exe. Figure 23-7, shown earlier, includes a .ver directive on the following line in the
.assembly section:

.ver 1.0.2473.30111

A version number contains four parts:

Major : Minor : Build : Revision

Assemblies that have the same name but different version numbers are treated as completely different
assemblies. If you have an assembly on your machine that has a version number of 1.5.2.3 and another
version of the same assembly with a version number of 1.6.0.1, then the CLR treats them as different
assemblies. The version number of an assembly is part of what is used to define dependencies between
assemblies.

Strong Names
The manifest can also contain an optional strong name for an assembly. The strong name is not a name per
se, but a public key that has been generated by the author of the assembly to uniquely identify it. A strong
name is used to ensure that your assembly has a unique signature compared to other assemblies that may
have the same name. Strong names were introduced to combat DLL hell by providing an unambiguous
way to differentiate among assemblies.

A strong name is based on public-private key encryption and creates a unique identity for your assembly.
The public key is stored in the identity section of the manifest. A signature of the file containing the
assembly’s manifest is created and stored in the resulting PE file. The .NET Framework uses these two
signatures when resolving type references to ensure that the correct assembly is loaded at runtime. A
strong name is indicated in the manifest by the .publickey directive in the .assembly section.

960

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 961

Chapter 23: Assemblies

Signing an Assembly with a Strong Name
As mentioned above, applying a strong name to an assembly is based on public-private key encryption.
The public and private keys are related, and a set is called a public-private key pair. Applying a strong
name to an assembly is usually called signing the assembly with the strong name.

You can create a key pair with the sn.exe utility. At the Visual Studio command prompt, enter the
following command:

sn -k pairname.snk

You should replace pairname with an appropriate name, often the name of your product or system. The
same key pair can be used to apply a strong name to all the assemblies in your system.

Once you have a key pair, you need to add it to any projects in Visual Studio that need to generate a
strong-named assembly. To do that, just select Project ➪ Add Existing Item, and browse to the
key pair.

The final step is to change the module AssemblyInfo.vb to apply the strong name. AssemblyInfo.vb was
automatically created when your project was created, and is under the My Project area in the Solution
Explorer. If you can’t see a plus sign to expand My Project, press the Show All Files button at the top of
the Solution Explorer.

In AssemblyInfo.vb, insert a line that looks like this:

<Assembly: AssemblyKeyFile("pairname.snk")>

Again, you should replace pairname with the name you actually used for the key pair file earlier. The
next time your project is built, the resulting assembly will have a strong name, generated by using the
key pair you have indicated.

You can also sign an assembly with a strong name by compiling at the command line. This might be the
case if you want to sign the assembly outside of Visual Studio. A typical command line to compile and
sign a Visual Basic assembly looks like this:

vbc /reference:Microsoft.VisualBasic.dll /reference:System.Windows.Forms.dll
/target:library /keyfile:c:\mykeys\keypair.snk /out:MyAssembly.dll
/rootnamespace:MyAssembly *.vb

The separate elements of the command line have been placed on different lines for ease of reading, but
they should all be on the same line in actual use. The preceding is just a template. You would need to
change the /reference options to include any references needed by your assembly. You would also
need to specify the correct file path for your own key pair file (.snk file) and apply your assembly and
root namespace names.

Finally, strong names can be applied with a technique called delay signing. That’s beyond the scope of
this chapter, but the Visual Studio help files include step-by-step instructions. Delayed signing is helpful
when assemblies need to be properly strong-named during development (so that any problems with
strong names are detected at that point), but it is undesirable for all the developers to have a copy of the
key pair that will be used for signing the final compiled version of the assembly.

961

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 962

Chapter 23: Assemblies

The Culture
The final part of an assembly’s identity is its culture, which is optional. Cultures are used to define the
country/language for which the assembly is targeted.

The combination of name, strong name, version number, and culture is used by the CLR to enforce
version dependencies. For example, you could create one version of your assembly targeted at English
users, another for German users, another for Finnish users, and so on.

Cultures can be general, as in the case of English, or more specific, as in the case of US-English. Cultures
are represented by a string that can contain two parts: primary and secondary (optional). The culture for
English is en, and the culture for US-English is en-us. See Chapter 5 for more about cultures in .NET.

If a culture is not indicated in the assembly, then it is assumed that the assembly can be used for any
culture. Such an assembly is said to be culture neutral. You can assign a culture to an assembly by
including the attribute AssemblyCulture from the System.Reflection namespace in your assembly’s
code (usually within the AssemblyInfo.vb file):

<Assembly: AssemblyCulture("en")>

The culture of an assembly is represented in the manifest by the .locale directive in the .assembly
section.

Referenced assemblies
It was mentioned earlier that the first section of the manifest contains referenced assemblies. An assembly
reference is indicated in the manifest with the .assembly extern directive (refer to Figure 23-5).

The first piece of information included is the name of the referenced assembly. Figure 23-5 shows a
reference to the mscorlib assembly. This name is used to determine the name of the file that contains the
actual assembly. The CLR takes the name of the assembly reference and appends .dll. For instance, in
the last example, the CLR will look for a file called mscorlib.dll. The assembly mscorlib is a special
assembly in .NET that contains all the definitions of the base types used in .NET, and is referenced by all
assemblies.

The .publickeytoken Directive
If the assembly being referenced contains a strong name, then a hash of the public key of the referenced
assembly is stored as part of the record to the external reference. This hash is stored in the manifest
using the .publickeytoken directive as part of the .assembly extern section. The assembly reference
shown in Figure 23-5 contains a hash of the strong name of the mscorlib assembly. The stored hash of
the strong name is compared at runtime to a hash of the strong name (.publickey) contained within the
referenced assembly to help ensure that the correct assembly is loaded. The value of the .publickeytoken
is computed by taking the lower 8 bytes of a hash (SHA1) of the strong name of the referenced assemblies.

The .ver Directive
The version of the assembly being referenced is also stored in the manifest. This version information
is used with the rest of the information stored about a reference to ensure that the correct assembly is
loaded (this is discussed later). If an application references version 1.1.0.0 of an assembly, it will not load

962

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 963

Chapter 23: Assemblies

version 2.1.0.0 of the assembly unless a version policy (also discussed later) exists to indicate otherwise.
The version of the referenced assembly is stored in the manifest using the .ver directive as part of an
.assembly extern section.

The .locale Directive
If an assembly that is being referenced has a culture, then the culture information is also stored in the
external assembly reference section, using the .locale directive. The combination of name, strong name
(if it exists), version number, and culture are what make up a unique version of an assembly.

Assemblies and Deployment
The information in the manifest enables the reliable determination of the identity and version of an
assembly. This is the basis for the deployment options available in .NET, and for the side-by-side execu-
tion of assemblies that helps .NET overcome DLL hell. This section looks at these issues in detail.

Application-private assemblies
It was mentioned earlier that assemblies can be of two types. The first is an application-private assembly.
As the name implies, this type of assembly is used by one application only and is not shared. This is the
default style of assembly in .NET and is the main mechanism by which an application can be independent
of changes to the system.

Application-private assemblies are deployed into the application’s own directory. Because application-
private assemblies are not shared, they do not need a strong name. This means that, at a minimum, they
only need to have a name and version number in the identity section of the manifest. Because the assem-
blies are private to the application, the application does not perform version checks on the assemblies, as
the application developer has control over the assemblies that are deployed to the application directory.
If strong names exist, however, the CLR will verify that they match.

If all the assemblies that an application uses are application-private and the CLR is already installed
on the target machine, then deployment is quite simple. Chapter 24 discusses this implication in
more detail.

Shared assemblies
The second type of assembly is the shared assembly. As the name suggests, this type of assembly can
be shared among several different applications that reside on the same server. This type of assembly
should only be used when it is important to share assemblies among many applications. For example, a
Windows Forms control purchased as part of a package may be used in many of your applications, and
thus it is better to install a shared version of the assembly, rather than copies of it, for each application.
The .NET Framework assemblies themselves are also examples of shared assemblies.

Certain requirements are placed upon shared assemblies. The assembly needs to have a globally unique
name, which is not a requirement of application-private assemblies. As mentioned earlier, a strong name
is used to create a globally unique name for an assembly. As the assembly is shared, all references to the
shared assembly are checked to ensure that the correct version is being used by an application.

963

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 964

Chapter 23: Assemblies

Shared assemblies are stored in the global assembly cache (GAC), which is usually located in the
assembly folder in the Windows directory (in a typical Windows XP or Vista installation, C:\Windows
\assembly). However, it’s not enough to just copy an assembly into that directory. In fact, if you browse
to that directory using Windows Explorer, you’ll find that you can’t just drag files in and out of it. The
process for placing an assembly in the GAC is similar in concept to registering a COM DLL. That process
is discussed in detail later in this chapter.

No other changes to the code of the assembly are necessary to differentiate it from that of an application-
private assembly. In fact, just because an assembly has a strong name does not mean that it has to be
deployed as a shared assembly; it could just as easily be deployed in the application directory as an
application-private assembly.

Installing a shared assembly into the GAC requires administrator rights on the machine. This is
another factor complicating deployment of shared assemblies. Because of the extra effort involved in
the creation and deployment of shared assemblies, you should avoid this type of assembly unless you
really need it.

The Global Assembly Cache
Each computer that has the .NET runtime installed has a global assembly cache (GAC). However, assem-
blies in the GAC are always stored in the same folder, no matter which version of .NET you have. The
folder is a subfolder of your main Windows folder, and it is named Assembly. If you have multiple
versions of the .NET Framework, assemblies in the GAC for all of them are stored in this directory.

As previously noted, a strong name is required for an assembly placed in that GAC. That strong name is
used to identify a particular assembly. However, another piece of metadata is also used for verification
of an assembly. When an assembly is created, a hash of the assembly is placed in the metadata. If an
assembly is changed (with a binary editor, for example), the hash of the assembly will no longer match
the hash in the metadata. The metadata hash is checked against the actual hash when an assembly is
placed in the GAC with the gacutil.exe utility (described later). If the two hash codes do not match, the
installation cannot be completed.

The strong name is also used when an application resolves a reference to an external assembly. It checks
whether the public key stored in the assembly is equal to the hash of the public key stored as part of
the reference in the application. If the two do not match, then the application knows that the external
assembly has not been created by the original author of the assembly.

You can view the assemblies contained within the GAC by navigating to the directory using the Windows
Explorer.

The gacutil.exe utility that ships with .NET is used to add and remove assemblies from the GAC. To
add an assembly into the GAC using the gacutil.exe tool, use the following command line:

gacutil.exe /i myassembly.dll

Recall that the assembly being loaded must have a strong name.

To remove an assembly, use the /u option, like this:

gacutil.exe /u myassembly.dll

964

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 965

Chapter 23: Assemblies

gacutil.exe has a number of other options. You can examine them and see examples of their usage by
typing in the following command:

gacutil.exe /?

Versioning Issues
In COM, the versioning of DLLs had some significant limitations. For example, a different DLL with the
same nominal version number could be indistinguishable from the one desired.

.NET’s versioning scheme was specifically designed to alleviate the problems of COM. The major
capabilities of .NET that solve versioning issues are as follows:

❑ Application isolation

❑ Side-by-side execution

❑ Self-describing components

Application isolation
For an application to be isolated, it should be self-contained and independent. This means that the appli-
cation should rely on its own dependencies for ActiveX controls, components, or files, and not have
those files shared with other applications. The option of having application isolation is essential for a
good solution to versioning problems.

If an application is isolated, components are owned, managed, and used by the parent application alone.
If a component is used by another application, even if it is the same version, the other application must
have its own copy. This ensures that each application can install and uninstall dependencies and not
interfere with other applications.

Does this sound familiar? This is what most early Windows and DOS applications
did until COM required registration of DLLs in the registry and placement of
shared DLLs in the system directory. The wheel surely does turn!

The .NET Framework enables application isolation by allowing developers to create application-private
assemblies. These are in the application’s own directory, and if another application needs the same assem-
bly, it can be duplicated in that application’s directory.

This means that each application is independent from the others. This isolation works best for many sce-
narios. It is sometimes referred to as a zero-impact deployment because when you either install or uninstall
such an application, you are in no danger of causing problems for any other application.

Side-by-side execution
Side-by-side execution occurs when multiple versions of the same assembly can run at the same time.
Side-by-side execution is performed by the CLR. Components that are to execute side by side must be
installed within the application directory or a subdirectory of it.

965

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 966

Chapter 23: Assemblies

With application assemblies, versioning is not much of an issue. The interfaces are dynamically resolved
by the CLR. If you replace an application assembly with a different version, the CLR will load it and
make it work with the other assemblies in the application as long as the new version doesn’t have any
interface incompatibilities. The new version may even have elements of the interface that are new and
that don’t exist in the old version (new properties or methods). As long as the existing class interface
elements used by the other application assemblies are unchanged, the new version will work fine. In the
following discussion of exactly how the CLR locates a referenced assembly, you’ll learn more about how
this works.

Self-describing
In the earlier section on the manifest, the self-describing nature of .NET assemblies was mentioned. The
term ‘‘self-describing’’ means that all the information the CLR needs to know to load and execute an
assembly is inside the assembly itself.

Self-describing components are essential to .NET’s side-by-side execution. Once the extra version is
known by the CLR to be needed, everything else about the assembly needed to run side by side is in the
assembly itself. Each application can get its own version of an assembly, and all the work to coordinate
the versions in memory is performed transparently by the CLR.

Versioning becomes more important with shared assemblies. Without good coordination of versions,
.NET applications with shared assemblies are subject to some of the same problems as COM applications.
In particular, if a new version of a shared assembly is placed in the GAC, then there must be a means to
control which applications get which version of a shared assembly. This is accomplished with a versioning
policy.

Version policies
As discussed earlier, a version number includes four parts: major, minor, build, and revision. The version
number is part of the identity of the assembly. When a new version of a shared assembly is created
and placed in the GAC, any of these parts can change. Which ones change affects how the CLR views
compatibility for the new assembly.

When the version number of a component only changes according to its build and revision parts, it is
compatible. This is often referred to as Quick Fix Engineering (QFE). It’s only necessary to place the new
assembly in the GAC, and it will automatically be considered compatible with applications that were
created to use the older version that had different numbers for the build and revision.

If either the major or minor build number changes, however, compatibility is not assumed by the CLR.
In that case, there are manual ways to indicate compatibility if necessary, and these are covered later in
this section.

When an application comes across a type that is implemented in an external reference, the CLR has to
determine what version of the referenced assembly to load. What steps does the CLR go through to
ensure that the correct version of an assembly is loaded? To answer this question, you need to look at
version policies and how they affect which version of an assembly is loaded.

966

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 967

Chapter 23: Assemblies

The Default Versioning Policy
Let’s start by looking at the default versioning policy. This policy is followed in the absence of any
configuration files that would modify the versioning policy. The runtime default behavior is to consult
the manifest for the name of the referenced assembly and the version of the assembly to use.

If the referenced assembly does not contain a strong name, then it is assumed that the referenced assem-
bly is application-private and is located in the application’s directory. The CLR takes the name of the
referenced assembly and appends .dll to create the filename that contains the referenced assembly’s
manifest. The CLR then searches in the application’s directory for the filename; if it’s found, it uses the
version indicated, even if the version number is different from the one specified in the manifest. There-
fore, the version numbers of application-private assemblies are not checked, because the application
developer, in theory, has control over which assemblies are deployed to the application’s directory. If the
file cannot be found, the CLR raises a System.IO.FileNotFoundException.

Automatic Quick Fix Engineering Policy
If the referenced assembly contains a strong name, then the process by which an assembly is loaded is
different:

1. The three different types of assembly configuration files (discussed later) are consulted, if
they exist, to see whether they contain any settings that will modify which version of the
assembly the CLR should load.

2. The CLR then checks whether the assembly has been requested and loaded in a previous
call. If it has, it uses the loaded assembly.

3. If the assembly is not already loaded, then the GAC is queried for a match. If a match is
found, it is used by the application.

4. If any of the configuration files contains a codebase (discussed later) entry for the
assembly, then the assembly is looked for in the location specified. If the assembly cannot
be found in the location specified in the codebase, then a TypeLoadException is raised to the
application.

5. If there are no configuration files or if there are no codebase entries for the assembly, then
the CLR probes for the assembly starting in the application’s base directory.

6. If the assembly still isn’t found, then the CLR asks the Windows Installer service if it has
the assembly in question. If it does, then the assembly is installed and the application uses it.
This is a feature called on-demand installation.

If the assembly hasn’t been found by the end of this entire process, then a TypeLoadException is raised.

Although a referenced assembly contains a strong name, this does not mean that it has to be deployed
into the GAC. This enables application developers to install a version with the application that is known
to work. The GAC is consulted to see whether it contains a version of an assembly with a higher
build.revision number to enable administrators to deploy an updated assembly without having to
reinstall or rebuild the application. This is known as the Automatic Quick Fix Engineering Policy.

967

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 968

Chapter 23: Assemblies

Configuration files
The default versioning policy described earlier may not be the most appropriate policy for your
requirements. Fortunately, you can modify this policy through the use of XML configuration files to
meet your specific needs. Two types of configuration files can hold versioning information:

❑ The first is an application configuration file, and it is created in the application directory. As the
name implies, this configuration file applies to a single application only. You need to create the
application configuration file in the application directory with the same name as the application
filename and append .config. For example, suppose that you have a Windows Forms applica-
tion called HelloWorld.exe installed in the C:\HelloWorld directory. The application configura-
tion file would be C:\HelloWorld\HelloWorld.exe.config.

❑ The second type of configuration file is called the machine configuration file. It is named
machine.config and can be found in the C:\Windows\Microsoft.NET\Framework\v2.0.xxxx\
CONFIG directory. The machine.config file overrides any other configuration files on a machine
and can be thought of as containing global settings.

The main purpose of the configuration file is to provide binding-related information to the developer or
administrator who wishes to override the default policy handling of the CLR.

Specifically, the configuration file, as it’s written in XML, has a root node named <configuration>, and
it must have the end node of </configuration> present to be syntactically correct. The configuration file
is divided into specific types of nodes that represent different areas of control. These areas are as follows:

❑ Startup

❑ Runtime

❑ Remoting

❑ Crypto

❑ Class API

❑ Security

Although all of these areas are important, this chapter covers only the first two. All of the settings dis-
cussed can be added to the application configuration file. Some of the settings (these are pointed out) can
also be added to the machine configuration file. If a setting in the application configuration file conflicts
with one in the machine configuration file, then the setting in the machine configuration file is used.
When we talk about assembly references in the following discussion of configuration settings, we are
talking exclusively about shared assemblies (which implies that the assemblies have a strong name, as
assemblies in the GAC are required to have one).

Startup Settings
The <startup> node of the application and machine configuration files has a <requiredRuntime> node
that specifies the runtime version required by the application. This is because different versions of the
CLR can run on a machine side by side. The following example shows how you would specify the version
of the .NET runtime inside the configuration file:

<configuration>
<startup>

968

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 969

Chapter 23: Assemblies

<requiredRuntime version ="2.0.xxxx" safemode ="true"/>
</startup>

</configuration>

Runtime Settings
The runtime node, which is written as <runtime> (not to be confused with <requiredRuntime>), specifies
the settings that manage how the CLR handles garbage collection and versions of assemblies. With these
settings, you can specify which version of an assembly the application requires, or redirect it to another
version entirely.

Loading a particular version of an assembly
The application and machine configuration files can be used to ensure that a particular version of an
assembly is loaded. You can indicate whether this version should be loaded all the time or should
only replace a specific version of the assembly. This functionality is supported through the use of the
<assemblyIdentity> and <bindingRedirect> elements in the configuration file, as shown in the follow-
ing example:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="AssemblyName"

publickeytoken="b77a5c561934e089"
culture="en-us"/>

<bindingRedirect oldVersion="*"
newVersion="2.0.50.0"/>

</dependentAssembly>
</assemblyBindings>

</runtime>
</configuration>

The <assemblyBinding> node is used to declare settings for the locations of assemblies and redirections
via the <dependentAssembly> node and the <probing> node (which you will look at shortly).

In the last example, when the CLR resolves the reference to the assembly named AssemblyName, it loads
version 2.0.50.0 instead of the version that appears in the manifest. If you want to load only version
2.0.50.0 of the assembly when a specific version is referenced, then you can replace the value of the
oldVersion attribute with the version number that you would like to replace (for example, 1.5.0.0). The
publickeytoken attribute is used to store the hash of the strong name of the assembly to replace. This
ensures that the correct assembly is identified. The same is true of the culture attribute.

Defining the location of an assembly
The location of an assembly can also be defined in both the application and machine configuration files.
You can use the <codeBase> element to inform the CLR of the location of an assembly. This enables you
to distribute an application and have the externally referenced assemblies downloaded the first time they
are used (on-demand downloading):

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

969

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 970

Chapter 23: Assemblies

<dependentAssembly>
<assemblyIdentity name="AssemblyName"

publickeytoken="b77a5c561934e089"
culture="en-us"/>

<codeBase version="2.0.50.0"
href="http://www.wrox.com/AssemblyName.dll/>

</dependentAssembly>
</assemblyBindings>

</runtime>
</configuration>

You can see from this example that whenever a reference to version 2.0.50.0 of the assembly
AssemblyName is resolved (and the assembly isn’t already on the user’s computer), the CLR will try
to load the assembly from the location defined in the href attribute. The location defined in the href
attribute is a standard URL and can be used to locate a file across the Internet or locally.

If the assembly cannot be found or the details in the manifest of the assembly defined in the href attribute
do not match those defined in the configuration file, then the loading of the assembly will fail and you
will receive a TypeLoadException. If the version of the assembly in the preceding example were actually
2.0.60.0, then the assembly would load because the version number is only different by build and revision
number.

Providing the search path
The final use of configuration files to consider is that of providing the search path to use when locating
assemblies in the application’s directory. This setting only applies to the application configuration file.
By default, the CLR searches for an assembly only in the application’s base directory — it will not look
in any subdirectories. You can modify this behavior by using the <probing> element in an application
configuration file, as shown in the following example:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath="regional"/>
</assemblyBinding>

</runtime>
</configuration>

The privatePath attribute can contain a list of directories relative to the application’s directory (sepa-
rated by a semicolon) that you would like the CLR to search in when trying to locate an assembly. The
privatePath attribute cannot contain an absolute pathname.

As part of resolving an assembly reference, the CLR checks in the application’s base directory for it. If it
cannot find it, then it looks through, in order, all the subdirectories specified in the privatePath variable,
as well as looking for a subdirectory with the same name as the assembly. If the assembly being resolved
is called AssemblyName, then the CLR also checks for the assembly in a subdirectory called AssemblyName,
if it exists.

This isn’t the end of the story, though. If the referenced assembly being resolved contains a culture
setting, then the CLR also checks for culture-specific subdirectories in each of the directories it searches
in. For example, if the CLR is trying to resolve a reference to an assembly named AssemblyName with

970

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 971

Chapter 23: Assemblies

a culture of en and a privatePath equal to that in the last example, and the application being run has
a home directory of C:\ExampleApp, then the CLR will look in the following directories (in the order
shown):

❑ C:\ExampleApp

❑ C:\ExampleApp\en

❑ C:\ExampleApp\en\AssemblyName

❑ C:\ExampleApp\regional\en

❑ C:\ExampleApp\regional\en\AssemblyName

As you can see, the CLR can probe quite a number of directories to locate an assembly. When an external
assembly is resolved by the CLR, it consults the configuration files first to determine whether it needs
to modify the process by which it resolves an assembly. As discussed, you can modify the resolution
process to suit your needs.

Dynamic Loading of Assemblies
The preceding discussion about locating and loading assemblies refers to assemblies that are known at
compile time through the application’s references. There is an alternative method of locating and loading
an assembly that is useful for certain scenarios.

In this technique, the location of the assembly is supplied by the application, using a URL or filename.
The normal rules for locating the assembly do not apply — only the location specified by the application
is used.

The location is just a string variable, so it may come from a configuration file or a database. In fact, the
assembly to be loaded may be newly created, and perhaps did not even exist when the original appli-
cation was compiled. Because the information to load the assembly can be passed into the application
on-the-fly at runtime, this type of assembly loading is called dynamic loading.

The Assembly class
References to assemblies, and operations to be performed on assemblies in code, are mostly contained
in a .NET Framework class called the Assembly class. It is part of the System.Reflection namespace.
In the code examples that follow, assume that the following Imports statement is at the top of the code
module:

Imports System.Reflection

The Assembly class has a shared method called LoadFrom, which takes a URL or filename and returns
a reference to the assembly at that location. Here’s a code example of LoadFrom in action, getting an
assembly reference from a URL:

Dim asmDynamic As [Assembly]
asmDynamic = [Assembly].LoadFrom("http://www.dotnetmasters.com/loancalc2.dll")

971

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 972

Chapter 23: Assemblies

The brackets around Assembly are needed because it is a reserved keyword in Visual Basic. The brackets
indicate that the word applies to the Assembly class, and the keyword is not being used.

After these lines are executed, the code contains a reference to the assembly at the given location. That
enables other operations on the assembly to take place. One such operation is getting a reference to a
particular type (which could be a class, structure, or enumeration) in the assembly. The reference to a
type is needed to instantiate the type when an assembly is loaded dynamically. The GetType method of
the Assembly class is used to get the reference, using a string that represents the identification of the type.
The identification consists of the full namespace path that uniquely identifies the type within the current
application.

For example, suppose that you wanted to get an instance of a certain form in the assembly, with a
namespace path of MyProject.Form1. The following line of code would get a reference to the type for
that form:

Dim typMyForm As Type = formAsm.GetType("MyProject.Form1")

The type reference can then be used to generate an instance of the type. To do this, you need another class
in System.Reflection called the Activator class. This class has a shared method called CreateInstance,
which takes a type reference and returns an instance of that type. (If you are familiar with Active Server
Pages and older versions of Visual Basic, CreateInstance is functionally similar to the CreateObject
function in those environments.) You could, therefore, get an instance of the form with these lines:

Dim objForm As Object
objForm = Activator.CreateInstance(typeMyForm)

CreateInstance always returns a generic object. That means it may be necessary to coerce the returned
reference to a particular type to gain access to the type’s interface. For example, assuming that you
knew the object was actually a Windows Form, you could coerce the preceding instance into the type
of System.Windows.Forms.Form and then do normal operations that are available on a form:

Dim FormToShow As Form = CType(objForm, System.Windows.Forms.Form)
FormToShow.MdiParent = Me
FormToShow.Show()

At this point, the form will operate normally. It will behave no differently from a form that was in a
referenced assembly (except for potential code access security limitations, as discussed in Chapter 12).

If the newly loaded form needs to load other classes in the dynamic assembly, nothing special needs to be
done. For example, suppose that the form just shown needs to load an instance of another form, named
Form2, that resides in the same dynamically loaded assembly. The standard code to instantiate a form
will work fine. The CLR will automatically load the Form2 type because it already has a reference to the
assembly containing Form2.

Furthermore, suppose that the dynamically loaded form needs to instantiate a class from another
DLL that is not referenced by the application. For example, suppose that the form needs to create an
instance of a Customer object, and the Customer class is in a different DLL. As long as that DLL is
in the same folder as the dynamically loaded DLL, the CLR will automatically locate and load the
second DLL.

972

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 973

Chapter 23: Assemblies

Dynamic loading example
To see dynamic loading in action, try the following step-by-step example:

1. Open a new Windows Application in Visual Studio and name it DynamicLoading. On the
blank Form1 that appears, drag a Button from the Toolbox, and set its Text property to Load.

2. Double-click the Load button to get to its Click event in the code editor. Then go to the top
of the code module and insert the following Imports statement:

Imports System.Reflection

3. Insert the following code into the button’s Click event:

Dim sLocation As String = "C:\Deploy\DynamicForms.dll"
If My.Computer.FileSystem.FileExists(sLocation) Then

Dim sType As String = "DynamicForms.Form1"
Dim DynamicAssembly As [Assembly] = _

[Assembly].LoadFrom(sLocation)
Dim DynamicType As Type = DynamicAssembly.GetType(sType)
Dim DynamicObject As Object
DynamicObject = Activator.CreateInstance(DynamicType)

’ We know it’s a form - cast to form type
Dim FormToShow As Form = CType(DynamicObject, Form)
FormToShow.Show()

Else
MsgBox("Unable to load assembly " & sLocation & _

" because the file does not exist")

End If

4. Run the program and click the Load button. You should get a message box with the message
‘‘Unable to load assembly C:\Deploy\DynamicForms.dll because the form does not exist.’’
Leave this program running while you carry out the next few steps.

5. Start another, separate Visual Studio instance, and create a new Windows Application
project named DynamicForms. On the blank Form1 that appears, drag over a few controls.
It doesn’t really matter what controls you drag onto Form1. The version that can be down-
loaded for the book includes some labels, buttons, and text boxes.

6. In the properties for DynamicForms, change the application type to Class Library.

7. Build the DynamicForms project by selecting Build ➪ Build DynamicForms from the Visual
Studio menu. This will place a file named DynamicForms.dll in the project’s \bin\Debug
directory (or the \bin\Release directory if you happen to have the Release configuration set
in Visual Studio).

8. Create a directory named C:\Deploy and copy the DynamicForms.dll file to that directory.

9. Return to the running program DynamicLoading. Click the Load button again. This time,
it should load the assembly from the DLL you just copied and launch an instance of Form1
from the DynamicForms project.

973

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 974

Chapter 23: Assemblies

Notice that the DynamicForms.dll was created and compiled after the DynamicLoading.exe project that
loaded it. It is not necessary to recompile or even restart DynamicLoading.exe to load a new assembly
dynamically, as long as DynamicLoading.exe knows the location of the assembly and the type to be
loaded from it.

Putting assemblies to work
The previous code examples include hard-coded strings for the location of the assembly and the identifi-
cation of the type. There are uses for such a technique, such as certain types of Internet deployment of an
application. However, when using dynamic loading, it is common for these values to be obtained from
outside the code. For example, a database table or an XML-based configuration file can be used to store
the information.

This enables you to add new capabilities to an application on-the-fly. A new assembly with new func-
tionality can be written, and then the location of the assembly and the identity of the type to load from
the assembly can be added to the configuration file or database table.

Unlike application assemblies automatically located by the CLR, which must be in the application’s
directory or a subdirectory of it, dynamically loaded assemblies can be anywhere the application knows
how to access. Possibilities include the following:

❑ A website

❑ A directory on the local machine

❑ A directory on a shared network machine

The security privileges available to code vary, depending on where the assembly was loaded from.
Code loaded from a URL via HTTP, as shown earlier, has a very restricted set of privileges by default
compared to code loaded from a local directory. Chapter 12 has details on code access security, default
security policies, and how default policies can be changed.

Summary
Assemblies are the basic unit of deployment and versioning in .NET. Simple applications can be written
and installed without knowing much about assemblies. More complex applications require an in-depth
understanding of the structure of assemblies, the metadata they contain, and how assemblies are located
and loaded by the CLR.

You have learned how the identity of an assembly is used to allow multiple versions of an assembly to
be installed on a machine and run side by side. This chapter explained how an assembly is versioned, the
process by which the CLR resolves an external assembly reference, and how you can modify this process
through the use of configuration files.

You also learned about how an assembly stores information, such as version number, strong name, and
culture, about any external assemblies that it references, information checked at runtime to ensure that
the correct version of the assembly is referenced. You saw how you can use versioning policies to override
this in the case of a buggy assembly. The assembly is the single biggest aid in reducing the errors that can
occur due to DLL hell, and in helping with deployment.

974

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 975

Chapter 23: Assemblies

The chapter also discussed the capability to load an assembly dynamically, based on a location that is
derived at runtime. This capability is useful for some special deployment scenarios, such as simple Inter-
net deployment. Understanding all these elements helps you understand how to structure an application,
when and how to use shared assemblies, and the deployment implications of your choices for assemblies.

Simple applications are usually created with no strong names or shared assemblies, and all assemblies
for the application are deployed to the application directory. Versioning issues are rare as long as class
interfaces are consistent.

Complex applications may require shared assemblies to be placed in the GAC, which means that those
assemblies must have strong names, and you must control your version numbers. You also need to
understand your options for allowing an application to load a version of an assembly other than the one
it would load by default, or for loading assemblies dynamically using an application-specific technique
to determine the assembly’s location. This chapter has covered the basics for all of these needs.

975

Evjen-91361 c23.tex V2 - 04/01/2008 5:02pm Page 976

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 977

Deployment

Applications developed with the .NET Framework have a host of deployment options that were
not available for older, COM-based software. These options completely change the economics of
deployment. The changes are so important that they can even alter the preferred architecture for a
system written in .NET.

Deployment encompasses many activities required to place an application into a production envi-
ronment, including setting up databases, placing software in appropriate directories on servers, and
configuring options for a particular installation. Deployment also includes handling changes and
upgrades to the application.

This chapter covers the major deployment options for .NET applications. The previous chapter on
assemblies should be considered a prerequisite for this chapter, as assemblies are the basic unit of
deployment.

First, you’ll look at some of the problems that can occur when you deploy applications, along with
a number of terms that are used when talking about application deployment. Then you’ll learn
how .NET addresses many of these deployment issues. The remainder of the chapter covers the
following:

❑ Creating deployment projects in Visual Studio 2008 that enable initial installation of
applications

❑ Deployment of the .NET Framework itself on systems where it does not already reside

❑ Updating applications on servers, including components and ASP.NET applications

❑ Installing and updating Windows Forms applications on client machines with ClickOnce

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 978

Chapter 24: Deployment

Deployment in .NET is a huge topic that can’t be covered completely within one chapter. This chapter
should provide you with a basic understanding of the options available, and a desire to learn more
about them.

Application Deployment
In the context of this chapter, application deployment includes two principal functions:

❑ The process of taking an application, packaging it up, and installing it on another machine

❑ The process of updating an already installed application with new or changed functionality

Deployment can, in some cases, also include placing the .NET Framework itself on a particular machine.
This chapter assumes that the .NET Framework is installed on any machines in question. During the
discussion of creating deployment projects, you will learn what to do if the .NET Framework is not
available on a system.

Why Deployment Is Straightforward in .NET
As covered in the previous chapter, assemblies in .NET are self-describing. All the information needed to
execute an assembly is normally contained in the assembly itself. There is no need to place any informa-
tion in the Windows registry. If the CLR can find an assembly needed by an application (the process of
location was discussed in the previous chapter), then the assembly can be run.

The previous chapter also discussed side-by-side execution of .NET assemblies. Multiple versions of an
assembly can be executed by .NET, even if they have exactly the same interface and nominal version
number. The implication for deployment is that each application can deploy the assemblies it needs and
be assured that there will be no conflict with assemblies needed by other applications.

These .NET capabilities provide a range of deployment possibilities, from simple to complex. Let’s start
by looking at the simplest method of deployment, which harkens back to the days of DOS-XCOPY
deployment.

XCOPY Deployment
The term XCOPY deployment was coined to describe an ideal deployment scenario. Its name derives
from the DOS xcopy command. XCOPY deployment means that the only thing you need to do in order
to deploy an application is copy the directory (including all child directories) to the computer on which
you want to run the program.

XCOPY deployment is fine for very simple applications, but most business applications require other
dependencies (such as databases and message queues) to be created on the new computer. .NET cannot
help with those, so applications that have them need more sophisticated deployment.

978

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 979

Chapter 24: Deployment

Using the Windows Installer
The Windows Installer service is available on all operating systems that support .NET Framework 3.0.
It was specifically created for installing applications onto a Windows system.

The Windows Installer service uses a file, called a Windows Installer package file, to install an application.
Such files have an extension of .msi, an abbreviation derived from ‘‘Microsoft Installer.’’ The files that
make up a product can be packaged inside the .msi file, or externally in a number of cabinet files.

When the user requests that a particular application be installed, he or she can just double-click the
.msi file. The Windows Installer service reads the file and determines what needs to be done (such as
which files need to be copied and where they need to be copied to) to install the application. All the
installation rules are implemented centrally by the service and do not need to be distributed as part of a
setup executable. The Windows Installer package file contains a list of actions (such as copy file mfc40.dll
to the Windows system folder) and what rules need to be applied to these actions.

The Windows Installer service also has a rollback method to handle failed installations. If the installation
fails for some reason, the Windows Installer service will roll back the computer to its original state.

You can manually create a Windows Installer package file using the Windows Installer SDK tools, but
it’s much easier to use Visual Studio. Several templates in VS 2008 create projects that output .msi files,
as discussed in detail in the section ‘‘Visual Studio Deployment Projects,’’ later in this chapter.

ClickOnce Deployment
An alternative to Windows Installer for Windows Forms and WPF applications is ClickOnce. This deploy-
ment technology was first included in Visual Studio 2005. Creating ClickOnce deployments is simpler
than creating .msi files, but the most important ClickOnce advantage is that it is designed to deploy over
the Internet. ClickOnce is discussed later in the chapter in the section ‘‘Internet Deployment of Windows
Applications.’’

New in Visual Studio 2008
Previous versions of Visual Studio have always been associated with a single version of the .NET Frame-
work. As such, you had no choice regarding which version of the framework should be associated with
your projects; if you used Visual Studio 2005, for example, then you automatically used the 2.0 version
of the Framework.

Visual Studio 2008 enables you to target a particular version of the framework. You can choose to base
your application on the 2.0, 3.0, or 3.5 version of the framework by selecting it from the Advanced Com-
piler Settings dialog, which is available by selecting the properties for a project, navigating to the Compile
page, and clicking the Advanced Compile Options button. The Advanced Compiler Settings dialog is
shown in Figure 24-1, and the last option in the dialog is a drop-down list for the version of the .NET
Framework you want to target.

979

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 980

Chapter 24: Deployment

Figure 24-1

Visual Studio Deployment Projects
Visual Studio 2008 provides a set of project templates that can be used to help package your application
and deploy it. Most of these templates use Windows Installer technology. Before looking at the project
templates, however, it is important to understand the difference between setup and deployment. Setup is
the process that you use to package your application. Deployment is the process of installing an application
on another machine, usually through a setup application/process.

Project Templates
The deployment project templates available within Visual Studio 2008 can be created by the same means
as any other project type, by using the New Project dialog box, shown in Figure 24-2.

As shown in the figure, you first select the Other Project Types node, and then the Setup and Deployment
Projects node from the tree view of project types on the left of the dialog box. Of the six available project
templates, five are actual project templates:

❑ CAB Project

❑ Merge Module Project

❑ Setup Project

❑ Web Setup Project

❑ Smart Device CAB Project

The sixth is a wizard (called the Setup Wizard) that can be used to help create any of the project templates
listed except the Smart Device CAB Project.

980

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 981

Chapter 24: Deployment

Figure 24-2

The CAB Project Template
The CAB Project template is used to create a cabinet file. A cabinet file (.cab) can contain any number of
files. It is often used to package a set of related components in an application.

Controls hosted within Internet Explorer are often packaged into a cabinet file, with a reference added
to the file in the Web page that uses the control. When Internet Explorer encounters this reference, it
confirms that the control isn’t already installed on the user’s computer, at which point it downloads the
cabinet file, extracts the control, and installs it to a protected part of the user’s computer.

You can compress cabinet files to reduce their size and consequently the amount of time it takes to
download them.

The Merge Module Project Template
The Merge Module Project template is used to create a merge module, which is similar to a cabinet file in
that it can be used to package a group of files. The difference is that a merge module file (.msm) cannot be
used by itself to install the files that it contains. The merge module file created by this project template
can only be used within another setup project.

Merge modules were introduced as part of the Microsoft Windows Installer technology to enable a set of
files to be packaged into an easy-to-use file that could be reused and shared between Windows-Installer-
based setup programs. The idea is to package all the files and any other resources (e.g., registry entries,
bitmaps, and so on) that are dependent on each other into the merge module.

This type of project can be very useful for packaging a component and all its dependencies. The resulting
merge file can then be used in the setup program of each application that uses the component. This
enables applications such as Crystal Reports to have a prepackaged deployment set that can be integrated
into the deployment of other applications.

981

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 982

Chapter 24: Deployment

The Setup Project Template
The Setup Project template is used to create a standard Windows Installer setup for an application, which
is normally installed in the Program Files directory of a user’s computer.

The Web Setup Project Template
The Web Setup Project template is used to create a Windows Installer setup program that can be used to
install a project into a virtual directory of a web server. It is intended to be used to create a setup program
for a Web application, which may contain ASP.NET Web Forms or Web services.

The Smart Device CAB Project Template
The Smart Device CAB Project template is used to create a CAB file for an application that runs on a
device containing the .NET Compact Framework, such as a Pocket PC device. Such applications are often
referred to as mobile applications, and they have many capabilities and limitations that do not apply to
other .NET-based applications. This book does not discuss mobile applications, so this template isn’t
covered here.

The Setup Wizard
The Setup Wizard can be used to help guide you through the creation of any of the previous setup and
deployment project templates except the Smart Device CAB template.

Creating a Deployment Project
A deployment project can be created in exactly the same way as any other project in Visual Studio 2008.
It can be standalone, or it can be part of a solution that contains other projects.

To illustrate a typical deployment project, the following section contains a simple walk-through of one
of the most commonly used templates for a deployment project — the Setup Project, which is used to
deploy a Windows application.

Walk-through
First create an application that will serve as the desktop application you want to deploy. Create a new
project and choose Windows Application from the list of available Visual Basic project templates. Name
the project SampleForDeployment and don’t add any code to it yet.

Next, add a new project to the solution and choose Setup Project from the list of available Setup and
Deployment Project templates. You now have a Visual Studio solution containing two projects.

When created, the deployment project does not contain any files. It has a folder called Detected Depen-
dencies, which is discussed later. You will need to add the executable file from your Windows application
SampleForDeployment to the deployment project.

You add files to a setup deployment project using the Add function, which is available in two
places: You can select the deployment project in the Solution Explorer and use the Add option from

982

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 983

Chapter 24: Deployment

the Project menu, or you can right-click the setup project file in the Solution Explorer and choose Add
from the pop-up menu. Both methods enable you to choose from one of four options:

❑ If you select File from the submenu, you are presented with a dialog box that enables you to
browse for and select a particular file to add to the setup project. This method is suitable if a file
needed by the application is not the output from another project within the solution.

❑ The Merge Module option enables you to include a merge module in the deployment project.
Third-party vendors can supply merge modules or you can create your own with Visual Studio.

❑ The Assembly option can be used to select a .NET component (assembly) to be included in the
deployment project.

❑ If the deployment project is part of a solution (as in this walk-through), you can use the
Project ➪ Add ➪ Project Output submenu item. This enables you to add the output from any of
the projects in the solution to the setup project.

Add the output of the Windows application project to the setup project. Select the Project Output menu
item to bring up the dialog box shown in Figure 24-3.

Figure 24-3

The Add Project Output Group dialog box is divided into several parts:

❑ The combo box at the top contains a list of names of all the nondeployment projects in the current
solution. In your case, there is only one project: SampleForDeployment.

❑ Below the combo box is a list box containing all the possible outputs from the selected project.
You are interested in the Primary output, so make sure that this is selected. (Other options for
output are described in the MSDN for Visual Studio help files.)

❑ Below the list of possible outputs is a combo box from which you can select the configuration
to use for the selected project. You will use the (Active) option here, because this uses whatever
configuration is in effect when the project is built.

983

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 984

Chapter 24: Deployment

Click OK to return to the solution.

At this point, not only has the output from the Windows application been added to the Setup project, but
the Detected Dependencies folder also contains an entry.

Whenever you add a .NET component to this deployment project, its dependencies are added to this
folder. The dependencies of the dependencies are also added, and so on until all the required files have
been added. The files listed in the Detected Dependencies folder are included in the resulting setup and,
by default, are installed into the application’s directory as application-private assemblies. This default
behavior helps reduce the possible effects of DLL hell by making the application use its own copies of
dependent files.

If you don’t want a particular dependency file to be included in the resulting setup, you can exclude
it by right-clicking the file entry under Detected Dependencies and selecting Exclude from the pop-up
menu. For example, you may decide that you want to exclude a detected dependency from the setup of
an application because you know that the dependency is already installed on the target computer. The
dependency will then have a small ‘‘circle and slash’’ icon before its name to indicate that it has been
excluded.

Dependencies can also be excluded by selecting the particular dependency and using the Properties
window to set the Exclude property to True. The listed dependencies are refreshed whenever a .NET
file is added to or removed from the setup project, taking into account any files that have already been
excluded.

You can select an item in the setup project in the Solution Explorer and that particular item’s properties
will be displayed in the Properties window. Because there are too many properties to discuss them all,
we will take a look at the properties from the root setup node and each of the two different project items.
First, however, make sure that the root setup node is selected, and take some time to browse the list of
available properties.

The root setup node represents the output from this deployment project type: a Windows Installer pack-
age (.msi). Therefore, the Properties window contains properties that affect the resulting .msi that is
produced.

Important Properties of the Root Setup Node
The ProductName property is used to set the text name of the product that this Windows Installer package
is installing. By default, it is set to the name of the setup project (in this case Setup1). The value of this
property is used throughout the steps of the resulting setup. For instance, it is used for the text of the
title bar when the resulting .msi file is run. The property is used along with the Manufacturer property
to construct the default installation directory: C:\ProgramFiles\ < Manufacturer > \ < ProductName > .
The ProductName property is also used within the control panel by the Add/Remove Programs applet to
show that the application is installed.

The AddRemoveProgramsIcon property enables you to set the icon that appears in the Add/Remove
Programs control panel applet. The default of (None) means that the default icon will be used. You
can select an icon with the (Browse) option. The icon can be a standalone icon file or you can select an
executable or DLL that contains an icon you want to use.

The Title property is used to set the textual title of the application that is installed. By default, this
property has the same name as the setup project.

984

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 985

Chapter 24: Deployment

In addition, you may need to set several additional properties of the root node. The remaining
properties for the root setup node are for various advanced options and are not discussed in this
walk-through.

Properties of the Primary Output Project Item
Previously, you added the primary output from the SampleForDeployment Windows application to your
deployment project. It should now appear as an item in that project. Primary Output project items also
have several important properties that you should know about, including the following:

Property Description

Condition This enables you to enter a condition that will be evaluated when the
installation is run. If the condition evaluates to True, then the file is installed;
if the condition evaluates to False, then the file is not installed. If you only
want a particular file to be installed and the installation is being run on
Microsoft Windows 2000 or better, you could enter the following for the
condition: VersionNT >= 5.

Dependencies Selecting this property displays a window showing all the dependencies of
the selected project output.

Exclude You can use this property to indicate whether you want the project output to
be excluded from the resulting Windows Installer package.

Folder This property enables you to select the target folder for the project outputs.

KeyOutput This property expands to provide information about the main file that makes
up the project output. In your case, it will show information for the
WindowsApplication.exe file.

Outputs Selecting this property displays a window listing all the files that are part of
the project output, and indicates where these files are located on the
development machine.

Permanent This property is used to indicate whether the files that make up the project
output should be removed when the application is uninstalled (False) or left
behind (True). It is advisable to remove all the files installed by an application
when the application is uninstalled. Therefore, this property should be set to
False, which is the default.

ReadOnly This property is used to set the read-only file attribute of all the files that
make up the project output. As the name suggests, this makes the file
read-only on the target machine.

Register This property enables you to instruct the Windows Installer to register the
files contained within the project output as COM objects. This only applies to
projects (for example, the Class Library project template) that have been
compiled with the Register for COM Interop project property set.

Vital This property is used to indicate that the files contained within the project
output are vital to the installation — if the installation of these files fails, then
the installation as a whole should fail. The default value is True.

985

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 986

Chapter 24: Deployment

Properties of the Detected Dependency Items
Items that reside in the DetectedDependencies folder have some of the preceding properties, and they
also have some read-only properties that provide you with detailed information about the item. This
chapter does not include a detailed discussion of those informational properties.

This has been only a brief look at the Setup Project template. It uses all the project defaults and provides a
standard set of steps to users when they run the Windows Installer package. Of course, a real application
needs more than a single application file and its dependencies. You can customize the setup project
extensively to meet those additional needs.

Besides adding more files to the deployment project, you may need to create shortcuts, directories, reg-
istry entries, and so on. These customizations and more can be accomplished using the set of built-in
editors, which are covered in the section ‘‘Modifying the Deployment Project.’’

Creating a Deployment Project for an ASP.NET Web Application
Another commonly used deployment scenario is that of a Web application that has been created using
the ASP.NET Web Application Project template. Typically, the Web application is developed on a devel-
opment web server, and you need to create a deployment project to transfer the finished application to a
production web server.

For this scenario, the template to use is the Web Setup Project template. There is one major difference
between this template and the previously described Setup Project template: The Web Setup Project
will, by default, deploy the application to a virtual directory of the web server on which the setup is
run, whereas a Setup Project deploys the application to the Program Files folder on the target machine
by default.

There are substantial similarities between producing a deployment project for this scenario and pro-
ducing a Windows application deployment project as shown in the walk-through. They both produce a
Windows Installer package and have the same set of project properties discussed earlier.

As in the previous walk-through, you need to add the output of the Web application to the deployment
project. This is accomplished in much the same way as earlier, by right-clicking on a Web Setup project
and selecting Add — Project Output. There is one key difference: When you add the project representing
the website, the only option you have for the type of files to add is Content Files, which encompasses the
files that make up the website.

As before, if you build such a project, then the result in an .msi file, which can be used in this case to
deploy a website.

Modifying the Deployment Project
In the walk-through, you created a default Windows Installer package for a particular project template.
You didn’t customize the steps or actions that were performed when the package was run. What if you
want to add a step to the installation process in order to display a ReadMe file to the user? Or what if you
need to create registry entries on the installation computer?

986

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 987

Chapter 24: Deployment

This section focuses on additional capabilities for deployment projects. Most of these capabilities are
accessed by using a series of ‘‘editors’’ to change parts of the deployment project. You can use six editors
to customize a Windows-Installer-based deployment project:

❑ File System Editor

❑ Registry Editor

❑ File Types Editor

❑ User Interface Editor

❑ Custom Actions Editor

❑ Launch Conditions Editor

The editors are accessible through the View ➪ Editor menu option or by using the corresponding buttons
at the top of the Solution Explorer.

You can also modify the resulting Windows Installer package through the project’s Properties window.
This section takes a brief look at each of the six editors and the project properties, and describes how you
can use them to modify the resulting Windows Installer package. You will use the project created in the
Windows application walk-through.

Project Properties
The first step to take in customizing the Windows Installer package is to use the project’s property
pages. The Property Pages dialog box is accessed by right-clicking the root of the setup project in the
Solution Explorer and selecting Properties from the pop-up menu. You can also select the Properties item
from the Project menu when the setup project is the active project. Both of these methods will bring up
the dialog box shown in Figure 24-4.

Figure 24-4

987

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 988

Chapter 24: Deployment

The Build Page
The only page available from the Property Pages dialog is the Build page. The options on this page can
be used to affect the way that the resulting Windows Installer package is built.

As with most other projects in VS 2008, you can create different build configurations. Use the Configu-
ration combo box to select the build configuration for which you want to alter properties. In Figure 24-4,
notice that you are modifying the properties for the currently active build configuration: Debug. The
button labeled Configuration Manager enables you to add, remove, and edit the build configurations for
this project.

The Output File Name setting can be used to modify where the resulting Windows Installer pack-
age (.msi) file is created. You can modify the filename and path directly or you can click the Browse
button.

Package Files
The next setting, Package Files, enables you to specify how the files that make up the installation are
packaged. The following table describes the possible options:

Package Description

As loose uncompressed files When you build the project, the files that are to be included as part
of the installation are copied to the same directory as the resulting
Windows Installer package (.msi) file. As mentioned earlier, this
directory can be set using the Output File Name setting.

In setup file When the project is built, the files that are to be included as part of
the installation are packaged in the resulting Windows Installer
package file. When you use this method, you have only one file to
distribute. This is the default setting.

In cabinet file(s) With this option, when the project is built, the files that are to be
included as part of the installation are packaged into a number of
cabinet files.

Prerequisites
Prerequisites are standard components that may be needed to install or run the application but are not a
part of the application. There are several of these, as shown in Figure 24-5, which shows the dialog that
is displayed when the Prerequisites button is clicked.

The .NET Framework is checked by default, and so is the Windows Installer. You should only uncheck
these if you are sure that all the machines upon which your application will be installed already have the
correct versions of these prerequisites installed. As mentioned earlier in this chapter, Visual Studio 2008
allows targeting of the .NET Framework version you would like to use (2.0, 3.0, or 3.5), so the targeted
version of the framework needs to be coordinated with the prerequisites.

If the box for any of these prerequisites is checked, then the resulting installation package will automat-
ically check for the presence of that prerequisite and install it if required. If you are installing from a CD
or network share, then it is common for the packages that install these prerequisites to be placed in the

988

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 989

Chapter 24: Deployment

same location as your installation package. The default settings assume that this is true and install the
prerequisites from that location.

Figure 24-5

However, you can specify a different location for packages that install prerequisites. You can select the
‘‘Download prerequisites from the following location:’’ option at the bottom of the dialog and then
specify the URL at which the packages are located. Alternately, you can select ‘‘Download prerequisites
from the component vendor’s web site,’’ and then the Installation URL on the previous dialog will be
used (refer to Figure 24-5).

Compression
You also have the option to modify the compression used when packaging the files that are to be con-
tained within the installation program. The three options (Optimized for Speed, Optimized for Size, and
None) are self-explanatory and are not covered. The default is Optimized for Speed.

Setting the Cabinet File Size
If you want to package the files in cabinet files, then you have the option to specify the size of those
resulting cabinet file(s):

❑ The first option is to let the resulting cabinet file be of an unlimited size. What this effectively
means is that all the files are packaged into one big cabinet file. The resulting size of the cabinet
file depends on the compression method selected.

❑ If you are installing from floppy disks or CDs, then creating one large cabinet file may not be
wise. In this case, you can use the second option to specify the maximum size of the resulting
cabinet file(s). If you select this option, then you need to specify the maximum allowed size for a
cabinet file (this figure is in KB). If all the files that need to be contained within this installation
exceed this size, then multiple cabinet files are created.

989

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 990

Chapter 24: Deployment

The File System Editor
The File System Editor is automatically displayed for you in VS 2008’s document window when you first
create the Setup project. You can also access this editor (and the other editors that are available) via the
View ➪ Editor menu option in the VS 2008 IDE. The File System Editor is used to manage all the file
system aspects of the installation, including the following:

❑ Creating folders on the user’s machine

❑ Adding files to the folders defined

❑ Creating shortcuts

Basically, this is the editor that you use to define what files need to be installed and where they should be
installed on the user’s machine. The File System Editor is divided into two main panes in the document
window (see Figure 24-6).

Figure 24-6

The left pane shows a list of the folders that have been created automatically for the project. When you
select a folder in the left pane, two things happen: first, the right pane of the editor displays a list of the
files to be installed into the selected folder, and second, the Properties window will change to show you
the properties of the currently selected folder. Depending on the size of the Visual Studio 2008 window,
you might not see the right-hand pane unless you widen the screen.

Adding Items to a Folder
To add an item that needs to be installed to a folder, you can either right-click the folder in the left pane
and choose Add from the pop-up menu or you can select the required folder, right-click in the right
pane, and again choose Add from the pop-up menu. You will be presented with four options, three of
which were discussed earlier in the walk-through:

❑ Project output

❑ File

❑ Assembly

990

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 991

Chapter 24: Deployment

The fourth option (Folder) enables you to add a subfolder to the currently selected folder. This sub-
folder then becomes a standard folder that can be used to add files. If you add any .NET components or
executables, the dependencies of these components are also added to the installation automatically.

Adding Special Folders
When you create a new deployment project, a set of standard folders is created for you (listed in the
desktop application section). If the folders created do not match your requirements, you can also use
the File System editor to add special folders. To add a special folder, right-click anywhere in the left pane
(other than on a folder), and you will be presented with a pop-up menu containing one item: Add Special
Folder. This menu item expands to show you a list of folders that you can add to the installation (folders
already added to the project are grayed out).

You can choose from several system folders, which are summarized in the following table:

Name Description Windows Installer Property

Common Files Folder Files (nonsystem) that are shared by
multiple applications are usually installed to
this folder.

[CommonFilesFolder]

Common Files Folder
(64-bit)

Same as Common Files Folder, but for 64-bit
systems

[CommonFiles64Folder]

Fonts Folder Used to contain all the fonts that are
installed on the computer. If your
application used a specific font, then you
should install it in this folder.

[FontsFolder]

Program Files Folder Most applications are installed in a directory
below the Program Files Folder. This acts as
root directory for installed applications.

[ProgramFilesFolder]

Program Files Folder
(64-bit)

Same as Program Files Folder, but for 64-bit
systems

[ProgramFiles64Folder]

System Folder This folder is used to store shared system
files. The folder typically holds files that are
part of the OS.

[SystemFolder]

System Folder (64-bit) Same as System Folder, but for 64-bit
systems

[System64Folder]

User’s Application Data
Folder

This folder is used to store data on a
per-application basis, specific to a user.

[CommonAppDataFolder]

User’s Desktop This folder represents the user’s desktop. It
can be used to create and display a shortcut
that users can use to start your application.

[DesktopFolder]

Continued

991

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 992

Chapter 24: Deployment

Name Description Windows Installer Property

User’s Favorites Folder Used as a central place to store links to the
user’s favorite websites, documents, folders,
and so on

[FavoritesFolder]

User’s Personal Data
Folder

This folder is where a user stores important
files. It is normally referred to as My
Documents.

[PersonalFolder]

User’s Programs Menu This folder is where shortcuts are created to
applications that appear on the user’s
Program menu. This is an ideal place to
create a shortcut to your application.

[ProgramMenuFolder]

User’s Send To Menu Stores all the user’s send-to shortcuts. A
send-to shortcut is displayed when you
right-click a file in the Windows Explorer
and choose Send To. The send-to shortcut
usually invokes an application, passing in
the pathname of the files it was invoked
from.

[SendToFolder]

User’s Start Menu This folder can be used to add items to the
user’s Start menu. This is not often used.

[StartMenuFolder]

User’s Startup Folder Used to start applications whenever the user
logs in to the computer. If you want your
application to start every time the user logs
in, then you can add a shortcut to your
application in this folder.

[StartupFolder]

User’s Template Folder This folder contains templates specific to the
logged-in user. Templates are usually used
by applications such as Microsoft Office
2000.

[TemplateFolder]

Windows Folder The Windows root folder. This is where the
OS is installed.

[WindowsFolder]

Global Assembly Cache
Folder

Used to store all shared assemblies on the
user’s computer

If none of the built-in folders match your requirements, you can create your own custom folder.
Right-click in the left pane of the File Editor and choose Custom Folder from the pop-up menu.

The new folder is created in the left pane of the editor. The folder name appears in edit mode, so enter
the name of the folder and press Enter. The folder will now be selected, and the Properties window

992

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 993

Chapter 24: Deployment

will change to show the properties of the new folder. The properties of a folder are summarized in the
following table:

Property Description

(Name) The name of the selected folder. The name property is used within the setup
project as the means by which you select a folder.

AlwaysCreate Indicates whether this folder should be created on installation even if it’s
empty (True). If the value is False and no files are to be installed into the
folder, then the folder isn’t created. The default is False.

Condition This enables you to enter a condition that will be evaluated when the install-
ation is run. If the condition evaluates to True then the folder is created; if the
condition evaluates to False, then the folder won’t be created.

DefaultLocation This is where you define where the folder is going to be created on the target
machine. You can enter a literal folder name (such as C:\Temp), or you can use
a Windows Installer property, or a combination of the two. A Windows
Installer property contains information that is filled in when the installer is
run. The preceding table of special folders contains a column called Windows
Installer property. The property defined in this table is filled in with the
actual location of the special folder at runtime. Therefore, if you enter
[WindowsFolder] as the text for this property, the folder created represents
the Windows special folder.

Property Defines a Windows Installer property that can be used to override the
DefaultLocation property of the folder when the installation is run

Transitive Indicates whether the condition specified in the condition property is
reevaluated on subsequent (re)installs. If the value is True, then the condition
is checked on each additional run of the installation. A value of False causes
the condition to be run only the first time the installation is run on the
computer. The default value is False.

Suppose you name your folder ‘‘Wrox Press’’ and you set the DefaultLocation property for your folder
to [FavoritesFolder]\Wrox Press. You could add some shortcuts to this folder using the technique
described in the following section. When the installation is run, a new folder is added to the user’s
Favorites folder called Wrox Press, and those shortcuts are placed in it.

Creating Shortcuts
The first step in creating a shortcut is to locate the file that is the target of the shortcut. Select the target file
and right-click it. The pop-up menu that appears includes an option to create a shortcut to the selected
file, which is created in the same folder. Select this option.

To add the shortcut to the user’s desktop, you need to move this shortcut to the folder that represents the
user’s desktop. Likewise, you could move this shortcut to the folder that represents the user’s Programs

993

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 994

Chapter 24: Deployment

menu. Cut and paste the new shortcut to the User’s Desktop folder in the left pane of the editor. The
shortcut will be added to the user’s desktop when the installation is run. You should probably rename
the shortcut, which is easily accomplished via the Rename option of the pop-up menu.

This has been only a brief tour of the File System Editor. There are many additional capabilities that you
can explore.

The Registry Editor
You can use the Registry Editor to do the following:

❑ Create registry keys

❑ Create values for registry keys

❑ Import a registry file

Like the File System Editor, the Registry Editor is divided into two panes, as illustrated in Figure 24-7.

Figure 24-7

The left pane of the editor represents the registry keys on the target computer. When you select a registry
key, two things happen. One, the right pane of the editor is updated to show the values that are to be
created under the selected registry key. Two, if the registry key selected is not a root key in the left pane,
then the Properties window is updated with a set of properties for this registry key.

When you create a new deployment project, a set of registry keys is created for you that correspond to the
standard base registry keys of Windows. Notice in Figure 24-7 that there is a key defined with a name of
[Manufacturer]. When the installation is run, this will be replaced with the value of the Manufacturer
property described earlier in the chapter. [Manufacturer] is a property of the installation and can be
used elsewhere within the installation. Several of these properties are defined and can be used in much
the same way (consult the ‘‘Property Reference’’ topic in the MSDN documentation for a full list).

994

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 995

Chapter 24: Deployment

Adding a Value to a Registry Key
Before adding a value, you must select (or create) the registry key that will hold the value. There are
several ways to add the registry value:

❑ Right-click the registry key and use the resulting pop-up menu.

❑ Right-click in the right-hand pane and use the resulting pop-up menu.

❑ Use the Action menu.

For illustrational purposes here, select one of the Software registry keys. The Action menu contains one
item, New, which contains a number of submenu items:

❑ Key

❑ String value

❑ Environment string value

❑ Binary value

❑ DWORD value

Using this menu, you can create a new registry key below the currently selected key (via Key), or you
can create a value for the currently selected registry key using one of the four Value types: String, Envi-
ronment String, Binary, and DWORD.

For example, suppose you need to create a registry entry that informs the application whether or not to
run in Debug mode. The registry value must be applicable to a particular user, must be called Debug, and
must contain the text True or False.

The first step is to select the following registry key in the left pane of the editor:

HKEY_CURRENT_USER\Software [Manufacturer].

The registry key HKEY>_CURRENT>_USER is used to store registry settings that apply to the currently
logged-in user.

Now you want to create a value that it is applicable to only this application, not all applications created
by you. You need to create a new registry key below the HKEY>_CURRENT>_USER Software Manufacturer]
key that is specific to this product, so select the Action ➪ New ➪ Key menu item.

When the key is created, the key name is editable, so give it a name of [ProductName] and press Enter.
This creates a key that is given the name of the product contained within this Windows Installer package.
The ProductName property of the setup was discussed earlier in this chapter.

Now that you have created the correct registry key, the next step is to create the actual registry value.
Make sure that your new registry key is selected, and choose String Value from the Action ➪ New menu
and give the new value a name of ‘‘Debug’’.

995

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 996

Chapter 24: Deployment

Once the value has been created, you can set a default value for it in its Properties window; in this case
False. When the Windows Installer package is run in the Debug registry, the value will be created. If a
value already exists in the registry, then the Windows Installer package will overwrite the existing value
with what is defined in the Registry Editor.

You can move around most keys and values in the Registry Editor by using cut and paste or simply by
dragging and dropping the required item.

The alternative to creating registry entries during installation is to have your application create registry
entries the first time they are needed. However, this has one significant difference from registry keys cre-
ated with a Windows Installer package. The uninstall corresponding to a Windows Installer installation
automatically removes any registry keys created during the install. If the registry entries are created by
the application instead, then the uninstall has no way of knowing that these registry entries should be
removed.

Importing Registry Files
If you already have a registry file containing the registry settings that you would like to be created, you
can import the file into the Registry Editor. To import a registry file, you need to ensure that the root
node (Registry on Target Machine) is selected in the left pane of the editor. You can then use the Import
item of the Action menu to select the registry file to import.

Registry manipulation should be used with extreme caution. Windows relies heavily on the registry, so
you can cause yourself a great number of problems if you delete, overwrite, or change registry values and
keys without knowing the full consequences of the action.

If you want to create the registry entries that are required to create file associations, then use the editor
covered next.

The File Types Editor
The File Types Editor can be used to create the required registry entries to establish a file association for
the application being installed. A file association is simply a link between a particular file extension
and a particular application. For example, the file extension .doc is normally associated with Microsoft
WordPad or Microsoft Word.

When you create a file association, not only do you create a link between the file extension and the
application, you also define a set of actions that can be performed from the context menu of the file with
the associated extension. For example, when you right-click a document with an extension of .doc, you
get a context menu that can contain any number of actions, such as Open and Print. The action in bold
(Open, by default) is the default action to be called when you double-click the file, so in the example,
double-clicking a Word document starts Microsoft Word and loads the selected document.

Let’s walk through the creation of a file extension for the application. Suppose that the application uses a
file extension of .set and that the file is to be opened in the application when it is double-clicked. Start the
File Types editor, which contains a single pane. In a new deployment project, this pane will only contain
a root node called ‘‘File Types on Target Machine.’’

996

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 997

Chapter 24: Deployment

To add a new file type, make sure the root element is selected in the editor. You can then choose Add File
Type from the Action menu, or right-click on the root node and select Add File Type. Give the new
file type the name ‘‘Example File Type.’’

Next, you must set the extension and application for this file type. Use the Properties window (shown in
Figure Figure 24-8). Enter .set as the value for the Extensions property.

Figure 24-8

To associate an application with this file type, use the Command property. The ellipsis button for this
property presents you with a dialog box from which you can select an executable file contained within
any of the folders defined in the File System Editor. In this case, you’ll select Primary Output from
WindowsApplication (active) from the Application Folder as the value for Command.

When this new file type was first created, a default action was added for you called &Open — select it.
Now take a look at the Properties window again. Notice the Arguments property: You can use this to add
command-line arguments to the application defined in the last step. In the case of the default action that
has been added for you, the arguments are "%1", where the value "%1" will be replaced by the filename
that invoked the action. You can add your own hard-coded arguments (such as /d). You can set an action
to be the default by right-clicking it and selecting Set as Default from the pop-up menu.

The User Interface Editor
The User Interface Editor is used to manage the interface that is shown during the installation of the
application. This editor enables you to define the dialog boxes that are displayed to the user and in what
order they are shown. The User Interface Editor appears in Figure 24-9.

The editor uses a tree view with two root nodes: Install and Administrative Install. Below each of these
nodes are three nodes that represent the stages of installation: Start, Progress, and End. Each of the three
stages can contain a number of dialog boxes that are displayed to the user when the resulting Windows
Installer package is run. A default set of dialog boxes is predefined when you create the deployment
project. Which default dialog boxes are present depends on the type of deployment project: Setup Project

997

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 998

Chapter 24: Deployment

or Web Setup Project. Figure 24-9 shows the dialog boxes that were added by default to a Setup Project.
However, if you are creating a Web Setup Project, the Installation Folder dialog box will be replaced by
an Installation Address dialog box.

Figure 24-9

Using Figure 24-9, the following section discusses the two modes in which the installer can be run, and
explains the three stages of the installation.

Installation Modes
The installation can run in two modes, which correspond to the two root nodes of the editor: Install and
Administrative Install. These distinguish between an end user installing the application and a system
administrator performing a network setup.

To use the Administrative Install mode of the resulting Windows Installer package, you can use
msiexec.exe with the /a command-line parameter: msiexec.exe /a < PACKAGE > .msi.

The Install mode is most frequently used and is what you will use in this exercise. As mentioned
earlier, the installation steps are divided into three stages, represented as subnodes of the parent
installation mode.

The Start Stage
The Start stage is the first stage of the installation. It contains the dialog boxes that need to be displayed
to the user before the actual installation of the files begins. The Start stage should be used to gather any
information from the user that may affect what is installed and where it is installed.

This stage is commonly used to ask the user to select the base installation folder for the application and
which parts of the system should be installed. Another common task at this stage is asking users for their
name and organization. At the end of this stage the Windows Installer service determines how much
disk space is required on the target machine and checks whether this amount of space is available. If the
space is not available, then the user receives an error and the installation will not continue.

998

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 999

Chapter 24: Deployment

The Progress Stage
The Progress stage is the second stage of the installer. This is where the actual installation of the files
occurs. There isn’t usually any user interaction in this stage of installation, and typically one dialog box
indicates the current progress of the install, which is calculated automatically.

The End Stage
Once the actual installation of the files has finished, the installer moves into the End stage. The most
common use of this stage is to inform the user that the installation has been completed successfully.
It is also often used to provide the option to run the application immediately or to view any
release notes.

Customizing the Order of Dialog Boxes
The order in which the dialog boxes appear within the tree view determines the order in which they are
presented to the user during an installation. Dialog boxes cannot be moved between different stages.

The order of the dialog boxes can be changed by dragging the respective dialog boxes to the position in
which you want them to appear. You can also move a particular dialog box up or down in the order by
right-clicking the dialog box and selecting either Move Up or Move Down.

Adding Dialog Boxes
A set of predefined dialog boxes has been added to the project for you, enabling actions such as prompt-
ing a user for a registration code. If these do not match your requirements, you can add or remove dialog
boxes in any of the stages.

When adding a dialog box, you have the choice of using a built-in dialog box or importing one. To
illustrate how to add a dialog box, consider an example of adding a dialog box to display a ReadMe
file to the user of a Windows Installer package. The ReadMe file needs to be displayed before the actual
installation of the files occurs.

The first step is to choose the mode in which the dialog box is to be shown: Install or Administrative
Install. In this example, you will use the Install mode. Next, you need to determine the stage at which
the dialog box is to be shown. In the example, you want to display the ReadMe file to the user before the
actual installation of the files occurs, which means you have to show the ReadMe file in the Start stage.
Make sure the Start node is selected below the Install parent node.

You are now ready to add the dialog box. Using the Action menu again, select the Add Dialog menu
item, which will display a dialog box (see Figure 24-10) from which you can choose the desired
dialog box.

As you can see, several built-in dialog boxes are available. Each dialog box includes a short description
that appears at the bottom of the window to inform you of its intended function. In this case, you want
to use the Read Me dialog box, so select it and click OK.

New dialog boxes are always added as the last dialog box in the stage that they are added to, so now
you need to move it into the correct position. In this case, you want the Read Me dialog box to be shown
immediately after the Welcome dialog box, so drag and drop it into position.

999

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1000

Chapter 24: Deployment

Figure 24-10

Properties of the Dialog Boxes
Like most other project items in Visual Studio, dialog boxes have a set of properties that you can change
to suit your needs using the Properties window. If you make sure a dialog box is selected, you will
notice that the Properties window changes to show the properties of the selected dialog box. The prop-
erties that appear vary according to the dialog box selected. Details of all the properties of the built-in
dialog boxes can be found by looking at the ‘‘Properties of the User Interface Editor’’ topic in the MSDN
documentation.

The Custom Actions Editor
The Custom Actions Editor (see Figure 24-11) is used for fairly advanced installations. It enables you to
define actions that are to be performed due to one of the following installation events: Install, Commit,
Rollback, and Uninstall. For example, you can use this editor to define an action that creates a new
database when the installation is committed.

Figure 24-11

1000

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1001

Chapter 24: Deployment

The custom actions that are added using this editor can be Windows script-based, compiled executables,
or DLLs. Load the editor by right-clicking on the Setup1 project and selecting View ➪ Custom Actions.
The editor uses a tree view to represent the information. The four nodes in the tree view represent each
of the four installation events to which you can add custom actions.

As with the User Interface Editor, the order in which the actions appear determines the order in which
they are run, but you can modify this by dragging and dropping the actions or using the context menus
of the actions to move them up or down.

Adding a Custom Action
To add a custom action you must select the node of the event into which you want to install the action.
You can then use the Action menu to select the executable, DLL, or script that implements the custom
action. The four actions defined in the editor are described in the following table:

Event Description

Install The actions defined for this event will be run when the installation of the files has
finished, but before the installation has been committed.

Commit The actions defined for this event will be run when the installation has been
committed and has therefore been successful.

Rollback The actions defined for this event will be run when the installation fails and rolls
back the machine to the state it was in before the install was started.

Uninstall The actions defined for this event will be run when the application is being
uninstalled from the machine.

Suppose that you want to start your application as soon as the installation is completed successfully. Use
the following process to accomplish this.

First, decide when the action must occur. Using the preceding table, you can see that the Commit event
will be run when the installation has been successful. Ensure that this node is selected in the editor. You
are now ready to add the actual action you want to occur when the Commit event is called. Using the
Action menu again, select the Add Custom Action menu item, which will display a dialog box that you
can use to navigate to and select a file (.exe, .dll, or Windows script) from any that are included in the
File System Editor. For this example, select Primary output from WindowsApplication (Active), which
is contained within the Application Folder.

As with most items in the editors, the new custom action has a number of properties. Here are some of
the properties you are most likely to need:

Property Description

(Name) This is the name given to the selected custom action.

Arguments This property enables you to pass command-line arguments into the
executable that makes up the custom action. This only applies to custom
actions that are implemented in executable files (.exe).

Continued

1001

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1002

Chapter 24: Deployment

Property Description

By default, the first argument passed in indicates what event caused the
action to run. It can have the following values:

/Install

/Commit

/Rollback

/Uninstall

Condition This enables you to enter a condition that will be evaluated before the
custom action is run. If the condition evaluates to True, then the custom
action will run; if the condition evaluates to False, then the custom action
will not run.

CustomActionData This property enables you to pass additional information to the custom
action.

InstallerClass If the custom action is implemented by an Installer class in the selected
component, then this property must be set to True. If not, it must be set to
False (consult the MSDN documentation for more information on the
Installer class, which is used to create special installers for such .NET
applications as Windows Services. The Installer class is located in the
System.Configuration.Install namespace)

Set the InstallClass property to equal False because your application does not contain an
Installer class.

That’s it. When you run the Windows Installer package and the installation is successful, the application
will automatically start. The custom action that you implemented earlier is very simple, but custom
actions can be used to accomplish any customized installation actions that you could want. Take some
time to play around with what can be accomplished using custom actions. For instance, try creating a
custom action that writes a short file into the application directory.

The Launch Conditions Editor
The Launch Conditions Editor can be used to define a number of conditions for the target machine that
must be met before the installation will run. For example, if your application relies on the fact that users
must have Microsoft Word 2000 installed on their machine, you can define a launch condition that will
check this.

You can define a number of searches that can be performed to help create launch conditions:

❑ File search

❑ Registry search

❑ Windows Installer search

1002

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1003

Chapter 24: Deployment

As with the Custom Actions Editor, the Launch Conditions Editor (shown in Figure 24-12) uses a tree
view to display the information contained within it. The example shows a Custom Actions Editor that
has had an item added. The steps for adding that item are covered later.

Figure 24-12

There are two root nodes. The first (Search Target Machine) is used to display the searches that have been
defined. The second (Launch Conditions) contains a list of the conditions that will be evaluated when the
Windows Installer package is run on the target machine.

As with many of the other editors, the order in which the items appear below these two nodes determines
the order in which the searches are run and the order in which the conditions are evaluated. If you wish,
you can modify the order of the items in the same way that you did with the previous editors.

The searches are run and then the conditions are evaluated as soon as the Windows Installer package is
run, before any dialog boxes are shown to the user.

We are now going to look at an example of adding a file search and launch condition to a setup project.
For this exercise, suppose that you want to make sure that your users have Microsoft Word 2007 installed
on their machine before they are allowed to run the installation for your application.

Adding a File Search
To add a file search, you begin by searching for the Microsoft Word 2007 executable. Making sure the
Search Target Machine node is currently selected in the editor, add a new file search by selecting
the Add File Search item from the Action menu. The new item should be given a meaningful name,
so enter Word2007Search. The end result is shown in Figure 24-12.

Modifying the File Search Properties
Like most items contained within the editors mentioned in this chapter, the new file search item has
a set of properties that you can modify using the Properties window. The properties of the file search
item determine the criteria that will be used when searching for the file. Most of the properties are
self-explanatory and have been covered in previous sections, so they are not covered in this chapter.

In this example, you need to search for the Microsoft Word 2007 executable, which means that a number
of these properties need to be modified to match your own search criteria.

1003

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1004

Chapter 24: Deployment

The first property that requires modification is FileName. In this case, you are searching for the Microsoft
Word 2007 executable, so enter winword.exe as the value for this property. Previous versions of
Microsoft Word used the same filename.

There is no need to search for the file from the root of the hard drive. The Folder property can be used
to define the starting folder for the search. By default, the value is [SystemFolder], which indicates that
the search will start from the Windows system folder. There are several of these built-in values; if you
are interested, you can look up what these folders correspond to in the section ‘‘Adding Special Folders.’’

In this example, you do not want to search the Windows system folder because Microsoft Word is usually
installed in the Program Files folder. Set the value of the Folder property to [ProgramFilesFolder] to
indicate that this should be your starting folder.

When the search starts, it will only search the folder specified in the Folder property, as indicated by
the default value (0) of the Depth property. The Depth property is used to specify how many levels of
subfolders the search will look in for the file in question, beginning from the starting folder specified.
Note that there are performance issues associated with the Depth property. If a search is performed for a
file that is very deep in the file system hierarchy, then it can take a long time to find the file. Therefore,
wherever possible, use a combination of the Folder and Depth properties to decrease the possible search
range. The file that you are searching for in your example will probably be at a depth of greater than 1,
so change the value to 3.

There may be different versions of the file that you are searching for on a user’s machine. You can use
the remaining properties to specify a set of requirements for the file that must be met in order for it to be
found, such as minimum version number or minimum file size.

You are searching for the existence of Microsoft Word 2007, which means you need to define the mini-
mum version of the file that you want to find. To search for the correct version of winword.exe, you need
to enter 12.0.0.0 as the value for the MinVersion property. This ensures that the user has Microsoft
Word 2007 or later installed and not an earlier version.

To use the results of the file search, there must be a name for the results. This name is assigned to a Win-
dows Installer property and is normally used to create a launch condition later. The Property property
is where this name is specified.

For our example, enter WORDEXISTS as the value for the Property property. If the file search is successful,
then the full path to the found file will be assigned to this Windows Installer property; otherwise, it will
be left blank. At this point, the Properties window should look like the window shown in Figure 24-13.

Creating a Launch Condition
A file search alone is pretty useless. The second step of the process of ensuring that the user has Microsoft
Word 2007 installed is creating a launch condition that uses the results of the file search.

Make sure that the Launch Conditions node is selected in the editor, and add a new launch condition to
the project by selecting Add Launch Condition from the Action menu. You need to give this new item a
meaningful name; in this case, give it a name of Word2007Exists (see Figure 24-14).

This new item has a number of properties that you will need to modify. The first property you will
change is called Message, and it is used to set the text of the message box that appears if this condition is
not met. Enter any meaningful description that explains why the installation cannot continue.

1004

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1005

Chapter 24: Deployment

Figure 24-13

Figure 24-14

The next property that you need to change is called Condition. It is used to define a valid deployment
condition that is evaluated when the installation runs. The deployment condition entered must evaluate
to True or False. When the installer is run, the condition is evaluated; if the result of the condition is
False, then the message defined is displayed to the user and the installation stops.

For this example, you need to enter a condition that takes into account whether the winword.exe file
was found. You can use the Windows Installer property defined earlier (WORDEXISTS) as part of the
condition. Because the property is empty if the file was not found, and non-empty if the file was found,
you can perform a simple test to determine whether the property is empty to create the condition. Enter
WORDEXISTS <> "" as the value for the Condition property.

It is hoped that based on the preceding discussion of this search, you will be able to understand how
to use the other searches and create your own launch conditions. That completes our brief tour of the
editors that you can use to modify the resulting Windows Installer package to suit your needs. Although
you have looked only briefly at the functionality of the editors, you have seen that they are extremely
powerful, and worth investment of your time for further investigation.

Building
The final step is to build the deployment or setup project you have created. There is no difference between
how you build a Visual Basic .NET application and a deployment/setup project. If the project is the only
project contained within the solution, then you can just use the Build item from the Build menu, which
will cause the project to be built. As with the other projects, you are informed of what is happening
during the build through the Output window.

1005

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1006

Chapter 24: Deployment

The deployment/setup project can also be built as part of a multiproject solution. If the Build Solution
item is chosen from the Build menu, then all the projects in the solution will be built. Any deployment
or setup projects are built last. This ensures that if they contain the output from another project in the
solution, they pick up the latest build of that project.

Internet Deployment of Windows Applications
The earlier discussions of creating an installation package for your application assumed that you were
able to transfer the MSI file to each machine that needed installation, either electronically or via some
storage medium such as a CD-ROM. This works well for installations within an organization and can
work acceptably for initial installation from CD-ROMs on distributed systems.

However, the availability of the Internet has raised the bar for acceptable deployment of Windows-based
client applications. Perhaps the most important advantage of browser-based applications has been
their ease of deployment for the user. For Windows Forms applications to be cost-competitive with
browser-based applications, low-cost deployment over the Internet is needed.

Fortunately, there are several ways to achieve low-cost deployment over the Internet, including the
following:

❑ ‘‘No-touch’’ deployment

❑ Deployment with ClickOnce, a capability added to Visual Studio 2008

❑ Components or libraries that contain deployment capabilities, such as the Application Updater
Application Block

Different deployment techniques are suitable for different applications. The following sections describe
each technique and how it works, and what kinds of applications it is suitable for use with.

No-Touch Deployment
Built into all versions of the .NET Framework is the capability to run applications from a web server
instead of from the local machine. There are two ways to do this, depending on how the application is
launched.

First, an application EXE that exists on a web server can be launched via a standard HTML hyperlink. For
example, an application named MyApp.exe that is located at www.mycompany.com/apps can be launched
with the following HTML in a Web page:

Launch MyApp

When the hyperlink is clicked on a system with the .NET Framework installed, Internet Explorer trans-
fers control to the .NET Framework to launch the program. The Framework then tries to load the EXE
assembly, which does not yet exist on the client. At that point, the assembly is automatically fetched from
the deployment web server and placed on the local client machine. It resides on the client machine in an
area called the application download cache, which is a special directory on the system managed by the .NET.
Framework.

If the EXE tries to load a class from another application assembly (typically, a DLL), then that assembly
is assumed to be in the same directory on the web server as the EXE. The application assembly is also

1006

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1007

Chapter 24: Deployment

transferred to the application download cache and loaded for use. This process continues for any other
application assemblies needed. The application is said to trickle-feed to the client system.

Automatic Updating
Whenever an assembly in the application download cache is needed, the .NET Framework automatically
checks for a new version in the appropriate directory on the web server. Thus, the application can be
updated for all client machines by simply placing an assembly on the web server.

Using a Launch Application
One drawback of this technique for deploying the application is that it can be launched only from a Web
page or some other means of accessing a URL (such as a shortcut or the Start ➪ Run dialog).

To get around this limitation, you can get a similar deployment capability by using a small launching
application that uses dynamic loading to start the main application. Dynamic loading was discussed in
the previous chapter. In this case, the location for the assembly used in dynamic loading will be the URL
of the assembly on the web server. An application that uses this technique still gets all the trickle feeding
and auto-update features of an application launched straight from a URL.

Limitations of No-Touch Deployment
No-touch deployment is useful for simple applications, but it has some serious drawbacks for more
complex applications:

❑ An active Internet connection is required to run the application — no offline capability is available.

❑ Only assemblies can be deployed via no-touch deployment — application files such as configu-
ration files cannot be included.

❑ Applications deployed via no-touch deployment are subject to code-access security limitations,
as discussed in Chapter 12.

❑ No-touch deployment has no capability to deploy any prerequisites for the application or any
COM components that it may need.

Given the limitations of no-touch deployment, in the 2.0 version of the .NET Framework Microsoft added
an alternative called ClickOnce. It is essentially a complete replacement for no-touch deployment. Thus,
while no-touch deployment is still supported in .NET Framework 2.0 and higher, it is no longer recom-
mended for use and is not covered here.

ClickOnce Deployment
ClickOnce has several advantages over alternatives such as no-touch deployment, including the
following:

❑ Updating from a web server with a user control — No-touch deployment allows only com-
pletely automatic updating from the web server. ClickOnce can be configured for completely
automatic updates from a web server, but can also be set up to allow more control by the user
regarding when the application is installed and uninstalled.

❑ Offline access — Applications deployed with ClickOnce can be configured to run in an offline
condition also. Applications that can be run offline have a shortcut installed on the Start menu.

1007

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1008

Chapter 24: Deployment

ClickOnce also has advantages over applications installed with Windows Installer. These include
auto-updating of the application from the deployment server, and installation of the application by users
who are not administrators. (Windows Installer applications require the active user to be an administrator
of the local machine. ClickOnce applications can be installed by users with fewer permissions.)

ClickOnce deployment can be done from a web server, a network share, or read-only media such as a
CD-ROM or DVD-ROM. The following discussion assumes you are using a web server for deployment,
but you can substitute a network share if you do not have access to a web server.

ClickOnce does not require any version of the .NET Framework to be installed on
the web server you use for ClickOnce deployment. However, it does require that the
web server understand how to handle files with extensions .application and
.manifest. The configuration for these extensions is done automatically if the
Framework is installed on the web server. On servers that don’t contain the .NET
Framework, you will probably have to do the configuration manually.

Each extension that a web server can handle must be associated with an option
called a MIME type that tells the web server how to handle that file extension when
serving a file. The MIME type for each extension used by ClickOnce should be set to
‘‘application/x-ms-application.’’ If you don’t know how to configure MIME types for
your web server, ask a network administrator or other professional who can do so.

Configuring an Application for ClickOnce
For a simple case, no special work is needed to prepare a typical Windows application to be deployed
via ClickOnce. Unlike the deployment options discussed earlier, it is not necessary to add additional
projects to the solution. If you use standard options in ClickOnce, then it is also unnecessary to add any
custom logic to your application. All of the work to enable ClickOnce deployment for an application can
be performed by selecting options in the IDE.

It is possible to control the ClickOnce deployment by writing your own custom logic controlling the
ClickOnce deployment processes, but that capability is beyond the scope of this book and is not covered
here. Instead, this chapter explains the basic configuration of ClickOnce and common options that don’t
require you to write any code.

Online versus Locally Installed Applications
Applications installed via ClickOnce are one of two types:

❑ Online applications, which can be accessed by the user only when the system has a connection to
the website used to deploy the application

❑ Offline applications, which can be used when no connection is available

Online applications must be launched with a URL (Uniform Resource Locator), a standard filename, or a
UNC (Universal Naming Convention) filename. This may be done in various ways, such as clicking a link
in a Web page, typing a URL into the Address text box of a browser, typing a filename into the Address
text box of Windows Explorer, or selecting a shortcut on the local machine that contains the URL or

1008

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1009

Chapter 24: Deployment

filename. However, ClickOnce does not automatically add any such mechanisms to a user’s machine to
access the application. That is up to you.

Offline applications can also be launched with a URL or UNC, and are always launched that way the first
time. The differences are as follows:

❑ When ClickOnce performs the initial install of the application on the user’s machine, by default it
places a shortcut to the application on the user’s Start ➪ Programs menu.

❑ The application can be started from the shortcut, and will run with no connection to the original
location used for installation. Of course, any functionality of the application that depends on a
network or Internet connection will be affected if the system is not online. It is your responsibility
to build the application in such a way that it functions properly when offline.

Deploying an Online Application
A deployment walk-through for a simple Windows application will demonstrate the basics of ClickOnce.
This first walk-through deploys an online application to a web server, which is one of the simpler user
scenarios for ClickOnce.

First, create a simple Windows Application in Visual Studio, and name it SimpleApp. On the blank
Form1 that is created as part of the application, place a single button.

To enable ClickOnce deployment, access the Build menu and select the Publish SimpleApp option. The
ClickOnce Publish Wizard will appear. The first screen of the wizard is shown in Figure 24-15.

Figure 24-15

The location defaults to a local web server if you have one, but as discussed earlier, deployment can be
done on a remote website, a network share, or even a local directory. You should change the location
if the default is not appropriate for your circumstances. Once you’ve verified the location to publish to,
click Next.

Select one of the two types of ClickOnce applications discussed earlier. Because this example is for an
online application, click the second option to make the application available online only, as shown in
Figure 24-16.

1009

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1010

Chapter 24: Deployment

Figure 24-16

Click Next to see a summary of your selections, and then click Finish. The ClickOnce deployment process
will begin. A new item will be added to your project called ‘‘SimpleApp_TemporaryKey.pfx,’’ a complete
build will be done, a new virtual directory will be created for the application on the web server, and the
files needed to deploy the application will be copied to that virtual directory. (The new item is discussed
later in the chapter, in the section ‘‘Signing the Manifest.’’)

If your publish operation fails, look in the Output window for Visual Studio to determine the reason.
Usually, either Internet Information Server (IIS) is not running or you don’t have the appropriate per-
missions to publish to a website.

IIS is not installed by default on Windows Vista or Windows XP. Under Vista, you need to ensure that
the account in which you are developing with Visual Studio has appropriate security permissions to
create new websites under IIS.

When the process is complete, a Web page will be generated that contains the link needed to deploy the
application. The Web page has a Run button that activates the link. If you click this button, the application
will be deployed by ClickOnce. (You may wish to view the source for this Web page to obtain the HTML
needed to launch the application from your own Web pages.)

First, the prerequisites for the application are verified. In this case, that just means the .NET Framework.
If the website is remote, then you will see a Security Warning dialog much like you would get if you
attempted to download a file, and you’ll need to select the Run option.

Next, an Application Run - Security Warning dialog is displayed, asking if it is acceptable to run the appli-
cation, as shown in Figure 24-17. You can run the application by selecting the Run button, or select Don’t
Run, which aborts the process. For now, select Run, and after a short delay you will see the application’s
form appear.

If you now make any changes to the SimpleApp application, you must publish the application again to
make the changes available via ClickOnce. You can do that by stepping through the Publish Wizard once
again. More details about automatic updating of ClickOnce applications are provided later in this chapter
in the section ‘‘The Update Process.’’

1010

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1011

Chapter 24: Deployment

Figure 24-17

Deploying an Application That Is Available Offline
In the second screen of the Publish Wizard, if you select the first option, then the installation process has
some differences:

❑ The Web page that ClickOnce generates to test the deployment has an Install button instead of a
Run button.

❑ When the button is pressed, a shortcut to the application is added to the user’s Start ➪ Programs
menu. The shortcut is in the program folder named for the company name that was entered
when Visual Studio was installed.

❑ The application is launched at the end of the install process, as it was with an online applica-
tion, but future launches can be accomplished with the same URL or via the shortcut in the
Start menu.

Files and Directories Produced by ClickOnce
The virtual directory used by ClickOnce to deploy your application contains a number of files for dif-
ferent aspects of the deployment. Figure 24-18 shows what the directory for SimpleApp looks like after
ClickOnce has finished copying all needed files.

Figure 24-18

The virtual directory contains a folder for the first version of SimpleApp, which by default is version
1.0.0.0. It also contains the Web page that was displayed after ClickOnce finished, which is named
publish.htm.

1011

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1012

Chapter 24: Deployment

The next file is Setup.exe. This is an executable that does not need the .NET Framework to run. It is used
during the ClickOnce process for all the activities that must take place before the application is launched.
This includes activities such as checking for the presence of the .NET Framework. It is discussed further
later in the chapter in the section ‘‘The Bootstrapper.’’

The next file is SimpleApp.application. The ‘‘.application’’ extension is specific to ClickOnce, and indi-
cates the special file called a manifest, introduced in the last chapter. This is an XML-based file that
contains all the information needed to deploy the application, such as what files are needed and what
options have been chosen. There is also a file named SimpleApp_1_0_0_0.application, which is the
manifest specifically associated with version 1.0.0.0.

Each version of the application has its own manifest, and the one named SimpleApp.application (with no
embedded version number) is typically the currently active one. (Thus, the link to the application does
not need to change when the version number changes.)

Other files associated with a version are in the folder for that version.

Signing the Manifest
Because the manifest controls the update process, it is essential that ClickOnce be assured that the mani-
fest is valid. This is done by signing the manifest, using a public-private key pair. As long as a third party
does not have the key pair, that party cannot ‘‘spoof’’ a manifest, preventing any malicious interference
in the ClickOnce deployment process.

A key pair is automatically generated when you publish with ClickOnce. However, you can supply your
own key pair if you like. Options for signing the application are discussed later in the section ‘‘ClickOnce
Configuration Options.’’

Note that your application assemblies do not need to be signed in order for them to be used in a Click-
Once deployment. Only the manifest must be signed. The manifest contains hash codes of all the assem-
blies involved, and those hash codes are checked before assemblies are used. This prevents malicious
third parties from inserting their own versions of your assemblies.

The Update Process
By default, all ClickOnce applications check for updates each time the application is launched. This is
done by getting the current version of the manifest and checking whether any changes were made since
the last time the application was launched. This process is automatic, so there’s nothing you need to do
to make it happen, but it’s helpful for you to understand the steps that are taken.

For an online application, if a change is detected, then it is immediately applied by downloading any
changed files. Then the application is launched. This is conceptually similar to a browser-based applica-
tion because the user has no option to use an older version.

For an application available offline, if changes are detected, then the user is asked whether the update
should be made. The user can choose to decline the update. A configuration option enables you to specify
a minimum version number, and that can force a user to accept an update. You will look at ClickOnce
configuration options later.

If an update is made for an offline application, then the previous version is kept. The user can then
roll back to that version using the Add/Remove Programs option in the control panel. A user can also
uninstall the ClickOnce-deployed application from that same location.

1012

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1013

Chapter 24: Deployment

Only one previous version is kept. Older versions are removed when a new version is installed, so
the only versions available at any point in time are the current version and the one immediately before
it. A rollback can be made to the immediately preceding version, but not to any earlier versions.

You can control the update process by including code in your application that detects when changes have
been made and applies the changes as necessary. As previously mentioned, this chapter does not cover
writing such logic. You can find samples in the MSDN documentation for this capability.

ClickOnce Configuration Options
In Visual Studio 2008, the properties for a Windows Application project include several pages that affect
ClickOnce. (You can get to the properties for a project by right-clicking on it in the Solution Explorer and
selecting Properties.)

The Signing tab page includes options for signing the ClickOnce manifest. There are buttons to select a
particular certificate from a store or a file, or to generate a new test certification for signing. This page also
contains an option to sign the assembly that is compiled from the project, but as mentioned previously,
this is not necessary for ClickOnce to operate.

The Security tab page provides settings related to the code access security permissions needed by the
application to run. Because the application is being deployed from a source other than the local machine,
if you use ClickOnce, code access security limitations are in effect, as described in Chapter 12. A typical
example of the Security tab page is shown in Figure 24-19.

Figure 24-19

Using the options on the Security tab page, you can calculate the permissions needed by the application,
using the Calculate Permissions button. You can also arrange to test your application against a particular
set of permissions. To do that, change from the default option ‘‘This is a full trust application’’ to the
option immediately below it, labeled ‘‘This is a partial trust application.’’ Then select the zone from

1013

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1014

Chapter 24: Deployment

which the application will be installed. When the application is run by Visual Studio, permission for that
zone will be enforced.

All of the other ClickOnce configuration options are on the Publish tab, shown in Figure 24-20.

Figure 24-20

You can set many options with the Publish page, but here are some of the most important:

Property/Option Purpose Where to set it on the page

Publishing
Location

Specifies the virtual directory,
network directory, or local directory
to which the application will be
published by ClickOnce

Textbox labeled ‘‘Publishing
Location.’’ (Note that this can also be
set in the first screen of the Publish
Wizard.)

Installation
URL

Specifies the location from which
your application will be deployed by
users. By default, this is the same as
the Publishing Location, but may be
set to be elsewhere.

Textbox labeled ‘‘Installation URL’’

Install Mode Selects the online only vs. offline
mode for the application.

Option buttons under ‘‘Install Mode
and Settings.’’ (Note that this can also
be set in the second screen of the
Publish Wizard.)

Publish Version Sets the version of the application for
publishing purposes. ClickOnce
requires version changes to properly
auto-update the application.

The textboxes under ‘‘Publish
Version.’’ If the check box under those
boxes is checked, the publish version
will be automatically incremented
each time the application is published.

1014

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1015

Chapter 24: Deployment

Property/Option Purpose Where to set it on the page

Prerequisites Specifies the software that must be
installed before your application can
itself be installed, including elements
such as the .NET Framework

The Prerequisites button brings up a
dialog box that enables standard
prerequisites to be checked off. The
.NET Framework is checked by
default. The dialog also enables you to
specify the location for downloading
prerequisites. See the next section,
‘‘The Bootstrapper,’’ for more
information on prerequisites.

Miscellaneous
options

Options for various purposes such as
the product name

The Options button brings up a dialog
box in which these options can be set.

Update options Options that control the update
process, including when the
application updates (before or after it
starts), the minimum version number
required, etc.

These options are available only for
applications that can run offline. The
Updates button brings up a dialog box
controlling these options.

The Bootstrapper
Because applications deployed by ClickOnce are a part of the .NET Framework, the .NET Framework
must be available on the user’s machine before your application can be installed and run. In addition,
your application may require other items, such as a database or COM component, to be installed.

To provide for such needs, ClickOnce includes a bootstrapper that runs as the first step in the ClickOnce
process. The bootstrapper is not a .NET program, so it can run on systems that do not yet have the .NET
Framework installed. The bootstrapper is contained in a program called Setup.exe, which is included by
ClickOnce as part of the publishing process.

When setup.exe runs, it checks for the prerequisites needed by the application, as specified in the Pre-
requisites options discussed previously. If needed, these options are then downloaded and installed.
Only if the user’s system contains installed prerequisites does ClickOnce attempt to install and run your
Windows application.

The MSDN documentation includes more details on configuring and using the ClickOnce
bootstrapper.

Manual Editing of ClickOnce Manifests
Sometimes an application manifest created by ClickOnce needs to be manually changed. For example, if
the application contains dynamically loaded .NET DLLs (as discussed in the previous chapter), then such
DLLs are not automatically included in a ClickOnce manifest.

In creating a manifest for an installation, ClickOnce relies on the compile-time references for the applica-
tion being deployed. It will place any application assemblies that have compile-time references into the
manifest.

1015

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1016

Chapter 24: Deployment

However, dynamically loaded assemblies do not have a compile time reference, which means Click-
Once can’t put them in the manifest automatically. If you have dynamically loaded assemblies in your
Windows Forms application, then you must add them to the manifest manually.

ClickOnce includes a tool for manually editing the manifest. Named MAGE.exe, it can be started from
the Visual Studio 2008 command prompt. It offers a UI to open a manifest and perform various manual
operations on it. MAGE.exe can also be used from the command line, so you can create batch files or
PowerShell scripts to automate insertion of files in a ClickOnce manifest.

How to use MAGE.exe is beyond the scope of this chapter, but the help files for MAGE.exe are extensive,
and you can find MSDN samples on using it.

Rolling Back or Uninstalling ClickOnce Applications
In addition to deploying an application for use, ClickOnce also provides the capability to uninstall or roll
back applications that are deployed with the offline option. Such applications will have an entry in the
Add/Remove Programs section of the control panel. That entry will offer an uninstall option; and if a
rollback version is present, an option to roll back the last update.

Only one level of rollback is available. If multiple updates have occurred, then the user can only roll back
to the most recent one. Once a rollback is done, no further rollback is possible until another update has
been deployed.

ClickOnce versus Other Deployment Technologies
ClickOnce is a complete replacement for no-touch deployment. However, there are other deployment
scenarios for which ClickOnce may not be the ideal solution. For example, ClickOnce can deploy only a
per-user installation. It cannot install an application once to be used by all users on the system.

ClickOnce may be used in combination with technologies such as the Windows Installer. If you create
.msi files, as discussed earlier in the chapter, you may include them as part of ClickOnce’s bootstrapper
process. This is an advanced technique not discussed in this book, but you can learn more about this
capability in the MSDN documentation.

For cases in which ClickOnce is not appropriate, you may wish to use more customized deployment
technologies, which are discussed next.

Custom Deployment Options
If an application needs deployment capabilities not covered by the technologies discussed so far, it may
be necessary to use alternative technologies, or even develop them yourself. For example, you can create
a deployment function that checks, via a Web service, whether updating needs to take place and that
uses FTP to transfer files from a web server to a client machine.

Updater Application Block
Rather than start from scratch on such a deployment/installation technology, you can look at starting
points such as the Updater Application Block. Created by Microsoft’s Patterns and Practices Group, the
Updater Application Block can be downloaded from Microsoft’s website. It includes manifest-based
checking of modules for updating, and background transfer of new modules using the same transfer
technology as Windows Update.

1016

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1017

Chapter 24: Deployment

You can use the Updater Application Block as is, or customize it for your own needs. For example, you
could create a version that enables different classes of users to have different update strategies, so that
new updates are sent to a select group of users first.

Summary
An application must be deployed to be useful. How an individual application should be deployed
depends heavily on circumstances. Factors such as the geographic distribution of the application, its
complexity, and how often it will be updated must all be considered when choosing an appropriate
strategy.

The main possibilities for deployment are as follows:

❑ XCOPY deployment

❑ Installation via the Windows Installer

❑ No-touch deployment

❑ ClickOnce deployment

❑ Deployment with other technologies such as the Application Updater Block

This chapter has covered each of these, with some discussion of their applicability. It will be helpful for
you to understand all of these options to make appropriate decisions for the deployment of individual
applications.

On the one hand, simple utilities, for example, might be best installed by simply copying files. On the
other hand, standalone applications that have many dependencies on COM-based components will more
often use Windows Installer technology. Applications that depend on Web services for data will often be
best deployed with ClickOnce. Corporate applications with special needs for security during installation,
or that need to install an application once for multiple users, may be better off using the Application
Updater Block.

You should also be aware that these options are not mutually exclusive. You might have an application
with COM dependencies that needs to use an .msi file for an initial install, but gets the rest of the appli-
cation and future updates via ClickOnce or the Application Updater Block. Whatever your application,
the plethora of application deployment technologies available for .NET-based applications means you
should be able to find an option or combination that suits your needs.

1017

Evjen-91361 c24.tex V1 - 04/01/2008 5:21pm Page 1018

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1019

Working with Classic COM
and Interfaces

However much we try, we just cannot ignore the vast body of technology surrounding Microsoft’s
Component Object Model (COM). Over the years, this model has been the cornerstone of so much
Microsoft-related development that we have to take a long, hard look at how we are going to inte-
grate all that technology into the world of .NET.

This chapter begins by taking a brief backward glance at COM, and then compares it with the
way that components interact in .NET. It also takes a look at the tools Microsoft provides to help
link the two together. Having looked at the theory, you then try it out by building a few example
applications. First you take a legacy basic COM object and run it from a Visual Basic 2008 program.
Then you repeat the trick with a full-blown ActiveX control. Finally, you run some Visual Basic
code in the guise of a COM object.

More information on how to make COM and VB6 code interoperate with the .NET platform can be
found in Professional Visual Basic Interoperability: COM and VB6 to .NET (Wiley, 2002).

As you do all that, keep in mind one thing: COM is, to a large extent, where .NET came from. In
addition, with all the time and resources that have been invested in this technology, it is impor-
tant to consider the best ways to both maintain these investments and integrate them into new
investments you make.

Understanding COM
Before looking into the COM-.NET interoperability story, it is important to understand COM’s
main concepts. This section does not attempt to do more than skim the surface, however. While the
basic concepts are fundamentally simple, the underlying technology is anything but simple. Some of
the most impenetrable books on software ever written have COM as their subject, and we have no
wish to add to these.

COM was Microsoft’s first full-blown attempt to create a language-independent standard for
programming. The idea was that interfaces between components would be defined according to a

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1020

Chapter 25: Working with Classic COM and Interfaces

binary standard. This means that you could, for the first time, invoke a VB component from a VC++
application, and vice versa. It would also be possible to invoke a component in another process or even on
another machine, via Distributed COM (DCOM). You will not be looking at out-of-process servers here,
however, because the vast majority of components developed to date are in process. Largely, DCOM was
fatally compromised by bandwidth, deployment, and firewall problems, and never achieved a high level
of acceptance.

A COM component implements one or more interfaces, some of which are standards provided by the
system, and some of which are custom interfaces defined by the component developer. An interface
defines the various members that an application may invoke. Once specified, an interface definition is
supposed to be inviolate, so that even when the underlying code changes, applications that use the inter-
face do not need to be rebuilt. If the component developers find that they have left something out, then
they should define a new interface containing the extra functionality in addition to that in the original
interface. This has, in fact, happened with a number of standard Microsoft interfaces. For example, the
IClassFactory2 interface extends the IClassFactory interface by adding features for managing the
creation of licensed objects.

The key to getting applications and components to work together is binding. COM offers two forms of
binding, early and late:

❑ In early binding, the application uses a type library at compile time to determine how to link in to
the methods in the component’s interfaces. A type library can exist as a separate file, with the
extension .tlb, or as part of the DLL containing the component code.

❑ In late binding, no connection is made between the application and its components at compile
time. Instead, the COM runtime searches through the component for the location of the required
member when the application is actually run. This has two main disadvantages: it is slower and
unreliable. If a programming error is made (e.g., the wrong method is called, or the right method
with the wrong number of arguments), then it is not caught at compile time.

When a type library is not explicitly referred to, there are two ways to identify a COM component: by
class ID, which is actually a GUID, and by ProgID, which is a string and looks something like "MyProject
.MyComponent". These are all cross-referenced in the registry. In fact, COM makes extensive use of the
registry to maintain links between applications, their components, and their interfaces. All experienced
COM programmers know their way around the registry blindfolded.

VB6 has a lot of COM features embedded into it, to the extent that many VB6 programmers are not
even aware that they are developing COM components. For instance, if you create a DLL containing an
instance of a VB6 class, then you have in fact created a COM object without even asking for one. The
relative ease of this process is demonstrated in this chapter.

There are clearly similarities between COM and .NET, so to a large extent, all you have to do to make
them work together is put a wrapper around a COM object to turn it into an assembly, and vice versa.

COM and .NET in Practice
It is time to get serious and see whether all this seamless integration really works. To do so, we have
to simulate a legacy situation. Suppose your enterprise depends on a particular COM object that was
written for you a long time ago by staff who are no longer in the organization. All you know about the
component is that the code within it works perfectly and you need to employ it for your .NET application.

1020

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1021

Chapter 25: Working with Classic COM and Interfaces

You have one, possibly two, options in this case. If you have the source code of the COM component
(which is not always the case) and you have sufficient time (that is, money), then you can upgrade the
object to .NET and continue to maintain it under Visual Studio 2008. For the purist, this is the ideal
solution for going forward. However, maintaining the source as it exists under Visual Studio is not really
a viable option. Visual Studio does offer an upgrade path, but it does not cope well with COM objects
using interfaces specified as abstract classes.

If upgrading the object to a .NET component is not an option for you, then all you really can do is
include the DLL as it stands as a COM object, register it on the server containing the .NET Framework,
and use the .NET interoperability tools to integrate the two technologies. This is the path that this chapter
takes for the example.

Therefore, what you need for this example is a genuine legacy COM object. This chapter uses a genuine
legacy VB6 component to integrate within a .NET application. For the next section, this chapter steps
back in time and uses VB6 for the classic component required. If you are not very interested in VB6, then
feel free to skip this section. In any case, the DLL created is available as part of the code download from
this book.

A Legacy Component
For the legacy component, imagine that you have some kind of analytics engine that requires a number
of calculations. Because of the highly complex nature of these calculations, their development has been
given to specialists, while the user interface for the application has been given to some UI specialists. A
COM interface has been specified to which all calculations must conform. This interface has the name
IMegaCalc and has the following methods:

Method Description

Sub AddInput(InputValue as Double) Adds the input value to the calculation

Sub DoCalculation() Performs the calculation

Function GetOutput() as Double Gets the output from the calculation

Sub Reset() Resets the calculation for the next time

Step 1: Defining the Interface
When building any component, the first thing you have to do is define your interface. In VB6, the way
to do this is to create an abstract class — that is, one without any implementation. Therefore, create an
ActiveX DLL project called MegaCalculator. You do this by creating a new project and then changing
its name to MegaCalculator by means of the Project➪Project1 Properties dialog box. Then, create a class
called IMegaCalc. This is what the code should look like:

Option Explicit

Public Sub AddInput(InputValue As Double)
End Sub

1021

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1022

Chapter 25: Working with Classic COM and Interfaces

Public Sub DoCalculation()
End Sub

Public Function GetOutput() As Double
End Function

Public Sub Reset()
End Sub

From the main menu, select File➪Make MegaCalculator.dll to define and register the interface.

Step 2: Implementing the Component
For the purposes of this demonstration, the actual calculation that you are going to perform is fairly
mundane. In fact, the component will calculate the mean of a series of numbers. Create another ActiveX
DLL project called MeanCalculator. Add a reference to the type library for the interface that you are going
to implement by selecting the MegaCalculator DLL via the References dialog box that appears when you
select Project➪References.

Having done that, go ahead and write the code for the mean calculation. You do that in a class called
MeanCalc:

Option Explicit

Implements IMegaCalc

Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double

Private Sub Class_Initialize()
IMegaCalc_Reset

End Sub

Private Sub IMegaCalc_AddInput(InputValue As Double)
mintValue = mintValue + 1
ReDim Preserve mdblValues(mintValue)
mdblValues(mintValue) = InputValue

End Sub

Private Sub IMegaCalc_DoCalculation()
Dim iValue As Integer
mdblMean = 0#
If (mintValue = 0) Then Exit Sub

For iValue = 1 To mintValue
mdblMean = mdblMean + mdblValues(iValue)

Next iValue

mdblMean = mdblMean / mintValue
End Sub

Private Function IMegaCalc_GetOutput() As Double
IMegaCalc_GetOutput = mdblMean

1022

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1023

Chapter 25: Working with Classic COM and Interfaces

End Function

Private Sub IMegaCalc_Reset()
mintValue = 0

End Sub

As before, you select File➪Make MeanCalculator.dll to build and register the component. It has a default
interface called MeanCalc (which contains no methods, and is thus invisible to the naked eye), plus an
implementation of IMegaCalc.

Step 3: Registering the Legacy Component
If you have made it this far, then you should now have your legacy component. When developing your
new .NET application on the same machine, you do not need to do anything more because your compo-
nent is already registered by the build process. However, if you are working on an entirely new machine,
then you must register it there. To do that, open a command window and register it with the following
command using regsvr32.exe found at C:\Windows\system32:

regsvr32 MeanCalculator.dll

You should then see the result shown in Figure 25-1.

Figure 25-1

Because MeanCalculator implements an interface from MegaCalculator, you have to repeat the trick
with that DLL:

regsvr32 MegaCalculator.dll

That action should yield the results shown in Figure 25-2. You are now ready to use your classic compo-
nent from a .NET application.

Figure 25-2

1023

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1024

Chapter 25: Working with Classic COM and Interfaces

The .NET Application
For the .NET application used in this chapter, you only need to instantiate an instance of the MeanCalc
object and get it to figure out a mean calculation for you. In order to accomplish this task, create a .NET
Windows Application project in Visual Basic called CalcApp. Laid out, the form looks like what is shown
in Figure 25-3.

Figure 25-3

The two text boxes are called txtInput and txtOutput, respectively; the second one is not enabled for
user input. The three command buttons are btnAdd, btnCalculate, and btnReset, respectively.

Referencing the Legacy COM Component from .NET
Before you dive into writing the code behind the buttons on the form, you first need to make your new
application aware of the MeanCalculator component. Add a reference to the component via the Project➪
Add Reference menu item. This brings up the Add Reference dialog box, which contains five tabs: .NET,
COM, Projects, Browse, and Recent. From the COM tab, select MeanCalculator and MegaCalculator in
turn (see Figure 25-4).

Figure 25-4

1024

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1025

Chapter 25: Working with Classic COM and Interfaces

Press OK after you highlight both of the required components. Note that in the list of references in the
Solution Explorer, you can now see the MeanCalculator and MegaCalculator components. If you don’t
see these items, be sure to press the Show All Files button in the Solution Explorer’s toolbar. This view is
presented in Figure 25-5.

Figure 25-5

Inside the .NET Application
Now that you have successfully referenced the components in the .NET application, you can finish coding
the application, using the functionality provided via the COM components. To start making use of the
new capabilities provided from the COM component, add to the code a global variable (mobjMean) that
will hold a reference to an instance of the mean calculation component, as shown here:

Public Class Form1

Dim mobjMean As MegaCalculator.IMegaCalc

Next, create a Form1_Load event to which you will add the following instruction, which creates the
component you are going to use:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mobjMean = New MeanCalculator.MeanCalc()

End Sub

Finally, add the code behind the form’s buttons. First, working with the Add button, add the following
code that calls the COM component:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _

1025

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1026

Chapter 25: Working with Classic COM and Interfaces

Handles btnAdd.Click

mobjMean.AddInput(CDbl(txtInput.Text))

End Sub

This adds whatever is in the input text box into the list of numbers for the calculation. Next, here’s the
code-behind for the Calculate button:

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles btnCalculate.Click

mobjMean.DoCalculation()
txtOutput.Text = mobjMean.GetOutput()

End Sub

This performs the calculation, retrieves the answer, and puts it into the output text box — all of this from
the COM component. Finally, the code behind the Reset button simply resets the calculation:

Private Sub btnReset_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnReset.Click

mobjMean.Reset()

End Sub

Trying It All Out
Of course, the proof of the pudding is in the eating, so let’s see what happens when you run your appli-
cation. Compile and run the application and place a value in the first text box — for example, 2 — and
click the Add button on the form. Next, enter another value — for example, 3 — and click the Add but-
ton again. When you click Calculate, you’ll get the mean of the two values (2.5 in this case), as shown in
Figure 25-6.

Figure 25-6

Using TlbImp Directly
In the preceding example, there is actually quite a lot going on under the hood. Every time you import
a COM DLL into Visual Studio, it creates a default interop assembly, which is basically a .NET assembly
that acts as a wrapper for the COM object. If you are doing this a lot, then it might be better to do the

1026

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1027

Chapter 25: Working with Classic COM and Interfaces

wrapping once and for all, and then let your application developers import the resulting .NET assembly
instead. Let’s see how you might accomplish this task.

The process that creates the default interop assembly on behalf of Visual Studio is called
TlbImp.exe. The name stands for Type Library Import, and that’s pretty much what the process does. It is
included in the .NET Framework SDK, and you might find it convenient to extend the PATH environment
variable to include the \bin directory of the .NET Framework SDK.

TlbImp takes a COM DLL as its input and generates a .NET assembly DLL as its output. By default, the
.NET assembly has the same name as the type library, which will — in the case of VB6 components —
always be the same as the COM DLL. This means you have to explicitly specify a different output file.
You do this by using the /out: switch. If you want to see what’s going on at each step in the process,
then you should also specify the /verbose flag:

tlbimp MegaCalculator.dll /out:MegaCalculatorNet.dll /verbose

For this example, start with MegaCalculator, because MeanCalculator has a reference to
MegaCalculator. If you start with MeanCalculator, you get an error indicating that there is a
reference to MegaCalculator and that TlbImp will not be able to overwrite the MegaCalculator.dll.
The way to get around this is to start with MegaCalculator by giving TlbImp the command, as shown
previously. Once this is accomplished, TlbImp will inform you of the success or failure in creating a .NET
assembly of the name MegaCalculatorNet.dll.

Now that you have MegaCalculatorNet.dll in place, you can work with MeanCalculator and make sure
that the reference now points to the new MegaCalculatorNet.dll. You can accomplish this by using the
following command:

tlbimp MeanCalculator.dll /out:MeanCalculatorNet.dll
reference:MegaCalculatorNet.dll /verbose

The result of this command is shown in Figure 25-7.

Figure 25-7

Notice that TlbImp has encountered a reference to another COM type library, MegaCalculator, and it has
very kindly in turn imported MegaCalculatorNet instead. Having converted your COM DLLs into .NET
assemblies, you can now reference them in an application as you would any other .NET DLL.

1027

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1028

Chapter 25: Working with Classic COM and Interfaces

Late Binding
You’ve seen that you can successfully do early binding on COM components within a .NET application,
but what if you want to do late binding instead? Suppose you don’t have access to a type library at
application development time. Can you still make use of the COM component? Does the .NET equivalent
of late binding even exist?

The answer is yes, it does, but it is not as transparent as it is with VB6. Let’s take a look at what occurred
in VB6. If you wanted to do early binding, you would do this:

Dim myObj As MyObj
Set myObj = New MyObj

MyObj.MyMethod (...)

For late binding, it would look like this instead:

Dim myObj As Object
Set myObj = CreateObject ("MyLibrary.MyObject")
MyObj.MyMethod (...)

There is actually an enormous amount of activity going on under the hood here; and if you are interested
in looking into this further, try Building N-Tier Applications with COM and Visual Basic 6.0 by Ash Rofail
and Tony Martin (Wiley, 1999).

An Example for Late Binding
For the sample being built in this chapter, let’s extend the calculator to a more generic framework that
can feed inputs into a number of different calculation modules, rather than just the fixed one it currently
implements. For this example, you’ll keep a table in memory of calculation ProgIDs and present the user
with a combo box to select the correct one.

The Sample COM Object
The first problem you encounter with late binding is that you can only late bind to the default interface,
which in this case is MeanCalculator.MeanCalc, not MeanCalculator.IMegaCalc. Therefore, you need
to redevelop your COM object as a standalone library, with no references to other interfaces.

As before, you’ll build a DLL under the VB6 IDE, copy it over to your .NET environment, and reregister
it there. Call this new VB6 DLL MeanCalculator2.dll; the code in the class (called MeanCalc) should
look as follows:

Option Explicit

Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double

Private Sub Class_Initialize()
Reset

End Sub

1028

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1029

Chapter 25: Working with Classic COM and Interfaces

Public Sub AddInput(InputValue As Double)
mintValue = mintValue + 1
ReDim Preserve mdblValues(mintValue)
mdblValues(mintValue) = InputValue

End Sub

Public Sub DoCalculation()
Dim iValue As Integer
mdblMean = 0#

If (mintValue = 0) Then Exit Sub

For iValue = 1 To mintVal
mdblMean = mdblMean + mdblValues(iValue)

Next iValue

mdblMean = mdblMean / mintValue
End Sub

Public Function GetOutput() As Double
GetOutput = mdblMean

End Function

Public Sub Reset()
mintValue = 0

End Sub

As before, move this across to your .NET server and register it using RegSvr32.

The Calculation Framework
For your generic calculation framework, you’ll create a new application in Visual Basic 2008 called
CalcFrame. You will basically use the same dialog box as before, but with an extra combo box at the
top of the form. This new layout is illustrated in Figure 25-8.

Figure 25-8

The new combo box is called cmbCalculation. For this to work, you also need to disable the controls
txtInput, btnAdd, btnCalculate, and btnReset until you know whether the selected calculation is

1029

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1030

Chapter 25: Working with Classic COM and Interfaces

valid. Begin your application by importing the Reflection namespace, which you need for handling the
application’s late binding:

Imports System.Reflection

Once the form is in place, add a few member variables to the code of your application:

Public Class Form1
Inherits System.Windows.Forms.Form
Private mstrObjects() As String
Private mnObject As Integer
Private mtypCalc As Type
Private mobjcalc As Object

From there, add a few new lines to Form1_Load:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

mnObject = 0
AddObject("Mean", "MeanCalculator2.MeanCalc")
AddObject("StdDev", "StddevCalculator.StddevCalc")

If (mnObject > 0) Then
cmbCalculation.SelectedIndex = 0

End If
End Sub

What you are doing here is building a list of calculations. When you’re finished, you select the first one
in the list. Let’s take a look at that subroutine AddObject:

Private Sub AddObject(ByVal strName As String, ByVal strObject As String)
cmbCalculation.Items.Add(strName)
mnObject = mnObject + 1
ReDim Preserve mstrObjects(mnObject)
mstrObjects(mnObject - 1) = strObject

End Sub

The preceding code segment adds the calculation name to the combo box, and its ProgID to an array
of strings. Neither of these is sorted, so you get a one-to-one mapping between them. Check out what
happens when you select a calculation via the combo box:

Private Sub cmbCalculation_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _

Handles cmbCalculation.SelectedIndexChanged

Dim intIndex As Integer
Dim bEnabled As Boolean

intIndex = cmbCalculation.SelectedIndex
mtypCalc = Type.GetTypeFromProgID(mstrObjects(intIndex))

If (mtypCalc Is Nothing) Then
mobjcalc = Nothing

1030

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1031

Chapter 25: Working with Classic COM and Interfaces

bEnabled = False
Else

mobjcalc = Activator.CreateInstance(mtypCalc)
bEnabled = True

End If

txtInput.Enabled = bEnabled
btnAdd.Enabled = bEnabled
btnCalculate.Enabled = bEnabled
btnReset.Enabled = bEnabled

End Sub

There are two key calls in this example. The first is to Type.GetTypeFromProgID. This takes the incoming
ProgID string and converts it to a Type object. This process either succeeds or fails; if it fails, then you
disable all the controls and let the user try again. If it succeeds, however, then you create an instance of the
object described by the type. You do this in the call to the static method Activator.CreateInstance().

For this example, assume that the user has selected a calculation that you can successfully instantiate.
What next? The user enters a number and clicks the Add button on the form:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAdd.Click

Dim objArgs() As [Object] = {CDbl(txtInput.Text)}
mtypCalc.InvokeMember("AddInput", BindingFlags.InvokeMethod, _

Nothing, mobjcalc, objArgs)

End Sub

The important call here is to the InvokeMember()method. Let’s take a closer look at what is going on.
Five parameters are passed into the InvokeMember()method:

❑ The first parameter is the name of the method that you want to call: AddInput in this case. There-
fore, instead of going directly to the location of the routine in memory, you ask the .NET runtime
to find it for you.

❑ The value from the BindingFlags enumeration tells it to invoke a method.

❑ The next parameter provides language-specific binding information, which is not needed in
this case.

❑ The fourth parameter is a reference to the COM object itself (the one you instantiated using
Activator.CreateInstance).

❑ Finally, the fifth parameter is an array of objects representing the arguments for the method. In
this case, there is only one argument, the input value.

Something very similar to this is going on underneath VB6 late binding, except that here it is exposed
in all its horror. In some ways, that’s not a bad thing, because it should highlight the point that late
binding is something to avoid if possible. Anyway, let’s carry on and complete the program. Here are the
remaining event handlers for the other buttons:

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCalculate.Click

1031

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1032

Chapter 25: Working with Classic COM and Interfaces

Dim objResult As Object
mtypCalc.InvokeMember("DoCalculation", BindingFlags.InvokeMethod, _

Nothing, mobjcalc, Nothing)
objResult = mtypCalc.InvokeMember("GetOutput", _

BindingFlags.InvokeMethod, Nothing, mobjcalc, Nothing)
txtOutput.Text = objResult

End Sub

Private Sub btnReset_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnReset.Click

mtypCalc.InvokeMember("Reset", BindingFlags.InvokeMethod, _
Nothing, mobjcalc, Nothing)

End Sub

Running the Calculation Framework
Let’s quickly complete the job by running the application. Figure 25-9 shows what happens when you
select the nonexistent calculation StdDev.

Figure 25-9

As shown in the screen shot, the input fields have been disabled, as desired. Figure 25-10 shows what
happens when you repeat the earlier calculation using Mean. This time, the input fields are enabled, and
the calculation can be carried out as before.

Figure 25-10

1032

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1033

Chapter 25: Working with Classic COM and Interfaces

One final word about late binding. You took care to ensure that you checked whether the object
was successfully instantiated. In a real-life application, you also need to ensure that the method invo-
cations are successful and that all exceptions are caught — you do not have the luxury of having the
compiler find all your bugs for you.

ActiveX Controls
Let’s move on from basic COM objects to ActiveX controls. You are going to do pretty much the same
thing you did with the basic COM component (apart from late binding, which has no relevance to
ActiveX controls): build a legacy control using VB6 and then import it into your .NET Visual Basic
project.

The Legacy ActiveX Control
For your legacy ActiveX control, you are going to build a simple button-like object that is capable of
interpreting a mouse click and can be one of two colors according to its state. To accomplish this task,
you will take a second foray into VB6, so if you don’t have VB6 handy, feel free to skip the next section,
download the OCX file, and pick it up when you start developing your .NET application.

Step 1: Creating the Control
This time, within the VB6 IDE, you need to create an ActiveX Control project. For this example, call
the project Magic, and the control class MagicButton, to reflect its remarkable powers. From the Toolbox,
select a Shape control and place it on the UserControl form that VB6 provides for you. Rename the shape
provided on the form to shpButton, and change its properties as follows:

Property Value

FillStyle 0 — Solid

Shape 4 — Rounded Rectangle

FillColor Gray (&H00808080&)

Add a label on top of the Shape control and rename it to lblText. Change this control’s properties to the
following:

Property Value

BackStyle 0 — Solid 0Transparent

Alignment 2Center

Switch to the code view of the MagicButton component. Within the code presented, add two properties
called Caption and State, and an event called Click(), as well as code to handle the initialization of the
properties and persisting them, to ensure that the shape resizes correctly and that the label is centered.

1033

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1034

Chapter 25: Working with Classic COM and Interfaces

You also need to handle mouse clicks within the code. The final code of the MagicButton class should
look as follows:

Option Explicit

Public Event Click()

Dim mintState As Integer

Public Property Get Caption() As String
Caption = lblText.Caption

End Property

Public Property Let Caption(ByVal vNewValue As String)
lblText.Caption = vNewValue
PropertyChanged ("Caption")

End Property

Public Property Get State() As Integer
State = mintState

End Property

Public Property Let State(ByVal vNewValue As Integer)
mintState = vNewValue
PropertyChanged ("State")

If (State = 0) Then
shpButton.FillColor = &HFFFFFF&

Else
shpButton.FillColor = &H808080&

End If
End Property

Private Sub UserControl_InitProperties()
Caption = Extender.Name
State = 1

End Sub

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
Caption = PropBag.ReadProperty("Caption", Extender.Name)
State = PropBag.ReadProperty("State", 1)

End Sub

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
PropBag.WriteProperty "Caption", lblText.Caption
PropBag.WriteProperty "State", mintState

End Sub

Private Sub UserControl_Resize()
shpButton.Move 0, 0, ScaleWidth, ScaleHeight
lblText.Move 0, (ScaleHeight - lblText.Height) / 2, ScaleWidth

End Sub

Private Sub lblText_Click()

1034

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1035

Chapter 25: Working with Classic COM and Interfaces

RaiseEvent Click
End Sub

Private Sub UserControl_MouseUp(Button As Integer, Shift As Integer, _
X As Single, Y As Single)

RaiseEvent Click
End Sub

If you build this, you’ll get an ActiveX control called Magic.ocx.

Step 2: Registering Your Legacy Control
You now have your legacy control. As before, if you are developing your new .NET application on the
same machine, then you don’t need to do anything more, because your control will already be registered
by the build process. However, if you are working on an entirely new machine, then you need to register
it there. As before, open a command window and register it as follows:

regsvr32 Magic.ocx

Having done that, you are ready to build your .NET application.

A .NET Application, Again
This .NET application is even more straightforward than the last one. All you are going to do this time
is display a button that changes color whenever the user clicks it. To begin, create a .NET Windows
Application project in Visual Basic called ‘‘ButtonApp.’’ Before you start to develop it, however, extend
the Toolbox to incorporate your new control by selecting Tools➪Choose Toolbox Items. Figure 25-11
shows the resulting dialog.

Figure 25-11

1035

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1036

Chapter 25: Working with Classic COM and Interfaces

When you click the OK button, your MagicButton class is now available to you in the Toolbox (see
Figure 25-12). Add the Magic.MagicButton control to your form, as shown in Figure 25-13, by checking
the box next to the control name. Note that references to AxMagic and Magic are added to the project
in the Solution Explorer window within the References folder, as shown in Figure 25-14.

Figure 25-12

Figure 25-13

All you need to do now is initialize the Caption property to ON, change the Text of the form to Button
Application, and code up a handler for the mouse Click event:

Private Sub AxMagicButton1_ClickEvent(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles AxMagicButton1.ClickEvent

AxMagicButton1.CtlState = CType(1 - AxMagicButton1.CtlState, Short)
If (AxMagicButton1.CtlState = 0) Then

AxMagicButton1.Caption = "OFF"
Else

1036

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1037

Chapter 25: Working with Classic COM and Interfaces

AxMagicButton1.Caption = "ON"
End If

End Sub

Figure 25-14

Note something slightly peculiar happening here. In the course of importing the control into .NET, the
variable State mutated into CtlState. This is because there is already a class in the AxHost namespace
called State, which is used to encapsulate the persisted state of an ActiveX control.

Trying It All Out, Again
When you run this application, note the control in the ON position, as shown in Figure 25-15. If you click
the control, it changes to the OFF position, as shown in Figure 25-16.

Figure 25-15

1037

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1038

Chapter 25: Working with Classic COM and Interfaces

Figure 25-16

Using .NET Components in the COM World
So far, this chapter has established, through a couple of examples, that you can use your COM legacy
components within any of your .NET-based applications. You do not have to throw everything out quite
yet. Now it’s time to consider the opposite question: Can you run .NET components in the COM world?

Why on earth would you want to run .NET components in the COM world? It is not immediately obvi-
ous, in fact, because migration to .NET would almost certainly be application-led in most cases, rather
than component-led. However, it is possible (just) to imagine a situation in which a particularly large
application remains not based on .NET, while component development moves over to .NET. Let’s assume
that’s the case for the next section. The technology is quite cool, anyway.

A .NET Component
Let’s take a look at the .NET component. Here, you will implement an exact copy of the functionality
created earlier with the MegaCalculator and MeanCalculator components, except you will use Visual
Basic, rather than VB6.

Begin by creating a Class Library project called MegaCalculator2. Here is the entire code of the interface
for the class library:

Public Interface IMegaCalc

Sub AddInput(ByVal InputValue As Double)

Sub DoCalculation()
Function GetResult() As Double
Sub Reset()

End Interface

Now create another Class Library project called MeanCalculator3. This will contain a class called
MeanCalc that is going to implement the IMegaCalc interface, in a precise analog of the MeanCalc in

1038

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1039

Chapter 25: Working with Classic COM and Interfaces

your original VB6 MeanCalculator project. As before, you need to add a reference to MegaCalculator2
first, although this time it will be a true .NET Framework reference, and you’ll have to browse for it (see
Figure 25-17).

Figure 25-17

Here is the code:

Public Class MeanCalc
Implements MegaCalculator2.IMegaCalc

Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double

Public Sub AddInput(ByVal InputValue As Double) _
Implements MegaCalculator2.IMegaCalc.AddInput

mintValue = mintValue + 1
ReDim Preserve mdblValues(mintValue)
mdblValues(mintValue - 1) = InputValue

End Sub

Public Sub DoCalculation() _
Implements MegaCalculator2.IMegaCalc.DoCalculation

Dim iValue As Integer

mdblMean = 0

If (mintValue = 0) Then Exit Sub

For iValue = 0 To mintValue - 1 Step 1
mdblMean = mdblMean + mdblValues(iValue)

Next iValue

mdblMean = mdblMean / iValue
End Sub

1039

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1040

Chapter 25: Working with Classic COM and Interfaces

Public Function GetResult() As Double Implements _
MegaCalculator2.IMegaCalc.GetResult

GetResult = mdblMean
End Function

Public Sub Reset() Implements MegaCalculator2.IMegaCalc.Reset
mintValue = 0

End Sub

Public Sub New()
Reset()

End Sub

End Class

Before compiling this application, make the component that you are building COM-visible. To do this,
right-click on the MeanCalculator3 solution within Visual Studio 2008 and select Properties from the
provided menu.

From the Properties dialog, select the Compile tab, where you will find a check box called Register for
COM Interop (see Figure 25-18). Make sure that this is checked and then compile the application.

Figure 25-18

This component is quite similar to the VB6 version, apart from the way in which Implements is used.
After this is all in place, build the assembly. If you have security issues with this compilation, then you

1040

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1041

Chapter 25: Working with Classic COM and Interfaces

need to ensure that you are running Visual Studio as an Administrator. Now we come to the interesting
part: How do you register the resulting assembly so that a COM-enabled application can make use of it?

RegAsm
The tool provided with the .NET Framework SDK to register assemblies for use by COM is called
RegAsm. This tool is very simple to use. If all you are interested in is late binding, then you simply run it
as presented in Figure 25-19.

Figure 25-19

The only challenge with RegAsm is finding the thing. It is usually found lurking in C:\Windows\Microsoft
.NET\Framework\2.0.50727, even if you are working with the .NET Framework 3.0 or 3.5. You might
find it useful to add this to your path in the system environment. You can also use the Visual Studio
command prompt to directly access this tool.

However, there is probably even less reason for late binding to an exported .NET component than there
is for early binding, so we’ll move on to look at early binding. For this, you need a type library, so add
another parameter, /tlb (see Figure 25-20).

Figure 25-20

Now when you look in the target directory, not only do you have the original MeanCalculator3.dll, but
you’ve also acquired a copy of the MegaCalculator2.dll and two type libraries: MeanCalculator3.tlb
and MegaCalculator2.tlb. You need both of these, so it was good of RegAsm to provide them for you.
You need the MegaCalculator2 type library for the same reason that .NET needed the MegaCalculator
assembly: because it contains the definition of the IMegaCalc interface that MeanCalculator is using.

Testing with a VB6 Application
Turning the tables again, build a VB6 application to see whether this is really going to work. Copy the
type libraries over to your pre-.NET machine (if that is where VB6 is running) and create a Standard EXE

1041

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1042

Chapter 25: Working with Classic COM and Interfaces

project in VB6. Call this project ‘‘CalcApp2.’’ Within this project, you need to create references to the two
new type libraries, so go to the References dialog box, browse to find them, and select them, as shown in
Figure 25-21.

Figure 25-21

At this point, you have everything you need to create the application. Create it as you did for the Visual
Basic CalcApp (see Figure 25-22). As before, the text boxes are txtInput and txtOutput, respectively,
and the command buttons are btnAdd, btnCalculate, and btnReset.

Figure 25-22

Here’s the code behind it:

Option Explicit

Dim mobjCalc As MeanCalculator3.MeanCalc
Dim mobjMega As MegaCalculator2.IMegaCalc

Private Sub btnAdd_Click()
mobjMega.AddInput (txtInput.Text)

End Sub

Private Sub btnCalculate_Click()
mobjMega.DoCalculation
txtOutput.Text = mobjMega.GetResult

End Sub

Private Sub btnReset_Click()
mobjMega.Reset

1042

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1043

Chapter 25: Working with Classic COM and Interfaces

End Sub

Private Sub Form_Load()
Set mobjCalc = New MeanCalculator3.MeanCalc
Set mobjMega = mobjCalc

End Sub

Notice that this time you have to explicitly get a reference to the interface IMegaCalc. The default interface
of the component, MeanCalc, is entirely empty.

Make the executable via the File➪Make CalcApp2.exe menu item, and then move it back to your .NET
machine (unless, of course, you are already there). Run it up and see what happens (see Figure 25-23).

Figure 25-23

Well, that’s not what you expected. What’s happened here? In COM, the location of the DLL containing
the component is available via the registry. In .NET, the assembly always has to be in either the current
directory or the global assembly. All the registry is doing for you here is converting a COM reference to
a .NET one; it is not finding the .NET one for you.

Fortunately, this is easy to sort out. To resolve the problem, move the two assemblies, MegaCalculator3
and MeanCalculator2, to your current directory and try again (see Figure 25-24).

Figure 25-24

That’s better. You’ve established that in the unlikely event of having to run .NET from a COM-oriented
application, Microsoft has provided you with the tools necessary to do the job.

TlbExp
In fact, Microsoft provides you with not one, but two alternative tools. The other one is TlbExp, which, as
its name suggests, is the counterpart of TlbImp. You can use TlbExp to achieve the same result as RegAsm
in the previous section.

1043

Evjen-91361 c25.tex V1 - 04/01/2008 5:24pm Page 1044

Chapter 25: Working with Classic COM and Interfaces

Summary
COM is not going to go away for quite some time, so .NET applications have to interoperate with COM,
and they have to do it well. By the end of this chapter, you have achieved several things:

❑ You made a .NET application early bind to a COM component, using the import features avail-
able in Visual Basic.

❑ You looked at the underlying tool, Tlbimp.

❑ You managed to make the application late bind as well, although it wasn’t a pleasant experience.

❑ You incorporated an ActiveX control into a .NET user interface, again using the features of
Visual Basic.

❑ You looked at using Regasm and TlbExp to export type libraries from .NET assemblies, in order
to enable VB6 applications to use .NET assemblies as if they were COM components.

1044

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1045

Threading

One of the results of the move from 16-bit to 32-bit computing was the ability to write code that
made use of threads, but although Visual C++ developers have been able to use threads for some
time, Visual Basic developers have not had a truly reliable way to do so, until now. Previous
techniques involved accessing the threading functionality available to Visual C++ developers.
Although this worked, actually developing multithreaded code without adequate debugger sup-
port in the Visual Basic environment was nothing short of a nightmare.

For most developers, the primary motivation for multithreading is the ability to perform long-
running tasks in the background while still providing the user with an interactive interface. Another
common scenario is when building server-side code that can perform multiple long-running tasks
at the same time. In that case, each task can be run on a separate thread, enabling all the tasks to run
in parallel.

This chapter introduces you to the various objects in the .NET Framework that enable any .NET
language to be used to develop multithreaded applications.

What Is a Thread?
The term thread really refers to thread of execution. When your program is running, the CPU is
actually running a sequence of processor instructions, one after another. You can think of these
sequential instructions as forming a thread that is being executed by the CPU. A thread is, in effect,
a pointer to the currently executing instruction in the sequence of instructions that make up the
application. This pointer starts at the top of the program and moves through each line, branching
and looping when it comes across decisions and loops. When the program is no longer needed, the
pointer steps outside of the program code and the program is effectively stopped.

Most applications have only one thread, so they are only executing one sequence of instructions.
Some applications have more than one thread, so they can simultaneously execute more than
one sequence of instructions. It is important to realize that each CPU in your computer can only
execute one thread at a time, with the exception of hyperthreaded processors that essentially
contain multiple CPUs inside a single CPU. If you have only one CPU, then your computer can

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1046

Chapter 26: Threading

execute only one thread at a time. Even when an application has several threads, only one can run
at a time in this case. If your computer has two or more CPUs, then each CPU will run a different
thread at the same time. In this case, more than one thread in your application may run at the same
time, each on a different CPU.

Of course, when you have a computer with only one CPU, on which several programs can be actively
running at the same time, the statements in the previous paragraph fly in the face of visual evidence.
Yet it is true that only one thread can execute at a time on a single-CPU machine. What you perceive to
be simultaneously running applications is really an illusion created by the Windows operating system
through a technique called preemptive multithreading, which is discussed later in the chapter.

All applications have at least one thread — otherwise, they could not do any work, as there would be no
pointer to the thread of execution. The principle of a thread is that it enables your program to perform
multiple actions, potentially at the same time. Each sequence of instructions is executed independently
of other threads.

The classic example of multithreaded functionality is Microsoft Word’s spell checker. When the program
starts, the execution pointer begins at the top of the program and eventually gets itself into a position
where you are able to start writing code. However, at some point Word starts another thread and creates
another execution pointer. As you type, this new thread examines the text and flags any spelling errors
as you go, encircling them with a red oval (see Figure 26-1).

The principle of a thread is that it allows your program to perform multiple actions, potentially at the same
tiiiiiime. Each sequence of instructions is executed independently of other threads.

Figure 26-1

Every application has one primary thread, which serves as the main process thread through the applica-
tion. Imagine you have an application that starts up, loads a file from disk, performs some processing on
the data in the file, writes a new file, and then quits. Functionally, it might look like Figure 26-2.

Prim
ary Thread

Start

End

Load file
from disk

Process
the file

Save
results to

disk

Figure 26-2

1046

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1047

Chapter 26: Threading

This simple application needs only a single thread. When the program is told to run, Windows
creates a new process and creates the primary thread. To understand more about exactly what it is that
a thread does, you need to understand how Windows and the computer’s processor deal with different
processes.

Processes, AppDomains, and Threads
Windows is capable of keeping many programs in memory at once and enabling the user to switch
between them. Windows can also run programs in the background, possibly under different user identi-
ties. The capability to run many programs at once is called multitasking.

Each of the programs that your computer keeps in memory runs in a single process. A process is an
isolated region of memory that contains a program’s code and data. All programs run within a process,
and code running in one process cannot access the memory within any other process. This prevents one
program from interfering with any other program.

The process is started when the program starts, and exists for as long as the program is running. When
a process is started, Windows sets up an isolated memory area for the program and loads the program’s
code into that area of memory. It then starts the main thread for the process, pointing it at the first instruc-
tion in the program. From that point, the thread runs the sequence of instructions defined by the program.

Windows supports multithreading, so the main thread might execute instructions that create more threads
within the same process. These other threads run within the same memory space as the main thread — all
sharing the same memory. Threads within a process are not isolated from each other. One thread in a
process can tamper with data being used by other threads in that same process. However, a thread in
one process cannot tamper with data being used by threads in any other processes on the computer.

At this point, you should understand that Windows loads program code into a process and executes that
code on one or more threads. The .NET Framework adds another concept to the mix: the AppDomain. An
AppDomain is very much like a process in concept. Each AppDomain is an isolated region of memory,
and code running in one AppDomain cannot access the memory of another AppDomain.

The .NET Framework introduced the AppDomain to make it possible to run multiple, isolated programs
within the same Windows process. It turns out to be relatively expensive to create a Windows process in
terms of time and memory. It is much cheaper to create a new AppDomain within an existing process.

Remember that Windows has no concept of an AppDomain; it only understands the concept of a process.
The only way to get any code to run under Windows is to load it into a process. This means that each
.NET AppDomain exists within a process. The result is that all .NET code runs within an AppDomain
and within a Windows process (see Figure 26-3).

In most cases, a Windows process contains one AppDomain, which contains your program’s code. The
main thread of the process executes your program’s instructions, so the existence of the AppDomain is
largely invisible to your program.

In some cases, most notably ASP.NET, a Windows process will contain multiple AppDomains, each with
a separate program loaded (see Figure 26-4).

ASP.NET uses this technique to isolate Web applications from each other without having to start an
expensive new Windows process for each virtual root on the server.

1047

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1048

Chapter 26: Threading

Windows process

.NET AppDomain

Program code

Figure 26-3

Windows process

.NET AppDomain

Program code

.NET AppDomain

Program code

Figure 26-4

Note that AppDomains do not change the relationship between a process and threads. Each process
has a main thread and may have other threads. Therefore, even in the ASP.NET process, with
multiple AppDomains, there is only one main thread. Of course, ASP.NET creates other threads, so mul-
tiple Web applications can execute simultaneously, but there is only a single main thread in the entire
process.

Thread Scheduling
It was noted earlier that visual evidence suggests that multiple programs, and thus multiple threads, exe-
cute simultaneously, even on a single-CPU computer. Again, this is an illusion created by the operating
system, through the use of a concept called time slicing or time sharing.

In reality, only one thread runs on each CPU at a time, with the exception of hyperthreaded processors,
which are essentially multiple CPUs in one. In a single-CPU machine, this means that only one thread
is ever executing at any one time. To provide the illusion that many things are happening at the same
time, the operating system never lets any one thread run for very long, giving other threads a chance to
get a bit of work done as well. As a result, it appears that the computer is executing several threads at the
same time.

The length of time each thread is allowed to run is called a quantum. Although a quantum can vary, it
is typically around 20 milliseconds. After a thread has run for its quantum, the OS stops the thread and
allows another thread to run. When that thread reaches its quantum, yet another thread is allowed to run,
and so on. A thread can also give up the CPU before it reaches its quantum. This happens frequently, as

1048

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1049

Chapter 26: Threading

most I/O operations and numerous other interactions with the Windows operating system cause a thread
to give up the CPU.

Because the length of time each thread can run is so short, it isn’t noticeable that threads are being started
and stopped. This is the same concept animators use when creating cartoons or other animated media.
As long as the changes happen faster than you can perceive them, you have the illusion of motion, or, in
this case, simultaneous execution of code.

The technology used by Windows is called preemptive multitasking. It is preemptive because no thread
is ever allowed to run beyond its quantum. The operating system always intervenes and allows other
threads to run. This ensures that no single thread can consume all the processing power on the machine
to the detriment of other threads.

It also means that you can never be sure when your thread will be interrupted and another thread
allowed to run. This is the primary source of multithreading’s complexity, as it can cause race condi-
tions when two threads access the same memory. If you attempt to solve a race condition with a lock, it
can cause deadlock conditions when two threads attempt to access the same lock. You will learn more
about these concepts later. For now, understand that writing multithreaded code can be exceedingly
difficult.

The entity that executes code in Windows is the thread. Therefore, the operating system is primarily
focused on scheduling threads to keep the CPU or CPUs busy at all times. The operating system does not
schedule either processes or AppDomains. Processes and AppDomains are merely regions of memory
that contain your code — threads are what execute the code.

Threads have priorities, and Windows always allows higher priority threads to run before lower priority
threads. In fact, if a higher priority thread is ready to run, Windows will cut short a lower priority thread’s
quantum to allow the higher priority thread to execute sooner. In short, Windows has a bias toward
threads of higher priority.

Setting thread priorities can be useful in situations where you have a process that requires a lot of pro-
cessor muscle but it doesn’t matter how long the process takes to do its work. Setting a program’s thread
to a low priority allows that program to run continuously with little impact on other programs, so if
you need to use Word or Outlook or another application, Windows gives more processor time to these
applications and less time to the low-priority program. This enables the computer to work smoothly and
efficiently for the user, letting the low-priority program only use otherwise wasted CPU power.

Threads may also voluntarily suspend themselves before their quantum is complete. This happens
frequently — for example, when a thread attempts to read data from a file. It takes significant time for
the I/O subsystem to locate the file and start retrieving the data. You cannot have the CPU sitting idle
during that time, especially when other threads could be running. Instead, the thread enters a wait state
to indicate that it is waiting for an external event. The Windows scheduler immediately locates and runs
the next ready thread, keeping the CPU busy while the first thread waits for its data.

Windows also automatically suspends and resumes threads depending on perceived processing needs,
the various priority settings, and so on. Suppose you are running one AppDomain containing two
threads. If you can somehow mark the second thread as dormant (in other words, tell Windows that
it has nothing to do), then there’s no need for Windows to allocate time to it. Effectively, the first thread
receives 100 percent of the processor horsepower available to that process. When a thread is marked as
dormant, it is said to be in a wait state.

1049

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1050

Chapter 26: Threading

Windows is particularly good at managing processes and threads. It is a core part of Windows’ func-
tionality, so its developers have spent a lot of time ensuring that it is super-efficient and as bug-free as
possible. This means that creating and spinning up threads is very easy to do and happens very quickly.
In addition, threads only consume a small amount of system resources. However, there is a caveat you
should be aware of.

The act of stopping one thread and starting another is called context switching. This switching happens
relatively quickly, but only if you are careful with the number of threads you create. Remember that
this happens for each active thread at the end of each quantum (if not before) — so after at most 20
milliseconds. If you spin up too many threads, the operating system spends all its time switching between
different threads, perhaps even getting to a point where the code in the thread doesn’t get a chance to
run because as soon as you’ve started the thread it’s time for it to stop again.

Creating thousands of threads is not the right solution. What you need is a balance between the number
of threads that your application requires and the number of threads that Windows can handle. There is
no magic number or right answer to the question of how many threads you should create. Just be aware
of context switching and experiment a little.

Consider the Microsoft Word spell check example. The thread that performs the spell check is around all
the time. Imagine you have a blank document containing no text. At this point, the spell check thread is
in a wait state. If you type a single word into the document and then pause, Word will pass that word
over to the thread and signal it to start working. The thread uses its own slice of the processor power
to examine the word. If it finds something wrong with it, then it tells the primary thread that a spelling
problem was found and that the user needs to be alerted. At this point, the spell check thread drops back
into a wait state until more text is entered into the document. Word does not spin up the thread whenever
it needs to perform a check — rather, the thread runs all the time, but if it has nothing to do, it drops into
this efficient wait state. (You will learn about how the thread starts again later.)

Again, this is an oversimplification. Word actually ‘‘wakes up’’ the thread at various times, but the basic
principle is sound — the thread is given work to do, it reports the results, and then it starts waiting for the
next chunk of work to do. So why is all this important? If you plan to author multithreaded applications,
then you need to understand how the operating system will be scheduling your threads, as well as the
threads of all other processes on the system. Most important, you need to recognize that your thread can
be interrupted at any time so that another thread can run.

Thread Safety and Thread Affinity
Most of the .NET Framework base class library is not thread safe. Thread-safe code is code that can be
called by multiple threads at the same time without negative side effects. If code is not thread safe, then
calling that code from multiple threads at the same time can result in unpredictable and undesirable side
effects, potentially even crashing your application. When dealing with objects that are not thread safe,
you must ensure that multiple threads never simultaneously interact with the same object.

For example, suppose you have a ListBox control (or any other control) on a Windows Form and you
start updating that control with data from multiple threads. You will find that your results are unde-
pendable. Sometimes you will see all your data in order, but other times it will be out of order, and other
times some data will be missing. This is because Windows Forms controls are not thread safe and don’t
behave properly when used by multiple threads at the same time.

1050

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1051

Chapter 26: Threading

To determine whether any specific method in the .NET Base Class Library is thread safe, refer to the
online help. If no mention of threading appears in association with the method, then the method is not
thread safe.

The Windows Forms subset of the .NET Framework is not only not thread safe, it also has thread affinity.
Thread affinity means that objects created by a thread can only be used by that thread. Other threads
should never interact with those objects. In the case of Windows Forms, this means that you must ensure
that multiple threads never interact with Windows Forms objects (such as forms and controls). This is
important because when you are creating interactive, multithreaded applications, you must ensure that
only the thread that created a form interacts directly with that form.

As you will see, Windows Forms includes technology by which a background thread can safely
make method calls on forms and controls by transferring the method call to the thread that owns
the form.

When to Use Threads
If we regard computer programs as being either application software or service software, we find there
are different motivators for each one. Application software uses threads primarily to deliver a better user
experience. Common examples are as follows:

❑ Microsoft Word — Background spell checker

❑ Microsoft Word — Background printing

❑ Microsoft Outlook — Background sending and receiving of e-mail

❑ Microsoft Excel — Background recalculation

In all of these cases, threads are used to do ‘‘something in the background.’’ This provides a better
user experience. For example, you can still edit a Word document while Word is spooling another
document to the printer. Similarly, you can still read e-mails while Outlook is sending your new e-mail.
As an application developer, you should use threads to enhance the user experience. At some point dur-
ing the application startup, code running in the primary thread will have spun up another thread to be
used for spell checking. As part of the ‘‘allow user to edit the document’’ process, you give the spell
checker thread some words to check. This thread separation means that the user can continue to type,
even though spell checking is still taking place.

Service software uses threads to both deliver scalability and improve the service offered. For example,
imagine you have a web server that receives six incoming connections simultaneously. That server needs
to service each of the requests in parallel; otherwise, the sixth thread would have to wait for you to finish
threads one through five before it was even started. Figure 26-5 shows how IIS might handle incoming
requests.

The primary motivation for multiple threads in a service like this is to keep the CPU busy servicing user
requests even when other user requests are blocked waiting for data or other events. If you have six
user requests, the odds are high that some or all of them will read from files or databases and thus will
spend many milliseconds in wait states. While some of the user requests are in wait states, other user
requests need CPU time and can be scheduled to run. The result is higher scalability because the CPU,
I/O, and other subsystems of the computer are kept as busy as possible at all times.

1051

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1052

Chapter 26: Threading

Time

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Receive
Request

Send
Request Disconnect

Figure 26-5

Designing a Background Task
The specific goals and requirements for background processing in an interactive application are quite
different from a server application. By ‘‘interactive application’’ we are talking about Windows Forms or
Console applications. While a Web application might be somewhat interactive, in fact, all your code runs
on the server, and so Web applications are server applications when it comes to threading.

Interactive Applications
In the case of interactive applications (typically, Windows Forms applications), your design must cen-
ter on having the background thread do useful work, but also interact appropriately (and safely) with
the thread managing the UI. After all, you usually want to let the user know when the background
process starts, stops, and does interesting things over its life. The following list summarizes the basic
requirements for the background thread:

❑ Indicate that the background task has started.

❑ Provide periodic status or progress information.

❑ Indicate that the background task has completed.

❑ Enable the user to request that the background task be canceled.

While every application is different, these four requirements are typical for background threads in an
interactive application.

As noted earlier, most of the .NET Framework is not thread safe, and Windows Forms is even
more restrictive by having thread affinity. You want your background task to be able to notify the
user when it starts, stops, and provides progress information. The fact that Windows Forms has
thread affinity complicates this, because your background thread can never directly interact with Win-
dows Forms objects. Fortunately, Windows Forms provides a formalized mechanism by which code in a
background thread can send messages to the UI thread so that the UI thread can update the display for
the user.

1052

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1053

Chapter 26: Threading

This is done using the BackgroundWorker control, which is found in the Components tab of the Toolbox.
The purpose of the BackgroundWorker control is to start, monitor, and control the execution of back-
ground tasks. The control makes it easy for code on the application’s primary thread to start a task on a
background thread. It also makes it easy for the code running on the background thread to notify the pri-
mary thread of progress and completion. Finally, it provides a mechanism by which the primary thread
can request that the background task be canceled, and for the background thread to notify the primary
thread when it has completed the cancellation.

All this is done in a way that safely transfers control between the primary thread (which can update the
UI) and the background thread (which cannot update the UI).

Server Applications
In the case of server programs, your design should focus on making the background thread as efficient
as possible. Server resources are precious, so the quicker the task can complete, the fewer resources you
will consume over time. Interactivity with a UI is not a concern, as your code is running on a server,
detached from any UI. The key to success in server coding is to avoid or minimize locking, thus maxi-
mizing throughput because your code is never stopped by a lock.

For example, Microsoft went to great pains to design and refine ASP.NET to minimize the number of
locks required from the time a user request hits the server to the time an ASPX page’s code is running.
After the page code is running, no locking occurs, so the page code can just run, top to bottom, as fast
and efficiently as possible.

Avoiding locking means avoiding shared resources or data. This is the dominant design goal for server
code — designing programs to avoid scenarios in which multiple threads need access to the same vari-
ables or other resources. Anytime multiple threads may access the same resource, you need to implement
locking to prevent the threads from colliding with one another. You’ll learn about locking later in the
chapter, as sometimes it is simply unavoidable.

Implementing Threading
At this point, you should have a basic understanding of threads and how they relate to the process
and AppDomain concepts. You should also realize that for interactive applications, multithreading is
not a way to improve performance, but rather a way to improve the end user experience by providing
the illusion that the computer is executing more code simultaneously. In the case of server-side code,
multithreading enables higher scalability by enabling Windows to better utilize the CPU, along with
other subsystems such as I/O.

A Quick Tour
When a background thread is created, it points to a method or procedure that will be executed by the
thread. Remember that a thread is just a pointer to the current instruction in a sequence of instructions to
be executed. In all cases, the first instruction in this sequence is the start of a method or procedure.

When using the BackgroundWorker control, this method is always the control’s DoWork event handler.
Keep in mind that this method can’t be a function. There is no mechanism by which a method running
on one thread can return a result directly to code running on another thread. This means that anytime
you design a background task, you should start by creating a Sub in which you write the code to run on
the background thread.

1053

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1054

Chapter 26: Threading

In addition, because the goals for interactive applications and server programs are different, your
designs for implementing threading in these two environments are different. This means that the way
you design and code the background task will vary.

To demonstrate this, let’s work with a simple method that calculates prime numbers. This implementa-
tion is naive, and can take quite a lot of time when run against larger numbers, so it serves as a useful
example of a long-running background task. Do the following:

1. Create a new Windows Forms Application project named Threading.

2. Add two Button controls, a ListBox and a ProgressBar control to Form1.

3. Add a BackgroundWorker control to Form1.

4. Set its WorkerReportsProgress and WorkerSupportsCancellation properties to True.

5. Add the following to the form’s code:

Public Class Form1

#Region " Shared data "

Private mMin As Integer
Private mMax As Integer
Private mResults As New List(Of Integer)

#End Region

#Region " Primary thread methods "

Private Sub btnStart_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnStart.Click

ProgressBar1.Value = 0
ListBox1.Items.Clear()
mMin = 1
mMax = 10000
BackgroundWorker1.RunWorkerAsync()

End Sub

Private Sub btnCancel_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCancel.Click

BackgroundWorker1.CancelAsync()

End Sub

Private Sub BackgroundWorker1_ProgressChanged(_
ByVal sender As Object, ByVal e As _
System.ComponentModel.ProgressChangedEventArgs) _
Handles BackgroundWorker1.ProgressChanged

ProgressBar1.Value = e.ProgressPercentage

1054

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1055

Chapter 26: Threading

End Sub

Private Sub BackgroundWorker1_RunWorkerCompleted(_
ByVal sender As Object, ByVal e As _
System.ComponentModel.RunWorkerCompletedEventArgs) _
Handles BackgroundWorker1.RunWorkerCompleted

For Each item As String In mResults
ListBox1.Items.Add(item)

Next

End Sub

#End Region

#Region " Background thread methods "

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) _
Handles BackgroundWorker1.DoWork

mResults.Clear()

For count As Integer = mMin To mMax Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
’ the number is not prime
isPrime = False
Exit For

End If
Next
’ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
mResults.Add(count)

End If

Me.BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100))

If Me.BackgroundWorker1.CancellationPending Then
Exit Sub

End If

Next

End Sub

#End Region

End Class

1055

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1056

Chapter 26: Threading

The BackgroundWorker1_DoWork method implements the code to find the prime numbers. This method
is automatically run on a background thread by the BackgroundWorker1 control. Notice that the method
is a Sub, so it returns no value. Instead, it stores its results in a variable — in this case, a List(Of Integer).
The idea is that once the background task is complete, you can do something useful with the results.

When btnStart is clicked, the BackgroundWorker control is told to start the background task. In order
to initialize any data values before launching the background thread, the mMin and mMax variables are set
before the task is started.

Of course, you want to display the results of the background task. Fortunately, the BackgroundWorker
control raises an event when the task is complete. In this event handler you can safely copy the values
from the List(Of Integer)into the ListBox for display to the user.

Similarly, the BackgroundWorker control raises an event to indicate progress as the task runs.
Notice that the DoWork method periodically calls the ReportProgress method. When this method is
called, the progress is transferred from the background thread to the primary thread via the
ProgressChanged event.

Finally, you may have the need to cancel a long-running task. It is never wise to directly terminate a
background task. Instead, you should send a request to the background task, asking it to stop running.
This enables the task to cleanly stop running so it can close any resources it might be using and shut
down properly.

To send the cancel request, call the BackgroundWorker control’s CancelAsync method. This sets the
control’s CancellationPending property to True. Notice how this value is periodically checked by
the DoWork method; and if it is True, you exit the method, effectively canceling the task.

Running the code now demonstrates that the UI remains entirely responsive while the background task
is running, and the results are displayed when available.

Threading Options
Now that you have learned the basics of threading in an interactive application, let’s look at the various
threading options at your disposal. The .NET Framework offers two ways to implement multithreading.
Regardless of which approach you use, you must specify the method or procedure that the thread will
execute when it starts.

First, you can use the thread pool provided by the .NET Framework. The thread pool is a managed pool
of threads that can be reused over the life of your application. Threads are created in the pool on an
as-needed basis, and idle threads in the pool are reused, thus keeping the number of threads created by
your application to a minimum. This is important because threads are an expensive operating system
resource.

The thread pool should be your first choice in most multithreading scenarios.

Many built-in .NET Framework features already use the thread pool. In fact, you have already used it,
because the BackgroundWorker control runs its background tasks on a thread from the thread pool. In
addition, anytime you do an asynchronous read from a file, URL, or TCP socket, the thread pool is used

1056

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1057

Chapter 26: Threading

on your behalf; and anytime you implement a remoting listener, a website, or a Web service, the thread
pool is used. Because the .NET Framework itself relies on the thread pool, it is an optimal choice for most
multithreading requirements.

Second, you can create your own thread object. This can be a good approach if you have a single,
long-running background task in your application. It is also useful if you need fine-grained control over
the background thread. Examples of such control include setting the thread priority or suspending and
resuming the thread’s execution.

Using the Thread Pool
The .NET Framework provides a thread pool in the System.Threading namespace. This thread pool is
self-managing. It creates threads on demand and, if possible, reuses idle threads that already exist in
the pool.

The thread pool will not create an unlimited number of threads. In fact, it creates at most 25 threads per
CPU in the system. If you assign more work requests to the pool than it can handle with these threads,
your work requests are queued until a thread becomes available. This is typically a good feature, as it
helps ensure that your application will not overload the operating system with too many threads.

There are five primary ways to use the thread pool: through the BackgroundWorker control, by calling
BeginXYZ methods, via Delegates, manually via the ThreadPool.QueueUserWorkItem method, or by
using a System.Timers.Timer control. Of the five, the easiest is to use the BackgroundWorker control.

Using the BackgroundWorker Control
The previous quick tour of threading explored the BackgroundWorker control, which enables you to eas-
ily start a task on a background thread, monitor that task’s progress, and be notified when it is complete.
It also enables you to request that the background task cancel itself. All this is done in a safe manner,
with control transferred from the primary thread to the background thread and back again without you
having to worry about the details.

Using BeginXYZ Methods
Many of the .NET Framework objects support both synchronous and asynchronous invocation. For
instance, you can read from a TCP socket by using the Read method or the BeginRead method. The Read
method is synchronous, so you’re blocked until the data is read.

The BeginRead method is asynchronous, so you are not blocked. Instead, the read operation occurs on a
background thread in the thread pool. You provide the address of a method that is called automatically
when the read operation is complete. This callback method is invoked by the background thread, so your
code also ends up running on the background thread in the thread pool.

Behind the scenes, this behavior is all driven by delegates. Rather than explore TCP sockets or
some other specific subset of the .NET Framework class library, let’s move on and look at the underlying
technology itself.

Using Delegates
A delegate is a strongly typed pointer to a function or method. Delegates are the underlying technology
used to implement events within Visual Basic, and they can be used directly to invoke a method, given
just a pointer to that method.

1057

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1058

Chapter 26: Threading

Delegates can be used to launch a background task on a thread in the thread pool. They can also
transfer a method call from a background thread to the UI thread. The BackgroundWorker control uses
this technology behind the scenes on your behalf, but you can use delegates directly as well.

To use delegates, your worker code must be in a method, and you must define a delegate for
that method. The delegate is a pointer for the method, so it must have the same method signature
as the method itself:

Private Delegate Sub TaskDelegate(ByVal min As Integer, ByVal max As Integer)

Private Sub FindPrimesViaDelegate(ByVal min As Integer, ByVal max As Integer)

mResults.Clear()

For count As Integer = min To max Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
’ the number is not prime
isPrime = False
Exit For

End If
Next
’ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
mResults.Add(count)

End If

Next
End Sub

Running background tasks via delegates enables you to pass strongly typed parameters to the back-
ground task, thus clarifying and simplifying your code. Now that you have a worker method and
corresponding delegate, you can add a new button and write code in its click event handler to use
it to run FindPrimes on a background thread:

Private Sub btnDelegate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnDelegate.Click

’ run the task
Dim worker As New TaskDelegate(AddressOf FindPrimesViaDelegate)
worker.BeginInvoke(1, 10000, AddressOf TaskComplete, Nothing)

End Sub

First, you create an instance of the delegate, setting it up to point to the FindPrimesViaDelegate method.
Next, you call BeginInvoke on the delegate to invoke the method.

1058

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1059

Chapter 26: Threading

The BeginInvoke method is the key here. BeginInvoke is an example of the BeginXYZ methods discussed
earlier; recall that they automatically run the method on a background thread in the thread pool. This is
true for BeginInvoke as well, meaning that FindPrimes runs in the background and the UI thread is not
blocked, so it can continue to interact with the user.

Notice all the parameters passed to BeginInvoke. The first two correspond to the parameters defined on
the delegate — the min and max values that should be passed to FindPrimes. The next parameter is the
address of a method that is automatically invoked when the background thread is complete. The final
parameter (to which you have passed Nothing) is a mechanism by which you can pass a value from your
UI thread to the method that is invoked when the background task is complete.

This means that you need to implement the TaskComplete method. This method is invoked when the
background task is complete. It runs on the background thread, not on the UI thread, so remember that
this method cannot interact with any Windows Forms objects. Instead, it will contain the code to invoke
an UpdateDisplay method on the UI thread via the form’s BeginInvoke method:

Private Sub TaskComplete(ByVal ar As IAsyncResult)

Dim update As New UpdateDisplayDelegate(AddressOf UpdateDisplay)
Me.BeginInvoke(update)

End Sub

Private Delegate Sub UpdateDisplayDelegate()

Private Sub UpdateDisplay()

For Each item As String In mResults
ListBox1.Items.Add(item)

Next

End Sub

Notice how a delegate is used to invoke the UpdateDisplay method as well, thus illustrating how del-
egates can be used with a Form object’s BeginInvoke method to transfer control back to the primary
thread. The same technique could be used to enable the background task to notify the primary thread of
progress as the task runs.

Now when you run the application, you’ll have a responsive UI, with the FindPrimesViaDelegate
method running in the background within the thread pool.

Manually Queuing Work
The final option for using the thread pool is to manually queue items for the thread pool to process. This
is done by calling ThreadPool.QueueUserWorkItem. This is a Shared method on the ThreadPool class
that directly places a method into the thread pool to be executed on a background thread.

This technique does not allow you to pass arbitrary parameters to the worker method. Instead, it requires
that the worker method accept a single parameter of type Object, through which you can pass an

1059

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1060

Chapter 26: Threading

arbitrary value. You can use this to pass multiple values by declaring a class with all your parameter
types. Add the following class inside the Form1 class:

Private Class params
Public min As Integer
Public max As Integer

Public Sub New(ByVal min As Integer, ByVal max As Integer)
Me.min = min
Me.max = max

End Sub

End Class

Then you can make FindPrimes accept this value as an Object:

Private Sub FindPrimesInPool(ByVal state As Object)
Dim params As params = DirectCast(state, params)
mResults.Clear()

For count As Integer = params.min To params.max Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
’ the number is not prime
isPrime = False
Exit For

End If
Next
’ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
mResults.Add(count)

End If

Next

Dim update As New UpdateDisplayDelegate(AddressOf UpdateDisplay)
Me.BeginInvoke(update)

End Sub

This is basically the same method used with delegates, but it accepts an object parameter, rather than the
strongly typed parameters. Notice that the method uses a delegate to invoke the UpdateDisplay method
on the UI thread when the task is complete. When you manually put a task on the thread pool, there is
no automatic callback to a method when the task is complete, so you must do the callback in the worker
method itself.

1060

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1061

Chapter 26: Threading

Now you can manually queue the worker method to run in the thread pool within the Click event
handler:

Private Sub btnPool_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnPool.Click

’ run the task
System.Threading.ThreadPool.QueueUserWorkItem(_
AddressOf FindPrimesInPool, New params(1, 10000))

End Sub

The QueueUserWorkItem method accepts the address of the worker method — in this case, FindPrimes.
This worker method must accept a single parameter of type Object or you will get a compile
error here.

The second parameter to QueueUserWorkItem is the object to be passed to the worker method when it is
invoked on the background thread. In this case, you’re passing a new instance of the params class defined
earlier. This enables you to pass your parameter values to FindPrimes.

When you run this code, you will again find that you have a responsive UI, with FindPrimes running on
a background thread in the thread pool.

Using System.Timers.Timer
Beyond BeginXYZ methods, delegates, and manually queuing work items, there are various other ways
to get your code running in the thread pool. One of the most common is using a special Timer control.
The Elapsed event of this control is raised on a background thread in the thread pool.

This is different from the System.Windows.Forms.Timer control, where the Tick event is raised on the UI
thread. The difference is very important to understand, because you can’t directly interact with Windows
Forms objects from background threads. Code running in the Elapsed event of a System.Timers.Timer
control must be treated like any other code running on a background thread.

The exception to this is if you set the SynchronizingObject property on the control to a Windows
Forms object such as a Form or a Control. In this case, the Elapsed event is raised on the appropri-
ate UI thread, rather than on a thread in the thread pool. The result is basically the same as using
System.Windows.Forms.Timer instead.

Manually Creating a Thread
Thus far, we have been working with the .NET thread pool. You can also manually create and control
background threads through code. To manually create a thread, you need to create and start a Thread
object. This looks something like the following:

’ run the task
Dim worker As New Thread(AddressOf FindPrimes)
worker.Start()

1061

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1062

Chapter 26: Threading

While this seems like the obvious way to do multithreading, the thread pool is typically the preferred
approach because there is a cost to creating and destroying threads, and the thread pool helps avoid
that cost by reusing threads when possible. When you manually create a thread as shown here, you
must pay the cost of creating the thread each time or implement your own scheme to reuse the threads
you create.

However, manual creation of threads can be useful. The thread pool is designed to be used for back-
ground tasks that run for a while and then complete, thus enabling the background thread to be reused
for subsequent background tasks. If you need to run a background task for the entire duration of your
application, the thread pool is not ideal because that thread would never become available for reuse. In
such a case, you are better off creating the background thread manually.

An example of this is the aforementioned spell checker in Word, which runs as long as you’re editing a
document. Running such a task on the thread pool would make little sense, as the task will run as long
as the application, so instead it should be run on a manually created thread, leaving the thread pool
available for shorter-running tasks.

The other primary scenario for manually creating threads is when you want to be able to interact with
the Thread object as it is running. You can use various methods on the Thread object to interact with and
control the background thread. These are described in the following table:

Method Description

Abort Stops the thread. This is not recommended, as no cleanup occurs. This is not a
graceful shutdown of the thread.

ApartmentState Sets the COM apartment type used by this thread — important if you’re using
COM interop in the background task

Join Blocks your current thread until the background thread is complete

Priority Enables you to raise or lower the priority of the background thread so Windows
will schedule it to get more or less CPU time relative to other threads

Sleep Causes the thread to be suspended for a specified period of time

Suspend Suspends a thread — temporarily stopping it without terminating the thread

Resume Restarts a suspended thread

Many other methods are available on the Thread object as well; consult the online help for more details.
You can use these methods to control the behavior and lifetime of the background thread, which can be
useful in advanced threading scenarios.

Shared Data
In most multithreading scenarios, you have data in your main thread that needs to be used by the
background task on the background thread. Likewise, the background task typically generates data

1062

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1063

Chapter 26: Threading

that is needed by the main thread. These are examples of shared data, or data that is used by multiple
threads.

Remember that multithreading means you have multiple threads within the same process, and in .NET
within the same AppDomain. Because memory within an AppDomain is common across all threads in
that AppDomain, it is very easy for multiple threads to access the same objects or variables within your
application.

For example, in our original prime example, the background task needed the min and max values
from the main thread, and all the implementations have used a List(Of Integer)to transfer results
back to the main thread when the task was complete. These are examples of shared data. Note that we
did not do anything special to make the data shared — the variables were shared by default.

When you are writing multithreaded code, the trickiest issue is managing access to shared data within
your AppDomain. You do not want, for example, two threads writing to the same piece of memory
at the same time. Equally, you do not want a group of threads reading memory that another thread is
in the process of changing. This management of memory access is called synchronization. It is properly
managing synchronization that makes writing multithreaded code difficult.

When multiple threads want to simultaneously access a common bit of shared data, use synchronization
to control things. This is typically done by blocking all but one thread, so only one thread can access the
shared data. All other threads are put into a wait state by using a blocking operation of some sort. Once
the nonblocked thread is done using the shared data, it releases the block, enabling another thread to
resume processing and to use the shared data.

The process of releasing the block is often called an event. When we say ‘‘event,’’ we are not talking
about a Visual Basic event. Although the naming convention is unfortunate, the principle is the same —
something happens and we react to it. In this case, the nonblocked thread causes an event, which releases
some other thread so it can access the shared data.

Although blocking can be used to control the execution of threads, it is primarily used to control access
to resources, including memory. This is the basic idea behind synchronization — if you need something,
you block until you can access it.

Synchronization is expensive and can be complex. It is expensive because it stops one or more threads
from running while another thread uses the shared data. The whole point of having multiple threads is
to do more than one thing at a time, and if you are constantly blocking all but one thread, then you lose
this benefit.

It can be complex because there are many ways to implement synchronization. Each technique is appro-
priate for a certain class of synchronization problem, and using the wrong one in the wrong place
increases the cost of synchronization.

It is also quite possible to create deadlocks, whereby two or more threads end up permanently blocked. You
have undoubtedly seen examples of this. Pretty much anytime a Windows application totally locks up
and must be stopped by the Task Manager, you are seeing an example of poor multithreading imple-
mentation. The fact that this happens even in otherwise high-quality commercial applications (such as
Microsoft Outlook) is confirmation that synchronization can be very hard to get right.

1063

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1064

Chapter 26: Threading

Avoid Sharing Data
Because synchronization has so many downsides in terms of performance and complexity, the best thing
you can do is avoid or minimize its use. If at all possible, design your multithreaded applications to avoid
reliance on shared data, and to maintain tight control over the use of any shared data that is required.

Typically, some shared data is unavoidable, so the question becomes how to manage that shared data to
avoid or minimize synchronization. Two primary schemes are used for this purpose.

Transferring Data Copies
The first approach is to avoid sharing of data by always passing references to the data between threads.
If you also ensure that neither thread uses the same reference, then each thread has its own copy of the
data, and no thread needs access to data being used by any other threads.

This is exactly what you did in the prime example where you started the background task via
a delegate:

Dim worker As New TaskDelegate(AddressOf FindPrimesViaDelegate)
worker.BeginInvoke(1, 10000, AddressOf TaskComplete, Nothing)

The min and max values are passed as ByVal parameters, meaning they are copied and provided to the
indPrimes method. No synchronization is required here because the background thread never tries
to access the values from the main thread. We passed copies of the values a different way when we
manually started the task in the thread pool:

System.Threading.ThreadPool.QueueUserWorkItem(_
AddressOf FindPrimesInPool, New params(1, 10000))

In this case, we created a params object into which we put the min and max values. Again, those values
were copied before they were used by the background thread. The FindPrimesInPool method never
attempted to access any parameter data being used by the main thread.

Transferring Data Ownership
What we have done so far works great for variables that are value types, such as Integer, and immutable
objects, such as String. It will not work for reference types, such as a regular object, because reference
types are never passed by value, only by reference.

To use reference types, we need to change our approach. Rather than return a copy of the data, we will
return a reference to the object containing the data. Then we ensure that the background task stops using
that object, and starts using a new object. As long as different threads are not simultaneously using the
same objects, there’s no conflict.

You can enhance the prime application to provide the prime numbers to the UI thread as it finds them,
rather than in a batch at the end of the process. To see how this works, we will alter the original code
based on the BackgroundWorker control. That is the easiest, and typically the best, way to start a back-
ground task, so we will use it as a base implementation.

The first thing to do is alter the DoWork method so it periodically returns results. Rather than use the
shared mResults variable, we’ll use a local List(Of Integer)variable to store the results. Each time we

1064

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1065

Chapter 26: Threading

have enough results to report, we’ll return that List(Of Integer)to the UI thread, and create a new
List(Of Integer)for the next batch of values. This way, we are never sharing the same object between
two threads. The required changes are highlighted:

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) _
Handles BackgroundWorker1.DoWork

’mResults.Clear()
Dim results As New List(Of Integer)

For count As Integer = mMin To mMax Step 2
Dim isPrime As Boolean = True

For x As Integer = 1 To CInt(count / 2)
For y As Integer = 1 To x

If x * y = count Then
’ the number is not prime
isPrime = False
Exit For

End If
Next
’ short-circuit the check
If Not isPrime Then Exit For

Next

If isPrime Then
’mResults.Add(count)
results.Add(count)
If results.Count >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

results = New List(Of Integer)
End If

End If

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100))

If BackgroundWorker1.CancellationPending Then
Exit Sub

End If

Next

BackgroundWorker1.ReportProgress(100, results)

End Sub

The results are now placed into a local List(Of Integer). Anytime the list has 10 values, we return it
to the primary thread by calling the BackgroundWorker control’s ReportProgress method, passing the
List(Of Integer)as a parameter.

1065

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1066

Chapter 26: Threading

The important thing here is to then immediately create a new List(Of Integer)for use in the DoWorker
method. This ensures that the background thread is never trying to interact with the same List(Of
Integer)object as the UI thread.

Now that the DoWork method is returning results, alter the code on the primary thread to use those
results:

Private Sub BackgroundWorker1_ProgressChanged(_
ByVal sender As Object, _
ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
Handles BackgroundWorker1.ProgressChanged

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

For Each item As String In CType(e.UserState, List(Of Integer))
ListBox1.Items.Add(item)

Next
End If

End Sub

Anytime the ProgressChanged event is raised, the code whether the background task provided a state
object. If it did, then you cast it to a List(Of Integer)and update the UI to display the values in
the object.

At this point, you no longer need the RunWorkerCompleted method, so it can be removed or commented
out. If you run the code at this point, not only is the UI continually responsive, but the results from the
background task are displayed as they are discovered, rather than in a batch at the end of the process. As
you run the application, resize and move the form while the prime numbers are being found. Although
the displaying of the data may be slowed down as you interact with the form (because the UI thread can
only do so much work), the generation of the data continues independently in the background and is not
blocked by the UI thread’s work.

When you rely on transferring data ownership, you ensure that only one thread can access the data at
any given time by ensuring that the background task never uses an object once it returns it to the primary
thread.

Sharing Data with Synchronization
So far, you have seen ways to avoid the sharing of data, but sometimes you’ll have a requirement for
data sharing, in which case you’ll be faced with the complex world of synchronization.

As discussed earlier, incorrect implementation of synchronization can cause performance issues, dead-
locks, and application crashes. Success is dependent on serious attention to detail. Problems may not
manifest in testing, but when they happen in production, they are often catastrophic. You cannot test to
ensure proper implementation; you must prove it in the same way mathematicians prove mathematical
truths — by careful logical analysis of all possibilities.

1066

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1067

Chapter 26: Threading

Built-In Synchronization Support
Some objects in the .NET Framework have built-in support for synchronization, so you don’t need to
write it yourself. In particular, most of the collection-oriented classes have optional support for synchro-
nization, including Queue, Stack, Hashtable, ArrayList, and more.

Rather than transfer ownership of List(Of Integer)objects from the background thread to the UI thread
as shown in the last example, you can use the synchronization provided by the ArrayList object to help
mediate between the two threads.

To use a synchronized ArrayList, you need to change from the List(Of Integer)to an ArrayList.
Additionally, the ArrayList must be created a special way:

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) _
Handles BackgroundWorker1.DoWork

’mResults.Clear()
’Dim results As New List(Of Integer)
Dim results As ArrayList = ArrayList.Synchronized(New ArrayList)

What you are doing here is creating a normal ArrayList, and then having the ArrayList class ‘‘wrap’’
it with a synchronized wrapper. The result is a thread-safe ArrayList object that automatically prevents
multiple threads from interacting with the data in invalid ways.

Now that the ArrayList is synchronized, you don’t need to create a new one each time you return the
values to the primary thread. Comment out the following line in the DoWork method:

If results.Count >= 10 Then
BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

’results = New List(Of Integer)
End If

Finally, update the code on the primary thread to properly display the data from the ArrayList:

Private Sub BackgroundWorker1_ProgressChanged(_
ByVal sender As Object, _
ByVal e As System.ComponentModel.ProgressChangedEventArgs) _
Handles BackgroundWorker1.ProgressChanged

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
For index As Integer = ListBox1.Items.Count To result.Count - 1
ListBox1.Items.Add(result(index))

Next
End If

End Sub

1067

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1068

Chapter 26: Threading

Because the entire list is accessible at all times, you need only copy the new values to the ListBox, rather
than loop through the entire list. This works out well anyway, because the For Each statement isn’t thread
safe even with a synchronized collection. To use the For Each statement, you would need to enclose the
entire loop inside a SyncLock block:

Dim result As ArrayList = CType(e.UserState, ArrayList)
SyncLock result.SyncRoot
For Each item As String in result

ListBox1.Items.Add(item)
Next

End SyncLock

The SyncLock statement in Visual Basic is used to provide an exclusive lock on an object. Here it is being
used to get an exclusive lock on the ArrayList object’s SyncRoot. This means all the code within the
SyncLock block can be sure that it is the only code interacting with the contents of the ArrayList. No
other threads can access the data while your code is in this block.

Synchronization Objects
While many collection objects optionally provide support for synchronization, most objects in the .NET
Framework or in third-party libraries are not thread safe. To safely share these objects and classes in a
multithreaded environment, you must manually implement synchronization.

To manually implement synchronization, you must rely on help from the Windows operating system.
The .NET Framework includes classes that wrap the underlying Windows operating system concepts, so
you don’t need to call Windows directly. Instead, you use the .NET Framework synchronization objects.

Synchronization objects have their own special terminology. Most of these objects can be acquired and
released. In other cases, you wait on an object until it is signaled.

For objects that can be acquired, the idea is that when you have the object, you have a lock. Any other
threads trying to acquire the object are blocked until you release the object. These types of synchroniza-
tion objects are sort of like a hot potato — only one thread has it at any given time and other threads are
waiting for it. No thread should hold onto such an object any longer than necessary, as that slows down
the whole system.

The other class of objects comprises those that wait on the object — which means your thread is blocked.
Some other thread will signal your object, which releases you (to become unblocked). Many threads can
be waiting on the same object, and when the object is signaled, all the blocked threads are released. This
is basically the exact opposite of an acquire/release type object. The following table lists the primary
synchronization objects in the .NET Framework:

Object Model Description

AutoResetEvent Wait/Signal Allows a thread to release other threads that are
waiting on the object

Interlocked N/A Allows multiple threads to safely increment and
decrement values that are stored in variables
accessible to all the threads

1068

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1069

Chapter 26: Threading

Object Model Description

ManualResetEvent Wait/Signal Allows a thread to release other threads that are
waiting on the object

Monitor Acquire/Release Defines an exclusive application-level lock
whereby only one thread can hold the lock at any
given time

Mutex Acquire/Release Defines an exclusive systemwide lock whereby
only one thread can hold the lock at any given time

ReaderWriterLock Acquire/Release Defines a lock whereby many threads can read
data, but only a single writer is allowed

ReaderWriterLockSlim Acquire/Release Defines a lock whereby many threads can read
data, but exclusive access is provided to one
thread for writing data. This is a new object in the
.NET Framework 3.5.

Exclusive Locks and the SyncLock Statement
Perhaps the easiest type of synchronization to understand and implement is an exclusive lock. When one
thread holds an exclusive lock, no other thread can obtain that lock. Any other thread attempting to
obtain the lock is blocked until the lock becomes available.

There are two primary technologies for exclusive locking: the monitor and mutex objects. The monitor
object allows a thread in a process to block other threads in the same process. The mutex object allows
a thread in any process to block threads in the same process or in other processes. Because a mutex has
systemwide scope, it is a more expensive object to use and should only be used when cross-process
locking is required.

Visual Basic includes the SyncLock statement, which is a shortcut to access a monitor object. While it
is possible to directly create and use a System.Threading.Monitor object, it is far simpler to just use
the SyncLock statement (briefly mentioned in the ArrayList object discussion), so that is what we will
do here.

Exclusive locks can be used to protect shared data so that only one thread at a time can access the data.
They can also be used to ensure that only one thread at a time can run a specific bit of code. This exclu-
sive bit of code is called a critical section. While critical sections are an important concept in computer
science, it is far more common to use exclusive locks to protect shared data, and that is what this chapter
focuses on.

You can use an exclusive lock to lock virtually any shared data. For example, you can change
your code to use the SyncLock statement instead of a synchronized ArrayList. To do so, change
the declaration of the ArrayList in the DoWork method so it is global to the form and no longer
synchronized:

Private results As New ArrayList

1069

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1070

Chapter 26: Threading

This means you are responsible for managing all synchronization yourself. First, in the DoWork method,
protect all access to the results variable:

If isPrime Then
Dim numberOfResults As Integer
SyncLock results.SyncRoot

results.Add(count)
numberOfResults = results.Count

End SyncLock
If numberofresults >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

End If
End If

Notice how the code has changed so both the Add and Count method calls are contained within a SyncLock
block. This ensures that no other thread can be interacting with the ArrayList while you make these calls.
The SyncLock statement acts against an object — in this case, results.SyncRoot.

The trick to making this work is to ensure that all code throughout the application wraps any access
to results within the SyncLock statement. If any code doesn’t follow this protocol, then there will be
conflicts between threads!

Because SyncLock acts against a specific object, you can have many active SyncLock statements, each
working against a different object:

SyncLock obj1
’ blocks against obj1

End SyncLock

SyncLock obj2
’ blocks against obj2

End SyncLock

Note that neither obj1 nor obj2 is altered or affected by this at all. The only thing you are saying here is
that while you’re within a SyncLock obj1 code block, any other thread attempting to execute a SyncLock
obj1 statement will be blocked until you’ve executed the End SyncLock statement.

Next, change the UI update code in the ProgressChanged method:

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
SyncLock result
For index As Integer = ListBox1.Items.Count To result.Count - 1

ListBox1.Items.Add(result(index))
Next

End SyncLock
End If

Again, notice how the interaction with the ArrayList is contained within a SyncLock block. While this
version of the code will operate just fine, it is very slow. In fact, you can pretty much stall out the whole

1070

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1071

Chapter 26: Threading

processing by continually moving or resizing the window while it runs. This is because the UI thread
is blocking the background thread via the SyncLock call, and if the UI thread is totally busy moving or
resizing the window, then the background thread can be entirely blocked during that time as well.

Reader-Writer Locks
While exclusive locks are an easy way to protect shared data, they are not always the most efficient.
Your application will often contain some code that is updating shared data, and other code that is only
reading from shared data. Some applications do a great deal of data reading and only periodic data
changes.

Because reading data does not change anything, there is nothing wrong with having multiple threads
read data at the same time, as long as you can ensure that no threads are updating data while you are
trying to read. In addition, you typically only want one thread updating at a time.

What you have then is a scenario in which you want to allow many concurrent readers, but if the data is
to be changed, then one thread must temporarily gain exclusive access to the shared memory. This is the
purpose behind the ReaderWriterLock and ReaderWriterLockSlim objects.

Using a ReaderWriterLock, you can request either a read lock or a write lock. If you obtain a read lock,
you can safely read the data. Other threads can simultaneously obtain read locks and safely read the data.

Before you can update data, you must obtain a write lock. When you request a write lock, any other
threads requesting either a read or write lock are blocked. If any outstanding read or write locks are in
progress, then you will be blocked until they are released. When there are no outstanding locks (read or
write), you will be granted the write lock. No other locks are granted until you release the write lock, so
your write lock is an exclusive lock.

After you release the write lock, any pending requests for other locks are granted, allowing either another
single writer to access the data or multiple readers to simultaneously access the data. You can adapt the
sample code to use a System.Threading.ReaderWriterLock object. Start by using the code that was just
created based on the SyncLock statement, with a Queue object as shared data. First, create an instance of
the ReaderWriterLock in a form-wide variable:

’ lock object
Private mRWLock As New System.Threading.ReaderWriterLock

Because a ReaderWriterLock is just an object, you can have many lock objects in an application if needed.
You could use each lock object to protect different bits of shared data. Then you can change the DoWork
method to make use of this object instead of the SyncLock statement:

If isPrime Then
Dim numberOfResults As Integer
mRWLock.AcquireWriterLock(100)
Try

results.Add(count)
Finally

mRWLock.ReleaseWriterLock()
End Try
mRWLock.AcquireReaderLock(100)
Try

1071

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1072

Chapter 26: Threading

numberOfResults = results.Count
Finally

mRWLock.ReleaseReaderLock()
End Try
If numberOfResults >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

End If
End If

Before you write or alter the data in the ArrayList, you need to acquire a writer lock. Before reading any
data from the ArrayList, you need to acquire a reader lock.

If any thread holds a reader lock, then attempts to get a writer lock are blocked. When any thread requests
a writer lock, any other requests for a reader lock are blocked until after that thread gets (and releases) its
writer lock. In addition, if any thread has a writer lock, then other threads requesting a reader (or writer)
lock are blocked until that writer lock is released.

The result is that there can be only one writer, and while the writer is active, there are no readers. How-
ever, if no writer is active, then there can be many concurrent reader threads running at the same time.

Note that all work done while a lock is held is contained within a Try..Finally block. This ensures that
the lock is released regardless of any exceptions you might encounter.

It is critical to always release locks you are holding. Failure to do so may cause your
application to become unstable and crash or lock up unexpectedly.

Failure to release a lock will almost certainly block other threads, possibly forever — causing a dead-
lock situation. The alternate fate is that the other threads will request a lock and time out, throwing an
exception and causing the application to fail. Either way, when you do not release your locks, you cause
application failure.

Now update the code in the ProgressChanged method:

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
mRWLock.AcquireReaderLock(100)
Try
For index As Integer = ListBox1.Items.Count To result.Count - 1

ListBox1.Items.Add(result(index))
Next

Finally
mRWLock.ReleaseReaderLock()

End Try
End If

Again, before reading from results, you get a reader lock, releasing it in a Finally block once you’re
done. This code will run a bit smoother than the previous implementation, but the UI thread can be kept

1072

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1073

Chapter 26: Threading

busy with resizing or moving the window, thus causing it to hold the reader lock and preventing the
background thread from running, as it will not be able to acquire a writer lock.

A brand-new lock available to you in version 3.5 of the .NET Framework is the ReaderWriterLockSlim
object. This new lock was introduced to allow for upgradeable reads. The previous ReaderWriterLock
has some issues associated with it, such as a poorly designed non-atomic upgrade method. In addition
to this, the lock was considered to have rather poor performance. The new ReaderWriterLock also gives
precedence to locks in a write mode, rather than a read or an upgradable read mode. The reasoning for
this is that it is assumed that write locks are going to occur less frequently, so this precedence structure
would allow for better overall performance.

Microsoft was unable to fix the ReaderWriterLock in the previous .NET Framework and thus introduced
a brand-new lock. The new ReaderWriterLockSlim supports the methods shown in the following table:

Method Description

Dispose Releases all the resources held by the object

EnterReadLock Tries to acquire a read lock

EnterUpgradeableReadLock Tries to acquire a lock in an upgradable mode

EnterWriteLock Tries to acquire a write lock

ExitReadLock Exits the read lock

ExitUpgradeableReadLock Exits the upgradable read lock

ExitWriteLock Exits the write lock

TryEnterReadLock Tries to enter a lock in read mode. You can optionally set a
timeout period on the try.

TryEnterUpgradeableReadLock Tries to enter a lock in an upgradable read mode. You can
optionally set a timeout period on the try.

TryEnterWriteLock Tries to enter a lock in a write mode. You can optionally set a
timeout period on the try.

As you can see from the list of methods, the new ReaderWriterLockSlim supports three modes: read,
upgradable read, and write. The new upgradable read mode enables your code to safely transition from
read to write modes. This lock supports an atomic upgrade path and won’t cause deadlocks like the older
ReaderWriterLock. Note that only one thread is allowed in the upgradeable read mode no matter how
many threads are contained in a read mode. This is what enables the atomic upgrade path.

The following code shows an example of using the new ReaderWriterLockSlim object:

Imports System.Threading

Module Module1
Dim rwl As New ReaderWriterLockSlim()

Sub Main()

1073

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1074

Chapter 26: Threading

Dim th1 As New Thread(AddressOf Read)
th1.Start("1")

Dim th2 As New Thread(AddressOf Read)
th2.Start("2")

Dim th3 As New Thread(AddressOf Write)
th3.Start("3")

Dim th4 As New Thread(AddressOf Write)
th4.Start("4")

Dim th5 As New Thread(AddressOf Write)
th5.Start("5")

End Sub

Sub Read(ByVal ThreadID As String)
While (True)

Console.WriteLine("Thread " & ThreadID & _
" has entered the ReadLock")

rwl.EnterReadLock()
Thread.Sleep(100)
Console.WriteLine("Thread " & ThreadID & _

" has exited the ReadLock")
rwl.ExitReadLock()

End While
End Sub

Sub Write(ByVal ThreadID As String)
While (True)

rwl.EnterUpgradeableReadLock()
Console.WriteLine("Thread " & ThreadID & _

" has entered the UpgradeableReadLock")
rwl.EnterWriteLock()
Console.WriteLine("Thread " & ThreadID & _

" has entered the WriteLock")
Console.WriteLine("Thread " & ThreadID & _

" has the write lock.")
rwl.ExitWriteLock()
Console.WriteLine("Thread " & ThreadID & _

" has exited the WriteLock")
rwl.ExitUpgradeableReadLock()
Console.WriteLine("Thread " & ThreadID & _

" has exited the UpgradeableReadLock")
Thread.Sleep(1000)

End While
End Sub

End Module

From this example, threads can very easily obtain a read lock. Getting a write lock requires the thread to
enter the UpgradableReadLock method, and the thread waits in the read mode until it is able to enter into
the upgradeable read mode (as only one thread is allowed in this mode at any given time). From there,

1074

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1075

Chapter 26: Threading

it can enter into the write mode; and upon exiting, not only does the thread have to exit from the write
mode, but it also must exit from the upgradeable read mode.

AutoReset Events
Both the Monitor (SyncLock) and ReaderWriterLock objects follow the acquire/release model, whereby
threads are blocked until they can acquire control of the appropriate lock.

You can flip the paradigm by using the AutoResetEvent and ManualResetEvent objects. With these
objects, threads voluntarily wait on the event object. While waiting, they are blocked and do no work.
When another thread signals (raises) the event, any threads waiting on the event object are released and
do work.

You can signal an event object by calling the object’s Set method. To wait on an event object, a thread
calls that object’s WaitOne method. This method blocks the thread until the event object is signaled (the
event is raised).

Event objects can be in one of two states: signaled or not signaled. When an event object is signaled,
threads waiting on the object are released. If a thread calls WaitOne on an event object that is signaled,
then the thread isn’t blocked and continues running. However, if a thread calls WaitOne on an event
object that is not signaled, then the thread is blocked until some other thread calls that object’s Set
method, thus signaling the event.

AutoResetEvent objects automatically reset themselves to the not signaled state as soon as any thread
calls the WaitOne method. In other words, if an AutoResetEvent is not signaled and a thread calls
WaitOne, then that thread will be blocked. Another thread can then call the Set method, thus signal-
ing the event. This both releases the waiting thread and immediately resets the AutoResetEvent object to
its not signaled state.

You can use an AutoResetEvent object to coordinate the use of shared data between threads. Change the
ReaderWriterLock declaration to declare an AutoResetEvent instead:

Dim mWait As New System.Threading.AutoResetEvent(False)

By passing False to the constructor, you are telling the event object to start out in its not signaled state.
Were you to pass True, it would start out in the signaled state, and the first thread to call WaitOne would
not be blocked, but would trigger the event object to automatically reset its state to not signaled.

Next, you can update DoWork to use the event object. In order to ensure that both the primary and back-
ground threads do not simultaneously access the ArrayList object, use the AutoResetEvent object to
block the background thread until the UI thread is done with the ArrayList:

If isPrime Then
Dim numberOfResults As Integer
results.Add(count)
numberOfResults = results.Count
If numberOfResults >= 10 Then

BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

mWait.WaitOne()
End If

End If

1075

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1076

Chapter 26: Threading

This code is much simpler than using the ReaderWriterLock. In this case, the background thread assumes
it has exclusive access to the ArrayList until the ReportProgress method is called to invoke the primary
thread to update the UI. When that occurs, the background thread calls the WaitOne method, so it is
blocked until released by the primary thread.

In the UI update code, change the code to release the background thread:

ProgressBar1.Value = e.ProgressPercentage
If e.UserState IsNot Nothing Then

Dim result As ArrayList = CType(e.UserState, ArrayList)
For index As Integer = ListBox1.Items.Count To result.Count - 1
ListBox1.Items.Add(result(index))

Next
mWait.Set()

End If

This is done by calling the Set method on the AutoResetEvent object, thus setting it to its signaled
state. This releases the background thread so it can continue to work. Notice that the Set method isn’t
called until after the primary thread is completely done working with the ArrayList object.

As with the previous examples, if you continually move or resize the form, then the UI thread becomes
so busy it will never release the background thread.

ManualReset Events
A ManualResetEvent object is very similar to the AutoResetEvent just used. The difference is that with
a ManualResetEvent object, you are in total control over whether the event object is set to its signaled or
not signaled state. The state of the event object is never altered automatically.

This means you can manually call the Reset method, rather than rely on it to occur automatically. The
result is that you have more control over the process and can potentially gain some efficiency.

To see how this works, change the declaration to create a ManualResetEvent:

’ wait object
Dim mWait As New System.Threading.ManualResetEvent(True)

Notice that you’re constructing it with a True parameter. This means that the object will initially be in its
signaled state. Until it is reset to a nonsignaled state, WaitOne calls won’t block on this object.

Change the DoWork method as follows:

If isPrime Then
mWait.WaitOne()
Dim numberOfResults As Integer
results.Add(count)
numberOfResults = results.Count
If numberOfResults >= 10 Then

mWait.Reset()
BackgroundWorker1.ReportProgress(_
CInt((count - mMin) / (mMax - mMin) * 100), results)

End If
End If

1076

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1077

Chapter 26: Threading

This is quite different from the previous code. Before interacting with the ArrayList object, the code calls
WaitOne. This causes it to block if the primary thread is active. Remember that initially the lock object is
signaled, so the WaitOne call will not block.

Then, before transferring control to the primary thread to update the UI, you call mWait.Reset. The Reset
event sets the lock object to its nonsignaled state. Until its Set method is called, any WaitOne methods
will block. No changes are required to the UI update code. It already calls the Set method when it is done
interacting with the ArrayList.

The result is that the background thread can continue to search for prime numbers while the UI is being
updated. The only time the background thread will block is when it finds a prime number before the UI
is done with its update process.

Summary
This chapter took an involved look at the subject of threading in .NET and demonstrated the rich set of
threading functionality now available to Visual Basic developers.

Proper implementation of multithreaded code is very difficult, and proving that multithreaded code will
always run as expected requires careful code walk-throughs, as it cannot be proven through testing. For
that reason, it is best to avoid the use of multithreading when possible.

However, multithreading can be a useful way to run lengthy tasks in the background while continuing
to provide the user with an interactive experience. When you do use multithreading, try to avoid using
shared data and instead relay data between the UI and background threads using messaging techniques,
as shown in this chapter.

If you must share data between multiple threads, be sure to use appropriate synchronization primitives
to ensure that only one thread interacts with the data at any given time. Be aware of the performance
implications of using synchronization objects, and design carefully to avoid deadlocks.

Threading can be useful in specialized situations, although its use should be limited whenever possible.

1077

Evjen-91361 c26.tex V1 - 04/01/2008 5:26pm Page 1078

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1079

Windows Workflow
Foundation

While Windows Communication Foundation and Windows Presentation Foundation enjoy much
of the attention, the .NET Framework 3.0 also comes with another ‘‘Foundation’’: Windows Work-
flow Foundation (usually abbreviated WF). WF can be a powerful tool in developing applications,
as it provides a standard means of adding workflow to an application. Workflow refers to the steps
involved in an application. Most business applications contain one or more workflows, such as
the approval steps in an expense-tracking application or the steps involved in paying for a cart
full of items at an online store. Normally, a workflow is created in code and is inextricably bound
to the application. WF enables developers to graphically build the workflow, keeping it logically
separated from the code itself. It also enables the workflow to change as the needs of the business
change. These workflows may be as complex as needed and may integrate human processes or Web
services.

This chapter looks at how you can take advantage of WF in your applications: how you can add
and edit workflows, how you can integrate workflows into an existing business process, and how
the graphical tools used to build workflows with Visual Studio can help you communicate with
business users and avoid errors caused by mistakes in the workflow.

Workflow in Applications
Just what is workflow? It’s a very heavily used word, and many developers use it in multiple con-
texts. For our purposes, it is the description of the steps involved in some process performed at
least partially by a computer. Workflows are common in many types of business applications. For
example, if you were building an application for tracking employee expense reports, the workflow
might look something like the following:

1. The employee completes a form and submits it into the system.

2. The employee prints the expense report form, attaches original invoices, and sends it to
accounting for a permanent record.

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1080

Chapter 27: Windows Workflow Foundation

3. The system examines the data in the expense report:

a. Depending on the rules defined by the company, it may be automatically approved,
require management approval, or require investigation by the accounting depart-
ment. Some of the rules that may come into play would likely be the expense types, the
amount of each expense, how the expense was paid, and so on.

b. Copies of the expense report are e-mailed if additional approval is required.

c. If approved, the expense report continues in the workflow; otherwise, it is returned to
the submitting employee for correction (or to complain to the employee’s manager).

4. Expense report values are recorded in the accounting system.

5. A check is printed and sent to the happy employee. This step may be delayed if the originals
have not been received. Alternatively, the company may delay future expense reimburse-
ment requests.

The steps in a workflow may be carried out by a human or computer; they may require custom
code or calculations, or may need to integrate with an external application. Building workflows
into an application is frequently a difficult process. Unless a developer completely understands the
process (and they rarely do), identifying the true workflow used for a process requires interviewing
multiple people at one or more companies. This often results in conflicting descriptions of the steps
involved, or of the actions required at each step, requiring someone to decide on the actual intent.

Even after the exact workflow has been defined, it frequently changes. This may be due to some
new legal requirements, a company merger, or even (frequently) the whims of management. In
traditional applications, this would likely mean that a developer would have to change the code
for one or more steps of the process, ideally without introducing any new bugs into the system. In
short, developing workflow applications using traditional tools can be a difficult, time-consuming
process. WF makes building and maintaining these workflows easier by abstracting away the logic
of the workflow, and by providing several of the common services required.

Building Workflows
The actual workflow files in WF are XML files written in a version of XAML. This is the same XAML used
to describe Windows Presentation Foundation (WPF) files. (See Chapter 17 for more details on WPF.)
They describe the actions to perform within the workflow, and the relationship between those actions.
You can create a workflow using only a text editor, but Visual Studio makes creating these workflows
much easier. It provides a graphical designer that enables developers to visually design the workflow,
creating the XAML in the background. See the following code:

<RuleDefinitions xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow">
<RuleDefinitions.Conditions>
<RuleExpressionCondition Name="TranslationCallWorked">

<RuleExpressionCondition.Expression>
<ns0:CodeBinaryOperatorExpression Operator="ValueEquality"
xmlns:ns0="clr-namespace:System.CodeDom;Assembly=System, Version=2.0.0.0,

1080

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1081

Chapter 27: Windows Workflow Foundation

Culture=neutral, PublicKeyToken=b77a5c561934e089">
<ns0:CodeBinaryOperatorExpression.Left>
<ns0:CodeBinaryOperatorExpression Operator="ValueEquality">

<ns0:CodeBinaryOperatorExpression.Left>
<ns0:CodeMethodInvokeExpression>

<ns0:CodeMethodInvokeExpression.Parameters>
<ns0:CodeFieldReferenceExpression

FieldName="OutputTextProperty">
<ns0:CodeFieldReferenceExpression.TargetObject>
<ns0:CodeTypeReferenceExpression

Type="TranslateActivity.TranslateActivity" />
</ns0:CodeFieldReferenceExpression.TargetObject>

</ns0:CodeFieldReferenceExpression>
</ns0:CodeMethodInvokeExpression.Parameters>
<ns0:CodeMethodInvokeExpression.Method>
<ns0:CodeMethodReferenceExpression MethodName="GetValue">

<ns0:CodeMethodReferenceExpression.TargetObject>
<ns0:CodeThisReferenceExpression />

</ns0:CodeMethodReferenceExpression.TargetObject>
</ns0:CodeMethodReferenceExpression>

</ns0:CodeMethodInvokeExpression.Method>
</ns0:CodeMethodInvokeExpression>

</ns0:CodeBinaryOperatorExpression.Left>
<ns0:CodeBinaryOperatorExpression.Right>
<ns0:CodePrimitiveExpression />

</ns0:CodeBinaryOperatorExpression.Right>
</ns0:CodeBinaryOperatorExpression>

</ns0:CodeBinaryOperatorExpression.Left>
<ns0:CodeBinaryOperatorExpression.Right>
<ns0:CodePrimitiveExpression>

<ns0:CodePrimitiveExpression.Value>
<ns1:Boolean xmlns:ns1="clr-namespace:System;Assembly=mscorlib,

Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089">false</ns1:Boolean>

</ns0:CodePrimitiveExpression.Value>
</ns0:CodePrimitiveExpression>

</ns0:CodeBinaryOperatorExpression.Right>
</ns0:CodeBinaryOperatorExpression>

</RuleExpressionCondition.Expression>
</RuleExpressionCondition>

</RuleDefinitions.Conditions>
</RuleDefinitions>

The workflow comprises a number of rule definitions. Each definition includes activities, conditions, and
expressions. Activities are the steps involved in the workflow. They are executed based on the workflow’s
design and the conditions included. Controlling the behavior of the workflow are conditions, which are
evaluated and may result in code running. Finally, expressions describe the individual tests used as part
of the conditions. For example, each side of an equality condition would be expressions. When building
the workflow by hand, you are responsible for creating the markup. Fortunately, Visual Studio writes it
as you design your workflow.

1081

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1082

Chapter 27: Windows Workflow Foundation

Adding Workflow with Windows Workflow Foundation
Windows Workflow Foundation is composed of a number of components that work together with your
application to carry out the desired workflow. Six main components make up any WF application:

❑ Host process — This is the executable that will host the workflow. Typically, this is your appli-
cation, and is usually a Windows Form, ASP.NET, or a Windows service application. The work-
flow is hosted and runs within this process. All normal rules of application design apply here:
If another application needs to communicate with the workflow, then you need to use Web ser-
vices or remoting to enable communication between the two applications.

❑ WF runtime services — Windows Workflow Foundation provides several essential services to
your application. Most notable, of course, is the capability to execute workflows. This service is
responsible for loading, scheduling, and executing your workflows within the context of the host
process. In addition to this service, WF provides services for persistence and tracking. The per-
sistence service enables saving the state of a workflow as needed. Because a workflow may take
a long time to complete, having multiple workflows in process can use a lot of the computer’s
memory. The persistence services enable the workflow to be saved for later use. When there is
more to complete, the workflow can be reactivated and continue, even after weeks of inactivity.
The tracking services enable the developer to monitor the state of the workflows. This is partic-
ularly useful when you might have multiple workflows active at any given time (such as in a
shopping checkout workflow). The tracking services enable the creation of applications to moni-
tor the health of your workflow applications.

❑ Workflow runtime engine — The runtime engine is responsible for executing each workflow
instance. It runs in process within the host process. Each engine may execute multiple workflow
instances simultaneously, and multiple engines may be running concurrently within the same
host process.

❑ Workflow — The workflow is the list of steps required to carry out an action. It may be created
graphically using a tool such as Visual Studio, or manually. Each workflow is composed of one
or more activities, and may consist of workflow markup and/or code. Multiple instances of a
workflow may be active at any given moment in an application.

❑ Activity library — The activity library is a collection of the standard actions used to create work-
flows. There are several different types of activities. Some are used to communicate with outside
processes, while others affect the flow of a workflow.

❑ Custom activities — In addition to the standard activities that exist within the activity library,
developers can create custom activities. This may be to support a particular application you need
to integrate with WF, or as a simplification of a complex composite activity. Creating custom
activities is done mostly through attributes and inheritance.

Figure 27-1 shows how the main components of WF fit together.

Windows Workflow Foundation supports two main styles of creating workflows: sequential and state
machine. Sequential workflows (see Figure 27-2) are the classic flowchart style of process. They begin
when some action initiates the workflow, such as the submission of an expense report or a user deci-
sion to check out a shopping cart. The workflow then continues stepwise through the activities until it
reaches the end. There may be branching or looping, but generally the flow moves down the workflow.
Sequential workflows are best when a set series of steps is needed for the workflow.

1082

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1083

Chapter 27: Windows Workflow Foundation

Rest of application

Runtime Engine Activity Library

Runtime Services

Host Process

Windows Workflow Foundation (WF)

Workflow

Custom
Activity

Figure 27-1

Figure 27-2

1083

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1084

Chapter 27: Windows Workflow Foundation

State machine workflows (see Figure 27-3) are less linear than sequential workflows. They are typically
used when the data moves through a series of steps toward completion. At each step, the state of the
application has a particular value. Transitions move the state between steps. One example of a state
machine workflow that most people are familiar with (unfortunately) is voice mail. Most voice-mail
systems are collections of states, represented by a menu. You move between the states by pressing the
keys of your phone. State machine workflows can be useful when the process you are modeling is not
necessarily linear. There may still be some required steps, but generally the flow may iterate between the
steps for some time before completion.

Figure 27-3

A good way to identify a candidate for a state machine workflow is determining whether the process is
better defined in terms of modes, rather than a linear series of steps. For example, a shopping site is a
classic example of a state machine. The user is either in browse mode or cart view mode. Selecting check-
out would likely initiate a sequential workflow, as the steps in that process are more easily described in
a linear fashion.

A Simple Workflow
As with any other programming endeavor, the best way to understand WF is to create a simple workflow
and extend it with additional steps. Start Visual Studio and create a new Sequential Workflow Console
application (see Figure 27-4) called HelloWorkflow.

This project creates two files: a module that includes the Main file for the application and the workflow.
The sequential workflow begins life with only two steps: start and finish, as shown in Figure 27-5. You
build the workflow by adding steps between these two.

To begin, drag a Code activity between the start and finish markers. Note the red exclamation mark on
the new activity in the diagram (shown without color in Figure 27-6). WF makes heavy use of these tips
to help you set required properties.

1084

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1085

Chapter 27: Windows Workflow Foundation

Figure 27-4

Figure 27-5

Figure 27-6

Click the code tip and select the menu item ‘‘Property ‘ExecuteCode’ is not set.’’ This will bring up the
Properties window for the Code activity. Enter SayGreetings and press Enter. This brings up the code
window for the activity. Add the following code:

Private Sub SayGreetings(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
Console.WriteLine("Hello world, from workflow")
Console.WriteLine("Press enter to continue")
Console.ReadLine()

End Sub

1085

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1086

Chapter 27: Windows Workflow Foundation

Notice that coding the action for the activity is the same as any other event. Run the project to see the
console window (see Figure 27-7), along with the message you should be expecting.

Figure 27-7

While trivial, the project makes a useful test bed for experimenting with the various activities. Add an
IfElse activity before the Code activity. IfElse activities are one of the main ways to add logic and
control of flow to your workflows. They have a condition property that determines when each half of the
flow will be executed. The condition may be code that executes or a declarative rule. For this example,
declarative rules are enough. You create these rules in the Select Condition Editor (see Figure 27-8). To
display the Select Condition Editor, select Declarative Rule Condition for the Condition property of
the ifElseBranchActivity component. Once you have selected Declarative Rule Condition, you can
click the ellipsis on the ConditionName property to display the dialog.

Figure 27-8

Clicking New brings up the Rule Condition Editor (see Figure 27-9). This enables you to create simple
expressions that will be used by the IfElse activity to determine flow.

1086

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1087

Chapter 27: Windows Workflow Foundation

Figure 27-9

Set the rule on the If half of the IfElse activity to determine whether the current time is before noon:

System.DateTime.Now.TimeOfDay.Hours < 12

Right-click on the activity and select Add Branch to create a third branch to the IfElse activity. Set the
condition for this one as you did for the first activity, but use 18 for the value to check for hours.

Add a Code activity to each of the three sections of the diagram (see Figure 27-10). You will use these
activities to affect the message that is displayed. Assign the properties as follows:

Activity Property Value

codeActivity2 ExecuteCode SetMessageMorning

codeActivity3 ExecuteCode SetMessageAfternoon

codeActivity4 ExecuteCode SetMessageEvening

Finally, change the code in the workflow to the following (note that this replaces the SayGreetings
method created earlier):

Public class Workflow1
Inherits SequentialWorkflowActivity

Private Message As String
Private Sub SayGreetings(ByVal sender As System.Object, _

ByVal e As System.EventArgs)
Console.WriteLine(Message & ", from workflow")
Console.WriteLine("Press enter to continue")
Console.ReadLine()

End Sub

Private Sub SetMessageMorning(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

1087

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1088

Chapter 27: Windows Workflow Foundation

Message = "Good morning"
End Sub
Private Sub SetMessageAfternoon(ByVal sender As System.Object, _

ByVal e As System.EventArgs)
Message = "Good afternoon"

End Sub
Private Sub SetMessageEvening(ByVal sender As System.Object, _

ByVal e As System.EventArgs)
Message = "Good night"

End Sub
End Class

Figure 27-10

Each of the three SetMessage methods changes the greeting as appropriate. The final greeting is dis-
played in the SayGreetings method. Run the project again. You should be greeted appropriately for the
time of day.

While this workflow is probably overkill to generate a simple message, the example does show many of
the common steps used in defining a workflow. Workflows are composed of multiple activities. Many
activities can in turn be composed of other activities. Activities may use declarative properties, or code
may be executed as needed.

1088

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1089

Chapter 27: Windows Workflow Foundation

Standard Activities
The standard WF activities can be divided into five major categories:

❑ Activities that communicate with external code — These activities are either called by external
code to initiate a workflow or used to call to external code as part of a workflow.

❑ Control of flow activities — These activities are the equivalent of Visual Basic’s If statement
or While loop. They enable the workflow to branch or repeat as needed to carry out a step.

❑ Scope activities — These activities group a number of other activities together into some logical
element. This is usually done to mark a number of activities that participate in a transaction.

❑ State activities — These activities are used exclusively in state machine workflows. They repre-
sent the state of the process involved as part of the overall state machine.

❑ Action activities — These activities perform some action as part of the overall workflow.

In order for a workflow to begin, there must be some way for external code to initiate it. In addition, a
workflow would be limited if there were no way for the workflow to execute external code and/or Web
services. The standard activities that are used to communicate with external code include the following:

Activity Description

CallExternalMethod As the name implies, this activity calls an external method. The
activity requires two properties. The first identifies an interface
shared by the workflow and the external code. The second identifies
the method on that interface that will be called. If the method
requires additional parameters, then they appear on the property
grid after setting the other two properties. This method is frequently
used in combination with the HandleExternalEvent activity. This
activity executes the external method synchronously, so be cautious
when calling external methods that take a long time to execute.

HandleExternalEvent Receives a trigger from an external block of code. This is a
commonly used activity to initiate a workflow when the workflow is
running in the context of a Windows Forms or ASP.NET application.
As with the CallExternalMethod activity, it requires at least two
properties. The first identifies a shared interface and the second
identifies the event on that interface that will be received.

InvokeWebService Calls an external Web service. You assign a WSDL file to the activity
and it generates a proxy class for the Web service. You must also
identify the method on the class that will be called. The SessionId
property is used to identify the session that will be used for the
requests. All requests with the same SessionId value share the
session. If the SessionId is blank, then this activity creates a new
session per request.

1089

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1090

Chapter 27: Windows Workflow Foundation

Activity Description

InvokeWorkflow Calls another workflow. This is a useful activity for chaining
multiple workflows together, reducing the complexity of each
workflow. The external workflow must complete before the current
workflow continues.

WebServiceInput Receives an incoming Web service request. You must publish the
workflow containing this activity for it to work. You publish the
workflow by selecting Publish as Web Service from the Project
menu. This generates a new Web Service project that includes the
output from the workflow project as well as an ASMX file that serves
as the address for the workflow.

WebServiceOutput Produces the output for a Web service request. This activity is used
in partnership with the WebServiceInput activity.

WebServiceFault Triggers a Web service error. This is used in partnership with the
WebServiceInput activity to signal an error with the Web
service call.

All programming languages need some form of flow control to regulate the applications. Visual Basic
includes language elements such as If..Else, Do..While, For..Next, and Select Case to perform these
actions. WF includes a number of activities to perform similar actions, although the options are more
limited:

Activity Description

IfElse Provides for executing two or more different workflow paths based on the
status of a condition. The condition may be code or an expression. This is a
commonly used activity to branch a workflow.

Listen Provides for executing two or more different workflow paths based on an
event. The path chosen is selected by the first event that occurs. This is a
useful activity for monitoring a class that could generate multiple events
(such as a class that could either approve or reject a request).

Policy Provides for executing multiple rules. Each rule is a condition with some
resulting action. This activity provides a way to group multiple related rules
into a single activity.

Replicator Enables the workflow to create multiple instances of an activity for
processing. The resulting child activities may run serially or in parallel. This is
an excellent way to divide a large task: For example, you could have the
Replicator activity create multiple child activities that are responsible for
mailing a newsletter to a large list. The child activities could run in parallel,
dividing the list into smaller groups for faster processing.

While Loops the workflow until a condition has been met. The condition may be the
result of code or an expression. This is typically used to receive multiple input
values or to process multiple requests, such as a batch job.

1090

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1091

Chapter 27: Windows Workflow Foundation

Several composite activities may cooperate to complete a single logical action by grouping other activities:

Activity Description

CompensatableSequence Similar to the Sequence activity (see below), this activity differs in
that it supports ‘‘undoing’’ the child activities. You can think of this
in terms of a transaction: If one child activity fails, then the
completed activities must be undone. The CompensatableSequence
activity includes handles that enable the developer to perform this
correction.

ConditionedActivityGroup Includes a number of child activities that are run based on a
condition. All child activities will execute until some defined
condition occurs. This provides a means of grouping a number of
related activities into a single activity.

EventDriven Responds to an external event to initiate a set of activities. This is
similar to the HandleExternalEvent activity, but the events are
internal to the workflow. This activity is commonly used in a
state-machine workflow to move between the states.

FaultHandler Enables handling an error within a workflow. You use the
FaultHandler activity to either correct or report the error gracefully.
For example, a timeout may occur, triggering a fault condition in the
workflow. This handler would contain other activities that are
responsible for an alternate method of processing the item.

Parallel Contains a series of child activities that run concurrently. You should
only use this if either the child activities do not affect the data or the
order of change is not important.

Sequence Contains a series of child activities that run in order. This is the
default model for a workflow. Each child activity must complete
before the next one begins.

State activities represent the current state of the data and process for the workflow. They are only used
within state-machine workflows:

Activity Description

State Represents the current state of the workflow. For example, in a
workflow driving a voice-mail system, the state would represent the
current menu that the client is on.

StateFinalization Provides an activity to handle the actions needed as a given state is
completed. This would provide a place to record the user’s selection or
to free up resources used by the state.

StateInitialization Provides an activity to handle the actions needed before the given state
is entered. This would enable the creation of any data or code needed to
prepare for the state functioning.

1091

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1092

Chapter 27: Windows Workflow Foundation

The final group of activities are those that perform some action. You already saw this activity type in the
form of the CodeActivity. These activities are the cornerstone of any workflow. The standard activities
in this group include the following:

Activity Description

Code Enables custom Visual Basic code to be performed at a stage in the
workflow. You can use these wherever you need to perform some action
not done by another activity. Whenever you use one of these — especially
if you use the same type of code frequently — you should consider
moving the code into a custom activity.

Compensate Enables custom code to undo a previous action. This is typically done if an
error occurs within the workflow.

Delay Pauses the flow of the workflow. This is typically used to schedule some
event. For example, you might have a workflow that is responsible for
printing a daily report. The Delay activity could be used to schedule this
printout so that it is ready as the workers come in to read it. You can either
set the delay explicitly by setting the TimeoutDuration property or set it
via code using the event identified in the InitializeTimeoutDuration
property.

Suspend Temporarily stops the workflow. This is usually due to some extraordinary
event that you would want an administrator or developer to correct. The
workflow will continue to receive requests, but not complete them past the
Suspend activity. The administrator may then resume the workflow to
complete processing.

Terminate Ends the workflow immediately. This should only be done in extreme
situations such as when the workflow is not capable of any further
processing (e.g., it has lost the connection to a database or other needed
resource).

Throw Creates an exception that can be caught by the code hosting the workflow.
This provides a means of propagating an error from the workflow to the
containing code.

Building Custom Activities
In addition to the standard activity library, WF supports extensibility through the creation of custom
activities. Creating custom activities is a matter of creating a new class that inherits from Activity (or
one of the existing child classes). Several available attributes enable customization of the activity and
how it appears when you use it in your workflows.

Creating custom activities is the primary means of extending WF. You might use custom activities
to simplify a complex workflow, grouping a number of common activities into a single new activity.

1092

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1093

Chapter 27: Windows Workflow Foundation

Alternatively, custom activities can create a workflow that is easier to understand, using terms that are
more familiar to the developers and business experts. Finally, custom activities can be used to support
software used within the business, such as activities to communicate with a CRM or ERP system.

So you can see the steps required for creating a custom activity, the next exercise creates a simple
activity that wraps the Google translation service. Create a new project using the Workflow Activ-
ity Library template. This project will create a DLL that contains the activities you create. Name the
project TranslationActivity. It will include a single custom activity initially. This activity inherits from
SequenceActivity, so it might include multiple child activities. You can change this as needed, but it’s
a good enough default for most activities. Drag a Code activity onto the designer. This activity does the
actual translation work.

Because the new activity will be used to convert between a number of set language pairs, create an
enumeration containing the valid options. This enumeration can be expanded as new options become
available. You can either add this enumeration to a new class file or add it to the bottom of the current
module (after the End Class statement):

Public Enum TranslationOptions As Integer
EnglishToFrench
EnglishToSpanish
EnglishToGerman
EnglishToItalian
EnglishToRussian
EnglishToChinese
FrenchToEnglish
SpanishToEnglish
GermanToEnglish
ItalianToEnglish
RussianToEnglish
ChineseToEnglish

End Enum

The new activity has three properties: the input text, a language pair that defines the source and target
languages, and the output text (the latter being a read-only property). You can create properties normally
in an activity, but it is beneficial to create them so that they participate in the workflow and are available
to other activities. In order to do this, use the following pattern to describe your properties:

Public Shared SomeProperty As DependencyProperty = _
DependencyProperty.Register("PropertyName", _
GetType(ReturnType), _
GetType(ClassName))

Public Property PropertyName () As ReturnType
Get

Return CType(MyBase.GetValue(SomeProperty), _
ReturnType)

End Get
Set(ByVal value As ReturnType)

MyBase.SetValue(SomeProperty, value)
End Set

End Property

1093

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1094

Chapter 27: Windows Workflow Foundation

The initial shared field of type DependencyProperty identifies the field that will be used to
communicate with other activities. DependencyProperty is a common type used in WPF programming,
enabling easier communication between nested types. The Public property enables the more common
use of the property. Notice that it stores the data in the shared property between all instances of the type.

As described, there are three properties in the translate activity:

Public Shared InputTextProperty As DependencyProperty = _
DependencyProperty.Register("InputText", _
GetType(System.String), _
GetType(TranslateActivity))

Public Shared TranslationTypeProperty As DependencyProperty = _
DependencyProperty.Register("TranslationType", _
GetType(TranslationOptions), _
GetType(TranslateActivity))

Public Shared OutputTextProperty As DependencyProperty = _
DependencyProperty.Register("OutputText", _
GetType(System.String), _
GetType(TranslateActivity))

<DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
Visible)> _

<BrowsableAttribute(True)> _
<DescriptionAttribute("Text to be translated")> _
Public Property InputText() As String
Get

Return CStr(MyBase.GetValue(InputTextProperty))
End Get
Set(ByVal value As String)

MyBase.SetValue(InputTextProperty, value)
End Set

End Property

<DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
Visible)> _

<BrowsableAttribute(False)> _
<DescriptionAttribute("Translated text")> _
Public ReadOnly Property OutputText() As String

Get
Return CStr(MyBase.GetValue(OutputTextProperty))

End Get
End Property

<DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.
Visible)> _

<BrowsableAttribute(True)> _
<DescriptionAttribute("Language pair to use for the translation")> _
Public Property TranslationType() As TranslationOptions

Get
Return CType(MyBase.GetValue(TranslationTypeProperty), TranslationOptions)

End Get
Set(ByVal value As TranslationOptions)

1094

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1095

Chapter 27: Windows Workflow Foundation

MyBase.SetValue(TranslationTypeProperty, value)
End Set

End Property

Attributes are added to the properties to enable communication with the designer. The core translation
method is assigned to the ExecuteCode property of the Code activity. It calls the Google translation service
and extracts the result from the returned HTML:

Private Const SERVICE_URL As String = _
"http://translate.google.com/translate_t"

Private Sub Translate(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

Dim reqString As String = _
String.Format("{0}?hl=en&ie=UTF8&text={1}&langpair={2}", _
SERVICE_URL, _
Encode(Me.InputText), _
BuildLanguageClause(Me.TranslationType))

Dim respString As String
Dim req As System.Net.HttpWebRequest

Try
req = CType(Net.WebRequest.Create(reqString), Net.HttpWebRequest)
req.ProtocolVersion = Net.HttpVersion.Version10

Dim resp As Net.WebResponse
resp = req.GetResponse()
Using reader As _

New IO.StreamReader(resp.GetResponseStream(), Encoding.UTF8)
respString = reader.ReadToEnd

End Using

If Not String.IsNullOrEmpty(respString) Then
MyBase.SetValue(OutputTextProperty, _

Decode(ExtractText(respString)))
End If

Catch ex As Exception
Console.WriteLine("Error translating text: " & ex.Message)

End Try
End Sub

A typical request to the Google translation service is performed using the service’s Web page, available
at www.google.com/translatet. However, you can make the same type of request the Web page would,
and parse the resulting HTML to extract the returned text. The request is made using a POST, to enable
sending large blocks of text. For safety, the text is URL encoded using the HttpUtility class.

The routines used by the Translate method are as follows:

Private _langOptions As New List(Of String)()

Public Sub New()

1095

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1096

Chapter 27: Windows Workflow Foundation

’ This call is required by the Windows Form Designer.
InitializeComponent()

’ Add any initialization after the InitializeComponent() call.
_langOptions.Add("en|fr")
_langOptions.Add("en|es")
_langOptions.Add("en|de")
_langOptions.Add("en|it")
_langOptions.Add("en|zn-CH")
_langOptions.Add("en|ru")
_langOptions.Add("fr|en")
_langOptions.Add("es|en")
_langOptions.Add("de|en")
_langOptions.Add("it|en")
_langOptions.Add("ru|en")
_langOptions.Add("zn-CH|en")

End Sub

Private Function Encode(ByVal value As String) As String
Return Web.HttpUtility.UrlEncode(value)

End Function
Private Function Decode(ByVal value As String) As String

Return Web.HttpUtility.HtmlDecode(value)
End Function

Private Function BuildLanguageClause(_
ByVal languages As TranslationOptions) As String

Dim result As String = String.Empty
result = _langOptions.Item(languages)
Return result

End Function

Private Function ExtractText(ByVal value As String) As String
Dim result As String = String.Empty
Dim r As RegularExpressions.Regex
Dim m As RegularExpressions.Match

r = New RegularExpressions.Regex("<div?[^>]*>(?<result>[^<]*)</div", _
RegularExpressions.RegexOptions.IgnoreCase Or _
RegularExpressions.RegexOptions.Multiline Or _
RegularExpressions.RegexOptions.IgnorePatternWhitespace)

m = r.Match(value)
If m IsNot Nothing Then

result = m.Groups.Item("result").Value
End If

Return result
End Function

The _langOptions list is used to track the strings needed by the various language pairs. This is used by
the BuildLanguageClause method to write the appropriate pair to the posted data. The order of the items

1096

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1097

Chapter 27: Windows Workflow Foundation

in the TranslationOptions enumeration matches the order in which items are added to the list, so the
BuildLanguageOptions method simply does a lookup into the list.

The ExtractText function uses a regular expression to extract the translated text. The translated text
appears in a <div> tag within the resulting HTML. Fortunately, it is the only <div>, although you could
modify the regular expression to look for a div with the id of result_box:

<div id=result_box dir=ltr>Bonne chance, Mandrin. Je pense que ceci pourrait juste
fonctionner </div>

The resulting activity can now be compiled and included in other workflows. Just as with custom con-
trols, you can add this DLL to the Toolbox using the Choose Toolbox Items dialog after it has been
compiled. If the Workflow Activity project is in the same solution as the workflow, it will be automati-
cally added to the Toolbox after it has been compiled. Figure 27-11 shows the Translate activity added
to the earlier example.

Figure 27-11

Recall that the Message field was used to store the message you wanted the workflow to generate. This
is the text you want to translate. Click the ellipsis button on the InputText property in the property grid
to bring up the Bind property dialog (see Figure 27-12). This enables you to visually connect the Message
field to the input of the TranslateActivity.

The last change to the workflow is to update the text you output. Change the code for the SayGreetings
method to display the OutputText of the TranslateActivity, as shown here:

Private Sub SayGreetings(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
Console.WriteLine(Message & ", from workflow")
Console.WriteLine("Press enter to continue")
Console.ReadLine()

End Sub

1097

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1098

Chapter 27: Windows Workflow Foundation

Figure 27-12

Select the TranslationType and run the test project. Depending on the time of day and the language
selected, you should see something similar to what is shown in Figure 27-13.

Figure 27-13

Using Workflows with Other Applications
Workflows are not typically standalone applications, or run as part of a console application, although
this is an excellent way to develop them initially. Usually workflows are created to work within some
larger application, so you need to integrate your workflow with the rest of your application, whether it
is a Windows Forms application or ASP.NET.

Using Workflow Foundation with Windows Forms
When combining WF with Windows Forms, there are three main points of contact: hosting (and starting)
the workflow, setting parameters for the workflow, and getting data out of the workflow.

1098

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1099

Chapter 27: Windows Workflow Foundation

Recall that the workflow runs within a host process. This process may be the Windows Forms process
itself or an external one. If the Windows Forms process is hosting the workflow, then the workflow only
exists as long as the application is running. The alternative is a workflow hosted within a Windows
Service or another Windows Forms application. In this case, your application needs to use some form of
interprocess communication to communicate with the workflow. Typically, this would take the form of
remoting between the two applications. The application that hosts the workflow needs to initialize the
WF runtime, load the workflow, and start it. In addition, the workflow host may initialize event handlers
for the events that the WF runtime will throw. The following code shows an example of hosting the WF
runtime and loading a workflow:

Imports System.Workflow.Activities
Imports System.Workflow.ComponentModel
Imports System.Workflow.Runtime

Public Class MainForm

Private WithEvents wr As WorkflowRuntime
Private wf As WorkflowInstance

Private Sub TranslateButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles TranslateButton.Click
If wr Is Nothing Then

wr = New WorkflowRuntime
wr.StartRuntime()

End If
’load a new instance of the workflow
Me.EventList.Items.Add("Translating: " & Me.MessageField.Text)
Dim parms As New Dictionary(Of String, Object)
parms.Add("Message", Me.MessageField.Text)
wf = wr.CreateWorkflow(GetType(HelloWorkflowDLL.SimpleWorkflow), parms)
’start the workflow
wf.Start()

End Sub

Private Sub MainForm_FormClosing(ByVal sender As Object, _
ByVal e As System.Windows.Forms.FormClosingEventArgs) _
Handles Me.FormClosing

If wr IsNot Nothing Then
If wr.IsStarted Then

wr.StopRuntime()
End If

End If
End Sub

In addition, you have to load references to the three workflow DLLs, and to the assembly that holds the
workflow you want to create. Notice that you must create and start the WF runtime before you can load
and start workflows. While the preceding code only creates a single instance of a workflow, you can
create multiple instances from a single application. Stopping the runtime is not absolutely necessary, but
gives you better control when the resources used by the WF runtime are freed.

1099

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1100

Chapter 27: Windows Workflow Foundation

The second step in working with WF and Windows Forms is providing parameters to the workflow. This
is done by supplying a Dictionary when you create the workflow. The items in the Dictionary should
match the public properties of the workflow. This changes the code used to create the workflow in the
preceding sample as follows:

’load a new instance of the workflow
Dim parms As New Dictionary(Of String, Object)
parms.Add("Message", Me.MessageField.Text)
wf = wr.CreateWorkflow(GetType(TranslatedWorkflowDLL.SimpleWorkflow), parms)

By using a Dictionary with an Object value, any type of data can be supplied to the workflow. This
provides flexibility in terms of the number and type of parameters you supply to the workflow, including
changing the parameters over time.

The final step when working with WF and Windows Forms is retrieving data from the workflow. This
is slightly more difficult than it may first seem because the workflow runs on a separate thread from
the Windows Forms code. Therefore, the workflow can’t directly access the controls on a form, and vice
versa. The communication between the two is best performed by having the workflow generate events.
The following code receives the WorkflowCompleted event and updates the ListBox on the form:

Private Sub wr_WorkflowCompleted(ByVal sender As Object, _
ByVal e As System.Workflow.Runtime.WorkflowCompletedEventArgs) _
Handles wr.WorkflowCompleted

If Me. EventList.InvokeRequired Then
Me. EventList.Invoke(New EventHandler(Of WorkflowCompletedEventArgs)(_

AddressOf Me.wr_WorkflowCompleted), _
New Object() {sender, e})

Else
Me.EventList.Items.Add("Translation: " & _

e.OutputParameters("Message").ToString())
End If

End Sub

Recall that the workflow runtime is actually running on a separate thread. Therefore, any attempts to
access the EventList directly throw an exception. The first time through this code, the InvokeRequired
property of the EventList is true. This means that the running code is executing on a separate thread.
In this case, the code invokes a new instance of the event, passing in copies of the sender and EventArgs.
This has the side effect of marshalling the data across to the thread containing the form. In this case,
InvokeRequired is false, and you can retrieve the data from the workflow. Figure 27-14 shows the result.

Using Workflow Foundation with ASP.NET
Combining ASP.NET with Windows Workflow Foundation raises many of the same issues involved
in using WF with other technologies. That is, you still need to host the services and the runtime of WF
within the host process under which ASP.NET runs. However, developing solutions using ASP.NET
offers more features and requires more decisions than other solutions. In particular, it is possible to
publish workflows as ASP.NET Web services. Hosting workflows within ASP.NET solutions is similar
to hosting workflows with Windows Forms, but an ASP.NET solution might actually be supporting
multiple concurrent users. This means that you must be more aware of where the runtime is created and
how instances are created and freed.

1100

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1101

Chapter 27: Windows Workflow Foundation

Figure 27-14

You can host a workflow as a Web service if it has one or more WebServiceInput activities. This activity
represents a SOAP endpoint. The WebServiceInput activity needs two properties set: InterfaceType and
MethodName. Communication between the client code and the Web service is achieved via a shared inter-
face. This interface is the value needed for the InterfaceType property. It represents the contract between
the client code and the WebServiceInput activity. The MethodName identifies the method on the interface
that will initiate the Web service call. The first WebServiceInput activity should have the IsActivating
property set to true. In addition to the WebServiceInput activity, the workflow should also include a
WebServiceOutput activity if the method includes a return value. Including a WebServiceFault activity
is also useful if you need to return an error to the client code. If the Web service has parameters or return
values, these may be mapped to the properties of the workflow using the Bind property dialog (refer to
Figure 27-12).

Once you have built the workflow, including the WebServiceInput and WebServiceOutput activities
(see Figure 27-15), you must publish it as a Web service. This adds an additional ASP.NET Web Service
project to the solution. The wizard creates the ASMX file that wraps the workflow and adds the required
settings to the web.config file. The ASMX wrapper does nothing but delegate to the workflow class.

<%@WebService Class="TranslatedWorkflowDLL.SimpleWorkflow_WebService" %>

The additional settings in the configuration file add a new section for configuring the WorkflowRuntime
and load the workflow HTTP handler that translates the incoming request:

<?xml version="1.0"?>
<configuration>

<configSections>
<section name="WorkflowRuntime"

type="System.Workflow.Runtime.Configuration.WorkflowRuntimeSection,
System.Workflow.Runtime, Version=3.0.00000.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

</configSections>
<WorkflowRuntime Name="WorkflowServiceContainer">
<Services>
<add type="System.Workflow.Runtime.Hosting.ManualWorkflowSchedulerService,

System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

<add
type="System.Workflow.Runtime.Hosting.DefaultWorkflowCommitWorkBatchService,
System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

</Services>
</WorkflowRuntime>

1101

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1102

Chapter 27: Windows Workflow Foundation

<appSettings/>
<connectionStrings/>
<system.web>
<httpModules>

<add type="System.Workflow.Runtime.Hosting.WorkflowWebHostingModule,
System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" name="WorkflowHost"/>

</httpModules>
</system.web>

</configuration>

Figure 27-15

The resulting Web service works just like any other created by Visual Studio: You can access it in a
browser to receive a test form (see Figure 27-16), request the WSDL, and access it using Web service
clients.

Beyond Web services, ASP.NET applications can also host and access regular workflows. When hosting
workflows in ASP.NET, keep in mind that your application may be accessed by many concurrent users,
so you must be aware of when you create the runtime instance. In addition, remember that each workflow
instance can use a good deal of memory. Therefore, limit the creation of workflows to when they are
needed and free them quickly when they are no longer needed.

1102

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1103

Chapter 27: Windows Workflow Foundation

Figure 27-16

As you will probably want a single workflow runtime instance supporting all of your workflows, the
best place to create the workflow runtime is when the application first starts. You can do this in the
application’s Start event in the global.asax file:

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
Dim wfRun As New System.Workflow.Runtime.WorkflowRuntime
Dim wfSked As _

New System.Workflow.Runtime.Hosting.ManualWorkflowSchedulerService

wfRun.AddService(wfSked)
wfRun.StartRuntime()
Application.Item("WorkflowRuntime") = wfRun

End Sub

This ensures that the same runtime is available to all sessions. Next, free up the resources used by the
runtime when the application ends:

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
Dim wfRun As System.Workflow.Runtime.WorkflowRuntime
wfRun = CType(Application.Item("WorkflowRuntime"), _

System.Workflow.Runtime.WorkflowRuntime)
wfRun.StopRuntime()

End Sub

Running a workflow instance is now a matter of retrieving the runtime instance and using it to execute
the workflow. This leads to another issue related to the way Web pages are handled. Recall that the
workflow typically runs asynchronously. This could mean that the workflow instance continues to run
in the background after the Web page has returned. Therefore, you must run the workflow instance
synchronously, so that it completes before returning data to the Web page:

Dim wfRun As WorkflowRuntime
wfRun = CType(Application.Item("WorkflowRuntime"), WorkflowRuntime)

1103

Evjen-91361 c27.tex V1 - 04/02/2008 5:39pm Page 1104

Chapter 27: Windows Workflow Foundation

Dim wfSked As ManualWorkflowSchedulerService
wfSked = wfRun.GetService(GetType(ManualWorkflowSchedulerService))

Dim wfInst As WorkflowInstance
wfInst = wfRun.CreateWorkflow(GetType(SimpleWorkflow))
wfInst.Start()

wfSked.RunWorkflow(wfInst.InstanceId)

The preceding code extracts the workflow runtime from the Application storage. It then retrieves the
workflow scheduling service that was associated with the runtime as part of the Application_Start
event handler. This scheduling service executes the workflows synchronously. This ensures that the
entire workflow runs before the Web page is returned. The runtime is also used to create a new instance
of the workflow desired, which is then started and associated with the scheduler. You could provide
parameters to the workflow just as you did with the Windows Forms sample, by creating a Dictionary
and populating it with the properties. This Dictionary would then be provided as a second param-
eter on the CreateWorkflow call. Similarly, you could retrieve the result of the workflow using the
OutputParameters property in the Completed event handler for the workflow, just as you did with
Windows Forms.

Summary
While Windows Workflow Foundation does not have the visual glitz of WPF or the broad reach of WCF,
it is a highly useful addition to the .NET Framework 3.0. Most business applications have some need for
workflows, and having a standard means of creating this workflow ensures that the workflow is fully
featured and accurately reflects business needs. As WF is readily available with the .NET Framework,
developers no longer need to recreate a core business rules engine with each application. WF is extensi-
ble, so developers can take advantage of it in their applications, without being limited to the designed
features.

As with the other components of the .NET Framework, WF integrates well into other applications, includ-
ing Windows Forms and ASP.NET applications. It provides the means to extract the frequently complex
workflow from those applications and to graphically design it. This graphical representation can be used
to communicate the process to business users, increasing the chance that the workflow is represented cor-
rectly. Finally, as business needs change, it is a simple process to update the workflow, without requiring
changes to the core application.

Resources
While Windows Workflow Foundation is a relatively new component of the .NET Framework, you can
already find useful websites for information:

❑ Microsoft .NET Framework 3.0 Community (http://wf.netfx3.com) — The main community
site for WF and the other frameworks added with .NET Framework 3.0. This site has a number of
useful samples, custom activities, and forums available.

❑ WF on MSDN (http://msdn.microsoft.com/workflow) — Articles, documentation, and more
assistance on the main MSDN site.

1104

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1105

XML Web Services

This chapter begins with a short history of multi-tier architecture and network operating systems,
a discussion of the early days of the ‘‘network as the computer,’’ and a discussion of where system
architecture is heading today. The reason for this diversion is to understand the rationale behind
Web services.

The chapter next looks at a sample Web service and walks through the process of making it accessi-
ble to the Internet as well as accessing it from a client application — both with the Visual Studio IDE
and using command-line tools. From there, the chapter moves on to a key feature of Web services:
the Service Repository, Discovery, and Universal Description, Discovery, and Integration (UDDI) features
that enable remote programmers to correctly access Web services.

Finally, the chapter delves into more in-depth topics during discussion of the four namespaces
found in the .NET Framework class library that deal with Web services and how to utilize them
with Visual Basic 2008. Moving on, the chapter covers topics such as security, transactions, and
the downsides of any distributed architecture (including any downsides associated with the Web
services model), followed by a short discussion of where you go from here and how to get there.

Introduction to Web Services
A Web service is a means of exposing application logic or data via standard protocols such as XML,
or, more specifically, SOAP (Simple Object Access Protocol). A Web service comprises one or more
functions, packaged together for use in a common framework throughout a network. This idea
is illustrated in Figure 28-1, where Web services provide access to information through standard
Internet protocols, such as HTTP. By using a Web Services Description Language (WSDL) contract,
consumers of the Web service can learn about the structure of the data the Web service provides,
as well as all the details about how to actually consume it. A WSDL is a description of the remote
interface offered from the Web service.

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1106

Chapter 28: XML Web Services

Portal Services

WSDL Contract WSDL Contract

The Internet

Live
Devices

Internet
Applications Browsers

Developer
Applications

Our Applications

WSDL Contract

WSDL Contract

Custom Web
Services

Structural
Services

Corporate Environment

Application
Specific Services

Figure 28-1

This simple concept provides for a very wide variety of potential uses by developers of Internet and
intranet applications alike, as presented in Figure 28-1. Today, the Web services model is often the heart
of the next generation of systems architecture because it is all of the following:

❑ Architecturally neutral — Web services do not depend on a proprietary wire format, schema
description, or discovery standard.

❑ Ubiquitous — Any service that supports the associated Web service standards can support the
service.

❑ Simple — Creating Web services is easy, quick, and can be free. The data schema is human read-
able. Any programming language can participate.

❑ Interoperable — Because the Web services all conform to the same standards, they can all speak
to one another.

In basic terms, a Web service is an object with an XML document describing all of the methods, prop-
erties, and events sitting between the code and the caller. Any body of code written in just about any
programming language can be described with this XML document, and any application that under-
stands XML (or SOAP) over the assigned protocol (such as HTTP) can access the object. That’s because
the parameters you type after the function name are passed via XML to the Web service, and because
SOAP is an open standard.

Microsoft has put a wrapper around all of the XML schemas that support Web services (including SOAP
and WSDL), so they end up looking like .NET or COM objects. The following sections look at how the
world views a Web service, and how Microsoft views Web services.

1106

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1107

Chapter 28: XML Web Services

Early Architectural Designs
Understanding the history of the search for a decent remote method invocation (RMI) protocol is imperative
to an understanding of why Web services are so important. Each of the RMI systems created before
the current Web services model solved a particular set of problems, and you will see how current Web
services represent the next stage in the evolution of these cross-platform boundaries to solve the problems
that former technologies tried to address.

The Network Angle
Throughout the history of computing, networking operations were largely handled by the operating sys-
tem. UNIX, the networking host of early computing, featured a body of shell operations that provided
remarkable user control over network operations. Personal computing was slower to catch up: Microsoft
and Apple software didn’t inherently support networking protocols until the mid-1990s. Third-party
add-ons by Novell and Banyan were available earlier, but they were only an adjunct to the operating sys-
tem. The concept of the network being the computer did not fully infiltrate the development community
until the expansion of the World Wide Web.

Application Development
Let’s break away from networking for a minute and look at how application development evolved until
now. Early time-sharing operating systems enabled several people to use the same application with its
built-in data. These single-tier systems didn’t allow for growth in the system’s size, and data redundancy
became the standard, with nightly batch jobs to synchronize the data becoming commonplace through
the 1970s and early ’80s.

Eventually, the opportunity presented by networks became the overriding factor in systems devel-
opment, and enterprise network developers began offering the loosely termed Object Request Brokers
(ORBs) on their systems: Microsoft’s Transaction Server (MTS), Common Object Request Broker Architec-
ture (CORBA), and the like. These ORBs enabled the separation of the user interface from the business
logic using tightly coupled method pooling. This three-tier architecture brings you to the present in
development terms, so let’s step back and let networking catch up.

Merging the Two with the Web
The HTTP protocol was born in 1990. There were several other information delivery protocols before,
such as Gopher, but HTTP was different because of the extensibility of the related language, HTML, and
the flexibility of the transport layer, TCP/IP. Suddenly, movement of many formats of data was possible
in a stateless, distributed way. Software as a service was born.

Over the next decade, low-level protocols supported by network systems and the Internet became
a staple in applications, with SMTP and FTP providing file and information transfer among distrib-
uted servers. Remote procedure calls (RPCs) took things to the next level, but they were platform
specific, with UNIX implementations in CORBA and Microsoft’s Distributed COM (DCOM) leading
the pack.

1107

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1108

Chapter 28: XML Web Services

Enterprise development took a clue from the emerging technologies in wide area network (WAN)
networking and personal computing, and development for these large-scale business systems began
to mature. As usage of networks grew, developers began to solve problems of scalability, reliability,
and adaptability with the traditional flat-format programming model. Multi-tier development began to
spread the data, processing, and user interface of applications over several machines connected by local
area networks (LANs).

This made applications more scalable and reliable by accommodating growth and providing redundancy.
Gradually, vendor compliance and the Java programming language provided adaptability, enabling
applications to run in a variety of circumstances on a variety of platforms.

However, there was a dichotomy between the capabilities of the network and the features of the program-
ming environment. Specifically, after the introduction of XML, there still existed no ‘‘killer app’’ using its
power. XML is a subset of Standard Generalized Markup Language (SGML), an international standard
that describes the relationship between a document’s content and its structure. It enables developers to
create their own tags for hierarchical data transport in an HTML-like format. With HTTP as a transport
and SOAP as a protocol, still needed was an interoperable, ubiquitous, simple, broadly supported system
for the execution of business logic throughout the world of Internet application development.

The Foundations of Web Services
The hunt began with a look at the existing protocols. As had been the case for years, the Microsoft versus
Sun Alliance debate was heating up among RPC programmers. CORBA versus DCOM was a source of
continuing debate for developers using those platforms for distributed object development. After Sun
added Remote Method Invocation to Java with Java-RMI, there were three distributed object protocols
that fit none of the requirements.

Because DCOM and RMI are manufacturer-specific, it makes sense to start with those. CORBA is centrally
managed by the Object Management Group, so it is a special case and should be considered separately.

RMI and DCOM provide distributed object invocation for their respective platforms — extremely
important in this era of distributed networks. Both accommodate enterprisewide reuse of existing
functionality, which dramatically reduces cost and time-to-market. Both provide encapsulated object
methodology, preventing changes made to one set of business logic from affecting another. Finally,
similar to ORB-managed objects, maintenance and client weight are reduced by the simple fact that
applications using distributed objects are by nature multi-tier.

DCOM
DCOM’s best feature is the fact that it is based on COM, one of the most prevalent desktop object mod-
els in use today. COM components are shielded from one another, and calls between them are so well
defined by the OS-specific languages that there is practically no overhead to the methods. Each COM
object is instantiated in its own space, with the necessary security and protocol providers. When an object
in one process needs to call an object in another process, COM handles the exchange by intercepting the
call and forwarding it through one of the network protocols.

When you use DCOM, all you are doing is making the wire a bit longer. With Windows NT4, Microsoft
added the TCP/IP protocol to the COM network architecture and essentially made DCOM Internet-
savvy. Aside from the setup on the client and server, the inter-object calls are transparent to the client,
and even to the programmer.

1108

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1109

Chapter 28: XML Web Services

Any Microsoft programmer can tell you, though, that DCOM has its problems. First, because there is a
customer wire transport function, most firewalls do not allow DCOM calls to get through, even though
they are by nature quite benign. There is no way to query DCOM about the methods and properties
available, unless you have the opportunity to get the source code or request the remote component
locally. In addition, there is no standard data transfer protocol (though that is less of a problem because
DCOM is mostly for Microsoft networks).

Remote Method Invocation in Java
RMI is Sun’s answer to DCOM. Java relies on a really neat, but very proprietary, protocol called Java
Object Serialization, which protects objects marshaled as a stream. The client and server both need to be
constructed in Java for this to work, but it further simplifies RMI because Java doesn’t care whether the
serialization takes place on one machine or across a continent. Similarly to DCOM, RMI enables the object
developer to define an interface for remote access to certain methods.

CORBA
CORBA uses the Internet Inter-ORB Protocol to provide remote method invocation. It is remarkably sim-
ilar to Java Object Serialization in this regard. Because it is only a specification, though, it is supported
by a number of languages on diverse operating systems. With CORBA, the ORB does all the work, such
as finding the pointer to the parent, instantiating it so that it can receive remote requests, carrying mes-
sages back and forth, and disputing arbitration and garbage collecting. The CORBA objects use specially
designed sub-ORB objects called basic (or portable) object adapters to communicate with remote ORBs,
giving developers more leeway in code reuse.

At first glance, CORBA would seem to be your ace in the hole. Unfortunately, it doesn’t actually work
that way. CORBA suffers from the same problem web browsers do — poor implementations of the
standards — which causes lack of interoperability between ORBs. With IE and Netscape, minor differ-
ences in the way pages are displayed is written off as cosmetic. When there is a problem with the CORBA
standard, however, it is a real problem. Not only is appearance affected, but also network interactions, as
if there were 15 different implementations of HTTP.

The Problems
The principal problem of the DCOM/CORBA/RMI methods is complexity of implementation. The
transfer protocol of each is based on manufacturers’ standards, generally preventing interoperability. In
essence, the left hand has to know what the right hand is doing. This prevents a company using DCOM
from communicating with a company using CORBA.

First, there is the problem of wire format. Each of these three methods uses an OS-specific wire format
that encompasses information supplied only by the operating system in question. This means two diverse
machines cannot usually share information. The benefit is security: Because the client and server can
make assumptions about the availability of functionality, data security can be managed with API calls to
the operating system.

The second problem is the number of issues associated with describing the format of the protocol.
Apart from the actual transport layer, there must be a schema, or layout, for the data that moves back
and forth. Each of the three contemporary protocols makes numerous assumptions between the client
and server. DCOM, for instance, provides ADO/RDS for data transport, whereas RMI has JDBC. While

1109

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1110

Chapter 28: XML Web Services

we can endlessly debate the merits of one over the other, we can at least agree that they don’t play well
together.

The third problem is knowing where to find broadly available services, even within your own network.
We have all faced the problem of having to call up the COM + MMC panel so that we could remember
how to spell this component or that method. When the method is resident on a server ten buildings away
and you don’t have access to the MMC console, the next step is digging through the text documentation,
if there is any.

The Other Players
On a path to providing these services, we stumble across a few other technologies. While Java applets
and Microsoft’s client-side ActiveX technically are not distributed object invocations, they do provide
distributed computing and provide important lessons. Fortunately, we can describe both in the same
section because they are largely the same, with different operating systems as their backbone.

Applets and client-side ActiveX are both attempts to use the HTTP protocol to send thick clients to
the end user. In circumstances where a user can provide a platform previously prepared to maintain
a thicker-than-HTML client base to a precompiled binary, the ActiveX and applet protocols pass small
applications to the end user, usually running a Web browser. These applications are still managed by
their servers, at least loosely, and usually provide custom data transmission, utilizing the power of the
client to manage the information distributed, as well as display it.

This concept was taken to the extreme with Distributed Applet-Based Massively Parallel Processing, a strategy
that used the power of the Internet to complete processor-intense tasks, such as 3-D rendering or massive
economic models, with a small application installed on the user’s computer. If you view the Internet as a
massive collection of parallel processors, sitting mostly unused, you have the right idea. An example of
this type of processing is provided by United Devices (www.ud.com).

In short, HTTP can provide distributed computing. The problem is that the tightly coupled connection
between the client and server has to go, given the nature of today’s large enterprises. The HTTP angle
did show developers that using an industry-recognized transport method solved problem number one,
wire format. Using HTTP meant that regardless of the network, the object could communicate. The client
still had to know a lot about the service being sent, but the network did not.

The goal? Distributed Object Invocation meets the World Wide Web. The problems are wire format,
protocol, and discovery. The solution is a standards-based, loosely coupled method invocation protocol
with a huge catalog. Microsoft, IBM, and Ariba set out in 1999 to create just that, and generated the RFC
for Web services.

What All the Foundations Missed
You may notice that in reviewing the majority of the earlier services there has been little mention of
language. That’s because it was a problem overlooked by the foundations. Even RMI failed to recognize
that you can’t make everyone use the same language, even a great language.

HTTP — A Language-Independent Protocol
What we need is a language-independent protocol that accommodates a standard wire transfer, protocol
language, and catalog service. Java with Remote Scripting and ActiveX taught us that HTTP is the wire

1110

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1111

Chapter 28: XML Web Services

transfer of choice. Why? What does HTTP do that is so great? First, it is simple. The header added to a
communication by HTTP is straightforward enough that power users can type it at a command prompt if
they have to. Second, it doesn’t require a special data protocol; it just uses ASCII text. Third, HTTP traffic
can easily get through firewalls (port 80 is usually open). Finally, it is extensible. Additional headers
can be added to the HTTP header for application-specific needs, and any intermediary software can just
ignore it.

XML — Cross-Language Data Markup
Now that we have a standard wire transfer protocol that we know works, we need a language and a
transport mechanism. Existing languages don’t really have data description functions, aside from the
data management object models such as ADO. XML fits the bill because it is self-describing. The left
hand doesn’t need to know what the right hand is doing. An XML file transported over HTTP does not
need to know the answering system’s network protocol or its data description language. The concepts
behind XML are so light and open that everyone can agree to support them. In fact, almost everyone has.
XML has become the ASCII of the Web.

XML is important to Web services because it provides a universal format for information to be passed
from system to system. We knew that, but Web services actually uses XML as the object invocation layer,
changing the input and output to tightly formatted XML, making it platform and language independent.

SOAP — The Transfer You Need
Enter Simple Object Access Protocol (SOAP), which uses HTTP to package essentially one-way messages
from service to service in such a way that business logic can interpolate a request/response pair. For your
Web page to get an example, you’d make a SOAP request that would look something like this:

POST /Directory HTTP/1.1
Host: Ldap.companyname.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 33
SOAPAction: "Some-URI"\vs

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:FindPerson xmlns:m="Some-URI">
<NAME>Gates</NAME>

</m: FindPerson>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This is an HTTP page request, just like one you’d see for an HTML page except that the Content-Type
specifies XML, and there is the addition of the SOAPAction header. SOAP has made use of the two most
powerful parts of HTTP: content neutrality and extensibility. Here is the response statement from the
server:

HTTP/1.1 200 OK
Content-Type: text/xml;
charset="utf-8"
Content-Length: 66

1111

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1112

Chapter 28: XML Web Services

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>
<m:FindPersonResponse xmlns:m="Some-URI">

<DIRECTORY>Employees
<PERSON>

<NAME>Bill Gates</NAME>
<FUNCTION>Architect

<TYPE>Web Services</TYPE>
</FUNCTION>
<CONTACT>

<PHONE TYPE=CELL>123-456-7890</PHONE>
<PHONE TYPE=HOME>555-111-2222</PHONE>

</CONTACT>
</PERSON>
</DIRECTORY>

</m: FindPersonResponse >
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP enables you to send the XML files back and forth among remote methods. It is similar to XML-RPC,
a protocol developed by Dave Winer in parallel with the SOAP protocol. Both protocols provide similar
structures, but the official SOAP protocol is used by Visual Basic and the entire .NET platform.

SOAP is not specific to .NET either. The SOAP Toolkit is another set of tools that Microsoft’s Web Services
Team provides free of charge. It contains a wonderful WSDL editor, retrofit objects for Windows 2000
and Windows NT4 servers, and more. You can find it at http://msdn.microsoft.com/webservices.

Web Services Description Language
A Web Services Description Language (WSDL) document is a set of definitions that is utilized to describe
the interface of any of your Web services. Six elements are defined and used by the SOAP protocol: types,
message, portType, binding, port, and service. Essentially adding another layer of abstraction, the
purpose of WSDL is to isolate remote method invocations from their wire transport and data definition
language. Once again, it is a specification, not a language, so it is much easier to get companies to agree
to its use.

Because WSDL is just a set of descriptions in XML, it is not so much a protocol as a grammar. Following is
the sample service contract for the HelloWorld Web service you will be building shortly. You can see this
file by visiting http://localhost/HelloWorldExample/Service.asmx?WSDL using your Web browser
after you create the examples:

<?xml version="1.0" encoding="utf-8" ?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://localhost/webservice" xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://localhost/webservice"

1112

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1113

Chapter 28: XML Web Services

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>

<s:schema elementFormDefault="qualified"
targetNamespace="http://localhost/webservice">
<s:element name="HelloWorld">

<s:complexType />
</s:element>
<s:element name="HelloWorldResponse">

<s:complexType>
<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="HelloWorldResult"
type="s:string" />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>

</wsdl:types>
<wsdl:message name="HelloWorldSoapIn">

<wsdl:part name="parameters" element="tns:HelloWorld" />
</wsdl:message>
<wsdl:message name="HelloWorldSoapOut">

<wsdl:part name="parameters" element="tns:HelloWorldResponse" />
</wsdl:message>
<wsdl:portType name="WebServiceSoap">

<wsdl:operation name="HelloWorld">
<wsdl:input message="tns:HelloWorldSoapIn" />
<wsdl:output message="tns:HelloWorldSoapOut" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="WebServiceSoap" type="tns:WebServiceSoap">

<wsdl:documentation>
<wsi:Claim conformsTo="http://ws-i.org/profiles/basic/1.0"
xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/" />

</wsdl:documentation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<wsdl:operation name="HelloWorld">
<soap:operation soapAction="http://localhost/webservice/HelloWorld"
style="document" />

<wsdl:input>
<soap:body use="literal" />

</wsdl:input>
<wsdl:output>

<soap:body use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="WebServiceSoap12" type="tns:WebServiceSoap">

<soap12:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<wsdl:operation name="HelloWorld">
<soap12:operation soapAction="http://localhost/webservice/HelloWorld"
style="document" />

<wsdl:input>
<soap12:body use="literal" />

1113

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1114

Chapter 28: XML Web Services

</wsdl:input>
<wsdl:output>

<soap12:body use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="WebService">

<wsdl:port name="WebServiceSoap" binding="tns:WebServiceSoap">
<soap:address location="http://localhost:40718/Reuters/WebService.asmx" />

</wsdl:port>
<wsdl:port name="WebServiceSoap12" binding="tns:WebServiceSoap12">

<soap12:address
location="http://localhost:40718/Reuters/WebService.asmx" />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

This is what makes it all work. Notice that each of the inputs and outputs of the HelloWorldResponse
function is defined as an element in the schema. The .NET Framework uses this to build library files
that understand how best to format the outgoing requests, so no matter what operating system develops
the WSDL, as long as it is well formed according to the WSDL specification, any type of application
(it doesn’t necessarily need to be a .NET application) can consume it with a simple SOAP request.

In fact, IIS with the .NET Framework is set up to use the WSDL document in order to provide a great
auto-generated user interface for developers and consumers to check out and test Web services. After
removing the ?wsdl from the preceding URL, you’ll see a very nicely formatted documentation screen
for the service. Click the function name and you will get the screen shown in Figure 28-2. This is all
dynamically generated based upon the contents of the WSDL document, which is itself dynamically
generated by .NET.

Figure 28-2

1114

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1115

Chapter 28: XML Web Services

The WSDL document can also be expanded in order to define your own descriptions. You can use the
Description property of both the WebService and WebMethod attributes to provide more details for this
.NET-generated test page for your XML Web services.

Building a Web Service
Building Web services with Visual Studio 2008 is incredibly easy. Microsoft has made it a cakewalk to put
together a new Web service application and expose methods off that Web service.

To get started, create an ASP.NET Web Service application. Find this option by clicking File ➪ New Web
Site in Visual Studio. From there, Visual Studio will ask you for the location of the Web server. Enter this
as C:\Documents and Settings\Bill\My Documents\Visual Studio 2008\WebSites\
HelloWorldExample.

Unlike an ASP.NET Web Application project, Visual Studio creates an .asmx file, rather than an .aspx file.
The .asmx file extension is short for Active Server Methods, derived from the fact that it contains methods
that will be exposed through the Web service.

By default, Visual Studio creates the Web service using the code-behind model for the Web service
page. In addition to the .asmx file, Visual Studio also creates a Service.vb file and places this file in
the App_Code folder of the project.

Open the Service.asmx file in Visual Studio. It contains only the WebService page directive, as shown
here:

<%@ WebService Language="VB" CodeBehind="~/App_Code/Service.vb"
Class="Service" %>

You use the @WebService directive instead of the @Page directive. The simple WebService directive has
only four possible attributes:

❑ Class — This required attribute specifies the class used to define the methods and data types
visible to the XML Web Service clients.

❑ CodeBehind — Required only when you are working with an XML Web Service file using the
code-behind model, this enables you to work with Web services in two separate and more man-
ageable pieces instead of a single file. The CodeBehind attribute takes a string value representing
the physical location of the second piece of the Web Service — the class file containing all the
Web service logic. In ASP.NET 2.0, it is best to place the code-behind files in the App_Code folder,
starting with the default Web Service created by Visual Studio when you initially opened the
Web Service project.

❑ Debug — This optional attribute takes a setting of either True or False. If the Debug attribute
is set to True, then the XML Web Service is compiled with debug symbols in place; setting the
value to False ensures that the Web service is compiled without the debug symbols in place.

❑ Language — This required attribute specifies the language used for the Web Service.

Instead of focusing on the Service.asmx page, double-click on the Service.vb file to open the file in
the document window of Visual Studio. With the Service.vb file in the document window, notice

1115

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1116

Chapter 28: XML Web Services

that the single method on the page is decorated with the <WebMethod() > attribute. This attribute
(System.Web.Services.WebMethodAttribute) is used to tell ASP.NET to expose this particular method
through the Web service.

Directly after the WebServiceBinding attribute, place the WebService attribute in code to define a custom
namespace, which the industry recommends you always provide. The value of the namespace can be
whatever you see fit; it does not have to be an actual URL, just a unique identifier:

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://localhost/HelloWorldExample")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function HelloWorld() As String

Return "Hello World"
End Function

End Class

Now add a new method called GoodbyeWorld, without a WebMethod attribute:

Public Function GoodbyeWorld() As String
Return "Goodbye World"

End Function

Run the project. Visual Studio will open the Service.asmx file. By default, Web services display a test
interface (see Figure 28-3) that enables you to see which methods are available and to execute them.

Figure 28-3

Notice that only the HelloWorld method is displayed. This is the only method decorated with the
WebMethod attribute, and hence the reason why GoodbyeWorld and all of the inherited methods on

1116

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1117

Chapter 28: XML Web Services

the Service class were not displayed. Clicking the link enables you to invoke the method, as shown
in Figure 28-4.

Figure 28-4

If you do this, the URL http://localhost:#####/HelloWorldExample/Service.asmx/HelloWorld is
requested, which happens to be the URL for this specific method (running with the built-in web server
provided with Visual Studio). You will then see the payload of the SOAP document directly in the
browser, which contains the results of the call, as shown in Figure 28-5.

Figure 28-5

That is pretty much all there is to Web services from an implementation perspective when working with
the .NET Framework. The .NET Framework deals with all of the plumbing (SOAP, WSDL, and so on)
discussed in the first part of this chapter on your behalf, so you only have to add properly decorated
methods to the service.

1117

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1118

Chapter 28: XML Web Services

A Realistic Example
Although the previous example was very easy to implement, it does not demonstrate a real-world
application of Web services. Let’s take a look at a more realistic example by building a Web service
that provides a richer set of data from a database instead. For this example, imagine that a third-party
provider hosts the site. The SQL server is behind a firewall, and the IIS server is in a demilitarized
zone — a safe, though exposed, network position, as shown in Figure 28-6.

7. Update
operation for
publishing

Enterprise data to
remote server

Firewall

5. Call routed to
ISP via HTTP

The Internet

4. Web Service makes
call to ISP for update

Local Enterprise
Server

3. DLL provides
Web service

with data

2. SP Returns
Recordset

1. Request of data

0. Get operation
for retrieving

data from
Enterprise
database

SQL DB

SQL DB

8. Remote Database uploaded
with Enterprise data

Firewall

The DMZ

9. Web site visitors see
current Enterprise data

Remote Internet Server
6. Web Service

Calls Update DLL

Figure 28-6

To get the data from your site to the remote site, you need to call a Web service on the remote web
server from your intranet. The SOAP envelope is sent via HTTP, so the firewall allows it to pass through,
and ADO.NET on the IIS server handles the actual database manipulation. The remote firewall allows
database calls only from the IIS server, and the data is updated safely because of the security.

In real life, the method GetEmployees would be local to your intranet server, and the database file
would be a SQL server on a second server. Across the Internet, as shown in Figure 28-6, the Web

1118

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1119

Chapter 28: XML Web Services

service would be on an IIS server sitting outside the network firewall. The DLL that actually provides
the data functions would be on an application server inside the firewall, and the database would again
be on a separate server.

For this application, though, you need to create a Web service that exposes some of the Contact table,
as well as some of the Employee table, from the sample AdventureWorks database, across the intranet,
which will later be consumed by a Web application. Keep in mind that Web services not only expose
simple values, but also a richer data set of values, such as entire tables from a data store (for example,
SQL Server).

Start this example by first creating a new Web Service project in Visual Studio called WebService1.

Using Visual Studio 2008 to Build Web Services
The Visual Studio 2008 IDE shows a marked improvement from the add-ins provided for Visual Studio
6 in the SOAP Toolkit. For instance, Web services are shown as references on a project, rather than in a
separate dialog box. The discovery process, discussed later, is used to its fullest, providing much more
information to the developer. In short, it is nearly as easy to consume a Web service with Visual Basic as
it is to use DLLs.

Producing a Typed DataSet
For simplicity, you will use Visual Studio to first create a typed DataSet, which will be returned from
the WebMethod that you later produce. This IDE enables you to quickly and easily create the needed data
access without having to dig through a lot of ADO.NET code.

Right-click the WebService1 project in the Solution Explorer and select Add New Item. From the provided
menu of file options, select DataSet. Change the name of this file to MyDataComponent.xsd. This creates
an already strongly typed DataSet on the fly. In addition, Visual Studio requests to place this file in the
App_Code folder of your solution. Confirm this request, because having it in the App_Code folder allows
for programmatic access to the DataSet (see Figure 28-7).

Figure 28-7

Once created, the MyDataComponent.xsd file opens itself in Visual Studio. This file appears as a blue
screen in the document window. The first step is to drag and drop a single TableAdapter onto this design
surface. Once you do this, the TableAdapter Configuration Wizard opens, as shown in Figure 28-8.

1119

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1120

Chapter 28: XML Web Services

Figure 28-8

The first step in the TableAdapter Configuration Wizard is establishing a data connection. If a connection
is not already in place, then create one by clicking the New Connection button. Using this dialog, make a
new connection to the sample AdventureWorks_Data.mdf database, which is a SQL Server Express Edi-
tion database file. You can find this and other SQL Server 2005 samples online on the Microsoft CodePlex
website (www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseId = 4004).
Download the file AdventureWorksDB.msi.

Once the connection is defined in the TableAdapter Configuration Wizard, the next step of the wiz-
ard asks you to store the connection in the web.config file, which is always a good option to choose.
Choosing both of these actions will copy the AdventureWorks_Data.mdf database file to the App_Data
folder in your project, and the connection to this database file will now be named and placed within the
web.config file of your ASP.NET Web Service project.

<connectionStrings>
<add name="AdventureWorks_DataConnectionString"
connectionString="Data Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|

\AdventureWorks_Data.mdf;Integrated Security=True;Connect Timeout=30;
User Instance=True"

providerName="System.Data.SqlClient" />
</connectionStrings>

Once the connection to the data store is established, click Next. In the dialog that appears, pick the com-
mand type that you want to work with. Typically, the options are working with either direct
SQL commands, existing stored procedures, or stored procedures that you can create directly in the
wizard. For this example, choose the first option: Use SQL Statements.

The next page in the wizard asks for the query that you want to use to load the table data. Input the
following:

SELECT HumanResources.Employee.EmployeeID, HumanResources.Employee.Title,
HumanResources.Employee.Gender,

1120

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1121

Chapter 28: XML Web Services

HumanResources.Employee.HireDate, Person.Contact.Title AS EXPR1,
Person.Contact.FirstName, Person.Contact.MiddleName,
Person.Contact.LastName, Person.Contact.EmailAddress, Person.Contact.Phone

FROM Person.Contact INNER JOIN
HumanResources.Employee ON Person.Contact.ContactID =

HumanResources.Employee.ContactID

Clicking the Next button results in a page from which you can select the methods that the wizard will
generate (as shown in Figure 28-9). These are the methods used in your Web service to load data into
data sets for transmission. In this case, the Fill and GetData methods are specified with the first two
options in the dialog. In some cases, you might want to also select the last check box, which creates the
additional Insert, Update, and Delete methods that you might want to later expose via a Web service.
When you are done, click Next again to proceed to the next step in the wizard.

Figure 28-9

Figure 28-10 shows the last page of the wizard. This final page just shows the results of all the actions
taken in the preceding steps.

After clicking the Finish button, note that the design surface of the MyDataComponent.xsd file changes to
reflect the data that comes from the two tables of the AdventureWorks database (see Figure 28-11).

At this point, your typed data set is now in place and ready for use by the Web service. Looking at the
results on the design surface of the .xsd file, you can see that indeed the typed MyDataComponent data set
is in place and contains a single DataTable called DataTable1. There is also a DataTable1TableAdapter
object with Fill and GetData methods in place.

1121

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1122

Chapter 28: XML Web Services

Figure 28-10

Figure 28-11

Building the Service
Right-click Service.asmx from within the Solution Explorer in Visual Studio and select View Code.
Rename the HelloWorld function to GetEmployees. From here, simply retrieve data from the
DataTable1TableAdapter that was created when you created the .xsd file earlier:

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://www.lipperweb.com/namespace")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

1122

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1123

Chapter 28: XML Web Services

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function GetEmployees() As MyDataComponent.DataTable1DataTable

Dim da As New MyDataComponentTableAdapters.DataTable1TableAdapter
Dim ds As New MyDataComponent.DataTable1DataTable

da.Fill(ds)

Return ds
End Function

End Class

If you are having trouble getting the MyDataComponent object recognized by Visual
Studio, before adding this code, be sure to build your application, and then you will
find that it is recognized.

Right-click the Service.asmx file in the Solution Explorer and select View in Browser. If there are no
errors, then a simple screen listing GetEmployees as the sole method of the service appears. Click the
Service Description line. You will get a screen like the one shown earlier in Figure 28-2.

Consuming the Service
Although the Web service is in place, you really have seen only half the story. Exposing data and logic
as SOAP to disparate systems across the enterprise or across the world is a simple task using .NET, and
particularly ASP.NET. The other half of the story is the actual consumption of an XML Web Service into
another application.

Keep in mind that you are not limited to consuming Web services only into ASP.NET applications, as
shown shortly. Consuming Web services into other types of applications is not that difficult; in fact, it
is rather similar to how you would consume them using ASP.NET. Remember that the Web services
you come across can be consumed in Window Forms, Windows Presentation Foundation applica-
tions, mobile applications, other databases, and more. You can even consume Web services with other
Web services, resulting in a single Web service made up of what is basically an aggregate of other Web
services.

For this consuming application, provide a Web application called WSEmployees by creating a new
ASP.NET Web Site project with that name. For this example, create this new project within your current
solution: Right-click on the WebService1 solution and select Add ➪ New Web Site from the menu. Once
complete, your solution will now contain two projects: WebService1 and WSEmployees. The first step to
take within your WSEmployees project is to create a Web reference to the remote XML Web Service that
was created in the WebService1 project.

Adding a Web Reference
The only bit of magic here is the adding of a Web reference to the project using the Visual Studio IDE. As
described later, you are really creating a proxy based upon the WSDL file of the service and referencing
the proxy in the project, but the IDE makes this all quite simple.

1123

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1124

Chapter 28: XML Web Services

To create the proxy needed by the consuming application, right-click the WSCustomers project in the
Solution Explorer and select Add Web Reference from the list of options. In this form, enter the WSDL
file of the Web service to which you want to make a reference. If the Web service is a .NET Web Service
(with an .asmx file extension), simply input the URL of the .asmx file and nothing more because the wizard
automatically adds ?wsdl at the end of the input. If you are referencing a Java Web Service, then place
the URL for the .wsdl file in this wizard. In most cases, you would simply enter the URL of the service
you are interested in consuming in the address bar of the Add Web Reference dialog. For this example,
click the ‘‘Web Services found at this URL’’ link. The dialog box shown in Figure 28-12 should appear.

Figure 28-12

The service description page you see when you build your service appears in the left pane of the wizard,
with .NET-specific information in the right. Click the Add Reference button at the right of the window to
add this reference to your project. The service appears in a new folder called Web References within the
Solution Explorer, as shown in Figure 28-13.

Figure 28-13

In making the reference, you can see that the .wsdl file was copied over, as well as the typed DataSet,
MyDataComponent. The power of this Web services model is that it can work with the GetEmployees

1124

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1125

Chapter 28: XML Web Services

method as if it were now local to your machine, when in fact it is hosted in an entirely different
application.

Building the Consumer
The COM architecture continually promised ‘‘one line of code’’ to generate great results. Web services
live up to the promise, minus the declarations. Now the only thing left to do is call the referenced Web
service and pass the generated DataTable that comes from the DataSet. Compared to the scores of lines
of XML needed to pass the DataSet in the existing Microsoft technologies, this is a breeze.

The first step to consuming an .aspx page is simply to make a reference to the proxy that Visual
Studio created and then call the GetEmployees WebMethod through this instantiated object. The results
pulled from the GetEmployees method are then displayed in a GridView control, which is placed on a
Web form.

You have a couple of ways to achieve this. The first method is to use an ObjectDataSource control,
which does the work of invoking the GetEmployees WebMethod and then displaying the results in the
GridView control. (The second method, discussed a bit later, is to manually write the required code.) To
work through this example, drop a GridView and an ObjectDataSource server control onto the design
surface of the Web form. Open the smart tag of the ObjectDataSource control and select Configure Data
Source. You are then presented with the Configure Data Source Wizard.

In the first page of this wizard, uncheck the Show Only Data Components check box and select
localhost.Service from the drop-down list. Click the Next button to choose the SELECT method for
that ObjectDataSource control to use (shown in Figure 28-14).

Figure 28-14

1125

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1126

Chapter 28: XML Web Services

From the drop-down list on this page of the wizard, select GetEmployees(), returns
DataTable1DataTable and click Finish to progress to the next step of binding the GridView control to
the returned DataTable from this ObjectDataSource control.

Now turn your attention to the GridView control. In configuring this control, open the control’s smart tag.
From the drop-down list, select ObjectDataSource1 as the data source control for this control. Note that
once you do this, the GridView control expands to include all the appropriate columns from the result set
you specified earlier from the AdventureWorks database.

Now, in the same smart tag, enable paging by selecting the appropriate check boxes. The code generated
by Visual Studio is shown here:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Consuming Application</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:GridView ID="GridView1" runat="server" AllowPaging="True"
AutoGenerateColumns="False"
DataKeyNames="EmployeeID" DataSourceID="ObjectDataSource1">

<Columns>
<asp:BoundField DataField="EmployeeID" HeaderText="EmployeeID"
InsertVisible="False"
ReadOnly="True" SortExpression="EmployeeID" />

<asp:BoundField DataField="Title" HeaderText="Title"
SortExpression="Title" />

<asp:BoundField DataField="Gender" HeaderText="Gender"
SortExpression="Gender" />

<asp:BoundField DataField="HireDate" HeaderText="HireDate"
SortExpression="HireDate" />

<asp:BoundField DataField="EXPR1" HeaderText="EXPR1"
SortExpression="EXPR1" />

<asp:BoundField DataField="FirstName" HeaderText="FirstName"
SortExpression="FirstName" />

<asp:BoundField DataField="MiddleName" HeaderText="MiddleName"
SortExpression="MiddleName" />

<asp:BoundField DataField="LastName" HeaderText="LastName"
SortExpression="LastName" />

<asp:BoundField DataField="EmailAddress" HeaderText="EmailAddress"
SortExpression="EmailAddress" />

<asp:BoundField DataField="Phone" HeaderText="Phone"
SortExpression="Phone" />

</Columns>
</asp:GridView>
<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
SelectMethod="GetEmployees"

1126

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1127

Chapter 28: XML Web Services

TypeName="localhost.Service"></asp:ObjectDataSource>
</div>
</form>

</body>
</html>

Once the page is complete, build and run it. That’s it. There is now a table in the Web form with all the
data from a remote SQL Server Express Edition file that can be paged — and you did not have to write
any code to achieve this functionality! The page results are shown in Figure 28-15.

Figure 28-15

Now consider doing the same thing but instead spending a little time writing some code. This is a good
exercise because it offers more control over the situation (if desired), and it teaches you more about what
is going on.

Create a page that includes only a GridView server control. From here, you get at the data that comes
from the Web service in the Page_Load event, as shown in the following example:

<%@ Page Language="VB" %>

<script runat="server">
Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.Service

GridView1.DataSource = ws.GetEmployees()
GridView1.DataBind()

End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Consuming Application</title>

1127

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1128

Chapter 28: XML Web Services

</head>
<body>

<form id="form1" runat="server">
<div>

<asp:GridView ID="GridView1" Runat="server"
AllowPaging="True" AllowSorting="True">

</asp:GridView>
</div>
</form>

</body>
</html>

The first line of code contained in the Page_Load event instantiates the proxy object that was created for
you. The next line assigns the DataSource property of the GridView server control to the result set from
the GetEmployees WebMethod call. Finally, you close everything by calling the DataBind method of the
GridView control. By compiling and running the XML Web Service, you can retrieve from the database
the view of the Employees table that you created earlier from the AdventureWorks database. A returned
dataset contains a wealth of information, including the following:

❑ An XSD definition of the XML contained in the DataSet

❑ The employee information from the Employees table of the AdventureWorks database

On the consumption side, consumers of this XML Web Service can easily use the XSD definition and the
XML contained within the DataTable within their own applications. If users are then consuming this
DataTable into .NET applications, they can easily bind this data to a GridView and use it within their
applications with minimal lines of code.

Overloading WebMethods
In the object-oriented world of .NET, it is quite possible to use method overloading in the code you
develop. A true object-oriented language has support for polymorphism, of which method overloading
is a part. Method overloading enables you to have multiple methods that use the same name but have
different signatures. With method overloading, one method can be called, but the call is routed to the
appropriate method based on the full signature of the request. An example of standard method over-
loading is illustrated in the following code listing:

Public Function HelloWorld() As String
Return "Hello"

End Function

Public Function HelloWorld(ByVal FirstName As String) As String
Return "Hello " & FirstName

End Function

In this example, both methods have the same name, HelloWorld. Which one is called when you invoke
HelloWorld depends on the signature you pass to the method. For instance, you might provide the
following:

Label1.Text = HelloWorld()

1128

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1129

Chapter 28: XML Web Services

This yields a result of just Hello. However, you might invoke the HelloWorld method using the following
signature:

Label1.Text = HelloWorld("Bill Evjen")

This returns a result of Hello Bill Evjen. As you can see, method overloading is a great feature that
can be effectively utilized by your ASP.NET applications — but how do you go about overloading
WebMethods?

If you have already tried to overload any of your WebMethods, you probably got the following error when
you pulled up the Web service in the browser:

Both System.String HelloWorld(System.String) and System.String HelloWorld() use the
message name ’HelloWorld’. Use the MessageName property of the WebMethod custom
attribute to specify unique message names for the methods.

As this error shows, the extra step you have to take to overload WebMethods is to use the MessageName
property. The following bit of code shows how:

<WebMethod(MessageName:="HelloWorld")> _
Public Function HelloWorld() As String

Return "Hello"
End Function

<WebMethod(MessageName:="HelloWorldWithFirstName")> _
Public Function HelloWorld(ByVal FirstName As String) As String

Return "Hello " & FirstName
End Function

In addition to adding the MessageName property of the WebMethod attribute, you have to disable your
Web service’s adherence to the WS-I Basic Profile 1.0 specification — that it would not be doing if you
perform WebMethod overloading with your Web services. You can disable conformance to the WS-I Basic
Profile specification in a couple of ways. The first way is to add the <WebServiceBinding> attribute to
your code, as illustrated here:

<WebServiceBinding(ConformsTo := WsiProfiles.None)> _
Public Class MyOverloadingExample

’ Code here
End Class

The other option is to turn off the WS-I Basic Profile 1.0 capability in the web.config file:

<configuration>
<system.web>
<webServices>

<conformanceWarnings>
<remove name="BasicProfile1_1" />

</conformanceWarnings>
</webServices>

</system.web>
</configuration>

1129

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1130

Chapter 28: XML Web Services

After you have enabled your Web service to overload WebMethods, you can see both WebMethods defined
by their MessageName value properties when you pull up the Web service’s interface test page in the
browser (see Figure 28-16).

Figure 28-16

Although the names of the WebMethods are distinct (based on the MessageName property values you
assigned in your code through the Web service’s test page), when the developer consuming the Web
service makes a Web reference to your Web service, he or she sees only a single method name available
(in this example, HelloWorld). This is evident in the IntelliSense of Visual Studio 2008 in the application
consuming these methods (see Figure 28-17).

Figure 28-17

In the yellow box that pops up to guide developers on the signature structure, two options are
available — one is an empty signature and the other requires a single string.

1130

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1131

Chapter 28: XML Web Services

Caching Web Service Responses
Caching is an important feature in almost every application that you build with .NET. Although many
features in the .NET Framework provide different vehicles for caching, a feature of Web services in .NET
enables you to cache the SOAP response sent to any of the service’s consumers.

First, by way of review, remember that caching is the capability to maintain an in-memory store where
data, objects, and various items are stored for reuse. This feature increases the responsiveness of the
applications you build and manage. Sometimes, returning cached results can greatly affect performance.

XML Web Services use an attribute to control caching of SOAP responses — the CacheDuration property.
The following bit of code shows its use:

<WebMethod(CacheDuration:=60)> _
Public Function GetServerTime() As String

Return DateTime.Now.ToLongTimeString()
End Function

As you can see, CacheDuration is used within the WebMethod attribute much like the Description and
Name properties. CacheDuration takes an Integer value that is equal to the number of seconds during
which the SOAP response is cached.

When the first request comes in, the SOAP response is cached by the server, and the consumer gets the
same time stamp in the SOAP response for the next minute. After that minute is up, the stored cache is
discarded, and a new response is generated and stored in the cache again for servicing all other requests
for the next minute.

Among the many benefits of caching your SOAP responses, you will find that your application’s perfor-
mance is greatly improved when you have a response that is repeatedly recreated without any change.

SOAP Headers
One of the more common forms of extending the capabilities of SOAP messages is to add metadata of
the request to the SOAP message itself. The metadata is usually added to a section of the SOAP envelope
called the SOAP header. Figure 28-18 shows the structure of a SOAP message.

Soap Envelope

Soap Header

Soap Body

Figure 28-18

The entire SOAP message is referred to as a SOAP envelope. Contained within the SOAP message is the
SOAP body — a piece of the SOAP message that you have been working with in every example thus far.
It is a required element of the SOAP message.

1131

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1132

Chapter 28: XML Web Services

The one optional component of the SOAP message is the SOAP header, which is the part of the SOAP
message where you can place any metadata about the overall SOAP request instead of incorporating it
into the signature of any of your WebMethods. It is important to keep metadata separate from the actual
request.

It terms of the information it contains, it could include a lot of things. One of the more common items
placed in the SOAP header is any authentication/authorization functionality required to consume your
Web service or to get at specific pieces of logic or data. Usernames and passwords are good examples of
what you might include inside the SOAP headers of your messages.

Building a Web Service with SOAP Headers
You can build upon the sample HelloWorld Web service presented in the default .asmx page when it
is first pulled up in Visual Studio. Name the new .asmx file HelloSoapHeader.asmx. Add a class that is
an object representing what is to be placed in the SOAP header by the client, as shown in the following
example:

Public Class HelloHeader
Inherits System.Web.Services.Protocols.SoapHeader

Public Username As String
Public Password As String

End Class

The class, representing a SOAP header object, has to inherit from the SoapHeader class from
System.Web.Services.Protocols.SoapHeader. The SoapHeader class serializes the payload of the
<soap:header> element into XML for you. In this example, the SOAP header requires two elements — a
username and a password, both of type String. The names you create in this class are those used for the
sub-elements of the SOAP header construction, so it is important to name them descriptively.

The following code shows the Web service class that instantiates an instance of the HelloHeader class:

<WebService(Namespace:="http://www.wrox.com/helloworld")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1, _

EmitConformanceClaims:=True)> _
Public Class HelloSoapHeader

Inherits System.Web.Services.WebService

Public myHeader As HelloHeader

<WebMethod(), SoapHeader("myHeader")> _
Public Function HelloWorld() As String

If (myHeader Is Nothing) Then
Return "Hello World"

Else
Return "Hello " & myHeader.Username & ". " & _

"
Your password is: " & myHeader.Password
End If

End Function

End Class

1132

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1133

Chapter 28: XML Web Services

The Web service, HelloSoapHeader, has a single WebMethod — HelloWorld. Within the Web service class,
but outside of the WebMethod itself, create an instance of the SoapHeader class:

Public myHeader As HelloHeader

Now that you have an instance of the HelloHeader class that you created earlier, myHeader, you can use
that instantiation in your WebMethod. Because Web services can contain any number of WebMethods, it is
not necessary for all WebMethods to use an instantiated SOAP header. You specify whether a WebMethod
uses a particular instantiation of a SOAP header class by placing the SoapHeader attribute before the
WebMethod declaration:

<WebMethod(), SoapHeader("myHeader")> _
Public Function HelloWorld() As String

’ Code here
End Function

Here, the SoapHeader attribute takes a string value of the name of the instantiated SoapHeader class — in
this case, myHeader.

The WebMethod actually makes use of the myHeader object. If the myHeader object is not found (mean-
ing the client did not send a SOAP header with the constructed SOAP message), then a simple ‘‘Hello
World’’ is returned. However, if values are provided in the header of the SOAP request, then those values
are used in the returned string value.

Consuming a Web Service Using SOAP Headers
It is not difficult to build an ASP.NET application that makes a SOAP request to a Web service using
SOAP headers. As with Web services that do not include SOAP headers, you make a Web reference to
the remote Web service directly in Visual Studio.

For the ASP.NET page, create a simple page with a single Label control. The output of the Web service
is placed in this control. Following is the code for the ASP.NET page:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.HelloSoapHeader()
Dim wsHeader As New localhost.HelloHeader()

wsHeader.Username = "Bill Evjen"
wsHeader.Password = "Bubbles"
ws.HelloHeaderValue = wsHeader

Label1.Text = ws.HelloWorld()
End Sub

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Working with SOAP headers</title>

1133

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1134

Chapter 28: XML Web Services

</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" Runat="server"></asp:Label>
</div>
</form>

</body>
</html>

Two objects are instantiated. The first is the actual Web service, HelloSoapHeader. The second, which
is instantiated as wsHeader, is the SoapHeader object. After both of these objects are instantiated and
before making the SOAP request in the application, you construct the SOAP header. This is as easy as
assigning values to the Username and Password properties of the wsHeader object. After these properties
are assigned, you associate the wsHeader object to the ws object through the use of the HelloHeaderValue
property. After you have made the association between the constructed SOAP header object and the
actual WebMethod object (ws), you can make a SOAP request, just as you would normally do:

Label1.Text = ws.HelloWorld()

Running the page produces the result shown in Figure 28-19.

Figure 28-19

Note that the SOAP request reveals that the SOAP header was indeed constructed into the overall SOAP
message, as shown in the following SOAP request:

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Header>

<HelloHeader xmlns="http://www.wrox.com/helloworld/">
<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</HelloHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns="http://www.wrox.com/helloworld/" />
</soap:Body>

</soap:Envelope>

1134

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1135

Chapter 28: XML Web Services

This returns the SOAP response shown here:

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<HelloWorldResponse xmlns="http://www.wrox.com/helloworld/">

<HelloWorldResult>Hello Bill Evjen. Your password is:
Bubbles</HelloWorldResult>

</HelloWorldResponse>
</soap:Body>

</soap:Envelope>

Requesting Web Services Using SOAP 1.2
Most Web services use SOAP version 1.1 for the construction of their messages. However, SOAP 1.2
became a W3 C Recommendation in June 2003 (see www.w3.org/TR/soap12-part1/). The nice thing
about XML Web Services in the .NET Framework platform is that they are capable of communicating in
both the 1.1 and 1.2 versions of SOAP.

In an ASP.NET application that is consuming a Web service, you can control whether the SOAP request
is constructed as a SOAP 1.1 message or a 1.2 message. The next example changes the previous example
to use SOAP 1.2 instead of the default setting of SOAP 1.1:

<%@ Page Language="VB" %>

<script runat="server">
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Dim ws As New localhost.HelloSoapHeader()
Dim wsHeader As New localhost.HelloHeader()

wsHeader.Username = "Bill Evjen"
wsHeader.Password = "Bubbles"
ws.HelloHeaderValue = wsHeader

ws.SoapVersion = System.Web.Services.Protocols.SoapProtocolVersion.Soap12

Label1.Text = ws.HelloWorld()
End Sub

</script>

This example first provides an instantiation of the Web service object and uses the new SoapVersion
property. The property takes a value of System.Web.Services.Protocols.SoapProtocolVersion
.Soap12 to work with SOAP 1.2 specifically. With this bit of code in place, the SOAP request takes the
structure shown here:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

1135

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1136

Chapter 28: XML Web Services

<HelloHeader xmlns="http://www.wrox.com/helloworld/">
<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</HelloHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns="http://www.wrox.com/helloworld/" />
</soap:Body>

</soap:Envelope>

One difference between the two examples is the xmlns:soap namespace that is used. The difference
actually resides in the HTTP header. Comparing the SOAP 1.1 and SOAP 1.2 messages, you can see
a difference in the Content-Type attribute. In addition, the SOAP 1.2 HTTP header does not use the
soapaction attribute because this is now combined with the Content-Type attribute.

You can turn off either SOAP 1.1 or SOAP 1.2 capabilities with the Web services that you build by
making the proper settings in the web.config file, as illustrated here in this snippet of configuration
code:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.web>

<webServices>
<protocols>

<remove name="HttpSoap"/> <!-- Removes SOAP 1.1 abilities -->
<remove name="HttpSoap1.2"/> <!-- Removes SOAP 1.2 abilities -->

</protocols>
</webServices>

</system.web>
</configuration>

Visual Basic and System.Web.Services
The SOAP Toolkit provides a number of wizards to navigate most of the obstacle course required to set
up a Web service, but the .NET Framework class library provides the abstract classes. The
System.Web.Services namespace provides four classes and three other namespaces that enable pro-
grammatic exposure of methods to the Web.

System.Web.Services Namespace
The System.Web.Services namespace includes the following component classes:

❑ WebService

❑ WebMethodAttribute

❑ WebServiceAttribute

❑ WebServicesBindingAttribute

The WebService class is the base class from which all the ASP.NET services are derived, and it
includes access to the public properties for Application, Context, Server, Session, Site, and User. ASP

1136

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1137

Chapter 28: XML Web Services

programmers will recognize these objects from the ASP namespace. Web services can access the IIS object
model from the WebService class, including application-level variables:

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://www.lipperweb.com/namespace")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Util

Inherits System.Web.Services.WebService

<WebMethod(Description:="Application Hit Counter", EnableSession:=False)> _
Public Function HitCounter() As String

Dim HitCounter As Integer

If (Application("HitCounter") Is DBNull.Value) Then
Application("HitCounter") = 1

Else
Application("HitCounter") = Application("HitCounter") + 1

End If

HitCounter = Application("HitCounter")

Return HitCounter

End Function

End Class

WebService is an optional base class, used only if access to ASP.NET objects is desired. The
WebMethodAttribute class, however, is a necessity if the class needs to be available over the Web.

The WebServiceAttribute class is similar to the WebMethodAttribute class in that it enables the addition
of the description string to an entire class, rather than method by method. We recommend adding it
before the previous class declaration:

<WebService(Description:="Common Server Variables")> _
Public Class ServerVariables

Inherits System.Web.Services.WebService

Instead of using WSDL in the contract to describe these services, the System.Web.Services name-
space provides programmatic access to these properties. IIS Service Discovery uses these descriptions
when queried. This way, you have removed the necessity to struggle with myriad protocols surrounding
Service Contract Language and SOAP.

System.Web.Services.Description Namespace
The System.Web.Services.Description namespace provides a host of classes that provide total man-
agement of the WSDL descriptions for your Web service. This object manages every element in the WSDL
schema as a class property.

1137

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1138

Chapter 28: XML Web Services

For example, the preceding discussion on the benefits of WSDL description mentioned being able to
query a Web service about its methods and parameters. The System.Web.Services.Description name-
space provides methods for the discovery of methods and parameters, gathering the information from
the service contract and providing it to the object model in Visual Basic code.

When working on the HTTP GET protocol (as opposed to SOAP, for instance), simply pass in the required
sEmail parameter through the use of a querystring. You can find details about this in the Web service’s
WSDL description. In the successive <wsdl:message> sections, you can find all parameter information
for all three protocols, including HTTP GET (if enabled via the web.config file):

<wsdl:message name="IsValidEmailHttpGetIn">
<wsdl:part name="sEmail" type="s:string" />

</wsdl:message>
<wsdl:message name="IsValidEmailHttpGetOut">

<wsdl:part name="Body" element="tns:boolean" />
</wsdl:message>

Invoking this Web service using HTTP GET, use the following construct:

http://localserver/Validate.asmx?sEmail=evjen@yahoo.com

Note that HTTP GET is disabled by default because it is deemed a security risk. If you wish to enable
HTTP GET for your XML Web Services, then configure it for this in the web.config file of your Web
service solution, as shown here:

<configuration>
<system.web>

<webServices>
<protocols>

<add name="HttpGet"/>
</protocols>

</webServices>
</system.web>

</configuration>

System.Web.Services.Discovery Namespace
The System.Web.Services.Discovery namespace provides access to all of the wonderful features
of the .disco files on a dynamic basis. Because Microsoft is currently trying to integrate Web services
as a remoting protocol and is not pushing the public service side as much, you don’t see the use of .disco
files as often in the Microsoft side of things. Your business partner might be using them, though, so this
namespace proves useful. For instance, you can access the DiscoveryDocument using the Discovery class:

Imports System.Web.Services.Discovery

ReadOnly Property DiscoveryDocument(strURL As String) As DiscoveryDocument
Get

DiscoveryDocument = DiscoveryClientProtocol.Discover(strURL)
End Get

End Property

1138

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1139

Chapter 28: XML Web Services

Like the System.Web.Services.Description namespace, the System.Web.Services.Discovery name-
space provides many tools to build a .disco document on the fly.

System.Web.Services.Protocols Namespace
All of the wire service problems solved with HTTP and SOAP are handled in the System.Web.Services
.Protocols namespace. When handling references to classes also referenced in other Web service name-
spaces, the System.Web.Services.Protocols namespace proves to be a handy tool. Objects referenced
by the System.Web.Services.Protocols namespace include the following (among others):

❑ Cookies, per RFC 2019

❑ HTML forms

❑ HTTP request and response

❑ MIME

❑ Server

❑ SOAP, including SoapException, the only error-handling mechanism

❑ URIs and URLs

❑ XML

The System.Web.Services.Protocols namespace is particularly handy for managing the connection
type by a client. A consumer of a Web service can use the HTTP GET or HTTP POST protocol to call
a service, as well as the HTTP SOAP protocol. Microsoft’s .NET initiative focuses on SOAP as the
ultimate means of connecting disparate data sources. The System.Web.Services.Protocols
.SoapDocumentMethodAttribute class enables developers to set special attributes of a public method
for when a client calls it using SOAP:

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://www.lipperweb.com/namespace")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Util

Inherits System.Web.Services.WebService

<SoapDocumentMethod(Action:="http://MySoapMethod.org/Sample", _
RequestNamespace:="http://MyNamespace.org/Request", _
RequestElementName:="GetUserNameRequest", _
ResponseNamespace:="http://MyNamespace.org/Response", _
ResponseElementName:="GetUserNameResponse")> _
WebMethod(Description:="Obtains the User Name")> _

Public Function GetUserName()
’...

End Function

End Class

1139

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1140

Chapter 28: XML Web Services

Architecting with Web Services
Web services impart two remarkable benefits to users — one rather obvious, the other less so. First, they
replace common binary RPC formats, such as DCOM, CORBA, and RMI. Because these use a proprietary
communication protocol, they are significantly less architecturally flexible than Web services. As devices
utilize more and more of the Internet, platform neutrality will be a great advantage.

Less obvious but more important, Web services will be used to transfer structured business communica-
tions in a secure manner, potentially ending the hold that Sterling has on the Electronic Data Interchange
(EDI) market. HTTPS with 128-bit SSL can provide the security necessary for intracompany information
transfer. Furthermore, Microsoft has recently (as of this writing) released Web Services Enhancements
3.0 (WSE), as well as the Windows Communication Foundation (WCF), which enables you to easily use
WS-Security and other advanced protocols to apply credentials, encryption, and digital signing to your
SOAP messages in an easy and straightforward manner.

Why Web Services?
Web services are remarkably easy to deploy with Visual Basic. The key to remoting with Web services
is the WSDL contract — written in the dense WSDL protocol shown earlier. IIS 5.0, 6.0, and 7.0 does that
in conjunction with the .NET Framework, analyzing the VB code and dynamically generating the WSDL
code for the contract.

In addition, Web services are inherently cross-platform, even when created with Microsoft products.
Yes, you have heard this before, but so far it seems to be true. The standard XML schemas are centrally
managed, and IBM mostly built the WSDL specification, so Microsoft seems to have been up to standard
on this one.

Finally, they best represent where the Internet is heading — toward an architecturally neutral collection
of devices, rather than millions of PCs surfing the World Wide Web. Encapsulating code so that you can
simply and easily allow cell phones to use your logic is a major boon to developers, even if they do not
know it yet.

How This All Fits Together
Note that Web services are not a feature of the .NET Framework per se. In fact, Web services run fine on
Windows NT4 SP6, with the SOAP Toolkit installed. You can do most anything you are doing here with
VB6 and IIS 4.0.

However, the .NET Framework encapsulates the Web service protocol into objects. It is now an integrated
part of the strategy, rather than an add-on. If you are currently working in a VB6 environment, look
at the SOAP Toolkit (downloadable from MSDN at http://msdn.microsoft.com/webservices), and
understand that the services you build are available not only to different flavors of Windows, but also to
IBM and Sun platforms.

The goal of Web services is to provide a loosely coupled, ubiquitous, universal information exchange
format. Toward that end, SOAP is not the only mechanism for communicating with Web services — the
HTTP GET and HTTP POST protocols are also supported by the .NET Framework. Response is via HTTP,
just like normal RPCs with SOAP. This enables legacy Web applications to make use of Web services
without the benefit of the .NET Framework.

1140

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1141

Chapter 28: XML Web Services

State Management for XML Web Services
The Internet is stateless by nature. Many of the techniques used for managing state in ASP.NET Web
applications are the same techniques you can use within the XML Web Services built on the .NET plat-
form. Remember that XML Web Services are part of the ASP.NET model, and both application types
have the same objects at their disposal.

Therefore, just like an ASP.NET application, XML Web Services can also use the Application object
or the Session object. These sessions can also be run in the same process as the XML Web Services
application itself — out of process, using the .NET StateServer or by storing all the sessions within SQL
Server.

To use sessions within XML Web Services built on the .NET platform, you must turn on this capability
within the WebMethod attribute by using the EnableSession property. By default, the EnableSession
property is set to False, so to use the HTTPSessionState object, set this property to True, as shown here:

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:="http://www.lipperweb.com/namespace")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
Public Class Service

Inherits System.Web.Services.WebService

<WebMethod(EnableSession:=True)> _
Public Function SessionCounter() As Integer

If Session("Counter") Is Nothing Then
Session("Counter") = 1

Else
Session("Counter") = CInt(Session("Counter")) + 1

End If

Return CInt(Session("Counter"))
End Function

End Class

The EnableSession property goes directly in the parentheses of the WebMethod declaration. This property
takes a Boolean value and needs to be set to True in order to work with the Session object.

Security in Web Services
Opening up a procedure call to remoting makes applications vulnerable to accidents, poor end-user
implementation, and crackers. Any application design needs to include some level of security. Web
services demand the inclusion of security.

Security problems with Web services fall into two categories: interception and unauthorized use. SOAP
messages intercepted by crackers potentially expose private information, such as account numbers and
passwords, to the public. At best, unauthorized use costs money, and at worst it wreaks havoc within a
system.

1141

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1142

Chapter 28: XML Web Services

Very few of the concepts discussed here are things we would like to see in the hands of those wearing
the black hats. Even the simple validation service handles e-mail addresses — a valuable commodity
in this world of ‘‘opt in’’ spamming. If you add social security or account numbers to the service, then
this becomes even more of a concern. Fortunately, the wire transport of choice — HTTPS — provides a
128-bit solution.

In addition, as mentioned earlier, by using Microsoft’s Web Services Enhancements (WSE) and the Win-
dows Communication Foundation capabilities, you now can easily apply security standards such as
WS-Security to your SOAP messages.

The Secure Sockets Layer
The Secure Sockets Layer (SSL) is a protocol consumed by HTTP in the transfer of Internet data from the
web server to the browser. On the Web, the process works like this:

1. The user calls a secure Web document, and a unique public key is generated for the client
browser, using the server’s root certificate.

2. A message encrypted with the server’s public key is sent from the browser.

3. The server can decrypt the message using its private key.

The protocol in the URI represents how HTTP would appear if it were changed to HTTPS:

<address uri="https://aspx.securedomains.com/evjen/Validate.asmx" />

The service would then make an SSL call to the server. Remember that SSL is significantly slower than
HTTP, so you will suffer a performance hit. Given the sensitivity of much of the information passing over
Web services, however, it is probably worth the slowdown.

Directory-Level Security
You also have the option to code security into your applications. This solves different problems from SSL,
and in fact you may want to combine the two services for a complete security solution.

Unauthorized access is a potential problem for any remote system, but even more so for Web services.
The open architecture of the system provides crackers with all the information they need to plan an
attack. Fortunately, simplicity is often the best defense. Using the NT security options already on the
server is the best way to defend against unauthorized users.

You can use NTFS permissions for individual directories within an application and require users to
provide a valid username and password combination if they want to access the service.

Web service security is a large area to cover. For more information, refer to the documentation included
with the .NET Framework SDK.

The best approach to security is to use SSL and directory-level security together. It is slow, and at times
inconvenient, but this is a small price to pay for the heightened level of security. Though this is different

1142

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1143

Chapter 28: XML Web Services

from the traditional role-based COM + security, it is still very effective for running information across
the wire.

Other Types of Security
The Windows platform also provides for other forms of security. For instance, the Windows CryptoAPI
supplies access to most of the commonly used encryption algorithms — aside from the protocols used
in the Secure Sockets Layer. Digital certificates (sort of a personal form of SSL ServerCertificates) are
now rapidly becoming a powerful force in security.

The Downside
There is a downside to any distributed architecture. We’ve covered most of them in this chapter and
suggested workarounds — security, state, speed, and connectivity. Let’s go over them once more to
ensure that Web services are the way to go.

Security
The key to the issue and solution of security problems is the management of client expectations. If Web
services are built securely to begin with, then you won’t face situations that draw concern or scrutiny.
Consider the security of everything you write. It’s fairly easy, and the payoff is great.

State
State is less of a problem in a distributed architecture because in Windows DNA, Microsoft has been
saying for years that n-tier statefulness has to go. Most developers are used to the idea, but if you are not,
then you need to get on the boat with the rest of us. Architect your solutions to be loosely coupled, which
is what Web services are designed to do.

Transactions
Web services are not made for transactional systems. If the web server at MyCompany.com were to access a
database at UPS, for example, and the connection dropped in the middle, the lock on the database would
remain without giving the network system at UPS a chance to solve the problem. Web services are by
nature loosely coupled. They are not designed for tight transactional integration.

A common use of Web services, communication between differing systems, prompted a number of tech-
nology architects to design several XML transaction protocols, such as 2PC. These packages provide the
two systems with an understanding that the network link will remain stable.

Speed and Connectivity
Speed and connectivity are going to be a continuing problem until we have the ubiquitous bandwidth
George Gilder talks about in his book Telecosm (Free Press, 2000). Right now, the majority of Internet
devices that could really benefit from Web services — cell phones, PDAs, and the like — are stuck at the
paltry 14,000 bits per second currently supported by most wireless providers.

1143

Evjen-91361 c28.tex V1 - 04/02/2008 2:46pm Page 1144

Chapter 28: XML Web Services

For application development, this is a concern because when the router goes down, the application
goes down. Right now, intranets continue to function when the ISP drops the ISDN. With Web services
running the links to customers and suppliers, that ISDN line becomes the company lifeline. Redundancy
of connections and a firm partnership with your service provider are the only solution.

Where We Go from Here
The cell phone is a listening device. It listens for a call to its network address from the cell network.
When it receives one, it follows some logic to handle the call. Sound familiar? This works just like the
RPC architecture and will be the format for a new host of devices that listen for Web service calls over
the G3 wireless network.

The first lines of the W3 C XML group’s charter state the following:

‘‘Today, the principal use of the World Wide Web is for interactive access
to documents and applications. In almost all cases, such access is by human
users, typically working through web browsers, audio players, or other inter-
active front-end systems. The Web can grow significantly in power and scope
if it is extended to support communication between applications, from one
program to another.’’

New business communication will be via XML and Web services, rather than EDI and VANs. Micro-
payment may actually become a reality. Scores of promises that the Internet has made since its inception
can be fulfilled with Web services and XML. It won’t stop there, though. The power of listening devices
will bring Web services development into user-to-user markets from business-to-business ones.

It sounds far-fetched, but it is hoped that you can see how the power of Web services on .NET could
make this possible. SOAP is not just about replacing the RPC architecture already out there. It is a funda-
mentally different way to think about the network as the platform.

Summary
This chapter looked at the need for an architecturally neutral, ubiquitous, easy to use, and interoperable
system to replace DCOM, RMI, and CORBA. It discussed how Web services fill the gaps successfully
because HTTP is used as the language-independent protocol, XML is its language (in WSDL) and trans-
port mechanism, and SOAP enables you to package messages for sending over HTTP.

The chapter also described how to create and consume Web services programmatically using Visual
Basic, and discussed the abstract classes provided by the .NET Framework class library to set
up and work with Web Services. In particular, it looked at the WebService, WebServiceAttribute,
WebMethodAttribute, and WebServiceBindingAttribute component classes of the System.Web
.Services namespace, in addition to the System.Web.Services.Description, System.Web.Services
.Discovery, and System.Web.Services.Protocols namespaces.

Finally, it outlined some of the downsides to using any distributed architecture (Web services included),
but it finished with an optimistic note regarding where Web services might take us in the future.

1144

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1145

Remoting

Remoting is the .NET technology that enables code in one application domain (AppDomain) to call
into the methods and properties of objects running in another application domain. A major use of
remoting is in the classic n-tier desktop approach, where presentation code on the desktop needs to
access objects running on a server somewhere on the network. Another primary use for remoting is
when code in ASP.NET Web Forms or Web Services needs to call objects running on an application
server somewhere else on the network. In short, remoting is the technology to use when your n-tier
code needs to talk to the business or data tier that is running on an application server.

Remoting is conceptually somewhat similar to Web services. Both remoting and Web services are
TCP/IP-based technologies that enable communication between different machines over an IP
network. This means that they both pass through firewalls, and they both provide stateless and
connectionless communication between machines. These two technologies share many of the same
principles.

It is important to recognize that Microsoft has merged the functionality of remoting,
Web services, enterprise services, and MSMQ (Microsoft Message Queue) into the
Windows Communication Foundation (WCF) — the next generation of the
technologies. You can find more information on WCF in Chapter 32.

When working with XML Web Services, you will find that the biggest problem with SOAP —
Simple Object Access Protocol — is that it is not lightweight. It is designed with maximum
platform interoperability in mind, and this puts certain limits on how data can be transferred. For
example, imagine that Platform A stores Integer variables as a 4-byte block of memory, with the
lowest-value byte appearing first. Now imagine that Platform B also uses a 4-byte block of memory,
but this time the highest-value byte appears first. The encoding of the value is different. Without
some form of conversion, if you copy that block of bytes from Platform A to Platform B, the plat-
forms will not be able to agree on what the number actually is. In this scenario, one platform thinks
it has the number 4, whereas the other thinks that the number is actually 536870912.

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1146

Chapter 29: Remoting

SOAP gets around this problem by representing numbers (and everything else) as strings of ASCII
characters — since ASCII is a text-encoding standard that most platforms can understand. However,
this means that the native binary representations of the numbers have to be converted to text each time
the SOAP document has to be constructed. In addition, the values themselves have to be packaged in
something that you can read (with a little bit of effort). This leads to two problems: massive bloat (a
4-byte value starts taking hundreds of bytes to store) and wasted CPU cycles used in converting from
native encoding to text encoding and back again.

You can live with all these problems if you only want to run your web service on, say, Windows 2000,
and have it accessed through a client running on a cell phone. SOAP is designed to do this kind of thing.
However, if you have a Windows XP desktop application that wants to use objects hosted on a Windows
2000 server (using the same platform), the bloated network traffic and wastage in terms of conversion is
sub-optimal at best and ridiculous at worst.

Remoting enables you to enjoy the power of Web services but without the downside. If you want, you
can connect directly to the server over TCP and send binary data without having to do any conversions.
If one Windows computer has a 4-byte block of memory holding a 32-bit integer value, you can safely
copy the bit pattern to another Windows computer and both will agree on what the number is. In effect,
network traffic sanity is restored and processor time is not wasted doing conversions.

Now that you know what remoting is, you’re ready to look at its architecture.

Remoting Overview
It is important to understand several fundamental aspects of remoting, including the basic terms and
related objects, which are covered in the following sections.

Basic Terminology
A normal object is not accessible via remoting. By default, .NET objects are only accessible to other code
running within the same .NET AppDomain.

A remote object is an object that has been made available over remoting by inheriting from
System.MarshalByRefObject. These objects are often also called MBROs. Remote objects are the same
kinds of objects that you build normally, except they inherit from MarshalByRefObject and you register
them with the Remoting subsystem to make them available to clients. Remote objects are anchored to
the machine and AppDomain where they were created, and you communicate with them over the net-
work. The wonderful part of this scenario is that the client is working with a proxy object, instantiated
by the client, that enables programmatic access to the remote object just as if it were in the same process
as your client application, even though it actually resides in a completely separate process — even on a
completely separate machine.

A serializable object is an object that’s been made available over remoting by marking the class with
the <Serializable()> attribute. These objects will move from machine to machine or AppDomain to
AppDomain. They are not anchored to any particular location, so they are known as unanchored objects.
A common example of a serializable object is the DataSet, which can be returned from a server to a client

1146

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1147

Chapter 29: Remoting

across the network. The DataSet physically moves from server to client via the serialization technology
in the .NET Framework.

A remoting host is a server application that configures remoting to listen for client requests. Remoting
runs within the host process, using the memory and threads of the host process to handle any client
requests. The most common remoting host is IIS. You can create custom remoting hosts, which are typi-
cally created as a Windows service, so they can run even when no user is logged in to the server. It is also
possible to have any .NET application be a remoting host, which enables you to emulate ActiveX EXE
behaviors to some degree. This last technique is most commonly used when creating peer-to-peer-style
applications.

A channel is a way of communicating between two machines. In order for two separate application pro-
cesses to communicate with each other, a transport channel is opened between the processes. A transport
channel is a combination of underlying technologies required to open a network connection and use a
particular protocol to send the bytes to the receiving application. A channel works with a stream of data
and creates an object based upon the transport protocol. Out of the box, .NET comes with two channels:
TCP and HTTP.

The TCP channel is a lightweight channel designed for transporting binary data between two comput-
ers. (The TCP channel is different from the TCP protocol that HTTP also uses.) It works using sockets,
something discussed in much more detail in Chapter 31. TCP is more suited for an intranet environ-
ment because an intranet sits behind a firewall, and TCP does not always cross firewalls easily. Using
TCP also means that a binary formatter is used by default, which actually reduces the size of the object
that is being transported. Having smaller packages to transport allows for better and faster network
communications.

HTTP, as you already know, is the protocol that web servers use. The HTTP channel hosted in IIS is
the recommended approach by Microsoft. HTTP is a firewall-friendly transport because HTTP traffic
generally flows directly through firewalls over port 80 (which is generally open on most computers).

After a channel is established through a specific port, a formatter object is needed to initiate the serial-
ization or deserialization of the object. A formatter object is used to serialize or marshal an object’s data
into a format in which it can be transferred down the channel. In order for an object to move through
the channel from one process to another, the formatter must take the object that you are sending and
serialize it into the network stream. Out of the box, you have two formatter objects: BinaryFormatter
and SoapFormatter. The BinaryFormatter is more efficient and is recommended. The SoapFormatter is
not recommended and may be discontinued in future versions of the .NET Framework.

A message is a communication between the client and server. It holds the information about the remote
object and the method or property that is being invoked, as well as any parameters.

A proxy is used on the client side to call into the remote object. To use remoting, you do not typically have
to worry about creating the proxy — .NET can do it all for you. However, there is a slightly confusing
split between something called a transparent proxy and a real proxy. A transparent proxy is so called
because ‘‘you can’t see it.’’ When you request a remote object, a transparent proxy is what you get. It
looks like the remote object (that is, it has the same properties and methods as the original). This means
that your client code can use the remote object or a local copy of the would-be-remote object without
you having to make any changes and without you knowing there is any difference. The transparent

1147

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1148

Chapter 29: Remoting

proxy defers the calls to the real proxy. The real proxy is what actually constructs the message, sends it
to the server, and waits for the response. You can think of the transparent proxy as a ‘‘fake’’ object that
contains the same methods and properties that the real object contains. The real proxy is effectively a set
of helper functions that manages the communications. You don’t use the real proxy directly; instead, the
transparent proxy calls into the real proxy on your behalf.

A message sink is an ‘‘interceptor object.’’ Before messages go into the channel, these are used to do some
further processing on them, perhaps to attach more data, reformat data before it is sent, route debugging
information, or perform security checking. On the client side, you have an envoy sink. On the server side,
you have a server context sink and an object context sink. In typical use, you can ignore these.

Message sinks are a pretty advanced topic and allow for some powerful extensions to the remoting
model. It is not recommended that you create custom sinks, channels, or formatters, so they are not
covered in this book. Creating them is not recommended because they will not transfer directly to WCF,
the next generation of the technology from Microsoft. If you do opt to create your own custom sink,
formatter, or channel, you must expect to rewrite it from scratch when you upgrade to WCF. Figures 29-1
and 29-2 show how these concepts fit together.

Application Domain

Hello()

Serialize()

Invokes()

Process
Message()

envoy sink

formatter

channel

client

transparent proxy

real proxy

Figure 29-1

Figure 29-1 shows how a client calls the Hello method of a transparent proxy object. The transparent
proxy looks just like the real object, so the client doesn’t even realize that remoting is involved. The
transparent proxy then invokes the real proxy, which converts the method call into a generic remoting
message.

1148

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1149

Chapter 29: Remoting

Application Domain

Deserialize() Hello()

Process Message() Process Message()

formatter

channel object context sink

remote object

server context sink

Figure 29-2

This message is sent through any messaging sinks configured on the client. These messaging sinks may
transform the message in various ways, including adding encryption or compressing the data.

The message is then serialized by the formatter object. The result is a byte stream that is sent to the server
by using the channel configured for use on the client.

Figure 29-2 shows how the server handles the message. The message comes into the server via a channel.
The message is then deserialized by the formatter object and run through any messaging sinks configured
on the server. These messaging sinks typically mirror those on the client, unencrypting or decompressing
the data as appropriate.

Finally, the message is decoded by the object context sink, which uses the information in the message to
invoke the method on the actual object. The object itself has no idea that it was invoked via remoting, as
the method call was merely relayed from the client.

SingleCall, Singleton, and Activated Objects
The next step is to look at the way that remoting treats objects. In remoting, objects are divided into three
camps: well-known objects, client-activated objects, and serializable objects.

❑ The well-known (wellknown) objects run on the server and perform a service for the remote
application, such as ‘‘give me a list of all the customers’’ or ‘‘create an invoice.’’ They can be
configured to act similarly to a Web service or use what is called a singleton pattern (which is dis-
cussed shortly).

❑ Client-activated (Activated) objects are created for each client and maintain state on the server
over time. In many ways, these objects act similarly to COM objects you may have accessed via
DCOM in the past.

❑ Serializable objects can move from machine to machine as needed. For instance, a serializable
object can be created on the server (by a wellknown or Activated object) and then returned to a
client. When the object is returned to the client, it is physically copied to the client machine, where
it can be used by client code.

1149

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1150

Chapter 29: Remoting

The following table summarizes the types of object:

Type Calling Semantics Key Attributes

SingleCall
(wellknown)

An object is created for each client
method call made to the server.

Stateless, per-method lifetime, atomic
methods, no threading issues, anchored
to AppDomain where created

Singleton
(wellknown)

One object exists on the server and is
used to handle all method calls from
all clients.

Stateful, long-lived, shared instance,
thread synchronization required,
anchored to AppDomain where created

Activated The client creates Activated objects
on the server. The client can create
many such objects. Activated objects
are available only to the client that
created the object.

Stateful, long-lived, per-client instances,
threading issues only if client is
multithreaded, anchored to AppDomain
where created

Serializable The object is automatically copied
from machine to machine when it is
passed as a parameter or returned as
the result of a function.

Stateful, long-lived, no threading issues,
non-anchored (moves across network
automatically)

The following sections discuss each object in a bit more detail.

SingleCall Objects
SingleCall objects act much like typical Web service objects. Each time a client calls a method on
a SingleCall object, an object is created specifically to handle that method call. Once the method call is
complete, the object is not reused and is garbage collected by the .NET runtime.

SingleCall objects also work the way a JIT (just-in-time) Activated object does in COM+, and matches
the way most people use MTS or COM+ objects. In those environments, good developers typically create
a server-side object, make a method call, and then release the object.

These objects must inherit from System.MarshalByRefObject, so they are MBROs. This means that they
always run in the AppDomain and Windows process where they are created. If they are created on a server
in a host process, then that is where they live and run. Clients interact with them across the network.

The most commonly used type of service object in remoting is the SingleCall object. Not only do these
objects provide semantics similar to Web services, MTS, and COM+, they also provide the simplest
programming model.

Because an object is created for each method call, these objects are inherently stateless. Even if an object
tried to keep state between calls, it would fail because the object is destroyed after each method is com-
plete. This helps ensure that no method call can be affected by previous method calls or contaminate
subsequent method calls.

Each method call runs on its own thread (from the .NET thread pool, as discussed in Chapter 26).
However, because each method call also gets its own object, there’s typically no contention between
threads. This means you don’t need to worry about writing synchronization or locking code in your
SingleCall code.

1150

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1151

Chapter 29: Remoting

Technically, it is possible to encounter synchronization issues if there are shared stateful objects on the
server. Creating and accessing such shared objects requires substantial work and is a topic outside the
scope of this book. Typically, this type of model is not used, so threading is a non-issue with SingleCall
objects.

Because of their automatic isolation, statelessness, and threading simplicity, SingleCall objects are the
preferred technology for creating server code in remoting.

Singleton Objects
Singleton objects are quite different from SingleCall objects. Only one Singleton object exists at a time,
and it may exist for a long time and maintain state. All client method calls from all users are routed to
this one Singleton object. This means that all clients have equal, shared access to any state maintained
by the Singleton object.

These objects must inherit from System.MarshalByRefObject, so they are MBROs. This means that
they always run in the AppDomain and Windows process where they are created. If they are created on
a server in a host process, then that is where they live and run. Clients interact with them across the
network.

As with the SingleCall scenario, all method calls are run on threads from the .NET thread pool. This
means that multiple simultaneous method calls can be running on different threads at the same time. As
discussed in Chapter 26, this can be complex, as you have to write multithreaded synchronization code
to ensure that these threads do not collide as they interact with your Singleton object.

Singleton objects have a potentially unpredictable life span. When the first client makes the first method
call to the object, it is created. From that point forward, it remains in memory for an indeterminate period
of time. As long as it remains in memory, all method calls from all the clients will be handled by this one
object. However, if the object is idle for a long time, then remoting may release it to conserve resources.
In addition, some remoting hosts may recycle their AppDomain objects, which automatically causes the
destruction of all your objects.

Because of this, you can never be certain that the data stored in memory in the object will remain avail-
able over time. This means that any long-term state data must be written to a persistent store such as a
database.

Due to the complexity of shared memory, thread synchronization, and dealing with object lifetime issues,
Singleton objects are more complex to design and code than SingleCall objects. While they can be
useful in specialized scenarios, they are not as widely used as SingleCall objects.

Activated Objects
Client-activated (or Activated) objects are different from both SingleCall and Singleton objects.
Activated objects are created by a client application, and they remain in memory on the server over
time. They are associated with just that one client, so they are not shared between clients. They are state-
ful objects, meaning that they can maintain data in memory during their lifetime.

These objects must inherit from System.MarshalByRefObject, so they are MBROs. This means that
they always run in the AppDomain and Windows process where they are created. If they are created on
a server in a host process, then that is where they live and run. Clients interact with them across the
network.

1151

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1152

Chapter 29: Remoting

A client can create multiple Activated objects on the server. The objects remain on the server until the
client releases them or the server Appdomain is reset (which can happen with some types of remoting
host). In addition, if the client does not contact the server for several minutes, then the server assumes
the client abandoned the objects and it will release them.

Activated objects typically do not have any threading issues. The only way multiple threads will be
running in the same Activated object is if the client is multithreaded, and multiple client threads simulta-
neously make method calls to the same server-side Activated object. If this is the case in your application,
then you have to deal with shared data and synchronization issues as discussed in Chapter 26.

While long-lived, stateful, per-client objects can be useful in some specialized scenarios; they are not
commonly used in most client/server or n-tier application environments. By storing per-client state in an
object on the server, this type of design reduces the scalability and fault tolerance of a system.

Serializable Objects
While SingleCall, Singleton, and Activated objects are always anchored to the Appdomain, Windows
process, and machine where they are created, this is not the case with serializable objects.

Serializable objects can move from machine to machine as needed. The classic example of this is the
ADO.NET DataSet, which can be returned as a result of a function on a server. The DataSet physically
moves to the client machine, where it can be used by client code. When the client wants to update the
DataSet, it simply passes the object to the server as a parameter, causing the DataSet to physically move
to the server machine.

These objects do not inherit from System.MarshalByRefObject. Instead, they are decorated with the
< Serializable() > attribute and may optionally implement the ISerializable interface. The following
is a very basic implementation of a < Serializable() > object:

<Serializable()> _
Public Class Customer

Private mName As String = ""

Public Property Name() As String
Get

Return mName
End Get
Set(ByVal value As String)

mName = value
End Set

Public Sub Load()
’ Load data here.

End Sub
End Class

<Serializable()> objects are not anchored to the Appdomain or Windows process where they were
created. The remoting subsystem automatically serializes the data of these objects and transfers it across
the network to another machine. On that other machine, a new instance of the objects is created and
loaded with the data, effectively cloning the objects across the network.

When working with serializable objects, it’s typically a good idea to use a SingleCall object on the server
to create the serializable object and call any server-side methods (such as ones to load the object with data

1152

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1153

Chapter 29: Remoting

from a database). The SingleCall object will then return the serializable object to the client as a function
result, so the client can then interact with the object. The SingleCall object’s method might look like the
following:

Public Function GetCustomer(ByVal ID As Integer) As Customer

Dim cust As New Customer()
cust.Load(ID)
Return cust

End Function

The client code might look as follows:

Dim cust As Customer

cust = myService.GetCustomer(123)
TextBox1.Text = cust.Name()

Note that both server and client code have direct, local access to the Customer object, because it is
automatically copied from the server to the client as a result of the GetCustomer method call.

Serializable objects can be very useful in many client/server scenarios, especially if the application is
created using object-oriented application design principles.

Implementing Remoting
When you implement an application using remoting, there are three key components to the application:

Client The application calling the server

Server Library The DLL containing the objects to be called by the client

Host The application running on the server that hosts remoting and the Server Library

Basically, you create your server-side objects in a Visual Basic Class Library project. Then you expose
the classes in that DLL from your server-side remoting host application. With the objects exposed on the
server, you can then create client applications that call the objects in the Server Library DLL.

You might also have some other optional components to support various scenarios:

Interface A DLL containing interfaces that are implemented by the objects in
the Server Library

Proxy A DLL containing generated proxy code based on the objects in the
Server Library

Shared Library A DLL containing serializable objects that must be available to both
the Server Library and the client

1153

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1154

Chapter 29: Remoting

Each of these is discussed in detail as it is used later in the chapter. Now it is time to get into some code
and see how remoting works.

A Simple Example
This exercise has you create a simple remoting application consisting of a library DLL that contains the
server-side code, a remoting host application, and a client to call the library DLL on the server.

Note that both the host and the client need access to the type information that describes the classes in the
library DLL. The type information includes the name of the classes in the DLL and the methods exposed
by those classes.

The host needs the information because it will be exposing the library DLL to clients via remoting. The
client needs the information in order to know which objects to create and what methods are available on
those objects.

You know that the library DLL will be on the server, so it is easy enough for the host application to just
reference the DLL to get the type information. The client is a bit trickier because the library DLL will not
necessarily be on the client machine. You have three options for getting the type information to the client:

Reference the library DLL This is the simplest approach, as the client just references the DLL
directly and therefore has all the type information. The drawback is that
the DLL must be installed on the client along with the client application.

Use an interface DLL This approach is more complex. The classes in the library DLL must
implement formal interfaces as defined in this interface DLL. The client
can then reference just the interface DLL, so the library DLL doesn’t
need to be installed on the client machine. The way the client invokes
the server is different when using interfaces.

Generate a proxy DLL This approach is of moderate complexity. The server must expose the
objects via HTTP, so you can run the soapsuds.exe command-line
utility. The utility creates an assembly containing the type information
for the library DLL classes exposed by the server. The client then
references this proxy assembly, rather than the library DLL.

You will implement all three options in this chapter, starting with the simplest — referencing the library
DLL directly from the client application.

Library DLL
To begin, create the library DLL. This is just a regular Class Library project, so open Visual Studio .NET
(Visual Studio) and create a new class library named SimpleLibrary. Remove Class1.vb and add a new
class named Calculator.vb. Because you are creating a well-known remoting object, it must inherit from
MarshalByRefObject:

Public Class Calculator
Inherits MarshalByRefObject

End Class

1154

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1155

Chapter 29: Remoting

That’s really all there is to it. At this point, the Calculator class is ready to be exposed from a server via
remoting. Of course, you need to add some methods that clients can call.

Any and all Public methods written in the Calculator class will be available to clients. How you design
the methods depends entirely on whether you plan to expose this class as SingleCall, Singleton, or
Activated. For SingleCall you know that an instance of Calculator will be created for each method call,
so there is absolutely no point in using any class-level variables. After all, they will be destroyed along
with the object when each method call is complete.

It also means that you cannot have the client call a sequence of methods on your object. Each
method call gets its own object, so each method call is entirely isolated from any previous or subsequent
method calls. In short, each method must stand alone.

For illustration purposes, you need to prove that the server-side code is running in a different process
from the client code. The easiest way to prove this is to return the thread ID where the code is running.
You can compare this thread ID to the thread ID of the client process. If they are different, then you
know that the server-side code is actually running on the server (or at least in another process on your
machine).

Add the following method:

Public Function GetThreadID() As Integer

Return Threading.Thread.CurrentThread.ManagedThreadId

End Function

You can add other Public methods as well if you would like, such as the following:

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Return a + b

End Function

As this is a Calculator class, it seems appropriate that it should do some calculations. At this point, you
have a simple but functional Calculator class. Build the solution to create the DLL. Your remoting host
application will use this DLL to provide the calculator functionality to clients.

Host Application
With the server-side library complete, you can create a remoting host. It is recommended that
you use IIS as a remoting host, but it is possible to create a custom host as well. You will use IIS
later in the chapter, but for now let’s see how you can create a custom host in a Console Application for
testing.

Most custom hosts are created as a Windows Service so the host can run on the server even when no
user is logged into the machine. However, for testing purposes, a console application is easier to create
and run.

1155

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1156

Chapter 29: Remoting

The advantage to a custom host is that you can host a remoting server on any machine that supports the
.NET Framework. This includes Windows 98 and later. If you use IIS as a host, then you can only host on
Windows 2000 and later, which is a bit more restrictive (but not much).

The drawback to a custom host is that it is not as robust and capable as IIS, at least not without a lot of
work. For this chapter’s example, you are not going to attempt to make your host as powerful as IIS. You
will just stick with the basic process of creating a custom host.

Setting Up the Project
Create a new solution in Visual Studio, with a console application named SimpleServer. Because the
remoting host will be interacting with remoting, you need to reference the appropriate framework
DLL. Use the Add Reference dialog box to add a reference to System.Runtime.Remoting, as shown
in Figure 29-3.

Figure 29-3

Then, in Module1 you need to import the appropriate namespace:

Imports System.Runtime.Remoting

At this point, you can configure and use remoting. However, before you do that, you need to have access
to the DLL containing the classes you plan to expose via remoting — in this case, SimpleLibrary.dll.

Referencing the Library DLL
There are two ways to configure remoting: via a configuration file or via code. If you opt for the config-
uration file approach, then the only requirement is that SimpleLibrary.dll be in the same directory as
your host application. You don’t even need to reference SimpleLibrary.dll from the host. However, if
you opt to configure remoting via code, then your host must reference SimpleLibrary.dll.

1156

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1157

Chapter 29: Remoting

Even if you go with the configuration file approach, referencing SimpleLibrary.dll from the host project
enables Visual Studio to automatically keep the DLL updated in your project directory, and any setup
project you might create will automatically include SimpleLibrary.dll. In general, it is a good idea to
reference the library DLL from the host, and that is what you will do here.

Add a reference to SimpleLibrary.dll by clicking the Browse button in the Add References dialog
box and navigating to the SimpleLibrary\bin\Release directory, as shown in Figure 29-4. Note that if
you are running in Debug mode, then you will find the DLL in the Debug folder, rather than the
Release folder.

Figure 29-4

All that remains now is to configure remoting.

Configuring Remoting
The typical way to do this is with a configuration file. Open the app.config file (add this file to your
project if it isn’t already present) in the SimpleServer project. In this config file, you’ll add a section
to configure remoting. Remember that XML is case sensitive, so the slightest typo here will prevent
remoting from being properly configured:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.runtime.remoting>
<application>

<!-- The following section defines the classes you’re
exposing to clients from this host. -->

<service>
<wellknown mode="SingleCall"

objectUri="Calculator.rem"
type="SimpleLibrary.Calculator, SimpleLibrary" />

</service>

<channels>
<channel ref="tcp" port="49341" />

</channels>

1157

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1158

Chapter 29: Remoting

</application>
</system.runtime.remoting>

</configuration>

Notice that all configuration is within the < system.runtime.remoting > element, and then within
an <application> element. The real work happens first inside the <service> element. The <service>
element tells remoting that you’re configuring server-side components. It is within this block that you
define the classes you want to make available to clients. You can define both wellknown and Activated
classes here. In this case you’re defining a wellknown class:

<wellknown mode="SingleCall"
objectUri="Calculator.rem"
type="SimpleLibrary.Calculator, SimpleLibrary" />

The mode will be either SingleCall or Singleton as discussed earlier in the chapter.

The objectUri is the ‘‘end part’’ of the URL that clients will use to reach your server. You’ll revisit this
in a moment, but this is basically how it fits (depending on whether you’re using the TCP or HTTP
protocol):

tcp://localhost:49341/Calculator.rem

or

http://localhost:49341/Calculator.rem

The .rem extension on the objectUri is important. This extension indicates that remoting should handle
the client request, and it is used by the networking infrastructure to route the request to the right location.
You can optionally use the .soap extension to get the same result. The .rem and .soap extensions are totally
equivalent.

Finally, the type defines the full type name and assembly where the actual class can be found. Remoting
uses this information to dynamically load the assembly and create the object when requested by a client.

You can have many <wellknown> blocks here to expose all the server-side classes you want to make
available to clients.

The other key configuration block is where you specify which remoting channel (protocol) you want to
use. You can choose between the TCP and HTTP channels.

TCP Slightly faster than HTTP, but less stable (not recommended)

HTTP Slightly slower than TCP, but more stable (recommended)

You’ll look at the HTTP channel later, so you’ll use the TCP channel now. Either way, you need to specify
the IP port number on which you’ll be listening for client requests. When choosing a port for a server,
keep the following port ranges in mind:

1158

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1159

Chapter 29: Remoting

❑ 0–1023 — Well-known ports reserved for specific applications such as web servers, mail servers,
and so on

❑ 1024–49151 — Registered ports that are reserved for various widely used protocols such as
DirectPlay

❑ 49152–65535 — Intended for dynamic or private use, such as for applications that might be
performing remoting with .NET

You’re setting remoting to use a TCP channel, listening on port 49341:

<channels>
<channel ref="tcp" port="49341" />

</channels>

With the .config file created, the only thing remaining is to tell remoting to configure itself based on this
information. To do this you need to add the following code to Sub Main:

Sub Main()
RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile, False)

Console.Write("Press <enter> to exit")
Console.Read()

End Sub

The Console.Write and Console.Read statements are there to ensure that the application stays running
until you are ready for it to terminate. The line that actually configures remoting is as follows:

RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile)

You are calling the Configure method, which tells remoting to read a .config file and to process the
<system.runtime.remoting> element in that file. You want it to use your application configuration file,
so you pass that path as a parameter. Fortunately, you can get the path from your AppDomain object so
you don’t have to worry about hard-coding the filename.

Configuring Remoting via Code
Your other option is to configure the remoting host via code. To do this you’d write different code in Sub
Main:

Sub Main()

RemotingConfiguration.RegisterWellKnownServiceType(_
GetType(SimpleLibrary.Calculator), _
"Calculator.rem", _
WellKnownObjectMode.SingleCall)

System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel(_
New System.Runtime.Remoting.Channels.Tcp.TcpServerChannel(49341), False)

Console.Write("Press <enter> to exit")
Console.Read()

End Sub

1159

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1160

Chapter 29: Remoting

As shown in the preceding snippet, you’re providing the exact same information here as you did in the
.config file, only via code. You call RegisterWellKnownServiceType, passing the mode, objectUri, and
type data just as you did in the .config file. Then you call RegisterChannel, passing a new instance of
the TcpServerChannel configured to use the port you chose earlier.

The result is the same as using the .config file. Most server applications use a .config file to configure
remoting because it enables you to change things such as the channel and the port without having to
recompile the host application.

Build the solution. At this point, your host is ready to run. Open a command prompt window, navigate
to the bin directory, and run SimpleServer.exe.

The Client Application
The final piece of the puzzle is to create a client application that calls the server.

Setting Up the Project
Here is how to create a new Visual Studio solution with a Windows Application named SimpleClient.
As discussed earlier, the client needs access to the type information for the classes it wants to call on the
server. The easiest way to get this type information is to have it reference SimpleLibrary.dll. Because
you will be configuring remoting, you also need to reference the remoting DLL. Then import the remoting
namespace in Form1:

Imports System.Runtime.Remoting

Now you can write code to interact with the Calculator class. Add controls to the form as shown in
Figure 29-5.

Figure 29-5

Name the controls (in order): ConfigureButton, CodeConfigureButton, LocalThreadButton,
LocalThread, RemoteThreadButton, and RemoteThread. First, write the code to get the thread ID values
for each object:

Private Sub LocalThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles LocalThreadButton.Click

1160

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1161

Chapter 29: Remoting

LocalThread.Text = CStr(Threading.Thread.CurrentThread.ManagedThreadId)

End Sub

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

Dim calc As New SimpleLibrary.Calculator

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

Displaying the thread ID of the local process is easily accomplished. More interesting, though,
is that your code to interact with the Calculator class does not look special in any way. Where is the
remoting code?

This example reflects the idea of location transparency, whereby it is possible to write ‘‘normal’’
code that interacts with an object whether it is running locally or remotely. This is an important and
desirable trait for distributed technologies, and remoting supports the concept. Looking at the code
you’ve written, you can’t tell whether the Calculator object is local or remoting; its location is
transparent.

All that remains is to configure remoting so that it knows that the Calculator object should, in fact, be
created remotely. As with the server, you can configure clients either via a config file or through code.

Before you configure remoting, note something important: If remoting is not configured before the first
usage of SimpleLibrary.Calculator, then the Calculator object will be created locally. If that happens,
then configuring remoting will not help, and you’ll never create remote Calculator objects.

To prevent this from happening, you need to ensure that you cannot interact with the class until after
remoting is configured. Typically, this is done by configuring remoting as the application starts up, either
in Sub Main or in the first form’s Load event. In this case, however, you are going to configure remoting
behind some buttons, so a different approach is required.

In Form_Load, add the following code:

Private Sub Form1_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

RemoteThreadButton.Enabled = False

End Sub

This prevents you from requesting the remote thread. You won’t enable this button until after remoting
has been configured through either the config file or code.

1161

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1162

Chapter 29: Remoting

Configuring Remoting
To configure remoting via a config file, you first need to add a config file to the project. Use the Project
➪ Add New Item menu to add an Application Configuration File. Be sure to keep the default name of
App.config. In this file, add the following code:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.runtime.remoting>
<application>

<!-- The following section defines the classes you’re
getting from the remote host. -->

<client>
<wellknown mode="SingleCall"

type="SimpleLibrary.Calculator, SimpleLibrary"
url="tcp://localhost:49341/Calculator.rem" />

</client>
</application>

</system.runtime.remoting>
</configuration>

In this case, you are using the <client> element, telling remoting that you are configuring a client. Within
the <client> block, you define the classes that should be run on a remote server, both wellknown and
Activated. In your case, you have a wellknown class:

<wellknown
type="SimpleLibrary.Calculator, SimpleLibrary"
url="tcp://localhost:49341/Calculator.rem" />

On the client, you only need to provide two bits of information. You need to tell remoting the class and
assembly that should be run remotely. This is done with the type attribute, which specifies the full type
name and assembly name for the class, just as you did on the server. You also need to provide the full
URL for the class on the server.

You defined this URL when you created the server, though it might not have been clear that you did so.
When you defined the class for remoting on the server, you specified an objectUri value
(Calculator.rem). In addition, on the server you specified the channel (TCP) and port (49341) on which
the server will listen for client requests. Combined with the server name itself, you have a URL:

tcp://localhost:49341/Calculator.rem

The channel is tcp://, the server name is localhost (or whatever the server name might be), the port
is 49341, and the object’s URI is Calculator.rem. This is the unique address of your SimpleLibrary
.Calculator class on the remote server.

As with the server configuration, you might have multiple elements in the .config file, one for each
server-side object you wish to use. These can be a mix of <wellknown> and <activated> elements.

With the configuration set up, you just need to tell remoting to read the file. You’ll do this behind the
ConfigureButton control:

Private Sub ConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _

1162

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1163

Chapter 29: Remoting

Handles ConfigureButton.Click

RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile, True)

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

Once remoting is configured in an application, you cannot configure it again, so you’re disabling the two
configuration buttons. In addition, you’re enabling the button to retrieve the remote thread ID. Now that
remoting has been configured, it is safe to interact with SimpleLibrary.Calculator.

The line of code that configures remoting is the same as it was in the server:

RemotingConfiguration.Configure(_
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile)

Again, you are telling remoting to read your application configuration file to find the
< system.runtime.remoting > element and process it.

Configuring Remoting via Code
Another option for configuring remoting is to do it via code. You must provide the same information in
your code as you did in the .config file. Put this behind the CodeConfigureButton control:

Private Sub CodeConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CodeConfigureButton.Click
RemotingConfiguration.RegisterWellKnownClientType(_
GetType(SimpleLibrary.Calculator), "tcp://localhost:49341/Calculator.rem")

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

The RegisterWellKnownClientType method requires that you specify the type of the class to be run
remotely, in this case SimpleLibrary.Calculator. It also requires that you provide the URL for the class
on the remote server, just as you did in the .config file.

Regardless of whether you do the configuration via code or the .config file, the result is that the .NET
runtime now knows that any attempt to create a SimpleLibrary.Calculator object should be routed
through remoting, so the object will be created on the server.

Compile and run the application. Try configuring remoting both ways. In either case, you should discover
that the local thread ID and the remote thread ID are different, proving that the Calculator code is running
on the server, not locally in the Windows application, as shown in Figure 29-6.

1163

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1164

Chapter 29: Remoting

Figure 29-6

Of course, your specific thread ID values will be different from those shown here. The important point
is that they are different from each other, establishing that the local code and remote code are running in
different places.

Using IIS as a Remoting Host
You have learned how to create a very basic custom host. In most production environments, however,
such a basic host is not directly useful. You’d need to create a Windows Service, add management and
logging facilities, implement security, and so forth.

Alternatively, you could just use IIS as the host and get all those things automatically, so it is often better
to use IIS as a remoting host than to try to create your own.

Creating the Host
Using IIS as a host is a straightforward exercise. First, create a web project. To do this, create a new
solution in Visual Studio with an Empty Web Site template, as shown in Figure 29-7. Name it SimpleHost.
When you click OK, Visual Studio will properly create and configure the virtual root on your server.

Figure 29-7

The next task is to ensure that the SimpleLibrary.dll is in the bin directory under the virtual root.
While you could copy the DLL there by hand, it is often easier to simply add a reference to the DLL

1164

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1165

Chapter 29: Remoting

from the website. This enables Visual Studio to automatically copy the DLL to the right location, and it
has the added benefit that if you create a deployment project, then the DLL will be automatically included
as part of the setup.

Add a reference to SimpleLibrary.dll using the Add References dialog box as you did previously in
the SimpleServer and SimpleClient projects. This way, Visual Studio will ensure that the DLL is available
as needed.

All that remains now is to configure remoting. Within an IIS host, add the < system.runtime.remoting >
section to the web.config file. Remoting is automatically configured based on web.config by ASP.NET.

Use the Project ➪ Add New Item menu to add a Web Configuration File. Be sure to use the default name
of web.config. This adds a web.config file to the project with a series of default settings. You may opt
to change some of these settings for your environment. In particular, these settings enable you to control
security options and so forth.

More important, however, add the remoting configuration to the file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.runtime.remoting>
<application>

<!-- The following section defines the classes you’re
exposing to clients from this host. -->

<service>
<wellknown mode="SingleCall"

objectUri="Calculator.rem"
type="SimpleLibrary.Calculator, SimpleLibrary" />

</service>

</application>
</system.runtime.remoting>

</configuration>

An IIS host can only support the HTTP channel. In addition, the port on which the host listens is defined
by IIS, not by your configuration file. This means that all you need to do here is define the classes you
want to expose to clients. This is done within the <service> element, just like with a custom host. Again,
you use a <wellknown> element to define your class:

<wellknown mode="SingleCall"
objectUri="Calculator.rem"
type="SimpleLibrary.Calculator, SimpleLibrary" />

The <wellknown> element shown here is the exact same definition used with the custom host, and you’ll
get the same result.

The primary difference between your custom host and the IIS host is that IIS cannot use the TCP channel,
but only uses the HTTP channel. This means that the URL for your server-side class is different:

http://localhost/SimpleHost/Calculator.rem

1165

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1166

Chapter 29: Remoting

The channel defines the protocol, which is http://. The server name is localhost (or whatever your
server name might be). The virtual root within IIS is SimpleHost, named just as it is with any Web project.
Finally, the objectUri value for your class (Calculator.rem) rounds out the URL.

Again, the .rem extension is important. This extension (or the equivalent .soap extension) tells IIS to route
the client request to ASP.NET, and it tells ASP.NET to route the request to remoting so it can be properly
handled by invoking your Calculator class.

At this point, the remoting host is done and ready to go. Because it is using the HTTP protocol, you can
test it with the browser by navigating to the following URL:

http://localhost/SimpleHost/Calculator.rem?wsdl

This should return an XML description of the host service and all the classes exposed from the host.

Updating the Client Application
With a new host set up, you can change the client application to use this IIS host instead of the custom
host. To do this, all you need to do is change the URL for the object when you configure remoting.

If you were using the .config file to configure remoting, you would make the following change:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.runtime.remoting>
<application>

<!- the following section defines the classes you’re
getting from the remote host ->

<client>
<wellknown

type="SimpleLibrary.Calculator, SimpleLibrary"
url="http://localhost/SimpleHost/Calculator.rem" />

</client>
</application>

</system.runtime.remoting>
</configuration>

After making this change to App.config, be sure to rebuild the project so Visual Studio copies the new
.config file to the bin directory and renames it SimpleClient.exe.config.

When configuring remoting via code, change the code to the following:

Private Sub CodeConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CodeConfigureButton.Click

RemotingConfiguration.RegisterWellKnownClientType(_
GetType(SimpleLibrary.Calculator), _
"http://localhost/SimpleHost/Calculator.rem")

ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

1166

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1167

Chapter 29: Remoting

In either case, you are simply changing the URL, so remoting now routes your calls to the IIS host instead
of your custom host.

Using the Binary Formatter in IIS
One thing to note about using IIS as a host is that it always uses the HTTP channel. The HTTP channel
defaults to using the SoapFormatter instead of the BinaryFormatter to encode the data sent across the
network. While SOAP is a fine format, it is extremely verbose. The BinaryFormatter generates about
one-third the number of bytes as the SoapFormatter to send the same data.

As stated, the SoapFormatter class is the default formatter when using an HTTP channel with .NET
remoting, and this class serializes any objects that it receives into a SOAP 1.1-compliant text format. The
HTTP channel uses the SoapFormatter to serialize the objects that it sends through the channel. After
the object is received and serialized into XML, this formatter also adds any appropriate SOAP headers
to the message before it is sent through the channel.

Besides the SoapFormatter, the BinaryFormatter class is typically used when sending an object through
a TCP network protocol. When objects are sent using the BinaryFormatter, these objects are more com-
pact and therefore require less network utilization.

For production code, it is good practice to use the BinaryFormatter to reduce the amount of data sent
across the network and to improve performance. The formatter is controlled by the client, so you need to
update the client configuration of remoting.

Change the .config file as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.runtime.remoting>
<application>

<!- the following section defines the classes you’re
getting from the remote host ->

<client>
<wellknown

type="SimpleLibrary.Calculator, SimpleLibrary"
url="http://localhost/SimpleHost/Calculator.rem" />

</client>
<!-- use the binary formatter over the

http channel ->
<channels>

<channel ref="http">
<clientProviders>
<formatter ref="binary" />

</clientProviders>
</channel>

</channels>
</application>

</system.runtime.remoting>
</configuration>

The highlighted XML configures remoting, so when it initializes the HTTP channel, it does so with a
BinaryFormatter instead of the default SoapFormatter.

1167

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1168

Chapter 29: Remoting

To do the equivalent to the XML configuration in code, you’ll want to import two namespaces
into Form1:

Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Http

This also requires that the SimpleClient project reference the System.Runtime.Remoting.dll assembly.
Do this using the Add References dialog as you did earlier in the SimpleLibrary project.

Then add the following when configuring remoting:

Private Sub CodeConfigureButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CodeConfigureButton.Click

RemotingConfiguration.RegisterWellKnownClientType(_
GetType(SimpleLibrary.Calculator), _
"http://localhost/SimpleHost/Calculator.rem")

’ Use the binary formatter with the
’ HTTP channel.
Dim clientFormatter As New BinaryClientFormatterSinkProvider
Dim channel As New HttpChannel(Nothing, clientFormatter, Nothing)
ChannelServices.RegisterChannel(channel)
ConfigureButton.Enabled = False
CodeConfigureButton.Enabled = False
RemoteThreadButton.Enabled = True

End Sub

As with the .config file approach, you’re specifically creating the HttpChannel object, specifying that it
should use a BinaryFormatter, rather than the default.

At this point, you have explored the basic use of remoting. You have created a library DLL, a client that
uses the library DLL, and two different types of remoting hosts, so the library DLL can run on the server.

There are many other facets of remoting to explore, more than what can fit into this single chapter. The
remainder of the chapter explores some of the more common features that you might encounter or use in
your applications. You will have to take them pretty fast, but the complete code for each is available
in the code download for the book, so you can get the complete picture there.

Using Activator.GetObject
In your simple client, you configured remoting so that all attempts to use SimpleLibrary.Calculator
were automatically routed to a specific server. If you want more control and flexibility, you can take a
different approach by using the System.Activator class. The full code for this example is in the Activa-
torClient project.

Instead of configuring remoting to always know where to find the remote class, you can specify it as
you create the remote object. As you will not be configuring remoting, you don’t need a reference to
System.Runtime.Remoting.dll, nor do you need any of the remoting configuration code you had in the
client to this point.

1168

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1169

Chapter 29: Remoting

All you do is replace the use of the New keyword with a call to Activator.GetObject. To use the custom
host, you would use the following code to retrieve the remote thread ID:

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

Dim calc As SimpleLibrary.Calculator

calc = CType(Activator.GetObject(_
GetType(SimpleLibrary.Calculator), _
"tcp://localhost:49341/Calculator.rem"), _
SimpleLibrary.Calculator)

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

For this to work, the SimpleServer application must be running before the RemoteThread button is
clicked.

The Activator.GetObject method accepts the type of object to create (SimpleLibrary.Calculator) and
the URL where the object can be found. To use the IIS host, you would change the URL:

calc = CType(Activator.GetObject(_
GetType(SimpleLibrary.Calculator), _

"http://localhost/SimpleHost/Calculator.rem"), _
SimpleLibrary.Calculator)

Using this approach, you lose location transparency because it is obvious looking at your code that you’re
using a remote object. However, you gain explicit control over where the remote object will be created.
This can be useful in some cases, such as when you want to programmatically control the URL on a
per-call basis.

Interface-Based Design
One drawback to the simple implementation you have used thus far is that the library DLL
(SimpleLibrary.dll) must be installed on the client machine. Sometimes this is not desirable, because
you don’t want clients to have access to the server-side code. You have two options in this case: use an
interface DLL or use a generated proxy.

Interface DLL
To use this approach, you need to create a new DLL containing interface definitions for your server-side
classes and their methods. For instance, in the SimpleInterface project, you have the following interface
defined:

Public Interface <code> ICalculator
Function GetThreadID() As Integer
Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

End Interface

1169

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1170

Chapter 29: Remoting

This interface defines the methods on your Calculator class. You need to update the Calculator class
to implement this interface. The SimpleLibrary project must reference the SimpleInterface DLL; then
you can do the following in your Calculator class:

Public Class Calculator
Inherits MarshalByRefObject

Implements SimpleInterface.ICalculator
Public Function GetThreadID() As Integer _
Implements SimpleInterface.ICalculator.GetThreadID

Return AppDomain.GetCurrentThreadId

End Function

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements SimpleInterface.ICalculator.Add

Return a + b

End Function

End Class

At this point, the SimpleLibrary.Calculator class can be invoked either directly or via the ICalculator
interface.

Be sure to rebuild the custom and IIS host projects so that the new SimpleLibrary and the SimpleInter-
face DLLs are both copied to the host directories. Note that because SimpleLibrary.Calculator is still
available natively, your existing client applications (SimpleClient and ActivatorClient) will continue to
run just fine.

Updating the Client Application
The InterfaceClient project only references SimpleInterface.dll, not SimpleLibrary.dll. This means
that the client machine doesn’t need to install SimpleLibrary.dll for the client to run, which means the
client has no access to the actual server-side code.

Because you don’t have access to the types in SimpleLibrary, you can’t use them in your code. The only
types you can use come from SimpleInterface. This means that your code to retrieve the remote thread
ID is a bit different. To use the custom host, you do the following:

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

Dim calc As SimpleInterface.ICalculator

calc = CType(Activator.GetObject(_
GetType(SimpleInterface.ICalculator), _
"tcp://localhost:49341/Calculator.rem"), _
SimpleInterface.ICalculator)

RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

1170

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1171

Chapter 29: Remoting

Note that the calc variable is now declared as type ICalculator, rather than Calculator. Notice too
that you’re using Activator.GetType. This is required when using interfaces, because you can’t use the
New keyword at all. That is, you can’t do the following:

calc = New SimpleInterface.ICalculator()

The result is a compiler error because it isn’t possible to create an instance of an interface. Therefore, you
can’t just configure remoting and use location transparency; you must use Activator.GetObject to have
remoting create an instance of the object on the server.

Remoting knows how and where to create the object based on the URL you provide. It then
converts the object to the right type (SimpleInterface.ICalculator) based on the type you provide
in the GetObject call. If the remote object doesn’t implement this interface, then you’ll get a runtime
exception.

Using Generated Proxies
Another way to create a client that does not reference the library DLL is to use the soapsuds.exe
command-line utility to create a proxy assembly for the service and the classes it exposes. This proxy
assembly is then referenced by the client application, giving the client access to the server type informa-
tion so that it can interact with the server objects.

Proxy DLL
To create the proxy DLL, you just run the soapsuds.exe utility with the following command line:

> soapsuds -url:http://localhost/SimpleHost/Calculator.rem?wsdl -oa:SimpleProxy.dll

Note that you are going against the IIS host here because it uses the HTTP protocol. This won’t work
against your current custom host, as the soapsuds.exe utility doesn’t understand the tcp:// prefix. To
use this against a custom host, you would have to ensure that the custom host used the HTTP protocol.

Creating the Client Application
The code download includes a ProxyClient project, which is a Windows application that references only
SimpleProxy.dll. There is no reference to SimpleLibrary.dll or SimpleInterface.dll — this client
relies entirely on the generated proxy assembly to interact with the server.

The best part of this is that the generated proxy contains the same namespace and class names as the
service on the server. In other words, it appears that you are working with SimpleLibrary.Calculator
because the proxy is set up with that same namespace and class name. To get the remote thread ID, write
the following code:

Private Sub RemoteThreadButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles RemoteThreadButton.Click

Dim calc As New SimpleLibrary.Calculator()
RemoteThread.Text = CStr(calc.GetThreadID)

End Sub

1171

Evjen-91361 c29.tex V1 - 04/01/2008 5:35pm Page 1172

Chapter 29: Remoting

Note that this is the same code used in the original simple example. You’ve come full circle at this point,
but now the client application doesn’t directly reference your library DLL.

Summary
Remoting is a powerful technology that provides many of the capabilities of Web services and DCOM,
plus some new capabilities of its own. Using remoting, you can create both Windows and Web applica-
tions that interact with objects on an application server across the network.

On the server you can create SingleCall, Singleton, and Activated objects. These three object types
provide a great deal of flexibility in terms of n-tier application design and should be able to meet almost
any need. SingleCall gives you behavior similar to Web services or typical COM+ objects. Activated
gives you objects that act similar to COM objects exposed via DCOM. Singleton objects are unique to
remoting and enable all your clients to share a single stateful object on the server.

You can also create serializable objects, which can move from machine to machine as needed. Using this
type of object enables you to easily move data and business logic from server to client and back again.
This technology is particularly exciting for object-oriented development in a distributed environment.

In this chapter, you created a library DLL and exposed it to clients from both a custom and IIS remoting
host. You then created client applications to use your server-side code by referencing the library DLL
directly, using an interface DLL and using the soapsuds.exe utility to create a proxy DLL. These tech-
niques apply not only to SingleCall objects but also to Singleton and Activated objects, so you should
have a good grounding in the techniques available for using remoting in your environment.

1172

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1173

Enterprise Services

Chapter 25 explored the vast hinterland of legacy software known as COM. This chapter looks at
‘‘what COM did next’’ and how it fits into the world of .NET, in the form of .NET Enterprise Services.

To understand Enterprise Services, you must go back in time (all the way to the last century!)
when a number of technologies began to emerge from Microsoft, including Microsoft Transaction
Server (MTS), Microsoft Message Queuing (MSMQ), and Microsoft Clustering Services. The aim of these
developments was to increase the scalability, performance, and reliability of applications.

Handling transactions involved a considerable extension to the NT/COM runtime. It also involved
the introduction of several new standard COM interfaces, some to be used or implemented by trans-
actional components and some to be used or implemented by the underlying resource managers,
such as SQL Server. These additions, along with some other innovations relating to areas such as
asynchronous COM, came to be known as COM+.

This chapter explores the .NET Enterprise Services. In particular, it looks at transaction processing
and queued components using the classes of the System.EnterpriseServices and System
.Transactions namespaces. This is an enormous subject that could easily fill a whole book by
itself, so this chapter only scratches the surface of it. However, by the end of the chapter, you will
understand how all the pieces fit together. Let’s begin by looking at what transactions are, and how
they fit into Visual Basic 2008.

Transactions
A transaction is one or more linked units of processing placed together as a single unit of work,
which either succeeds or fails. If the unit of work succeeds, then all the work is committed. If the
unit fails, then every item of processing is rolled back and the process is returned to its original
state.

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1174

Chapter 30: Enterprise Services

The standard transaction example involves transferring money from account A to account B. The money
must either end up in account B (and nowhere else), or — if something goes wrong — stay in account
A (and go nowhere else). This avoids the very undesirable case in which we have taken money from
account A but haven’t put it in account B.

The ACID Test
Transaction theory starts with ACID, an acronym describing the following properties that all transactions
should have:

❑ Atomicity — A transaction is atomic; that is, everything is treated as one unit. However many
different components the transaction involves, and however many different method calls are
made on those components, the system treats it as a single operation that either entirely succeeds
or entirely fails. If it fails, then the system is left in the state it was in before the transaction was
attempted.

❑ Consistency — All changes are done in a consistent manner. The system goes from one valid
state to another.

❑ Isolation — Transactions that are going on at the same time are isolated from each other. If
transaction A changes the system from state 1 to state 2, transaction B will see the system in
either state 1 or 2, but not some half-baked state in between the two.

❑ Durability — If a transaction has been committed, the effect is permanent, even if the system
fails.

Let’s illustrate this with a concrete example. Imagine that after spending a happy afternoon browsing
in your favorite bookstore, you decide to shell out some of your hard-earned dollars for a copy of, yes,
Professional Visual Basic 2008 (a wise choice). You take the copy to the checkout and exchange a bit of cash
for the book. A transaction is going on here: You pay money and the store provides you with a book.

The important aspect of this transaction isn’t the exchange of money, but that only two reasonable out-
comes are possible — either you get the book and the store gets its money or you don’t get the book and
the store doesn’t get its money. If, for example, there is insufficient credit on your credit card, then you’ll
leave the shop without the book. In that case, the transaction doesn’t happen. The only way for the trans-
action to complete is both for you to get the book and the store to get its money. This is the principle of
atomicity.

If the store provides you with a copy of some other book instead, then you would reasonably feel that
you ended up with an outcome that was neither anticipated nor desirable. This would be a violation of
the principle of consistency.

Now imagine that there is one copy of the book in the store, and another potential buyer of that book has
gone up to the cashier next to you. As far as the person at the other checkout is concerned, your respective
transactions are isolated from each other (even though you are competing for the same resource). Either
your transaction succeeds or the other person’s does. What definitely doesn’t happen is that the bookstore
decides to exert the wisdom of Solomon and give you half each.

Now suppose you take the book home and the bookstore calls you to ask if they can have the book back.
Apparently, an important customer (well, far more important than you, anyway) needs a copy. You
would find this a tad unreasonable, and a violation of the principle of durability.

1174

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1175

Chapter 30: Enterprise Services

At this point, it’s worth considering what implications all this is likely to have on the underlying com-
ponents. How can you ensure that all of the changes in the system can be unwound if the transaction is
aborted at some point? Perhaps you’re in the middle of updating dozens of database files and something
goes wrong.

There are three aspects to rescuing this situation with transactions:

❑ Knowledge that something has gone wrong

❑ Knowledge to perform the recovery

❑ Coordination of the recovery process

The middle part of the process is handled by the resource managers themselves. The likes of SQL Server
and Oracle are fully equipped to deal with transactions and rollback (even if the resource manager in
question is restarted partway through a transaction), so you don’t need to worry about any of that. The
last part of the process, coordination, is handled by the .NET runtime (or at least the Enterprise Services
part of it). The first part, knowing that something is wrong, is shared between the components themselves
and the .NET runtime. This isn’t at all unusual: Sometimes a component can detect that something has
gone wrong itself and signal that recovery is necessary, while on other occasions it may not be able to do
so, because it has crashed.

Later, you will see how all this works as you build a transactional application.

Transactional Components
To understand what components are actually managed by Enterprise Services and what purpose they
serve, you need to consider what a typical real-world n-tier application looks like. The bottom tier is the
persistent data store, typically a database such as SQL Server or Oracle. However, there are other possible
data stores, including the file system (on Windows NT and above). These are termed resource managers
because they manage resources. The software here is concerned with maintaining the integrity of the
application’s data and providing rapid and efficient access to it.

The top tier is the user interface. This is a completely different specialization, and the software here
is concerned with presenting a smooth, easy-to-follow front end to the end user. This layer shouldn’t
actually do any data manipulation at all, apart from whatever formatting is necessary to meet each user’s
presentational needs. The interesting stuff is in the tiers in between — in particular, the business logic.
In the .NET/COM+ transactional model, the software elements that implement this are components
running under the control of the Enterprise Services runtime.

Typically, these components are called into being to perform some sort of transaction and then, to all
intents and purposes, disappear again. For example, a component might be called into play to transfer
information from one database to another in such a way that the information is either in one database or
the other, but not both. This component might have a number of different methods, each of which does a
different kind of transfer. However, each method call would carry out a complete transfer:

Public Sub TransferSomething()
TakeSomethingFromA
AddSomethingToB

End Sub

1175

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1176

Chapter 30: Enterprise Services

Crucially, this means that most transaction components have no concept of state; there are no properties
that hold values between method calls. You can see the reason for this if you imagine what would happen
if you had a number of instances of the preceding components all vying for the attention of the data-
base. If instance one of the control started the transfer, remembering the state or current values of A and
B just after instance two had done the same, you could end up with the state being different between the
two instances. This would violate the isolation of the transaction. Persistence is left to the outside data
stores in this model.

The business logic is the area of the system that requires all the transactional management. Anything that
happens here needs to be monitored and controlled to ensure that all the ACID requirements are met. The
neatest way to do this in a component-oriented framework is to develop the business logic as components
that are required to implement a standard interface. The transaction management framework can then
use this interface to monitor and control how the logic is implemented from a transactional point of view.
The transaction interface is a means for the business logic elements to talk to the transaction framework
and for the transaction framework to reply to the logic elements.

So what’s all this about not having state? Well, if you maintain state inside your components, then you
immediately have a scaling problem. The middle tiers of your application are now seriously resource-
hungry. If you want an analogy from another area of software, consider why the Internet scales so well:
because HTTP is a stateless protocol. Every HTTP request stands in isolation, so no resources are tied up
in maintaining any form of session. It’s the same with transactional components.

This is not to say that you can never maintain state inside your transactional components. You can, but
it’s not recommended, and the examples in this chapter don’t illustrate it.

An Example of Transactions
For our transaction example, we’re going to build a simple business-logic component that transfers data
from one bank account to another account. The current balance in the bank account will be represented
by a row in one database, while the other will be represented by a row in another database.

Before beginning, note one important point: You can’t have transactions without any resource managers.
It’s very tempting to assume that you can experiment with transactional component services without
actually involving, say, a database, because (as you shall see) none of the methods in the transactional
classes make any explicit references to one. However, if you do try to do this, then you will find that
your transactions don’t actually trouble the system’s statistics. Fortunately, you don’t need to lay
out your hard-earned cash for a copy of SQL Server (nice though that is), because Visual Studio 2008
comes with a lightweight (but fully functional) copy of SQL Server, which goes under the name of SQL
Server 2005 Express Edition, or more simply SQL Express. In addition, SQL Express is available separately,
so you can even work with databases if you use Visual Basic Express.

Creating the Databases
First, set up the databases. Check whether the Server Explorer tab is visible in Visual Studio 2008 (see
Figure 30-1). If not, then open it by selecting View➪ Server Explorer. Create a new database in the Data
Connections tree.

Right-click Data Connections and select New Database from the menu. Alternately, you can click the icon
that looks like a plus sign over a can with a plug (not quite the universal symbol for a database, but it
will have to do). The Add Connection dialog box appears (see Figure 30-2).

1176

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1177

Chapter 30: Enterprise Services

Figure 30-1

Figure 30-2

Enter the database name (BankOfWrox) and select Use Windows Authentication. After clicking OK, you
are prompted to create the database if it doesn’t exist. You should now see BankOfWrox in the list of data
connections (see Figure 30-3).

Figure 30-3

Set up the database. If you open the new node, you will see several other nodes, including Tables.
Right-click this and then select New Table from the menu. Another dialog box should appear (see
Figure 30-4). Create two columns, Name and Amount, as shown. Make sure that Name is set up to be
the primary key. When you click Close, you’ll be asked whether you want to save the changes to Table1.
Select Yes, and the Choose Name dialog box will appear (see Figure 30-5).

1177

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1178

Chapter 30: Enterprise Services

Figure 30-4

Figure 30-5

Use the name Accounts for the table. You should now see a child node called Accounts below Tables in
the tree. That completes the creation of BankOfWrox. Repeat the process for BankOfMe. The structure
is exactly the same (although it doesn’t need to be for the purposes of this example). Don’t forget
to set Name as the primary key. We could have created these two as separate rows in the same data-
base, but it doesn’t really simulate the scenario where Enterprise Services is intended (inter-application
communication).

Populating Your Databases
The next thing to do is populate the databases. If you right-click over Accounts for either database and
select Show Table Data from Table from the menu, you will see a grid that enables you to add rows and
initialize the values of their columns (see Figure 30-6).

Figure 30-6

Enter two accounts in BankOfWrox — Professional Visual Basic 2008 and Professional XML — and allo-
cate $5,000 to each. Now repeat the process for BankOfMe, setting up one account, Me, with $0 in it.

1178

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1179

Chapter 30: Enterprise Services

The Business Logic
The next step is to create the transactional component to support the business logic. Create a new
Class Library project called ‘‘Transactions.’’ Then, add a reference to System.EnterpriseServices (see
Figure 30-7).

Figure 30-7

This reference is needed because in order to come under the control of the Enterprise Services runtime,
the component must inherit from the System.EnterpriseServices.ServicedComponent class:

Imports System.EnterpriseServices
Imports System.Configuration
Imports System.Data.SqlClient

<Assembly: ApplicationName("WroxTransactions")>
<Assembly: ApplicationAccessControl(True)>
Public Class BankTransactions

Inherits ServicedComponent

Here’s the main function in the component, TransferMoney:

Public Sub TransferMoney(ByVal amount As Decimal, _
ByVal sourceBank As String, _
ByVal sourceAccount As String, _
ByVal destinationBank As String, _
ByVal destinationAccount As String)

Try
Withdraw(sourceBank, sourceAccount, amount)
Try

Deposit(destinationBank, destinationAccount, amount)
Catch ex As Exception

’deposit failed
Throw New _
ApplicationException("Error transfering money, deposit failed.", _

ex)
End Try

1179

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1180

Chapter 30: Enterprise Services

’both operations succeeded
ContextUtil.SetComplete()

Catch ex As Exception
’withdraw failed
Throw New _
ApplicationException("Error transfering money, withdrawal failed.", _
ex)

End Try
End Sub

Ignoring for the moment the references to ContextUtil, we have effectively divided the logic into two
halves: the half that takes money from the Wrox account (represented by the private function Withdraw),
and the half that adds it to your account (represented by the private function Deposit). In order for the
function to complete successfully, each of the two halves must complete successfully.

The ContextUtil class represents the context of the transaction. Within that context are basically two bits
that control the behavior of the transaction from the point of view of each participant: the consistent bit
and the done bit. The done bit determines whether or not the transaction is finished, so that resources can
be reused. The consistent bit determines whether or not the transaction was successful from the point
of view of the participant. This is established during the first phase of the two-phase commit process.
In complex distributed transactions involving more than one participant, the overall consistency and
completeness are voted on, so that a transaction is only consistent or done when everyone agrees that it
is. If a transaction completes in an inconsistent state, then it is not allowed to proceed to the second phase
of the commit.

In this case, there is only a single participant, but the principle remains the same. We can determine
the overall outcome by setting these two bits, which is done via SetComplete and SetAbort, which are
static methods in the ContextUtil class. Both of these set the done bit to True. SetComplete also sets the
consistent bit to True, whereas SetAbort sets the consistent bit to False. In this example, SetComplete is
only set if both halves of the transaction are successful.

The First Half of the Transaction
Now it’s time to see what’s going on in the two halves of the transaction itself. The component is respon-
sible for reading from and writing to the two databases, so it needs two connection strings. You could
hard-code these into the component, but a better solution is to use the new My Settings feature to include
them. Double-click My Project in the Solution Explorer and navigate to the Settings tab. Add the two
connection strings using the names BankOfWrox and BankOfMe, as shown in Figure 30-8.

Figure 30-8

1180

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1181

Chapter 30: Enterprise Services

1. Here’s the function that removes money from the Wrox account:

Private Sub Withdraw(ByVal bank As String, _
ByVal account As String, _
ByVal amount As Decimal)

2. Establish a connection to the database and retrieve the current account balance from it:

Dim ConnectionString As String
Dim SQL As String
Dim conn As SqlConnection = Nothing
Dim cmdCurrent As SqlCommand
Dim currentValue As Decimal
Dim cmdUpdate As SqlCommand

ConnectionString = My.Settings.Item(bank).ToString
SQL = String.Format("SELECT Amount FROM Accounts WHERE Name = ’{0}’", _

account)

3. The call to ExecuteScalar retrieves a single value from the database — in this case, the
amount for the requested account. Note that we have started an exception handler with the
Try keyword. We’ll finish the Try block in a moment:

Try
conn = New SqlConnection(ConnectionString)
conn.Open()

cmdCurrent = New SqlCommand(SQL, conn)
currentValue = CDec(cmdCurrent.ExecuteScalar())

4. Note the current balance and determine whether you can afford to transfer the amount asked
for. If not, raise an Exception:

’check for overdrafts
If amount > currentValue Then

Throw New ArgumentException("Attempt to overdraft account")
End If

5. Otherwise, subtract the amount and update the table accordingly:

’otherwise, we’re good to withdraw
SQL = _

String.Format("UPDATE Accounts SET Amount = {0} WHERE Name = ’{1}’", _
currentValue - amount, account)

cmdUpdate = New SqlCommand(SQL, conn)
cmdUpdate.ExecuteNonQuery()

6. Close the exception handler and the database:

Catch ex As Exception
Throw New DataException("Error withdrawing", ex)

Finally

1181

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1182

Chapter 30: Enterprise Services

If Not conn Is Nothing Then
conn.Close()

End If
End Try

End Sub

The Second Half of the Transaction
The second half of the transaction is similar, except that the failure conditions are slightly different. First,
we stipulate that we don’t want any transfer of less than $50. Second, we’ve inserted a bug such that an
attempt to transfer a negative amount will cause a divide by zero. (You’ll see why we added this rather
bizarre act of sabotage in a moment.) Here’s the code:

Private Sub Deposit(ByVal bank As String, _
ByVal account As String, _
ByVal amount As Decimal)

Dim ConnectionString As String
Dim SQL As String
Dim conn As SqlConnection = Nothing
Dim cmdCurrent As SqlCommand
Dim currentValue As Decimal
Dim cmdUpdate As SqlCommand

ConnectionString = My.Settings.Item(bank).ToString
SQL = String.Format("SELECT Amount FROM Accounts WHERE Name = ’{0}’", _

account)

If amount < 0 Then
amount = amount / 0

ElseIf amount < 50 Then
Throw New ArgumentException("Value of deposit must be greater than $50")

Else
Try

conn = New SqlConnection(ConnectionString)
conn.Open()

’get the current value
cmdCurrent = New SqlCommand(SQL, conn)
currentValue = CDec(cmdCurrent.ExecuteScalar())

SQL = _
String.Format("UPDATE Accounts SET Amount = {0} WHERE Name = ’{1}’", _
currentValue + amount, account)

cmdUpdate = New SqlCommand(SQL, conn)
cmdUpdate.ExecuteNonQuery()

Finally
If Not conn Is Nothing Then

conn.Close()
End If

End Try
End If

End Sub

1182

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1183

Chapter 30: Enterprise Services

The business logic component is complete. Let’s see how you can bring it under the control of Enterprise
Services. First, of course, you need to build your DLL.

Why did we intentionally add the divide by zero error? This gives you a chance to see what happens to
the transaction when an exception occurs in your code. The transaction will automatically fail and roll
back, which means that your data will still be in a good state at the end.

Registering Your Component
Because the Enterprise Services infrastructure is COM-oriented, you need to expose the .NET compo-
nent as a COM component, and register it with Component Services. Component Services handles all
transaction coordination; that is, Component Services tracks any changes and restores the data should
the transaction fail. First, some changes to the component are needed to enable this COM interaction.
Prepare to take a trip down memory lane.

All COM components must have a GUID (globally unique identifier) that uniquely identifies it to the
COM infrastructure. This was done for you in Visual Basic 6.0, but .NET requires you to add a value.
In addition, your component needs an attribute to make it visible to COM. You can set both of these in
the Assembly Information dialog. Double-click My Project in the Solution Explorer. On the Application
page, click Assembly Information. There should already be a Guid assigned to your component. Check
the option Make Assembly COM-Visible. This makes all of the Public types accessible to COM (see
Figure 30-9).

Figure 30-9

You should also update the Assembly Version fields as you make changes to the component.

Chapter 23 contains more information about strong names and assemblies.

The problem is that the assembly is a private assembly. In order to make it available to the transaction
framework, it needs to be a shared assembly. To do this, give the assembly a cryptographically strong name,
generally referred to as its strong name.

Cryptographically strong means that the name has been signed with the private key of a dual key pair.
This isn’t the place to go into a long discussion about dual-key cryptography, but essentially a pair of

1183

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1184

Chapter 30: Enterprise Services

keys is generated, one public and one private. If something is encrypted using the private key, it can
only be decrypted using the public key from that pair, and vice versa. It is therefore an excellent tool for
preventing tampering with information. If, for example, the name of an assembly were to be encrypted
using the private key of a pair, then the recipient of a new version of that assembly could verify the
origin of that new version, and be confident that it was not a rogue version from some other source. This
is because only the original creator of the assembly retains access to its private key.

Giving the Assembly a Strong Name
You now need to ensure that your assembly uses the strong name. You can create a new strong name file,
or assign an existing strong name file on the Signing tab of the Project Designer dialog (see Figure 30-10).

Figure 30-10

Registering with Component Services
Once you’ve built the DLL again, you can run RegSvcs to register the DLL with Component Services (see
Figure 30-11).

Figure 30-11

RegSvcs does a few things at this point. It creates a COM type library for the DLL, which enables it to
communicate with COM, and it creates a COM+ application for the component.

1184

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1185

Chapter 30: Enterprise Services

The Component Services Console
The Component Services Console is the control interface for Component Services. This is an MMC snap-in,
which you can find by selecting Control Panel➪ Administrative Tools➪ Component Services (see
Figure 30-12).

Figure 30-12

You should be able to find the sample under COM+ Applications. A COM+ application is a set of related
COM+ components that have been packaged together. RegSvcs creates a new application for every
component that it registers. If you want to bundle together a series of components from separate DLLs,
you can do so, but only by creating a new application via the Component Services Console (right-click
COM+ Applications and then select New). We’ll explore the console a little more as we go on.

Now you need a test application. More important, you need to tell Component Services that you’re
interested in transactions.

Test Application
Create a Windows Application project called TestTransactions and a very simple form (see
Figure 30-13).

Figure 30-13

The text field is called TransferField and the command button is called TransferButton. In order to
access the transactional component, add references to a couple of DLLs. First, add a reference to the
transactional component DLL itself. You’ll need to browse for this, as it isn’t currently in the global
assembly cache. Second, in order to access the objects in this DLL, you also need to make the application

1185

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1186

Chapter 30: Enterprise Services

aware of the System.EnterpriseServices assembly, so add a reference to that as well. Having done
that, it’s time to import Transactions into the application:

Imports Transactions

Here’s the code behind the TransferButton button:

Private Sub TransferButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TransferButton.Click
Dim txn As New BankTransactions
Try

txn.TransferMoney(CDec(Me.TransferField.Text), _
"BankOfWrox", "Professional Visual Basic 2008", _
"BankOfMe", "Me")

MessageBox.Show(String.Format("{0:C} transfered from {1} to {2}", _
CDec(Me.TransferField.Text), "BankOfWrox", "BankOfMe"), _
"Transfer Succeeded", _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As Exception
MessageBox.Show(ex.Message, "Transfer failed", _

MessageBoxButtons.OK, _
MessageBoxIcon.Error)

End Try

End Sub

The Transaction Attribute
Now it’s time to tell Component Services how the component should enter a transaction. There are two
ways of doing this: via the Component Services Console or via an attribute in code. To do it via the
Component Services Console, open the Explorer tree to locate the Transactions component (as shown in
Figure 30-14).

Figure 30-14

1186

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1187

Chapter 30: Enterprise Services

Select one of the available options; you’ll learn what these all mean in a moment. It’s a little tiresome to
require the system manager to do this every time, especially if you already know that your component
is always going to have the same transaction characteristics. An alternative mechanism is available: You
can explicitly set up an attribute in the code for your component.

Attributes are items of declarative information that can be attached to the elements of code, such as
classes, methods, data members, and properties. Anything that uses these can query their values at
runtime. One such attribute is called TransactionAttribute, which, unsurprisingly, is used for spec-
ifying the transaction characteristics of a component class. The value of this attribute is taken from an
enumeration called TransactionOption. Both TransactionAttribute and TransactionOption are
found within the System.EnterpriseServices namespace. The enumeration can take the following
values:

Value Description

Disabled Ignores any transaction in the current context. This is the default.

NotSupported Creates the component in a context with no governing transaction

Required Shares a transaction if one exists. Creates a new transaction if necessary.

RequiresNew Creates the component with a new transaction, regardless of the state of
the current context

Supported Shares a transaction if one exists. If it doesn’t, then it creates the
component.

The available values are exactly the same as the ones shown in the Transaction tab. This case is a stand-
alone transaction, so either RequiresNew or Required are equally valid. However, you would most
commonly select RequiresNew to create a component that will participate in an existing transaction or
create a new transaction if needed.

Before changing the component, deregister the current version to avoid any confusion. Now return to the
Transactions project and make the change:

<Assembly: ApplicationName("WroxTransactions")>
<Assembly: ApplicationAccessControl(True)>
<Transaction(TransactionOption.RequiresNew)> _

Public Class BankTransactions
Inherits ServicedComponent

Having made the change, rebuild Transactions and then register it as before. Now run the test applica-
tion and start the Component Services Console application. Enter 1000 and click the Confirm button. You
might be able to see the number of current active transactions briefly go from none to one (depending on
your computer, this may be too fast to see), followed by the number of committed transactions and the
total both increasing by one. That’s it. You’ve implemented your first transaction. If you check the two
databases, the amount in the BankOfWrox Professional Visual Basic account has been reduced to $4,000,
whereas the account in BankOfMe has been increased by $1,000.

1187

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1188

Chapter 30: Enterprise Services

Invalid Data
What happens if you enter a value that you know is invalid? There are two options here: either try to
transfer more money than there is in the Professional Visual Basic account, or try to transfer less than
the ‘‘approved limit.’’ Run the application again and try to transfer $10. As expected, the transaction will
fail, and no changes will be made to the accounts. Professional Visual Basic still has $4,000, and your
account still has $1,000. This isn’t too much of a big deal, because the invalid condition is spotted before
any database manipulation is carried out. If you check the transaction statistics, the number of aborted
transactions has been incremented this time.

Now try to transfer $10,000. This time, the first part of the transaction is successful, but the second part
fails. Again the number of aborted transactions is incremented, but what’s happened to the database?
Well, fortunately for everyone concerned, there is still $4,000 in the Professional Visual Basic account,
and still $1,000 in your account. The entire transaction has failed.

When Something Goes Wrong
Recall that bit of mindless vandalism that we did to the Deposit function so that it would divide by zero
if we entered a negative value? Here’s where we get to try it out. Run the application again and try to
transfer $-1. You should receive an error message. It was halfway through a transaction, but when you
look at the transaction statistics, the aborted count has increased by one. More important, if you check the
databases, the Pro VB account still has $4,000, and the other account still has $1,000, so you’re protected
against software failures as well.

Other Aspects of Transactions
Dealing with transactions involves several other topics as well, including just-in-time (JIT) activation and
object pooling.

Just-In-Time
Creating and deleting components takes time. Instead of discarding the component when finished with
it, why not keep it around in case it’s needed again? The mechanism by which this is done is called
just-in-time (JIT) activation, and it’s set by default for all automatic transactional components (it’s unset by
default for all other COM+ components, however). This is another reason why holding state is undesir-
able within components — it limits the ability to share them.

All good transactional components are entirely stateless, but real life dictates differently. For example,
you might want to maintain a link to your database, one that would be expensive to set up every time.
The JIT mechanism provides a couple of methods that you can override in the ServicedComponent class
in this case.

The method that is invoked when a JIT component is activated is called Activate, and the component
that is invoked when it is deactivated is called, unsurprisingly, Deactivate. In Activate and Deactivate
you put the things that you would normally put in your constructor and deconstructor. JIT can also be
activated by adding the JustInTimeActivation attribute to any class within the ServicedComponent
class.

1188

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1189

Chapter 30: Enterprise Services

Object Pooling
You can, if you want, take this a step further and maintain a pool of objects already constructed and
prepared to be activated whenever required. When an object is no longer required (i.e., it’s deactivated), it
is returned to the pool until the next time it is needed. By retaining objects, you don’t have to continually
create them anew, which reduces your application’s performance costs. You can use the ObjectPooling
attribute within your class to determine how the pool operates:

<Transaction(TransactionOption.RequiresNew), _
ObjectPooling(MinPoolSize:=5, MaxPoolSize:=20, _

CreationTimeOut:=30)> _
Public Class BankTransactions

Queued Components
The traditional component programming model is very much a synchronous one. Put simply, you invoke
a method and you get a result. Unfortunately, many real-world problems are inherently asynchronous.
You can’t always wait for a response to your request before moving on to the next task. A real-world
analogy is the difference between phoning someone and sending an e-mail. Phoning is a synchronous
process; either the phone is answered (a successful transaction) or it isn’t (or you’ve called a wrong
number, another form of unsuccessful transaction). E-mailing someone is asynchronous; you have no
control over how long the e-mail takes to arrive, or when the person will actually look at it. Therefore, in
order to tackle everything that the real world throws at us, we need an asynchronous component model
for those scenarios where it is appropriate.

Why only some scenarios? The synchronous model is quite simple to manage, because the three possible
outcomes of a request are quite straightforward to handle. First, the request can be successful. Second,
the request can fail. Finally, the target of the request can simply not respond at all, in which case it times
out. However, when dealing with asynchronous requests, expect all manner of unusual conditions. For
example, the target system may not currently be operational, so you have to make a decision regarding
how long to wait before it comes back up again. Each outstanding request takes up system resources, so
they need to be managed carefully. You need to be able to determine when the response comes back; you
need to make certain that the recipient only receives a given message once, and so on. We are, in fact,
dealing with a different infrastructure than MTS here, an infrastructure to handle reliable messaging.
Microsoft’s product to tackle this type of problem is Microsoft Message Queue (MSMQ).

The idea behind reliable messaging is that once you have asked the system to send a message to a given
target, you can effectively stop worrying about it. The system handles the storing and forwarding of
messages to their target. It also handles retries and timeouts, ensuring a message is received only once,
and returning a message to the dead letter queue if all else fails. MSMQ is, in fact, a whole technology in
itself, and can seem quite complex. However, Enterprise Services provides a handy, simple abstraction
called queued components.

Queued components take the sometimes gnarly aspects of working with MSMQ and make them easier
to deal with than the raw queue handling. Instead, you have the concepts of recorders, listeners, and
players. Recorders create messages that are put on a queue. Eventually, a listener receives the message.
This could happen immediately or it could take weeks if the two components are disconnected. Finally,

1189

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1190

Chapter 30: Enterprise Services

the player does whatever the message requests. Naturally, this places some restrictions on the kind of
component that can be used. For example, you can’t have any output arguments or return values. If
you have either of these, the values can’t be set until the action is complete, removing the benefit of the
asynchronous aspects of the call. However, there are some cool things that you can do, explored in the
next section.

In order to run the queued components examples, you need MSMQ, which comes
with Windows 2000, XP, and Vista. However, you need to install it separately using
the Add Windows Components dialog.

An Example of Queued Components
This example creates a very simple logging component that takes a string as its input and writes it out to
a sequential file, as well as outputs it in a message box. To keep the example simple, the client and the
server are on the same machine; in a production scenario they would be separate. The benefit of using
queued components here is that the logging doesn’t slow down the main process.

Create a Class Library project called Reporter and add a reference to the System.EnterpriseServices
namespace. First, define an interface:

Imports System.IO
Imports System.EnterpriseServices
Public Interface IReporter

Sub Log(ByVal message As String)
End Interface

Notice that the Log method follows the requirements listed earlier. There is no return value, and all
parameters are input only. We need to separate the interface from the implementation because the imple-
mentation, residing on the server, is going to be sitting on another machine somewhere. The client isn’t
the slightest bit interested in the details of this; it only needs to know how to interface to it.

Take a look at the actual implementation. As with the transactional component, we inherit from Serviced
Component, and implement the interface just defined. However, notice the <InterfaceQueuing()>
attribute that indicates to the Component Services runtime that the interface can be queued (we did
the same for the interface):

<InterfaceQueuing(Interface:="IReporter")> Public Class Reporter
Inherits ServicedComponent
Implements IReporter

In the logging method, simply output a message box, open a StreamWriter component to append to the
log file, and then close it:

Sub Log(ByVal message As String) Implements IReporter.Log
MsgBox(strText)
Using writer As _

1190

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1191

Chapter 30: Enterprise Services

New StreamWriter("c:\account.log", True)
writer.WriteLine(String.Format("{0}: {1}", _

DateTime.Now, message))
writer.Close()

End Using
End Sub

End Class

That’s it for the component’s code. To enable queuing, click Show All Files on the Solution Explorer to
see the hidden files for the project. Open the My Project item and then open the AssemblyInfo.vb file.
Ensure that it has these attributes:

’Enterprise Services attributes
<Assembly: EnterpriseServices.ApplicationAccessControl(False, _

Authentication:=EnterpriseServices.AuthenticationOption.None)>
<Assembly: EnterpriseServices.ApplicationQueuing(Enabled:=True, _

QueueListenerEnabled:=True)>
<Assembly: EnterpriseServices.ApplicationName("WroxQueue")>

Next, ensure that queuing is correctly enabled for this component. The next line is a special line to enable
message queuing to work correctly in a workgroup environment, by switching off authentication. If
we didn’t do this, we would need to set up an entire domain structure and create specific users for the
queues. (In a production scenario, that’s exactly what you would use, so you would need to remove this
line.) Finally, ensure that the component runs as a server, rather than a library. This was optional for
transactional components, but it’s mandatory for queued components. You’ll soon see why. In addition,
add a strong name file to your project, as you did with the Transactions component.

Consoles Again
It’s time to build your component. Once built, register it using RegSvcs just as you did with the
Transactions component. Take a look at the Component Services Console to see how it’s going. Also,
look closely at Figure 30-15. It looks fine, but there’s one other console to check out: the Computer Man-
agement Console. Access this either from the system console or by right-clicking the My Computer icon
and selecting Manage from the menu. Tucked away at the bottom is the relevant part. Open Services
and Applications to find it. Component Services has set up some queues for us. There are five queues
feeding into the main one, so the infrastructure is ready. Keep in mind that all this would be running on
the server machine in a production scenario, not the client.

Building the Client
The problem is that all the code you’ve written in this project is built on top of the MSMQ infrastructure,
which is, inevitably, a COM infrastructure. Worse, the current tasks involve marshaling COM objects into
a stream suitable for inserting into a queued message. For the purposes of this discussion, think of mar-
shaling as intelligently serializing the contents of a method invocation on an interface. We do this in such
a way that they can then be deserialized at the other end and turned into a successful invocation of the
same method in a remote implementation of the interface. We get COM to do this for us by constructing
a moniker, which is basically an intelligent name.

Begin by creating a Windows Application project called TestReporter. Add a reference to the Reporter
component in the usual manner. Figure 30-16 shows the form.

1191

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1192

Chapter 30: Enterprise Services

Figure 30-15

Figure 30-16

The text box is called MessageField, and the button is called SendButton. Here’s the code:

Imports System.Runtime.InteropServices
Public Class MainForm

Inherits System.Windows.Forms.Form
Private Sub SendButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _
Handles SendButton.Click

1192

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1193

Chapter 30: Enterprise Services

Here’s the crucial section. Note the references to the interface and how the object is instantiated:

Dim logger As Queues.IReporter

Try
logger = _

CType(Marshal.BindToMoniker("queue:/new:Queues.Reporter"), _
Queues.IReporter)

Once the object is created, you can make the queued call:

logger.Log(Me.MessageField.Text)

Finally, release the reference to the underlying COM object:

Marshal.ReleaseComObject(logger)
MessageBox.Show("Message sent")

Catch ex As Exception
MessageBox.Show(ex.Message, "Error sending message")

End Try

It’s not pretty, but you only have to do it once to use it repeatedly.

Queuing Invocations
Now try using this application to put a message onto the queue (see Figure 30-17). Run the client appli-
cation and enter a suitable message, such as ‘‘Hello everyone.’’

Figure 30-17

1193

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1194

Chapter 30: Enterprise Services

We’ve definitely created a message, so that represents our invocation. If we were able to read it, we
would see the message you typed in earlier embedded somewhere in it. (Unfortunately, the console only
allows us to inspect the start of the message, but we can see the name of the component in there.) Why
hasn’t anything happened? We haven’t actually started our server. Recall that our component has to run
as a server; this is why. The server has to sit there all the time, serving the incoming queue. Therefore,
return to the Component Services Console, right-click Reporter, select Start from the menu, and you’re
off. Lo and behold, there’s the message box (see Figure 30-18).

Figure 30-18

Now that the message has been delivered, return to the Component Services Console. Right-clicking
over the message queue and selecting Refresh confirms that the message has indeed been removed from
the queue. Look in account.log and notice that it has been updated as well. Running the application
results in the message boxes popping up right away, as the server is now running and responding to the
messages entering the queue.

Transactions with Queued Components
Why were you instructed to call that file account.log? MSMQ, like SQL Server, is a resource manager,
and it can take part in transactions. This may seem a little counterintuitive at first because how on earth
can anything as asynchronous as MSMQ have anything to do with transactions? The key is that it is
reliable. Anything you put into a queue is guaranteed to come out the other end. If we take a transaction to
the point at which a message is securely in the queue, we definitely have something that can participate.
What happens at the other end of the queue is an entirely separate transaction. Of course, if something
goes wrong there, you may need to look at setting up a compensating transaction coming back the other
way to trigger some kind of rollback.

For the final example, then, we’re going to take our original transactional component and add in a queued
element, so that not only does the transfer of money take place, but that fact is also logged to a remote
file. Use exactly the same queued component as last time.

Begin by making a clone of TestTransactions called TestQueuedTransactions. Add a reference to
Queues and an Imports statement:

Imports System.Runtime.InteropServices

You also need a new private subroutine:

Private Shared Sub LogTransaction(ByVal amount As Decimal, _
ByVal sourceBank As String, ByVal sourceAccount As String, _
ByVal destinationBank As String, ByVal destinationAccount As String)

1194

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1195

Chapter 30: Enterprise Services

Dim logger As Queues.IReporter

Try
logger = _

CType(Marshal.BindToMoniker("queue:/new:Queues.Reporter"), _
Queues.IReporter)

logger.Log(String.Format("{0:c} transfered from {1}:{2} to {3}:{4}", _
amount, _
sourceBank, sourceAccount, _
destinationBank, destinationAccount))

Marshal.ReleaseComObject(logger)
MessageBox.Show("Message sent")

Catch ex As Exception
MessageBox.Show(ex.Message, "Error sending message")

End Try
End Sub

This may look similar to the previous queued component example application. Finally, add a call to this
subroutine in the Button_Click event handler:

Private Sub TransferButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TransferButton.Click
Dim txn As New Transactions.BankTransactions
Try

txn.TransferMoney(CDec(Me.TransferField.Text), _
"BankOfWrox", "Professional VB", _
"BankOfMe", "Me")

LogTransaction(CDec(Me.TransferField.Text), _
"BankOfWrox", "Professional VB", _
"BankOfMe", "Me")

MessageBox.Show(String.Format("{0:C} transfered from {1} to {2}", _
CDec(Me.TransferField.Text), "BankOfWrox", "BankOfMe"), _
"Transfer Succeeded", _
MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As Exception
MessageBox.Show(ex.Message, "Transfer failed", _

MessageBoxButtons.OK, _
MessageBoxIcon.Error)

End Try
End Sub

Here, we’re including a queued component in our transaction. It’s been deliberately placed at the begin-
ning to determine whether it genuinely takes part in the two-phase committal. If the transaction fails,
then you shouldn’t see any messages come through the queue.

1195

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1196

Chapter 30: Enterprise Services

You also need to make a small change to the Reporter component, but you must shut it down via the
Component Services Console first. The change is very simple. To ensure that the queued component
takes part in the transaction, it must be marked with the Transaction attribute:

<InterfaceQueuing(Interface:="Reporter.IReporter"), _
Transaction(TransactionOption.Required)> _
Public Class Reporter

If you now transfer $1,000, you’ll see the usual ‘‘Transfer complete’’ message box, and if you start up the
Reporter component, you also see the message box from our queued component (see Figure 30-19).

Figure 30-19

If you try it again, you see the queued message coming through first, so you know it’s OK for valid
transfers. What happens if you try to transfer $100? As we know from the earlier example, this will fail,
and indeed, we see the ‘‘Transfer failed’’ message box from the main component, but not a peep out of
the queued component.

Transactions and System.Transactions
While the classes within System.EnterpriseServices make working with transactions easier, they are
not the only way to define transactions with VB. Visual Basic 2008 includes a set of classes specifically
designed for working with transactions: the System.Transactions namespace. As the name implies,
these classes make it easier to define and work with transactions in your code.

You may well be wondering at this point why we need two sets of classes that work with transactions.
The classes of System.Transaction, particularly the Transaction class itself, abstract the code from
the resource managers participating in the transaction. While this is similar to the goal of the COM+
model described earlier, it is subtly different. The classes of Enterprise Services worked with the Dis-
tributed Transaction Coordinator (MSDTC) service, which in turn worked with the participating resource
managers. The Transaction class does not need to work with the MSDTC and can coordinate multiple
resource managers itself.

The classes of System.Transaction also provide the means to create your own resource managers. These
resource managers may then participate in transactions. At first, you may balk at this prospect, won-
dering how you could write something that manages all the details of a transactional data store. Aren’t
the details enormous? Fortunately, the classes make it easy to enlist in a transaction and report on your
results.

Creating Transactions
System.Transaction supports two means of working with transactions: implicit and explicit. With
implicit transactions, you define a boundary for the transaction. Any resource managers you use within

1196

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1197

Chapter 30: Enterprise Services

this boundary become part of the transaction. That is, if you have defined a boundary and then call a
database such as SQL Server, the actions performed on the database are part of the transaction. If the
code reaches the boundary without incident, then the transaction is committed. If an exception occurs
during this implicit transaction, then the transaction is rolled back. Explicit transactions, as you may
have guessed, mean that you explicitly commit or roll back the transaction as needed.

Using the implicit model can greatly simplify the code involved in a transaction. For example, the
TransferMoney method used in the preceding sample could be rewritten to use an implicit transaction:

Public Sub TransferMoney(ByVal amount As Decimal, _
ByVal sourceBank As String, _
ByVal sourceAccount As String, _
ByVal destinationBank As String, _
ByVal destinationAccount As String)

Using scope As New TransactionScope
Withdraw(sourceBank, sourceAccount, amount)
Deposit(destinationBank, destinationAccount, amount)

End Using
End Sub

The Using clause wraps the two methods within an implicit transaction. All resource managers that
recognize transactions participate in this transaction. The Using clause guarantees that the Transaction
Scope object is disposed of when the transaction is complete.

Using explicit transactions requires a bit more code but provides greater control over the transaction.
You can use either the Transaction class or the CommittableTransaction class to wrap transactions in
this model. CommittableTransaction is a child class of Transaction, and adds the capability to commit
a transaction, as the name implies.

Using a CommittableTransaction in the bank sample changes the TransferMoney method as follows:

Public Sub TransferMoney(ByVal amount As Decimal, _
ByVal sourceBank As String, _
ByVal sourceAccount As String, _
ByVal destinationBank As String, _
ByVal destinationAccount As String)

Using txn As New CommittableTransaction
Withdraw(sourceBank, sourceAccount, amount, txn)
Deposit(destinationBank, destinationAccount, amount, txn)

End Using
End Sub

Notice that the Withdraw and Deposit methods now have an additional parameter to receive the trans-
action. These additions enable the two methods to vote on the transaction:

Private Sub Deposit(ByVal bank As String, _
ByVal account As String, _
ByVal amount As Decimal, _

1197

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1198

Chapter 30: Enterprise Services

ByVal txn As CommittableTransaction)

Dim ConnectionString As String
Dim SQL As String
Dim cmdCurrent As SqlCommand
Dim currentValue As Decimal
Dim cmdUpdate As SqlCommand

ConnectionString = My.Settings.Item(bank).ToString
SQL = String.Format("SELECT Amount FROM Accounts WHERE Name = ’{0}’", _

account)

If amount < 0 Then
amount = amount / 0

ElseIf amount < 50 Then
Throw New ArgumentException("Value of deposit must be greater than 50")

Else
Using conn As New SqlConnection(ConnectionString)

Try
conn.Open()
’join the transaction
conn.EnlistTransaction(txn)
’get the current value
cmdCurrent = New SqlCommand(SQL, conn)
currentValue = CDec(cmdCurrent.ExecuteScalar())

SQL = String.Format("UPDATE Accounts SET Amount = " _
"{0} WHERE Name = ’{1}’", _
currentValue + amount, account)

cmdUpdate = New SqlCommand(SQL, conn)
cmdUpdate.ExecuteNonQuery()
txn.Commit()

Catch ex As Exception
’deal with transaction here
txn.Rollback()
Throw New DataException("Error depositing", ex)

End Try
End Using

End If

End Sub

The principal change here is that the SQL connection must be enlisted in the transaction using the
EnlistTransaction method (or EnlistDistributedTransaction if the transaction will span multiple
computers). Once it is a part of the transaction, it can then use the transaction methods to commit or roll
back each part of the transaction.

1198

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1199

Chapter 30: Enterprise Services

Using the TransactionScope and Transaction classes can greatly decrease the amount of effort involved
in creating and working with transactions in your applications. Generally, using implicit transactions
using TransactionScope is easier and less error prone, and should be your first choice.

Creating Resource Managers
In addition to using the classes in System.Transactions for managing transactions, you can also use
them to define your own resource managers. These resource managers can then participate in trans-
actions with databases, MSDTC, message queues, and more. There are three basic steps to defining a
resource manager:

1. Create an enlistment class. This class is used to track the resource manager’s participation
in the transaction. That is, this is the class that will vote on whether the transaction should
complete or be rolled back. This class should implement the IEnlistmentNotification
interface.

2. Enlist the new enlistment class in the transaction. There are two main ways the class may
participate in the transaction: EnlistDurable or EnlistVolatile. You use EnlistDurable if
your resource manager stores data permanently, such as in a file or database. Enlist
Volatile is used if your resource manager stores its information in memory or in some other
nonrecoverable location.

3. Implement the methods of the IEnlistmentNotification interface to react to the states of
the transaction. The IEnlistmentNotification interface provides four methods: Prepare,
Commit, Rollback, and InDoubt. Commit and Rollback are self-explanatory, used at these
two phases of the transaction. Prepare is called before Commit, to determine whether it is
possible to commit the transaction. Finally, InDoubt is called if the transaction is question-
able. This can happen if the transaction coordinator has lost track of one of the resource
managers.

Why would you define your own resource managers and not simply use an existing one such as SQL
Server? You might need to store data in another database that does not directly participate in transactions.
Alternately, you may want to enable a normally nontransactional component with transactional behavior.
For example, the cache in ASP.NET doesn’t support the addition of items using transactions. You could
create a resource manager that wraps the ASP.NET cache and adds support for commit and rollback of
entries. This might be part of a system in which you want to use the cache as an in-memory data store.
While this would work without the transactions, adding transactional support would ensure that if the
database write fails for any reason, then the entry could be rolled back out of the cache.

Summary
This chapter looked at creating applications using the classes of System.EnterpriseServices and
System.Transactions. We first examined transactions and their importance in maintaining data integrity

1199

Evjen-91361 c30.tex V1 - 04/01/2008 5:39pm Page 1200

Chapter 30: Enterprise Services

when multiple simultaneous changes may affect your data. Properly applied, transactions can ensure that
even with multiple users editing data, your database always reflects the correct data. We also looked at
asynchronous processing using MSMQ and queued components. Many scenarios, such as logging or
other ‘‘background’’ processes, are better handled using asynchronous code. Queued components make
building these asynchronous handlers much easier. Many other aspects of Enterprise Services were
beyond the scope of this chapter, including role-based security, object constructors, and more.

In addition to creating transactions with the Enterprise Services classes, Visual Basic 2008 provides the
System.Transactions namespace. This namespace provides even more ways of implementing transac-
tions in your code. Beyond their use in creating transactions, they can also be used to create your own
resource managers: data stores that can participate in transactions.

1200

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1201

Network Programming

Just as it is difficult to live your life without talking with people, your applications also need to
communicate, perhaps with other programs or perhaps with hardware devices. As you have seen
throughout this book, you can use a variety of techniques to have your program communicate,
including .NET Remoting, Web Services, and Enterprise Services. This chapter looks at yet another
way to communicate: using the basic protocols on which the Internet and many networks have
been built. You will learn how the classes in System.Net can provide a variety of techniques for
communicating with existing applications such as web or FTP servers, or how you can use them to
create your own network applications.

Before getting started on writing applications using these classes, however, it would be good to get
some background on how networks are bolted together, and how machines and applications are
identified.

Protocols, Addresses, and Ports
No discussion of a network is complete without a huge number of acronyms, seemingly random
numbers, and the idea of a protocol. For example, the World Wide Web runs using a protocol
called HTTP or Hypertext Transfer Protocol. Similarly, there are File Transfer Protocol (FTP), Net-
work News Transfer Protocol (NNTP), and Gopher, also a protocol. Each application you run on
a network communicates with another program using a defined protocol. The protocol is simply
the expected messages each program will send the other, in the order they should be sent. For
a real-world example, consider a scenario in which you want to go see a movie with a friend. A
simplified conversation could look like this:

You: Dials phone
Friend: Hears phone ringing, answers phone. "Hello?"
You: "Hello. Want to go see ’Freddie and Jason Escape from New York, Part 6’?"
Friend: "No, I saw that one already. What about ’Star Warthogs’?"
You: "OK, 9:30 showing downtown?"
Friend: "Yes."
You: "Later."
Friend: "See you," hangs up

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1202

Chapter 31: Network Programming

Apart from a bad taste in movies, you can see a basic protocol here. Someone initiates a communi-
cation channel. The recipient accepts the channel and signals the start of the communication. The
initial caller then sends a series of messages to which the recipient replies, either to signify they have
been received or as either a positive or a negative response. Finally, one of the messages indicates
the end of the communication channel, and the two disconnect.

Similarly, network applications have their own protocols, defined by the application writer. For
example, sending an e-mail using SMTP (Simple Mail Transfer Protocol) could look like this:

220 schroedinger Microsoft ESMTP MAIL Service, Version: 6.0.2600.2180 ready at Wed,
6 Oct 2004 15:58:28 -0700
HELLO
250 schroedinger Hello [127.0.0.1]
FOO
500 5.3.3 Unrecognized command
MAIL FROM: me
250 2.1.0 me@schroedinger....Sender OK
RCPT TO: him
250 2.1.5 him@schroedinger
DATA
354 Start mail input; end with <CRLF>.<CRLF>
subject: Testing SMTP

Hello World, via mail.
.
250 2.6.0 <SCHROEDINGERKaq65r500000001@schroedinger> Queued mail for delivery
QUIT
221 2.0.0 schroedinger Service closing transmission channel

Connection to host lost.

In this case, lines beginning with numbers are coming from the server, while the items in uppercase
(and the message itself) were sent from the client. If the client sends an invalid message (such as
the FOO message in the preceding example), then it receives a gentle rebuff from the server, while
correct messages receive the equivalent of an ‘‘OK’’ or ‘‘Go on’’ reply. Traditionally, for SMTP and
many other protocols (including HTTP), the reply is a three-digit number (see the following table)
identifying the result of the request. The text after the number, such as 2.1.0 me@schroedinger .
. . Sender OK, isn’t really needed, and many servers attempt to be overly cute or clever here, so it
isn’t a good idea to assume anything about this text. The return values for the services generally fall
into one of five ranges. Each range identifies a certain family of responses.

Range Description

100–199 Message is good, but the server is still working on the request

200–299 Message is good, and the server has completed acting on the request

300–399 Message is good, but the server needs more information to work on the
request

1202

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1203

Chapter 31: Network Programming

Range Description

400–499 Message is good, but the server could not act on the request. You may try
the request again to see whether it works in the future.

500–599 The server could not act on the request. Either the message was bad or an
error occurred. It likely won’t work next time.

Other protocols use this technique as well (leading to the infamous HTTP 404 error for ‘‘Page not
found’’), but they don’t have to. Having a good reference is key to your success, and the best ref-
erence for existing protocols is the Request for Comments (RFC) for the protocol. These are the
definitions that are used by protocol authors to create their implementation of the standard. Many
of these RFCs are available at the IETF (www.ietf.org) and the World Wide Web Consortium
(www.w3.org) websites.

Addresses and names
The next important topic necessary to a thorough understanding of network programming is the
relationship between the names and addresses of each of the computers involved. Each form of net-
work communication (such as TCP/IP networks such as the Internet) has its own way of mapping
the name of a computer (or host) to an address. The reason for this is simple: computers deal with
numbers better than text, and humans can remember text better than numbers (generally). There-
fore, while you may have named your computer something clever like ‘‘l33t_#4x0 R,’’ applications
and other computers know it by its IP (Internet Protocol) address. This address is a 32-bit value,
usually written in four parts (each one a byte that is a number from 0 to 255), such as 192.168.1.39.
This is the standard the Internet has operated on for many years. However, as only about four bil-
lion unique addresses are possible using this method, another standard, IPv6, has been proposed.
It is called IPv6 because it is the sixth recommendation in the series (the older 32-bit addresses are
often called IPv4 to differentiate them from this new standard). With IPv6, a 128-bit address is used,
leading to a maximum number of about 3 × 1028 unique addresses, which would be more than
enough for every Internet-enabled toaster.

This IP address (whether IPv4 or IPv6) must uniquely identify each host on a network (actually
subnetwork, but I’m getting ahead of myself). If not, then messages will not be routed to their
destination properly, and chaos ensues. The matter gets more complicated when another 32-bit
number, the subnet mask, enters the picture. This is a value that is masked (using a Boolean AND
operation) over the address to identify the subnetwork of the network on which the computer
resides. All addresses on the same subnetwork must be unique. Two subnetworks may have the
same address, however, as long as their subnet masks are different.

Many common subnetworks use the value 255.255.255.0 for the subnet mask. When this is applied
to the network address, as shown in the following example, only the last address is considered
significant. Therefore, the subnetwork can include only 254 unique addresses (0 and 255 are used
for other purposes).

Network address: 192.168. 1.107
Subnet Mask: 255.255.255. 0
Result: 192.168. 1. 0

1203

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1204

Chapter 31: Network Programming

Because computers and humans use two different means of identifying computers, there must be
some way to relate the two. The term for this process is name resolution. In the case of the Internet, a
common means of name resolution is yet another protocol, the Domain Naming System (DNS). A
computer, when faced with an unknown text-based name, will send a message to the closest DNS
server. It then determines whether it knows the IP address of that host. If it does, it passes this back
to the requester. If not, it asks another DNS server it knows. This process continues until either the
IP address is found or you run out of DNS servers. After the IP address is found, all of the servers
(and the original computer) store that number for a while in case they are asked again.

Keeping in mind the problems that can ensue during name resolution can often solve many devel-
opment problems. For example, if you are having difficulty communicating with a computer
that should be responding, then it may be that your computer simply can’t resolve the name of
the remote computer. Try using the IP address instead. This removes any name-resolution prob-
lems from the equation, and may allow you to continue developing while someone else fixes the
name-resolution problem.

Ports: they’re not just for ships
As described earlier, each computer or host on a network is uniquely identified by an address. How
does your computer realize which of possibly many applications running are meant to receive a
given message arriving on the network? This is determined by the port at which the message is
targeted. The port is another number, in this case an integer value from 1 to 32,767. The unique
combination of address and port identifies the target application.

For example, assume you currently have a web server (IIS) running, as well as an SMTP server,
and a few browser windows open. When a network message comes in, how does the operating
system ‘‘know’’ which of these applications should receive the packet? Each of the applications
(either client or server) that may receive a message is assigned a unique port number. In the case of
servers, this is typically a fixed number, whereas client applications, such as your Web browser, are
assigned a random available port.

To make communication with servers easier, they typically use a well-known assigned port. In the
case of web servers, this is port 80, while SMTP servers use port 25. You can see a list of common
servers and their ports in the file %windows%sudhasystem32sudhadriverssudhaetcsudhaservices.

If you’re writing a server application, then you can either use these common port numbers (and
you should if you’re attempting to write a common type of server) or choose your own. If you’re
writing a new type of server, then you should choose a port that has not been assigned to another
server; choosing a port higher than 1024 should prevent any conflicts, as these are not assigned.
When writing a client application, there is typically no need to assign a port, as a dynamic port is
assigned to the client for communication with a server.

Ports below 1024 should be considered secure ports, and applications that use them should have
administrative access.

Firewalls: can’t live with them, can’t live without them
Many people have a love-hate relationship with firewalls. While they are invaluable in today’s
network, sometimes it would be nice if they got out of the way. A firewall is a piece of hardware
or software that monitors network traffic, either incoming, outgoing, or both. It can be configured

1204

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1205

Chapter 31: Network Programming

to allow only particular ports or applications to transmit information beyond the firewall. Firewalls
protect against hackers or viruses that may attempt to connect to open ports, leveraging them to
their own ends. They protect against spyware applications that may attempt to communicate out
from your machine. However, they also ‘‘protect’’ against any network programming you may
attempt to do. You must invariably cooperate with your network administrators, working within
their guidelines for network access. If they make only certain ports available, then your applications
should use only those ports. Alternately, you may be able to get them to configure the firewalls
involved to permit the ports needed by your applications.

Thankfully, creating network messages is a bit easier with Visual Basic 2008. The following sections
demonstrate how.

The System.Net Namespace
Most of the functionality used when writing network applications is contained within the System.Net
and System.Net.Sockets namespaces. This chapter covers the following main classes in these
namespaces:

❑ WebRequest and WebResponse, and their subclasses, including FtpWebRequest

❑ WebClient, the simplified WebRequestfor common scenarios

❑ HttpListener, which enables you to create your own web server

Additional classes, methods, properties, and events were added to the System.Net and
System.Net.Sockets namespaces in the .NET Framework 2.0. You can locate the updated ref-
erence for these namespaces at http://msdn2.microsoft.com/library/system.net.aspx
as of this writing.

Web requests (and responses)
When most people think of network programming these days, they’re really thinking of communication
via a web server or client. Therefore, it shouldn’t be surprising that there is a set of classes for this commu-
nication need. In this case, it is the abstract WebRequest class and the associated WebResponse. These two
classes represent the concept of a request/response communication with a web server, or similar server.
As these are abstract classes — that is, MustInherit classes — they cannot be created by themselves.
Instead, you create the subclasses of WebRequest that are optimized for specific types of communication.

The most important properties and methods of the WebRequest class are shown in the following table:

Member Description

Create Method used to create a specific type of WebRequest. This method uses
the URL (either as a string or as an Uri class) passed to identify and
create a subclass of WebRequest.

GetRequestStream Method that allows access to the outgoing request. This enables you to
add additional information, such as POST data, to the request before
sending.

1205

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1206

Chapter 31: Network Programming

Member Description

GetResponse Method used to perform the request and retrieve the corresponding
WebResponse

Credentials Property that enables you to set the user ID and password for the request
if they are needed to perform it

Headers Property that enables you to change or add to the headers for the request

Method Property used to identify the action for the request, such as GET or POST.
The list of available methods is specific to each type of server.

Proxy Property that enables you to identify a proxy server for the communication
if needed. You generally don’t need to set this property, as Visual Basic
2008 detects the settings for Internet Explorer and uses them by default.

Timeout Property that enables you to define the duration of the request before you
‘‘give up’’ on the server

Each subclass of WebRequest supports these methods, providing a very consistent programming model
for communication with a variety of server types. The basic model for working with any of the subclasses
of WebRequest can be written in the following pseudo-code:

Declare variables as either WebRequest and WebResponse, or the specific child classes
Create the variable based on the URL
Make any changes to the Request object you may need
Use the GetResponse method to retrieve the response from the server
Get the Stream from the WebResponse
Do something with the Stream

If you decide to change the protocol (e.g., from HTTP to a file-based protocol), then you only need to
change the URL used to retrieve the object.

Working with FileWebRequest and HttpWebRequest
The first two types of WebRequest that became available were FileWebRequest and HttpWebRequest.
FileWebRequest is used less frequently; it represents a request to a local file, using the ‘‘file://’’ URL
format. You have likely seen this type of request if you attempted to open a local file using your Web
browser, such as Internet Explorer, Firefox, or Navigator. Generally, however, the subclass most devel-
opers will use is HttpWebRequest. This class enables you to make HTTP requests to a web server without
requiring a browser. This could enable you to communicate with a web server, or, using the time-honored
tradition of ‘‘screen scraping,’’ to retrieve data available on the Web.

One hurdle many developers encounter when first working with HttpWebRequest is that there is no avail-
able constructor. Instead, you must use the WebRequest.Create method (or the Create method of your
desired subclass) to create new instances of any of the subclasses. This method uses the URL requested
to create the appropriate subtype of WebRequest. For example, this would create a new HttpWebRequest:

Dim req As HttpWebRequest = WebRequest.Create("http://msdn.microsoft.com")

1206

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1207

Chapter 31: Network Programming

Note that if you have Option Strict turned on (and you should), the preceding code will produce an
error. Instead, you should explicitly cast the return value of Create to the desired type:

Dim req As HttpWebRequest = _
DirectCast(WebRequest.Create("http://msdn.microsoft.com"), _
System.Net.HttpWebRequest)

Putting It Together
In order to demonstrate how to use WebRequest/WebResponse, the following example shows how to
wrap a Web call into a Visual Basic class. In this case, we’ll wrap Google’s define: keyword, which
enables you to retrieve a set of definitions for a word (e.g., www.google.com/search?q = define%3A +
protocol), and then use that in a sample application (see Figure 31-1.)

Figure 31-1

1. Create a new Windows application named ‘‘DefinePad.’’

2. Add a new class to the project. This will hold the actual WebRequest code. Call it
GoogleClient.

3. Add a reference to the System.Web DLL, as you will need access to some of its functionality
later.

1207

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1208

Chapter 31: Network Programming

4. In the GoogleClient.vb file, add Imports statements to make the coding a little briefer:

Imports System.IO
Imports System.Net
Imports System.Web
Imports System.Collections.Generic

5. The main function in GoogleClient will be a Define function that returns an array of strings.
Each string will be one definition returned by Google:

Public Function Define(ByVal word As String) As String()
Dim req As HttpWebRequest = Nothing
Dim resp As HttpWebResponse
Dim query As String
Dim result As New List(Of String)

query = "http://www.google.com/search?q=define%3A" & _
HttpUtility.UrlEncode(word)

Try
req = DirectCast(WebRequest.Create(query), HttpWebRequest)
With req

.Method = "GET"
resp = req.GetResponse
If resp.StatusCode = HttpStatusCode.OK Then

ParseResponse(resp.GetResponseStream, result)
Else

MessageBox.Show("Error calling definition service")
End If

End With
Catch ex As Exception

End Try

Return result.ToArray()

End Function

The first task is to guarantee that no invalid characters appear in the query string when you
send the request, such as a space, an accented character, or other non-ASCII characters.
The System.Web.HttpUtility class has a number of handy shared methods for encoding
strings, including the UrlEncode method. This replaces characters with a safe representa-
tion of the character that looks like %value, where the value is the Unicode code for the
character. For example, in the definition of the query variable above, the %3A is actually
the colon character (‘‘:’’), which has been encoded. Any time you retrieve a URL based on
user input, encode it because there is no guarantee the resulting URL is safe to send.

Once the query is ready, you create the WebRequest. As the URL is for an HTTP resource,
an HttpWebRequest is created. While the default method for WebRequest is a GET, it’s still
good practice to set it. You’ll create the ParseResponse method shortly to process the stream
returned from the server.

One other piece of code worth mentioning is the return value for this method, and how
it is created. In order to return arrays of a specific type (rather than return actual collec-
tions from a method), you must either know the actual size to initialize the array or use

1208

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1209

Chapter 31: Network Programming

the List generic type or the older ArrayList. These classes behave like the Visual Basic 6.0
Collection class, which enables you to add items, and grows as needed. They also have
a handy method that enables you to convert the array into an array of any type; you can
see this in the return statement. The ArrayList requires you to do a bit more work. If you
want to use an ArrayList for this method, then you must identify the type of array you’d
like to return. The resulting return statement would look like this using an ArrayList:

Return result.ToArray(GetType(String))

6. The ProcessRequest method parses the stream returned from the server and converts it into
an array of items. Note that this is slightly simplified; in a real application, you would likely
want to return an array of objects, where each object provides access to the definition and the
URL of the site providing it:

Private Sub ParseResponse (ByVal input As System.IO.Stream, _
ByRef output As List(Of String))

’definitions are in a block beginning with <p>Definitions for...
’then are marked with tags
’yes, I should use Regular Expressions for this
’this format will also likely change in the future.
Dim reader As New StreamReader(input)
Dim work As String = reader.ReadToEnd
Dim blockStart As String = "<p>Definitions of"
Dim pos As Integer = work.IndexOf(blockStart)
Dim posEnd As Integer
Dim temp As String

Do
pos = work.IndexOf("", pos + 1)
If pos > 0 Then

posEnd = work.IndexOf("
", pos)
temp = work.Substring(pos + 4, posEnd - pos - 4)
output.Add(ParseDefinition(temp))
pos = posEnd + 1

End If
Loop While pos > 0

End Sub

The code is fairly simple, using the time-honored tradition of screen scraping — processing
the HTML of a page to find the section you need and then removing the HTML to produce
the result.

7. The last part of the GoogleClient class is the ParseDefinition method that cleans up the
definition, removing the link and other HTML tags:

Private Function ParseDefinition(ByVal input As String) As String
Dim result As String = ""

Dim lineBreak As Integer

lineBreak = input.IndexOf("
")
If lineBreak > 0 Then

result = input.Substring(0, input.IndexOf("
"))
Else

1209

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1210

Chapter 31: Network Programming

result = input
End If
Return result.Trim

End Function

8. Now, with the class in hand, you can create a client to use it. In this case, you’ll create a sim-
ple text editor that adds the capability to retrieve definitions for words. Go back to the Form
created for the application and add controls as shown in Figure 31-2.

Figure 31-2

9. The user interface for DefinePad is simple: a TextBox and a ContextMenuStrip.

Control Property Value

TextBox Name TextField

Multiline True

Dock Fill

ContextMenuStrip DefinitionMenu

ContextMenuStrip Name DefinitionMenu

10. The only code in the Form is for the Opening event of the ContextMenuStrip. Here, you add
the definitions to the menu. Add the following code to the handler for the Opening event:

Private Sub DefinitionMenu_Opening(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles DefinitionMenu.Opening
Dim svc As New GoogleClient

1210

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1211

Chapter 31: Network Programming

Dim definitions() As String
Dim definitionCount As Integer

DefinitionMenu.Items.Clear()

Try
’define the currently selected word
If TextField.SelectionLength > 0 Then

definitions = svc.Define(TextField.SelectedText)

’build context menu of returned definitions
definitionCount = definitions.Length
If definitionCount > 6 Then

definitionCount = 6
ElseIf definitionCount = 0 Then

’we can’t do any more, so exit
Dim item As New ToolStripButton
item.Text = "Sorry, no definitions available"
DefinitionMenu.Items.Add(item)
Exit Sub

End If

For i As Integer = 1 To definitionCount
Dim item As New ToolStripButton
item.Text = definitions(i)
DefinitionMenu.Items.Add(item)

Next
End If

Catch ex As Exception
MessageBox.Show(ex.Message, "Error getting definitions", _

MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try
End Sub

The bulk of the code in this event is to limit the number of items displayed in the menu. The
actual functional part of the routine is the call to the Define method of the GoogleClient. If
you trace through the code as you run, you’ll see the WebRequest generated, the call made,
and the resulting response stream parsed into the individual items as desired. Finally, you
can use the returned list to create a set of menu items (that don’t actually do anything), and
display the ‘‘menu.’’ Clicking on any definition closes the menu.

11. To test the application, run it. Type or copy some text into the text box, select a word, and
right-click on it. After a brief pause, you should see the definitions for the word (Figure 31-3
shows definitions of ‘‘protocol’’).

While it isn’t as sexy as Web services, using this technique (WebRequest, screen scraping of the resulting
HTML) can provide access to a great deal of the functionality of the Internet for your applications.

Working with FtpWebRequest
The .NET Framework includes another useful version of WebRequest — the FtpWebRequest. This class,
and the related FtpWebResponse, is used to communicate with FTP servers. While the HttpWebRequest/

1211

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1212

Chapter 31: Network Programming

Figure 31-3

Response can be used for simple file uploading and retrieving, the FtpWebRequest adds the capability
to browse or create directories, delete files, and more. The following table describes some of the added
functionality of the FtpWebRequest:

Member Description

Abort Used when performing an asynchronous operation. This command
terminates the current operation.

Binary A Boolean value that determines whether the data transfer should be treated
as binary or text. Set to true when you are transferring a binary file, and text
otherwise.

Method While not new, the behavior of this method is quite important with the
FtpWebRequest as it defines the action to perform. See the section below on
WebRequestMethods.Ftp that defines the possible values.

Passive Boolean value that determines how the client and server should
communicate. When set to true, the server does not initiate communication
back to the client. Instead, it waits until the client initiates the communication.
This is typically needed when communicating through a firewall that might
not allow the server to open a connection to the client machine.

1212

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1213

Chapter 31: Network Programming

WebRequestMethods.Ftp
As described above, the actual request made by the FtpWebRequest is identified by the Method property.
This is a string property that can be set to any value recognized by your FTP server, but you will often
want to set it to one of the values in the WebRequestMethods.Ftp structure.

Field Description

AppendFile Adds content to an existing file

DeleteFile Deletes a file from the server (if you have permission)

DownloadFile Retrieves a file from the FTP server

GetDateTimeStamp Gets the date and time the file was last modified

GetFileSize Gets the size of the file on the FTP server

ListDirectory Gets the file and directory names for a directory on the FTP server.
The data returned is a list of the files, each on a line (that is,
separated by CRLF characters). This method doesn’t provide an easy
way to determine which of the items returned are directories or files.

ListDirectoryDetails Gets the file and directory information for a directory on the FTP
server. This method returns a good deal of information about each
item, including attributes, permissions, date of last modification, and
size. Like the ListDirectory method, each file’s (or directory’s)
information is on a single line.

MakeDirectory Creates a directory on the server

PrintWorkingDirectory Gets the current path on the FTP server

RemoveDirectory Removes a directory from the server (if you have permission)

UploadFile Uploads a file to the FTP server

UploadFileWithUniqueName Similar to UploadFile, but this method ensures that the new file has
a unique filename. This is great when you allow the user to upload
files but don’t want possible name collisions to occur, or if you don’t
really care what name the file has (e.g., when the file contents just
need processing but not saving).

Creating an FTP Client
In order to demonstrate using the FtpWebRequest, this section covers how to create a simple FTP server
browser. The application will enable you to connect to a server, browse the available files, and download
files (see Figure 31-4).

Even though this application is a Windows Forms application, we separate the FTP handling to a class
for use in other applications:

1. Create a new Windows application called ‘‘FTP Browser.’’

2. Before creating the user interface, define the class that will provide the functionality. Add
a new class to the project, called FtpClient.vb. This class will be used to create wrapper

1213

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1214

Chapter 31: Network Programming

functionality to make working with FtpWebRequest easier. First, add the Imports statements
for later use:

Imports System.IO
Imports System.Net
Imports System.Text
Imports System.Collections.Generic

Figure 31-4

3. Add two properties to the class. This is for the user ID and password that will be used by the
FtpClient:

Private _user As String
Private _pwd As String

Public Property UserId() As String
Get

Return _user
End Get
Set(ByVal value As String)

_user = value
End Set

End Property

Public Property Password() As String
Get

Return _pwd
End Get
Set(ByVal value As String)

_pwd = value
End Set

End Property

1214

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1215

Chapter 31: Network Programming

4. The form will use two methods: GetDirectories and GetFiles. These two methods are
basically identical:

Public Function GetDirectories(ByVal url As String) As String()
’line should look like:
’[DIRECTORY] developr . . [Feb 1 2006]
Return GetDirectoryEntries(url, "[DIRECTORY]")

End Function

Public Function GetFiles(ByVal url As String) As String()
’line should look like:
’[BINARY] 211SP2EI.EXE . . [Feb 26 1997] 5M
Return GetDirectoryEntries(url, "[BINARY]")

End Function

5. Obviously, both GetDirectories and GetFiles simply return the result of another helper
routine, GetDirectoryEntries. The only difference between the information returned for
a file and a directory is that directories have the directory attribute set to ‘‘d,’’ whereas files
have a blank (‘‘-’’) in that position:

Private Function GetDirectoryEntries(ByVal url As String, _
ByVal directoryAttribute As String) As String()

Dim result As New List(Of String)
Dim str As Stream = Nothing
Dim temp As String
Dim words() As String
Dim splitChars() As Char = {"<"c, ">"c}

DoFtpRequest(url, _
WebRequestMethods.Ftp.ListDirectoryDetails, _
False, str)

Try
Using reader As StreamReader = New StreamReader(str)

Do
temp = reader.ReadLine

If Not String.IsNullOrEmpty(temp) Then
’split into component parts
If temp.StartsWith(directoryAttribute) Then

words = temp.Split(splitChars, _
StringSplitOptions.RemoveEmptyEntries)

If String.Compare(words(2), _
"Parent Directory", True) <> 0 Then
result.Add(words(2))

End If

End If
End If

Loop While temp <> Nothing
End Using

Catch ex As Exception

1215

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1216

Chapter 31: Network Programming

MessageBox.Show(ex.Message, "Error getting files from " & url)
End Try

Return result.ToArray()

End Function

The GetDirectoryEntries method uses another helper method you’ll create shortly to exe-
cute the WebRequestMethods.Ftp.ListDirectoryDetails method on the FTP server. This
method returns the resulting response stream in the str parameter. The code then loops
through the returned content. Each of the directory entries appears on a separate line, so
ReadLine is perfect here. The line is split on spaces, and then added to the return value if it
has the desired value for the first character (which represents it if it’s a directory or a file).

6. The GetDirectoryEntries method calls a helper method that does the actual
FtpWebRequest. This method returns the resulting stream by way of a ByRef parameter:

Private Function DoFtpRequest(ByVal url As String, _
ByVal method As String, ByVal useBinary As Boolean, _
ByRef data As Stream) As FtpStatusCode
Dim result As FtpStatusCode

Dim req As FtpWebRequest
Dim resp As FtpWebResponse
Dim creds As New NetworkCredential(UserId, Password)

req = DirectCast(WebRequest.Create(url), FtpWebRequest)

With req
.Credentials = creds
.UseBinary = useBinary
.UsePassive = True
.KeepAlive = True

’make initial connection
.Method = method
Try

resp = .GetResponse()
Catch ex As Exception

MessageBox.Show(ex.Message)
End Try

If resp IsNot Nothing Then
data = resp.GetResponseStream
result = resp.StatusCode

End If

End With

Return result
End Function

1216

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1217

Chapter 31: Network Programming

The appropriate type of WebRequest is created, the properties are set, and the final request is
sent.

7. With the class created, we can move our attention back to the user interface. Return to the
form and add MenuStrip and SplitContainer controls. Leave the names and other prop-
erties of these controls at their defaults. Create three items under the File menu: Connect,
Download, and Exit. You may also want to add an ImageList control and populate it with
appropriate graphics for open and closed folders. The following table lists the properties set
on the ImageList in the sample project:

Property Value

TransparentColor Transparent

Images – open Uses the OpenFold.ico graphic from the Visual Studio 2008
Image Library (located in the iconssudhaWin9x directory)

Images – closed Uses the ClsdFold.ico graphic from the Visual Studio 2008
Image Library (located in the iconssudhaWin9x directory)

8. Add a TreeView control to the left side of the SplitContainer, and a ListView to the right
side. Set the properties as shown in the following tables:

TreeView

Property Value

Name DirectoryTree

Dock Fill

PathSeparator /

ImageList The name of your ImageList control

SelectedImageKey The open image’s name

ImageKey The closed image’s name

ListView

Property Value

Name FileList

Dock Fill

MultiSelect False

View List

1217

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1218

Chapter 31: Network Programming

9. Open the Code view for the form. First, add a few private variables to the Form class.

Private ftp As New FtpClient
Private baseUrl As String
Private downloadPath As String

10. Add a handler for the Form Load event. This will initialize the TreeView and FtpClient
objects:

Private Sub MainForm_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load
’initialize form
With Me.DirectoryTree

.Nodes.Add("/")
End With
’initialize ftp client
With ftp

.UserId = My.Settings.user

.Password = My.Settings.email
End With
downloadPath = My.Settings.downloadPath

End Sub

11. Notice the calls to My.Settings when initializing the FtpClient. The Settings collection is
available to the My object when you have created settings values in the My Project dialog.
Open the Solution Explorer and double-click on the My Project item. Select the Settings tab
and add the three values there (see Figure 31-5).

Figure 31-5

12. You can now return to adding the code to the form. The next step is to enable connecting to
the FTP server and retrieving the initial list of directories to add to the TreeView. Add this to
the Connect menu item:

1218

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1219

Chapter 31: Network Programming

Private Sub ConnectToolStripMenuItem_Click(ByVal sender As
System.Object, _

ByVal e As System.EventArgs) Handles ConnectToolStripMenuItem.Click
’makes a new connection to an FTP server

baseUrl = InputBox("Enter FTP site to open", "FTP Browser", __
"ftp://ftp.microsoft.com")

Me.DirectoryTree.Nodes.Clear()
’add the base node
Me.DirectoryTree.Nodes.Add("/")
AddNodes(Me.DirectoryTree.Nodes(0), baseUrl)

End Sub

13. The event prompts the user for the address of the FTP server to connect with, and then adds
it to the TreeView via a helper subroutine, AddNodes:

Private Sub AddNodes(ByVal parent As TreeNode, ByVal url As String)
Dim dirs() As String

Me.Cursor = Cursors.WaitCursor

dirs = ftp.GetDirectories(url)
For Each dir As String In dirs

With parent.Nodes.Add(dir)
.Nodes.Add("NoNodeHere", "empty")

End With
Next

Me.Cursor = Cursors.Default
End Sub

The AddNodes method retrieves the list of directories for the selected URL. In this, the first
call for an FTP server, it retrieves the root directory. Later, the same method is used to
retrieve subdirectories by requesting a URL containing the full path. Notice the addition
of a fake node to each of the directories (the "NoNodeHere" item). This ensures that each of
the directories added has the plus symbol next to it in the TreeView, implying that there
is content below it. We will remove the empty node later when we request the actual sub-
directories.

14. Initially, each of the directories is empty except for the "NoNodeHere" item. You can use
the presence of this node to determine whether you need to request subdirectories. If it still
exists, then you need to call AddNodes when the user attempts to expand the TreeView node:

Private Sub DirectoryTree_BeforeExpand(ByVal sender As Object, _
ByVal e As System.Windows.Forms.TreeViewCancelEventArgs) _
Handles DirectoryTree.BeforeExpand
Dim thisNode As TreeNode

thisNode = e.Node
If thisNode.Nodes.ContainsKey("NoNodeHere") Then

’we haven’t retrieved this nodes children yet
’remove the empty node
thisNode.Nodes("NoNodeHere").Remove()

1219

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1220

Chapter 31: Network Programming

’get the real children now
AddNodes(thisNode, baseUrl + thisNode.FullPath)

End If

End Sub

If "NoNodeHere" still exists, then you remove it and call the AddNodes method again, pass-
ing this node and its path. This calls the FTP server again, retrieving the child directories
of the selected directory. You perform this before the node is expanded, so before the user
can see the "NoNodeHere" node. If the subdirectories have already been requested, then
the "NoNodeHere" node won’t be in the TreeView anymore, and so the code to call the FTP
server won’t be called again.

15. After the node has been expanded, it is selected. At this time, retrieve the list of files in that
directory to display in the ListView control:

Private Sub DirectoryTree_AfterSelect(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.TreeViewEventArgs) _
Handles DirectoryTree.AfterSelect
Dim thisNode As TreeNode
Dim files() As String

thisNode = e.Node

’we don’t want to do this for the root node
If thisNode.Text <> "/" Then

’get files for this directory
Me.Cursor = Cursors.WaitCursor
’clear the current list
Me.FileList.Items.Clear()
files = ftp.GetFiles(baseUrl + thisNode.FullPath)
For Each fil As String In files

Me.FileList.Items.Add(fil)
Next

Me.Cursor = Cursors.Default
End If

End Sub

This code is fairly simple. First, the ListView is cleared of existing files. Then the FtpClient
is called, retrieving the list of files in the selected directory. These are then added to the
ListView.

16. You should now be able to run the application and browse an FTP server (see Figure 31-6).
Note that because we haven’t added any credentials, only anonymous FTP servers can be
browsed. If you want to connect to FTP servers that require authentication, then set the
UserId and Password as appropriate, or query them from the user.

17. For a few finishing touches, set the Download menu item to be usable only if a file is selected,
and add the code for the Exit menu item. Set the initial value for Enabled to False for the
download menu item, and add the following code to the handler for the ListView’s
SelectedIndexChanged event:

Private Sub FileList_SelectedIndexChanged(ByVal sender As
System.Object, _

1220

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1221

Chapter 31: Network Programming

ByVal e As System.EventArgs) Handles FileList.SelectedIndexChanged
Me.DownloadToolStripMenuItem.Enabled = _

CBool(Me.FileList.SelectedItems.Count)
End Sub

When an item is selected, the Count will be > 0, which converts to True. If 0 items are
selected, then this will be False.

Figure 31-6

18. The code for the Exit menu item is simple enough:

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click
Me.Close()

End Sub

19. Finally, add the code for the Download menu item:

Private Sub DownloadToolStripMenuItem_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles DownloadToolStripMenuItem.Click
’download currently selected file (but only if something is selected)

ftp.DownloadFile(baseUrl & _
Me.DirectoryTree.SelectedNode.FullPath & _
"/" & Me.FileList.SelectedItems(0).Text, _
downloadPath & Me.FileList.SelectedItems(0).Text)

End Sub

20. Obviously, we need to add the DownloadFile method to the FtpClient class:

Public Sub DownloadFile(ByVal url As String, _
ByVal destination As String)
Dim str As Stream = Nothing

DoFtpRequest(url, _

1221

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1222

Chapter 31: Network Programming

WebRequestMethods.Ftp.DownloadFile, _
True, _
str)

Using reader As StreamReader = New StreamReader(str)
Using writer As StreamWriter = _

New StreamWriter(File.OpenWrite(destination))
writer.Write(reader.ReadToEnd)

End Using
End Using

End Sub

Note the repeat use of the DoFtpRequest method. However, this time, we pass True for the binary,
just in case the file we’re transferring is not a text-based file. Using the Using block, we create a new
StreamReader around the output stream of the response, and a new StreamWriter to a local output
file. By adding the Using block, we guarantee that the associated readers, writers, and streams will all
be closed when we’re done using them. The Using block is functionally identical to the following .NET
Framework 1.1 code:

Dim reader As StreamReader
Try

reader = New StreamReader(str)
...

Finally
reader.Flush()
reader.Close()
reader = Nothing

End Try

Now you can test out the new download code. Run the application again, connect to an FTP server, select
a file, and then select Download from the File menu. You should see the newly created file appear in your
download directory (see Figure 31-7).

Figure 31-7

1222

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1223

Chapter 31: Network Programming

While creating a full-blown FTP client would still be a fair bit more work, it is hoped that you can see
that the functionality of the FtpWebRequest and FtpWebResponse classes makes communicating with an
FTP server much easier than before, let alone writing the core functionality yourself using sockets.

Simplifying common Web requests with WebClient
When I first saw a demo of WebRequest in early 2000, I was delighted. Here was the capability to easily
access Internet resources. However, one of the other attendees of the demo asked, ‘‘Why is that so dif-
ficult? You need to do so much to get it to work.’’ The next time I saw the same WebRequest demo, the
presenter concluded with, ‘‘For those of you doing the common scenarios, we have an even easier way.’’
He then went on to show us how to use System.Net.WebClient.

For those times when you just want to send a GET or POST request and download a file or the resulting
data, you can forget about WebRequest/WebResponse. WebClient abstracts away all of the little details of
making Web requests, and makes it amazingly easy to grab data from the Web. The important methods
and properties of the WebClient class are described in the following table:

Member Description

DownloadData Returns a byte array of data from the server. This is essentially the same as if
you had called the Re4ad method on the stream returned from
GetResponseStream. You could then save this to a binary file, or convert to
text using an appropriate Encoding. However, see DownloadFile and
DownloadString below for two easier ways to perform these tasks.

DownloadFile Retrieves a file from the server and saves it locally

DownloadString Returns a block of text from the server

OpenRead Returns a stream providing data from the server. This is essentially the same
stream returned from the call to GetResponseStream.

OpenWrite Returns a stream you can use to write to the server. This is essentially the
same as creating a WebRequest and writing to the GetResponse stream.

UploadData Sends a byte array of data to the server. See UploadFile, UploadString, and
UploadValues for easier ways to perform this task.

UploadFile Sends a local file up to the server for processing

UploadString POSTs a string to the server. This is very handy when you are simulating
HTML form input.

UploadValues Sends a set of name-value pairs to the server. This is similar to the format
used by QueryString values, and this method is quite useful for simulating
HTML input.

BaseAddress The base URL the WebClient will access — e.g., www.example.com.

Credentials Credentials that will be used when performing any request. You can either
create a new NetworkCredential to use this or, alternately, set the
UseDefaultCredentials property to true to use the credentials the user has
logged in as.

1223

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1224

Chapter 31: Network Programming

Member Description

Headers Collection of headers that will be used for the request

Proxy Overrides the proxy settings from Internet Explorer if set. You should never
need to set this property, as the normal proxy settings are chosen by default.

QueryString Collection of name-value pairs that will be sent with the request. This
represents the values after the ? on a request.

ResponseHeaders Collection of headers returned by the server after the request is completed

All of the DownloadX and UploadX methods also support an asynchronous version of the method, called
DownloadXAsync, such as DownloadFileAsync or UploadValuesAsync. These methods perform the actual
request on a background thread, and fire an event when the task is completed. If your application has
some form of user interface, such as a form, then you should generally use these methods to keep your
application responsive.

As WebClient uses the WebRequest classes to actually perform its magic, it can greatly simplify network
coding. For example, just replace the code used in the WebRequest sample created earlier.

Before:

Public Function Define(ByVal word As String) As String()
Dim req As HttpWebRequest = Nothing
Dim resp As HttpWebResponse
Dim query As String
Dim result As New List(Of String)

query = "http://www.google.com/search?q=define%3A" & _
HttpUtility.UrlEncode(word)

Try
req = DirectCast(WebRequest.Create(query), HttpWebRequest)
With req

.Method = "GET"
resp = req.GetResponse
If resp.StatusCode = HttpStatusCode.OK Then

ParseResponse(resp.GetResponseStream, result)
Else

MessageBox.Show("Error calling definition service")
End If

End With
Catch ex As Exception

End Try

Return result.ToArray()

End Function

1224

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1225

Chapter 31: Network Programming

After:

Public Function Define(ByVal word As String) As String()
Dim client As New WebClient
Dim query As String
Dim result As New List(Of String)

query = "http://www.google.com/search?q=define%3A" & _
HttpUtility.UrlEncode(word)

Try
result = ParseResponse(client.DownloadString(query))

Catch ex As Exception

End Try

Return result.ToArray()

End Function

WebClient avoids all of the stream handling required for WebRequest. However, you should still know
how WebRequest operates, as this knowledge is directly relatable to WebClient.

Creating your own web server with HttpListener
One exciting feature of the .NET Framework 2.0 was the new HttpListener class (and related classes).
This class enables you to very easily create your own web server. While it likely wouldn’t be a replace-
ment for IIS, it enables you to add web server functionality to other applications. For example, rather
than use remoting or MSMQ to create a communication channel between two applications, why not
use HTTP? Each instance could host its own little web server, and then you could use HttpWebRequest
or WebClient to communicate between them. Alternately, many applications and hardware devices
now provide a built-in Web application, enabling you to configure the device or application via a Web
browser.

The fine print: The HttpListener class relies on the new Http.sys functionality built into IIS 6.0, so
you must be using an operating system that includes http.sys as a systemwide HTTP service. Only
Windows Vista, Windows Server 2003, and Windows XP SP2 (and future versions of the operating
system) include this functionality. This is yet another reason to upgrade and install Service Packs. Future
operating systems should all provide this functionality.

HttpListener works by registering one or more ‘‘prefixes’’ with http.sys. Once this is done, any
requests intercepted by the HTTP subsystem will be passed on to the registered listener. An
HttpListenerContext object is created and passed to your listener. This context contains properties
for the Request and Response objects, just as the Context object in ASP.NET does. Again, similar to Web
applications, you read the request from the Request property, and write the response to the Response
property. Closing the Response sends the resulting page to the user’s browser. The following table
describes the important members of HttpListener:

1225

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1226

Chapter 31: Network Programming

Member Description

Abort Shuts down the server, without finishing any existing requests

Close Shuts down the server, after finishing handling any existing requests

Start Starts the listener receiving requests

Stop Stops the listener from receiving requests

IsListening Property that determines whether the listener is currently receiving requests

Prefixes Collection of the types of requests that this listener will respond to. These are
the ‘‘left-hand side’’ of the URL, such as http://localhost:8080/ or
http://serverName:1234/vrootName/. Note that you must end the prefix in
a slash, or you will receive a runtime error. If you have IIS installed on the
same server, then you can use port 80, as long as a vroot with the same name
is not already defined by IIS.

Creating Your Web Server
To demonstrate using HttpListener, this section describes how to create a Windows Service to host
its functionality. This could simulate a management or monitoring interface to a Windows Service that
would enable authenticated individuals to use the Windows Service remotely or get other information
out of it.

1. Create a new Windows Service application called ‘‘MiniServer.’’ The server won’t do much
on its own, but it will host an HttpListener.

2. From the Components section of the toolbox, add a BackgroundWorker component and call it
BackgroundWork. The other properties can remain at their defaults. This BackgroundWorker
will be used to process HTTP requests on a background thread, simplifying the handling of
the threads.

3. Switch to Code view for the service. Add the Imports statements you need to the top of the
file. In addition, add a reference to the System.Web DLL:

Imports System.Net
Imports System.IO
Imports System.Web
Imports System.Text

4. Add the private members to the class. In addition, add a constant to identify the port num-
ber the service will use for listening. Select a port that currently isn’t in use. The example
uses 9090:

Private listener As New HttpListener()
Private theService As String

Private Const PORT As Integer = 9090

1226

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1227

Chapter 31: Network Programming

5. In the OnStart method, set up the list of prefixes to which the server will respond. This can
be as simple as adding a port address to the URL, or it can include specific vroots. The sam-
ple provides examples of each:

Protected Overrides Sub OnStart(ByVal args() As String)
Dim machineName As String

machineName = System.Environment.MachineName
theService = HttpUtility.UrlEncode(Me.ServiceName)

Me.EventLog.WriteEntry("Service Name: " & Me.ServiceName)

With listener
.Prefixes.Add(String.Format("http://{0}:{1}/", _

"localhost", PORT.ToString))
.Prefixes.Add(String.Format("http://{0}:{1}/", _

machineName, PORT.ToString))
.Prefixes.Add(String.Format("http://{0}/{1}/", _

"localhost", theService))
.Prefixes.Add(String.Format("http://{0}/{1}/", _

machineName, theService))
.Start()

End With
’start up the background thread
Me.BackgroundWork.RunWorkerAsync()

End Sub

In this case, the server will respond to a prefix in any of the formats (the sample computer is
called Tantalus):

http://localhost:9090/
http://tantalus:9090/
http://localhost/sampleservice/
http://tantalus/sampleservice/

Keep one important point in mind as you add prefixes: They must end in a slash
(‘‘/’’) character. Otherwise, you will get a runtime error when the listener attempts to
add that prefix.

If you already have a web server listening on port 80, such as IIS, then you shouldn’t include
the last two prefixes. As only a single application can listen to each port, this service will not
be able to start if the other service is already monitoring port 80.

After initializing the Prefixes collection, calling the Start method binds the listener to the
appropriate ports and vroots and starts it accepting requests. However, we don’t want to
actually receive the requests in the OnStart handler. Remember that the service doesn’t
actually start until after this method has completed, so having a lot of processing in the
OnStart will actually prevent the service from completing. Therefore, we use another fea-
ture of Visual Basic 2008, the BackgroundWorker component, to handle the requests. Call its
RunWorkerAsync to start the background task (in our case, the HttpListener).

1227

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1228

Chapter 31: Network Programming

6. The OnStop method serves to shut down the HttpListener:

Protected Overrides Sub OnStop()
With listener

.Stop()

.Close()
End With

End Sub

7. The background task performed by the BackgroundWorker component can be any process
that you don’t want to interfere with the normal application’s processing. If this were a
Windows Forms application, having a long-running loop or other process running might
prevent the application from drawing, or responding to, the user’s requests. Beyond that, we
can do anything we want in the background task, with one exception: because a Windows
Forms application works in a single foreground task, one can’t directly access the controls on
the form from the background task. Instead, if the background task must change properties
on the controls, then it should fire events. The controls can then subscribe to those events,
where you can access the properties. This Windows Service has no such user interface, so
that problem is avoided.

The actual work you want the BackgroundWorker to perform is in the DoWork event handler:

Private Sub BackgroundWork_DoWork(ByVal sender As System.Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) Handles

BackgroundWork.DoWork
Dim context As HttpListenerContext
Dim path As String
Dim defaultPage As String

’this is where we actually process requests
While listener.IsListening

context = listener.GetContext
path = context.Request.Url.AbsolutePath.ToLower

’strip out the serviceName if you’re using the URL format:
’http://server/servicename/path
If path.StartsWith("/" & theService.ToLower) Then

path = path.Substring(theService.Length + 1)
End If
Me.EventLog.WriteEntry("Received request for " & path)

Select Case path
Case "/"

’this would probably be a resource
defaultPage = "Available pages" & _

"Current server time" & _
"Current date" & _
"Random number"

SendPage(context.Response, defaultPage)
Case "/time"

SendPage(context.Response, DateTime.Now.ToLongTimeString)
Case "/date"

SendPage(context.Response, DateTime.Now.ToLongDateString)

1228

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1229

Chapter 31: Network Programming

Case "/random"
SendPage(context.Response, New Random().Next.ToString)

Case Else
’if we don’t understand the request, send a 404
context.Response.StatusCode = 404

End Select

End While
End Sub

The background task performs its work in a loop as long as the HttpListener is actively
listening. Every developer knows that performing a set of tasks in a (relatively) tight loop is
dangerous, possibly leading to computer or application lockup. However, the
BackgroundWorker performs this on another thread, leaving our application responsive.

For this application, we first get access to the context for the listener. The context groups
together one client’s set of communication with our listener. Similar to the HttpContext
in ASP.NET, the HttpListenerContext provides access to the HttpListenerRequest and
HttpListenerResponse objects, so the first step in handling a request should always be to
get this context. Next, the code uses a very simple means of determining the request URL.
In a more full-featured implementation, this could be more complex, separating any query
values from the path requested, etc. For this sample, the listener only responds to three
main paths, ‘/time’, ‘/date’, and ‘/random’, to receive the current (server) time or date,
or a random Integer value. If the user requests anything else, then we return a 404.

8. The SendPage subroutine simply writes out a basic HTML page and the value determined:

Private Sub SendPage(ByVal response As HttpListenerResponse, _
ByVal message As String)
Dim sb As New StringBuilder

’build string
With sb

.Append("<html><body>")

.AppendFormat("<h3>{0}</h3>", message)

.Append("</body></html>")
End With

Me.EventLog.WriteEntry(sb.ToString)

’set up content headers
With response

.ContentType = "text/html"

.ContentEncoding = Encoding.UTF8

.ContentLength64 = sb.ToString.Length
Me.EventLog.WriteEntry(sb.ToString.Length.ToString)

Try
Using writer As New StreamWriter(.OutputStream)

With writer
.Write(sb.ToString)
.Flush()

End With
End Using

1229

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1230

Chapter 31: Network Programming

Catch ex As Exception
Me.EventLog.WriteEntry(ex.Message, EventLogEntryType.Error)

Finally
’close the response to end
.Close()

End Try
End With

End Sub

It is hoped that there aren’t any surprises in this code. Using a StringBuilder, a response is
built. Then the content is written back to the browser (see Figure 31-8) using a StreamWriter
that is created on top of the Response.OutputStream. Remember to close the Response, or
the request will never close until it times out.

Figure 31-8

9. Before you can test your Windows Service, however, it must be installed. Right-click on the
designer and select Add Installer (see Figure 31-9). This adds a new file to the project called
ProjectInstaller.vb, and adds two components to the file: ServiceInstaller1 and
ServiceProcessInstaller1. You can either keep these names or change them. In addition,
set the properties as shown in the following table:

Component Property Value

ServiceInstaller1 Description Sample Service from Wrox
Professional Visual Basic 2008

DisplayName Sample Service

ServiceName SampleService

ServiceProcessInstaller1 Account LocalSystem

Most of these properties only affect the display values for the Windows Service. However,
the Account property of the ServiceProcessInstaller deserves special mention. Win-
dows Services run on behalf of the user. Therefore, they can actually run under another user
account. By setting the Account property to LocalSystem, you are setting the resulting Win-
dows Service to run under the local system account. This account has a lot of access to the
system, so you may want to instead use an account with more limited system rights; how-
ever, you would have to create this account separately.

1230

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1231

Chapter 31: Network Programming

Figure 31-9

10. Build the Windows service. Unfortunately, if you attempt to run the service directly from
Visual Basic, you will get an error message (see Figure 31-10).

Figure 31-10

A Windows Service can only run if it has been installed into the system, and this task is
performed using a command-line utility, InstallUtil.exe. Open the Visual Studio com-
mand prompt and navigate to the directory where you have built MiniServer.exe. Run
installutil miniserver.exe. It is hoped that you’ll be greeted with a success message (see
Figure 31-11).

Figure 31-11

1231

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1232

Chapter 31: Network Programming

If you are running Windows Vista, then you need to run the Visual Studio command
prompt as an administrator. To do so, right-click on the Visual Studio 2008 Command
Prompt icon and select Run As Administrator.

11. Finally, you can start your new service. Open the Services application from Start ➪ All
Programs ➪ Administrative Tools. Find the Sample Service in the list (see Figure 31-12) and
click Start. You should now be able to request one of the items the service is listening to, such
as http://localhost:9090/time (see Figure 31-13).

Figure 31-12

Figure 31-13

1232

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1233

Chapter 31: Network Programming

Just to confirm that all of the prefixes work, you can also request one of the values using the
vroot, rather than using the port (see Figure 31-14).

Figure 31-14

The HttpListener adds yet another powerful way for your applications to communicate. It gives you
the ability to extend the reach of your applications out to Web browser clients, without requiring the
additional administrative and management overhead of IIS to your deployment.

Summary
Programming directly to the network provides a great deal of power and flexibility. Of course, all of that
power and flexibility comes at a cost. Many of the services provided by higher-level technologies, such
as Web services or remoting, aren’t available, and must often be recreated. However, in those situations
where you must communicate with an existing application, or when you need the ultimate in control and
speed, using the classes in System.Net makes life easier than it would be otherwise.

This chapter looked at many of the classes that expose network programming. You’ve learned how to
make Web requests without a browser so you could use the data on the Internet in your applications;
you’ve seen how you can leverage the bare sockets layer to write your own communication protocols,
and you’ve been introduced to some of the classes in Visual Basic 2008 for creating FTP clients and web
servers.

1233

Evjen-91361 c31.tex V1 - 04/01/2008 5:42pm Page 1234

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1235

Windows Communication
Foundation

Until now, building components that were required to communicate a message from one point to
another was not always the simplest of tasks. This was because Microsoft provided more than one
technology that you could have used for such an action.

For instance, you could have used ASP.NET Web Services, Web Service Enhancements 3.0 (WSE),
MSMQ, Enterprise Services, .NET Remoting, and even the System.Messaging namespace. Each one
of these technologies has pros and cons associated with it. ASP.NET Web Services (also known as
ASMX Web Services) provided the capability to easily build interoperable Web services. The WSE
enabled you to easily build services that took advantage of some of the WS-* message protocols.
MSMQ enabled the queuing of messages, making it easy to work with solutions that were only
intermittently connected. Enterprise Services, provided as a successor to COM+, offered an easy
means to build distributed applications. .NET Remoting provided a fast way to move messages
from one .NET application to another. Moreover, this is only the Microsoft world — it does not
include all the options available in other environments, such as the Java world.

With these options for a Microsoft developer alone, it can be tough to decide what path to take with
the applications you are trying to build. With this problem in mind, Microsoft has brought forth the
Windows Communication Foundation (WCF).

WCF is a framework for building service-oriented applications. Microsoft wanted to provide its
developers with a framework that would provide the fastest means to getting a proper service-
oriented architecture up and running. Using the WCF, you can take advantage of all of the items that
made the aforementioned distribution technologies powerful. WCF is the answer and the successor
to all these other message-distribution technologies.

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1236

Chapter 32: Windows Communication Foundation

WCF was introduced as a new component with the .NET Framework 3.0 release. Therefore, to work
through the examples in this chapter, you need at least the .NET Framework 3.0 installed on your
machine.

The Larger Move to SOA
Looking at what WCF provides, you will find that it is part of a larger move that organizations are
making to the much talked-about service-oriented architecture, or SOA. An SOA is a message-based service
architecture that is vendor-agnostic. This means you have the capability to distribute messages across
a system, and the messages are interoperable with other systems that would otherwise be considered
incompatible with the provider system.

Looking back, you can see the gradual progression to the service-oriented architecture model. In the
1980s, the revolutions arrived amid the paradigm of everything being an object. When object-oriented
programming came on the scene, it was enthusiastically accepted as the proper means to represent enti-
ties within a programming model. The 1990s took that one step further, and the component-oriented
model was born. This enabled objects to be encapsulated in a tightly coupled manner. It was only
recently that the industry turned to a service-oriented architecture, once developers and architects needed
to distribute components to other points in an organization, to their partners, or to their customers.
This distribution system needed to have the means to transfer messages between machines that were
generally incompatible with one another. In addition, the messages had to include the capability to
express the metadata about how a system should handle a message.

If you ask 10 people what an SOA is, you’ll probably get 11 different answers, but there are some common
principles that are considered to be the foundation of a service-oriented architecture:

❑ Boundaries are explicit — Any data store, logic, or entity uses an interface to expose its data
or capabilities. The interface provides the means to hide the behaviors within the service, and
the interface front-end enables you to change this behavior as required without affecting down-
stream consumers.

❑ Services are autonomous — All the services are updated or versioned independently of one
another. This means that you don’t upgrade a system in its entirety; instead, each component
of these systems is an individual entity within itself and can move forward without waiting for
other components to progress forward. Note that with this type of model, once you publish an
interface, that interface must remain unchanged. Interface changes require new interfaces (ver-
sioned, of course).

❑ Services are based upon contracts, schemas, and policies — All services developed require a
contract regarding what is needed to consume items from the interface (usually done through
a WSDL document). Along with a contract, schemas are required to define the items passed in
as parameters or delivered through the service (using XSD schemas). Finally, policies define any
capabilities or requirements of the service.

❑ Service compatibility that is based upon policy — The final principle enables services to define
policies (decided at runtime) that are required to consume the service. These policies are usually
expressed through WS-Policy.

If your own organization is considering establishing an SOA, the WCF is a framework that works on
these principles and makes it relatively simple to implement. The next section looks at what the WCF
offers. Then you can dive into building your first WCF service.

1236

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1237

Chapter 32: Windows Communication Foundation

WCF Overview
As stated, the Windows Communication Foundation is a means to build distributed applications in a
Microsoft environment. Though the distributed application is built upon that environment, this does
not mean that the consumers are required to be Microsoft clients, nor is any Microsoft component or
technology necessary to accomplish the task of consumption. Conversely, building WCF services means
you are also building services that abide by the principles set forth in the aforementioned SOA discussion
and that these services are vendor-agnostic — that is, they can be consumed by almost anyone.

WCF is part of the .NET Framework 3.0 and is available to your .NET 3.5 applications. The .NET Frame-
work 3.0 also includes the Windows Presentation Foundation and the Windows Workflow Foundation.
Because it is part of the .NET Framework, as a developer you are able to use Visual Studio 2008 to build
WCF services. Being able to build your services in Visual Studio just as you build any other .NET-based
application also means that you can take advantage of the various integrated development systems
offered via the IDE, such as debugging, Visual Studio’s outstanding IntelliSense capabilities, refactoring,
and more.

Note that because this is a .NET Framework 3.0 component, you are actually limited to the operating
systems in which you can run a WCF service. While the other Microsoft distribution technologies previ-
ously mentioned in this chapter really don’t have many limitations on the Microsoft operating systems
in which they can run, a .NET Framework 3.0 application can only run on Windows XP SP2, Windows
Vista, or Windows Server 2008.

Capabilities of WCF
The WCF framework provides you with the capability to build all kinds of distributed applications.
You can build Web services just as you could previously in earlier .NET Framework releases. This
means that your services will support SOAP, and therefore will be compatible with older .NET tech-
nologies, older Microsoft technologies, and even non-Microsoft technologies (such as any Java-based
consumers).

WCF is not about pure SOAP over a wire, but you can work with an Infoset, and create a binary repre-
sentation of your SOAP message that can then be sent along your choice of protocol. This is for folks who
are concerned about the performance of their services and have traditionally turned to .NET Remoting
for this binary-based distribution system.

The WCF framework can also work with a message through its life cycle, meaning that WCF can deal
with transactions like those of the Enterprise Services mentioned earlier. Along with distributed trans-
actions, WCF can deal with the queuing of messages, and it allows for the intermittent connected nature
that an application or process might have to deal with.

When you need to get messages from one point to another, the WCF is the big gun in your arsenal
to get the job accomplished. For instance, many developers might consider using WCF primarily to
communicate ASP.NET Web Service-like messages (SOAP) from one disparate system to another, but
you can use WCF for much more than this. For instance, WCF can be used to communicate messages to
components contained on the same machine on which the WCF service is running. This means you can
use WCF to communicate with components contained in different processes on the same machine. You
can also use WCF to communicate with components on another machine — even if that machine is not a
Microsoft-based machine.

1237

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1238

Chapter 32: Windows Communication Foundation

Probably the biggest and most exciting part of the WCF model is that it enables you to develop a service
once and then expose that service via multiple endpoints (even endpoints on entirely different protocols)
via simple configuration changes.

Working with the WS-* protocols
There has not been a larger set of WS-* specifications that any other Microsoft distribution technology can
work with but that WCF cannot. WCF understands a framework of WS-* specifications, and these speci-
fications can be enabled to allow for defined ways of dealing with security, reliability, and transactions.
For this capability, many previous developers turned to the WSE. Figure 32-1 shows the architectural
stack on which the WCF relies.

Security
WS-Security

WS-SecureConversion
WS-Trust

Reliability
WS-ReliableMessaging

Transactions
WS-AtomicTransaction

WS-Coordination

Metadata
WSDL

WS-Policy
WS-MetadataExchange

Messaging
SOAP WS-Addressing MTOM

Figure 32-1

WCF can make use of these specifications if the developer wishes. Messages, as defined by the Messag-
ing layer, rely on SOAP (sent as open text or in a binary format). The other advanced WS-* specifications
make heavy use of the SOAP header, enabling messages to be self-contained and not have any real
reliance on the transport protocol to provide items such as security, reliability, or any other capabil-
ity beyond the simple transmission of the message itself. Message Transmission Optimization Mechanism
(MTOM) is a capability to replace Direct Internet Message Encapsulation (DIME) as a means to transmit
binary objects along with a SOAP message. An example binary object would be a JPEG image that you
want to expose through a WCF service.

The Metadata section enables you to define your interface. When you build a service that you want to
include in your application, you need to determine which parameters the service requires in order for
the consumption process to work. In addition, after you pass the parameters to the service, you need to
know what is returned so you can properly use the passed information within your own application.
Without this information, using the service would prove rather difficult. Just as there are standard ways
to represent the message itself with technologies such as SOAP, there is an industry standard for getting
a description of a service that you are attempting to consume.

The WCF framework makes use of the Web Services Description Language (WSDL) to describe the service.
WSDL is a language that uses XML to describe a service and define the format of the messages a service
understands. The other item the WCF provides from the Metadata layer is WS-Policy. This specification
provides consumers with an understanding of what is actually required to consume a service.

The Security part of WCF enables you to work with WS-Security. Before WS-Security came along, the
initial lack of a security model in Web services kept many companies from massively adopting them
companywide and moving to a service-oriented architecture. WS-Security, developed by Microsoft, IBM,
and VeriSign, addresses the main areas that are required to keep messages secure — credential exchange,
message integrity, and message confidentiality.

1238

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1239

Chapter 32: Windows Communication Foundation

WS-Security enables two entities to exchange their security credentials from within the message itself
(actually from the SOAP header of the message). The great thing about WS-Security is that it doesn’t
require a specific type of credential set to be used. Instead, it allows any type of credentials to be used. In
addition, because it is possible to send messages through multiple routers and, in effect, bounce messages
from here to there before they reach their final destination, you want to ensure that the messages are not
tampered with in transport. As messages move from one SOAP router to another, these SOAP nodes can
make additions to or subtractions from the messages. If such SOAP nodes were to get into the hands of
malicious parties, the integrity of the messages could be compromised. This is where WS-Security comes
into play. The other area in which WS-Security helps is when you need to have WS-Security encrypt all
or part of your SOAP messages. When your messages are zipping across the virtual world, there is a
chance that they might be intercepted and opened for viewing by parties who should not be looking at
their contents. That’s why it is often beneficial to scramble the contents of the message. When it reaches
the intended receiver, the application can then use your encryption key and unscramble the message to
read the contents.

WS-SecureConversation works to establish a connection that enables entities to exchange multiple mes-
sages and maintain their established security arrangements. WS-Trust, conversely, works in conjunction
with WS-Security and allows for the issuance of security tokens and a way in which entities can exchange
these tokens. This specification also deals with establishing trust relationships between two entities.

WS-ReliableMessaging allows for reliable end-to-end communications of messages to ensure that they
are delivered.

The Transactions section allows for the use of WS-Coordination and WS-AtomicTransaction. WS-
Coordination is there for the purpose of addressing the description of the relationships that multiple ser-
vices have to one another. As a company starts developing a multitude of services within its enterprise,
it realizes that many of the services developed have a relationship with one another, and that’s where
WS-Coordination comes into play. This specification is meant to be expanded by other specifications that
will further define particular coordination types.

WS-AtomicTransaction uses WS-Coordination and WS-Security to allow for the definition of a service
transaction process. An atomic transaction is a way of creating a transaction process that works on an
all-or-nothing basis. These are meant to be short-lived transactions, so when you use them you are locking
data resources and holding onto physical resources such as connections, threads, and memory.

The main point of this discussion is that you have a whole slew of WS-* specifications at your
disposal. The nice thing about working with WCF is that you really don’t have to be aware that these
specifications are even there — you can access the capabilities these specifications offer through pro-
grammatic or declarative programming.

Building a WCF Service
Building a WCF service is not hard to accomplish. If you are working from a .NET Framework 2.0 envi-
ronment, you need to install the .NET Framework 3.0. If you have installed the .NET Framework 3.5, then
both the .NET Framework 2.0 and 3.0 also have been installed.

From there, it is easy to build WCF services directly in Visual Studio 2008, as it is already geared to
work with this application type. If you are working with Visual Studio 2005, then you need to install the
Visual Studio 2005 extensions for .NET Framework 3.0 (WCF and WPF). Download these Visual Studio

1239

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1240

Chapter 32: Windows Communication Foundation

extensions if you are using Visual Studio 2005. Installing the extensions into Visual Studio 2005 will add
a WCF project to your IDE. If you are using Visual Studio 2008, then Figure 32-2 shows the view of the
project from the New Project dialog.

Figure 32-2

When you build a WCF project in this manner, the idea is that you build a traditional class library that is
compiled down to a DLL that can then be added to another project. The separation of code and projects
is a powerful division on larger projects. That said, though, you can also just as easily build a WCF service
directly in your .NET project, whether that is a console application or a Windows Forms application. The
approach taken for the examples in this chapter shows you how to build a WCF service that is hosted in a
console application. Keep in mind that for the services you actually build and deploy, it is usually better
to build them directly as a WCF Service Library project and use the created DLL in your projects or in
IIS itself.

Before we jump into building a WCF service, first consider what makes up a service built upon the WCF
framework.

What makes a WCF service
A WCF service consists of three parts: the service, one or more endpoints, and an environment in which
to host the service.

A service is a class that is written in one of the .NET-compliant languages. The class can contain one or
more methods that are exposed through the WCF service. A service can have one or more endpoints,
which are used to communicate through the service to the client.

Endpoints themselves are also made up of three parts. These parts are usually defined by Microsoft as
the ABC of WCF. Each letter of WCF means something in particular in the WCF model. Similarly,

❑ ‘‘A’’ is for address

❑ ‘‘B’’ is for binding

❑ ‘‘C’’ is for contract

1240

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1241

Chapter 32: Windows Communication Foundation

Basically, you can think of this as follows: ‘‘A’’ is the where, ‘‘B’’ is the how, and ‘‘C’’ is the what. Finally,
a hosting environment is where the service is contained. This constitutes an application domain and
process. All three of these elements (the service, the endpoints, and the hosting environment) together
create a WCF service offering, as depicted in Figure 32-3.

Service
method

Service
method

WCF Service

Application Domain

Process

Endpoint
Endpoint
Endpoint

Endpoint
Endpoint
Endpoint

Figure 32-3

The next step is to create a basic service using the WCF framework.

Creating your first WCF service
To build your service, prior to hosting it, two main steps need to occur. First, create a service contract.
Then, create a data contract. The service contract is really a class with the methods that you want to
expose from the WCF service. The data contract is a class that specifies the structure you want to expose
from the interface.

After you have a service class in place, you can host it almost anywhere you want. This example shows
you how to host the WCF service inside a console application. Therefore, first create a new console
application project called VbWCF_Service1.

To create a WCF service, you need to make a reference to System.ServiceModel.dll. Right-click on
the console application project in the Solution Explorer and select Add Reference from the menu. In
the .NET tab of the Add Reference dialog, shown in Figure 32-4, is the .NET Framework 3.0 version
of the System.ServiceModel.dll (though it has a runtime version v2.0.50727).

Note that we are only going to host the WCF service from the console application. The WCF service is
something that you would normally build as its own entity, such as the WCF Class Library project, and
then include the created DLL into your host, such as the console application.

This example first demonstrates how to build the WCF service. The next step is the requirements that
need to be put into place for the service to be hosted in the console application.

1241

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1242

Chapter 32: Windows Communication Foundation

Figure 32-4

Creating the Interface
To create your service, you need a service contract, which is the interface of the service. This consists
of all the methods exposed, as well as the input and output parameters that are required to invoke the
methods. To accomplish this task, create a class file in your project called Calculator.vb. The interface
you need to create is presented here:

Imports System.ServiceModel

<ServiceContract()> _
Public Interface ICalculator

<OperationContract()> _
Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

<OperationContract()> _
Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer

<OperationContract()> _
Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer

<OperationContract()> _
Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer

End Interface

Public Class Calculator

End Class

This is pretty much the normal interface definition you would expect, but with a couple of new attributes
included. To gain access to these required attributes, you need to make a reference to the System
.ServiceModel namespace. This will give you access to the <ServiceContract()> and
<OperationContract()> attributes.

1242

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1243

Chapter 32: Windows Communication Foundation

The <ServiceContract()> attribute is used to define the class or interface as the service class, and
it needs to precede the opening declaration of the class or interface. In this case, the example in the
preceding code is based upon an interface:

<ServiceContract()> _
Public Interface ICalculator

’ Code removed for clarity

End Interface

Within the interface, four methods are defined. Each of these methods is going to be exposed through the
WCF service as part of the service contract, so they all require that the <OperationContract()> attribute
be applied to them:

<OperationContract()> _
Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

Utilizing the Interface
The next step is to create a class that implements the interface. Not only is the new class implementing
the interface defined, it is also implementing the service contract. You can add this class to the same
Calculator.vb file. The following code illustrates the implementation of this interface:

Imports System
Imports System.ServiceModel

<ServiceContract()> _
Public Interface ICalculator

<OperationContract()> _
Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

<OperationContract()> _
Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer

<OperationContract()> _
Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer

<OperationContract()> _
Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer

End Interface

Public Class Calculator
Implements ICalculator

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements ICalculator.Add

Return (a + b)
End Function

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements ICalculator.Subtract

1243

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1244

Chapter 32: Windows Communication Foundation

Return (a - b)
End Function

Public Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements ICalculator.Multiply

Return (a * b)
End Function

Public Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements ICalculator.Divide

Return (a / b)
End Function

End Class

From these new additions, you can see that nothing is done differently with the Calculator class than
what you might do otherwise. It is a simple class that implements the ICalculator interface and provides
implementations of the Add, Subtract, Multiply, and Divide methods.

With the interface and the class available, you now have your WCF service built and ready to go. The
next step is to get the service hosted. This is a simple service. One of the simplicities of the service is that
it only exposes simple types, rather than a complex type. This enables you to build only a service contract
and not have to deal with construction of a data contract. Constructing data contracts is presented later
in this chapter.

Hosting the WCF Service in a Console Application
The next step is to take the service just developed and host it in some type of application process. You
have many available hosting options, including the following:

❑ Console applications

❑ Windows Forms applications

❑ Windows Presentation Foundation applications

❑ Managed Windows Services

❑ Internet Information Services (IIS) 5.1

❑ Internet Information Services (IIS) 6.0

❑ Internet Information Services (IIS) 7.0 and the Windows Activation Service (WAS)

As stated earlier, this example hosts the service in a simple console application. There are a couple of
ways to activate hosting — either through the direct coding of the hosting behaviors or through declara-
tive programming (usually done via the configuration file).

For this example, the console application will define the host through coding the behaviors of the host
environment directly. Following is the code for the console application, through the Module1.vb file (this
block is referred to later in the chapter as the console-application code example):

1244

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1245

Chapter 32: Windows Communication Foundation

Imports System
Imports System.ServiceModel
Imports System.ServiceModel.Description

Module Module1

Sub Main()
Using serviceHost As ServiceHost = New ServiceHost(GetType(Calculator))

Dim ntb As NetTcpBinding = New NetTcpBinding(SecurityMode.None)
serviceHost.AddServiceEndpoint(GetType(ICalculator), ntb, _

New Uri("net.tcp://192.168.1.102:8080/Calculator/"))

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/docs")

serviceHost.Description.Behaviors.Add(smb)

serviceHost.Open()

Console.WriteLine("Press the <ENTER> key to close the host.")
Console.ReadLine()

End Using
End Sub

End Module

A couple of things are going on in this file. First, to gain access to working with any of the WCF frame-
work pieces, you need a reference to the System.ServiceModel and the System.ServiceModel
.Description namespaces in the file. The System.ServiceModel gives you access to defining things
such as the endpoints that you need to create, while the System.ServiceModel.Description namespace
reference gives you access to defining things such as the WSDL file.

Remember that creating endpoints uses the ABC model (address, binding, and contract). The address part
here is net.tcp://192.168.1.102:8080/Calculator. The binding is a TCP binding —
NetTcpBinding — while the contract part is the ICalculator interface.

The 192.168.1.102 IP address is specific to my machine; you should use your own IP address for the
example. You can get your IP address by typing ipconfig at a command prompt.

Many different bindings are available to you when coding WCF services. Here, this example makes use
of the NetTcpBinding. The full list of available bindings is as follows:

❑ System.ServiceModel.BasicHttpBinding

❑ System.ServiceModel.Channels.CustomBinding

❑ System.ServiceModel.MsmqBindingBase

❑ System.ServiceModel.NetNamedPipeBinding

❑ System.ServiceModel.NetPeerTcpBinding

1245

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1246

Chapter 32: Windows Communication Foundation

❑ System.ServiceModel.NetTcpBinding

❑ System.ServiceModel.WSDualHttpBinding

❑ System.ServiceModel.WSHttpBindingBase

Clearly, several bindings are available. In the preceding example, the NetTcpBinding class is the named
pipe being used. This means that the service being built will be delivered over TCP.

In the first step of the example, for console-application code, a ServiceHost is established:

Using serviceHost As ServiceHost = New ServiceHost(GetType(Calculator))

’ Code removed for clarity

End Using

By working with the Using keyword, when the End Using statement is encountered, the ServiceHost
object is destroyed. In the creation of the host, the Calculator type is assigned. From there, the endpoint
is established. In this case, a NetTcpBinding object is created with a security setting of None through the
command SecurityMode.None:

Dim ntb As NetTcpBinding = New NetTcpBinding(SecurityMode.None)

This means that no security is applied to the message. The other options include Message, Transport,
and TransportWithMessageCredential. The Message option signifies that the security credentials are
included in the message itself (in the SOAP header, for instance), whereas the Transport option
signifies that the transport protocol takes care of the security implementation. The last option,
TransportWithMessageCredential, means that the message contains some security credentials along
with the transport protocol working for the same cause.

Once the NetTcpBinding object is in place, the next step is to finalize the endpoint creation. This is done
through the use of the ServiceHost object’s AddServiceEndpoint method:

serviceHost.AddServiceEndpoint(GetType(ICalculator), ntb, _
New Uri("net.tcp://192.168.1.102:8080/Calculator/"))

From this, you can see that the entire ABC statement is used in the creation of the endpoint, although
not necessarily in ABC order; in fact, the first item defined is actually the ‘‘C’’ — the contract. This is
done through the GetType(ICalculator)setting. The ‘‘B’’ is next (the binding) with the reference to the
NetTcpBinding object. Then, finally, the ‘‘A’’ is defined through an instantiation of a Uri object pointing
to net.tcp://192.168.1.102:8080/Calculator/.

The next step is a process to bring forth the WSDL document so that it can be viewed by the developer
consuming this service:

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/docs")

serviceHost.Description.Behaviors.Add(smb)

1246

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1247

Chapter 32: Windows Communication Foundation

This bit of code is the reason why the System.ServiceModel.Description namespace is imported into
the file at the beginning. Here, a ServiceMetadataBehavior object is created, the object’s HttpGetEnabled
property is set to True, and the HttpGetUrl property is provided an address of http://localhost:8000
/docs. The documents can be located anywhere you like.

Once the ServiceMetadataBehavior object is created as you wish, the next step is to associate this object
to the ServiceHost through the serviceHost.Description.Behaviors.Add method.

After all of these items are defined, you only need to open the ServiceHost for business, using the
serviceHost.Open method. The console application is kept alive through the use of a Console.ReadLine
method call, which waits for the end user to press the Enter key before shutting down the application.
You want the Console.ReadLine command there because you want to keep the host open.

Compiling and running this application produces the results illustrated in Figure 32-5.

Figure 32-5

Reviewing the WSDL Document
The preceding console-application code provides an instantiation of the ServiceMetadataBehavior
object and defines a Uri object for it as well. You can simply type in that address to get at the WSDL file
for the service you just built. Therefore, calling http://localhost:8000/docs provides the WSDL file
shown in Figure 32-6.

Figure 32-6
1247

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1248

Chapter 32: Windows Communication Foundation

With this WSDL file, you can now consume the service it defines through TCP. Note the following
element at the bottom of the document:

<wsdl:service name="Calculator">
<wsdl:port name="NetTcpBinding_ICalculator"
binding="tns:NetTcpBinding_ICalculator">

<soap12:address location="net.tcp://192.168.1.102:8080/Calculator/" />
<wsa10:EndpointReference>

<wsa10:Address>net.tcp://192.168.1.102:8080/Calculator/</wsa10:Address>
</wsa10:EndpointReference>

</wsdl:port>
</wsdl:service>

This element in the XML document indicates that in order to consume the service, the end user needs
to use SOAP 1.2 over TCP. This is presented through the use of the <soap12:address> element in the
document. The <wsa10:EndpointReference> is a WS-Addressing endpoint definition.

Using this simple WSDL document, you can now build a consumer that makes use of this interface.

Building the WCF Consumer
Now that a TCP service is out there, which you built using the WCF framework, the next step is to
build a consumer application that uses the simple Calculator service. The consumer sends its request via
TCP using SOAP. Using TCP means that the consumption can actually occur with a binary
encoding of the SOAP message on the wire, substantially decreasing the size of the payload being
transmitted.

This section describes how to consume this service. First, open Visual Studio 2008 and create a new
Windows Forms application. Though we are using a Windows Forms application, you can make this
consumer call through any other application type within .NET as well.

Call the new Windows Forms application WCF_Consumer. This application will consume the
Calculator service, so it should be laid out as shown in Figure 32-7.

Adding a service reference
After you have laid out the form, make a reference to the new WCF service. You do this in a manner
quite similar to how it is done with XML Web Service references. Right-click on the solution name from
the Solution Explorer in Visual Studio and select Add Service Reference from the dialog. This capability
to add a service reference is new to Visual Studio — previously, you only had the Add Reference and
Add Web Reference options.

After selecting Add Service Reference, you are presented with the dialog shown in Figure 32-8.

The Add Service Reference dialog asks you for two things: the Service URI (basically a pointer to
the WSDL file) and the name you want to give to the reference. The name you provide the reference
is the name that will be used for the instantiated object that enables you to interact with the service.

1248

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1249

Chapter 32: Windows Communication Foundation

Figure 32-7

Figure 32-8

Referring to Figure 32-8, you can see that the name provided for the Address text box is http://
localhost:8000/docs. Remember that this is the location you defined earlier when you built the service.
This URI was defined in code directly in the service:

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/docs")

serviceHost.Description.Behaviors.Add(smb)

1249

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1250

Chapter 32: Windows Communication Foundation

Rename the service reference to CalculatorService from ServiceReference1. Press the OK button in
the Add Service Reference dialog. This adds to your project a Service References folder containing some
proxy files, as shown in Figure 32-9.

Figure 32-9

Digging down into these files, you will find Reference.svcmap and Reference.vb. The other important
addition to note is the System.ServiceModel reference, made for you in the References folder. This
reference was not there before you made reference to the service through the Add Service Reference
dialog.

Reviewing the reference
Looking at the Reference.svcmap file, you can see that it is a simple XML file that provides some infor-
mation about where the WSDL file is located, as well as the location of the service (referenced through
the configuration.svcinfo file):

<?xml version="1.0" encoding="utf-8"?>
<ReferenceGroup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

1250

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1251

Chapter 32: Windows Communication Foundation

ID="95adc6e4-181d-4b1e-8b65-765821ccec25"
xmlns="urn:schemas-microsoft-com:xml-wcfservicemap">
<ClientOptions>
<GenerateAsynchronousMethods>false</GenerateAsynchronousMethods>
<EnableDataBinding>true</EnableDataBinding>
<ExcludedTypes />
<ImportXmlTypes>false</ImportXmlTypes>
<GenerateInternalTypes>false</GenerateInternalTypes>
<GenerateMessageContracts>false</GenerateMessageContracts>
<NamespaceMappings />
<CollectionMappings />
<GenerateSerializableTypes>true</GenerateSerializableTypes>
<Serializer>Auto</Serializer>
<ReferenceAllAssemblies>true</ReferenceAllAssemblies>
<ReferencedAssemblies />
<ReferencedDataContractTypes />
<ServiceContractMappings />

</ClientOptions>
<MetadataSources>
<MetadataSource Address="http://localhost:8000/docs"
Protocol="http" SourceId="1" />

</MetadataSources>
<Metadata>
<MetadataFile FileName="docs.xsd" MetadataType="Schema"
ID="8a563b41-2340-4c5e-832d-c775e182e9bf" SourceId="1"
SourceUrl="http://localhost:8000/docs?xsd=xsd0" />

<MetadataFile FileName="Calculator.wsdl" MetadataType="Wsdl"
ID="f81b212f-9c59-45d6-bbca-1bee58a6700f" SourceId="1"
SourceUrl="http://localhost:8000/docs" />

<MetadataFile FileName="docs1.xsd" MetadataType="Schema"
ID="76d57f76-4409-48d7-9122-6c2eb500b69a" SourceId="1"
SourceUrl="http://localhost:8000/docs?xsd=xsd1" />

</Metadata>
<Extensions>
<ExtensionFile FileName="configuration.svcinfo"
Name="configuration.svcinfo" />

</Extensions>
</ReferenceGroup>

This file provides the capability to later update the reference to the service if needed, due to a change in
the service interface. You can see this capability by right-clicking on the CalculatorService reference;
an Update Service Reference option appears in the provided menu.

The other file in the reference collection of files, the Reference.vb file, is your proxy to interact with the
service. This file is presented here:

Option Strict Off
Option Explicit On

Namespace CalculatorService

<System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", _
"3.0.0.0"), _

System.ServiceModel.ServiceContractAttribute(_

1251

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1252

Chapter 32: Windows Communication Foundation

ConfigurationName:="CalculatorService.ICalculator")> _
Public Interface ICalculator

<System.ServiceModel.OperationContractAttribute(_
Action:="http://tempuri.org/ICalculator/Add", _
ReplyAction:="http://tempuri.org/ICalculator/AddResponse")> _
Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

<System.ServiceModel.OperationContractAttribute(_
Action:="http://tempuri.org/ICalculator/Subtract", _
ReplyAction:="http://tempuri.org/ICalculator/SubtractResponse")> _
Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer

<System.ServiceModel.OperationContractAttribute(_
Action:="http://tempuri.org/ICalculator/Multiply", _
ReplyAction:="http://tempuri.org/ICalculator/MultiplyResponse")> _
Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer

<System.ServiceModel.OperationContractAttribute(_
Action:="http://tempuri.org/ICalculator/Divide", _
ReplyAction:="http://tempuri.org/ICalculator/DivideResponse")> _
Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer

End Interface

<System.CodeDom.Compiler.GeneratedCodeAttribute(_
"System.ServiceModel", "3.0.0.0")> _

Public Interface ICalculatorChannel
Inherits CalculatorService.ICalculator, _

System.ServiceModel.IClientChannel
End Interface

<System.Diagnostics.DebuggerStepThroughAttribute(), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", _
"3.0.0.0")> _

Partial Public Class CalculatorClient
Inherits System.ServiceModel.ClientBase(Of _

CalculatorService.ICalculator)
Implements CalculatorService.ICalculator

Public Sub New()
MyBase.New

End Sub

Public Sub New(ByVal endpointConfigurationName As String)
MyBase.New(endpointConfigurationName)

End Sub

Public Sub New(ByVal endpointConfigurationName As String, _
ByVal remoteAddress As String)
MyBase.New(endpointConfigurationName, remoteAddress)

End Sub

Public Sub New(ByVal endpointConfigurationName As String, _
ByVal remoteAddress As System.ServiceModel.EndpointAddress)
MyBase.New(endpointConfigurationName, remoteAddress)

End Sub

1252

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1253

Chapter 32: Windows Communication Foundation

Public Sub New(ByVal binding As System.ServiceModel.Channels.Binding, _
ByVal remoteAddress As System.ServiceModel.EndpointAddress)
MyBase.New(binding, remoteAddress)

End Sub

Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer _
Implements CalculatorService.ICalculator.Add
Return MyBase.Channel.Add(a, b)

End Function

Public Function Subtract(ByVal a As Integer, ByVal b As Integer) _
As Integer Implements CalculatorService.ICalculator.Subtract
Return MyBase.Channel.Subtract(a, b)

End Function

Public Function Multiply(ByVal a As Integer, ByVal b As Integer) _
As Integer Implements CalculatorService.ICalculator.Multiply
Return MyBase.Channel.Multiply(a, b)

End Function

Public Function Divide(ByVal a As Integer, ByVal b As Integer) _
As Integer Implements CalculatorService.ICalculator.Divide
Return MyBase.Channel.Divide(a, b)

End Function
End Class

End Namespace

Here, an interface is defining the four methods and the implementing class CalculatorClient, which
contains the functions that in turn call the service built earlier in the chapter.

Configuration file changes
Another addition to your project is the app.config file. After the service reference is made, the
app.config file contains several .NET 3.0 configuration settings. These configuration settings were auto-
matically added by the Visual Studio WCF extensions. The new app.config file is presented in the
following code block:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.diagnostics>

<!-- XML removed for clarity -->

</system.diagnostics>
<system.serviceModel>

<bindings>
<netTcpBinding>

<binding name="NetTcpBinding_ICalculator"
closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00"
transactionFlow="false" transferMode="Buffered"
transactionProtocol="OleTransactions"

1253

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1254

Chapter 32: Windows Communication Foundation

hostNameComparisonMode="StrongWildcard" listenBacklog="10"
maxBufferPoolSize="524288" maxBufferSize="65536"
maxConnections="10"
maxReceivedMessageSize="65536">
<readerQuotas maxDepth="32" maxStringContentLength="8192"

maxArrayLength="16384"
maxBytesPerRead="4096"
maxNameTableCharCount="16384" />

<reliableSession ordered="true"
inactivityTimeout="00:10:00"
enabled="false" />

<security mode="None">
<transport clientCredentialType="Windows"
protectionLevel="EncryptAndSign" />

<message clientCredentialType="Windows" />
</security>

</binding>
</netTcpBinding>

</bindings>
<client>

<endpoint address="net.tcp://192.168.1.102:8080/Calculator/"
binding="netTcpBinding"
bindingConfiguration="NetTcpBinding_ICalculator"
contract="CalculatorService.ICalculator"
name="NetTcpBinding_ICalculator" />

</client>
</system.serviceModel>

</configuration>

The important part of this configuration document is the <client> element. This element contains a child
element called <endpoint> that defines the where and how of the service consumption process.

The <endpoint> element provides the address of the service — net.tcp://192.168.1.102:8080
/Calculator — and it specifies which binding of the available WCF bindings should be used. In this
case, the netTcpBinding is the required binding. Although you are using an established binding from
the WCF framework, from the client side you can customize how this binding behaves. The settings
that define the behavior of the binding are specified using the bindingConfiguration attribute of
the <endpoint> element. In this case, the value provided to the bindingConfiguration attribute is
NetTcpBinding_ICalculator, which is a reference to the <binding> element contained within the
<netTcpBinding> element:

<binding name="NetTcpBinding_ICalculator" closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00"
transactionFlow="false" transferMode="Buffered"
transactionProtocol="OleTransactions"
hostNameComparisonMode="StrongWildcard" listenBacklog="10"
maxBufferPoolSize="524288" maxBufferSize="65536"
maxConnections="10"
maxReceivedMessageSize="65536">
<readerQuotas maxDepth="32" maxStringContentLength="8192"

1254

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1255

Chapter 32: Windows Communication Foundation

maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />
<reliableSession ordered="true" inactivityTimeout="00:10:00"
enabled="false" />
<security mode="None">

<transport clientCredentialType="Windows"
protectionLevel="EncryptAndSign" />

<message clientCredentialType="Windows" />
</security>

</binding>

As demonstrated, the Visual Studio 2008 capabilities for WCF make the consumption of these services
fairly trivial. The next step is to code the consumption of the service interface to the GUI that was created
as one of the first steps.

Writing the consumption code
The code to consume the interface is quite minimal. End users will merely select the radio button
of the operation that they are interested in performing. The default radio button selected is Add. The
user places a number in each of the two text boxes provided and clicks the Calculate button to call the
service to perform the designated operation on the provided numbers. Here is the code for the form:

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim result As Integer
Dim svc As New CalculatorService.CalculatorClient()

svc.Open()

If RadioButton1.Checked = True Then
result = svc.Add(Integer.Parse(TextBox1.Text), _

Integer.Parse(TextBox2.Text))
ElseIf RadioButton2.Checked = True Then

result = svc.Subtract(Integer.Parse(TextBox1.Text), _
Integer.Parse(TextBox2.Text))

ElseIf RadioButton3.Checked = True Then
result = svc.Multiply(Integer.Parse(TextBox1.Text), _

Integer.Parse(TextBox2.Text))
ElseIf RadioButton4.Checked = True Then

result = svc.Divide(Integer.Parse(TextBox1.Text), _
Integer.Parse(TextBox2.Text))

End If

svc.Close()

Label1.Text = result.ToString()
End Sub

End Class

1255

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1256

Chapter 32: Windows Communication Foundation

This is quite similar to what is done when working with Web references from the XML Web Services
world. First is an instantiation of the proxy class, as shown with the creation of the svc object:

Dim svc As New CalculatorService.CalculatorClient()

Working with the ws object now, the IntelliSense options provide you with the appropriate Add, Subtract,
Multiply, and Divide methods. Running this application provides results similar to those presented in
Figure 32-10.

Figure 32-10

In this case, the Add method is invoked from the service when the form’s Calculate button is pressed. If
you add some kind of TCP trace on your machine, you will see results similar to the following:

00000000 0B 06 92 01 55 2A 68 74 74 70 3A 2F 2F 74 65 6DU*ht tp://tem
00000010 70 75 72 69 2E 6F 72 67 2F 49 43 61 6C 63 75 6C puri.org /ICalcul
00000020 61 74 6F 72 2F 41 64 64 52 65 73 70 6F 6E 73 65 ator/Add Response
00000030 0B 41 64 64 52 65 73 70 6F 6E 73 65 13 68 74 74 .AddResp onse.htt
00000040 70 3A 2F 2F 74 65 6D 70 75 72 69 2E 6F 72 67 2F p://temp uri.org/
00000050 09 41 64 64 52 65 73 75 6C 74 56 02 0B 01 73 04 .AddResu ltV...s.
00000060 0B 01 61 06 56 08 44 0A 1E 00 82 AB 01 44 12 AD ..a.V.D.D..
00000070 A1 8F 9D 89 5A B0 FF 45 A1 D5 29 A9 F4 57 2B A3Z..E ..)..W+.
00000080 44 0C 1E 00 82 AB 14 01 56 0E 42 03 0A 05 42 07 D....... V.B...B.
00000090 8B 00 01 01 01 01

The response will return something such as the following:

00000000 00 01 00 01 02 02 28 6E 65 74 2E 74 63 70 3A 2F(n et.tcp:/
00000010 2F 31 39 32 2E 31 36 38 2E 31 2E 31 30 32 3A 38 /192.168 .1.102:8
00000020 30 38 30 2F 43 61 6C 63 75 6C 61 74 6F 72 2F 03 080/Calc ulator/.
00000030 08 0C 06 B0 01 68 22 68 74 74 70 3A 2F 2F 74 65h"h ttp://te
00000040 6D 70 75 72 69 2E 6F 72 67 2F 49 43 61 6C 63 75 mpuri.or g/ICalcu
00000050 6C 61 74 6F 72 2F 41 64 64 28 6E 65 74 2E 74 63 lator/Ad d(net.tc
00000060 70 3A 2F 2F 31 39 32 2E 31 36 38 2E 31 2E 31 30 p://192. 168.1.10
00000070 32 3A 38 30 38 30 2F 43 61 6C 63 75 6C 61 74 6F 2:8080/C alculato
00000080 72 2F 03 41 64 64 13 68 74 74 70 3A 2F 2F 74 65 r/.Add.h ttp://te
00000090 6D 70 75 72 69 2E 6F 72 67 2F 01 61 01 62 56 02 mpuri.or g/.a.bV.
000000A0 0B 01 73 04 0B 01 61 06 56 08 44 0A 1E 00 82 AB ..s...a. V.D.....
000000B0 01 44 1A AD A1 8F 9D 89 5A B0 FF 45 A1 D5 29 A9 .D...... Z..E..).
000000C0 F4 57 2B A3 44 2C 44 2A AB 14 01 44 0C 1E 00 82 .W+.D,D* ...D....
000000D0 AB 03 01 56 0E 42 05 0A 07 42 09 89 17 42 0B 8B ...V.B.. .B...B..
000000E0 E9 00 01 01 01

1256

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1257

Chapter 32: Windows Communication Foundation

As before, the requests and responses are sent over TCP as binary, dramatically decreasing the size of the
payload for large messages. This is something that .NET Remoting was used for prior to the release of the
WCF framework. This concludes the short tutorial demonstrating how to build your own WCF service
using the TCP protocol and consume this service directly into a .NET Windows Forms application.

Working with Data Contracts
When building the WCF services so far, the data contract that was defined depended upon simple types
or primitive data types. In the case of the earlier WCF service, a .NET type of Integer was exposed,
which in turn was mapped to an XSD type of int. You might not have noticed the input and output
types actually defined in the WSDL document that was provided via the WCF-generated one, but they
are there. These types are actually exposed through an imported .xsd document (a dynamic document).
This bit of the WSDL document is presented here:

<wsdl:types>
<xsd:schema targetNamespace="http://tempuri.org/Imports">
<xsd:import schemaLocation="http://localhost:8000/docs?xsd=xsd0"
namespace="http://tempuri.org/" />
<xsd:import schemaLocation="http://localhost:8000/docs?xsd=xsd1"
namespace="http://schemas.microsoft.com/2003/10/Serialization/" />

</xsd:schema>
</wsdl:types>

Typing in the XSD location of http://localhost:8000/docs?xsd=xsd0 gives you the input and output
parameters of the service. For instance, looking at the definition of the Add method, you will see the
following bit of code:

<xs:element name="Add">
<xs:complexType>

<xs:sequence>
<xs:element minOccurs="0" name="a" type="xs:int" />
<xs:element minOccurs="0" name="b" type="xs:int" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="AddResponse">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" name="AddResult" type="xs:int" />
</xs:sequence>

</xs:complexType>
</xs:element>

This bit of XML code indicates that there are two required input parameters (a and b) that are
of type int; in return, the consumer gets an element called <AddResult>, which contains a value of
type int.

As a builder of this WCF service, you didn’t have to build the data contract, mainly because this service
uses simple types. When using complex types, you have to create a data contract in addition to your
service contract.

1257

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1258

Chapter 32: Windows Communication Foundation

Building a service with a data contract
For an example of working with data contracts, create a new WCF service (again within a Console
Application project) called WCF_WithDataContract. In this case, you still need an interface that defines
your service contract, and then another class that implements that interface. In addition to these
items, you need another class that defines the data contract.

Like the service contract, which makes use of the <ServiceContract()> and the <OperationContract()>
attributes, the data contract uses the <DataContract()> and <DataMember()> attributes. To gain access
to these attributes, you have to make a reference to the System.Runtime.Serialization namespace in
your project and import this namespace into the file.

The full WCF definition is presented here:

Imports System
Imports System.ServiceModel
Imports System.Runtime.Serialization

<DataContract()> _
Public Class Customer

<DataMember()> _
Public FirstName As String

<DataMember()> _
Public LastName As String

End Class

<ServiceContract()> _
Public Interface IHelloCustomer

<OperationContract()> _
Function HelloFirstName(ByVal cust As Customer) As String

<OperationContract()> _
Function HelloFullName(ByVal cust As Customer) As String

End Interface

Public Class HelloCustomer
Implements IHelloCustomer

Public Function HelloFirstName(ByVal cust As Customer) As String _
Implements IHelloCustomer.HelloFirstName
Return "Hello " & cust.FirstName

End Function

Public Function HelloFullName(ByVal cust As Customer) As String _
Implements IHelloCustomer.HelloFullName
Return "Hello " & cust.FirstName & " " & cust.LastName

End Function
End Class

Here, you can see that the System.Runtime.Serialization namespace is also imported, and the first
class in the file is the data contract of the service. This class, the Customer class, has two members:
FirstName and LastName. Both of these properties are of type String. You specify a class as a data
contract through the use of the <DataContract()> attribute:

1258

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1259

Chapter 32: Windows Communication Foundation

<DataContract()> _
Public Class Customer

’ Code removed for clarity

End Class

Now, any of the properties contained in the class are also part of the data contract through the use of the
<DataMember()> attribute:

<DataContract()> _
Public Class Customer

<DataMember()> _
Public FirstName As String

<DataMember()> _
Public LastName As String

End Class

Finally, the Customer object is used in the interface, as well as the class that implements the
IHelloCustomer interface.

Building the host
The next step is the same as before: change the Module1.vb file so that it becomes the host of the WCF
service you just built. This task is illustrated in the following example:

Imports System
Imports System.ServiceModel
Imports System.ServiceModel.Description

Module Module1

Sub Main()
Using serviceHost As ServiceHost = _

New ServiceHost(GetType(HelloCustomer))

Dim ntb As NetTcpBinding = New NetTcpBinding(SecurityMode.None)
serviceHost.AddServiceEndpoint(GetType(IHelloCustomer), ntb, _

New Uri("net.tcp://192.168.1.102:8080/HelloCustomer/"))

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/docs")

serviceHost.Description.Behaviors.Add(smb)

serviceHost.Open()

Console.WriteLine("Press the <ENTER> key to close the host.")
Console.ReadLine()

End Using
End Sub

End Module

1259

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1260

Chapter 32: Windows Communication Foundation

This host uses the IHelloCustomer interface and builds an endpoint at net.tcp://192.168.1.102:8080
/HelloCustomer. Next, let’s look at consuming this service from another console application.

Building the consumer
Now that the service is running and in place, the next step is to build the consumer. To begin, build a
new console application from Visual Studio 2008 and call the project HelloWorldConsumer. Right-click
on the solution and select Add Service Reference from the options provided.

From the Add Service Reference dialog, add http://localhost:8000/docs as the service URI and
HelloCustomerService as the service reference name, as shown in Figure 32-11.

Figure 32-11

This will add the changes to the references and the app.config file just as before, enabling you to
consume the service. The following code shows what is required:

Module Module1

Sub Main()
Dim svc As New HelloCustomerService.HelloCustomerClient()
Dim cust As New HelloCustomerService.Customer()

Dim result As String

svc.Open()

Console.WriteLine("What is your first name?")

1260

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1261

Chapter 32: Windows Communication Foundation

cust.FirstName = Console.ReadLine()

Console.WriteLine("What is your last name?")
cust.LastName = Console.ReadLine()

result = svc.HelloFullName(cust)

svc.Close()

Console.WriteLine(result)
Console.ReadLine()

End Sub

End Module

As a consumer, once you make the reference, the service reference doesn’t just provide a
HelloCustomerClient object; you will also find the Customer object that was defined through the
service’s data contract.

Therefore, the preceding code block just instantiates both of these objects and builds the Customer object
before it is passed into the HelloFullName method provided by the service. Running this bit of code will
return the results shown in Figure 32-12.

Figure 32-12

Looking at WSDL and the schema for HelloCustomerService
When you make a reference to the HelloCustomer service, looking at the WSDL, you will find the
following XSD imports:

<wsdl:types>
<xsd:schema targetNamespace="http://tempuri.org/Imports">

<xsd:import schemaLocation="http://localhost:8000/docs?xsd=xsd0"
namespace="http://tempuri.org/" />

<xsd:import schemaLocation="http://localhost:8000/docs?xsd=xsd1"
namespace="http://schemas.microsoft.com/2003/10/Serialization/" />

<xsd:import schemaLocation="http://localhost:8000/docs?xsd=xsd2"
namespace="http://schemas.datacontract.org/2004/07/WCF_WithDataContract" />

</xsd:schema>
</wsdl:types>

1261

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1262

Chapter 32: Windows Communication Foundation

http://localhost:8000/docs?xsd=xsd2 provides the details on your Customer object. The code from
this file is shown here:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://schemas.datacontract.org/2004/07/WCF_WithDataContract"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://schemas.datacontract.org/2004/07/WCF_WithDataContract">
<xs:complexType name="Customer">

<xs:sequence>
<xs:element minOccurs="0" name="FirstName"
nillable="true" type="xs:string" />

<xs:element minOccurs="0" name="LastName"
nillable="true" type="xs:string" />

</xs:sequence>
</xs:complexType>
<xs:element name="Customer" nillable="true" type="tns:Customer" />

</xs:schema>

This is an XSD description of the Customer object. Making a reference to the WSDL that includes the XSD
description of the Customer object causes the auto-generated proxy class to create the following class as
part of the proxy:

<System.CodeDom.Compiler.GeneratedCodeAttribute(
"System.Runtime.Serialization", _
"3.0.0.0"), _
System.Runtime.Serialization.DataContractAttribute(_
[Namespace]:=

"http://schemas.datacontract.org/2004/07/WCF_WithDataContract"), _
System.SerializableAttribute()> _

Partial Public Class Customer
Inherits Object
Implements System.Runtime.Serialization.IExtensibleDataObject

<System.NonSerializedAttribute()> _
Private extensionDataField As _

System.Runtime.Serialization.ExtensionDataObject

<System.Runtime.Serialization.OptionalFieldAttribute()> _
Private FirstNameField As String

<System.Runtime.Serialization.OptionalFieldAttribute()> _
Private LastNameField As String

Public Property ExtensionData() As _
System.Runtime.Serialization.ExtensionDataObject Implements _

System.Runtime.Serialization.IExtensibleDataObject.ExtensionData
Get

Return Me.extensionDataField
End Get
Set

Me.extensionDataField = value
End Set

End Property

1262

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1263

Chapter 32: Windows Communication Foundation

<System.Runtime.Serialization.DataMemberAttribute()> _
Public Property FirstName() As String

Get
Return Me.FirstNameField

End Get
Set

Me.FirstNameField = value
End Set

End Property

<System.Runtime.Serialization.DataMemberAttribute()> _
Public Property LastName() As String

Get
Return Me.LastNameField

End Get
Set

Me.LastNameField = value
End Set

End Property
End Class

Using this model, you can easily build your services with your own defined types.

Namespaces
Note that the services built in the chapter have no defined namespaces. If you looked at the WSDL
files that were produced, you would see that the namespace provided is http://tempuri.org.
Obviously, you do not want to go live with this default namespace. Instead, you need to define your
own namespace.

To accomplish this task, the interface’s <ServiceContract()> attribute enables you to set the namespace,
as shown here:

<ServiceContract(Namespace:="http://www.lipperweb.com/ns/")> _
Public Interface IHelloCustomer

<OperationContract()> _
Function HelloFirstName(ByVal cust As Customer) As String

<OperationContract()> _
Function HelloFullName(ByVal cust As Customer) As String

End Interface

Here, the <ServiceContract()> attribute uses the Namespace property to provide a namespace.

Touching on Security
The WCF framework offers a multitude of different WS-* specifications that you can take advantage of
in your services without really needing to know how to code for those specifications, as the framework
takes care of this for you on your behalf.

1263

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1264

Chapter 32: Windows Communication Foundation

To see an example of this, consider the VbWCF_Service1 solution from the console-application code
earlier in this chapter. Take that code and modify it to add a requirement that the service makes use
of WS-Security and that the client can only consume the service using WS-Security by supplying their
Windows credentials as the user context. The code for this modified service is provided here:

Imports System
Imports System.ServiceModel
Imports System.ServiceModel.Description

Module Module1

Sub Main()
Using serviceHost As ServiceHost = _

New ServiceHost(GetType(Calculator))

Dim ntb As NetTcpBinding = New NetTcpBinding(SecurityMode.Message)
ntb.Security.Message.ClientCredentialType = _

MessageCredentialType.Windows
serviceHost.AddServiceEndpoint(GetType(ICalculator), ntb, _

New Uri("net.tcp://192.168.1.102:8080/Calculator/"))

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/docs")

serviceHost.Description.Behaviors.Add(smb)

serviceHost.Open()

Console.WriteLine("Press the <ENTER> key to close the host.")
Console.ReadLine()

End Using
End Sub

End Module

Instead of the SecurityMode.None property, you can also use the SecurityMode.Message property. This
forces the SOAP message to include a WS-Security header. The next line of code specifies
that the credential type that the service needs to make use of is a Windows credential, set with the
MessageCredentialType.Windows property.

Making a client reference to this service gives you a different app.config file than what you had before.
Here is the <system.serviceModel> element of the app.config file:

<system.serviceModel>
<bindings>

<netTcpBinding>
<binding name="NetTcpBinding_ICalculator" closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00"
sendTimeout="00:01:00"
transactionFlow="false" transferMode="Buffered"
transactionProtocol="OleTransactions"
hostNameComparisonMode="StrongWildcard" listenBacklog="10"

1264

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1265

Chapter 32: Windows Communication Foundation

maxBufferPoolSize="524288" maxBufferSize="65536" maxConnections="10"
maxReceivedMessageSize="65536" >
<readerQuotas maxDepth="32" maxStringContentLength="8192"
maxArrayLength="16384"
maxBytesPerRead="4096" maxNameTableCharCount="16384" />

<reliableSession ordered="true" inactivityTimeout="00:10:00"
enabled="false" />

<security mode="Message">
<transport clientCredentialType="Windows"
protectionLevel="EncryptAndSign" />
<message clientCredentialType="Windows" />

</security>
</binding>

</netTcpBinding>
</bindings>
<client>

<endpoint address="net.tcp://192.168.1.102:8080/Calculator/"
binding="netTcpBinding"
bindingConfiguration="NetTcpBinding_ICalculator"
contract="CalculatorService.ICalculator"
name="NetTcpBinding_ICalculator">
<identity>

<userPrincipalName value="Bill-PC\Bill" />
</identity>

</endpoint>
</client>

</system.serviceModel>

Note that the <security> element defines the client credential type as a Windows credential set, and that
the credentials provided in the WS-Security SOAP header need to be encrypted and signed.

From the <client> element, you have a user principal defined as the credentials provided in the request.
Now when the request and response occur, you will find a WS-Security header, which is present in the
SOAP header of the message.

Summary
This chapter looked at one of the more outstanding capabilities provided to the Visual Basic world.
VB 2008 using the .NET Framework 3.5 is a great combination for building advanced services that take
ASP.NET Web Services, .NET Remoting, Enterprise Services, and MSMQ to the next level.

Though not exhaustive, this chapter broadly outlined the basics of the framework. As you start to dig
deeper in the technology, you will find capabilities that are strong and extensible.

1265

Evjen-91361 c32.tex V2 - 04/01/2008 5:45pm Page 1266

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1267

Windows Services

Modern, multitasking operating systems often need to run applications that operate in the
background and that are independent of the user who is logged in. From Windows NT to
Windows Vista, such applications are called Windows Services (formerly known as NT Services).
The tasks carried out by Windows Services are typically long-running tasks and have little or no
direct interaction with a user (so they don’t usually have user interfaces). Such applications may be
started when the computer is booted and often continue to run until the computer is shut down.

This chapter covers the following:

❑ The characteristics of a Windows Service

❑ How to interact with a Windows Service using Visual Studio 2008 and the management
applets in the Windows Control Panel

❑ How to create, install, and communicate with a Windows Service using Visual Basic

❑ How to debug a Windows Service from within Visual Studio 2008

As VB6 did not offer direct support for the creation of Windows Services, you might be unfamil-
iar with such applications. To help you understand the variety of such applications, this chapter
examines some scenarios for which a Windows Service application is a good solution.

Example Windows Services
Microsoft SQL Server, Exchange Server, Internet Information Server (IIS), and antivirus software
all use Windows Services to perform tasks in response to events that occur on the system overall.
Only a background service, or Windows Service, that runs no matter which user is logged in, could
perform such operations. For example, consider these potential Windows Services:

❑ A file watcher — Suppose you are running an FTP server that enables users to place files in
a particular directory. You could use a Windows Service to monitor and process files within
that directory as they arrive. The service runs in the background and detects when files are
changed or added within the directory, and then extracts information from these files in

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1268

Chapter 33: Windows Services

order to process orders, or update address and billing information. You will see an example of
such a Windows Service later in this chapter.

❑ An automated stock price reporter — You could build a system that extracts stock prices from
a Web service or website and then e-mails the information to users. You could set thresholds
such that an e-mail is sent only when the stock price reaches a certain price. This Windows
Service can be automated to extract the information every 10 minutes, every 10 seconds, or what-
ever you choose. Because a Windows Service can contain any logic that does not require a user
interface, you have a lot of flexibility in constructing such applications.

❑ Microsoft Transaction Server (MTS) — Part of COM+ Services in Windows 2000 and later, this
is an object broker that manages instances of components. It is used regularly by professional
developers. This service runs constantly in the background and manages components as soon
as the computer is booted, just like IIS or Exchange Server.

Characteristics of a Windows Service
To properly design and develop a Windows Service, it is important to understand how it differs from a
typical Windows program. Here are the most important characteristics of a Windows Service:

❑ It can start before a user logs on. The system maintains a list of Windows Services, which can be
set to start at boot time. Services can also be installed such that they require a manual startup and
will not start at bootup.

❑ It can run under a different account from that of the current user. Most Windows Services pro-
vide functionality that needs to be running all the time, and some load before a user logs on,
so they cannot depend on a user being logged on to run.

❑ It has its own process. It does not run in the process of a program communicating with it
(Chapter 29 has more information on processes).

❑ It typically has no user interface. This is because the service may be running under a different
account from that of the current user, or the service may start at bootup, which means that calls
to put up a user interface might fail because they are out of context (it’s possible to create a Win-
dows Service with a user interface, but Visual Basic 2008 can’t be used to do it; you will learn
why later).

❑ It requires a special installation procedure; just clicking on a compiled EXE will not run it. The
program must run in a special context in the operating system, and a specific installation pro-
cess is required to do the configuration necessary for a Windows Service to be run in this special
context.

❑ It works with a Service Control Manager (discussed shortly). The Service Control Manager is
required to provide an interface to the Windows Service. External programs that want to com-
municate with a Windows Service (for example, to start or stop the service) must go through the
Service Control Manager. The Service Control Manager is an operating-system-level program,
but it has a user interface that can be used to start and stop services, and this interface can be
accessed through the Computer Management section of the Control Panel.

Interacting with Windows Services
You can view the services that are used on your computer by opening the Service Control Manager user
interface. To do so in Windows 2000, select Administrative Tools ➪ Services in the Control Panel. In
Windows XP Professional, select Start ➪ All Programs ➪ Administrative Tools ➪ Services. In Windows

1268

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1269

Chapter 33: Windows Services

Vista, select Start ➪ Control Panel ➪ System and Maintenance ➪ Administrative Tools. Using the Service
Control Manager, a service can be set to automatically start when the system is booted, or it can be started
manually. Services can also be stopped or paused. The list of services contained in the Service Control
Manager includes the current state for each service. Figure 33-1 shows the Service Control Manager in
Windows Vista.

Figure 33-1

The Status column indicates the current state of the service. If this column is blank, then the service
has not been started since the last time the computer was booted. Other possible values for Status are
Started, Stopped, and Paused. You can access additional settings and details concerning a service by
double-clicking it.

When a service is started, it automatically logs into the system using either a user or a system account:

❑ The user account is a regular NT account that allows the program to interact with the system —
in essence, the service impersonates a user.

❑ The system account is not associated with a particular user.

The Service Control Manager shown in Figure 33-1 is part of the operating system (OS), which is what
supports Windows Services; it is not a part of the .NET Framework. Any service run by the OS is exposed
through the Service Control Manager, regardless of how the service was created or installed. You can
also interact with Windows Services via the Server Explorer in Visual Studio 2008. You will see this
technique later.

Creating a Windows Service
Prior to the release of the .NET Framework, most Windows Services were created with C++. Third-party
toolkits were available to enable Windows Services to be created in VB6 and earlier, but deployment
problems and threading issues meant that few developers took this route.

1269

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1270

Chapter 33: Windows Services

In .NET, the functionality needed to interface to the operating system is wrapped up in the .NET
Framework classes, so any .NET-compliant language can now be used to create a Windows Service.

The .NET Framework classes for Windows Services
Several base classes are needed to create a Windows Service:

❑ System.ServiceProcess.ServiceBase — Provides the base class for the Windows Service. The
class containing the logic that will run in the service inherits from ServiceBase. A single exe-
cutable can contain more than one service, but each service in the executable is a separate class
that inherits from ServiceBase.

❑ System.Configuration.Install.Installer— This is a generic class that performs the instal-
lation chores for a variety of components. One class in a Windows Service process must inherit
and extend Installer in order to provide the interface necessary to install the service under the
various Windows operating systems.

Each class that inherits from Installer needs to contain an instance of each of the following classes:

❑ System.ServiceProcess.ServiceProcessInstaller— This class contains the information
needed to install a .NET executable that contains Windows Services (that is, an executable that
contains classes that inherit from ServiceBase). The .NET installation utility for Windows Ser-
vices (InstallUtil.exe, discussed later) calls this class to get the information it needs to
perform the installation.

❑ System.ServiceProcess.ServiceInstaller— This class also interacts with the InstallUtil
.exe installation program. Whereas ServiceProcessInstaller contains information needed to
install the executable as a whole, ServiceInstaller contains information on a specific service in
the executable. If an executable contains more than one service, then an instance of
ServiceInstaller is needed for each one.

For most Windows Services you develop, you can let Visual Studio 2008 take care of Installer,
ServiceProcessInstaller, and ServiceInstaller. You just need to set a few properties. The class
you should thoroughly understand is ServiceBase, as this is the class that contains the functionality of a
Windows Service and therefore must inherit from it.

The ServiceBase Class
ServiceBase contains several useful properties and methods, but initially it is more important to under-
stand the events of ServiceBase. Most of these events are fired by the Service Control Manager when the
state of the service is changed. The most important events are as follows:

Event How and When the Event Is Used

OnStart Occurs when the service is started. This is where the initialization logic for a
service is usually placed.

OnStop Occurs when the service is stopped. Cleanup and shutdown logic are
generally placed here.

1270

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1271

Chapter 33: Windows Services

Event How and When the Event Is Used

OnPause Occurs when the service is paused. Any logic required to suspend operations
during a pause goes here.

OnContinue Occurs when a service continues after being paused

OnShutdown Occurs when the operating system is being shut down

OnSessionChange Occurs when a change event is received from a Terminal Session service. This
method was new in .NET Framework 2.0.

OnPowerEvent Occurs when the system’s power management software causes a change in
the power status of the system. This is typically used to change the behavior
of a service when a system is going in or out of a ‘‘suspended’’ power mode.
This is more frequent with end users who are working on laptops.

OnCustomCommand Occurs when an external program has told the Service Control Manager that
it wants to send a command to the service. The operation of this event is
covered in ‘‘Communicating with the Service.’’

The events used most frequently are OnStart, OnStop, and OnCustomCommand. The OnStart and OnStop
events are used in almost every Windows Service written in Visual Basic, and the OnCustomCommand is
used when any special configuration of the service needs to be done while the service is running.

All of these are Protected events, so they are only available to classes that inherit from ServiceBase.
Because of the restricted context in which it runs, a Windows Service component that inherits from
ServiceBase often lacks a public interface. While you can add public properties and methods to such
a component, they are of limited use, because outside programs cannot obtain an object reference to
running a Windows Service component.

To be active as a Windows Service, an instance of ServiceBase must be started via the shared Run method
of the ServiceBase class. However, normally you don’t have to write code to do this because the template
code generated by Visual Studio 2008 places the correct code in the Main subroutine of the project for you.

The most commonly used property of ServiceBase is the AutoLog property. This Boolean property is
set to True by default. If True, then the Windows Service automatically logs the Start, Stop, Pause, and
Continue events to an Event Log. The Event Log used is the Application Event Log and the Source in the
log entries is taken from the name of the Windows Service. This automatic event logging is stopped by
setting the AutoLog property to False.

The following File Watcher example goes into more detail about the automatic logging capabilities in a
Windows Service, and about Event Logs in general.

Installation-Oriented Classes
The Installer, ServiceProcessInstaller, and ServiceInstaller classes are quite simple to build
and use if you are employing Visual Studio 2008. After you create your Windows Service project,
Visual Studio 2008 will create a class file called Service1.vb for you. To add the Installer,
ServiceProcessInstaller, and ServiceInstaller classes to your project, simply right-click the design

1271

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1272

Chapter 33: Windows Services

surface of this ServiceBase class, Service1.vb, and select Add Installer. This creates the code framework
necessary to use them.

The Installer class (named ProjectInstaller.vb by default in a Windows Service project) generally
needs no interaction at all — it is ready to use when created by Visual Studio 2008. However, it may be
appropriate to change some properties of the ServiceProcessInstaller and ServiceInstaller classes.
You can do this by simply highlighting these objects on the design surface and changing their properties
directly in the Properties window of Visual Studio 2008. The properties that are typically modified for
ServiceProcessInstaller include the following:

❑ Account — This specifies the type of account under which the entire service application will run.
Different settings give the services in the application different levels of privilege on the local sys-
tem. For simplicity, this chapter uses the highest level of privilege, LocalSystem, for most of the
examples. If this property is set to User (which is the default), then you must supply a username
and password, and that user’s account is used to determine privileges for the service. If there is
any possibility that a service could access system resources that should be ‘‘out of bounds,’’ then
using the User setting to restrict privileges is a good idea. Besides LocalSystem and User, other
possible settings for the Account property include NetworkService and LocalService.

❑ Username — If Account is set to User, then this property specifies the user account to use in
determining the privileges the system will have and how it interacts with other computers on
the network. If this property is left blank, then it is requested when the service is installed.

❑ Password — This property indicates the password to access the user account specified in the
Username property. If the password is left blank, then it is requested when the service is installed.

❑ HelpText — This specifies information about the service that will be displayed in certain
installation options.

If the Account property is set to User, then it is good practice to set up a special user account for the
service, rather than rely on some existing account intended for a live user. The special account can be
set up with exactly the appropriate privileges for the service. This way, it is not as vulnerable to having
its password or its privileges inadvertently changed in a way that would cause problems in running
the service.

For the ServiceInstaller class, the properties you might change include the following:

❑ DisplayName — The name of the service displayed in the Service Manager or the Server
Explorer can be different from the class name and the executable name if desired, though it is
better to make this name the same as the class name for the service.

❑ StartType — This specifies how the service is started. The default is Manual, which means you
must start the service yourself, as it will not start automatically after the system boots. If you
want the service to always start when the system starts, then change this property to Automatic.
The Service Manager can be used to override the StartType setting.

❑ ServiceName — The name of the service that this ServiceInstaller handles during installa-
tion. If you changed the class name of the service after using the Add Installer option, then you
would need to change this property to correspond to the new name for the service.

ServiceProcessInstaller and ServiceInstaller are used as necessary during the installation process,
so there is no need to understand or manipulate the methods of these.

1272

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1273

Chapter 33: Windows Services

Multiple Services within One Executable
It is possible to place more than one class that inherits from ServiceBase in a single Windows Service
executable. Each such class then allows for a separate service that can be started, stopped, and so on,
independently of the other services in the executable.

If a Windows Service executable contains more than one service, then it must contain one
ServiceInstaller for each service. Each ServiceInstaller is configured with the information used
for its associated service, such as the displayed name and the start type (automatic or manual). How-
ever, the executable still needs only one ServiceProcessInstaller, which works for all the services
in the executable. It is configured with the account information that is used for all the services in the
executable.

The ServiceController Class
Another important .NET Framework class used with Windows Services is System.ServiceProcess
.ServiceController. This class is not used when constructing a service. It is used by external appli-
cations to communicate with a running service, enabling operations such as starting and stopping the
service. The ServiceController class is described in detail in ‘‘Communicating with the Service.’’

Other types of Windows Services
The ServiceBase and ServiceController classes can be used to create typical Windows Services that
work with high-level system resources such as the file system or performance counters. However, some
Windows Services need to interact at a deeper level. For example, a service may work at the kernel level,
fulfilling functions such as that of a device driver.

Presently, the .NET Framework classes for Windows Services cannot be used to create such lower-level
services, which rules out both VB and C# as tools to create them. C++ is typically the tool of choice for
these types of services. If the .NET version of C++ is used, the code for such services would typically run
in unmanaged mode.

Another type of service that cannot be created with the .NET Framework classes is one that interacts with
the Windows desktop. Again, C++ is the preferred tool for such services.

You’ll look at the types of services that are possible during the discussion of the ServiceType property of
the ServiceController class, in ‘‘Communicating with the Service.’’

Creating a Windows Service in Visual Basic
Now it is time to create and use a Windows Service with Visual Basic, using the previously discussed
.NET Framework classes. These tasks are demonstrated later in a detailed example. Here is a high-level
description of the necessary tasks:

1. Create a new project of the type Windows Service. By default, the service will be in a mod-
ule named Service1.vb, but it can be renamed, like any other .NET module. (The class
automatically placed in Service1.vb is named Service1 by default, and it inherits from
ServiceBase.)

1273

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1274

Chapter 33: Windows Services

2. Place any logic needed to run when the service is started in the OnStart event of the
service class. You can find the code listing for the Service1.vb file by double-clicking this
file’s design surface.

3. Add any additional logic that the service needs to carry out its operation. Logic can be placed
in the class for the service, or in any other class module in the project. Such logic is typically
called via some event that is generated by the operating system and passed to the service,
such as a file changing in a directory, or a timer tick.

4. Add an installer to the project. This module provides the interface to the Windows
operating system to install the module as a Windows Service. The installer is a class
that inherits from System.Configuration.Install.Installer, and it contains instances of
the ServiceProcessInstaller and ServiceInstaller classes.

5. Set the properties of the installer modules as necessary. The most common settings needed
are the account under which the service will run and the name the service will display in
the Service Control Manager.

6. Build the project. This results in an EXE file. For example, if the service were named
WindowsService1, then the executable file would be named WindowsService1.exe.

7. Install the Windows Service with a command-line utility named InstallUtil.exe. (As pre-
viously mentioned, a service cannot be started by just running the EXE file.)

8. Start the Windows Service with the Service Control Manager (available via the Control Panel
➪ Administrative Tools folder in Windows 2000; the Start ➪ All Programs ➪

Administrative Tools folder in Windows XP; or the Start ➪ Control Panel ➪ System and
Maintenance ➪ Administrative Tools folder in Windows Vista) or with the Server Explorer
in Visual Studio 2008.

You can also start a service from the command console if the proper paths to .NET are set. The com-
mand is NET START <servicename>. Note that the <servicename> used in this command is the name
of the service, not the name of the executable in which the service resides. Depending on the con-
figuration of your system, a service started with any of the aforementioned methods will sometimes
fail, resulting in an error message indicating that the service did not start in a timely fashion. This
may be because the .NET libraries and other initialization tasks did not finish fast enough to suit the
Service Control Manager. If this happens, attempt to start the service again; it usually succeeds the sec-
ond time.

Steps 2 through 5 can be done in a different order. It doesn’t matter whether the installer is added and
configured before or after the logic that does the processing for the service is added.

At this point, a service is installed and running. The Service Manager or the Server Explorer can stop
the service, or it will be automatically stopped when the system is shut down. The command to stop the
service in a command console is NET STOP <servicename>.

The service does not automatically start the next time the system is booted unless it is configured for
that. This can be done by setting the StartType property for the service to Automatic when developing
the service, or it can be done in the Service Manager. Right-clicking the service in the Service Manager
provides access to this capability.

1274

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1275

Chapter 33: Windows Services

This process is superficially similar to doing most other Visual Basic projects. There are a few important
differences, however:

❑ You cannot debug the project in the environment as you normally would any other Visual Basic
program. The service must be installed and started before it can be debugged. It is also neces-
sary to attach to the process for the service to do debugging. Details about this are included in
‘‘Debugging the Service.’’

❑ Even though the result of the development is an EXE, you should not include any message boxes
or other visual elements in the code. The Windows Service executable is more like a component
library in that sense, and should not have a visual interface. If you include visual elements such
as message boxes, the results can vary. In some cases, the UI code will have no effect. In other
cases, the service may hang when attempting to write to the user interface.

❑ Finally, be especially careful to handle all errors within the program. The program is not run-
ning in a user context, so a runtime error has no place to report itself visually. Handle all errors
with structured exception handling, and use an Event Log or other offline means to record and
communicate runtime errors.

Creating a Counter Monitor Service
To illustrate the outlined steps, the following example creates a simple service that checks the value of a
performance counter, and when the value of the counter exceeds a certain value, the service beeps every
three seconds. This is a good example for stepping through the process of creating, installing, and starting
a Windows Service. It contains very little logic, and you can easily tell when it is working.

In the first phase of the example, you create a service that always beeps. Then, in the second phase, you
add logic to monitor the performance counter and only beep when the counter exceeds a specific value:

1. Start a new Windows Service project using Visual Studio 2008. Name the project
CounterMonitor.

2. In the Solution Explorer, rename Service1.vb to CounterMonitor.vb.

3. Click the design surface for CounterMonitor.vb. In the Properties window, change the
ServiceName property from Service1 to CounterMonitor (the Name property changes the
name of the class on which the service is based, while the ServiceName property changes the
name of the service as known to the Service Control Manager).

4. Right-click the project for the service and select Properties. You will then be presented with
the CounterMonitor Property Pages as one of the paged tabs directly in Visual Studio. From
the Application tab, set the Application Type drop-down list to Windows Service if neces-
sary (it should already be set to this), and from the drop-down list named Startup Object,
make sure CounterMonitor is selected (see Figure 33-2).

5. Go back to the CounterMonitor.vb file’s Design view and open the Visual Studio 2008 Tool-
box. Open the Components (not the Windows Forms) node in the Toolbox. Drag a Timer
control from the Toolbox onto the CounterMonitor design surface. It will appear on the
design surface with the name Timer1. It is very important that you grab the correct Timer

1275

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1276

Chapter 33: Windows Services

object from the Toolbox. Visual Studio 2008 does not have the Timer object for this example
in the Toolbox, whereas earlier versions of Visual Studio before VS 2005 did. To ensure that
you have the correct Timer object, right-click on the Toolbox and select Choose Items from
the menu. In the .NET Framework Components tab of the Choose Toolbox Items dialog,
scroll down until you see a couple of Timer objects. In the list are a couple of Timer objects
from the System.Windows.Forms namespace, but you want to instead choose the Timer
object that is part of the System.Timers namespace. This is the Timer object that you work
with for the rest of this example.

Figure 33-2

6. In the Properties window for Timer1, change the Interval property to a value of 3000 (that’s
3,000 milliseconds, which causes the timer to fire every three seconds).

7. Go to the code for CounterMonitor.vb. Inside the OnStart event handler (which is already
created for you in the code), enter the following:

Timer1.Enabled = True

8. In the OnStop event for the class, enter the following:

Timer1.Enabled = False

9. Create an Elapsed event for the timer by highlighting Timer1 in the left-hand drop-down
box at the top of the code editor window. Select the Elapsed event in the right-hand drop-
down box from the Code view of the file.

10. In the Elapsed event, place the following line:

Beep()

1276

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1277

Chapter 33: Windows Services

11. Now add an installer to the project. Go back to the design surface for CounterMonitor
and right-click it. Select Add Installer. A new file called ProjectInstaller1.vb is
created and added to the project. The ProjectInstaller1.vb file has two components
added to its design surface: ServiceProcessInstaller1 and ServiceInstaller1, as shown
in Figure 33-3.

Figure 33-3

12. On the ProjectInstaller.vb design surface, highlight the ServiceProcessInstaller1
control. In its Properties window, change the Account property to LocalSystem.

13. Highlight the ServiceInstaller1 control. In its Properties window, type in
CounterMonitor as the value of the DisplayName property.

14. Now build the project by right-clicking on the solution and selecting Build from the menu.
An EXE named CounterMonitor.exe will be created for the service.

Installing the service
Now you are ready to install the service. The utility for doing this, InstallUtil.exe, must be run
from a command line. It is located in the .NET utilities directory, found at C:\WINNT\Microsoft
.NET\Framework\v2.0.50727 on Windows 2000 and NT systems, or C:\Windows\Microsoft.NET\
Framework\v2.0.50727 on Windows XP, Windows Vista, Windows Server 2003, and Windows
Server 2008.

You can easily access this utility (and all the other .NET utilities in that directory) using an option
from the Programs menu that is installed with Visual Studio 2008. Choose Microsoft Visual Studio
2008 ➪ Visual Studio Tools ➪ Visual Studio 2008 Command Prompt. In the command window that
appears, change to the directory that contains CounterMonitor.exe. By default, when using Visual Stu-
dio 2008, you’ll find this executable at C:\Users\[user]\ Documents\Visual Studio 2008\Projects\
CounterMonitor\Projects\CounterMonitor\CounterMonitor\obj\Debug. Once found, run the follow-
ing command:

InstallUtil CounterMonitor.exe

Check the messages generated by InstallUtil.exe to ensure that the installation of the service was
successful. The utility generates several lines of information; if successful, the last two lines are as follows:

The Commit phase completed successfully.

The transacted install has completed.

1277

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1278

Chapter 33: Windows Services

If these two lines do not appear, then you need to read all the information generated by the utility to
find out why the install didn’t work. Reasons might include a bad pathname for the executable, or trying
to install the service when it is already installed (it must be uninstalled before it can be reinstalled), as
described later.

Starting the service
Later in this chapter, you will create your own ‘‘control panel’’ screen to start and stop the service. For
now, to test the new Windows Service, you will use the Server Explorer in Visual Studio 2008. Open the
Server Explorer in Visual Studio 2008 and expand the Services node. The resulting screen is shown in
Figure 33-4.

Figure 33-4

If the CounterMonitor service does not appear in the list, then the installation failed. Try the installation
again and check the error messages. Right-click the CounterMonitor service and select the Start menu
option. You will hear the service beep every three seconds. You can stop the service by right-clicking it
again and selecting the Stop menu option.

1278

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1279

Chapter 33: Windows Services

You can also use the Service Control Manager built into Windows to start the CounterMonitor service,
shown in Figure 33-5.

Figure 33-5

Start CounterMonitor by right-clicking it and selecting Start or by clicking the Start link. As before, you
will hear your computer beep every three seconds. Stop the service by right-clicking CounterMonitor
and selecting Stop or by clicking the Stop link. Note that if you already started the service via the Server
Explorer (as described earlier), then it will be in a started state when you access the Service Control
Manager program.

Uninstalling the service
Uninstalling the service is very similar to installing it. The service must be in a stopped state before it can
be uninstalled, but the uninstall operation will attempt to stop the service if it is running. The uninstall
operation is done in the same command window (with the Visual Studio 2008 Command Prompt) as the
install operation, and the command used is the same as the one for installation, except that the option
/u is included just before the name of the service. Remember that you need to navigate to C:\Users\
[user]\Documents\Visual Studio 2008\Projects\CounterMonitor\Projects\CounterMonitor\
CounterMonitor\obj\Debug to run this command:

InstallUtil.exe /u CounterMonitor.exe

You can tell that the uninstall was successful if the information displayed by the utility contains the
following line:

Service CounterMonitor was successfully removed from the system.

If the uninstall is not successful, read the rest of the information to determine why. Besides typing in the
wrong pathname, another common reason for failure is trying to uninstall a service that is in a running
state and could not be stopped in a timely fashion.

1279

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1280

Chapter 33: Windows Services

Once you have uninstalled CounterMonitor, it will no longer show up in the list of available services to
start and stop (at least, after a refresh it will not).

A Windows Service must be uninstalled and reinstalled every time you make
changes to it. You should uninstall CounterMonitor now because you are about to
add new capabilities to it.

Monitoring a Performance Counter
Performance counters are a system-level function of Windows. They are used to track usage of system
resources. Performance counters can be expressed as counts (number of times a Web page was hit),
percentages (how much disk space is left), or other types of information. Many counters are automatically
maintained by the operating system, but applications can create and manage their own performance
counters.

To demonstrate how services can interact with system-level functionality, you will add to the
CounterMonitor the capability to monitor a particular performance counter, and only beep when
the performance counter exceeds a certain value.

Performance counters can be monitored by a user with the Performance Monitor. A variety of perfor-
mance counters are built into the operating system, providing access to information such as the number
of threads currently active on the system, or the number of documents in a print queue. Any of these,
and any custom performance counters, can be graphed in the Performance Monitor.

Creating a performance counter
This example creates a performance counter named ServiceCounter. Then you will change
CounterMonitor to check that counter and only beep when its value is over 5. To test it, you will also
create a small Windows Forms application that increments and decrements the counter.

Performance counters are typically accessed in Visual Studio 2008 through the Server Explorer tab. To
see the available performance counters, open the Server Explorer, shown in Figure 33-6.

To see the categories of performance counters, click the plus sign next to the Performance Counters
option in the Server Explorer. Several dozen categories will be shown. You can look at the counters in
any particular category by clicking the plus sign next to the category.

You can also create new categories and new counters. For this example, you need to create a new category
for the counter called Service Counters. To do that, right-click the Performance Counters option in the
Server Explorer and select the Create New Category option. In the resulting Performance Counter Builder
dialog box (shown in Figure 33-7), enter the name of the category as Service Counters, and create a new
counter by clicking the New button and entering TestCounter for the name. Once that is complete, click
the OK button. Visual Studio 2008 will then create a new category called Service Counters that contains
a single performance counter called TestCounter.

1280

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1281

Chapter 33: Windows Services

Figure 33-6

Integrating the counter into the service
Using a performance counter in the CounterMonitor service you created earlier is straightforward. Open
the CounterMonitor project and go to the design surface for CounterMonitor. Then open the Server
Explorer so that it shows the TestCounter performance counter you created. Click TestCounter from
within the Server Explorer and drag it onto the CounterMonitor.vb design surface.

A new visual control named PerformanceCounter1 will appear on the page’s design surface, ready for
use. Change the logic in the Elapsed event for Timer1 as shown here:

If PerformanceCounter1.RawValue > mnMaxValue Then
Beep()

End If

1281

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1282

Chapter 33: Windows Services

Figure 33-7

The RawValue property being used in this code fetches the unformatted value of the counter. For counters
that track whole numbers (such as the number of times a Web page is hit), the RawValue property is
normally used to get the value of the counter for testing or display. Some other types of counters use a
NextValue method to get a formatted value. See the CounterType property of the PerformanceCounter
class for more information on the types of performance counters available.

Next, put this statement in the code module just under the first line of the CounterMonitor class:

Dim mnMaxValue As Integer = 5

This creates the mnMaxValue as a Private variable. Now build the service again, install it as before, and
start the service. It should not beep at this point because the value in the performance counter is zero.
You can leave the counter running, because you will now create a program to change the value in the
performance counter, thereby making the service begin beeping.

Changing the value in the performance counter
To manipulate the performance counter, you will build a small forms-based application. Close
the CounterMonitor solution in Visual Studio and start a new Windows Application Project named
CounterTest. Place two buttons on Form1 and change their properties as shown in the following table:

Name Text

BtnIncrement Increment Counter

BtnDecrement Decrement Counter

1282

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1283

Chapter 33: Windows Services

Then, open the Server Explorer and drag the TestCounter performance counter onto the form itself,
just as you did earlier with the CounterMonitor project. As with all nonvisible components from the
Toolbox, the counter will appear in the component tray (just under the form), rather than on the form’s
design surface.

The PerformanceCounter1 control for CounterTest needs one property change. Set the ReadOnly prop-
erty of the control to False. This enables the application to manipulate the counter. (This change was
unnecessary for the CounterMonitor Windows Service project because that project only reads the value
of the performance counter and does not change it.)

Now double-click btnIncrement to get to its click event. Place the following code in the event:

PerformanceCounter1.Increment()

Double-click the btnDecrement to get to its click event. Place the following code in the event:

PerformanceCounter1.Decrement()

Build and run the program and click the Increment button six times. If the CounterMonitor service is
running, then on the sixth click it will begin beeping because the value in the counter has exceeded five.
Then click the Decrement button a couple of times, and the beeping will stop.

If you want to monitor the current value of the counter, select Start ➪ Control Panel ➪ System and
Maintenance ➪ Administrative Tools ➪ Reliability and Performance Monitor. From here, select Perfor-
mance Monitor from the Monitor Tools section. This program, the Performance Monitor, enables the
value of counters to be graphed. To add a counter for display, click the green plus button in the tool’s
toolbar. Change the Performance Object drop-down list to Service Counters and add the TestCounter
performance counter to the list. When completed, select the Close button. The counter that you created
will be monitored by the dialog box. You can use the help for this program for more details on displaying
counters in the Performance Monitor.

Communicating with the Service
Up to this point, you have learned how to do the following:

❑ Create a Windows Service using Visual Basic

❑ Start and stop a service with the Server Explorer in Visual Studio 2008 or the Service Control
Manager from the Control Panel

❑ Make a service work with a system-level function such as a performance counter

If these procedures are sufficient to start, stop, and check on the service through the Server Explorer or
the Service Control Manager, and there is no need for any other communication with the service, then
this is all you have to do. However, it is often helpful to create a specialized application to manipulate
your service. This application will typically be able to start and stop a service, and check on its status.
The application may also need to communicate with the service to change its configuration. Such an
application is often referred to as a control panel for the service, even though it does not necessarily reside
in the operating system’s Control Panel. A commonly used example of such an application is the SQL
Server Service Manager, whose icon appears in the tray on the taskbar (normally in the lower-right
section of the screen) if you have SQL Server installed.

1283

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1284

Chapter 33: Windows Services

Such an application needs a way to communicate with the service. The .NET Framework base class that
is used for such communication is ServiceController. It is in the System.ServiceProcess namespace.
You need to add a reference to System.ServiceProcess.dll (which contains this namespace) before a
project can use the ServiceController class.

The ServiceController class provides an interface to the Service Control Manager, which coordinates all
communication with Windows Services. However, you do not have to know anything about the Service
Control Manager to use the ServiceController class. You just manipulate the properties and methods
of the ServiceController class, and any necessary communication with the Service Control Manager is
accomplished on your behalf behind the scenes.

It is a good idea to use exactly one instance of the ServiceController class for each service you are
controlling. Multiple instances of ServiceController that are communicating with the same service can
have timing conflicts. Typically, that means using a module-level object variable to hold the reference to
the active ServiceController, and instantiating the ServiceController during the initialization logic
for the application. The following example uses this technique.

The ServiceController class
The constructor for the ServiceController requires the name of the Windows Service with which it will
be communicating. This is the same name that was placed in the ServiceName property of the class that
defined the service. You will see how to instantiate the ServiceController class shortly.

The ServiceController class has several members that are useful in manipulating services. Here are the
most important methods, followed by another table of the most important properties:

Method Purpose

Start A method to start the service

Stop A method to stop the service

Refresh A method to ensure that the ServiceController object contains the latest
state of the service (needed because the service might be manipulated from
another program)

ExecuteCommand A method used to send a custom command to the service. This method is
covered later in the section ‘‘Custom Commands.’’

Here are the most important properties:

Property Purpose

CanStop A property indicating whether the service can be stopped

ServiceName A property containing the name of the associated service

1284

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1285

Chapter 33: Windows Services

Property Purpose

Status An enumerated property that indicates whether a service is stopped, started, in the
process of being started, and so on. The ToString method on this property is useful
for getting the status in a string form for text messages. The possible values of the
enumeration are as follows:

ContinuePending — The service is attempting to continue.

Paused — The service is paused.

PausePending — The service is attempting to go into a paused state.

Running — The service is running.

StartPending — The service is starting.

Stopped — The service is not running.

StopPending — The service is stopping.

ServiceType A property that indicates the type of service. The result is an enumerated value. The
enumerations are as follows:

Win32OwnProcess — The service uses its own process (this is the default for a
service created in .NET).

Win32ShareProcess — The service shares a process with another service (this
advanced capability is not covered here).

Adapter, FileSystemDriver, InteractiveProcess, KernelDriver,
RecognizerDriver — These are low-level service types that cannot be created with
Visual Basic because the ServiceBase class does not support them. However, the
value of the ServiceType property may still have these values for services created
with other tools.

Integrating a ServiceController into the example
To manipulate the service, you will enhance the CounterTest program created earlier. Here are step-by-
step instructions to do that:

1. Add three new buttons to the CounterTest form, with the following names and text labels:

Name Text

BtnCheckStatus Check Status

BtnStartService Start Service

BtnStopService Stop Service

1285

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1286

Chapter 33: Windows Services

2. Add a reference to the DLL that contains the ServiceController class: Select Project ➪ Add
Reference. On the .NET tab, highlight the System.ServiceProcess.dll option and click OK.

3. Add this line at the top of the code for Form1:

Imports System.ServiceProcess

4. As discussed, the project needs only one instance of the ServiceController class. Create
a module-level object reference to a ServiceController class by adding the following line
of code within the Form1 class:

Dim myController As ServiceController

5. Create a Form Load event in Form1, and place the following line of code in it to instantiate
the ServiceController class:

myController = New ServiceController("CounterMonitor")

You now have a ServiceController class named myController that you can use to manipulate the
CounterMonitor Windows Service. In the click event for btnCheckStatus, place the following code:

Dim sStatus As String
myController.Refresh()
sStatus = myController.Status.ToString

MsgBox(myController.ServiceName & " is in state: " & sStatus)

In the click event for btnStartService, place this code:

Try
myController.Start()

Catch exp As Exception
MsgBox("Could not start service or the service is already running")

End Try

In the click event for btnStopService, place this code:

If myController.CanStop Then
myController.Stop()

Else
MsgBox("Service cannot be stopped or the service is already stopped")

End If

Run and test the program. The service may already be running because of one of your previous tests.
Make sure the performance counter is high enough to make the service beep, and then test starting and
stopping the service.

More about ServiceController
ServiceController classes can be created for any Windows Service, not just those created in .NET.
For example, you could instantiate a ServiceController class that was associated with the Windows

1286

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1287

Chapter 33: Windows Services

Service for Internet Information Server (IIS) and use it to start, pause, and stop IIS. The code would
look just like the code used earlier for the application that controlled the CounterMonitor service. The
only difference is that the name of the service would need to be changed in the line that instantiates
the ServiceController (step 5).

Keep in mind that the ServiceController is not communicating directly with the service. It is work-
ing through the Service Control Manager. That means the requests from the Service Controller to start,
stop, or pause a service do not behave synchronously. As soon as the ServiceController has passed the
request to the ServicesControlManager, it continues to execute its own code without waiting for
the Service Control Manager to pass on the request, or for the service to act on the request.

Custom Commands
Some services need additional operations besides starting and stopping. For example, for the
CounterMonitor Windows Service, you might want to set the threshold value of the performance counter
that causes the service to begin beeping, or you might want to change the interval between beeps.

With most components, you would implement such functionality through a public interface. That is,
you would put public properties and methods on the component. However, you cannot do this with a
Windows Service because it has no public interface that you can access from outside the service.

To deal with this need, the interface for a Windows Service contains a special event called
OnCustomCommand. The event arguments include a numeric code that can serve as a command sent to
the Windows Service. The code can be any number in the range 128 to 255. (The numbers under 128 are
reserved for use by the operating system.)

To fire the event and send a custom command to a service, the ExecuteCommand method of the
ServiceController is used. The ExecuteCommand method takes the numeric code that needs to be sent to
the service as a parameter. When this method is accessed, the ServiceController class tells the Service
Control Manager to fire the OnCustomCommand event in the service, and to pass it the numeric code.

The next example demonstrates this process in action. Suppose you want to be able to change the interval
between beeps for the CounterMonitor service. You cannot directly send the beep interval that you want,
but you can pick various values of the interval, and associate a custom command numeric code with each.

For example, assume you want to be able to set intervals of 1 second, 3 seconds (the default), or 10 sec-
onds. You could set up the following correspondence:

Custom Command Numeric Code Beep Interval

201 One second (1,000 milliseconds)

203 Three seconds (3,000 milliseconds)

210 Ten seconds (10,000 milliseconds)

The correspondences in the table are completely arbitrary. You could use any codes between 128 and 255
to associate with the beep intervals. These were chosen because they are easy to remember.

1287

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1288

Chapter 33: Windows Services

First, you need to change the CounterMonitor service so that it is able to accept the custom commands
for the beep interval. To do that, first make sure the CounterMonitor service is uninstalled from any
previous installs. Then open the Visual Studio 2008 project for the CounterMonitor service.

Create an OnCustomCommand event in the service: Open the code window for CounterMonitor.vb and
type Protected Overrides OnCustomCommand. By this point, IntelliSense will kick in and you can press
the Tab key to autocomplete the shell event. Notice how it only accepts a single Integer as a parameter:

Protected Overrides Sub OnCustomCommand(ByVal command As Integer)

End Sub

In the OnCustomCommand event, place the following code:

Timer1.Enabled = False
Select Case command

Case 201
Timer1.Interval = 1000

Case 203
Timer1.Interval = 3000

Case 210
Timer1.Interval = 10000

End Select
Timer1.Enabled = True

Build the countermonitor service, reinstall it, and start it.

Now you can enhance the CounterTest application created earlier to set the interval. To enable users
to pick the interval, you will use radio buttons. On the CounterTest program Form1 (which currently
contains five buttons), place three radio buttons. Set their text labels as follows:

RadioButton1 - 1 second
RadioButton2 - 3 seconds
RadioButton3 - 10 seconds

Place a button directly under these option buttons. Name it btnSetInterval and set its text to Set
Interval. In the click event for this button, place the following code:

Dim nIntervalCommand As Integer = 203
If RadioButton1.Checked Then

nIntervalCommand = 201
End If
If RadioButton2.Checked Then

nIntervalCommand = 203
End If
If RadioButton3.Checked Then

nIntervalCommand = 210
End If
myController.ExecuteCommand(nIntervalCommand)

At this point, Form1 should look something like the screen shown in Figure 33-8.

1288

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1289

Chapter 33: Windows Services

Figure 33-8

Start the CounterTest control program and test the capability to change the beep interval. Make sure the
performance counter is high enough that the CounterMonitor service beeps, and remember that every
time you stop and restart the service, it resets the beep interval to three seconds.

Passing Strings to a Service
Because the OnCustomCommand event only takes numeric codes as input parameters, you cannot directly
pass strings to the service. For example, if you wanted to reconfigure a directory name for a service, you
could not just send the directory name over. Instead, it would be necessary to place the information to be
passed to the service in a file in some known location on disk. Then a custom command for the service
could instruct it to look at the standard file location and read the information in the file. What the
service did with the contents of the file would, of course, be customized for the service.

Creating a File Watcher
Now let’s step through another example to illustrate what a Windows Service can do and how to con-
struct one. You will build a service that monitors a particular directory and reacts when a new or changed
file is placed in the directory. The example Windows Service application waits for those files, extracts
information from them, and then logs an event to a system log to record the file change.

As before, create a Windows Service from the built-in template named Windows Service in the New
Project screen. Name the new project FileWatcherService and click OK. This creates a new service
class called Service1.vb. Rename this to FileWatcherService.vb. Right-click the design surface, select
Properties, and set the ServiceName property to FileWatcherService.

As in the first example, set the application type to Windows Service and reset the project’s start object to
FileWatcherService. All of this is illustrated earlier in this chapter.

Writing events using an Event Log
The way to ensure that the service is doing its job is by having it write events to a system Event Log. Event
Logs are available under the Windows operating system. As with many other system-level features, the
use of Event Logs is simplified in .NET because a .NET Framework base class does most of the work
for you.

1289

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1290

Chapter 33: Windows Services

There are three Event Logs on the system: Application, Security, and System. Normally, your
applications should only write to the Application log. A property of a log entry called Source identifies
the application writing the message. This property does not have to be the same as the executable name
of the application, but it is often given that name to make it easy to identify the source of the message.

You can look at the events in the Event Log by using the Event Viewer. Select Control Panel ➪

Administrative Tools ➪ Event Viewer on Windows 2000; Start ➪ All Programs ➪ Administrative
Tools ➪ Event Viewer on Windows XP; and Start ➪ Control Panel ➪ System and Maintenance ➪

Administrative Tools ➪ Event Viewer on Windows Vista. The following example uses the Event Viewer
to ensure that the service is generating events.

It was mentioned earlier in the chapter that the AutoLog property of the ServiceBase class determines
whether the service automatically writes events to the Application log. The AutoLog property instructs
the service to use the Application Event Log to report command failures, as well as information for
OnStart, OnStop, OnPause, and OnContinue events on the service. What is actually logged to the Event
Log is an entry indicating whether the service started successfully and stopped successfully, and any
errors that might have occurred. If you look in the Application Event Log now, these events are logged
for the CounterMonitor Windows Service that you created and ran earlier in the chapter.

You can turn off Event Log reporting by setting the AutoLog property to False in the Properties win-
dow for the service, but leave it set to True for this example. That means some events will be logged
automatically (without you including any code for them). Then, you add some code to the service to
log additional events not covered by the AutoLog property. First, though, you need to implement a file
monitoring control in the project.

Creating a FileSystemWatcher
For performance reasons, you should do all of your work on a separate thread to your main application
thread. You want to leave your main application free to accept any requests from the user or the operating
system. You can do this by using some of the different components that create their own threads when
they are launched. The Timer component and the FileSystemWatcher component are two examples.
When the Timer component fires its Elapsed event, a thread is spawned and any code placed within
that event will work on that newly created thread. The same thing happens when the events for the
FileSystemWatcher component fire.

You can learn more about threading in .NET in Chapter 26.

The FileSystemWatcher Component
The FileSystemWatcher component is used to monitor a particular directory. The component imple-
ments Created, Changed, Deleted, and Renamed events, which are fired when files are placed in the
directory, changed, deleted, or renamed, respectively.

The operation that takes place when one of these events is fired is determined by the application devel-
oper. Most often, logic is included to read and process the new or changed files. However, you are just
going to write a message to a log file.

To implement the component in the project, drag and drop a FileSystemWatcher control from the
Components tab of the Toolbox onto the designer surface of FileWatcherService.vb. This control is
automatically called FileSystemWatcher1.

1290

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1291

Chapter 33: Windows Services

The EnableRaisingEvents Property
The FileSystemWatcher control should not generate any events until the service is initialized and ready
to handle them. To prevent this, set the EnableRaisingEvents property to False. This prevents the
control from firing any events. You will enable it during the OnStart event in the service. These events
fired by the FileSystemWatcher are controlled using the NotifyFilter property, discussed later.

The Path Property
The path that you want to monitor is the TEMP directory on the C: drive, so set the Path property to
C:\TEMP (be sure to confirm that there is a TEMP directory on your C: drive). Of course, this path can
be changed to monitor any directory depending on your system, including any network or remov-
able drives.

The NotifyFilter Property
You only want to monitor when a file is freshly created or the last modified value of a file has changed. To
do this, set the NotifyFilter property to FileName, LastWrite. You could also watch for other changes
such as attributes, security, size, and directory name changes as well, just by changing the NotifyFilter
property. Note that you can specify multiple changes to monitor by including a comma-separated list.

The Filter Property
The types of files that you will look for are text files, so set the Filter property to .txt. Note that if you
were going to watch for all file types, then the value of the Filter property would be set to *.*.

The IncludeSubdirectories Property
If you wanted to watch subdirectories, you would set the IncludeSubdirectories property to True.
This example leaves it as False, which is the default value. Figure 33-9 shows how the properties
should be set.

Figure 33-9

1291

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1292

Chapter 33: Windows Services

Adding FileSystemWatcher Code to OnStart and OnStop
Now that some properties are set, let’s add some code to the OnStart event. You want to start the
FileSystemWatcher1 component so it will start triggering events when files are created or copied into
the directory you are monitoring, so set the EnableRaisingEvents property to True:

Protected Overrides Sub OnStart(ByVal args() As String)
’ Start monitoring for files
FileSystemWatcher1.EnableRaisingEvents = True

End Sub

After the file monitoring properties are initialized, you are ready to start the monitoring. When the service
stops, you need to stop the file monitoring process. Add the following code to the OnStop event:

Protected Overrides Sub OnStop()
’ Stop monitoring for files
FileSystemWatcher1.EnableRaisingEvents = False

End Sub

The EventLog Component
Now you are ready to place an EventLog component in the service to facilitate logging of events. Drag
and drop an EventLog control from the Components tab of the Toolbox onto the designer surface of
FileWatcherService.vb. This control is automatically called EventLog1.

Set the Log property for Eventlog1 to Application, and set the Source property to FileWatcherService.

The Created Event
Next, you will place some logic in the Created event of the FileSystemWatcher component to log when
a file has been created. This event fires when a file has been placed or created in the directory that you
are monitoring. It fires because the information last modified on the file has changed.

Select FileSystemWatcher1 from the Class Name drop-down list and select Created from the Method
Name drop-down list. The Created event will be added to your code. Add code to the Created event as
follows:

Public Sub FileSystemWatcher1_Created(ByVal sender As Object, _
ByVal e As System.IO.FileSystemEventArgs) _
Handles FileSystemWatcher1.Created

Dim sMessage As String
sMessage = "File created in directory - file name is " + e.Name
EventLog1.WriteEntry(sMessage)

End Sub

Notice that the event argument’s object (the object named ‘‘e’’ in the event parameters) includes a
property called Name. This property holds the name of the file that generated the event.

At this point, you could add the other events for FileSystemWatcher (Changed, Deleted, Renamed) in a
similar way and create corresponding log messages for those events. To keep the example simple, you
will just use the Created event in this service.

1292

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1293

Chapter 33: Windows Services

You need to add an Installer class to this project to install the application. This is done as it was in the
CounterMonitor example, by right-clicking the design surface for the service and selecting Add Installer
or by clicking the Add Installer link in the Properties window of Visual Studio 2008. Don’t forget to
change the Account property to LocalSystem, or set it to User and fill in the Username and Password
properties.

As before, you must install the service using InstallUtil.exe. Then, start it with the Server Explorer
or the Service Manager. Upon successful compilation of these steps, you will get a message logged for
any file with a .txt extension that you copy or create in the monitored directory. After dropping some
sample text files into the monitored directory, you can use the Event Viewer to ensure that the events are
present.

Figure 33-10 shows the Event Viewer with several example messages created by the service. If you
right-click one of the events for FileWatcherService, you will see a detail screen. Notice that the message
corresponds to the Event Log message you constructed in the Created event of the FileSystemWatcher
control in the service, as shown in Figure 33-11.

Figure 33-10

Debugging the Service
Because a service must be run from within the context of the Service Control Manager, rather than from
within Visual Studio 2008, debugging a service is not as straightforward as debugging other Visual Studio
2008 application types. To debug a service, you must start the service and then attach a debugger to the
process in which it is running. You can then debug the application using all of the standard debugging
functionality of Visual Studio 2008.

1293

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1294

Chapter 33: Windows Services

Figure 33-11

Don’t attach to a process unless you know what the process is and understand the
consequences of attaching to and possibly killing that process.

To avoid going through this extra effort, you may want to test most of the code in your service in a stan-
dard Windows Forms application. This test-bed application can have the same components
(FileSystemWatchers, EventLogs, Timers, and so on) as the Windows Service, and thus will be able
to run the same logic in events. Once you have checked out the logic in this context, you can just copy
and paste it into a Windows Service application.

However, sometimes the service itself needs to be debugged directly, so it is important to understand
how to attach to the service’s process and do direct debugging. You can only debug a service when it is
running. When you attach the debugger to the service, you are interrupting it. The service is suspended
for a short period while you attach to it. It is also interrupted when you place breakpoints and step
through your code.

Attaching to the service’s process enables you to debug most, but not all, of the service’s code. For
instance, because the service has already been started, you cannot debug the code in the service’s OnStart
method this way, or the code in the Main method that is used to load the service. To debug the
OnStart event or any of the Visual Studio 2008 designer code, you have to add a dummy service and
start that service first. In the dummy service, you would create an instance of the service that you want to
debug. You can place some code in a Timer object and create the new instance of the object that you want
to debug after 30 seconds or so. Allow enough time to attach to the debugger before the new instance is
created. Meanwhile, place breakpoints in your startup code to debug those events, if desired.

Follow these steps to debug a service:

1. Install the service.

2. Start the service, either from the Service Control Manager, from Server Explorer, or
from code.

1294

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1295

Chapter 33: Windows Services

3. In Visual Studio 2008, load the solution for the service. Then select Attach to Process from
the Debug menu. The Attach to Process dialog box appears (see Figure 33-12).

Figure 33-12

4. For a Windows Service, the desired process to attach to is not a foreground process; be sure
to check the check box next to the ‘‘Show processes from all users’’ option.

5. In the Available Processes section, click the process indicated by the executable name for the
service, and then click Attach.

6. You can now debug your process. Place a breakpoint in the code for the service at the place
you want to debug. Cause the code in the service to execute (by placing a file in a moni-
tored directory, for example).

7. When finished, select Stop Debugging from the Debug menu.

Let’s go through an actual scenario, using your earlier CounterMonitor example. Bring up both the
CounterMonitor project and the CounterTest project in separate instances of the Visual Studio 2008
IDE. Make sure that the CounterMonitor service has been started. It is best if you hear it beeping —
that way you know it is working. If necessary, increment the performance counter to make
it beep.

In the CounterMonitor project, select Debug ➪ Processes; you will get a dialog box that shows a list
of the foreground processes on the system. Check the box next to Show System Processes. This will
expand the list of processes, and one of the processes in the list will be CounterMonitor.exe. Highlight
it and click Attach.

You will then get a dialog box asking you what program types you are interested in debugging. Because
you are working solely within .NET, check the box next to Common Language Runtime and leave the
rest unchecked. Click the OK button, and then click the Close button on the Processes dialog box. You
are now attached to the process running CounterMonitor in the background.

1295

Evjen-91361 c33.tex V2 - 04/01/2008 5:54pm Page 1296

Chapter 33: Windows Services

Place a breakpoint on the first line of the OnCustomCommand event:

Timer1.Enabled = False

Now you are ready to check debugging. Bring up the CounterTest program and start it. Press one of the
radio buttons to change the beep interval. You will hear the beeping stop because CounterMonitor.exe
has entered debugging mode. Switch back to the CounterMonitor project. The cursor will be on the
breakpoint line in OnCustomCommand. You can use the normal commands at this point to step through
the code.

Summary
This chapter presented a general overview of what a Windows Service is and how to create one with
Visual Basic. The techniques in this chapter can be used for many different types of background service,
including the following:

❑ Automatically moving statistical files from a database server to a web server

❑ Pushing general files across computers and platforms

❑ A watchdog timer to ensure that a connection is always available

❑ An application to move and process FTP files, or indeed files received from any source

While Visual Basic cannot be used to create every type of Windows Service, it is effective at creating
many of the most useful ones. The .NET Framework classes for Windows Services make this creation
relatively straightforward. The designers generate much of the routine code needed, enabling you, as a
developer, to concentrate on the code that is specific to your particular Windows Service.

1296

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1297

Visual Basic and
the Internet

In today’s network-centric world, it is very likely that applications will need to work with other
computers over a private network, the Internet, or both. This chapter details how to do the
following:

❑ Download resources from the Web

❑ Design your own communication protocols

❑ Reuse Internet Explorer in your applications

Downloading Internet Resources
Downloading content from the Web is very easy, and in this chapter you will throw together a
basic application before getting into some meatier topics. This application downloads HTML from
a Web page and displays it in a text box. Later, you will learn how you can display HTML prop-
erly by hosting Internet Explorer (IE) directly using the WebBrowser control in Windows Forms
applications, but for now, you will just use plain text.

In order to download a Web page, you need to be able to identify the remote page that you wish to
download, make a request of the web server that can provide that page, listen for the response, and
download the data for the resource.

The relevant classes for this example are System.Uri, System.Net.WebRequest, System.Net
.HttpWebRequest, and System.Net.HttpWebResponse:

❑ System.Uri is a useful general-purpose class for expressing a Uniform Resource Identi-
fier (URI). A Uniform Resource Locator (URL) is a type of URI (although, in reality, the
terms are so confused that they are often used interchangeably). A URI, however, is ‘‘more
than’’ a URL, which is why this .NET class is Uri and not Url. System. You will find

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1298

Chapter 34: Visual Basic and the Internet

that Uri has many properties for decoding a URI. For example, if you had a string such as
www.lipperweb.com:8080/myservices/myservice.asmx?WSDL, you could use the Port
property to extract the port number, the Query property to extract the query string,
and so on.

❑ A WebRequest expresses some kind of Internet resource, whether it is located on the LAN or
WAN. (A better name for this class would be NetRequest, as the classes are not specifically
related to the Web protocol.)

❑ Protocol-specific descendants of WebRequest carry out the actual request: HttpWebRequest
expresses an HTTP download and FileWebRequest expresses a file download — for example,
//c:/MyFile.txt.

❑ An HttpWebResponse is returned once a connection to the web server has been made and the
resource is available to download.

There are another two major classes related to working with the Internet in the .NET Framework:
System.Net.WebClient and System.Net.WebProxy. WebClient, the latter being a helper class that wraps
the request and response classes previously mentioned.

Because this is a professional-level book, this example shows you what to do behind the scenes — in
effect, re-engineer what WebClient can do. You will look at WebProxy later, which enables you to explic-
itly define a proxy server to use for Internet communications.

Let’s use these classes to build an application. Create a new Windows application, create a new form, and
add controls to it as shown in Figure 34-1.

Figure 34-1

The control names are textUrl, buttonGo, and textData. The Anchor properties of the controls are set
so that the form resizes properly. The textUrl should be set to Top, Left, Right. Set buttonGo to Top,
Right, and set textData to Top, Left, Bottom, Right.

Add the following namespace import declarations to the form’s code:

Imports System.IO
Imports System.Net
Imports System.Text

To keep the code simple, you will include all the functionality in the Click handler of buttonGo. Ideally,
you want to break the code in the handler out to a separate method. This enriches the interface of the
object and promotes good reuse.

1298

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1299

Chapter 34: Visual Basic and the Internet

The first thing you do here is create a new System.Uri based on the URL that the user enters into the
text box:

Private Sub buttonGo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonGo.Click

Dim uri As New Uri(textUrl.Text)

Then, illustrate some of the useful properties of System.Uri:

Dim builder As New StringBuilder()
builder.Append("AbsolutePath: " & uri.AbsolutePath & VbCrLf)
builder.Append("AbsoluteUri: " & uri.AbsoluteUri & VbCrLf)
builder.Append("Host: " & uri.Host & VbCrLf)
builder.Append("HostNameType: " & uri.HostNameType.ToString() & _

VbCrLf)
builder.Append("LocalPath: " & uri.LocalPath & VbCrLf)
builder.Append("PathAndQuery: " & uri.PathAndQuery & VbCrLf)
builder.Append("Port: " & uri.Port & VbCrLf)
builder.Append("Query: " & uri.Query & VbCrLf)
builder.Append("Scheme: " & uri.Scheme)

MessageBox.Show(builder.ToString())

The shared Create method of System.Net.WebRequest is used to create the actual object that you can use
to download the Web resource. Note that you do not create an instance of HttpWebRequest; you are work-
ing with a return object of type WebRequest. However, you will actually be given an HttpWebRequest
object, and WebRequest chooses the most appropriate class to return based on the URI. This enables you
to build your own handlers for different network resources that can be used by consumers who simply
supply an appropriate URL.

To make the request and get the response back from the server (so that ultimately you can access
the data), you call the GetResponse method of WebRequest. In this case, you get an HttpWebResponse
object — again, it is up to the implementation of the WebRequest-derived object, in this case
HttpWebRequest, to return an object of the most suitable type.

If the request is not OK, then you will get an exception (which, for the sake of simplicity, you won’t bother
processing). If the request is OK, then you can get the length and type of the response using properties of
the WebResponse object:

Dim request As WebRequest = WebRequest.Create(uri)
Dim response As WebResponse = request.GetResponse()
builder = New StringBuilder()
builder.Append("Request type: " & request.GetType().ToString() & VbCrLf)
builder.Append("Response type: " & response.GetType().ToString() & VbCrLf)
builder.Append("Content length: " & response.ContentLength & _

" bytes" & VbCrLf)
builder.Append("Content type: " & response.ContentType & VbCrLf)

MessageBox.Show(builder.ToString())

It just remains for you to download the information. You can do this through a stream (WebResponse
objects return a stream by overriding GetResponseStream); moreover, you can use a System.IO
.StreamReader to download the whole lot in a single call by calling the ReadToEnd method. This method

1299

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1300

Chapter 34: Visual Basic and the Internet

only downloads text, so if you want to download binary data, then you have to use the methods on the
Stream object directly, or use a System.IO.BinaryReader:

Dim stream As Stream = response.GetResponseStream()
Dim reader As New StreamReader(stream)
Dim data As String = reader.ReadToEnd()

reader.Close()
stream.Close()

textData.Text = data
End Sub

If you run the application, enter a URL of www.reuters.com, and click Go, you will see debugging infor-
mation about the URL, as shown in Figure 34-2.

Figure 34-2

This is a simple URL. The application tells you that the scheme is http and the host name type is Dns. If
you enter an IP into the URL to be requested, rather than a host name, then this type will come back as
IPv4. This tells you where the host name came from; in this case, it is a general Internet host name. Next,
the application provides information about the response (see Figure 34-3).

Figure 34-3

The response data itself is shown in Figure 34-4.

Perhaps the most important exception to be aware of when using these classes is the System.Net
.WebException exception. If anything goes wrong on the WebRequest.GetResponse call, then this excep-
tion is thrown. Among other things, this exception provides access to the WebResponse object through
the Response property. The StatusCode property of WebResponse tells you what actually happened
through the HttpStatusCode enumeration. For example, HttpStatusCode.NotFound is the equivalent of
the HTTP 404 status code.

1300

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1301

Chapter 34: Visual Basic and the Internet

Figure 34-4

Sockets
There may be times when you need to transfer data across a network (either a private network or the
Internet) but the existing techniques and protocols do not exactly suit your needs. For example, you
cannot download resources using the techniques discussed at the start of this chapter, and you cannot use
Web services (as described in Chapter 28) or remoting (as described in Chapter 29). When this happens,
the best course of action is to roll your own protocol using sockets.

TCP/IP and, therefore, the Internet itself are based on sockets. The principle is simple: establish a port
at one end and allow clients to ‘‘plug in’’ to that port from the other end. Once the connection is made,
applications can send and receive data through a stream. For example, HTTP nearly always operates on
port 80, so a web server opens a socket on port 80 and waits for incoming connections (Web browsers,
unless told otherwise, attempt to connect to port 80 in order to make a request of that web server).

In .NET, sockets are implemented in the System.Net.Sockets namespace and use classes from System
.Net and System.IO to get the stream classes. Although working with sockets can be a little tricky
outside of .NET, the framework includes some superb classes that enable you to open a socket for
inbound connections (System.Net.TcpListener) and for communication between two open sockets
(System.Net.TcpClient). These two classes, in combination with some threading shenanigans, enable
you to build your own protocol through which you can send any data you like. With your own protocol,
you have ultimate control over the communication.

To demonstrate these techniques, you are going to build Wrox Messenger, a very basic instant messenger
application similar to MSN Messenger.

Building the Application
You will wrap all the functionality of your application into a single Windows application, which will
act as both a server that waits for inbound connections and a client that has established outbound
connections.

Create a new project called WroxMessenger. Change the title of Form1 to Wrox Messenger and add a
TextBox control called textConnectTo and a Button control called buttonConnect. The form should
appear as shown in Figure 34-5.

You will learn more about this in greater detail later, but for now, it is very important that all of your
UI code runs in the same thread, and that the thread is actually the main application that creates and
runs Form1.

1301

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1302

Chapter 34: Visual Basic and the Internet

Figure 34-5

To keep track of what is happening, you will add a field to Form1 that enables you to store the ID of the
startup thread and report that ID on the caption. This helps provide a context for the thread/UI issues
discussed later. You also need some namespace imports and a constant specifying the ID of the default
port. Add the following code to Form1:

Imports System.Net
Imports System.Net.Sockets
Imports System.Threading

Public Class Form1

Private Shared _mainThreadId As Integer
Public Const ServicePort As Integer = 10101

Next, create a New method for Form1 (Form1.vb) and add this code to the constructor that populates the
field and changes the caption:

Public Sub New()

’ This call is required by the Windows Form Designer.
InitializeComponent()

’ Add any initialization after the InitializeComponent() call.
_mainThreadId = System.Threading.Thread.CurrentThread.GetHashCode()

Text &= "-" & _mainThreadId.ToString()
End Sub

Note that you can get to the Form1.vb file’s New method by using Visual Studio and selecting Form1 and
New in the uppermost drop-downs in the document window. This causes the Form1.vb file’s New method
to be created on your behalf.

To listen for incoming connections, you will create a separate class called Listener. This class uses an
instance of System.Net.Sockets.TcpListener to wait for incoming connections. Specifically, it opens
a TCP port that any client can connect to — sockets are not platform-specific. Although connections are
always made on a specific, known port, the actual communication takes place on a port of the TCP/IP
subsystem’s choosing, which means you can support many inbound connections at once, despite the fact
that each of them connects to the same port. Sockets are an open standard available on pretty much any
platform. For example, if you publish the specification for your protocol, then developers working on
Linux can connect to your Wrox Messenger service.

When you detect an inbound connection, you are given a System.Net.Sockets.TcpClient object. This
is your gateway to the remote client. To send and receive data, you need to obtain a System.Net
.NetworkStream object (returned through a call to GetStream on TcpClient), which returns a stream that
you can use.

1302

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1303

Chapter 34: Visual Basic and the Internet

Create a new class called Listener. This thread needs members to hold an instance of a System
.Threading.Thread object, and a reference back to the Form1 class that is the main form in the applica-
tion. Not covered here is how to spin up and down threads, or synchronization. (Refer to Chapter 26 if
you need more information about that.)

Here is the basic code for the Listener class:

Imports System.Net.Sockets
Imports System.Threading

Public Class Listener

Private _main As Form1
Private _listener As TcpListener
Private _thread As Thread

Public Sub New(ByVal main As Form1)
_main = main

End Sub

Public Sub SpinUp()

’ create and start the new thread...
_thread = New Thread(AddressOf ThreadEntryPoint)
_thread.Start()

End Sub
End Class

The obvious missing method here is ThreadEntryPoint. This is where you need to create the socket and
wait for inbound connections. When you get them, you are given a TcpClient object, which you pass
back to Form1, where the conversation window can be created. You create this method in the Listener.vb
class file.

To create the socket, create an instance of TcpListener and give it a port. In your application, the port
you are going to use is 10101. This port should be free on your computer, but if the debugger breaks on
an exception when you instantiate TcpListener or call Start, then try another port. Once you have done
that and called Start to configure the object to listen for connections, you drop into an infinite loop and
call AcceptTcpClient. This method blocks until the socket is closed or a connection becomes available. If
you get Nothing back, then either the socket is closed or there is a problem, so you drop out of the thread.
If you get something back, then you pass the TcpClient over to Form1 through a call to the (not yet built)
ReceiveInboundConnection method:

’ ThreadEntryPoint...
Protected Sub ThreadEntryPoint()

’ Create a socket...
_listener = New TcpListener(Form1.ServicePort)
_listener.Start()

’ Loop infinitely, waiting for connections.
Do While True

’ Get a connection...

1303

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1304

Chapter 34: Visual Basic and the Internet

Dim client As TcpClient = _listener.AcceptTcpClient()
If client Is Nothing Then
Exit Do
End If
’ Process it...
_main.ReceiveInboundConnection(client)
Loop

End Sub

It is in the ReceiveInboundConnection method that you create the Conversation form that the user can
use to send messages.

Creating conversation windows
When building Windows Forms applications that support threading, there is always the possibility of
running into a problem with the Windows messaging subsystem. This is a very old part of Windows that
powers the Windows user interface (the idea has been around since version 1.0 of the platform, although
the implementation on modern Windows versions is far removed from the original).

Even those who are not familiar with old-school Windows programming, such as MFC, Win32, or even
Win16 development, should be familiar with events. When you move a mouse over a form, you get
MouseMove events. When you close a form, you get a Closed event. There is a mapping between these
events and the messages that Windows passes around to support the actual display of the windows. For
example, whenever you receive a MouseMove event, a message called WM_MOUSEMOVE is sent to the window
by Windows, in response to the mouse driver. In .NET and other rapid application development (RAD)
environments such as VB and Delphi, this message is converted into an event that you can write code
against.

Although this is getting way off the topic — you know how to build Windows Forms applications by
now and don’t need the details of messages such as WM_NCHITTEST or WM_PAINT — it has an important
implication. In effect, Windows creates a message queue for each thread into which it posts the messages
that the thread’s windows have to work with. This queue is looped on a virtually constant basis, and the
messages are distributed to the appropriate window (remember that small controls such as buttons and
text boxes are also windows). In .NET, these messages are turned into events, but unless the message
queue is looped, the messages do not get through.

Suppose Windows needs to paint a window. It posts a WM_PAINT message to the queue. A message loop
implemented on the main thread of the process containing the window detects the message and dis-
patches it on to the appropriate window, where it is processed. Now suppose that the queue is not
looped. The message is never picked up and the window is never painted.

In a Windows application, a single thread is usually responsible for message dispatch. This thread is
typically (but not necessarily) the main application thread — the one that is created when the process
is first created. If you create windows in a different thread, then that new thread has to support the
message dispatch loop so that messages destined for the windows get through. However, with Listener,
you have no code for processing the message loop, and there is little point in writing any because the next
time you call AcceptTcpClient, you are going to block, and everything will stop working.

The trick, therefore, is to create the windows only in the main application thread, which is the thread that
created Form1 and is processing the messages for all the windows created in this thread. You can pass
calls from one thread to the other by calling the Invoke method of Form1.

1304

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1305

Chapter 34: Visual Basic and the Internet

This is where things start to get complicated. There is a very lot of code to write to get to a point where
you can see that the socket connection has been established and get conversation windows to appear.
Here is what you need to do:

❑ Create a new Conversation form. This form needs controls for displaying the total content of the
conversation, plus a TextBox control for adding new messages.

❑ The Conversation window needs to be able to send and receive messages through its own thread.

❑ Form1 needs to be able to initiate new connections. This will be done in a separate thread that
is managed by the thread pool. When the connection has been established, a new Conversation
window needs to be created and configured.

❑ Form1 also needs to receive inbound connections. When it gets one of these, a new Conversation
must be created and configured.

Let’s look at each of these challenges.

Creating the Conversation Form
The simplest place to start is to build the new Conversation form, which needs three TextBox con-
trols (textUsername, textMessages, and textMessage) and a Button control (buttonSend), as shown
in Figure 34-6.

Figure 34-6

This class requires a number of fields and an enumeration. It needs fields to hold the username of the user
(which you will default to Evjen), the underlying TcpClient, and the NetworkStream returned by that
client. The enumeration indicates the direction of the connection (which will help you when debugging):

Imports System.Net
Imports System.Net.Sockets
Imports System.Text
Imports System.Threading
Imports System.Runtime.Serialization.Formatters.Binary

Public Class Conversation

Private _username As String = "Evjen"
Private _client As TcpClient
Private _stream As NetworkStream

1305

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1306

Chapter 34: Visual Basic and the Internet

Private _direction As ConversationDirection

Public Enum ConversationDirection As Integer
Inbound = 0
Outbound = 1

End Enum

At this point, we won’t look into the issues surrounding establishing a thread for exchanging messages,
but we will look at implementing the ConfigureClient method. This method eventually does more work
than this, but for now it sets a couple of fields and calls UpdateCaption:

Public Sub ConfigureClient(ByVal client As TcpClient, _
ByVal direction As ConversationDirection)

’ Set it up...
_client = client
_direction = direction

’ Update the window...
UpdateCaption()

End Sub

Protected Sub UpdateCaption()

’ Set the text.
Dim builder As New StringBuilder(_username)
builder.Append(" - ")
builder.Append(_direction.ToString())
builder.Append(" - ")
builder.Append(Thread.CurrentThread.GetHashCode())
builder.Append(" - ")

If Not _client Is Nothing Then
builder.Append("Connected")

Else
builder.Append("Not connected")

End If

Text = builder.ToString()
End Sub

Note a debugging issue to deal with: if you are connecting to a conversation on the same machine, then
you need a way to change the name of the user sending each message; otherwise, things get confusing.
That is what the topmost TextBox control is for. In the constructor, set the text for the textUsername.Text
property:

Public Sub New()

’ This call is required by the Windows Form Designer.
InitializeComponent()

’ Add any initialization after the InitializeComponent() call.
textUsername.Text = _username

End Sub

1306

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1307

Chapter 34: Visual Basic and the Internet

On the TextChanged event for this control, update the caption and the internal _username field:

Private Sub textUsername_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles textUsername.TextChanged

_username = textUsername.Text
UpdateCaption()

End Sub

Initiating Connections
Form1 needs to be able to both initiate connections and receive inbound connections — the application
is both a client and a server. You have already created some of the server portion by creating Listener;
now you will look at the client side.

The general rule when working with sockets is that any time you send anything over the wire, you must
perform the actual communication in a separate thread. Virtually all calls to send and receive do so in a
blocking manner; that is, they block until data is received, block until all data is sent, and so on.

If threads are used well, then the UI will keep running as normal, irrespective of the problems that may
occur during transmitting and receiving. This is why in the InitiateConnection method on Form1, you
defer processing to another method called InitiateConnectionThreadEntryPoint, which is called from
a new thread:

Public Sub InitiateConnection()
InitiateConnection(textConnectTo.Text)

End Sub

Public Sub InitiateConnection(ByVal hostName As String)

’ Give it to the threadpool to do...
ThreadPool.QueueUserWorkItem(AddressOf _
Me.InitiateConnectionThreadEntryPoint, hostName)

End Sub

Private Sub buttonConnect_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles buttonConnect.Click

InitiateConnection()
End Sub

Inside the thread, you try to convert the host name that you are given into an IP address (localhost is
used as the host name in the demonstration, but it could be the name of a machine on the local network or
a host name on the Internet). This is done through the shared GetHostEntry method on System.Net.Dns,
and returns a System.Net.IPHostEntry object. Because a host name can point to multiple IP addresses,
you will just use the first one that you are given. You take this address expressed as an IP (for example,
192.168.0.4) and combine it with the port number to get a new System.Net.IPEndPoint. Then, you
create a new TcpClient from this IPEndPoint and try to connect.

If at any time an exception is thrown (which can happen because the name could not be resolved or the
connection could not be established), you pass the exception to HandleInitiateConnectionException. If

1307

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1308

Chapter 34: Visual Basic and the Internet

it succeeds, then you pass it to ProcessOutboundConnection. Both of these methods will be implemented
shortly:

Private Sub InitiateConnectionThreadEntryPoint(ByVal state As Object)

Try
’ Get the host name...
Dim hostName As String = CStr(state)

’ Resolve...
Dim hostEntry As IPHostEntry = Dns.GetHostEntry(hostName)
If Not hostEntry Is Nothing Then

’ Create an end point for the first address.
Dim endPoint As New IPEndPoint(hostEntry.AddressList(0), ServicePort)

’ Create a TCP client...
Dim client As New TcpClient()
client.Connect(endPoint)

’ Create the connection window...
ProcessOutboundConnection(client)

Else
Throw New ApplicationException("Host ’" & hostName & _

"’ could not be resolved.")
End If

Catch ex As Exception
HandleInitiateConnectionException(ex)

End Try
End Sub

When it comes to HandleInitiateConnectionException, you start to see the inter-thread UI problems
that were mentioned earlier. When there is a problem with the exception, you need to tell the user,
which means you need to move the exception from the thread-pool-managed thread into the main appli-
cation thread. The principle for this is the same; you need to create a delegate and call that delegate
through the form’s Invoke method. This method does all the hard work in marshaling the call across to
the other thread.

Here is what the delegates look like. They have the same parameters of the calls themselves. As a naming
convention, it is a good idea to use the same name as the method and tack the word Delegate on the end:

Public Class Form1

Private Shared _mainThreadId As Integer
’ delegates...
Protected Delegate Sub HandleInitiateConnectionExceptionDelegate(_

ByVal ex As Exception)

In the constructor for Form1, you capture the thread caller’s thread ID and store it in _mainThreadId.
Here is a method that compares the captured ID with the ID of the current thread:

Public Shared Function IsMainThread() As Boolean
If Thread.CurrentThread.GetHashCode() = _mainThreadId Then

1308

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1309

Chapter 34: Visual Basic and the Internet

Return True
Else

Return False
End If

End Function

The first thing you do at the top of HandleInitiateConnectionException is check the thread ID. If it
does not match, then you create the delegate and call it. Notice that you set the delegate to call back
into the same method because the second time it is called, you would have moved to the main thread;
therefore, IsMainThread returns True, and you can process the exception properly:

Protected Sub HandleInitiateConnectionException(ByVal ex As Exception)

’ main thread?
If IsMainThread() = False Then

’ Create and call...
Dim args(0) As Object
args(0) = ex
Invoke(New HandleInitiateConnectionExceptionDelegate(AddressOf _

HandleInitiateConnectionException), args)

’ return
Return

End If

’ Show it.
MessageBox.Show(ex.GetType().ToString() & ":" & ex.Message)

End Sub

The result is that when the call comes in from the thread-pool-managed thread, IsMainThread returns
False, and the delegate is created and called. When the method is entered again as a result of the delegate
call, IsMainThread returns True, and you see the message box.

When it comes to ProcessOutboundConnection, you have to again jump into the main UI thread. How-
ever, the magic behind this method is implemented in a separate method called Process-Connection,
which can handle either inbound or outbound connections. Here is the delegate:

Public Class Form1

Private Shared _mainThreadId As Integer
Private _listener As Listener

Protected Delegate Sub ProcessConnectionDelegate(ByVal client As _
TcpClient, ByVal direction As Conversation.ConversationDirection)

Protected Delegate Sub HandleInitiateConnectionExceptionDelegate(ByVal _
ex As Exception)

Here is the method itself, which creates the new Conversation form and calls the ConfigureClient
method:

Protected Sub ProcessConnection(ByVal client As TcpClient, _
ByVal direction As Conversation.ConversationDirection)

1309

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1310

Chapter 34: Visual Basic and the Internet

’ Do you have to move to another thread?
If IsMainThread() = False Then

’ Create and call...
Dim args(1) As Object
args(0) = client
args(1) = direction
Invoke(New ProcessConnectionDelegate(AddressOf ProcessConnection), args)

Return
End If

’ Create the conversation window...
Dim conversation As New Conversation()
conversation.Show()
conversation.ConfigureClient(client, direction)

End Sub

Of course, ProcessOutboundConnection needs to defer to ProcessConnection:

Public Sub ProcessOutboundConnection(ByVal client As TcpClient)
ProcessConnection(client, Conversation.ConversationDirection.Outbound)

End Sub

Now that you can connect to something on the client side, let’s look at how to receive connections (on the
server side).

Receiving Inbound Connections
You have already built Listener, but you have not created an instance of it or spun up its thread to wait
for incoming connections. To do that, you need a field in Form1 to hold an instance of the object. You also
need to tweak the constructor. Here is the field:

Public Class Form1

Private _mainThreadId As Integer
Private _listener As Listener

Here is the new code that needs to be added to the constructor:

Public Sub New()

’ This call is required by the Windows Form Designer.
InitializeComponent()

’ Add any initialization after the InitializeComponent() call.
_mainThreadId = System.Threading.Thread.CurrentThread.GetHashCode()

Text &= "-" & _mainThreadId.ToString()

’ listener...
_listener = New Listener(Me)
_listener.SpinUp()

End Sub

1310

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1311

Chapter 34: Visual Basic and the Internet

When inbound connections are received, you get a new TcpClient object. This is passed back to Form1
through the ReceiveInboundConnectionmethod. This method, like ProcessOutboundConnection, defers
to ProcessConnection. Because ProcessConnection already handles the issue of moving the call to the
main application thread, ReceiveInboundConnection looks like this:

Public Sub ReceiveInboundConnection(ByVal client As TcpClient)
ProcessConnection(client, Conversation.ConversationDirection.Inbound)

End Sub

If you run the project now, you should be able to click the Connect button and see two windows —
Inbound and Outbound (see Figure 34-7).

Figure 34-7

If you close all three windows, the application keeps running because you have not written code to close
down the listener thread, and having an open thread like this keeps the application open. Select Debug
➪ Stop Debugging in Visual Studio to close the application down by killing all running threads.

By clicking the Connect button, you are calling InitiateConnection. This spins up a new thread in the
pool that resolves the given host name (localhost) into an IP address. This IP address, in combination
with a port number, is then used in the creation of a TcpClient object. If the connection can be made,
then ProcessOutboundConnection is called, which results in the first of the conversation windows being
created and marked as ‘‘outbound.’’

This example is somewhat artificial, as the two instances of Wrox Messenger should be running on
separate computers. On the remote computer (if you are connecting to localhost, this will be the same
computer), a connection is received through the AcceptTcpClient method of TcpListener. This results
in a call to ReceiveInboundConnection, which in turn results in the creation of the second conversation
window, this time marked as ‘‘inbound.’’

Sending messages
The next step is to determine how to exchange messages between the two conversation windows. You
already have a TcpClient in each case, so all you have to do is send binary data down the wire on one

1311

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1312

Chapter 34: Visual Basic and the Internet

side and pick it up at the other end. The two conversation windows act as both client and server, so both
need to be able to send and receive.

You have three challenges to meet:

❑ You need to establish one thread to send data and another thread to receive data.

❑ Data sent and received needs to be reported back to the user so that he or she can follow the
conversation.

❑ The data that you want to send has to be converted into a wire-ready format, which in .NET
terms usually means serialization.

The power of sockets enables you to define whatever protocol you like for data transmission. If you
wanted to build your own SMTP server, you could implement the (publicly available) specifications, set
up a listener to wait for connections on port 25 (the standard port for SMTP), wait for data to come in,
process it, and return responses as appropriate.

It is best to work in this way when building protocols. Unless there are very strong reasons for not doing
so, make your server as open as possible: don’t tie it to a specific platform. This is how things are done on
the Internet. To an extent, things like Web Services should negate the need to build your own protocols;
as you go forward, you will rely instead on the ‘‘remote object available to local client’’ paradigm.

Now it is time to consider the idea of using the serialization features of .NET to transmit data across the
network. After all, you have already seen this in action with Web Services and remoting. You can take an
object in .NET, use serialization to convert it to a string of bytes, and expose that string to a Web Service
consumer, to a remoting client, or even to a file.

Chapter 29 discussed the BinaryFormatter and SoapFormatter classes. You could use either of those
classes, or create your own custom formatter, to convert data for transmission and reception. In this case,
you are going to create a new class called Message and use BinaryFormatter to crunch it down into a
wire-ready format and convert it back again for processing.

This approach is not ideal from the perspective of interoperability, because the actual protocol used is
lost in the implementation of the .NET Framework, rather than being under your absolute control.

If you want to build an open protocol, this is not the best way to do it. Unfortunately, the best way is
beyond the scope of this book, but a good place to start is to look at existing protocols and standards and
model any protocol on their approach. BinaryFormatter provides a quick-and-dirty approach, which is
why you are going to use it here.

The Message Class
The Message class contains two fields, _username and _message, which form the entirety of the data that
you want to transmit. The code for this class follows; note how the Serializable attribute is applied to
it so that BinaryFormatter can change it into a wire-ready form. You are also providing a new imple-
mentation of ToString:

Imports System.Text

<Serializable()> Public Class Message

1312

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1313

Chapter 34: Visual Basic and the Internet

Private _username As String
Private _message As String

Public Sub New(ByVal name As String)
_username = name

End Sub

Public Sub New(ByVal name As String, ByVal message As String)
_username = name
_message = message

End Sub

Public Overrides Function ToString() As String
Dim builder As New StringBuilder(_username)
builder.Append(" says:")
builder.Append(ControlChars.CrLf)
builder.Append(_message)
builder.Append(ControlChars.CrLf)

Return builder.ToString()
End Function

End Class

Now all you have to do is spin up two threads, one for transmission and one for reception, updating the
display. You need two threads per conversation, so if you have 10 conversations open, you need 20 threads
plus the main UI thread, plus the thread running TcpListener.

Receiving messages is easy. When calling Deserialize on BinaryFormatter, you give it the stream
returned to you from TcpClient. If there is no data, then this blocks. If there is data, then it is decoded
into a Message object that you can display. If you have multiple messages coming down the pipe, then
BinaryFormatter keeps processing them until the pipe is empty. Here is the method for this, which
should be added to Conversation. Remember that you haven’t implemented ShowMessage yet:

Protected Sub ReceiveThreadEntryPoint()

’ Create a formatter...
Dim formatter As New BinaryFormatter()

’ Loop
Do While True

’ Receive...
Dim message As Message = formatter.Deserialize(_stream)

If message Is Nothing Then
Exit Do

End If

’ Show it...
ShowMessage(message)

Loop
End Sub

1313

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1314

Chapter 34: Visual Basic and the Internet

Transmitting messages is a bit more complex. You want a queue (managed by a System.Collections
.Queue) of outgoing messages. Every second, you will examine the state of the queue. If you find any
messages, then you use BinaryFormatter to transmit them. Because you will be accessing this queue
from multiple threads, you use a System.Threading.ReaderWriterLock to control access. To minimize
the amount of time you spend inside locked code, you quickly transfer the contents of the shared queue
into a private queue that you can process at your leisure. This enables the client to continue to add
messages to the queue through the UI, even though existing messages are being sent by the transmit
thread.

First, add the following members to Conversation:

Public Class Conversation

Private _username As String = "Evjen"
Private _client As TcpClient
Private _stream As NetworkStream
Private _direction As ConversationDirection
Private _receiveThread As Thread
Private _transmitThread As Thread
Private _transmitQueue As New Queue()
Private _transmitLock As New ReaderWriterLock()

Now, add this method again to Conversation:

Protected Sub TransmitThreadEntryPoint()

’ Create a formatter...
Dim formatter As New BinaryFormatter()
Dim workQueue As New Queue()

’ Loop
Do While True

’ Wait for the signal...
Thread.Sleep(1000)

’ Go through the queue...
_transmitLock.AcquireWriterLock(-1)
Dim message As Message
workQueue.Clear()

For Each message In _transmitQueue
workQueue.Enqueue(message)

Next

_transmitQueue.Clear()
_transmitLock.ReleaseWriterLock()

’ Loop the outbound messages...
For Each message In workQueue

’ Send it...
formatter.Serialize(_stream, message)

1314

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1315

Chapter 34: Visual Basic and the Internet

Next

Loop

End Sub

When you want to send a message, you call one version of the SendMessage method. Here are all of the
implementations, and the Click handler for buttonSend:

Private Sub buttonSend_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonSend.Click

SendMessage(textMessage.Text)
End Sub

Public Sub SendMessage(ByVal message As String)
SendMessage(_username, message)

End Sub

Public Sub SendMessage(ByVal username As String, ByVal message As String)
SendMessage(New Message(username, message))

End Sub

Public Sub SendMessage(ByVal message As Message)
’ Queue it
_transmitLock.AcquireWriterLock(-1)
_transmitQueue.Enqueue(message)
_transmitLock.ReleaseWriterLock()

’ Show it...
ShowMessage(message)

End Sub

ShowMessage is responsible for updating textMessages so that the conversation remains up to date
(notice how you add the message both when you send it and when you receive it so that both parties
have an up-to-date thread). This is a UI feature, so it is good practice to pass it over to the main applica-
tion thread for processing. Although the call in response to the button click comes off the main application
thread, the one from inside ReceiveThreadEntryPoint does not. Here is what the delegate looks like:

Public Class Conversation

’ members...
Private _username As String = "Evjen"
Private _client As TcpClient
Private _stream As NetworkStream
Private _direction As ConversationDirection
Private _receiveThread As Thread
Private _transmitThread As Thread
Private _transmitQueue As New Queue()
Private _transmitLock As New ReaderWriterLock()

Public Delegate Sub ShowMessageDelegate(ByVal message As Message)

1315

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1316

Chapter 34: Visual Basic and the Internet

Here is the method implementation:

Public Sub ShowMessage(ByVal message As Message)
’ Thread?
If Form1.IsMainThread() = False Then

’ Run...
Dim args(0) As Object
args(0) = message
Invoke(New ShowMessageDelegate(AddressOf ShowMessage), args)

’ Return...
Return

End If

’ Show it...
textMessages.Text &= message.ToString()

End Sub

All that remains now is to spin up the threads. This should be done from within ConfigureClient. Before
the threads are spun up, you need to obtain the stream and store it in the private _stream field. After that,
you create new Thread objects as normal:

Public Sub ConfigureClient(ByVal client As TcpClient, _
ByVal direction As ConversationDirection)

’ Set it up...
_client = client
_direction = direction

’ Update the window...
UpdateCaption()
’ Get the stream...
_stream = _client.GetStream()

’ Spin up the threads...
_transmitThread = New Thread(AddressOf TransmitThreadEntryPoint)
_transmitThread.Start()
_receiveThread = New Thread(AddressOf ReceiveThreadEntryPoint)
_receiveThread.Start()

End Sub

At this point, you should be able to connect and exchange messages, as shown in Figure 34-8.

Note that the screenshots show the username of the inbound connection as Tuija. This was done with
the textUsername text box so that you can follow which half of the conversation comes from where.

Shutting down the application
You have yet to solve the problem of neatly closing the application, or, in fact, dealing with one person in
the conversation closing down his or her window, indicating a wish to end the conversation. When the
process ends (whether neatly or forcefully), Windows automatically mops up any open connections and
frees up the port for other processes.

1316

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1317

Chapter 34: Visual Basic and the Internet

Figure 34-8

Suppose you have two computers, one window per computer, as you would in a production environ-
ment. When you close your window, you are indicating that you want to end the conversation. You need
to close the socket and spin down the transmission and reception threads. At the other end, you should
be able to detect that the socket has been closed, spin down the threads, and tell the user that the other
user has terminated the conversation.

This all hinges on being able to detect when the socket has been closed. Unfortunately, Microsoft has
made this very hard due to the design of the TcpClient class. TcpClient effectively encapsulates a
System.Net.Sockets.Socket class, providing methods for helping to manage the connection lifetime
and communication streams. However, TcpClient does not have a method or property that answers the
question, ‘‘Am I still connected?’’ Therefore, you need get hold of the Socket object that TcpClient
is wrapping, and then you can use its Connected property to determine whether the connection has
been closed.

TcpClient does support a property called Client that returns a Socket, but this property is protected,
meaning you can only access it by inheriting a new class from TcpClient. There is another way, though:
You can use reflection to get at the property and call it without having to inherit a new class.

Microsoft claims that this is a legitimate technique, even though it appears to violate every rule in the
book about encapsulation. Reflection is designed not only for finding out which types are available, and
learning which methods and properties each type supports, but also for invoking those methods and
properties whether they’re protected or public. Therefore, in Conversation, you need to store the socket:

Public Class Conversation

Private _username As String = "Evjen"
Private _client As TcpClient
Private _socket As Socket

In ConfigureClient, you use Reflection to peek into the Type object for TcpClient and dig out the
Client property. Once you have a System.Reflection.PropertyInfo for this property, you can retrieve
its value by using the GetValue method. Don’t forget to import the System.Reflection namespace:

Public Sub ConfigureClient(ByVal client As TcpClient, _
ByVal direction As ConversationDirection)

1317

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1318

Chapter 34: Visual Basic and the Internet

’ Set it up...
_client = client
_direction = direction

’ Update the window...
UpdateCaption()

’ Get the stream...
_stream = _client.GetStream()
’ Get the socket through reflection...
Dim propertyInfo As PropertyInfo = _

_client.GetType().GetProperty("Client", _
BindingFlags.Instance Or BindingFlags.Public)

If Not propertyInfo Is Nothing Then
_socket = propertyInfo.GetValue(_client, Nothing)

Else
Throw New Exception("Could not retrieve Client property from TcpClient")

End If
’ Spin up the threads...
_transmitThread = New Thread(AddressOf TransmitThreadEntryPoint)
_transmitThread.Start()
_receiveThread = New Thread(AddressOf ReceiveThreadEntryPoint)
_receiveThread.Start()

End Sub

Applications are able to check the state of the socket either by detecting when an error occurs because
you have tried to send data over a closed socket or by actually checking whether the socket is connected.
If you either do not have a Socket available in socket (that is, it is Nothing) or you have one and it tells
you that you are disconnected, then you give the user some feedback and exit the loop. By exiting the
loop, you effectively exit the thread, which is a neat way of quitting the thread. Notice as well that you
might not have a window at this point (you might be the one who closed the conversation by closing the
window), so you wrap the UI call in a Try Catch (the other side will see a <disconnect> message):

Protected Sub TransmitThreadEntryPoint()
’ Create a formatter...
Dim formatter As New BinaryFormatter()
Dim workQueue As New Queue()
’ name...
Thread.CurrentThread.Name = "Tx-" & _direction.ToString()
’ Loop...
Do While True

’ Wait for the signal...
Thread.Sleep(1000)
’ Disconnected?
If _socket Is Nothing OrElse _socket.Connected = False Then

Try
ShowMessage(New Message("Debug", "<disconnect>"))

Catch
End Try

1318

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1319

Chapter 34: Visual Basic and the Internet

Exit Do
End If
’ Go through the queue...

ReceiveThreadEntryPoint also needs some massaging. When the socket is closed, the stream is no
longer valid and so BinaryFormatter.Deserialize throws an exception. Likewise, you quit the loop
and therefore neatly quit the thread:

Protected Sub ReceiveThreadEntryPoint()
’ Create a formatter...
Dim formatter As New BinaryFormatter()

’ Loop...
Do While True

’ Receive...
Dim message As Message = Nothing
Try

message = formatter.Deserialize(_stream)
Catch
End Try

If message Is Nothing Then
Exit Do

End If
’ Show it...
ShowMessage(message)

Loop
End Sub

How do you deal with actually closing the socket? You tweak the Dispose method of the form itself (you
can find this method in the Windows-generated code section of the file), and if you have a _socket object,
you close it:

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
If disposing Then

If Not (components Is Nothing) Then
components.Dispose()

End If
End If

’ Close the socket...
If Not _socket Is Nothing Then

_socket.Close()
_socket = Nothing

End If

MyBase.Dispose(disposing)
End Sub

1319

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1320

Chapter 34: Visual Basic and the Internet

Figure 34-9

Now you will be able to start a conversation; and if one of the windows is closed, then <disconnect> will
appear in the other, as shown in Figure 34-9. In the background, the four threads (one transmit and one
receive per window) will spin down properly.

The application itself still will not close properly, even if you close all the windows, because you need to
stop the Listener when Form1 closes. To do so, make Listener implement IDisposable:

Public Class Listener
Implements IDisposable

Public Sub Dispose() Implements System.IDisposable.Dispose

’ Stop it...
Finalize()
GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()

’ Stop the listener...
If Not _listener Is Nothing Then

_listener.Stop()
_listener = Nothing

End If

’ Stop the thread...
If Not _thread Is Nothing Then

_thread.Join()
_thread = Nothing

End If

’ Call up...
MyBase.Finalize()

End Sub

1320

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1321

Chapter 34: Visual Basic and the Internet

Now all that remains is to call Dispose from within Form1. A good place to do this is in the Closed event
handler:

Protected Overrides Sub OnClosed(ByVal e As System.EventArgs)
If Not _listener Is Nothing Then

_listener.Dispose()
_listener = Nothing

End If
End Sub

After the code is compiled again, the application can be closed.

Using Internet Explorer in Your Applications
A common requirement of modern applications is to display HTML files and other files commonly used
with Internet applications. Although the .NET Framework has considerable support for common image
formats (such as GIF, JPEG, and PNG), working with HTML used to be a touch trickier in versions 1.0
and 1.1 of the .NET Framework. Life was made considerably easier with the inclusion of the WebBrowser
control in the .NET Framework 2.0.

For information on how to accomplish this task using the .NET Framework 1.0 or
1.1, please review the second and third editions of this book.

You don’t want to have to write your own HTML parser, so using this control to display HTML pages is,
in most cases, your only option. Microsoft’s Internet Explorer was implemented as a standalone compo-
nent comprising a parser and a renderer, all packaged up in a neat COM object. The WebBrowser control
‘‘simply’’ utilizes this COM object. There is nothing to stop you from using this COM object directly in
your own applications, but it is considerably easier to use the newer control for hosting Web pages in
your applications.

Yes, a COM object. There is no managed version of Internet Explorer for use with .NET. Considering
that writing an HTML parser is extremely hard, and writing a renderer is extremely hard, it is easy to
conclude that it’s much easier to use interop to get to Internet Explorer in .NET applications than to have
Microsoft try to rewrite a managed version of it just for .NET. Maybe we will see ‘‘Internet Explorer
.NET’’ within the next year or two, but for now you have to use interop.

Windows Forms and HTML — no problem!
These sections demonstrate how to build a mini-browser application. Sometimes you might want to dis-
play HTML pages without giving users UI widgets such as a toolbar or the capability to enter their own
URLs. You might also want to use the control in a nonvisual manner. For example, using the WebBrowser
control, you can retrieve Web pages and then print the results without ever needing to display the

1321

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1322

Chapter 34: Visual Basic and the Internet

contents. Let’s start, though, by first creating a simple form that contains only a TextBox control and
a WebBrowser control.

Allowing Simple Web Browsing in Your Windows Application
The first step is to create a new Windows Forms application called MiniBrowser. On the default form,
place a single TextBox control and the WebBrowser control, as shown in Figure 34-10.

Figure 34-10

The idea is that when the end user presses the Enter key (Return key), the URL entered in the text box
will be the HTML page that is retrieved and displayed in the WebBrowser control. To accomplish this
task, use the following code for your form:

Public Class Form1

Private Sub TextBox1_KeyPress(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles TextBox1.KeyPress

If e.KeyChar = Chr(13) Then
WebBrowser1.Navigate(TextBox1.Text)

End If

End Sub

End Class

For this simple example, you check the key presses that are made in the TextBox1 control, and if the key
press is a specific one — the Enter key — then you use the WebBrowser control’s Navigate method to
navigate to the requested page. The Navigate method can take a single String value, which represents
the location of the Web page to retrieve. The example shown in Figure 34-11 shows the Wrox website.

Launching Internet Explorer from Your Windows Application
Sometimes, the goal is not to host a browser inside the application but instead to allow the user to find
the website in a typical Web browser. For an example of this task, create a Windows Form that has a
LinkLabel control on it. For instance, you can have a form that has a LinkLabel control on it that simply
states ‘‘Visit your company website!’’

1322

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1323

Chapter 34: Visual Basic and the Internet

Figure 34-11

Once this control is in place, use the following code to launch the company’s website in an independent
browser, as opposed to directly in the form of your application:

Public Class Form1

Private Sub LinkLabel1_LinkClicked(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles _
LinkLabel1.LinkClicked

Dim wb As New WebBrowser
wb.Navigate("http://www.wrox.com", True)

End Sub

End Class

In this example, when the LinkLabel control is clicked by the user, a new instance of the WebBrowser
class is created. Then, using the WebBrowser’s Navigate method, the code specifies the location of the
Web page as well as a Boolean value that specifies whether this endpoint should be opened within
the Windows Form application (a False value) or from within an independent browser (a True value). By
default, this is set to False. With the preceding construct, when the end user clicks the link found in the
Windows application, a browser instance is instantiated and the Wrox website is immediately launched.

Updating URLs and Page Titles
Note that when working with the MiniBrowser example in which the WebBrowser control is directly in
the form, when you click the links, the text in the TextBox1 control is not updated. You can fix this by
listening for events coming off the WebBrowser control and adding handlers to the control.

1323

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1324

Chapter 34: Visual Basic and the Internet

It is easy to update the form’s title with the HTML page’s title. Create a DocumentTitleChanged event
and update the form’s Text property:

Private Sub WebBrowser1_DocumentTitleChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.DocumentTitleChanged

Me.Text = WebBrowser1.DocumentTitle.ToString()

End Sub

In this case, when the WebBrowser control notices that the page title has changed (due to changing the
page viewed), the DocumentTitleChanged event will fire. In this case, you change the form’s Text prop-
erty (its title) to the title of the page being viewed using the DocumentTitle property of the WebBrowser
control.

Next, update the text string that appears in the form’s text box, based on the complete URL of the page
being viewed. To do this, you can use the WebBrowser control’s Navigated event:

Private Sub WebBrowser1_Navigated(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) Handles _
WebBrowser1.Navigated

TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

In this case, when the requested page is finished being downloaded in the WebBrowser control, the
Navigated event is fired. You simply update the Text value of the TextBox1 control to be the URL of
the page. This means that once a page is loaded in the WebBrowser control’s HTML container, if the URL
changes in this process, then the new URL will be shown in the text box. For example, if you employ
these steps and navigate to the Wrox website (www.wrox.com), the page’s URL will immediately change
to http://www.wrox.com/WileyCDA/. This process also means that if the end user clicks one of the links
contained within the HTML view, then the URL of the newly requested page will also be shown in the
text box.

Now if you run the application with the preceding changes put into place, the form’s title and address
bar will work as they do in Microsoft’s Internet Explorer, as demonstrated in Figure 34-12.

Creating a Toolbar
For this exercise, you will add to the top of the control a simple toolbar that gives you the usual features
you would expect from a Web browser — that is, Back, Forward, Stop, Refresh, and Home.

Rather than use the ToolBar control, you will add a set of button controls at the top of the control
where you currently have the address bar. Add five buttons to the top of the control, as illustrated in
Figure 34-13.

I have changed the text on the buttons to indicate their function. Of course, you can use a screen capture
utility to ‘‘borrow’’ button images from IE and use those. The buttons should be named buttonBack,
buttonForward, buttonStop, buttonRefresh, and buttonHome. To get the resizing to work properly,
make sure that you set the Anchor property of the three buttons on the right to Top, Right.

1324

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1325

Chapter 34: Visual Basic and the Internet

Figure 34-12

Figure 34-13

On startup, buttonBack, buttonForward, and buttonStop should be disabled because there is no point
to the buttons if there is no initial page loaded. You will later tell the WebBrowser control when to enable
and disable the Back and Forward buttons, depending on where the user is in the page stack. In addition,
when a page is being loaded, you need to enable the Stop button, but you also need to disable the Stop
button once the page has finished being loaded.

First, though, you will add the functionality behind the buttons. The WebBrowser class itself has all the
methods you need, so this is all very straightforward:

Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

buttonBack.Enabled = False
buttonForward.Enabled = False

1325

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1326

Chapter 34: Visual Basic and the Internet

buttonStop.Enabled = False
End Sub

Private Sub buttonBack_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonBack.Click

WebBrowser1.GoBack()
TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

Private Sub buttonForward_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonForward.Click

WebBrowser1.GoForward()
TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

Private Sub buttonStop_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonStop.Click

WebBrowser1.Stop()
End Sub

Private Sub buttonRefresh_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonRefresh.Click

WebBrowser1.Refresh()
End Sub

Private Sub buttonHome_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonHome.Click

WebBrowser1.GoHome()
TextBox1.Text = WebBrowser1.Url.ToString()

End Sub

Private Sub buttonSubmit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles buttonSubmit.Click

WebBrowser1.Navigate(TextBox1.Text)
End Sub

Private Sub WebBrowser1_CanGoBackChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoBackChanged

If WebBrowser1.CanGoBack = True Then
buttonBack.Enabled = True

Else
buttonBack.Enabled = False

End If
End Sub

Private Sub WebBrowser1_CanGoForwardChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoForwardChanged

If WebBrowser1.CanGoForward = True Then
buttonForward.Enabled = True

Else
buttonForward.Enabled = False

End If
End Sub

1326

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1327

Chapter 34: Visual Basic and the Internet

Private Sub WebBrowser1_Navigated(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) Handles _
WebBrowser1.Navigated

TextBox1.Text = WebBrowser1.Url.ToString()
Me.Text = WebBrowser1.DocumentTitle.ToString()

End Sub

Private Sub WebBrowser1_Navigating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatingEventArgs) Handles _
WebBrowser1.Navigating

buttonStop.Enabled = True
End Sub

Private Sub WebBrowser1_DocumentCompleted(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) _
Handles WebBrowser1.DocumentCompleted

buttonStop.Enabled = False
End Sub

End Class

Several different activities are occurring in this example, as there are many options for the end user
when using this MiniBrowser application. First, for each of the button Click events, there is a specific
WebBrowser class method assigned as the action to initiate. For instance, for the Back button on the form,
you simply use the Web Browser control’s GoBack method. The same is true for the other buttons — for
the Forward button you have the GoForward method, and for the other buttons you have methods such
as Stop, Refresh, and GoHome. This makes it simple and straightforward to create a toolbar that provides
actions similar to those of Microsoft’s Internet Explorer.

When the form is first loaded, the Form1_Load event disables the appropriate buttons. From there,
users can enter a URL in the text box and click the Submit button to have the application retrieve the
desired page.

To manage the enabling and disabling of the buttons, you have to key in a couple of events. As mentioned
before, whenever downloading begins you need to enable Stop. For this, you simply add an event handler
for the Navigating event to enable the Stop button:

Private Sub WebBrowser1_Navigating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserNavigatingEventArgs) Handles _
WebBrowser1.Navigating

buttonStop.Enabled = True
End Sub

Next, the Stop button is again disabled when the document has finished loading:

Private Sub WebBrowser1_DocumentCompleted(ByVal sender As Object, _
ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) _
Handles WebBrowser1.DocumentCompleted

buttonStop.Enabled = False
End Sub

1327

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1328

Chapter 34: Visual Basic and the Internet

Enabling and disabling the appropriate Back and Forward buttons depends on the ability to go back-
ward or forward in the page stack. This is achieved by using both the CanGoForwardChanged and the
CanGoBackChanged events:

Private Sub WebBrowser1_CanGoBackChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoBackChanged

If WebBrowser1.CanGoBack = True Then
buttonBack.Enabled = True

Else
buttonBack.Enabled = False

End If
End Sub

Private Sub WebBrowser1_CanGoForwardChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles WebBrowser1.CanGoForwardChanged

If WebBrowser1.CanGoForward = True Then
buttonForward.Enabled = True

Else
buttonForward.Enabled = False

End If
End Sub

Run the project now, visit a Web page, and click through a few links. You should also be able to use the
toolbar to enhance your browsing experience. The end product is shown in Figure 34-14.

Figure 34-14

Showing Documents Using the WebBrowser Control
You are not limited to using just Web pages within the WebBrowser control. In fact, you can enable
end users to view many different types of documents. So far, you have seen how to use the
WebBrowser control to access documents that have been purely accessible by defining a URL, but

1328

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1329

Chapter 34: Visual Basic and the Internet

the WebBrowser control also enables you to use an absolute path and define endpoints to files such as
Word documents, Excel documents, PDFs, and more.

For instance, suppose you are using the following code snippet:

WebBrowser1.Navigate("C:\Financial Report.doc")

This would open the Word document in your application. Not only would the document appear in the
WebBrowser control, but the Word toolbar would also be present, as shown in Figure 34-15.

In Figure 34-16, the WebBrowser control shows an Adobe PDF file.

Figure 34-15

Figure 34-16

1329

Evjen-91361 c34.tex V2 - 04/01/2008 6:00pm Page 1330

Chapter 34: Visual Basic and the Internet

In addition to simply opening specific documents in the control, users can also drag and drop
documents onto the WebBrowser control’s surface, and the document dropped will automatically be
opened within the control. To turn off this capability (which is enabled by default), set the WebBrowser
control’s AllowWebBrowserDrop property to False.

Printing Using the WebBrowser Control
Not only can users use the WebBrowser control to view pages and documents, they can also use the
control to send these pages and documents to the printer for printing. To print the page or document
being viewed in the control, simply use the following construct:

WebBrowser1.Print()

As before, it is possible to print the page or document without viewing it by using the WebBrowser class
to load an HTML document and print it without even displaying the loaded document, as shown here:

Dim wb As new WebBrowser
wb.Navigate("http://www.wrox.com")
wb.Print()

Summary
This chapter began by examining just how easy it is to download resources from a web server using
classes built into the .NET Framework. System.Uri enables you to express a URI, and System.Net.
WebRequest, in combination with System.Net.HttpWebRequest and System.Net. HttpWebResponse,
enables you to physically obtain the data.

This chapter also described how you can build your own network protocol by using sockets, imple-
mented in the System.Net.Sockets namespace. You learned how TcpListener and TcpClient make it
relatively easy to work with sockets, and you spent a lot of time working with threads and the various
UI challenges that such work poses in order to make the application as usable as possible.

Finally, you learned how you can use the WebBrowser control in your own Windows Form application to
work with HTML and other documents.

1330

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1331

The Visual Basic Compiler

When the .NET Framework was first introduced, one nice addition for the Visual Basic developer
was the inclusion of a standalone language compiler. This meant you were not required to have
the Visual Studio .NET 2002 IDE in order to build Visual Basic applications. In fact, you could
take the .NET Framework from the Microsoft website (free of charge), and build Web applications,
classes, modules, and more simply, using a text editor such as Notepad. You could then take the
completed files and compile them using the Visual Basic compiler.

The Visual Basic compiler is included along with the default .NET Framework install. Each version
of the framework has a new compiler. In fact, note that while the core of the .NET 3.5 release is still
running on the .NET Framework 2.0, the .NET Framework 3.5 release includes new compilers for
both the Visual Basic and C# languages. The compiler for the .NET Framework 2.0 is vbc.exe, and
it can be found at

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\vbc.exe

The compiler for the .NET Framework 3.5 is also called vbc.exe, and it can be found at

C:\WINDOWS\Microsoft.NET\Framework\v3.5\vbc.exe

The vbc.exe.config File
In addition to the vbc.exe file, there is a vbc.exe.config file in the directory as well. This XML file
is used to specify the versions of the .NET Framework for which the compiler should build appli-
cations. Now that there are three versions of the .NET Framework available for our applications to
work with, it is important to understand how this configuration file actually works.

With the .NET Framework 3.5 installed, you will find the vbc.exe.config file with the following
construction:

<?xml version ="1.0"?>

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1332

Appendix A: The Visual Basic Compiler

<configuration>
<startup>

<supportedRuntime version="v2.0.50727" safemode="true"/>
<requiredRuntime version="v2.0.50727" safemode="true"/>

</startup>
</configuration>

Even though you are dealing with the .NET Framework 3.5, you can see that the compiler compiles the
code to run off of the 2.0 version of the framework.

This .config file, vbc.exe.config, is basically a typical .NET Framework configuration file with the
default <configuration> root element included. Nested within the <configuration> element, you need
to place a <startup> element. This is the only child element that is possible in the vbc.exe’s configura-
tion file.

Nested within the <startup> element, you can use two possible elements: <supportedRuntime> and
<requiredRuntime>.

The <requiredRuntime> element really is only needed if your application is going to run on the .NET
Framework 1.0 (the very first iteration of the .NET Framework). If your application is going to run from
this version, then you build the vbc.exe.config file as follows:

<?xml version ="1.0"?>
<configuration>

<startup>
<requiredRuntime version="v1.0.3705" safemode="true"/>

</startup>
</configuration>

Currently, working with three different versions of the .NET Framework, you may wish to compile your
applications using the Visual Basic compiler so that they work with multiple versions of the framework.
To do this, you could use the <supportedRuntime> element:

<?xml version ="1.0"?>
<configuration>

<startup>
<supportedRuntime version="v2.0.50727" safemode="true"/>
<supportedRuntime version="v1.1.4322" safemode="true"/>

</startup>
</configuration>

This construction states that the application should first try to run on version 2.0.50727 of the .NET
Framework, and if this version of the .NET Framework is not found, then the next preferred version of
the framework that the compiled object should work with is version 1.1.4322. When working in this kind
of construction, you need to order the framework versions in the XML file so that the most preferred
version of the framework you want to utilize is the uppermost element, and the least preferred version
of the framework appears last in the node list.

The <supportedRuntime> element is meant for .NET Framework versions 1.1 and later. If you are going
to utilize the .NET Framework version 1.0, then you should use the <requiredRuntime> element.

1332

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1333

Appendix A: The Visual Basic Compiler

The <supportedRuntime> element contains two possible attributes: version and safemode. Both
attributes are optional. The attribute version enables you to specify the specific version you want
your application to run against, while safemode specifies whether the registry should be searched for
the particular framework version. The safemode attribute takes a Boolean value, and the default value is
false, meaning the framework version is not checked.

Simple Steps to Compilation
To show how the Visual Basic compiler works in the simplest manner, we can begin by looking at
how to compile a single-class file:

1. Create a module called MyModule.vb. We will keep the module simple, as this example is
meant to show you how to compile the items using the vbc.exe compiler:

Module Module1

Sub Main()
Console.WriteLine("Howdy there")
Console.ReadLine()

End Sub

End Module

2. Once your file is in place, it is time to use the Visual Basic compiler. If you have Visual
Studio 2008 on the computer, then you can open the Visual Studio command prompt
(found at Start ➪ All Programs ➪ Microsoft Visual Studio 2008 ➪ Visual Studio Tools ➪

Visual Studio 2008 Command Prompt). Once open, just navigate to the location of the file
and then run the compiler against the file (shown shortly).

3. In most cases, you are probably going to be using the Visual Basic compiler on comput-
ers that do not have Visual Studio on them. In those cases, copy and paste the vbc.exe,
vbc.exe.config, and vbc.rsp files to the folder where the class file you wish to compile is
located. Then you can open a command prompt by selecting Run from the Start menu and
typing cmd in the text box.

Another option is to add the compiler to the path itself. This is done by typing the following
at the command prompt:

path %path%;C:\WINDOWS\Microsoft.NET\Framework\v3.5

Now you can work with the compilation normally, and the vbc.exe compiler will be found
upon compilation.

4. Once the command prompt is open, navigate to the folder that contains both the Visual Basic
compiler and the class file that needs compiling. From this location, type the following com-
mand at the command prompt:

vbc.exe MyModule.vb

1333

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1334

Appendix A: The Visual Basic Compiler

Items can be compiled in many ways using the Visual Basic compiler, but this is the simplest way to
compile this module. This command compiles the .vb file so that it can be utilized by your applications.
Running the preceding command produces the following:

C:\CoolStuff>vbc.exe MyModule.vb
Microsoft (R) Visual Basic Compiler version 9.0.20706.1
Copyright (c) Microsoft Corporation. All rights reserved.

What does this operation actually do? Well, in this case, it has created an .exe file for you in the same
directory as the MyModule.vb file. Looking there, you will find MyModule.exe ready to run.

The Visual Basic compiler has a number of options that enable you to dictate what sorts of actions the
compiler will take with the compilation process. These flags will be defined soon, but you can specify
additional settings by using a forward slash followed by the name of the option and the setting assigned
to the option. For instance, if you were going to add a reference to Microsoft.VisualBasic.dll along
with the compilation, you would construct your compiler command as follows:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll

Some of the options listed in this appendix have a plus sign (+) or a minus sign (-) next to them. A plus
sign signifies that the option should be enabled, whereas the minus sign signifies that the option should
not be enabled. For instance, the following signifies that documentation should be enabled:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /doc+

The following, however, signifies that documentation should not be enabled:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /doc-

Compiler Output
This section takes a comprehensive look at all the options available for the Visual Basic compiler. To see
the full list, type the following command:

vbc.exe /?

/nologo
This option causes the compiler to perform its compilation without producing the compiler information
set shown in previous examples. This is really only useful if you are invoking the compiler in your
application, showing the results coming from the compiler to the end user of your application, and if you
have no desire to show this information to the user in the result set.

/utf8output[+:−]
By default, when you use the Visual Basic command-line compiler, it will not do the compilation
using UTF-8 encoding. In fact, the Visual Studio 2008 IDE will not even allow this to occur, but using
/utf8output in the command-line compiler overrides this behavior.

1334

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1335

Appendix A: The Visual Basic Compiler

/verbose
Adding this command causes the compiler to output a complete list of what it is doing, including the
assemblies that are being loaded and the errors that it receives in the compilation process. Use it as
follows:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /verbose

This would produce results such as the following (abbreviated because the result output is rather
lengthy):

Adding assembly reference ’C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.
Data.dll’

In addition:

Adding import ’System’
Adding import ’Microsoft.VisualBasic’
Adding file ’C:\MyModule.vb’
Adding assembly reference ’C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Microso
ft.VisualBasic.dll’
Compiling...

Then the compiler starts loading assemblies:

Loading C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\mscorlib.dll.

Loading C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Microsoft.VisualBasic.dll.

Until it finishes:

Building 17d14f5c-a337-4978-8281-53493378c1071.vb.
Building C:\CoolStuff\MyModule.vb.
Compilation successful

Optimization
The following sections discuss the optimization features available.

/filealign
Not typically used by most developers, the /filealign setting enables you to specify the alignment of
sections, or blocks of contiguous memory, in your output file. It uses the following construction:

vbc.exe MyModule.vb /filealign:2048

The number assigned is the byte size of the file produced, and valid values include 512, 1024, 2048, 4096,
8192, and 16384.

1335

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1336

Appendix A: The Visual Basic Compiler

/optimize[+:−]
If you go to your project’s property page (found by right-clicking on the project in the Visual Studio
Solution Explorer), you will see a page for compilation settings. From this page, you can make all sorts
of compilation optimizations. To keep your command-line compiler from ignoring these instructions, set
the /optimize flag in your compilation instructions:

vbc.exe MyModule.vb /optimize

By default, optimizations are turned off.

Output files
The following sections explain the output files.

/doc[+:-]
By default, the compiler does not produce the XML documentation file upon compilation. This feature
of Visual Basic enables developers to put structured comments in their code that can then be turned into
an XML document for easy viewing (along with a style sheet). Including the /doc option causes the
compiler to create this documentation. Structure your command as follows if you want to produce
this XML documentation file:

vbc.exe MyModule.vb /doc

You can also specify the name of the XML file as follows:

vbc.exe MyModule.vb /doc:MyModuleXmlFile.xml

/netcf
This option cannot be executed from Visual Studio 2008 itself, but you can use this flag from the Visual
Basic command-line compiler. Using /netcf causes the compiler to build your application so that the
result is targeted for the .NET Compact Framework, not the full .NET Framework itself. To accomplish
this, use the following construct:

vbc.exe MyModule.vb /netcf

/out
Using the /out option enables you to change the name and extension of the file that was produced from
the compilation. By default, it is the name of the file that contains the Main procedure or the first source
code file in a DLL. To modify this yourself instead of using the defaults, you could use something similar
to the following:

vbc.exe MyModule.vb /out:MyReallyCoolModule.exe

/target
This setting enables you to specify what exactly is output from the compilation process. There are four
options: an EXE, a DLL, a module, or a Windows program:

❑ /target:exe — Produces an executable console application. This is the default if no /target
option is specified.

1336

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1337

Appendix A: The Visual Basic Compiler

❑ /target:library — Produces a dynamic link library (also known as a DLL)

❑ /target:module — Produces a module

❑ /target:winexe — Produces a Windows program

You can also use a short form of this by just using /t:exe, /t:library, /t:module, or /t:winexe.

.NET assemblies
The following sections detail the .NET assemblies available.

/addmodule
This option is not available to Visual Studio 2008, but is possible when using the Visual Basic compiler.
Using /addmodule enables you to add a .netmodule file to the resulting output of the compiler. For this,
you would use something similar to the following construction:

vbc.exe MyModule.vb /addmodule:MyOtherModule.netmodule

/delaysign[+:-]
This compiler option needs to be used in conjunction with the /key or /keycontainer option, which
deals with the signing of your assembly. When used with the /delaysign option, the compiler will
create a space for the digital signature that is later used to sign the assembly, rather than actually signing
the assembly at that point. You would use this option in the following manner:

vbc.exe MyModule.vb /key:myKey1.sn /delaysign

/imports
A commonly used compiler option, the /imports option enables you to import namespaces into the
compilation process:

vbc.exe MyModule.vb /imports:System

Add multiple namespaces by separating them with a comma:

vbc.exe MyModule.vb /imports:System, System.Data

/keycontainer
This command causes the compiler to create a sharable component and places a public key into the
component’s assembly manifest while signing the assembly with a private key. Use this option as follows:

vbc.exe MyModule.vb /keycontainer:myKey1

If your key container has a name that includes a space, then you have to place quotes around the value as
shown here:

vbc.exe MyModule.vb /keycontainer:"my Key1"

1337

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1338

Appendix A: The Visual Basic Compiler

/keyfile
Similar to the /keycontainer option, the /key option causes the compiler to place a public key into the
component’s assembly manifest while signing the assembly with a private key. Use this as follows:

vbc.exe MyModule.vb /key:myKey1.sn

If your key has a name that includes a space, then you must place quotes around the value as
shown here:

vbc.exe MyModule.vb /key:"my Key1.sn"

/libpath
When making references to other assemblies while using the /reference compiler option (described
later), you will not always have these referenced assemblies in the same location as the object being
compiled. You can use the /libpath option to specify the location of the referenced assemblies, as illus-
trated here:

vbc.exe MyModule.vb /reference:MyAssembly.dll /libpath:c:\Reuters\bin

If you want the compiler to search for the referenced DLLs in more than one location, then specify
multiple locations using the /libpath option by separating the locations with a comma:

vbc.exe MyModule.vb /reference:MyAssembly.dll /libpath:c:\Reuters\bin, c:\

This command means that the compiler will look for the MyAssembly.dll in both the C:\Reuters\bin
directory and the root directory found at C:\.

/platform
The /platform option enables you to specify the platform the compilation should be geared for. Possible
options include the following:

❑ /platform:x86 — Compiles the program for an x86 system

❑ /platform:x64 — Compiles the program for a 64-bit system

❑ /platform:Itanium — Compiles the program for an Itanium system

❑ /platform:anycpu — Compiles the program so that it can be run on any CPU system. This is the
default setting.

/reference
The /reference option enables you to make references to other assemblies in the compilation process.
Use it as follows:

vbc.exe MyModule.vb /reference:MyAssembly.dll

You can also shorten the command option by using just /r:

vbc.exe MyModule.vb /r:MyAssembly.dll

1338

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1339

Appendix A: The Visual Basic Compiler

You can make a reference to multiple assemblies by separating them with a comma:

vbc.exe MyModule.vb /reference:MyAssembly.dll, MyOtherAssembly.dll

/vbruntime[+:-]
The /vbruntime option enables you compile the program with the Visual Basic runtime. Use it as follows:

vbc.exe MyModule.vb /vbruntime

You can also specify which runtime to use, as shown here:

vbc.exe MyModule.vb /vbruntime:Microsoft.VisualBasic.dll

Debugging and error-checking
The following sections address the many features available for error-checking and debugging.

/bugreport
This option creates a file that is a full report of the compilation process. The /bugreport option
creates this file, which contains your code and version information on the computer’s operating system,
as well as the compiler itself. Use this option in the following manner:

vbc.exe MyModule.vb /bugreport:bugsy.txt

/debug[+:-]
By default, the Visual Basic compiler will not build objects with attached debugging information included
in the generated object. Using the /debug option causes the compiler to place this information in the
created output file. The use of this option is shown here:

vbc.exe MyModule.vb /debug

/nowarn
The /nowarn option actually suppresses the compiler from throwing any warnings. There are a couple of
ways to use this option. The first option is to simply use /nowarn without any associated values:

vbc.exe MyModule.vb /nowarn

Instead of suppressing all the warnings that the compiler can issue, the other option at your disposal is
to specify the exact warnings you wish the compiler to suppress, as shown here:

vbc.exe MyModule.vb /nowarn:42016

In this case, you are telling the compiler not to throw any warnings when it encounters a 42016 error
(an implicit conversion warning error). To interject more than one warning code, separate the warning
codes with a comma as illustrated here:

vbc.exe MyModule.vb /nowarn:42016, 42024

1339

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1340

Appendix A: The Visual Basic Compiler

You can find a list of available warnings by searching for ‘‘Configuring Warnings in Visual Basic’’ in the
MSDN documentation.

/quiet
Like some of the other compiler options, the /quiet option is only available to the command-line
compiler and is not available when compiling your applications using Visual Studio. The /quiet option
removes some of the error notifications from the error text output that is typically generated. Normally,
when the compiler encounters an error that disallows further compilation, the error notification includes
the line of code in the file where the error occurred. The line that is presented has a squiggly line under-
neath the exact bit of code where the error occurred. Using the /quiet option causes the compiler to
show only the notification line, leaving the code line out of the output. This might be desirable in some
situations.

/removeintchecks[+:-]
By default, the Visual Basic compiler checks all your integer calculations for any possible errors. Possible
errors include division by zero or overflow situations. Using the /removeintchecks option causes the
compiler to not look for these kinds of errors in the code of the files being compiled. You would use this
option as follows:

vbc.exe MyModule.vb /removeintchecks

/warnaserror[+:-]
In addition to finding and reporting errors, the compiler can also encounter situations that are only
considered warnings. Even though warnings are encountered, the compilation process continues. Using
the /warnaserror option in the compilation process causes the compiler to treat all warnings as errors.
Use this option as shown here:

vbc.exe MyModule.vb /warnaserror

You might not want each warning to cause an error to be thrown, but instead only specific warnings. For
these occasions, you can state the warning ID number that you want to look out for, as shown here:

vbc.exe MyModule.vb /warnaserror:42016

You can also check for multiple warnings by separating the warning ID numbers with commas:

vbc.exe MyModule.vb /warnaserror:42016, 42024

Help
The following sections address the compiler’s help features.

/?
When you don’t have this book for reference, you can use the Visual Basic compiler for a list of options
by using the /? option, as shown here:

vbc.exe /?

1340

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1341

Appendix A: The Visual Basic Compiler

This causes the entire list of options and their definitions to be displayed in the command window.

/help
The /help option is the same as the /? option. Both of these options produce the same result. The /help
option produces a list of options that can be used with the compiler.

Language
The following sections detail the language options.

/optionexplicit[+:-]
Always a good idea, using /optionexplicit causes the compiler to check whether any variables in the
code are used before they are even declared (yes, this is possible and very bad practice). When variables
are found before they are even declared, the compiler throws an error. By default, the compiler does not
check the code using the option explicit option. Use this option as shown in the following example:

vbc.exe MyModule.vb /optionexplicit

/optionstrict[+:-]
It’s also a good idea to use the /optionstrict option in the compilation process. Using this option causes
the compiler to check whether you are making any improper type conversions in your code. Widening
type conversions are allowed, but when you start performing narrowing type conversions, using this
option will cause an error to be thrown by the compiler. By default, the compiler does not look for
these types of errors with your type conversions. Use this option as follows:

vbc.exe MyModule.vb /optionstrict

/optioncompare
By default, the Visual Basic compiler compares strings using a binary comparison. If you want the string
comparisons to use a text comparison, then use the following construction:

vbc.exe MyModule.vb /optioncompare:text

/optioninfer[+:-]
This is a new option found in the .NET Framework 3.5 version of the compiler. This option specifies that
you want to allow type inference of variables. Use this option as illustrated in the following example:

vbc.exe MyModule.vb /optioninfer

Preprocessor: /define
The /define option enables you to define conditional compiler constants for the compilation
process. This is quite similar to using the #Const directive in your code. Here is an example:

vbc.exe MyModule.vb /define:Version="4.11"

1341

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1342

Appendix A: The Visual Basic Compiler

You can also place definitions for multiple constants, as shown here:

vbc.exe MyModule.vb /define:Version="4.11",DebugMode=False

For multiple constants, just separate the constants with commas.

Resources
The following sections elaborate on the resources in the compiler.

/linkresource
Instead of embedding resources directly in the generated output file (such as with the /resource option),
the /linkresource option enables you to create the connection between your resulted objects and the
resources that they require. You would use this option in the following manner:

vbc.exe MyModule.vb /linkresource:MyResourceFile.res

You can then specify whether the resource file is supposed to be public or private in the assembly
manifest. By default, the resource file is referenced as public. Here is an example of its use:

vbc.exe MyModule.vb /linkresource:MyResourceFile.res,private

You can shorten the /linkresource option to just /linkres.

/resource
The /resource option enables you to reference managed resource objects. The referenced resource is
then embedded in the assembly. You would do this in the following manner:

vbc.exe MyModule.vb /resource:MyResourceFile.res

Like the /linkresource option, you can specify whether the reference to the resource should be made
either public or private. This is done as follows (the default is public):

vbc.exe MyModule.vb /resource:MyResourceFile.res,private

You can shorten the /resource option to just /res.

/win32icon
Use this option to embed an .ico file (an image that is actually the application’s icon) in the produced
file, as shown in the following example:

vbc.exe MyModule.vb /win32icon:MyIcon.ico

/win32resource
This option enables you to embed a Win32 resource file into the produced file. Use as shown in the
following example:

vbc.exe MyModule.vb /win32resource:MyResourceFile.res

1342

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1343

Appendix A: The Visual Basic Compiler

Miscellaneous features
The rest of this appendix covers some of the more random but very useful features in the compiler.
For example, one great feature of the Visual Basic compiler is the use of response files. If you have a
compilation that you frequently perform, or one that is rather lengthy, you can instead create an .rsp file
(the response file), a simple text file containing all the compilation instructions needed for the compilation
process. Here is an example .rsp file:

This is a comment
/target:exe
/out:MyCoolModule.exe
/linkresource=MyResourceFile.res
MyModule.vb
SomeOtherClassFile.vb

If you save this as MyResponseFile.res, then you can use it as shown in the following example:

vbc.exe @MyResponseFile.rsp

You can also specify multiple response files:

vbc.exe @MyResponseFile.rsp @MyOtherResponseFile.rsp

/baseaddress
When creating a DLL using the /target:library option, you can assign the base address of the DLL. By
default, this is done for you by the compiler, but if you wish to make this assignment yourself, you can.
To accomplish this, you would use something similar to the following:

vbc.exe MyClass.vb /target:library /baseaddress:0x11110000

All base addresses are specified as hexadecimal numbers.

/codepage
By default, the compiler expects all files to be using an ANSI, Unicode, or UTF-8 code page. Using the
compiler’s /codepage option, you can specify the code page that the compiler should actually be using.
Setting it to one of the defaults is shown here:

vbc.exe MyClass.vb /codepage:1252

1252 is used for American English and most European languages, although setting it to Japanese Kanji
would be just as simple:

vbc.exe MyClass.vb /codepage:932

/main
Using the /main option, you can point the compiler to the class or module that contains the SubMain
procedure. Use it as follows:

vbc.exe MyClass.vb /main:MyClass.vb

1343

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1344

Appendix A: The Visual Basic Compiler

/noconfig
By default, the Visual Basic compiler uses the vbc.rsp resource file in the compilation process. Using the
/noconfig option tells the compiler to avoid using this file in the compilation process, as shown here:

vbc.exe MyClass.vb /noconfig

/nostdlib
By default, the Visual Basic compiler uses standard libraries (System.dll) and the vbc.rsp resource file
in the compilation process. Using the /nostdlib option tells the compiler to avoid using this file in the
compilation process, as shown here:

vbc.exe MyClass.vb /nostdlib

/recurse
The /recurse option tells the compiler to compile all the specified files within a specified directory. Also
included will be all child directories of the directory specified. Here is one example of using /recurse:

vbc.exe /target:library /out:MyComponent.dll /recurse:MyApplication\Classes*.vb

This command takes all of the .vb files from the MyApplication/Classes directory and creates a DLL
called MyComponent.dll.

/rootnamespace
Use this option to specify the namespace to use for compilation:

vbc.exe MyClass.vb /rootnamespace:Reuters

/sdkpath
This option enables you to specify the location of mscorlib.dll and Microsoft.VisualBasic.dll if they
are located somewhere other than the default location. This setting is really meant to be used with the
/netcf option, described earlier, and is used as follows:

vbc.exe /sdkpath:"C:\Program Files\Microsoft Visual Studio 8
\CompactFrameworkSDK\v1.0.5000\Windows CE" MyModule.vb

Looking at the vbc.rsp File
As stated earlier, the vbc.rsp file is there for the compiler’s sake. When a compilation is being done,
the Visual Basic compiler uses the vbc.rsp file for each compilation (unless you specify the /noconfig
option). Inside this .rsp file is a list of compiler commands:

This file contains command-line options that the VB
command-line compiler (VBC) will process as part
of every compilation, unless the "/noconfig" option
is specified.

1344

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1345

Appendix A: The Visual Basic Compiler

Reference the common Framework libraries
/r:Accessibility.dll
/r:Microsoft.Vsa.dll
/r:System.Configuration.Install.dll
/r:System.Data.dll
/r:System.Design.dll
/r:System.DirectoryServices.dll
/r:System.dll
/r:System.Drawing.Design.dll
/r:System.Drawing.dll
/r:System.EnterpriseServices.dll
/r:System.Management.dll
/r:System.Messaging.dll
/r:System.Runtime.Remoting.dll
/r:System.Runtime.Serialization.Formatters.Soap.dll
/r:System.Security.dll
/r:System.ServiceProcess.dll
/r:System.Web.dll
/r:System.Web.Mobile.dll
/r:System.Web.RegularExpressions.dll
/r:System.Web.Services.dll
/r:System.Windows.Forms.Dll
/r:System.XML.dll

Import System and Microsoft.VisualBasic
/imports:System
/imports:Microsoft.VisualBasic

These commands reflect the references and imports that are done for each item that you compile
using this command-line compiler. Feel free to play with this file as you choose. If you want to add
your own references, then add them to the list and save the file. From then on, every compilation
that you make will include the new reference(s). As you become more familiar with using the Visual
Basic command-line compiler, you will see a lot of power in using .rsp files — even the default
Visual Basic one.

1345

Evjen-91361 bapp01.tex V2 - 04/01/2008 6:04pm Page 1346

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1347

Visual Basic Power
Packs Tools

This appendix takes a look at the Visual Basic Power Packs Tools. These tools are a set of off-cycle
release packages that focus on helping developers who are maintaining traditional Visual Basic 6.0
applications begin the process of transitioning to Visual Basic .NET. Additionally, they contain a
set of features intended for developers with years of Visual Basic experience to replicate tasks and
behaviors that were easy in Visual Basic 6.0 in Visual Basic .NET.

This appendix briefly examines the two installation packages that are currently available. These
packages were released targeting Visual Studio 2005, but they are fully compatible with Visual
Studio 2008. Moreover, elements of the Visual Basic Power Packs 2.0 package for printing have been
fully integrated with, and ship as part of, Visual Studio 2008. It is hoped that additional portions
of this package will be included in Visual Studio 2008 as part of a future update such as a service
pack.

This appendix focuses on three areas:

❑ Power Packs background, including goals and installation

❑ The Interop Forms Toolkit 2.0

❑ The Visual Basic Power Packs 2.0

These tools are available as free downloads; however, due to licensing restrictions on the Express
Editions, Visual Basic Express and the other Express Editions do not support any add-ins. Thus, to
leverage the Power Packs, you need a licensed version of Visual Studio Standard or above. Why you
would want to leverage the Power Packs is a question best answered by understanding the issues
that the Power Packs address. These aren’t just technology for technology’s sake: they address very
real issues that traditional VB developers are facing today.

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1348

Appendix B: Visual Basic Power Packs Tools

Visual Basic Power Packs
The Visual Basic Power Packs were introduced by Microsoft’s Visual Basic Development team to intro-
duce new features and capabilities needed by Visual Basic developers between major releases of Visual
Studio. The main focus has been on helping Visual Basic 6.0 developers who have implemented solutions
that aren’t easily migrated in one fell swoop to .NET. There are two problems:

❑ Like it or not, the migration wizard that originally shipped with .NET 1.0 doesn’t meet the
requirements of a developer migrating a real-world application.

❑ Once they are working in .NET, typical developers face challenges with certain tasks that under
Visual Basic 6.0 were easy but in Visual Basic .NET are not.

Each of these two issues is currently addressed by a different package.

In a perfect world, when Visual Basic .NET 1.0 came out, the transition from Visual Basic 6.0 to .NET
would have felt seamless. The migration wizard that was introduced would have looked through your
project files, found all of the custom COM components for which you had source available, and then
been able without any problem to convert every line of VB 6.0 source code to VB.NET. Unfortunately,
we don’t live in that world, and, in fact, the migration wizard left several gaps in coverage. These gaps
in code migration didn’t affect a demonstration, but were of significant concern if you were trying to
update an application to .NET. This meant that your primary tool for migration forced you into an
all-or-nothing decision with regard to moving your application, but at the same time couldn’t fully
complete the process. As a result, you faced a scenario in which you couldn’t really add new capabil-
ities to your application without converting it, and converting a decent-sized application with all of the
associated manual migration elements could take months — time you didn’t have.

Recently, the same scenario again appeared with the anticipated end of the Windows Forms user inter-
face. However, in this case, as discussed in Chapter 18, Microsoft found a better way to handle the
migration. Instead of including a wizard that tried to manage the entire application at once, they created
a set of components that enabled you to interoperate between your existing code and the new feature set.
The most exciting part about this is that when .NET 1.0 shipped, it actually included this same capability
for COM. In theory, there was also support for calling .NET components from COM, but, in reality, that
interface was difficult, so the Visual Basic team stepped up to the plate and created a package that would
solve that problem.

The Visual Basic Interop Forms Toolkit 2.0 does this. It was designed to enable you to create and imple-
ment a form in .NET, after which the toolkit makes it easy for you to wrapper this form so that it can
function as a working component within your existing VB6 application. The wrapper handles integrat-
ing the .NET form with your application, enabling you to maintain a common environment for the data
and context and even messaging. Events can be passed between your new .NET form and your existing
Visual Basic application. The result is that now you can extend your existing VB6 application with new
.NET features without the cost and risk associated with attempting to migrate your entire application in
one fell swoop.

Of course, this was only one aspect of the migration challenge for VB6 developers. The second key aspect
was that under Visual Basic 6.0, it was easy for developers to carry out tasks such as printing. .NET fol-
lows a paradigm that is much closer to the C++ model. It provides a great deal of control and is fully

1348

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1349

Appendix B: Visual Basic Power Packs Tools

customizable. However, the ability to control and customize your output also introduces a layer of com-
plexity for managing those capabilities. VB6 developers often just wanted to output a display or add a
geometric shape to the display. As a result of the added complexity of these tasks, VB6 developers were
often unsure how to implement the same capabilities they had under VB6.

Again the Visual Basic team stepped up and created the Visual Basic Power Packs 2.0. This is a separate
installation package from the Interop Forms Toolkit, and instead of targeting code that can be integrated
with traditional COM applications, it focuses on making it just as easy to do things like printing as they
were in Visual Basic 6.0.

In addition, instead of waiting for the next release of Visual Studio, the Visual Basic team scheduled these
Power Packs as standalone deliverables so that users could take advantage of them much sooner.

Don’t assume that these packages are of lower quality. In fact, to highlight how valuable the Power
Packs 2.0 tools are, the printing capabilities introduced in this Power Pack are included within Visual
Studio 2008, and there are plans to include many of the line and shape capabilities in a future update to
Visual Studio 2008.

Getting the Visual Basic Power Packs
The Power Packs are available as free downloads. In addition to the downloads page, the Visual Basic
team also maintains a suggestion page directly related to features that you, as a Visual Basic developer,
would like to see. This page also includes links to the existing Power Packs and is a great place to start
when looking for more information on the Power Packs: https://connect.microsoft.com/vbasic.

The current download for the Interop Forms Toolkit 2.0 can be found at www.microsoft.com/downloads/
details.aspx?familyid=934de3c5-dc85-4065-9327-96801e57b81d&displaylang=en.

The current download for the Visual Basic 2005 Power Packs 2.0 can be found at www.microsoft.com/
downloads/details.aspx?familyid=92faa81e-e9c1-432c-8c29-813493a04ecd&displaylang=en.

Keep in mind that two separate download packages are needed to collect all of the assorted tools available
to Visual Basic developers, and that both packages are currently on version 2.0.

Additional forums are available to discuss issues or ask questions regarding use of the tools.
The Interop Forms Toolkit forum is at http://forums.microsoft.com/MSDN/ShowForum.aspx?
ForumID=879&SiteID=1

The forum for the Power Packs 2.0 package is at: http://forums.microsoft.com/MSDN/ShowForum
.aspx?ForumID=903&SiteID=1.

Using the Interop Forms Toolkit 2.0
To begin working with the Interop Forms Toolkit, download the packages. The default download page
includes three files for download, shown in Figure B-1.

1349

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1350

Appendix B: Visual Basic Power Packs Tools

Figure B-1

Download all three of these files to a local directory of your choosing.

❑ The first file, which is also the largest, InteropFormToolsInstaller.msi, contains the actual appli-
cation files that need to be installed.

❑ The second file is the microsoft.interopformsredist.msi file. As its name implies, this is a redis-
tributable version of the Interop Forms Toolkit of tools.

❑ The third file is setup.exe. As you can tell by its size, it relies on the installation.msi file, but if you
are running on Vista then you’ll need this file.

Once you have downloaded all three files, run the setup file to install the tool. Aside from selecting the
installation directory and similar standard setup screens, there are no special steps related to installing
this package. One thing to note, regardless of whether you are running Visual Studio 2005, Visual Studio
2008, or both, is that the installation package updates your Visual Studio environments.

Because Visual Basic Express Edition does not support add-ins, this application will not be updated when
you install the software.

To validate your installation, there are three easy items you can check. First, once the installation is
complete, the help topic associated with the Interop Forms Toolkit 2.0 should open. Second, when you
access the Tools menu, the first item in the menu should be the option to Generate Interop Form Wrapper
Classes. This menu item should be located above the standard option to Attach Process. Third, and
probably most important, when you access the File menu and select the New Project dialog, you should
see two new project types under the My Templates section within Visual Basic Windows, as shown in
Figure B-2.

The first custom project type is the VB6 Interop User Control project type. This type of project enables
you to create user controls that can then be used to populate the body of an MDI window. This project
type was introduced with version 2.0 of the Interop Forms Toolkit and is the solution the Visual Basic
team developed to support interoperation within an MDI environment.

The second project type is the VB6 InteropForm Library project. The original project type, it was designed
to enable you to create a DLL that defines a .NET form.

After you have validated that your installation is working, the next step is to create a simple Interop
Form.

1350

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1351

Appendix B: Visual Basic Power Packs Tools

Figure B-2

Creating a simple Interop Form
Select the project type shown in Figure B-2 and rename the solution ProVB_AppB_InteropForm. Click
OK to generate your source project files. The resulting project opens, and you can open and edit your
new Windows Form. However, note that what you are creating, while it supports the Form Designer,
isn’t a standalone executable. If you open your project properties, you’ll find that your project will build
as a DLL, not a standalone executable.

Another thing to note is that as part of the generation of your project, a file named InteropInfo.vb is cre-
ated. This file takes settings that might otherwise exist in your AssemblyInfo.vb file and places them here
so they are a bit more apparent. The first line references the standard COM Interop classes and turns these
settings off. This is important because you won’t be using traditional COM Interop; you’ve added a new
Interop class specifically for this purpose. By moving this setting into a separate file, if you do accidentally
cause the AssemblyInfo.vb file to be regenerated by Visual Studio, you’ll get a compile error. This is good
because you can quickly and easily delete the newly duplicated line from AssemblyInfo.vb and not won-
der why your project suddenly isn’t working correctly. Compile errors are always better then runtime
errors. The other item in this file is a declaration that extends the My namespace to include the Interop
toolbox. In general, you shouldn’t make any changes to this file, but now you know what it’s doing.

Opening the InteropForm1.vb, you have a typical design surface for a form, on which you can add con-
trols. Behind the scenes is an InteropForm1.vb that contains the following default code:

Imports Microsoft.InteropFormTools

<InteropForm()> _
Public Class InteropForm1

End Class

As you can see, the default class definition has been decorated with an attribute indicating that this class
should be considered an InteropForm. This enables the postprocessor that is used to generate your COM
wrappings to recognize which type of wrapping should be applied to this class.

1351

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1352

Appendix B: Visual Basic Power Packs Tools

For now, however, go to the Form Designer, and because this is a truly simple demo, drag a label and
a TextBox control onto the display. Within the code, create the four other types of interface members
you’ll want in your production code: an initializer, a property, a method, and an event (in that order).
The following code is placed within your class definition:

Public Sub New()
’ This call is required by the Windows Form Designer.
InitializeComponent()

’ Add any initialization after the InitializeComponent() call.
End Sub

<InteropFormInitializer()> _
Public Sub New(ByVal label As String)

Me.New()
Label1.Text = label

End Sub

<InteropFormProperty()> _
Public Property TextBoxText() As String

Get
Return TextBox1.Text

End Get
Set(ByVal value As String)

TextBox1.Text = value
End Set

End Property

<InteropFormMethod()> _
Public Sub ChangeLabel(ByVal lbl As String)

Label1.Text = lbl
RaiseEvent CustomEvent(lbl)

End Sub

<InteropFormEvent()> _
Public Event CustomEvent As CustomEventSig

’Declare handler signature...
Public Delegate Sub CustomEventSig(ByVal lblText As String)

For the initialization code you’ll note that first a default New constructor, is created. When you define
the default New constructor, it adds the call to InitializeComponent, which handles the creation of your
controls within the form. Thus, when the object is initialized, you will be able to reference the controls
you have placed on the form.

The next step is to create a parameterized constructor so that you can quite literally pass a parameter as
part of the initialization process. Note that similar to the class itself, the exposed initialization method has
an attribute on the method. Each type of class member that is to be exposed gets an attribute matching
the type of that method. Thus, for the New method, the type of the attribute is InteropFormInitializer.
For this simple example, the parameterized New(ByVal label As String)simply changes the text asso-
ciated with the label. Finally, although this class is defined in .NET syntax, COM and VB6 don’t allow

1352

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1353

Appendix B: Visual Basic Power Packs Tools

parameterized New statements. Thus, when you go to reference this parameterized initializer, you’ll find
that the method name is in fact Initialize.

Next, the code defines and exposes a public property. In this case, to help simplify the code, there isn’t
a private member variable to hold the value; this provides an easy way for the code that creates this
form to set and retrieve the value of the text box. Similarly, there is a method to allow the calling code to
update the label shown on the form. Note that it has also been attributed, and after you update the label
for demonstration purposes, it raises the custom event that is defined next.

That event, called CustomEvent, is defined with an attribute, but the event that is defined must also
define the signature or definition of its handlers. In this case, the Delegate CustomEventSig handles a
single parameter. This .NET code, as noted, provides a basic example of each of the primary types of
Interop you’ll want to carry out. The next step is to generate your Interop methods.

One of the key differences between an InteropForms project and an Interop User Control project is this
step. Only the InteropForms project requires the generation of custom COM wrappers. To do this, access
the Tools menu and select Generate InteropForm Wrapper Classes. There is no user interface; instead, the
generation process will create a new directory in your project containing the InteropForm1.wrapper.vb
class, as shown in Figure B-3.

Figure B-3

For readers developing on Vista: keep in mind that registry access requires elevated permissions. You
need to start Visual Studio 2008 with the Run as Administrator option on your right-click context
menu. If you don’t, then when you attempt to automatically register your newly built DLL as a COM
component, you’ll get an error, which Visual Studio 2008 reflects as a Build Error.

At this point, your application is ready to be called from VB6. If you follow best practices, you’ll have
the VB6 integrated development environment (IDE) installed on the machine with Visual Studio 2008.
In that scenario, you can immediately go to your VB6 project and reference the necessary DLLs, both the

1353

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1354

Appendix B: Visual Basic Power Packs Tools

Interop Forms Toolkit DLL and your custom DLL. Otherwise, you’ll need to get ready for deployment
now instead of later.

Deployment
To deploy your Interop Forms project, you need a traditional MSI installation. Creating a setup project is
covered in Chapter 24, so the details of creating your setup project aren’t repeated here. However, note a
couple of special steps. In order for your new Interop Forms project to work on the client, the client needs
both the .NET Framework 2.0 redistributable and the second MSI you downloaded earlier in this chapter
(shown in Figure B-1), the microsoft.interopformsredist.msi. If you are using Visual Studio 2005 to create
your installation package, then you can add these items as prerequisites for installing your DLL via the
user interface.

The recommendation is to create a simple setup project in Visual Studio 2005 for installing your Interop
Forms project and the associated prerequisites and have this run in advance of whatever legacy installa-
tion project you have. To extend an existing MSI, you need to carry out the appropriate steps for the tool
generating your MSI, a subject beyond the scope of this appendix.

Debugging
When you first start planning to work with the toolkit, you might try to keep the VB6 IDE on a separate
machine from your primary development machine. However, this leads to two issues. First, in order
to work with the Interop Forms tools on your VB6 machine, you need to install the tools package a
second time. That’s a minor issue. Second, because Visual Basic 6.0 doesn’t know how to step into .NET
applications, if you want to debug the Interop Form you created in .NET, you have a problem. The
solution to this, of course, is to run both development environments on the same machine.

Alternatively, you can try to create a simple Windows Forms EXE that will call and initiate your Interop
Forms project from within .NET. The debugging isn’t perfect because, of course, you aren’t actually
calling your code across the correct interface, but it should enable you to find most pure .NET coding
issues. You can also leverage the Debug and Trace classes, but you won’t have any interactive breakpoints
in that scenario.

This still leaves unresolved the issue that you can’t just open Visual Studio 2008 and expect the VB6 IDE
to call it when you are in debug mode. Therefore, this section briefly discusses debugging Interop Forms
Toolkit projects when you are running your VB6 application.

Once you have compiled your .NET application, you have a DLL. This DLL is then exposed to your VB6
development environment and added as another COM component in your VB6 application. However,
when you debug, you can’t step into this DLL from Visual Basic. Presuming you have started your Visual
Basic 6.0 project so that its process is now running, your next step is to open Visual Studio 2008 and open
your Interop Forms project. It is hoped that you have set typical breakpoints in your source code and
might even add new breakpoints.

Next, go to the Tools menu and select the Attach to Process menu item. At this point, you get a dialog
containing a list of running processes. Locate the ‘‘Visual Basic 6.0.exe’’ process. Once you have found
this process, which represents the running application in VB6, attach to this process.

1354

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1355

Appendix B: Visual Basic Power Packs Tools

At this point, you can work with your running application, and when the call is made into your .NET
code, Visual Studio 2008 detects the call into the DLL and stops you on your breakpoint. In order for
Visual Studio 2008 to detect the DLL call, you must be calling the same copy of your DLL that your
Interop Forms project references. In other words, you can’t just copy it off to some other location on
your local machine for installation.

If you stop and restart your VB6 application, Visual Studio 2008 will maintain the attachment, but if
you close the VB6 IDE, then you’ll need to reattach the debugger in Visual Studio 2008.

VB6 development
Overall, the development process in VB6 is simple. Once you have either built your project or deployed it
to the machine on which you have the VB IDE, you’ll need to add references to both the Microsoft Interop
Form Toolkit library and your custom DLL. Keep in mind that both of the DLLs must be registered
on your VB6 IDE machine for them to be visible. If you are building on the same machine, they are
automatically visible. Once you have added references for these libraries, you can create a new instance of
your Interop Form’s Form class and call the standard methods and any custom methods you’ve exposed
on that form.

The one key point to remember, which was mentioned earlier but bears repeating, is that if you have
created a custom constructor, in order to use it, you will call an Initialize method on your Interop
Form class.

Final Interop Tips
As noted earlier in the book during the discussion of the WPF Interop controls, the Interop control pack-
ages aren’t perfect. Each has certain limitations that reduce their desirability for the long term. To resolve
this, keep track of how much of various branches you have already converted. There will be a point
where it is time to convert a larger section so that you can reduce the number of different Interop DLLs
that you are using.

Along these lines, note that you can’t put an Interop Form and an Interop User Control into the same
project. Each of these items needs its own DLL, and, in fact, you should consider it best practice to only
expose the DLL for a single form or control. Similarly, don’t plan on calling a VB6 form from within your
Interop Form. The Interop logic was written to enable you to call .NET from VB6.

In terms of interfaces, the Interop layer was designed to support only a minimum number of interface
types. In particular, the String, Integer, and Boolean types should be at the core of what you expect to
pass in terms of data. In theory, the Object type is supported, which enables you to pass custom data,
so you could pass a Recordset from .NET to VB6 or vice versa; of course, VB6 doesn’t know about a
Dataset object, so you need to reference VB6 types as the generic object. In general, the best practice is to
keep your interfaces as simple as possible.

When you start the VB6 IDE with your project, it attaches to your DLL. Normally this isn’t an issue
until you first run your VB6 application. At this point, you can’t rebuild your Interop project. The Interop
project is, in fact, referenced and therefore locked by VB6. If you need to rebuild your Interop project, you
need to first shut down the VB6 development environment so that your code will correctly reference your

1355

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1356

Appendix B: Visual Basic Power Packs Tools

latest build. As noted previously, debugging your Interop project from VB6 isn’t the most productive set
of steps.

If you change any of the method attributes, you need to regenerate the Interop wrapper classes that you
generated in the last step of creating your Interop Forms project. Moreover, although it wasn’t covered,
you can raise errors from .NET into VB6. To do this, you want to leverage the following method call on
the custom My namespace that was defined as part of your Interop Form:

My.InteropToolbox.EventMessenger.RaiseApplicationEvent("CRITICAL_ERROR", _ "Error
Detail.")

The other runtime issue that you may encounter is that certain internal events to your .NET application
will not be triggered in the same fashion that they were in VB6. Under VB6, for example, when you
referenced a property on a Form class, this triggered the Load event on that class. Under .NET, the Load
event is not fired until the form is being displayed, so you need to recognize the impact on any code that
you previously set to run on the Load event.

The remaining issue is related to the VB6 IDE. The IDE and VB6 don’t really recognize that if you have
started a .NET DLL, there are other in-memory classes to release. For a deployed application, this isn’t an
issue because when the application is closed, all of the memory associated with the process is automati-
cally released. When you are debugging in VB6, however, the core process is associated with the IDE, not
your application. As a result, the resources are not released between debugging cycles. To ensure that
they are released, you can explicitly instantiate a series of code modifications contained in the Interop
help files and release the .NET resources associated with your application. The recommendation is to
implement these calls only after your references with the Interop tools are functioning correctly.

Using the Power Packs 2.0 Tools
Unlike the Interop Forms Toolkit, the Power Packs extensions are intended to facilitate some of the
same development simplicity that existed in VB6 for tasks such as printing. These classes aren’t meant
to support Interop, they are meant to support migration in the sense that the code for creating simple
geometric shapes or using the VB style of form printing could be implemented using syntax similar to
that of VB6. Since these Power Packs were released, the printing syntax has proven so popular that the
Visual Basic team migrated those classes into the core features of Visual Studio 2008.

Similar to the Interop Forms Toolkit, the Power Pack Tools are installed from the Microsoft downloads.
However, unlike the Interop Forms Toolkit, only a single MSI is available, which you run when the tools
are installed. Prior to installing the tools, Visual Studio 2008 already has the printing control installed as
such. If you review a typical Windows Forms project, you’ll see the display shown in Figure B-4, which
already includes the PrintForm control as part of your default Toolbox.

Unlike the Interop Forms toolkit, there is no need to begin with a special project template. There is no
COM Interop involved because the Power Packs don’t target VB6. They target experienced VB developers
who want to be able to continue to implement certain tasks in the same way they could in VB6.

When your application ships, you still need to ensure that you create a dependency for the Power Packs
library if you aren’t using the DLLs that are included with Visual Studio 2008, but that’s it. Addition-
ally, because the Power Packs are just another set of .NET libraries, there aren’t any issues related to
debugging.

1356

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1357

Appendix B: Visual Basic Power Packs Tools

Figure B-4

For the sample project shown in Figure B-4, you can create a new Windows Forms application and add
the Print control to it. At this point, close Visual Studio and install the Power Packs 2.0 installation
package. After installation, when you reopen your project within the Toolbox window, Visual Studio
2008 has a new section for the Power Packs 2.0, showing the Oval and Rectangle shape controls along
with the Line and Print controls, as shown in Figure B-5.

Figure B-5

1357

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1358

Appendix B: Visual Basic Power Packs Tools

Add a Rectangle shape to the upper section of the display and an Oval to the center of the display. With-
out getting into pages of details here, using the Visual Studio 2008 designer, you should customize the
look and feel of the display by adding a variety of controls. Take some time to color and fill the shape
controls with a solid color. The gradient colors are defined by selecting a fill color (Coral), a FillGradient-
Color (Navy), a FillGradientStyle (Horizontal), and a FillStyle (Solid). All of this can and should be done
within the Visual Studio 2008 designer to achieve a display similar to what is shown in Figure B-5.

Now try to build your project. This will probably result in an error because of an ambiguous class refer-
ence with regard to the Print control. In the steps just discussed, Visual Studio 2008 includes references
to both versions of the Power Packs library DLL. The 9.0.0.0 version is the one that ships with Visual
Studio 2008, whereas the version from the Web is labeled 8.0.0.0.

If you install the Visual Basic Power Packs 2.0 on Visual Studio 2008 and you use the graphical ele-
ments, you may need to remove the Power Packs reference that ships with Visual Studio 2008 for the
Printing controls as a reference in your project. Because the Power Packs include the most recent ver-
sion of this DLL for the graphics, it is recommended that you remove the version that ships with Visual
Studio 2008.

Once the duplicate reference is removed, the application should build. The next step is to ensure that
the check box in the upper-right corner, labeled ‘‘Landscape’’ in the figure, is checked. Having done this,
label the button in the bottom center of the display ‘‘Print’’ and double-click it in the Design view to
trigger the automatic event handler generation.

The only code needed for this printing demonstration is placed within the handler for this button. The
code hides the button, determines whether or not the Landscape check box is checked, and uses
the Power Packs Print control to Print Preview the document. Once this is completed, the Print Me button
is made visible again:

Private Sub ButtonPrintForm_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ButtonPrintForm.Click

ButtonPrintForm.Visible = False
PrintForm1.PrinterSettings.DefaultPageSettings.Landscape = _

CheckBox2.Checked
PrintForm1.PrintAction = Printing.PrintAction.PrintToPreview
PrintForm1.Print()
’PrintForm1.Print(Me, _

PowerPacks.Printing.PrintForm.PrintOption.CompatibleModeFullWindow)
ButtonPrintForm.Visible = True

End Sub

The code shows how you can reference the PrinterSettings property, and within that are the page
settings to change details regarding how the page is printed. The PrintAction defines what the control
should do. There are three options: print to the default/selected printer, print to a file, or use the Print
Preview window. In this case, displaying the results is the most useful option.

The next line is all you need by default to print the current window. Note that this control doesn’t
call the form to determine what is visible on the form. Instead, it essentially captures the current screen-
shot of the form for printing. This is the default behavior, but not the only option available. If you open

1358

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1359

Appendix B: Visual Basic Power Packs Tools

and resize this project so that it is fairly wide and print in profile mode, you’ll see how the control trun-
cates the printed image (see Figure B-6).

Figure B-6

As shown in Figure B-6, the default behavior is to show the contents of the screen without the border
displayed. Unfortunately, in this case the printout shows less than the full window contents. Before you
print again, go to the print event handler and comment out the default print line and uncomment the
parameterized print line. In this case, specify the window, which is Me, and then add one of the print
options.

The current code uses the CompatibleModeFullWindow option, which you are encouraged to test. The
results in this case are shown in Figure B-7, and the Print Preview shows the full window with the border
in place. However, don’t stop at this option; try out other options. The Compatible Mode option uses a
display-based logic that properly captures the screen. Other display options do not capture the screen
accurately, so in some cases the only things visible in the Print Preview window are the shape controls.

Overall, the Power Packs 2.0 shape controls enable you to easily add a custom look to your otherwise
gray forms. The controls are somewhat limited, but if you want a quick and easy way to add some
graphics, they do the trick. Similarly, the Print control is a quick and easy way to create a hard copy of
what your application is displaying. However, keep in mind that the Print control sacrifices capabilities
and customizations in order to provide a simple interface.

The Power Packs 2.0 provide tools that VB6 developers can leverage for migrating an application, and
for a rapid application design (RAD) prototype, they provide a dynamic and visually interesting display.

1359

Evjen-91361 bapp02.tex V2 - 04/01/2008 6:07pm Page 1360

Appendix B: Visual Basic Power Packs Tools

Just keep in mind that when it comes to the shape controls, if you need any sort of fancy graphics, then it
is recommended that you leverage WPF and the new graphical capabilities provided as part of .NET 3.0.

Figure B-7

Summary
This appendix covered the Visual Basic Power Packs. This set of off-cycle release tools enables experi-
enced Visual Basic developers to leverage their knowledge and existing code with the new capabilities of
.NET. The Visual Basic team has created two downloadable packages that improve your ability to man-
age COM to .NET Interop migration and to continue to print and create graphics the same way you did
before. As with all Interop-focused solutions, there are key limitations in working with the Interop Forms
toolkit, but in general it provides classes that will help you if you need to migrate an existing application
in a controlled and cost-effective manner. In particular, this appendix highlighted the following:

❑ The focus of the Visual Basic Power Packs

❑ How to integrate Visual Basic 2008 forms with Visual Basic 6.0 applications

❑ Leveraging printing and drawing controls that behave similarly to those in Visual Basic 6.0.

Although there are currently only two Power Packs, you can keep track of what is occurring in the Visual
Basic Development center at http://msdn2.microsoft.com/en-us/vbasic/default.aspx.
There is talk of adding more Power Packs in the future, which would add still more features to increase
the productivity of Visual Basic developers.

1360

Evjen-91361 bapp03.tex V1 - 04/01/2008 6:10pm Page 1361

Visual Basic Resources

On the Web

The MSDN Visual Basic Developer Center msdn.microsoft.com/vbasic

Blogs of the Microsoft VB team blogs.msdn.com/vbteam

Visual Basic FAQs blogs.msdn.com/vbfaq

The Microsoft Windows Forms site www.windowsforms.net

The Microsoft ASP.NET site www.asp.net

CodePlex www.codeplex.com

VB City www.vbcity.com

VB.NET Forums www.vbdotnetforums.com

vbAccelerator.com www.vbaccelerator.com

DotNetJunkies www.dotnetjunkies.com

4 Guys from Rolla www.4guysfromrolla.com

123ASPX www.123aspx.com

Microsoft Newsgroups msdn.microsoft.com/newsgroups

Microsoft Developer Centers msdn.microsoft.com/developercenters

VBRun: Microsoft’s Visual Basic 6.0 site msdn.microsoft.com/VBRun

.NET Framework 3.0 community site www.netfx3.com

MSDN Forums on VB forums.microsoft.com/MSDN/default.aspx?ForumGroupID=
10&SiteID=1

Silverlight www.silverlight.net

Evjen-91361 bapp03.tex V1 - 04/01/2008 6:10pm Page 1362

Appendix C: Visual Basic Resources

Books

Professional ASP.NET 3.5 (ISBN: 9780470187579)

Beginning ASP.NET 3.5 (ISBN: 9780470187593)

Author Blogs

Bill Evjen www.geekswithblogs.net/evjen

Bill Sheldon blogs.interknowlogy.com/billsheldon

Kent Sharkey www.acmebinary.com/blog

1362

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1363

In
de

x

Index

A
-A all, 880
-A p, 880
ABC, WCF, 1240–1241, 1245
Abort, 1062

FtpWebRequest, 1212
HttpListener, 1225

AbortTransaction, 817
Absolute, 670
abstract base class, 149–151

polymorphism, 174
abstract method, 150
AbstractBaseClass, 150
Abstraction, 159–162
abstraction, 49, 101

behavior, 159
Class, 159
properties, 159

AcceptTcpClient, 1311
AccessDataSource, 804, 854
Account, 1230

ServiceProcessInstaller, 1272
ACID test, 1174–1175, 1176
act-as relationship, 153

multiple interfaces, 180
Action, 512
actions pane, VSTO, 929–935
ActionsPane, 933
Activate, 663, 1188
Activated, 663, 1149, 1150, 1158

AppDomain, 1151–1152
library DLL, 1155
System.MarshalByRefObject, 1151

Activation, 1188
Activator.GetObject, 1168–1169, 1171
ActiveControl, 4
ActiveX

COM, 1033–1038

HTTP, 1110–1111
IDE, 1033
Windows Forms, 649

ActiveX Data Objects (ADO), 324, 1111. See
also ADO.NET

XML, 379
activity library, 1082
Adapter, ServiceController, 1285
Add, 1244, 1256
AddAllButton, 711
AddButton, 711
-AddFullTrust, 498
AddGroup, 503
-AddGroup, 498
AddHandler, 89–90

event, 143
Add-In project, 589–590
Add-ins

Excel, 939–945
VSTO, 917–918, 939–945

/addmodule, 1337
AddNodes, 1219
AddOwnedForm, 655
AddPropertyMapping, 791
-AddPSet, 498
-addpset, 502
AddRemoveProgramsIcon, 984
addresses

IP, 1203
DNS, 1204

network programming, 1201–1205
WCF, 1240–1241

<AddResults>, 1257
Adjoining forms, 949
ADO. See ActiveX Data Objects
ADO.NET, 198

architecture, 328–329
class, 332–333

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1364

ADO.NET (continued)

ADO.NET (continued)
components, 333–334
Connection, 446
connection pooling, 358–359
constructors, 360–361
data, 327–378, 633–639

DataSet, 349–356, 633
deleting, 331–332
inserting, 330–331
.NET Data Providers, 334–349
selecting, 329–330
updating, 331

DataSet, 349–356, 633
DataTable, 353–354
features, 329–334
namespace, 332–333
properties, 361–362
SqlDataReader, 633
Transaction, 447
Web pages, 328
XML, 362–363, 380, 423–428

Advanced Compile Options, 549, 979
Advanced Compiler Settings, 979
-af, 498
-ag, 498
Age, 88, 125

base class, 122
Aggregate, 457
AJAX. See Asynchronous JavaScript and

XML
AJAX Master Page, 814
AJAX Web Form, 814
aliasing, 282
Alignment, 1033
-All, 504
All Code, 483
AllCode, 495
AllowFullOpen, 684
AllowItemReorder, 681
AllowWebBrowserDrop, 1330
AlwaysCreate, 993
Amazon.com, 543
Anchor, 666–667

UserControl, 710
anchoring, Windows Forms, 666–667
And, 14, 92

AndAlso, 14
defining, 93
overloading, 93

antivirus, Windows Services, 1267
-ap, 498
ApartmentState, 1062
App.Config, 556
app.config, 376

WCF, reference, 1253
App_Data folder, 872
-AppDir, 504
AppDomain

Activated, 1151–1152
ASP.NET, 1047–1048
memory, 1049
.NET Framework, 1047
remoting, 1145, 1146
Singleton, 1151
threading, 1047

AppendFile, 1213
appid, 627
applets, Java, 1110
Application, 1104

hosting, 1155–1160
System.Windows, 733
XML Web services, 1141

application. See also client application; .NET
application

ASP.NET, 806–810, 839–847
data-driven, 853–863
folders, 818–823

building
Debug, 577
Visual Studio, 577–583

ClickOnce, 1008
debugging, Visual Studio, 578
deployment, 977–1017

Internet, 1006–1017
download cache, 1006–1007
inheritance, 179–180, 179–186
Internet Explorer, 1321–1330
minimum permissions, 506–510
mobile, 982
online, 1009–1011
pools, 877
remote data entry, 604

1364

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1365

In
de

xASP.NET

remote data mirror, 604
remote database, 607
security, 1142–1143
settings

My, 557
String, 557
Visual Studio, 556–558

Silverlight, 900–906
simple queuing, 604
sockets, 1301–1304, 1318
thick-client, 885
thin-client, 885
Web, 986
WF, 1098–1104
workflow, 1079–1080

@Application, 825
<application>, 1158
Application Event Log, 316–317
Application_AuthenticateRequest, 825
Application_BeginRequest, 824–825
ApplicationContext, 287
Application_End, 825
Application_Error, 825
Application_Start, 824
application.xaml, 733
App_Local Resources, 234
arbitrary elements, shadowing, 124–126
Architects, 591

Team Editions, 593
ArgumentException, 306
Arguments, 1001–1002
Array, 27–28
ArrayList, 1209

synchronization, 1067
arrays, 27–30

multidimensional, 28
Asc, 20
Ascending, 460
ASCII, Byte, 20
‘‘Ask Dr. Math,’’ 622
ASMX, 1100
ASMX Web Services. See ASP.NET Web Services
<asp:AdRotator>, 854
<asp:BoundField>, 859
<asp:BulletedList>, 854
<asp:CheckBoxList>, 854

<asp:CommandField>, 863
<asp:DataGrid>, 854
<asp:DataList>, 854
<asp:DetailsView>, 854
<asp:DropDownList>, 854
<asp:FormView>, 854
<asp:Gridview>, 854
<asp:ListView>, 854
<asp:Menu>, 854, 866–867
ASP.NET, 194, 801–837. See also

Asynchronous JavaScript and XML
advanced features, 839–896
AppDomain, 1047–1048
application, 806–810, 839–847

data-driven, 853–863
folders, 818–823

authentication, 825
cache, 1199
code-behind, 814–815, 955
compilation system, 802–803, 844–847
content page, 850–853
Context, 1225
cross-page posting, 839–844
cultures, 219, 225–226
editing, 552
Forms Authentication, 518
FTP, 808–809
global resources, 240–241
Global.asax, 823–826
goals, 801–804
GUI, 804, 880–882
host process, 1099
HTML, 418
IDE, 805–806
IIS, 808, 1166

Vista, 876–877
inline coding, 812–814
JavaScript, 833–837
localization, 804
master pages, 847–853
membership, 870–874
namespace, 282–283
navigation, 864–870
.NET, 728
object, 804
page directives, 815–816

1365

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1366

ASP.NET (continued)

ASP.NET (continued)
page event, 816–818
page structure, 810–815
pages, 839–847
personalization, 874–876
provider model, 877–884
remoting, 1145
resource files, 224–246, 233–241
resources, 1361
role management, 870–874
server controls, 827–832
Server Setup Wizard, 881–882
server-side culture declarations, 224–225
64 bit, 802
SQL Server, 879–884
state management, 1141
threading, 1053
transactions, 1199
Visual Studio, 234–235, 805
WCF, 805
Web application, 986
Web server, 807–808
Web services, 1123
web.config, 545
WF, 1099–1104
workflow, 1089
XML, 428–434, 864

ASP.NET Web Matrix, 805
ASP.NET Web Services, 1235
aspnet_regsql.exe, 881
<asp:RadioButtonList>, 854
<asp:Repeater>, 854
<asp:SiteMapPath>, 865–866
<asp:TreeView>, 854
Assembly, 816

System.Reflection, 204
assembly, 955–975

attribute, 547–549
CLR, 953–954
COM+, 279
configuration files, 968–971
culture, 962
default interop, 1026
deployment, 963–965
dynamic loading, 971–974
GAC, 964–965

identity, 958–959
location, 969–970
manifest, 957–963
metadata, 954
modifier, 547
MSIL, 954
namespace, 195
.NET, 953, 1337–1339
.NET application, 195–196
search path, 970–971
security, 196
shared, 963–965
signing, 961
strong names, 960–961
version, 960, 965, 969

.assembly, 960
@Assembly, 825
Assembly File, 496
Assembly Information, Visual Studio,

547–549
Assembly Version, 548
[Assembly].Load, 171
Assert, 320, 484, 487
AsyncCallback, 343
asynchronous

COM, 1173
COM+, 1173
Command, 342–344
components, 1189
DownloadX, 1224
.NET Framework, 1057
requests, Windows Forms, 649
thread pool, 1056–1057
UploadX, 1224
workflow, 1103

Asynchronous JavaScript and XML (AJAX), 801,
884–895

Button, 890
DHTML, 887, 889
DOM, 887
HTTP, 887
Label, 890, 892
Visual Studio, 805, 888

AsyncState, 343
atomicity, 1174
Attach, 449

1366

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1367

In
de

xBindGrid

AttachAll, 449
Attribute, 484
attribute

assembly, 547–549
CLR, 201–203
controls, 701–702
count, XmlReader, 396
DefaultValue, 702
.NET application, 202
properties, 702
transactions, 1186–1187
Web services, 202
XML, 202, 468

DOM, 413–415
source code, 387–389

AttributeCount, 397
Audio, 291
authentication, 641

ASP.NET, 825
Kerberos, 641

<authorization>, 873
AutoCompletion, Windows Forms, 648, 674–675
AutoLog, 1271

ServiceBase, 1290
AutoResetEvent, 1068, 1075–1076
Autos, Debug, 583
AutoScaleDimensions, 562
AutoScaleMode, 562
AutoScroll, 658, 671
AutoScrollPosition, 710
autoshrink threshold, SQLCE, 602
AutoSize, 670
AutoWordSelection, 690

B
BackColor, 709
background threading, 1051–1052
BackgroundImage, 656, 709
BackgroundWorker, 1053, 1057

HttpListener, 1226–1227
BackgroundWorker1_DoWork, 1056
backing field, 700
BackStyle, 1033
base class, 103, 117

abstract, 149–151, 174

Age, 122
bugs, 122
child, 177
Control, 709
creating, 104–105, 181
fragile, 186–190
inheritance, 149–151
interface, 140
interface element, 125
library, 179
multiple inheritance, 127
MyBase, 115, 134
Overridable, 121
Overrides, 119
overriding, 112
Shadows, 121
UserControl, 709–710

Base Class Library (BCL), 247
Base64, 516
BaseAddress, 1223
/baseaddress, 1343
Basic, 641
basic object adapters, 1109
BCL. See Base Class Library
BeginExecuteReader, 343
BeginInvoke, 1058–1059
Beginning ASP.NET 3.5, 1362
BeginRead, 1057
BeginXYZ, 1057
behavior, 3, 52–53

abstraction, 159
WPF, 744–748

bigint, SQL, 17
bin, 545
Binary, 995

FtpWebRequest, 1212
binary formatter, 354

IIS, 1167–1168
binary operator, 91
BinaryFormatter, 1147, 1167, 1312

Deserialize, 1313
HTTP, 1167
TCP, 1167
XML, 1168

BindGrid, 344

1367

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1368

binding

binding, 1020, 1112. See also early binding; late
binding

WCF, 1240–1241
<binding>, 1254
bindingConfiguration, 1254
BindingNavigator, 792
black box code, 49, 159
Blackjack, 543
Blend, 730–731

WPF, 765–776
Blend (Expression Blend), Silverlight, 902
BlinkStyle, 673
blocking, 1063
blogs, 1361, 1362
Boolean, 8, 11, 15–16, 60, 92, 322, 618, 1271

comparison operator, 14
CTS, 200
delegates, 93
EnableSession, 1141
IDE, 701
Integer, 16
My.Application, 287
True or False, 15–16

BooleanSwitch, 321–323
bootstrapper, 1015
BorderStyle, 671
BoundField, 859
boxing, 34–35
breadcrumb navigation, 865–866
breakpoints, 578–581

debugging, 581
DLL, 581
IDE, 581

BringToFront, 694
Browsable, 704
Browse, 274
browsers

cultures, 225
Silverlight, 897–898
Windows Forms, 649

BSTR, 199
BtnCheckStatus, 1285
btnCompare, 146
BtnDecrement, 1282
BtnIncrement, 1282
btnOK, 107

BtnStartService, 1285
BtnStopService, 1285
bubbling, 758
buffer, SQLCE, 602
/bugreport, 1339
bugs

base class, 122
Shadows, 122

Build, 577
DLL, 700

build configurations, Visual Studio, 583–586
BuildLanguageOptions, 1097
BuildSqlCommand, 347
Button, 236, 688

AJAX, 890
Conversation forms, 1305

button
Windows Forms, 711–712
WPF, 761–765
XAML, 761–765

ButtonBrowse, 774
ButtonBrowse_Click, 746
Button_Click, 222
ButtonClose, 759
ButtonLoad, 747
ButtonMax, 758
ButtonNext, 748, 761

event handler, 753
ButtonPrev, 745, 748, 761

event handler, 753
buttonSend, 1305
ButtonStyle1, 768
ByRef, 35, 633, 1216
Byte, 8, 10, 20

ASCII, 20
ByVal, 3, 35

C
C, 199
c, 20
C++, 199

32 bit, 199
memory, 213
threading, 1045
unmanaged code, 552

1368

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1369

In
de

xclass

Windows Forms, 1273
Windows Services, 1269

-C, 879
CAB Project template, 981
cabinet files, 981, 989
cache

ASP.NET, 1199
SOAP, 1131
transactions, 1199
Web service, 1131

CacheDuration, 1131
calc, 1171
CalculateDistance, 169
Calculator, 1155, 1161, 1171

WCF, 1244
CalculatorClient, 1253
CalculatorService, 1249–1250
Call Stack, Debug, 582
callback, 1057
CallExternalMethod, 1089
CancelAsync, 1056
CancellationPending, 1056
CanStop, ServiceController, 1284
<canvas>, 908–909

Silverlight, 905–906
Canvas.Left, 907
Canvas.Top, 907
Caption, 688, 689
carriage return, 4–5
CAS. See Code Access Security
Caspol.exe, 482, 483, 490, 511

security policy, 495–498
Cassini, 807
Catch, 57–58, 303–304
Category, 704
CausesValidation, 678
CCircularRef, 207
cell phones, Web services, 1143–1144
CenterParent, 654
CenterScreen, 653
Cert2spc.exe, 511
certificate, 482

.NET SDK, 531
SSL, 1143
tools, 511

Certificate Trust List (CTL), 511

Certmgr.exe, 511
-cg, 498
chains of inheritance, 126
ChangeConflicts, 448
ChangeCulture, 287
Changed, 1290
ChangeUICulture, 287
channel, 1147
Char, 11, 20
char, 199
Character, 8
character placeholder, 676
CharacterCasing, 690
CheckBox, 688
CheckCharacters, 391, 399
CheckedListBox, 688

controls, 705–708
Checksum, 514
-ChgGroup, 498
-ChgPset, 498
child, 104

base class, 177
MDI, 659
namespace, 272
UserControl, 710
workflow, 1091

ChildChangedEventArgs, 780
Chktrust.exe, 511
Chr, 20
ChrW, 20
circular reference, GC, 206–208
Class, 6, 61–62

abstraction, 159
interface, 153
Solution Explorer, 61
Web services, 1115

class, 3, 50. See also base class; subclass
ADO.NET, 332–333
vs. components, 98–99
constraints, 267
creating, 60–81
derived, 104
diagrams, Visual Studio, 590–591
disconnected, 332
enlistment, 1199
Friend, 141

1369

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1370

class (continued)

class (continued)
generics, 255–260, 261–262
implementation, 189
inheritance, 176–177
interface, 155, 163
LINQ, to SQL, 440–441
MyBase, 130
namespace, 272
native interface, 151
.NET application, 194
object, 21
Private, 141
Protected, 141
Protected Friend, 141
Public, 141
scope, 37
shared, 332
superclass, 103, 186
virtual, 150

Class and Collection, 444
Class Designer, 103, 591

inheritance, 107
Class View window, 62
classID, 1020–1033
ClassKey, 240
Class_Terminate, 209
CLEAR, 641
Clear, 715
ClearButton, 711, 716
ClearUndo, 690
ClickOnce, 198

application, 1008
bootstrapper, 1015
configuration, 1013–1015
custom options, 1016–1017
deployment, 979, 1007–1016
directories, 1011–1012
files, 1011–1012
manifest, 1012

editing, 1015–1016
.NET Framework, 1008
vs. other technologies, 1016
rolling back, 1016
uninstalling, 1016
update, 1012–1013

Client, 1317

<client>, 1254, 1265
client application, 50–52, 1170–1171

Internet, 1006
object, 189
Office, 544
proxy, 1171–1172
RDA, 607
remoting, 1160–1164

Client Script Library, 888
ClientSize, 562
Clip, 764
Clipboard, 291
ClipToBounds, 749
Clock, 291
Close, 320

HttpListener, 1225
Closed, 663
CloseOutput, 391, 399
Closing, 663
CLR. See common language runtime
Code, 1092
code

access, permissions, 486–487, 490–485
expansion, Visual Studio, 565–568
modules, interface, 153
server controls, 830
snippets

Snippet Editor, 570
Visual Studio, 568–570

source
Visual Studio, 563
XML, 387–389

unmanaged, 552
Code Access Security (CAS), 624
Code View, 928

tabs, 563
CodeAccessPermissions, 486–487
CodeAccessSecurityAttribute, 485
CodeActivity, 1092
CodeBehind, 1115
code-behind, 282, 736, 793, 802–803,

810–815
ASP.NET, 814–815, 955
XAML, 903

/codepage, 1343
CodePlex, 1361

1370

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1371

In
de

xComponent Object Model (COM)

Collapsed, 762
Collect, 216
Collection, 1209
Collections, 30–32
colon, 5
Color, 684, 703
ColorDialog, 684
columns, O/R Designer, 452–453
COM. See Component Object Model
COM+

assembly, 279
asynchronous, 1173
JIT, 1150
metadata, 200–201

COM Visible, 549
ComboBox, 688, 723–724

Control, 724
ToolStrip, 680
Web services, 643
Windows Forms, 648

Command, 333, 334
asynchronous, 342–344
data, 335–340

Command window, Visual Studio, 586–587
CommandBar, 933–934
CommandBehavior.CloseConnection, 342
CommandButton, 688
commands, 11–15
CommandTimeout, 448
comments, 7–8

XML, 8, 467
Commit, 1001, 1199
CommittableTransaction, 1197
CommitTransaction, 817
Common Files Folder, 991

64 bit, 991
common language runtime (CLR), 193–217

assembly, 953–954
attribute, 201–203
cross-language integration, 199–204
deployment, 197–198
DLL, 276–277, 972
.dll, 962
GC, 208–209
ildasm.exe, 204–205
memory, 205–216

metadata, 200–201
.NET, 193–197
SQL Server, 615–645
T-SQL, 615
versioning, 197–198

Common Object Request Broker Architecture
(CORBA), 1107, 1109

Web services, 1140
common type system (CTS), 199–200

Boolean, 200
Int32, 200
System.Object, 200

[CommonAppDataFolder], 991
[CommonFiles64Folder], 991
[CommonFilesfolder], 991
Company, 548
Compare, 23, 94, 146
CompareAge, Person, 95
CompareOrdinal, 23
comparison operator, 12–14

Boolean, 14
CompensatableSequence, 1091
Compensate, 1092
compilation system, ASP.NET, 802–803
Compile Settings, 542

Visual Basic, 549–550
compiler, 1331–1345

debugging, 1339–1340
help, 1340–1341
implicit conversion, 39–42
language, 1341
.NET assembly, 1337–1339
optimization, 1335–1336
output, 1334–1344

files, 1336–1337
preprocessor, 1341–1342
resources, 1342

Completed, 1104
component names, 274
Component Object Model (COM), 196,

1019–1044. See also COM+; Distributed
COM

ActiveX, 1033–1038
asynchronous, 1173
cross-language integration, 199
DLL, 965

1371

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1372

Component Object Model (COM) (continued)

Component Object Model (COM) (continued)
early binding, 1020
GUID, 1183
late binding, 1020, 1028–1033
legacy component, 1021–1023
memory, 206
MMC, 1110
MSMQ, 1191
namespace, 274
.NET, 1020–1033
.NET application, 1024–1027, 1035–1037
.NET components, 1038–1043
TCP/IP, 1108
threading, 1062
unmanaged code, 552
Web services, 1106
WebBrowser, 1321

Component Services, 1183
DLL, 1184

Component Services Console, 1185
queued components, 1191

components
ADO.NET, 333–334
asynchronous, 1189
vs. class, 98–99
queued, 1189–1196
synchronous, 1189

composite controls, 699
compression, 989
Concat, 23
Condition, 985, 993, 1002
conditional statements, 11
ConditionedActivityGroup, 1091
config, 1161–1164
.config, 1160
configuration files, assembly, 968–971
Configuration Manager, 585
ConfigurationSettings, 376
ConfigureClient, 1306, 1316

Conversation forms, 1309
Reflection, 1317

ConformanceLevel, 392, 399
Connection, 333, 334, 446–448

ADO.NET, 446
data, 335

connection pooling, ADO.NET, 358–359

connection string, 633
ConnectionString, 361

SqlDataSource, 858
consistency, 1174
Console, 6
console application, 5–8

Sub, 5
Visual Studio, 5
WCF, 1244–1247

Console.WriteLine, 43
constants, String, 25
constraints

class, 267
generics, 265–268
multiple, 268
New, 267–268
Structure, 267
type, 265–267

constructors
ADO.NET, 360–361
Dictionary, 139
inheritance, 135–140
methods, 84–85
overloading, 138–139
parameters, 137–138
Shared, 90
String, 23, 138
variable initialization, 138–139

Contacts.sdf, 604
ContainerControll, 710
Content, server controls, 852
content page, ASP.NET, 850–853
content presenter control, 750
content type, 926
ContentPlaceHolder, 849
Content-Type, 1111
Context, ASP.NET, 1225
context switching, 1050
ContextMenu, 650
ContextMenuStrip, 650, 682, 1210
ContextUtil, 1180
Continue, 32–33
ContinuePending, ServiceController, 1285
contract, WCF, 1240–1241
Control, 4, 698, 816

base class, 709

1372

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1373

In
de

xCryptoEncryptor

ComboBox, 724
System.Windows.Forms, 709
Windows Forms, 648

control
content presenter, 750
hosting, 792–797
layered, 749
Windows Forms, 664–694, 697–708

attribute, 701–702
Browsable, 704
Category, 704
CheckedListBox, 705–708
Description, 703–704
dynamic sizing and positioning, 665–668
embedding, 723–725
event, 705
GDI, 717
IDE, 703
inheritance, 698–708
resizing, 712
runtime, 693–694
System.Drawing, 717–718
Visual Studio, 701–702
z-order, 664

WPF, 739–742
library, 782–785

XAML, 739–742
control panel, 1283
Control Tab, Windows Forms, 664
Conversation, 1304, 1313, 1317
Conversation forms, 1305–1307

Button, 1305
ConfigureClient, 1309
debugging, 1306
TextBox, 1305

Conversation windows, 1304–1311
Message, 1311–1316
TextBox, 1305
thread pool, 1305
threading, 1313

cookies, 1139
Copy, 23, 487, 488, 690
Copyright, 548
CopyRow, SqlDataRecord, 639
CORBA. See Common Object Request Broker

Architecture

core elements, 1–20
boxing, 34–35
commands, 11–15, 32–34
data type conversions, 38–47
keywords, 2–8
parameters, 35–37
reference types, 8–11, 21–32
syntax, 2–8
value types, 8–11
variable scope, 37–38

Count, 154
counter monitor service,

1275–1280
CounterMonitor, 1275–1279

custom commands, 1287
debugging, 1295–1296
performance counters, 1281
Service Control Manager, 1279

CounterMonitor.exe, 1277
CounterType, 1282
-cp, 498
CPU, threading, 1045–1046, 1048–1049,

1051
Creat Strong Name Key, 499
Create, 534, 1205

System.Net.WebRequest, 1299
CreateCommand, 335
Created, 1290, 1292–1293
CreateDatabase, 448
CreateEventSource, 318
CreateInstance, 171, 972
CreateWorkflow, 1104
Credentials, 1206, 1223
credentials, 809, 874

SQL Server, 641
WCF, 1264

critical section, 1069
Crossbow. See Windows Forms Integration

Library
cross-language integration

CLR, 199–204
COM, 199
.NET application, 199–204

cross-page posting, 839–844
CryptoAPI, 1143
CryptoEncryptor, 522

1373

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1374

cryptography

cryptography, 482, 513–535, 1183–1184
hash algorithms, 515–531
SSL, 533

CryptoStream, 522
CSS, 805
CStr, 45
CString, 199
CTL. See Certificate Trust List
CTS. See common type system
CType, 46–47, 58–59

generics, 254
overloading, 91
Person, 96

Culture, 236, 287
culture

adding, 237
ASP.NET, 219, 225–226
assembly, 962
browsers, 225
currencies, 228–231
dates, 227–228
definition, 220
Internet Explorer, 225
invariant, 220
neutral, 220, 239
numbers, 228–231
sorting string, 231–233
specific, 220, 239
threads, 221

CultureInfo, 222–224
currencies

conversion, 229
cultures, 228–231

Currency, 18
CurrentCulture, 223
Cursor, 759
-Custom, 504
Custom Actions Editor, 987, 1000–1002
custom activities, 1082
custom controls, 828
CustomActionData, 1002
Customer, 49–50, 102–103, 160, 252, 405,

972, 1258, 1261
CustomerForm, 253
CustomerList, 252–253
Cut, 690

D
-d, 846
-d <database>, 880
dangers, 187
Data, 404
data, 3

ADO.NET, 327–378, 633–639
connection pooling, 358–359
DataSet, 349–356
deleting, 331–332
inserting, 330–331
.NET Data Providers, 334–349
selecting, 329–330
updating, 331

Command, 335–340
Connection, 335
contracts

service, 1258–1259
WCF, 1257–1263

LINQ, 437–438
providers, 332
source, SQLCE, 601
synchronization, SQLCE, 604–615
types

conversions, 38–47
interface, 154, 155–156
object, 116–118
primitive, 45
variable, 117
variables, 121

Data Source Configuration Wizard, 160
DataAccess, 624
DataAdapter, 333, 334, 344–348

RDBMS, 351
SelectCommand, 336
XML, 351

database. See also SQL
filtering, 457–458
LINQ, 444–445, 456–461
query

grouping items, 459–461
Join, 458–459

transactions, 1176–1178
DatabaseExists, 448
DataBinding, 817

1374

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1375

In
de

xdehydrating

<DataBindings>, 870
DataContext, 445–448

O/R Designer, 453–454
SQL Server, 445

<DataContract ()>, 1258
data-driven application, 853–863
DataException, 302
DataField, 859
DataGrid, DataSet, 374–378
DataGridView, 160, 792

Web services, 643
DataMember, 870
<DataMember ()>, 1258
DataReader, 333, 334, 340–342

DataSet, 341
integration, 355–356

DataRelationCollection, 350
DataRelations, 351
DataSet, 159, 328, 329, 333–334, 349–356

ADO.NET, 633
creating, 351–353
DataGrid, 374–378
DataReader, 341
indexing, 354
object, 354
RDBMS, 351
serialization, 354–355, 1146–1147
SQLCE, 604
Sync Server, 611
T-SQL, 633
Web services, 1119, 1125
XML, 351
XSD, 351, 1128

DataSourceID, 868, 870
DataTable, 49, 333–334, 346

ADO.NET, 353–354
independence, 356
indexing, 354
object, 354
serialization, 354–355
Web services, 1125–1126

DataTableCollection, 350
DataTables, 351
Date, 11, 21
date separator, 676
dates, cultures, 227–228

DateTime, 21
DateTimePicker, 688, 792
DbConnection, SQLCE, 600
DbDataAdapter, SQLCE, 600
DBNull, 25–26
DCOM. See Distributed COM
Deactivate, 663, 1188
deadlocks, 1063
Debug, 550–552

application building, 577
Autos window, 583
Call Stack, 582
Immediate window, 582–583
Locals, 582
Output, 582
registry keys, 995
Watch windows, 582
Web services, 1115

/debug[+:−], 1339
debugging, 299–325, 1339–1340

application, Visual Studio, 578
breakpoints, 581
Conversation forms, 1306
CounterMonitor, 1295–1296
Interop Forms Toolkit, 1354
late binding, 170
OnStart, 1294
Server Explorer, 1294
Service Control Manager, 1294
SQL Server, 552
T-SQL, 615
Visual Studio, 550–552, 578, 1293–1296
Windows Services, 1275, 1293–1296

Decimal, 11, 18, 19–20
decimal placeholder, 676
default interface, 50
default interop assembly, 1026
Default.aspx, 237–239
Default.aspx.resx, 234–235
DefaultLocation, 993
DefaultValue, 701

attribute, 702
DeferredLoadingEnabled, 448
/define, 1341–1342
DefinePad, UI, 1210
dehydrating, 382

1375

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1376

Delay

Delay, 1092
delay signing, 961
/delaysign[+:−], 1337
Delegate, 95

threading, 1057–1059
delegates, 93–98

Boolean, 93
declaring, 93–94
Event, 93
Handles, 93
implementing, 95–98
RaiseEvent, 93
WithEvents, 93

Delete, 318
DeleteAllOnSubmit (TSubEntity), 449
DeleteCommand, 344
Deleted, 1290
DeleteDatabase, 448
DeleteEventSource, 318
DeleteFile, 1213
DeleteOnSubmit, 449
Demand, 487, 488
Demanded, 512
Deny, 484, 487, 492
DenySetInstance, 512
Dependencies, 985
dependency properties, 766
DependencyProperty, 1094
deployment, 287

application, 977–1017
Internet, 1006–1017
online, 1009–1011

assembly, 963–965
building, 1005–1006
ClickOnce, 979, 1007–1016
CLR, 197–198
compression, 989
Custom Actions Editor, 1000–1002
File System Editor, 990–994
File Types Editor, 996–997
Interop Forms Toolkit, 1354
Launch Conditions Editor, 1002–1005
modifications, 986–1006
.NET, 978
no-touch, 1006–1007
Package Files, 988

prerequisites, 988–989
Registry Editor, 994–996
templates, 980–982
User Interface Editor, 987–1000
Visual Studio, 979–986
Windows Installer, 979
Windows Services, 1269
XCOPY, 978

depth, XmlReader, 396
dereference

Nothing, 56
object, 56

derived class, 104
deriving, 104
Description, 548, 865, 1230

controls, 703–704
WSDL, 1115

DESCryptoServiceProvider, 519
Deserialize, BinaryFormatter, 1313
[DesktopFolder], 991
deslaved forms, 655
destructor, 209
Detected Dependencies, 982, 984, 986
DetectURLs, 690
Developers, 591

Team Editions, 593–594
DHTML, AJAX, 887, 889
dialog boxes, User Interface Editor, 999–1000
DialogForm, Windows Forms, 660–661
DialogResult, 661–663
dialogs, Windows Forms, 683–685
Dictionary, 110, 120, 1104

constructors, 139
generics, 260
WF, 1099

Digest, 641
digit placeholder, 676
digital signature, 482, 490, 513, 528–531

DSA, 528
.NET Framework, 528
public key, 528
RSA, 528
SOAP, 1140
Web services, 1140

Digital Signature Algorithm (DSA), 524, 528
Dim, 3, 6, 42

1376

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1377

In
de

xDragEventArgs

DIME. See Direct Internet Message
Encapsulation

Direct Internet Message Encapsulation (DIME),
1238

DirectCast, 47, 59–60
generics, 254

DirListBox, 691
Disabled, 1187
<disconnect>, 1318
disconnected class, 332
Discovery, 1105, 1138
DiscoveryDocument, 1138
DisplayName, 1230, 1272, 1277
Dispose, 1073
Disposed, 663, 817
DistanceTo, 166–167

Encapsulation, 174
Distributed Applet-Based Massively Parallel

Processing, 1110
Distributed COM (DCOM), 1020, 1107,

1108–1109
Web services, 1140

Distributed Transaction Coordinator (MSDTC),
1196

<div>, 1097
Divide, 1244, 1256
DLL, 553–554

breakpoints, 581
Build, 700
CLR, 276–277, 972
COM, 965
Component Services, 1184
FROM EXECUTABLE FILE, 626
GAC, 501
interface, 1169–1170
library, 1154–1155
proxy, 1171
remoting, 1153
ServiceController, 1286
SQL Server, 619
SQLCE, 600
Visual Studio, 1165
VSTO, 915
WCF, 1241
workflow, 1099

.dll. See dynamic link library

DNS. See Domain Naming System
Do Until, 33–34
Do While, 33–34
/doc[+:−], 1336
Dock, 1217

UserControl, 710
docking, Windows Forms, 665–666
DockPadding, 666
DocRibbon, 933
DOCTYPE, 851
document

WebBrowser, 1328–1330
XML, 463–464

LINQ, 469–472
query, 470–472
reading, 473–475
writing, 475–476

Document Object Model (DOM), 389, 413–415
AJAX, 887
XML, 408–415

Document Type Definition (DTD), 389
DocumentSource, 433
Document/Workbook, VSTO, 918
DoDragDrop, 685
DoFtpRequest, 1222
DOM. See Document Object Model
Domain Naming System (DNS), IP address, 1204
DomainUpDown, 688
DoOtherStuff, 150
DoSomething, 52, 55, 150

late binding, 57
DoSort, 96
Dot Net Nuke, 543
DotNetJunkies, 1361
Double, 11, 18, 19
DownloadData, 1223
DownloadFile, 1213, 1223
DownloadFileAsync, 1224
DownloadString, 1223
DownloadX, 124
DownloadXAsynch, 1224
DoWork, 1056, 1064–1066, 1228
drag and drop, .NET Framework, 685–687
DragDelta, 759
DragDrop, 685–687
DragEventArgs, 686

1377

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1378

DragStarted

DragStarted, 759
DriveListBox, 691
DropDownList, 724
DropDownStyle, 724
DSA. See Digital Signature Algorithm
DSACryptoServiceProvider, 524
DTD. See Document Type Definition
durability, 1174
DWORD, 995
dynamic code analysis, 595
dynamic link library (.dll), 195. See also DLL

CLR, 962
dynamic XML documents, 472–473

E
-E, 879
early binding, 56–60

COM, 1020
IDE, 56
IntelliSense, 56
obj, 166

EDI. See Electronic Data Interchange
Effect, 686
Elapsed, 1061, 1276, 1281
Electronic Data Interchange (EDI), 1140
ElementHost, 780, 791
<Ellipse>, 907, 908–909
Else, 12
ElseIf, 12

string, 15
Email, 604
e-mail, 1189
Empty, 23
EnableRaisingEvents, 1291
EnableSession, 1141
en-AU, 220
en-CA, 220
Encapsulation, 163, 169

DistanceTo, 174
IShared, 173

encapsulation, 49, 162–164
fragile base class, 189
Name, 54
syntax, 53

Encoding, 392, 1223

encryption
secret key, 482, 513, 519–523

Kerberos, 523
Web services, 1140

End Class, 1093
End Function, 566
End If, 12
End stage, 999
<endpoint>, 1254
#EndRegion, 563
en-GB, 220
enlistment, 1199
EnlistTransaction, 1198
Enterprise Services. See.NET Enterprise Services
EnterReadLock, 1073
EnterUpgradeableReadLock, 1073
EnterWriteLock, 1073
EntryWritten, 318
Enum, 110
en-US, 220
Environment String, 995
EnvironmentPermission, 485, 492–493
EnvironmentPermissionAttribute, 484, 485
Equals, 487, 488, 703
Equals (Object), 200
Err, 300
Error, 323, 817

extender providers, 674
error

checking, 1339–1340
handling

On Error, 315–316
error logging, 316–321
syntax, 300

logging, 316–321
Windows Services, 1275
workflow, 1091

Error List, 188
ErrorProvider, 673, 677, 792
Err.Raise, 315
Event, 263

delegates, 93
interface, 152

event
AddHandler, 143
controls, 705

1378

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1379

In
de

xExtensible Application Markup Language (XAML)

EventLog, 318–319
handler

ButtonNext, 753
ButtonPrev, 753
Visual Studio, 573–574
WPF, 742–744
XAML, 742–744

Handles, 143
inheritance, 142–146
interface, 154
.NET, 705
raising, 144–146
server controls, 830–832
Silverlight, 910–913
subclass, 144–146
threading, 1063

Event Logs, 316–318, 1271
file watcher, 1289–1290
.NET, 1289
.NET Framework, 1289
security, 317

Event Viewer, 1290
EventDriven, 1091
EventList, 1099
EventLog, 1292

event, 318–319
methods, 318–319
properties, 318–319
registry, 494
System.Diagnostics, 316
trace files, 319

Everything, 483
evidence, 490
Excel

Add-ins, 939–945
templates, 918
threading, 1051

exception handling, 299–325
InitiateConnection, 1307–1309
.NET, 301–302
Trace, 321–325
XML, 403–405

exception object, 301
Exchange Server, Windows Services, 1267
Exclude, 985
exclusive lock, 1069–1077

.exe. See executable
ExecSp, 372–373
ExecSpOutputValues, 373–374
ExecSpReturnDataReader, 370–371
ExecSpReturnDataSet, 363–370
ExecSpReturnXmlReader, 371–372
executable (.exe), 195
ExecuteAndSend, 635
ExecuteCode, 1095
ExecuteCommand, 448

custom commands, 1287
ServiceController, 1284

ExecuteQuery, 446, 448
ExecuteReader, 336
Execution, 484
Exists, 318
Exit For, 32–33
Exit Try, 307–308
ExitReadLock, 1073
ExitUpgradeableReadLock, 1073
ExitWriteLock, 1073
explicit conversion, 38, 44–47
explicit transaction, 1196–1197
<expression>, 457
Expression Blend. See Blend
Expression Design, Silverlight, 902
Expressions, 240
Extended Properties, 350–351
extender providers

Error, 674
Windows Forms, 671–674

properties, 673
extensibility, SSL, 533
Extensible Application Markup Language

(XAML), 729
basics, 734–738
button, 761–765
code-behind, 903
controls, 739–742
editing, 732
event handler, 742–744
IntelliSense, 743
layout, 748–752
resources, 760–761
Silverlight, 897, 903
styles, 767–775

1379

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1380

Extensible Application Markup Language (XAML) (continued)

Extensible Application Markup Language
(XAML) (continued)

UI, 743
WF, 1080
Window, 733
WPF, 734–752, 1080

Extensible Markup Language (XML), 328, 351,
356, 379–435, 549. See also Asynchronous
JavaScript and XML

ADO, 379
ADO.NET, 362–363, 380, 423–428
ASP.NET, 428–434, 864
attribute, 202, 468

DOM, 413–415
BinaryFormatter, 1168
comments, 8, 467
compilation, 847
DataAdapter, 351
DataSet, 351
documents, 463–464

LINQ, 469–472
query, 470–472
reading, 473–475
writing, 475–476

DOM, 408–415
elements, DOM, 410–413
exception handling, 403–405
HTML, 380–381
HTTP, 1111
IIS, 1167
IntelliSense, 469
LINQ to, 462–468

namespace, 462
prefixes, 462

MemoryStream, 405–408
namespace, 465–467
navigation, 864
.NET, 390
serialization, 379, 382–389
smart-client deployment, 198
SOAP, 1112
source code, attribute, 387–389
SQL Server, 380, 425–428
stream-style parsers, 389–415

reading, 394–405
writing, 390–394

string, 462
System.Web.Services.Protocols, 1139
System.Xml, 389
TreeView, 868–870
T-SQL, 617
Visual Studio, 558, 573
Web services, 616, 1105–1144, 1106,

1140
Application, 1141
future, 1144
state management, 1141

WF, 1080
Extensible Stylesheet Lanuage (XSL),

379
External, permissions, 625

F
-f, 846
F5 key, 8
Fail, 320
Failed AssemblyInfo, 512
failure audit, 317
FAQs, 1361
FaultHandler, 1091
[FavoritesFolder], 992
FFA. See Field Force Automation
Field Force Automation (FFA), 604
fields, 53–54, 62–63, 196

Friend, 54, 63
keywords, 63
Private, 63
Protected, 63
Protected Friend, 63
Public, 63

File, 50
File Not Found, 316
file search

Launch Conditions Editor, 1003–1004
Word, 1003–1004

File System Editor, 987, 990–994
File Transfer Protocol (FTP), 1201

ASP.NET, 808–809
client, 1213–1223

File Types Editor, 987, 996–997
File Version, 548

1380

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1381

In
de

xFriend

file watcher
Event Logs, 1289–1290
Windows Services, 1267–1268, 1289–1293

/filealign, 1335
file-based system, 806
FileDialogPermission, 485, 497
FileDialogPermissionAttribute, 485
FileIOPermission, 485, 490, 510
FileIOPermissionAttribute, 485
FileListBox, 691
Filename, 684
FileSystem, 291
FileSystemDriver, ServiceController,

1285
FileSystemWatcher, 1290

properties, 1291–1293
FileWatcherService, 1289
FileWebRequest, 1206–1207, 1298
Fill, 907
FillColor, 1033
FillRowMethodName, 624
FillStyle, 1033
Filter, 457, 683, 1291
FilterIndex, 683
filtering, database, 457–458
Finalize, 209–211

Overrides, 209
Protected, 209

Finally, 303–304, 1072
FindForm, 694
FindPrimes, 1058–1059, 1061
FindPrimesViaDelegate, 1058–1059
firewall, 1204–1205

HTTP, 1147
FirstName, 604
FirstPermissionThat Failed, 512
FixedPitchOnly, 685
FixedSingle, 671
FlowLayoutPanel

UserControl, 710
Windows Forms, 648, 650, 668–670

Flush, 320
fnGetFunction, 630
fnGetLocation, 639
.Focus, 694
Folder, 985

FolderBrowserDialog, 785
Font, 684
FontDialog, 684
Fonts Folder, 991
[FontsFolder], 991
For, 566
For Each, 32–33, 38, 460, 473, 566
For Next, 32–33
FOR XML, 425
FOR XML AUTO, 427
FOR XML EXPLICIT, 427
FOR XML RAW, 425
-Force, 499
for-each, XSLT, 416
ForeColor, 709
Form, 344
<form>, 852
Form Designer, 108, 559

tabs, 563
Form1, 651
Form1.Show (), 651
Form2, 655
Formal, 119
Format, UDTs, 617
formatter, 1147
FormBorderStyle, Windows Forms, 654
FormRegionInitializing, 953
Forms Authentication, 872

ASP.NET, 518
4 Guys from Rolla, 1361
fragile base class, 186–190

encapsulation, 189
implementation, 189–190
interfaces, 188–189
Name, 190
semantics, 189–190
syntax, 189–190

fragile superclass, 186
Frame, 670–671
frames, WPF, 755–760
framework, inheritance, 179–180
Friend, 50

class, 141
fields, 54, 63
interface, 51–52, 153

1381

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1382

Friend (continued)

Friend (continued)
methods, 63, 140
MyBase, 134
properties, 140

FROM EXECUTABLE FILE, DLL, 626
FromOADate, 21
FromXml, 487, 488
FrontPage Extensions, 810
FTP. See File Transfer Protocol
FtpClient, 1219–1220
FtpWebRequest, 1205, 1211–1223

Abort, 1212
Binary, 1212
Method, 1212
.NET Framework, 1211
Passive, 1212

FullTrust, 483
fully qualifying, 280
Function, 3–4, 6, 263, 566

interface, 51
function, T-SQL, 616

creating, 623–630
Function GetOutput () as Double, 1021

G
GAC. See global assembly cache
GacIdentityPermission, 485
gacutil.exe, 964–965
garbage collector (GC), 205–216

circular reference, 206–208
CLR, 208–209
managed heaps, 213–214
Nothing, 207
optimizations, 215–216

GC. See garbage collector
GDI. See Graphic Device Interfaces
generalization, inheritance, 103
Generate Local Resource, 234
generations, 215
Generic.Dictionary (Of K, V), 110
generics, 247–269

class, 255–260, 261–262
constraints, 265–268
creating, 255–269
CType, 254

Dictionary, 260
DirectCast, 254
inheritance, 252–254, 261–262
interfaces, 263
late binding, 268–269
methods, 254–255

creating, 264
parameters, 260–261
Structure, 262–263
types, 249–253

creating, 255–263
Geocode, 627
GeoLocation, 639
Get, 783, 1208
GetAuthorSqlReader, 339
GetAuthorSqlRecord, 340
GetBaseException, 301, 313–314
GetChangeSet, 448
GetCommand, 448
GetConfig, 376
GetDateTimeStamp, 1213
GetDirectories, 1215–1216
GetDirectoryEntries, 1215
GetEnvironmentVariable, 287
GetEventLogs, 318
GetFiles, 747, 1215
GetFileSize, 1213
GetHashCode, 487, 488
GetHostEntry, 1307
GetLayoutClip, 749
GetModifiedMembers, 449
GetNearestStore, 641–642
GetNearestStoreResponse, 641–642
GetNewBindingList, 449
GetNextControl, 694
GetOriginalEntityState, 449
GetPubsConnection, 343, 346
GetRequestStream, 1205
GetResponse, 1206, 1299
GetResponseStream, 1223, 1299
GetStream, 1302
GetTable, 448
GetTableFromReader, 356
GetType, 106, 487, 488, 972
GetValue, 157
GetValues, 158

1382

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1383

In
de

xHTML

GIF, 1321
Gilder, George, 1143
global assembly cache (GAC), 197, 485, 553,

964–965
DLL, 501
.NET, 273

Global Assembly Cache Folder, 992
global resources, ASP.NET, 240–241
global scope, 37
Global.asax, ASP.NET, 823–826
global.asax, 1103
globally unique identifier (GUID), 160,

1020–1033
COM, 1183

Gopher, 1201
GotFocus, 709
GPU. See graphical processing unit
GrantedSet, 512
Graphic Device Interfaces (GDI)

controls, 717
Windows Forms, 718–723

graphical processing unit (GPU), 729–730
graphical user interface (GUI)

ASP.NET, 804, 880–882
WCF, 1255
WPF, 728

graphics
raster, 729–730
vector, 729–730

GreaterThan, 94
GridView, 855–859

editing/deleting, 859–863
Web services, 1125

Group, 457
GroupBox, 671, 723
GUI. See graphical user interface
GUID. See globally unique identifier
Guid, 549

H
HandleCreated, 663
HandleDestroyed, 663
HandleExternalEvent, 1089
HandleInitiateConnectionException,

1307–1309

Handles
delegates, 93
event, 143
methods, 156

handshake protocol, 533
HasChildren, 694
-Hash, 504
hash algorithms, 482, 513, 514–535

keyed, 516
HashAlgorithm, 515
Hashtable, 119

synchronization, 1067
Headers, 1206, 1224
heaps

managed, 213–214
reference types, 8–9

HelloCustomerService, WSDL,
1261–1263

HelloFullName, 1261
help, 1340–1341
/help, 1341
HelpKeywordonHelpProvider1, 672
HelpLink, 301, 314–315, 404
HelpNavigatoronHelpProvider1, 673
HelpProvider, 672, 792
HelpString on HelpProvider1, 672
HelpText, 1272
Hidden, 762
host process, 1082

ASP.NET, 1099
WF, 1099

hosting
Application, 1155–1160
controls, 792–797
IIS, 1244
Managed Windows Services, 1244
WCF, 1244–1247
Windows Forms, 1244
WPF, 1244

Windows Forms, 782–792
HostProtectionAttribute, 485
HScrollBar, 689
HTML, 649, 1107, 1209

ASP.NET, 418
compilation, 847
.NET Framework, 1321

1383

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1384

HTML (continued)

HTML (continued)
server controls, 827–829
System.Web.Services.Protocols, 1139
XML, 380–381

<html>, 852
HTTP. See Hypertext Transfer Protocol
HTTP GET, 1138

.NET Framework, 1140
System.Web.Services.Protocols, 1139

HTTP POST, 1139
.NET Framework, 1140

HttpChannel, 1168
HttpGetEnabled, 1247
HttpListener, 1205

Abort, 1225
BackgroundWorker, 1226–1227
Close, 1225
IsListening, 1225
.NET Framework, 1225
Prefixes, 1225
Start, 1225, 1226
Stop, 1225
Web server, 1224–1233

HTTPSessionState, 1141
HttpStatusCode, 1300
HttpUtility, 1095
HttpWebRequest, 1206–1207, 1298,

1299
Hypertext Transfer Protocol (HTTP),

1110–1111, 1201
ActiveX, 1110–1111
AJAX, 887
BinaryFormatter, 1167
firewall, 1147
IIS, 1165–1166
Java, 1110–1111
.NET, 1147, 1167
origins, 1107
remoting, 1147, 1158
SOAP, 1111
sockets, 1301
SSL, 1142
System.Web.Services.Protocols, 1139
URL, 1158
Web services, 641, 1105
XML, 1111

I
IAbstractBaseClass, 150
ICalculator, 1171

WCF, 1244
IComparable, 266
icons, Windows Forms Toolbox, 723
Id, 604
IDataReader, T-SQL, 633
IDbConnection, 356, 633
IDE. See Integrated Development Environment
identiy permissions, 490
IDisposable, 209, 211–213, 629–630, 1320
IEnlistmentNotification, 1199
If Then, 12, 38

string, 15
If True Then, 13
IfElse, 1090
IgnoreComments, 399
IgnoreProcessing Insructions, 399
IgnoreWhitespace, 399
IIS. See Internet Information Services
IL. See Microsoft Intermediate Language
IL Disassembler (ildasm.exe), 204–205,

958
Ildasm.exe, 958
ildasm.exe. See IL Disassembler
Image, 682, 691, 740–742
ImageKey, 1217
ImageList, 689, 792, 1217
images, Visual Studio, 554–555
Images - closed, 1217
Images - open, 1217
Immediate window, Debug, 582–583
immutable object, 1064
imperative methods, 63
implementation, 52–53

class, 189
Implements, 155, 156, 816
implicit conversion, 16, 38–39

compiler, 39–42
implicit layer, 750
implicit transaction, 1196–1197
Import, 816
@Import, 825
Import System.Diagnostics, 317

1384

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1385

In
de

xinstrumentation

importing
namespace, 280–282
registry files, 996

Imports, 971
/imports, 1337
IncludeSubdirectories, 1291
Indent, 392
IndentChars, 392
indexing

DataSet, 354
DataTable, 354

InDoubt, 1199
Info, 287, 291
Informal, 119
inheritance, 49, 101, 102–151, 176–191. See

also multiple inheritance
application, 179–186
base class, 149–151
chains of, 126
class, 176–177
Class Designer, 107
constructors, 135–140
controls, 698–708
dangers, 187
event, 142–146
fragile base class, 186, 187–190
framework, 179–180
generalization, 103
generics, 252–254, 261–262
implementing, 104–150
interface, 158
is-a relationship, 176, 180
levels, 126–129, 186–187
methods, shadowing, 131
multilevel, 127–129
multiple interfaces, 177–178, 180–186
navigation in, 133
overloading, 109–111
overriding, 111–120
polymorphism, 173–175, 176
prevention, 151
Private, 140
Protected, 102
Public, 135
secondary interfaces, 158
shadowing, 120–126

shared event, 148–149
shared methods, 146–148
single-level, 186
subclass, 135
System.Object, 106
virtual method, 115–118
Windows Forms, 657

Inherits, 98, 107
Init, 817
InitComplete, 817
InitialDirectory, 683
initialization vectors (IVs), 521
InitializeComponent, 561–562, 575
InitiateConnection, 1307–1310, 1311

exception handling, 1307–1309
InitiateConnectionThreadEntryPoint, 1307
inline coding

ASP.NET, 812–814
Visual Studio, 812

InnerException, 301, 311–315, 404
overloading, 311
Throw, 311

in-place precompilation, 845
InProc, 877
InsertAllOnSubmit (TSubEntity), 449
InsertCommand, 344
InsertOnSubmit, 449
Install, 1001
Install Mode, 1014
installation

End stage, 999
.msi, 198
on-demand, 967
Progress stage, 999
Silverlight, 898–900
Start stage, 998
User Interface Editor, 998–999
Windows Service, 1277–1278

Installation URL, 1014
Installer, 1270, 1293
InstallerClass, 1002
InstallUtil.exe, 1231, 1270, 1274, 1277
Instance, 6
instance, 2, 50, 53–54

methods, 125
instrumentation, 595

1385

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1386

int

int, 1257
Int16, 10, 16, 17
Int32, 10, 16, 17

CTS, 200
Int64, 10, 16
Integer, 8, 10, 15, 16, 17, 157, 703, 1257

Boolean, 16
decimal types, 18–20
operator, 90
threading, 1064
types, 16–17
unsigned types, 17–18

integers, 8
primitive types, 10–11

Integrated Development Environment (IDE), 537
ActiveX, 1033
ASP.NET, 805–806
Boolean, 701
breakpoints, 581
controls, 703
early binding, 56
late binding, 168
macros, 589
Web reference, 1123
Web services, 1119
WPF, 730
XML literals, 469

IntegrationExceptionEventArgs, 780
IntelliSense, 241, 920

early binding, 56
methods, 84
Visual Studio, 565
WCF, 1256
XAML, 743
XML, 469

InteractiveProcess, ServiceController, 1285
Interface, 150, 153–154, 182–183
interface, 50–51, 51–52, 1020. See also

graphical user interface; multiple interfaces;
user interface

base class, 125, 140
Class, 153
class, 155, 163
code modules, 153
data types, 154, 155–156
default, 50

defining, 153–154
DLL, 1169–1170
Event, 152
event, 154
fragile base class, 188–189
Friend, 51–52, 153
Function, 51
generics, 263
implementing, 155–158
inheritance, 158
methods, 154, 156
Module, 153
native, 50, 151, 152
object, 162
parameters, 154
Private, 51, 140
properties, 156
Protected, 51
Public, 51, 151, 153
shadowing, 125
Sub, 51
variables, 152

InterfaceType, 1100
Interlocked, 1068
Internet, 484, 1297–1330

application deployment, 1006–1017
client application, 1006
.NET Framework, 1298
sockets, 1301–1321

Internet Explorer
application, 1321–1330
cultures, 225

Internet Information Services (IIS),
641

ASP.NET, 808, 1166
Vista, 876–877

binary formatter, 1167–1168
hosting, 1244
HTTP, 1165–1166
remoting host, 1147, 1155, 1164–1168
TCP, 1165
threading, 1051–1052
URL, 1169
Windows Services, 1267
XML, 1167

Internet Inter-ORB Protocol, 1109

1386

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1387

In
de

xKeyContainerPermissionAccessEntryCollection

Interop Forms Toolkit, 1347
debugging, 1354
deployment, 1354
.NET, 1348
using, 1349–1354

interoperability, SSL, 533
InteropFormsToolsInstaller.msi, 1350
interrogative methods, 63
Intersect, 487, 488
InvalidOperationException, 302
invariant culture, 220
invocations, queuing, 1193–1194
Invoke, 94, 344, 1304
InvokeRequired, 1099
InvokeWebService, 1089
InvokeWorkFlow, 1090
IP address, 1203

DNS, 1204
IpEndPoint, 1307
IPM.Note, 948
IPrintableObject, 182–186
IPv6, 128 bit, 1203
Is, 15
is-a relationship, 103, 153

inheritance, 176, 180
multiple interfaces, 180

IsActivating, 1100
IsByteOrdered, 618
IsDeterministic, 624
IsFalse, 92
IsFixedLength, 618
IShared, 169, 172

Encapsulation, 173
Poly, 173

IsListening, HttpListener, 1225
IsMdiContainer, 658
IsMouseOver, 768
IsNetworkDeploying, 287
IsNot, 15
IsNullorEmpty, 23
IsolatedStorage, 497
IsolatedStorageFilePermission, 485
IsolatedStorageFilePermissionAttribute,

485
IsolatedStoragePermission, 485
IsolatedStoragePermissionAttribute, 485

isolation, 1174
IsPrecise, 624
IsSubsetOf, 487, 488
IsTrue, 92
IsUnrestricted, 488
Items, 713
IVs. See initialization vectors
IXsltContextFunction, 422
IXsltContextVariable, 422

J
Java, 1108

applets, 1110
HTTP, 1110–1111
Remote Scripting, 1110
RMI, 1109

Java Object Serialization, 1109
JavaScript, 805. See also Asynchronous

JavaScript and XML
ASP.NET, 833–837
server controls, 833–837
Silverlight, 903

Javascript Object Notion (JSON), 887
JIT. See just-in-time
Join, 457, 458–459, 1062
JPEG, 1321
JSON. See Javascript Object Notion
JustInTime, 1188
just-in-time (JIT), 194–195, 545

COM+, 1150
transactions, 1188

K
Kerberos

authentication, 641
secret key encryption, 523

KernelDriver, ServiceController, 1285
key pair, 961
Keyboard, 291
/keycontainer, 1337
KeyContainerPermission, 485
KeyContainerPermissionAccessEntry, 485
KeyContainerPermissionAccessEntryCollection,

485

1387

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1388

KeyContainerPermissionAccessEntryEnumerator

KeyContainerPermissionAccessEntryEnumerator,
485

KeyContainerPermissionAttribute, 485
KeyDown, 911
keyed hash algorithms, 516
/keyfile, 1338
KeyOutput, 985
KeyState, 686
KeyUp, 911
keywords, 2–8, 1207

fields, 63
Visual Studio, 565–567

key.xml, 528

L
Label, 154, 156, 689, 785

AJAX, 890, 892
Language, 1115
language, 1341
Language Integrated Query Framework (LINQ),

40, 437–479
data, 437–438
database, 444–445, 456–461
mapping, 444–449
to .NET, 462–468
object, 444–449
O/R Designer, 449–454
query, 456–461
to SQL, 439–454

class, 440–441
LINQ to XML, 476–478
O/R Designer, 441–444
stored procedures, 461

to Visual Studio, 439–454
to XML, 462–468

documents, 469–472
LINQ to SQL, 476–478
namespace, 462
prefixes, 462

languages. See culture
LANs. See local area networks
Last Location, 557
LastName, 604
late binding, 56–60

COM, 1020, 1028–1033

debugging, 170
DoSomething, 57
errors, 58
generics, 268–269
IDE, 168
Object, 57
polymorphism, 166–168, 175
reflection, 170–171, 175

Latitude, 622, 629
Launch Conditions Editor, 987, 1002–1005

file search, 1003–1004
layered controls, 749

implicit, 750
layout

WPF, 748–752
XAML, 748–752

LayoutClip, 749
LayoutExceptionEventArgs, 780
LayoutMDI, 660
Lego Mindstorms, 543
letter placeholder, 676
/libpath, 1338
Like, 92
LineNumber, 404, 691
LineNumberOffset, 399
LinePosition, 404
LinePosition Offset, 399
LinkLabel, 689, 1322–1323
LinkLable, 792
/linksource, 1342
LINQ. See Language Integrated Query

Framework
LinqDataSource, 804, 854
List, 1209
-List, 496
List (Of Integer), 1056, 1064–1066
list controls, 828
-List Description, 496
ListBox, 222, 686, 689
ListDictionary, 31
ListDirectory, 1213
ListDirectoryDetails, 1213
Listen, 1090
Listener, 1302–1303, 1307, 1320
-ListFulltrust, 496
-ListGroups, 496

1388

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1389

In
de

xmemory

-ListPset, 496
ListSelector, 712
ListView, 689, 1217, 1220
literal characters, 676
Load, 3, 89, 418–419, 817

MyForm, 663
remoting, 1161
Web services, 645

LoadComplete, 817
Loaded, 911
LoadFrom, 971
LoadOptions, 448
local area networks (LANs), 1108

WebRequest, 1298
.locale, 963
LocalInternet, 484
LocalIntranet, 497
Localizable, 242
localization, 219–246, 555

ASP.NET, 804
ASP.NET resource files, 233–241
cultures, 219–233

Locals, Debug, 582
Location, UDTs, 619, 622
location transparency, 1161
Location.Distance, 639
Log, 287, 318, 448
Long, 8, 10, 11, 16, 17
Longitude, 622, 629
looping statements, 11
LostFocus, 911
lpBuffer, 199
Lutz Roeder’s Reflector for .NET, 204

M
-m, 846
MAC. See message authentication code
-machine, 497
macros

IDE, 589
Visual Studio, 587–590
VSTO, 920–923

/main, 1343
Main Sub, 5
MainMenu, 650

Makecert.exe, 511
MakeDirectory, 1213
managed heaps, 213–214

compaction, 216
GC, 213–214

Managed Windows Services, hosting, 1244
manifest, 954, 957–963

ClickOnce, 1012
editing, 1015–1016

Manual, 653
ManualResetEvent, 1069, 1076–1077
Manufacturer, 984
Mapping, 448
mapping, LINQ, 444–449
Margin, Windows Forms, 648, 669
marshaling, 1191
Mask, 677
MaskedTextbox, 792

Windows Forms, 649–650, 675–677
Master, 816
< % Master % >, 849
Master Page, 814
master pages, ASP.NET, 847–853
MasterPageFile, 851
MasterType, 816
mathforum.org/dr.math, 622
max, 1063, 1064
MaxByteSize, 618
MaximumSize, Windows Forms, 648–649
MaxItemsToSelect, 705
MBROs, 1151
mCount, 90
mCounter, 86
MD5. See Message-Digest algorithm 5
MDI. See Multiple Document Interface
Me, 4, 6, 130–133

methods, 130
object, 130
properties, 138
ToString, 130–131

member variables, 53–54
<membership>, 883
memory

AppDomain, 1049
C++, 213
CLR, 205–216

1389

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1390

memory (continued)

memory (continued)
COM, 206
.NET application, 205–216
Nothing, 205
processes, 1049
reference types, 9
remoting, 1147
synchronization, 1063
value types, 9

MemoryStream, XML, 405–408
Menu, 866–867

SiteMapDataSource, 868
menus, Windows Forms, 681–683

runtime, 682–683
MenuStrip, 650, 681, 1217
Merge Module Project template, 981
merge replication, SQLCE, 607
Message, 301, 404

Conversation windows, 1311–1316
queuing, 1314
ToString, 310

message, 1112, 1147
serialization, 1149

_message, 1312
message authentication code (MAC), 533
message link, WCF, 1148
message sink, 1148
Message Transmission Optimization Mechanism

(MTOM), 1238
MessageCredentialType.Windows, 1264
Message-Digest algorithm 5 (MD5), 482, 513,

518
metadata, 194, 200–201

assembly, 954
COM+, 200–201
.NET, 201
support, 201

meta:resourcekey, 236
Method, 6, 512, 1206

FtpWebRequest, 1212
MethodName, 1100
methods, 3, 63–66, 196

abstract, 150
base, 117
constructors, 84–85
EventLog, 318–319

Friend, 63, 140
generics, 254–255

creating, 264
Handles, 156
imperative, 63
instance, 125
IntelliSense, 84
interface, 154, 156
interrogative, 63
Me, 130
nonvirtual, 121–124
overloading constructor, 84–85
parameters, 84–85
Private, 63, 156
Protected, 63
Public, 63, 156
shadowing, 120

inheritance, 131
Shared, 87–88
shared, 146–148
signature, 165
subclass, 117
virtual, 115–118

Microsoft Clustering kServices, 1173
Microsoft Developer Centers, 1361
Microsoft Developer Network (MSDN), 539

WF, 1104
Microsoft Intermediate Language (MSIL), 194,

545
assembly, 954

Microsoft Management Console (MMC), 802,
1110

COM, 1110
Component Services Console, 1185

Microsoft Message Queue (MSMQ), 1145,
1173, 1189

Microsoft .NET Framework 3.0 Community, 1104
Microsoft Office SharePoint Server (MOSS), 919
Microsoft Paint, Visual Studio, 555
Microsoft Transaction Server (MTS), 1107, 1173

Windows Services, 1268
microsoft.interopformsredist.msi, 1350
Microsoft.VisualBasic, 2
MIME, 1008

System.Web.Services.Protocols, 1139
min, 1063, 1064

1390

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1391

In
de

xMyBase

minimum permissions
application, 506–510
Visual Studio, 508–510

MinimumSize, 715
Windows Forms, 648–649

MinimumSplashScreenDisplayTime, 287
Miscellaneous options, 1015
MMC. See Microsoft Management Console
mnemonics, 689
mnMaxValue, 1282
mobile application, 982
mobile controls, 828
Mod, 92
mode, SQLCE, 602
model forms, 660
Module, 5, 6

interface, 153
module

.NET application, 194–195
scope, 37

Module.vb, 6
Monitor, 1069
MonthCalendar, 689, 792
MonthView, 689
MOSS. See Microsoft Office SharePoint Server
Mouse, 291
MouseDown, 685, 686
MouseEnter, 762, 911
MouseLeave, 762, 911
MouseLeftButtonDown, 911
MouseLeftButtonUp, 911
MouseMove, 911, 1304
MousePosition, 694
MSDN. See Microsoft Developer Network
MSDN Forums, 1361
MSDN Visual Basic Developer Center,

1361
msdn.microsoft.com/workflow, 1104
MS-DOS, 5
MSDTC. See Distributed Transaction Coordinator
.msi installations, 198
MSIL. See Microsoft Intermediate Language
MSMQ. See Microsoft Message Queue
MTOM. See Message Transmission Optimization

Mechanism
MTS. See Microsoft Transaction Server

multilevel inheritance, 127–129
multiple constraints, 268
Multiple Document Interface (MDI), 563,

658–660
child, 659
parent, 658–659

multiple inheritance, 127, 178–179
base class, 127
dangers, 127
.NET, 127
subclass, 127

multiple interfaces, 101, 151–158
act-as relationship, 180
application, 181–186
inheritance, 177–178, 180–186
is-a relationship, 180
polymorphism, 168–169, 175
reflection, 171–173, 176

Multiply, 1244, 1256
MultiSelect, 1217
multitasking, 1047
multithreading, 1046

preemptive, 1046
processes, 1047
spell checker, 1046
synchronization, 1064
Word, 1046

MustInherit, 149
MustOverride, 149–150

polymorphism, 174
Mutex, 1069
My, 286–297

application settings, 557
unit tests, 596

My Project, Visual Studio, 546–547
MyAdjoiningPane, 954
My.Application, 287–291

Boolean, 287
MyBase, 133–134

base class, 115, 134
class, 130
Friend, 134
object, 130
Overrides, 113, 114–115
parent, 133
Protected, 134

1391

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1392

MyBase (continued)

MyBase (continued)
Public, 134
subclass, 115

MyBase.Finalize, 209–210
MyClass, 134–135

ToString, 134–135
My.Computer, 291–294
myController, 1286
MyDataComponent, 1119–1123
MyForm = New Form1, 663
MyForm = Nothing, 664
MyForm.Activate, 663
MyForm.Close, 663
MyForm.Dispose, 664
MyForm.Hide, 663
My.Forms, 294
MyForm.Show, 663
MyForm.ShowDialog, 663
MyFunction, 15
myLong, 45
myReader.Read, 330
My.Resources, 294
myScript, 834
myShort, 45
myString, 15, 42
My.User, 295
My.WebServices, 295
myWindow.Designer.vb, 730

N
Name, 49, 291, 562, 1217

encapsulation, 54
fragile base class, 190
Optional, 138
overloading, 109–110

name, 138, 140
XmlReader, 396

(Name), 993, 1001
name resolution, 1204
Namespace, 6
namespace, 2, 271–298

ADO.NET, 332–333
aliasing, 282
ASP.NET, 282–283
assembly, 195

Browse, 274
child, 272
class, 272
COM, 274
creating, 283–286
crowding, 281
importing, 280–282
LINQ, to XML, 462
Microsoft.VisualBasic, 2
.NET, 273
Projects, 274
Recent, 274
reference, 275–277
<ServiceContract ()>, 1263
System, 2
WCF, 1263
Windows Forms, 553
XML, 465–467
XmlDataSource, 432–433

NameTable, 399
Narrowing conversion, 91
National Institute of Standards and Technology

(NIST), 524
native interface, 50, 152

class, 151
Nested Collection, 444
nested Try, 308–309
.NET

ASP.NET, 728
assembly, 953, 1337–1339
COM, 1020–1033
components, COM, 1038–1043
deployment, 978
event, 705
Event Logs, 1289
exception handling, 301–302
GAC, 273
HTTP, 1147, 1167
Interop Forms Toolkit, 1348
LINQ to, 462–468
metadata, 201
multiple inheritance, 127
namespace, 273
Object class, 8
remoting, 1145
SOAP, 1112, 1139

1392

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1393

In
de

xNNTP. See Network News Transfer Protocol

TCP, 1147
versions, 965
Visual Studio, 538
Web services, 1106
Windows Forms, 700
Windows Services, 1270
XML, 390

.NET application
assembly, 195–196
attribute, 202
class, 194
CLR, 193–197
COM, 1024–1027, 1035–1037
cross-language integration, 199–204
elements, 194–197
globalizing, 226
memory, 205–216
modules, 194–195
types, 196–197

.NET CLR, 349

.NET Data Providers, 334–349

.NET Enterprise Services, 1173–1200
component registration, 1183–1184
queued components, 1189–1196
System.Transactions, 1196–1199
transactions, 1173–1175, 1196–1199
UI, 1175

.NET Framework, 2
AppDomain, 1047
application download cache, 1006–1007
asynchronous, 1057
base class library, 179
ClickOnce, 1008
digital signatures, 528
drag and drop, 685–687
Event Logs, 1289
FtpWebRequest, 1211
HTML, 1321
HTTP GET, 1140
HTTP POST, 1140
HttpListener, 1225
Internet, 1298
printing, 183
Reflection API, 204
resources, 1361
security, 481–535

ServiceController, 1284
SQL Server, 615
synchronization, 1067
synchronous, 1057
System. Object, 130
System.Net, 1205
thread pool, 1056–1057
WCF, 1237
Web services, 1117, 1140
WF, 1079
Windows Forms, 647
Windows Services, 1270–1273
WSDL, 1114

.NET SDK, 510, 516
certificates, 531

NET START <servicename>, 1274
NET STOP <servicename>, 1274
/netcf, 1336
NetRequest, 1298
<netTcpBinding>, 1254
NetTopBinding, 1245
Network, 291
Network News Transfer Protocol (NNTP), 1201
network programming, 1201–1233

addresses, 1201–1205
ports, 1201–1205
protocols, 1201–1205
System.Net, 1205–1233

NetworkCredential, 1223
networking, UNIX, 1107
neutral culture, 220

preference, 239
NeverBlink, 673
New, 6

constraints, 267–268
object, 54
parameters, 138

NewLineChars, 392
NewLineHandling, 392
NewLineOn Attributes, 392
newsgroups, 1361
NextValue, 1282
Ngen.exe, 195
NIST. See National Institute of Standards and

Technology
NNTP. See Network News Transfer Protocol

1393

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1394

/noconfig

/noconfig, 1344
NodeType, 397
/nologo, 1334
nondeterministic finalization, 208
nonvirtual methods

Overridable, 121
overriding, 121–124
shadowing, 121–124
subclass, 121

/nostdlib, 1344
Not, 14
Nothing, 3, 6, 15, 483, 1318

dereference, 56
GC, 207
memory, 205

NotifyFilter, 1291
NotifyIcon, 690, 792
NotInheritable, 151
no-touch deployment, 1006–1007
NotSupported, 1187
/nowarn, 1339–1340
NTFS, 482, 483

permissions, 1142
n-tier, 1145, 1175
NTLM, 641
Null, 488
Nullable, 26–27
numbers, cultures, 228–231
NumericUpDown, 690, 698

O
OBA. See Office Business Application
obfuscator, 204
obj, 545

early binding, 166
obj variable, 54
Object, 21–22, 953

late binding, 57
.NET, 8
Option Strict, 58
parameters, 95
WF, 1099

object, 50
ASP.NET, 804
base, 117

class, 21
client application, 189
client-activated, 1149
composition, 50–54
data types, 116–118
DataSet, 354
DataTable, 354
declaration, 54–55
definition, 2
dereference, 56
immutable, 1064
instantiation, 54–55
interface, 162
LINQ, 444–449
Me, 130
MyBase, 130
New, 54
O/R Designer, 449–451, 454–456
pooling, 1189
reference, 55–56
serializable, 1146–1147, 1149, 1152–1153
subclass, 117
synchronization, 1068–1077
System. Object, 204
wellknown, 1149

Object Browser, 200, 279
object context sink, 1148
Object Modeling, 540
object orientation, 49–50
object oriented programming,

101–191
inheritance, 102–151

Object Request Brokers (ORB), 1107
ObjectDataSource, 804, 854

Web services, 1125
object-oriented programming

abstraction, 159–162
encapsulation, 162–164
inheritance, 176–191
polymorphism, 165–176

ObjectPrinter, 185
ObjectTrackingEnabled, 448
objectUri, 1158
objX, 10
objY, 10
ODBC, 348–349

1394

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1395

In
de

xoverloading

Office, 541, 544
client application, 544
VSTO, 916–917

office automation, 917
Office Business Application (OBA), 918–920
OFR. See Outlook Form Region
OLE DB, 348–349
OLE DB .NET, 334, 335, 344, 349
OleDbConnection, 335
OmitXml Declaration, 392
On Error, error handling, 315–316
OnClosed, 213
OnContinue, 1271
OnCustomCommand, 1271, 1287–1288
on-demand installation, 967
128 bit

IPv6, 1203
SSL, 1140

123ASPX, 1361
OnErrorGoTo, 300
one-way functions. See hash algorithms
OnLoad, 213
OnPause, 1271
OnPowerEvent, 1271
OnShutdown, 1271
OnStart, 1226, 1292

debugging, 1294
ServiceBase, 1270

OnStop, 1270, 1292
Opacity, Windows Forms, 656
OpenFileDialog, 683–684
OpenForms, 287
OpenRead, 1223
OpenWrite, 1223
OPENXML, 425
<OperationContract ()>, 1258
Operator, 91
operator

binary, 91
chart, 91
Integer, 90
overloading, 90–92
String, 90
unary, 91

/optimize[+:−], 1336
Option Compare, 40

Option Explicit, 39
Option Infer, 40
Option Strict, 40, 56, 166, 1207

Object, 58
Optional, 36

Name, 138
OptionButton, 690
/optioncompare, 1341
/optionexplicit[+:−], 1341
/optioninfer[+:−], 1341
/optionstrict[+:−], 1341
Or, 14, 92
O/R Designer, 441–444, 449–454

columns, 452–453
DataContext, 453–454
object, 449–451, 454–456

Oracle, 327, 332, 553
transactions, 1175

ORB. See Object Request Brokers
Order, 457
Order By, 460
OrElse, 14

defining, 93
overloading, 93

/out, 1336
Outlook, threading, 1051
Outlook Form Region (OFR), 918, 945–954

SharePoint, 948
Outlook Web Access (OWA), 729
OutlookItem, 953
OutOfMemoryException, 302
Output, Debug, 582
OutputCache, 816
OutputMethod, 392
Outputs, 985
overloading

AndAlso, 93
constructor methods, 84–85
constructors, 138–139
CType, 91
inheritance, 109–111
InnerException, 311
Name, 109–110
operator, 90–92
OrElse, 93
overriding, 117–120

1395

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1396

overloading (continued)

overloading (continued)
parameters, 120
Shared methods, 147

Overloads, subclass, 119
Overridable, 112, 119

base class, 121
nonvirtual methods, 121
polymorphism, 174
shadowing, 120
Shared, 146

Overrides, 113–114
base class, 119
Finalize, 209
MyBase, 113, 114–115
Protected, 113

overriding
base class, 112
inheritance, 111–120
nonvirtual methods, 121–124
overloading, 117–120
Shadows, 124
subclass, 120
virtual method, 115–118

OWA. See Outlook Web Access
owned forms, Windows Forms, 654–655
OwnedForms, 655
Owner, 655

P
-p, 846
-P <password>, 879
Package Files, 988
Padding, 669–670

Windows Forms, 648
PadLeft, 24
PadRight, 24, 36
Page, 776, 816
< % Page % >, 849
page directives, ASP.NET, 815–816
page event, ASP.NET, 816–818
Page.ClientScriptBlock, 834–835
Page.ClientScript.RegisterClientScriptInclude,

836–837
Page.ClientScript.RegisterStartupScript,

835–836

PageSetupDialog, 685
Page.xaml, 903
Page.xaml.vb, 903
Paint, 756
pairname, 961
Panel, 670–671, 723
Parallel, 1091
ParamArray, 36–37, 705
parameters, 35–37

constructors, 137–138
generics, 260–261
interface, 154
methods, 84–85
New, 138
Object, 95
overloading, 120

parent, 103
MDI, 658–659
MyBase, 133

Parse, 46
UDTs, 618

ParseDefinition, 1209
ParseResponse, 1208
partial class (types), 803
Partition, 457
Passive, FtpWebRequest, 1212
passwords, 1214, 1220

ServiceProcessInstaller, 1272
SQLCE, 601

Paste, 690
Path, 1291
PathSeparator, 1217
Paused, ServiceController, 1285
PausePending, ServiceController, 1285
PayPal, 543
Percent, 670
performance

sampling, 595
tools, 595

performance counters, 1280–1283
CounterMonitor, 1281
values, 1282–1283

Performance Monitor, 1280
PerformanceCounter, 1282
period, 2, 4
Permanent, 985

1396

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1397

In
de

xPrintDialog

PermCalc.exe, 506–508, 511
permissions, 482, 483–484

code access, 486–487
External, 625
idenity, 490
minimum, 506–510
NTFS, 1142
registry, 494
requesting, 506
role-based, 487–490
SMTP, 625
SQL Server, 624
System.Security.Permissions, 484–490
tools, 511
Web services, 625

PermissionSetAttribute, 485
PermissionState, 512
PermissionType, 512
PermitOnly, 484, 487
PermitOnlySetInstance, 512
PermView.exe, 482
Permview.exe, 511
Person, 61–96

CompareAge, 95
CType, 96

Person Count, 87
[PersonalFolder], 992
Peverify.exe, 511
PIA. See Primary Interop Assemblies
PictureBox, 690, 691
PKCS. See Public Key Cryptographic System
placeholders, 676
PlainTextContentControl, 936, 938
/platform, 1338
PNG, 1321
PointToClient, 694
PointToScreen, 694
Policy, 1090
Poly, 169

IShared, 173
polymorphism, 49, 165–176, 1128

abstract base class, 174
inheritance, 173–175, 176
late binding, 166–168, 175
multiple interfaces, 168–169, 175
MustOverride, 174

Overridable, 174
reflection, 170–171

late binding, 175
multiple interfaces, 171–173, 176

virtual method, 117
port, 1112

network programming, 1201–1205
remoting, 1158–1159

Ports, 291
portType, 1112
POST, 1205
Power Packs, 1347–1354

downloads, 1349
App_Browsers folder, 823
App_Code folder, 818–822
App_Data folder, 822
App_GlobalResources folder, 822–823
App_LocalResources folder, 823
App_Themes folder, 822
App_WebReferences folder, 823
preemptive multitasking, 1049
preemptive multithreading, 1046
Prefixes, 1226

HttpListener, 1225
prefixes, LINQ, to XML, 462
PreInit, 817
PreLoad, 817
preprocessor, 1341–1342
PreRender, 817
PreRenderComplete, 817
Prerequisites, 988–989, 1015
Preserve, 29–30
PreviousPageType, 816
primary interface, 50, 152
Primary Interop Assemblies (PIA),

917
primary thread, 1046–1047
primitive types

integers, 10–11
string, 10–11

principal, 487
PrincipalPermission, 484, 486, 488
PrincipalPermissionAttribute, 486
Print, 183, 184
PrintableObject, 179
PrintDialog, 685

1397

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1398

PrintDocument

PrintDocument, 183, 184, 685, 792
printing

.NET Framework, 183
WebBrowser, 1330

PrintObject, 155, 157
PrintPage, 184
PrintPreview, 183, 184
PrintPreviewDialog, 685
PrintWorkingDirectory, 1213
Priority, 1062
PrivacyStatement, 240
Private, 1282

class, 141
fields, 63
inheritance, 140
interface, 51, 140
methods, 63, 156
Protected, 141

private keys, 513, 528
ProcessConnection, 1311
Process-Connection, 1309
processes

memory, 1049
multitheading, 1047
threading-1048, 1047

ProcessOutbound Connection, 1309
ProcessRequest, 1209
Product, 548
ProductName, 984
Professional ASP.NET 3.5, 1362
Professional SQL Server 2000 Programming

(Vieira), 425
ProgID, 197, 1020–1033
Program Files Folder, 991

64 bit, 991
[ProgramFiles64Folder], 991
[ProgramFilesFolder], 991
[ProgramMenuFolder], 992
Progress stage, 999
ProgressBar, 690
ProgressChanged, 1066
ProhibitDtd, 400
Project, 457
project templates, Visual Studio,

541–545
Projects, 274

properties, 196
abstraction, 159
ADO.NET, 361–362
attribute, 702
dependency, 766
EventLog, 318–319
FileSystemWatcher, 1291–1293
Friend, 140
interface, 156
Me, 138
ServiceProcessInstaller, 1272
shadowing, 120
Shared, 88–89

Property, 53, 263, 993
variables, 142

Property Designer, 685
PropertyCollection, 350
PropertyGrid, 792
PropertyMap, 781, 791
PropertyMappingExceptionEventArgs, 781
PropertyTranslator, 781
Protected, 50, 140–142

class, 141
fields, 63
Finalize, 209
inheritance, 102
interface, 51
methods, 63
MyBase, 134
Overrides, 113
Private, 140
variables, 142

Protected Friend
class, 141
fields, 63

protocols. See also File Transfer Protocol;
Hypertext Transfer Protocol; Simple Mail
Transfer Protocol; Simple Object Access
Protocol

handshake, 533
Internet Inter-ORB Protocol, 1109
network programming, 1201–1205
NNTP, 1201
sockets, 1312

ProVB_VS
running, 563–564

1398

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1399

In
de

xReceiveInboundConnection

unit tests, 596
Visual Studio, 559–571

Provider, 335
<providers>, 883
Proxy, 1206, 1224
proxy, 1147–1148

DLL, 1171
real, 1147–1148
remoting, 1153, 1171–1172
transparent, 1147–1148

ptX, 9
-Pub, 504
Public, 50, 1094, 1155

class, 141
fields, 63
inheritance, 135
interface, 51, 151, 153
methods, 63, 156
MyBase, 134
subclass, 140

public key, 513
cryptography standard, 482
digital signatures, 528

Public Key Cryptographic System (PKCS), 513,
523–528

.publickey, 960

.publickeytoken, 962
Publish, 577
Publish Version, 1014
PublisherIdentityPermission, 486
PublisherIdentityPermissionAttribute, 486
Publishing Location, 1014
punctuation, 4
pure virtual function, 150

Q
QFE. See Quick Fix Engineering
quantum, 1048–1049
query

database
grouping items, 459–461
Join, 458–459

expressions, 456–457
LINQ, 456–461
XML documents, 470–472

QueryString, 1223, 1224
querystring, 1138
Queue, synchronization, 1067
queued components, 1189–1196

Component Services Console, 1191
QueueUserWorkItem, 1061
queuing

invocations, 1193–1194
Message, 1314
simple queuing application, 604
transactions, 1194–1196

Quick Fix Engineering (QFE), 197, 966–967
/quiet, 1340

R
_R all, 880
_ R p, 880
RACE Integrity Primitives Evaluation Message

Digest (RIPEMD), 518–519
RadioButton, 690
RaftingContainer, 678
RaiseEvent, delegates, 93
raster graphics, 729–730
RawValue, 1282
RC2CryptoServiceProvider, 519
RDA. See remote data access
RDBMS. See Relational Database Management

System
Read, 5, 341, 403, 1057
Read only, SQLCE, 602
Read Write, SQLCE, 602
readability, 11
ReadEndElement (), 401
reader locks, 1071–1075
ReaderWriterLock, 1069, 1071–1075
ReaderWriterLockSlim, 1069, 1071, 1073
ReadLine, 403
ReadOnly, 985
read-only, read-write, 125
ReadStartElement (String), 401
ReadToEnd, 1299
read-write, read-only, 125
real proxy, 1147–1148
ReceiveInboundConnection, 1303–1304,

1310–1311

1399

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1400

ReceiveThreadEntryPoint

ReceiveThreadEntryPoint, 1315, 1319
Recent, namespace, 274
RecognizerDriver, ServiceController, 1285
Recordset, 328
-Recover, 499
<Rectangle>, 911–912
/recurse, 1344
Red, Green, and Blue (RGB), 774
ReDim, 29–30
refactoring, 570–571
Reference, 816
reference

circular, 206–208
namespace, 275–277
object, 55–56
types, 8–11, 21–32

heaps, 8–9
memory, 9
threading, 1064

URIs, 1248–1249
Visual Studio, 552–554, 1248
WCF, 1248–1253

app.config, 1253
Web, 1123–1125
WSDL, 1248

/reference, 1338
Reference.svcmap, 1249
Reference.vs, 1249
Reflection, ConfigureClient, 1317
reflection, 195, 1317

late binding, 170–171, 175
multiple interfaces, 171–173, 176
polymorphism, 170–171

Reflection API, .NET Framework, 204
Refresh, 448

ServiceController, 1284
RefusedSet, 512
RegAsm, 1041
Region, Windows Forms, 657
#Region, 563
Register, 816, 985
RegisterChannel, 1160
RegisterClientScriptInclude, 836–837
RegisterScriptBlock, 834–835
RegisterStartupScript, 835–836
RegisterWellKnownService Type, 1160

Registry, 291
registry

EventLog, 494
files, importing, 996
keys, 994–996
permissions, 494

Registry Editor, 987, 994–996
RegistryPermission, 486
RegistryPermissionAttribute, 486
Relational Database Management System

(RDBMS), 334
DataAdapter, 351
DataSet, 351

.rem, 1158
-RemFullTrust, 499
-RemGroup, 499
remote data access (RDA)

client application, 607
SQLCE, 607

remote data entry application, 604
remote data mirror application, 604
remote database application, 607
remote method invocation (RMI), 1107

Java, 1109
Web services, 1140

remote object, 1146
remote procedure calls (RPCs), 1107

Web services, 1140
Remote Provider, 335
Remote Scripting, Java, 1110
Remote Server, 335
Remoting, 1146
remoting, 1145–1172

AppDomain, 1145, 1146
ASP.NET, 1145
client application, 1160–1164
components, 1153
configuration, 1157–1160, 1162–1164
DLL, 1153
HTTP, 1147, 1158
implementation, 1153–1172
Load, 1161
memory, 1147
.NET, 1145
ports, 1158–1159
proxy, 1153, 1171–1172

1400

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1401

In
de

xruntime

SOAP, 1145–1146
Sub Main, 1161
TCP, 1146, 1147, 1158–1159
TCP/IP, 1145
threading, 1147
WCF, 1145
Web Form, 1145
Web services, 1145

remoting host, 1147
IIS, 1147, 1155, 1164–1168

Remove Integer Overflow Checks, 549
RemoveButton, 711, 716
RemoveDirectory, 1213
/removeintchecks[+:−], 1340
RemoveOwnedForm, 655
-RemPSet, 499
RenderMouseover, 768
RenderPage, 183, 184
Replace-all forms, 948
Replacement forms, 948
Replicator, 1090
ReportProgress, 1056, 1065
Request, 1225
Request for Comments (RFC), 1203
Request for Comments 1766, 219
RequestMinimum, 506
RequestOptional, 506
RequestRefused, 506
Required, 1187
<required Runtime>, 969, 1332
RequiresNew, 1187
Reset, 716
-Reset, 496
— ResolveGroup, 496
— ResolvePerm, 496
/resource, 1342
resource files

ASP.NET, 224–246
Windows Forms, 242–246

resource managers, 1175
creating, 1199
MSMQ, 1194

ResourcePermissionBase, 486
ResourcePermissionBaseEntry, 486
Resource.resx, 240
Response, 1225

ResponseHeaders, 1224
RestoreDirectory, 683
ResumeLayout, 562, 1062
.resx, 234–235
Return, 6
Return statement, 4
RevertAll, 487
RevertAssert, 487, 493–494
RevertDeny, 487
RevertPermitOnly, 487
RFC. See Request for Comments
RGB. See Red, Green, and Blue
ribbons, VSTO, 929–932
rich controls, 828
RichTextContentControl, 936
RichTextMenu, 690
RijndaelManaged, 519
RIPEMD. See RACE Integrity Primitives

Evaluation Message Digest
RIPEMD-160, 518–519
Rivest, Ronald, 518
Rivest, Shamir, and Adelman (RSA),

524
digital signatures, 528

RMI. See remote method invocation
role-based permissions, 487–490
<roleManager>, 873
Roles, 865
Rollback, 1001
/rootnamespace, 1344
round-trip engineering, 540
RowCount, 670
RPCs. See remote procedure calls
RSA. See Rivest, Shamir, and Adelman
RSACryptoServiceProvider, 524
-rsp, 496
RSS feeds, 541
RSS-aggregator, 472
Running, ServiceController, 1285
runtime, 969. See also common language

runtime
library, 20
WF, 1082, 1099
Windows Forms controls, 693–694
Windows Forms menus, 682–683
workflow, 1103

1401

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1402

<runtime>

<runtime>, 969
RunWorkerCompleted, 1066

S
-S <server>, 879
SAFEARRAY, 199
Sales Force Automation (SFA), 604
salt, 516
sampling, performance, 595
SavableObject, 179
SaveFileDialog, 683–684
SaveMySettingsOnExit, 287
Schemas, 400
scope, 37–38
Screen, 291
screen scraping, 1209
Scripting.FileSystem, 206
ScriptManager, 890
scrollable forms, Windows Forms, 657–658
ScrollableControl, 710
/sdkpath, 1344
secondary interfaces, 152–158

defining, 153–154
implementing, 155–158
inheritance, 158

secret key encryption, 482, 513, 519–523
Kerberos, 523

Secure Hash Algorithm (SHA), 482, 513,
517–518

64 bit, 517
Secure Sockets Layer (SSL), 482, 533–535, 641

128 bit, 1140
certificates, 1143
cryptography, 533
extensibility, 533
HTTP, 1142
interoperability, 533
security, 533
TCP, 533
Web services, 1142

security
application, 1142–1143
assembly, 196
Event Logs, 317
groups, 483

.NET Framework, 481–535
permissions, System.Security.Permissions,

484–490
policies, 483
policy

Caspol.exe, 495–498
managing, 495–513

SSL, 533
tools, 510–511
WCF, 1238–1239, 1263–1265
Web services, 1141–1143

downside, 1143
Security Identifier (SID), 487
SecurityAttribute, 486
SecurityException, 511–513
SecurityMode.Message, 1264
SecurityMode.None, 1264
SecurityPermission, 486
SecurityPermissionAttribute,

486
Secutil.exe, 511
SELECT, 335–336
Select, 566
Select Case, 15–16, 566
SelectCommand, 344

DataAdapter, 336
SqlDataSource, 858

SelectedImageKey, 1217
SelectedItems, 715, 716, 723
self-describing, 966
semantics, 53

fragile base class, 189–190
semicolon, 4
Send, 635
SendPage, 1229
SendResultsEnd, 635, 636
SendResultsRow, 635, 636
SendResultsStart, 635, 636
SendToBack, 694
[SendToFolder], 992
Separate forms, 949
Sequence, 1091
SequenceActivity, 1093
sequential workflow, 1082
Serializable, 202, 1150, 1312

UDTs, 617

1402

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1403

In
de

xshadowing

<Serializable ()>, 1146–1147, 1152
serializable object, 1146–1147, 1149,

1152–1153
serialization, 1312

DataSet, 354–355, 1146–1147
DataTable, 354–355
message, 1149
XML, 379, 382–389

Serialize, 384
server context sink, 1148
server controls

ASP.NET, 827–832
code, 830
Content, 852
event, 830–832
HTML, 827–829
JavaScript, 833–837
Web server, 827–829
XmlDataSource, 428–432

Server Explorer, 98, 1274, 1283
debugging, 1294
Performance Counters, 1280
Sync Server, 611
Visual Basic, 587

Server Library, 1153
ServerCertificates, 1143
server-side culture declarations, ASP.NET,

224–225
service, 1112

data contracts, 1258–1259
WCF, 1258–1259

<service>, 1158, 1165
Service Contract Language, 1137
Service Control Manager, 1268,

1283
CounterMonitor, 1279
debugging, 1294

Service Counters, 1280
Service Manager, 1274
Service Repository, 1105
ServiceBase, 1270–1271

AutoLog, 1290
ServiceController, 1285

<ServiceContract ()>, 1241–1242,
1258

namespace, 1263

ServiceController, 1273, 1284–1285
custom commands, 1287
DLL, 1286
.NET Framework, 1284

ServicedComponent, 1188
ServiceHost, 1247
serviceHost.Description.Behaviors.Add,

1247
ServiceInstaller, 1230, 1270, 1274
ServiceMetadataBehavior, 1247
ServiceName, 1230, 1272

FileWatcherService, 1289
ServiceController, 1284

service-oriented architecture (SOA), 1236
XSD, 1236

ServiceProcessInstaller, 1230, 1274
properties, 1272

ServiceReference, 1249
ServiceType, 1285
Session_End, 825
SessionId, 1089
Session_Start, 824
Set, 457, 783

threading, 1075
SetAbort, 1180
SetComplete, 1180
SetPNG, 636
Setup Project template, 982
Setup Wizard, 982
setup.exe, 1350
SFA. See Sales Force Automation
SGML. See Standard Generalized Markup

Language
SHA. See Secure Hash Algorithm
shadowing, 120–126

arbitrary elements, 124–126
dangers, 120, 125
interface elements, 125
methods, 120

inheritance, 131
nonvirtual methods, 121–124
Overridable, 120
properties, 120
Shared methods, 148
subclass, 123, 133
Windows Forms, 120

1403

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1404

Shadows

Shadows, 120
base class, 121
bugs, 122
methods, instance, 125
overriding, 124

shallow copy, 10, 36
Shape, 691, 1033
Shared, 86

constructors, 90
event, 89–90
methods, 87–88
Overridable, 146
properties, 88–89
variables, 86–87

shared assembly, 963–965
shared class, 332
shared data

synchronization, 1066–1068
threading, 1062–1068

shared environment, 745
shared event, inheritance, 148–149
shared methods

inheritance, 146–148
overloading, 147
shadowing, 148
subclass, 148

Shared Read, SQLCE, 602
SharePoint, 592

library, 926
OFR, 948
VSTO, 918

Short, 10, 16, 17, 38
shortcuts, 993–994
ShouldSerialize, 703, 716
ShowCheckBox, 870
ShowColor, 685
ShowDialog, 661, 684
ShowDistance, 167–168, 169
ShowEffects, 684
ShowHelp onHelpProvider1, 673
ShowMessage, 1313, 1315
ShowXmlNode, 396–397
Shutdown, 939
SID. See Security Identifier
side-by-side versioning, 197, 965–966
SignCode.exe, 482, 511

signing, assembly, 961
Silverlight, 897–914, 1361

application, 900–906
browsers, 897–898
<canvas>, 905–906
event, 910–913
Expression Blend, 902
Expression Design, 902
installation, 898–900
JavaScript, 903
versions, 898
Visual Studio, 902
XAML, 897, 903

Silverlight.js, 903
Simple Mail Transfer Protocol (SMTP),

1202
permissions, 625
sockets, 1312

Simple Object Access Protocol (SOAP), 641,
642, 1105

cache, 1131
digital signature, 1140
headers, 1131–1136, 1167
HTTP, 1111
.NET, 1112, 1139
remoting, 1145–1146
System.Web.Services.Protocols, 1139
T-SQL, 616
WCF, 1237
Web services, 1106
WF, 1100
WSDL, 1112
WS-Security, 1265
XML, 1112

simple queuing application, 604
Single, 11, 18–19
SingleCall, 1149–1151

library DLL, 1155
serializable object, 1152–1153
thread pool, 1150

SingleCall (wellknown), 1150
single-level inheritance, 186
Singleton, 1151

AppDomain, 1151
library DLL, 1155

Singleton (wellknown), 1150

1404

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1405

In
de

xSQL Server

singleton pattern, 1149
-Site, 504
SiteMapDataSource, 804, 854

Menu, 868
SiteMapPath, 865–866
16 bit, 10

threading, 1045
64 bit, 17–18

ASP.NET, 802
Common Files Folder, 991
Program Files Folder, 991
SHA, 517
Sytem Folder, 991

SizeMode, 690
SizeType, 670
-SkipVerif, 504
SkipVerification, 484
Sleep, 1062
smallint, SQL, 17
Smalltalk, 49
smart controls, 827
Smart Device, 544
Smart Device CAB Project template, 982
smart tags, Windows Forms, 648
smart-client deployment, XML, 198
SMTP. See Simple Mail Transfer Protocol
Sn.exe, 511
sniffing, 827
Snippet Editor, 570
SOA. See service-oriented architecture
SOAP. See Simple Object Access Protocol
SOAPAction, 1111
SoapException, 1139
SoapFormatter, 1167, 1312
soapsuds.exe, 1171
Socket, 1317
sockets. See also Secure Sockets Layer

application, 1301–1304, 1318
HTTP, 1301
Internet, 1301–1321
protocols, 1312
SMTP, 1312
TCP/IP, 1301, 1302

software publisher, 484–485
Software Publisher Certificate (SPC),

511

Solution Explorer, 500, 560
Class, 61
Visual Studio, 545–546
Web services, 1119

SortedDictionary, 190
SortExpression, 859
Source, 301, 312–313, 318, 404
source code

Visual Studio, 563
XML, attribute, 387–389

SourceColumn, 346
SourceExists, 318
SourceItems, 715, 716
SourceList, 711
SourceUri, 404
spaghetti code, 186
SPC. See Software Publisher Certificate
specific culture, 220, 239
spell checker, multithreading, 1046
Spinner, 691
SplashScreen, 288
Split, 24
SplitContainer, 650, 1217

Windows Forms, 667–668
Splitter, 650

Windows Forms, 667
SpParamXml, 361
SpParamXmlDoc, 361
SQL

bigint, 17
LINQ to, 439–454

class, 440–441
O/R Designer, 441–444
stored procedures, 461

smallint, 17
Web services, 1120

SQL cache invalidation, 802
SQL Server, 336, 599–646

ASP.NET, 879–884
CLR, 615–645
credentials, 641
DataContext, 445
debugging, 552
DLL, 619
.NET Framework, 615
permissions, 624

1405

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1406

SQL Server (continued)

SQL Server (continued)
stored procedures, 633
TDS, 634
transactions, 1175
Visual Studio, 544
Web services, 639–645

accessing, 642–645
Windows Services, 1267
XML, 380, 425–428

SQL Server Compact Edition (SQLCE), 599,
600–615

autoshrink threshold, 602
buffer, 602
data source, 601
data synchronization, 604–615
DataSet, 604
DbConnection, 600
DbDataAdapter, 600
DLL, 600
limitations, 600
merge replication, 607
mode, 602
passwords, 601
RDA, 607
Read only, 602
Read Write, 602
remote data entry application, 604
remote data mirror application, 604
remote database application, 607
Shared Read, 602
simple queuing application, 604
Sync Services, 607–615

SQL Server .NET Data Provider,
348–349

SQL Server Service Manager, 1283
SQLCE. See SQL Server Compact Edition
SqlCommand, 330, 336, 340, 346, 634
SqlConnection, 330, 335, 356, 634
SqlDataReader, 339, 356, 635

ADO.NET, 633
SqlDataRecord, 635–636

CopyRow, 639
SqlDataSource, 854, 855–859

ConnectionString, 858
SelectCommand, 858

/sqlexportonly <filename>, 880

SqlFunction, 624
SqlParameter, 346
SqlPipe, 634–639
SqlProcedure, 633
SQLServer, 877
SqlUserDefinedType, 617
SSL. See Secure Sockets Layer
Stack, synchronization, 1067
StackPanel, 762–763
StackPanelNext, 763
stacks, value types, 8–9
StackTrace, 301, 312–313, 404
Standard Generalized Markup Language (SGML),

380, 1108
Start, 1103

HttpListener, 1225, 1226
ServiceController, 1284

Start stage, installation, 998
[StartMenuFolder], 992
StartPending, ServiceController,

1285
StartPosition, Windows Forms, 653
StartType, 1272, 1274
Startup, 939, 968–969
<startup>, 968–969
startup forms, Windows Forms, 653
State, 1091
state machine, workflows, 1082–1084
state management

ASP.NET, 1141
XML Web services, 1141

StateFinalization, 1091
StateInitialization, 1091
StateServer, 877
StaticResources, 761
Status, ServiceController, 1285
StatusBar, 650
StatusCode, 1300
StatusStrip, 650
Stop

HttpListener, 1225
ServiceController, 1284

Stopped, ServiceController, 1285
StopPending, ServiceController,

1285
Storeadm.exe, 511

1406

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1407

In
de

xSync Services, SQLCE

stored procedures, 336–337
LINQ, to SQL, 461
SQL Server, 633
T-SQL, 616, 633

creating, 632–639
Web services, 640

StoredProcedureHelper, 360, 376
StoredProcedureSettins, 376
StorePermission, 486
StorePermissionAttribute, 486
StreamReader, 535, 1222
stream-style parsers, XML, 389–415

reading, 394–405
writing, 390–394

StreamWriter, 319–321
Stretch, 753, 763
Stretch.Uniform, 745
String, 11, 22–25

application settings, 557
constants, 25
constructor, 23
constructors, 138
operator, 90
registry keys, 995

string, 8
ElseIf, 15
If Then, 15
primitive types, 10–11
size, 9
sorting, 231–233
Web Services, 1289
XML, 462

String ToString (), 200
stringarray, 24
StringBuilder, 281, 1230
Stroke, 907
StrokeThickness, 907
-Strong, 504
strong names, 960–961, 1184
Structure

constraints, 267
generics, 262–263

styles
transparency, 774–775
WPF, 767–775
XAML, 767–775

stylesheet, XSLT, 416
Sub, 3–4, 6, 263, 566

console application, 5
interface, 51

Sub AddInput (InputValue as Double),
1021

Sub DoCalculation (), 1021
Sub Main

remoting, 1161
Windows Forms, 652

Sub Reset (), 1021
subclass, 104

creating, 105–108
event, 144–146
inheritance, 135
methods, 117
multiple inheritance, 127
MyBase, 115
nonvirtual methods, 121
object, 117
Overloads, 119
overriding, 120
Public, 140
shadowing, 123, 133
Shared methods, 148
variable, 117

subclassing, 49, 104, 182
SubmitChanges, 448
subroutine, 3
SubString, 23–24
Sub.Sub, 3
Subtract, 1244, 1256
success audit, 317
superclass, 103

fragile, 186
Supported, 1187
<supportedRuntime>, 1332
Suspend, 1062, 1092
Suspend Layout, 562
SwitchName, 322
SymmetricAlgorithm, 519,

522
Sync Server

DataSet, 611
Server Explorer, 611

Sync Services, SQLCE, 607–615

1407

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1408

synchronization

synchronization
ArrayList, 1067
Hashtable, 1067
memory, 1063
multithreading, 1064
.NET Framework, 1067
object, 1068–1077
Queue, 1067
shared data, 1066–1068
Stack, 1067
workflow, 1103

SynchronizingObject, 1061
synchronous

components, 1189
.NET Framework, 1057

SyncLock, 1069–1077
syntax, 2–8

encapsulation, 53
error handling, 300
fragile base class, 189–190

System, 553
namespace, 2

System Folder, 991
System. Object

.NET Framework, 130
object, 204

[System64Folder], 991
System.Activator, 1168
System.Array, 27
System.Boolean, 11
System.Byte, 10
System.Char, 11
System.Collections, 278
System.Collections.Generics, 31, 278
System.Collections.Queue, 1314
System.Collections.Specialized, 31
System.ComponentModel, 701
System.ComponentModel.Component, 98
System.Configuration.Install.Installer, 1270,

1274
System.Data, 278, 332, 553
SystemDataAccess, 624
System.Data.Common, 332
System.Data.Odbc, 332
System.Data.OleDb, 332
System.Data.SqlClient, 332

System.Data.SqlServerCe, 601
System.Data.SqlTypes, 332
System.DateTime, 11
System.Decimal, 11
System.Deployment, 553
System.Diagnostics, 278

EventLog, 316
System.Double, 11
System.Drawing, 182, 279, 553

controls, 717–718
System.Drawing.dll, 182
System.Drawing.Graphics, 718–723
System.Drawing.Point, 9
System.EnterpriseServices, 279, 1173, 1187
[SystemFolder], 991
System.GC.Collect, 208–209
System.Int16, 10
System.Int32, 10
System.Int64, 11
System.IO, 279, 1301
System.IO.Directory, 747
System.IO.StreamReader, 1299
System.Linq, 279
System.MarshalByRefObject, 1146, 1151

Activated, 1151
System.Net, 1205–1233, 1301

.NET Framework, 1205
System.Net.Dns, 1307
System.Net.IPHostEntry, 1307
System.Net.NetworkStream, 1302
System.Net.Sockets, 1205, 1301
System.Net.Sockets.Socket, 1317
System.Net.Sockets.TcpListener, 1302
System.Net.TcpClient, 1301
System.Net.TcpListener, 1301
System.Net.WebClient, 1223, 1298
System.Net.WebProxy.WebClient, 1298
System.Net.WebRequest, Create, 1299
System.Object, 3, 94

CTS, 200
inheritance, 106
ToString, 130

System.Reflection, 170, 971–972
Assembly, 204

System.Runtime.InteropServices.Out, 633
<system.runtime.remoting>, 1165

1408

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1409

In
de

xTCP

System.Runtime.Remoting.dll, 1168
System.Runtime.Serialization, 1258
System.Security.Cryptography, 531
System.Security.Cryptography.X509Certificates,

532
System.Security.Cryptography.Xml, 531
System.Security.Permissions, 488

permissions, 484–490
System.SerivceProcess.ServiceInstaller, 1270
<system.serviceMode>, 1264
System.ServiceModel.BasicHttpBinding, 1245
System.ServiceModel.Channels.CustomBinding,

1245
System.ServiceModel.Description, 1247
System.ServiceModel.dll, 1241
System.ServiceModel.MsmqBindingBase, 1245
System.ServiceModel.NetNamedPipeBinding,

1245
System.ServiceModel.NetPeerTopBinding, 1245
System.ServiceModel.NetTopBinding, 1246
System.ServiceModel.WSDualHttpBinding, 1246
System.ServiceModel.WSHttpBindingBase,

1246
System.ServiceProcess, 1284
System.ServiceProcess.dll, 1286
System.ServiceProcess.ServiceController, 1273
System.ServiceProcess.ServiceProcessInstaller,

1270
System.Service.ServiceBase, 1270
System.Single, 11
System.String, 11
System.Text, 279
System.Text.StringBuilder, 9
System.Threading, 222, 279, 1057
System.Threading.Monitor, 1069
System.Threading.ReaderWriterLock, 1314
System.Timers.Timer, 1057, 1061
System.Transactions, 1196–1199
SystemUri, 1297
System.Web, 279
System.Web.HttpUtility, 1208
System.Web.Services, 279, 1136–1139
System.Web.Services.Description, 1137–1138
System.Web.Services.Discovery, 1138–1139
System.Web.Services.Protocols, 1139
System.Windows, Application, 733

System.Windows.Forms, 279, 553, 651
Control, 709
library, 744

System.Windows.Forms.Form, 576
System.Windows.Forms.Timer, 1061
System.Windows.Media.Imaging, 747
System.XML, 553
System.Xml, 379

XML, 389
System.Xml.Linq, 462
System.Xml.Schema, 379
System.Xml.Serialization, 379, 382–389
System.Xml.XPath, 379
System.Xml.Xsl, 379
Sytem Folder, 64 bit, 991

T
TabControl, 690
TabIndex, 576
<Table>, 424
Table (TEntity), 449
TableAdapter Configuration Wizard,

1119–1120
TableDefinition, 624
TableLayoutPanel

UserControl, 710
Windows Forms, 648, 650, 670

tabs
Code View, 563
Form Designer, 563

TabStrip, 690
Tabular Data Stream (TDS), 348

SQL Server, 634
/target, 1336
[targetDir], 846
TargetSite, 301, 311–315, 404
Task List, Visual Studio, 586
TaskComplete, 1059
TCP

BinaryFormatter, 1167
IIS, 1165
.NET, 1147
remoting, 1146, 1147, 1158–1159
SSL, 533
thread pool, 1056–1057

1409

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1410

TCP (continued)

TCP (continued)
URL, 1158
Web services, 641

TcpClient, 1303, 1317
TCP/IP, 1107

COM, 1108
remoting, 1145
sockets, 1301, 1302
Web services, 1145

TcpListener, 1303, 1311
TDS. See Tabular Data Stream
Team Build, 592
Team Editions

Architects, 593
Developers, 593–594
Testers, 593

Team Explorer, 592
Team Foundation Server (TFS), 591, 920

Visual Studio, 592
VSS, 592

Team Suite, 591
Team System, Visual Studio, 591
Telecosm (Gilder), 1143
TEMP, 1291
Temp, 502
[TemplateFolder], 992
templates

deployment, 980–982
Excel, 918
VSTO, 915
Word, 918, 925–938
XSLT, 416

Terminate, 1092
Test, 457
TestCounter, 1280, 1283
Testers, 591

Team Editions, 593
TestForm.vb, 339
TestPage.html, 903
TestPage.html.js, 903
Text, 146, 576, 688, 689

compilation, 847
Text Editor, Visual Studio, 564–565
text string, Visual Studio, 555
TextAlign, 689
<TextBlock>, 907

TextBox, 107, 110–111, 690, 745, 1210
Conversation forms, 1305
Conversation windows, 1305
Web services, 643
Windows Forms, 648

TextBoxMargin, 785
TextBoxRounding, 785
TextChanged, 1307
TextField, 870
textMessage, 1305
textMessages, 1305
textUsername, 1305, 1316
TextWriter, 319, 384
TFS. See Team Foundation Server
TheClass, 54–55
theTimer, 98
thick-client application, 885
thin-client application, 885
32 bit, 10, 17–18

C++, 199
threading, 1045

thousands separator, 676
Thread, 222
thread ID, 1155, 1160–1161
thread pool, 1056–1061

asynchronous, 1056–1057
Conversation windows, 1305
.NET Framework, 1056–1057
SingleCall, 1150
TCP, 1056–1057
URL, 1056–1057

ThreadEntryPoint, 1303
threading, 279, 1045–1077. See also

multithreading
32 bit, 1045
affinity, 1050–1051
AppDomain, 1047
ASP.NET, 1053
background, 1051–1052
C++, 1045
COM, 1062
Conversation windows, 1313
CPU, 1045–1046, 1048–1049, 1051
Delegate, 1057–1059
event, 1063
Excel, 1051

1410

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1411

In
de

xTransact-SQL (T-SQL)

IIS, 1051–1052
implementation, 1053–1077
Integer, 1064
manually creating, 1061–1062
Outlook, 1051
processes, 1047–1048
reference types, 1064
remoting, 1147
safety, 1050–1051
scheduling, 1048–1050
Set, 1075
shared data, 1062–1068
UI, 1052, 1307
value types, 1064
Windows Forms, 649, 1052, 1304
Windows Services, 1269, 1290
Word, 1051

ThreadPool.QueueUserWorkItem, 1059
threads, 221–224

cultures, 221
Windows Forms, 221

Throw, 303, 305–307, 1092
InnerException, 311

time separator, 676
Timeout, 1206
Timer, 98, 691, 1275–1276, 1281
Title, 548, 865, 936, 984
TitleBar, 756
TlbIMP, 1043
TlbImp.exe. See Type Library Import
TLS. See Transport Layer Security
TODO, 212, 586
ToOADate, 21
Toolbar, 650

Windows Forms, 678–681
toolbars, 1324–1328
Toolbox, 98

Windows Forms, icons, 723
tools

certificates, 511
performance, 595
permissions, 511
security, 510–511

ToolStrip, 650
ComboBox, 680
Windows Forms, 678–681

ToolTip, 672
TopMost, Windows Forms,

654
ToString, 301, 487, 488, 494

Me, 130–131
Message, 310
MyClass, 134–135
System.Object, 130
UDTs, 618

ToXml, 487, 488
Trace

exception handling, 321–325
Visual Studio, 550–552

trace files, 319–321
EventLog, 319

trace switches, 321–323
TraceSwitch, 321–323
TraceVerbose, 323
TrackBar, 691
Trademark, 548
TrafficLight, 719–723
Transaction, 448, 1187

ADO.NET, 447
TransactionAttribute, 1187
TransactionOption, 1187
transactions, 1173–1175

ASP.NET, 1199
attribute, 1186–1187
cache, 1199
component registration, 1183–1184
components, 1175–1188
database, 1176–1178
explicit, 1196–1197
implicit, 1196–1197
invalid data, 1188
JIT, 1188
.NET Enterprise Services, 1173–1175,

1196–1199
Oracle, 1175
queuing, 1194–1196
SQL Server, 1175
System.Transactions, 1196–1199

Transact-SQL (T-SQL), 599
CLR, 615
DataSet, 633
debugging, 615

1411

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1412

Transact-SQL (T-SQL) (continued)

Transact-SQL (T-SQL) (continued)
functions, 616

creating, 623–630
IDataReader, 633
SOAP, 616
stored procedures, 616, 633

creating, 632–639
vs. Visual Basic, 615–617
Web services, 616
XML, 617

Transform, 419
Transitive, 993
Translate, 448, 1097
TranslationOptions, 1097
translucency, Windows Forms, 656–657
transparency

styles, 774–775
Windows Forms, 656–657

TransparencyKey, Windows Forms, 656
transparent proxy, 1147–1148
TransparentColor, 1217
transport channel, 1147
Transport Layer Security (TLS), 533
TreeNodeBinding, 870
TreeView, 691, 867–870, 1219–1220

XML, 868–870
TripleDESCryptoServiceprovider, 519
Try, 302–304

nested, 308–309
Try Catch, 1318
TryCast, 47, 60
TryEnterReadLock, 1073
TryEnterUpgradeableReadLock, 1073
TryEnterWriteLock, 1073
TryParse, 46
T-SQL. See Transact-SQL
txtBirthdate, 107
txtHireDate, 107
txtName, 107
txtSalary, 107
type, XmlReader, 396
type constraints, 265–267
Type GetType(), 200
type library, 1020
Type Library Import (TlbImp.exe), 1026–1027
types, 1112

U
-u, 846
-U <login>, 879
UBound, 28–29
UDDI. See Universal Description, Discovery, and

Integration
UDFs. See user-defined functions
UDTs. See user-defined types
UI. See user interface
UICulture, 236, 288
UInt16, 16
UInt32, 16
UInt64, 16, 17
UIPermission, 486
UIPermissionAttribute, 486
UML. See Unified Modeling Language
unary operator, 91
UNC. See Universal Naming Convention
underscore, 5
Undo, 690
Unified Modeling Language (UML), 103
Uniform Resource Identifier (URI), 1297–1298

creating, 1299
reference, 1248–1249
System.Web.Services.Protocols, 1139

Uniform Resource Locator (URL), 335,
1008–1009, 1297–1298

HTTP, 1158
IIS, 1169
System.Web.Services.Protocols, 1139
TCP, 1158
thread pool, 1056–1057
updating, 1323–1324

Uninstall, 1001
Union, 487, 488
unit tests

My, 596
ProVB_VS, 596
Visual Studio, 596–598

United Devices, 1110
Universal Description, Discovery, and Integration

(UDDI), 1105
Universal Naming Convention (UNC),

1008–1009
UNIX, networking, 1107

1412

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1413

In
de

xvalue types

Unload, 817
unmanaged code

C++, 552
COM, 552

Update options, 1015
UpdateCommand, 344
UpdateDisplay, 1059–1060
UpdatePanel, 890, 892, 895
Updater Application Block, 1016–1017
UploadData, 1223
UploadFile, 1213, 1223
UploadFileWithUniqueName, 1213
UploadString, 1223
UploadValues, 1223
UploadValuesAsync, 1224
UploadX, 124
URI. See Uniform Resource Identifier
URL. See Uniform Resource Locator
Url, 512, 865
-URL, 504
UrlEncode, 1208
UseDefaultCredentials, 1223
UseMnemonic, 689
User, ServiceProcessInstaller, 1272
-user, 497
user controls, 828
user ID, 1214, 1220
user interface (UI), 162, 163. See also graphical

user interface
DefinePad, 1210
.NET Enterprise Services, 1175
testing, 596
threading, 1052, 1307
Windows Services, 1268
WPF, 743, 752–761
XAML, 743

User Interface Editor, 987–1000
dialog boxes, 999–1000
installation, 998–999

User32.dll, 728
UserControl, 698

Anchor, 710
base class, 709–710
child, 710
composite, 710–717
Dock, 710

FlowLayoutPanel, 710
resizing, 712
TableLayoutPanel, 710

user-defined functions (UDFs), 630–632
Web services, 640

user-defined types (UDTs), 616
creating, 617
Format, 617
Location, 619, 622
Parse, 618
Serializable, 617
ToString, 618

-USERNAME, 497
_username, 1312
User’s Application Data Folder, 991
User’s Desktop, 991
User’s Favorites Folder, 992
User’s Personal Data Folder, 992
User’s Programs Menu, 992
User’s Send to Menu, 992
User’s Start Menu, 992
User’s Startup Folder, 992
User’s Template Folder, 992
UseVisualStyleBackColor, 576
UseWaitCursor, 649

Windows Forms, 648
Using, 209, 1222
UsingResx.resx, 244
UTF-8, 1334
/utf8output[+:−], 1334

V
-v, 846
Validated, 709
Validating, 677–678, 709
validation controls, 828
ValidationFlags, 400
ValidationMethodName, 618
ValidationType, 400
Value, 154, 157, 397
value, XmlReader, 396
value types, 8–11, 15–20

memory, 9
stacks, 8–9
threading, 1064

1413

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1414

value-of, XSLT

value-of, XSLT, 416
ValueType, 266
variable, 3

base, 117
data types, 117
initialization, constructors, 138–139
interface, 152
Property, 142
Protected, 142
scope, 37–38
Shared, 86–87
subclass, 117
types, 8–11

VariableName, 566
VB City, 1361
VBA. See Visual Basic for Applications
vbAccelerator.com, 1361
vbc.exe.config, 1331–1333
vbc.rsp, 1344–1345
VBRun, 1361
/vbruntime[+:−], 1339
VbWCF_Service, 1264
vector graphics, 729–730
.ver, 962–963
/verbose, 1335
versioning

CLR, 197–198
policies, 966–967

Vieira, Robert, 425
View, 1217
ViewState, 895
virtual class, 150
virtual method

inheritance, 115–118
overriding, 115–118
polymorphism, 117

Visibility, 933
VisibleChanged, 663
Vista, ASP.NET, IIS, 876–877
Visual Basic

Compile Settings, 549–550
Server Explorer, 587

Visual Basic for Applications (VBA), 915
VSTO, 920–925

Visual Source Safe (VSS), 591
TFS, 592

Visual Studio, 336, 537–598
AJAX, 805, 888
application settings, 556–558
ASP.NET, 234–235, 805
Assembly Information, 547–549
build configurations, 583–586
building application, 577–583
class diagrams, 590–591
code expansion, 565–568
code snippets, 568–570
Command window, 586–587
console application, 5
controls, 701–702
debugging, 550–552, 578, 1293–1296
deployment, 979–986

templates, 980–982
DLL, 1165
enhancing sample application, 571–583
event handler, 573–574
images, 554–555
inline coding, 812
IntelliSense, 565
keywords, 565–567
LINQ to, 439–454
macros, 587–590
Microsoft Paint, 555
minimum permissions, 508–510
My Project, 546–547
.NET, 538
performance tools, 595
project templates, 541–545
ProVB_VS, 559–571
reference, 552–554, 1248
resources, 554–555
Silverlight, 902
Solution Explorer, 545–546
source code, 563
SQL Server, 544
Task List, 586
Team System, 591
Text Editor, 564–565
text string, 555
TFS, 592
Trace, 550–552
unit tests, 596–598
versions, 539–540

1414

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1415

In
de

xWeb services

WCF, 1239–1240
Web services, 1119–1128
workflows, 1080–1081
XML, 558, 573
XML literals, 538

Visual Studio Tools for Office (VSTO), 541, 544,
915–954

actions pane, 929–935
Add-ins, 917–918, 939–945
DLL, 915
Document/Workbook, 918
macros, 920–923
OBA, 918–920
Office, 916–917
OFR, 945–954
ribbons, 929–932
SharePoint, 918
templates, 915
VBA, 920–925
Word, 925–938
workflow, 918

Visual Web Developer, 539
Vital, 985
VScrollBar, 691
VSS. See Visual Source Safe
VSTO. See Visual Studio Tools for

Office

W
-W, 879
wait state, 1049
WaitCursor, 649
WAITFOR DELAY, 343
WaitOne, 1075
WAN. See wide area network
/warnaserror[+:−], 1340
warning, 317
WAS. See Windows Activation Service
Watch windows, Debug, 582
WCF. See Windows Communication

Foundation
wchar, 199
Web application, ASP.NET, 986
Web Form, 814

remoting, 1145

Web pages
ADO.NET, 328
titles, 1323–1324
WebBrowser, 1321

Web reference, 1123–1125
IDE, 1123

Web server
ASP.NET, 807–808
HttpListener, 1224–1233
server controls, 827–829

Web services, 814
architecture, 1140–1141
ASP.NET, 1123
attribute, 202
building, 1115–1117
cache, 1131
cell phones, 1143–1144
Class, 1115
COM, 1106
ComboBox, 643
CORBA, 1140
DataGridView, 643
DataSet, 1119, 1125
DataTable, 1125–1126
DCOM, 1140
Debug, 1115
digital signature, 1140
downside, 1143–1144
encryption, 1140
GridView, 1125
HTTP, 641, 1105
IDE, 1119
Load, 645
.NET, 1106
.NET Framework, 1117, 1140
ObjectDataSource, 1125–1126
permissions, 625
remoting, 1145
RMI, 1140
RPCs, 1140
security, 1141–1143

directory-level, 1142–1143
downside, 1143

SOAP, 1106
headers, 1131–1136

Solution Explorer, 1119

1415

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1416

Web services (continued)

Web services (continued)
SQL, 1120
SQL Server, 639–645

accessing, 642–645
SSL, 1142
stored procedures, 640
string, 1289
system architecture, 1106
System.Web.Services, 1136–1139
TCP, 641
TCP/IP, 1145
TextBox, 643
T-SQL, 616
UDFs, 640
Visual Studio, 1119–1128
Windows Forms, 642
workflow, 1090, 1100
WSDL, 1140
XML, 616, 1105–1144, 1106, 1140

Application, 1141
future, 1144
state management, 1141

Web Services Description Language (WSDL),
641, 642, 1105, 1112–1115, 1247–1248

Description, 1115
HelloCustomerService, 1261–1263
.NET Framework, 1114
reference, 1248
WCF, 1238, 1257
Web services, 1140
workflow, 1089

Web Services Enhancements (WSE), 1140,
1235

Web Setup Project template, 982
Web User Control, 814
WebBrowser, 1297

COM, 1321
documents, 1328–1330
printing, 1330
Web pages, 1321
Windows Forms, 649

WebClient, 1205, 1223–1225, 1298
web.config, 1165

ASP.NET, 545
compilation, 847

WebConfigurationManager, 803–804

WebMethod, 1115, 1141
overloading, 1128–1130

<WebMethod () >, 1116
WebMethodAttribute, 1136
WebProxy, 1298
WebRequest, 534, 1205–1223, 1298

LANs, 1298
WAN, 1298

WebRequest.Create, 1206
WebRequestMethods.Ftp, 1213–1223
WebResponse, 1205–1223
WebService, 1115, 1136
WebServiceAttribute, 1136
WebServiceBinding, 1116
<WebServiceBinding>, 1129
WebServiceFault, 1090, 1100
WebServiceInput, 1090, 1100
WebServiceOutput, 1090, 1100
WebServicesBindingAttribute, 1136
wellknown, 1149, 1158
WF. See Windows Workflow Foundation
WF runtime services, 1082
wf.netfx3.com, 1104
While, 33–34, 1090
Whitespace, 397
wide area network (WAN), 1108

WebRequest, 1298
Width, 670
/win32icon, 1342
Win32OwnProcess, 1285
/win32resource, 1342
Win32ShareProcess, 1285
Window, 776

XAML, 733
window_loaded, 744
<Window.Resources>, 763
Windows Activation Service (WAS), 1244
Windows Communication Foundation (WCF),

545, 1140, 1235–1265
ABC, 1240–1241, 1245
addresses, 1240–1241
app.config, reference, 1253
ASP.NET, 805
binding, 1240–1241
Calculator, 1244
capabilities, 1237–1238

1416

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1417

In
de

xWindows Forms

console application, 1244–1247
consumer application, 1248–1257

code, 1255–1257
contract, 1240–1241
credentials, 1264
data contracts, 1257–1263
DLL, 1241
GUI, 1255
ICalculator, 1244
IntelliSense, 1256
message link, 1148
namespace, 1263
.NET Framework, 1237
reference, 1248–1253
remoting, 1145
security, 1238–1239, 1263–1265
service, 1258–1259
SOA, 1236
SOAP, 1237
Visual Studio, 1239–1240
WS-*, 1238–1239
WSDL, 1238, 1257
XSD, 1257

Windows CryptoAPI, 1143
Windows Folder, 992
Windows Forms, 279, 647–695, 1321

ActiveX, 649
advanced features, 697–725
anchoring, 666–667
application, 785–792
asynchronous requests, 649
AutoCompletion, 648, 674–675
browsers, 649
button, 711–712
C++, 1273
changes, 647–651
ComboBox, 648
Control, 648
Control Tab, 664
controls, 664–694, 697–708

attribute, 701–702
Browsable, 704
Category, 704
CheckedListBox, 705–708
Description, 703–704
dynamic sizing and positioning, 665–668

embedding, 723–725
event, 705
GDI, 717
IDE, 703
inheritance, 698–708
resizing, 712
runtime, 693–694
System.Drawing, 717–718
Visual Studio, 701–702
z-order, 664

DialogForm, 660–661
dialogs, 683–685
docking, 665–666
extender providers, 671–674

properties, 673
FlowLayoutPanel, 648, 650, 668–670
FormBorderStyle, 654
GDI, 718–723
hosting, 1244
inheritance, 657, 698–708
Margin, 648, 669
MaskedTextbox, 649–650, 675–677
MaximumSize, 648–649
menus, 681–683

runtime, 682–683
MinimumSize, 648–649
namespace, 553
.NET, 700
.NET Framework, 647
Opacity, 656
owned forms, 654–655
Padding, 648
Region, 657
resource files, 242–246
resources, 1361
scrollable forms, 657–658
shadowing, 120
smart tags, 648
SplitContainer, 667–668
Splitter, 667
StartPosition, 653
startup forms, 653
Sub Main, 652
TableLayoutPanel, 648, 650, 670
TextBox, 648
threading, 649, 1052, 1304

1417

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1418

Windows Forms (continued)

Windows Forms (continued)
threads, 221
Toolbar, 678–681
Toolbox, icons, 723
ToolStrip, 678–681
TopMost, 654
translucency, 656–657
transparency, 656–657
TransparencyKey, 656
UseWaitCursor, 648
Web services, 642
WebBrowser, 649
WF, 1098–1100
workflow, 1089
WPF, 779–799

controls hosting, 792–797
hosting, 782–792
limitations, 797–798

Windows Forms Integration Library, 744,
780–781, 791

Windows Installer
customization, 987
deployment, 979

Windows Installer package file,
979

Windows interop library, 744
Windows Meta Files (WMF), 514
Windows Presentation Foundation (WPF), 647,

727–777
behavior, 744–748
Blend, 765–776
button, 761–765
controls, 739–742

library, 782–785
dependency properties, 766
event handler, 742–744
frames, 755–760
GUI, 728
hosting, 1244
IDE, 730
layout, 748–752
resources, 760–761
strategy, 728–729
styles, 767–775
UI, 743, 752–761
user controls, 775–776

Windows Forms, 779–799
controls hosting, 792–797
hosting, 782–792
limitations, 797–798

XAML, 734–752, 1080
Windows Services, 1267–1296

antivirus, 1267
automated stock price reporter, 1268
C++, 1269
communication, 1283–1287
counter monitor service, 1275–1280
creating, 1269–1275
custom commands, 1287–1289
debugging, 1275, 1293–1296
deployment, 1269
errors, 1275
Exchange Server, 1267
file watcher, 1267–1268, 1289–1293
IIS, 1267, 1287
installation, 1277–1278
MTS, 1268
.NET, 1270
.NET Framework, 1270–1273
performance counters, 1280–1283
SQL Server, 1267
starting, 1278–1279
threading, 1269, 1290
UI, 1268
uninstalling, 1279–1280

Windows Workflow Foundation (WF), 545,
1079–1104

activites, 1089–1098
application, 1098–1104
ASP.NET, 1099–1104
building workflows, 1080–1098
Dictionary, 1099
host process, 1099
MSDN, 1104
.NET Framework, 1079
Object, 1099
runtime, 1099
SOAP, 1100
Windows Forms, 1098–1100
XAML, 1080
XML, 1080

WindowsDefaultBounds, 654

1418

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1419

In
de

xXmlElement

WindowsDefaultLocation, 653
[WindowsFolder], 992
WindowsFormsHost, 744, 781
WindowsFormsLibrary. See Windows Forms

Integration Library
Windows.Stretch, 745
WindowState, 694
Windows.xaml, 750–751
Winer, Dave, 1112
With, 108
WithEvents, 143

delegates, 93
WMF. See Windows Meta Files
Word

file search, 1003–1004
multithreading, 1046
templates, 918, 925–938
threading, 1051
VSTO, 925–938

WordWrap, 690
WorkerReportsProgress, 1054
WorkerSupportsCancellation, 1054
workflow

application, 1079–1080
ASP.NET, 1089
asynchronous, 1103
building, 1080–1098
child, 1091
DLL, 1099
errors, 1091
runtime, 1103
sequential, 1082
state machine, 1082–1084
synchronization, 1103
Visual Studio, 1080–1081
VSTO, 918
Web services, 1090, 1100
Windows Forms, 1089
WSDL, 1089

workflow runtime engine, 1082
WorkflowCompleted, 1099
WorkflowRuntime, 1100
WPF. See Windows Presentation Foundation
Write, 320
WriteEntry, 318
WriteIf, 320

WriteLine, 320
WriteLineIF, 320
writer locks, 1071–1075
wrox.com, 382
WS-*, 1238–1239
WS-AtomicTransaction, 1239
WS-Coordination, 1239
WSDL. See Web Services Description Language
<wsdl:message>, 1138
WSE. See Web Services Enhancements
WS-Policy, 1236
WS-ReliableMessaging, 1239
WS-SecureConversation, 1239
WS-Security, 1238–1239, 1264

SOAP, 1265

X
X.509 certificate, 511, 531–533
XAML. See Extensible Application Markup

Language
x:Array, 736
XAttribute, 468
x:Class, 735
x:ClassModifier, 735
x:Code, 737
XComment, 467
XCopy, 198
XCOPY deployment, 978
XDocument, 463–464
XElement, 464–465
x:FieldModifier, 735
x:Key, 735, 760
XML. See Extensible Markup Language
XML literals, 2, 42–44, 468–470

IDE, 469
Visual Studio, 538

XML Path (XPath), 379
Xml server control, 433–434
XmlAttribute, 409
XmlDataSource, 804, 854, 870

namespace, 432–433
server control, 428–432

XmlDocument, 409, 462, 629
XMLElement, 42
XmlElement, 409

1419

Evjen-91361 bindex.tex V1 - 04/01/2008 6:12pm Page 1420

XmlException

XmlException, 302, 404
XMLHttpRequest, 884, 887
XmlNameTable, 390
XmlNode, 376, 409
XmlReader, 390, 395–405, 629

attribute count, 396
depth, 396
name, 396
type, 396
value, 396

XmlReaderSettings, 399–400
XmlResolver, 390, 400, 418
XML-RPC, 1112
XmlWriter, 384, 389
x:Name, 735
XNamespace, 465–467
x:Null, 736
Xor, 92
XPath. See XML Path
XSD

compilation, 847
DataSet, 351, 1128
SOA, 1236
WCF, 1257

x:Shared, 736

XSL. See Extensible Stylesheet Lanuage
XSL Transformations (XSLT), 379,

415–423
for-each, 416
stylesheet, 416
template, 416
value-of, 416

XslCompiledTransform, 420
XSLT. See XSL Transformations
XsltArgumentList, 423
XsltCompileException, 423
XsltContext, 423
XsltException, 423
x:Static, 737
x:Subclass, 736
x:Type, 737
x:TypeArguments, 736
x:XData, 738

Z
Zone, 512
-Zone, 504
ZoomFactor, 690
z-order, controls, 664

1420

Get more
from Wrox.

Available wherever books are sold or visit wrox.com

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 314 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

	Professional Visual Basic 2008
	About the Authors
	About the Technical Editors
	Credits
	Contents
	Introduction
	The Importance of Visual Basic
	Who This Book Is For
	What You Need to Use This Book
	What This Book Covers
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Visual Basic 2008 Core Elements
	Initial Keywords and Syntax
	Value and Reference Types
	Commands: Conditional
	Value Types (Structures)
	Reference Types (Classes)
	Commands: Looping Statements
	Boxing
	Parameter Passing
	Variable Scope
	Data Type Conversions
	Summary

	Chapter 2: Object Syntax Introduction
	Object-Oriented Terminology
	Working with Objects
	Creating Classes
	Advanced Concepts
	Summary

	Chapter 3: Object-Oriented Programming
	Inheritance
	Multiple Interfaces
	Abstraction
	Encapsulation
	Polymorphism
	Inheritance
	Summary

	Chapter 4: The Common Language
	Elements of a .NET Application
	Versioning and Deployment
	Cross-Language Integration
	IL Disassembler
	Memory Management
	Summary

	Chapter 5: Localization
	Cultures and Regions
	Declaring Culture Globally in ASP.NET
	Adopting Culture Settings in ASP.NET
	Translating Values and Behaviors
	Working with ASP.NET Resource Files
	Resource Files in Windows Forms
	Summary

	Chapter 6: Generics
	Using Generics
	Creating Generics
	Summary

	Chapter 7: Namespaces
	What Is a Namespace?
	Importing and Aliasing Namespaces
	Creating Your Own Namespaces
	The My Keyword
	Extending the My Namespace
	Summary

	Chapter 8: Exception Handling and Debugging
	A Brief Review of Error Handling in VB6
	Exceptions in .NET
	Structured Exception-Handling Keywords
	Interoperability with VB6-Style Error Handling
	Error Logging
	Analyzing Problems and Measuring Performance via the Trace Class
	Summary

	Chapter 9: Data Access with ADO.NET 3.5
	ADO.NET Architecture
	Basic ADO.NET Features
	.NET Data Providers
	The DataSet Component
	Working with the Common Provider Model
	Connection Pooling in ADO.NET
	Building a Data-Access Component
	Summary

	Chapter 10: Using XML in Visual Basic 2008
	An Introduction to XML
	XML Serialization
	System. Xml Document Support
	XML Stream-Style Parsers
	XSLT Transformations
	ADO.NET
	XML in ASP.NET 3.5
	Summary

	Chapter 11: LINQ
	LINQ to SQL and Visual Studio 2008
	How Objects Map to LINQ Objects
	Working Without the O/R Designer
	Custom Objects and the O/R Designer
	Querying the Database
	Stored Procedures
	LINQ to XML
	LINQ to XML and .NET 3.5
	New XML Objects from the .NET Framework 3.5
	Visual Basic 2008 and XML Literals
	Using LINQ to Query XML Documents
	Working Around the XML Document
	Using LINQ to SQL with LINQ to XML
	Summary

	Chapter 12: Security in the .NET Framework
	Security Concepts and Definitions
	Permissions in the System.Security.Permissions Namespace
	Managing Code Access Permissions
	Managing Security Policy
	Cryptography Basics
	Summary

	Chapter 13: Visual Studio 2008
	Visual Studio 2008: Express through Team Suite
	Project ProVB_VS in Visual Studio
	Enhancing a Sample Application
	Useful Features of Visual Studio 2008
	Summary

	Chapter 14: Working with SQL Server
	SQL Server Compact Edition
	CLR Integration in SQL Server 2005
	Summary
	Resources

	Chapter 15: Windows Forms
	Changes in Windows Forms Version 2.0
	The System.Windows.Forms Namespace
	Using Forms
	Controls
	Other Handy Programming Tips
	Summary

	Chapter 16: Windows Forms Advanced Features
	Packaging Logic in Visual Controls
	Custom Controls in Windows Forms
	Inheriting from an Existing Control
	The Control and UserControl Base Classes
	A Composite UserControl
	Building a Control from Scratch
	Attaching an Icon for the Toolbox
	Embedding Controls in Other Controls
	Summary

	Chapter 17: Windows Presentation Foundation
	What, Where, Why, How — WPF Strategy
	Raster Graphics and Vector Graphics
	Should Your Next Windows Project Use WPF?
	Creating a WPF Application
	Summary

	Chapter 18: Integrating WPF and Windows Forms
	The Integration Library
	Hosting WPF Controls in Windows Forms
	Hosting Windows Forms Controls in WPF
	Integration Limitations
	Summary

	Chapter 19: Working with ASP.NET 3.5
	The Goals of ASP.NET
	The IDE for Building ASP.NET 3.5 Pages
	Building ASP.NET Applications
	The ASP.NET Page Structure Options
	ASP.NET 3.5 Page Directives
	ASP.NET Page Events
	ASP.NET Application Folders
	Global. asax
	ASP.NET Server Controls
	Manipulating Pages and Server Controls with JavaScript
	Summary

	Chapter 20: ASP.NET 3.5 Advanced Features
	Applications and Pages
	Master Pages
	Data-Driven Applications
	Navigation
	Membership and Role Management
	Personalization
	Configuring ASP.NET in IIS on Vista
	Working with the ASP.NET Provider Model
	ASP.NET AJAX
	Summary

	Chapter 21: Silverlight Development
	Looking at Silverlight
	Developing Silverlight Applications
	Silverlight Examples
	Summary

	Chapter 22: Visual Studio Tools for Office
	Examining the VSTO Releases
	Office Business Application Architecture
	Working with Both VBA and VSTO
	Creating a Document Template (Word)
	Creating an Office Add-In (Excel)
	Outlook Form Regions
	Summary

	Chapter 23: Assemblies
	Assemblies
	The Manifest
	Assemblies and Deployment
	Versioning Issues
	Dynamic Loading of Assemblies
	Summary

	Chapter 24: Deployment
	Application Deployment
	New in Visual Studio 2008
	Visual Studio Deployment Projects
	Modifying the Deployment Project
	Internet Deployment of Windows Applications
	Summary

	Chapter 25: Working with Classic COM and Interfaces
	Understanding COM
	COM and .NET in Practice
	ActiveX Controls
	Using .NET Components in the COM World
	Summary

	Chapter 26: Threading
	What Is a Thread?
	Implementing Threading
	Summary

	Chapter 27: Windows Workflow Foundation
	Workflow in Applications
	Building Workflows
	Using Workflows with Other Applications
	Summary
	Resources

	Chapter 28: XML Web Services
	Introduction to Web Services
	Early Architectural Designs
	Building a Web Service
	A Realistic Example
	Overloading WebMethods
	Caching Web Service Responses
	SOAP Headers
	Visual Basic and System.Web.Services
	Architecting with Web Services
	Security in Web Services
	The Downside
	Where We Go from Here
	Summary

	Chapter 29: Remoting
	Remoting Overview
	Implementing Remoting
	Summary

	Chapter 30: Enterprise Services
	Transactions
	Transactional Components
	Other Aspects of Transactions
	Queued Components
	Transactions and System. Transactions
	Summary

	Chapter 31: Network Programming
	Protocols, Addresses, and Ports
	The System.Net Namespace
	Summary

	Chapter 32: Windows Communication Foundation
	The Larger Move to SOA
	WCF Overview
	Building a WCF Service
	Building the WCF Consumer
	Working with Data Contracts
	Namespaces
	Touching on Security
	Summary

	Chapter 33: Windows Services
	Example Windows Services
	Characteristics of a Windows Service
	Interacting with Windows Services
	Creating a Windows Service
	Creating a Windows Service in Visual Basic
	Creating a Counter Monitor Service
	Monitoring a Performance Counter
	Communicating with the Service
	Custom Commands
	Passing Strings to a Service
	Creating a File Watcher
	Debugging the Service
	Summary

	Chapter 34: Visual Basic and the Internet
	Downloading Internet Resources
	Sockets
	Using Internet Explorer in Your Applications
	Summary

	Appendix A: The Visual Basic Compiler
	The vbc.exe.config File
	Simple Steps to Compilation
	Compiler Output
	Looking at the vbc.rsp File

	Appendix B: Visual Basic Power Packs Tools
	Visual Basic Power Packs
	Using the Interop Forms Toolkit 2.0
	Using the Power Packs 2.0 Tools
	Summary

	Appendix C: Visual Basic Resources
	On the Web
	Books
	Author Blogs

	Index

