ARCHITECTURE AND BEST PRACTICES

Advanced Ajax

This page intentionally left blank

Advanced Ajax

Architecture and Best Practices

Shawn M. Lauriat

PRENTICE
HALL

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York - Toronto - Montreal - London - Munich - Paris - Madrid
Cape Town - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particu-
lar to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales@pearsontechgroup.com
For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.informit.com/title/9780131350649
Library of Congress Cataloging-in-Publication Data:
Lauriat, Shawn M.

Advanced Ajax : architecture and best practices / Shawn M. Lauriat.
. cm.
ISBN 0-13-135064-1 (pbk. : alk. paper) 1. Ajax (Web site development technology) I. Title.
TK5105.8885.A521.38 2007
006.7--dc22
2007030306

Copyright © 2008 Pearson Education, Inc.

Editor-in-Chief

Mark Taub
Acquisitions Editor
Debra Williams Cauley
Development Editor
Michael Thurston
Managing Editor

Gina Kanouse

Project Editor

Anne Goebel

Copy Editor

Jill Batistick

Indexer

Erika Millen
Proofreader

Water Crest Publishing
Technical Reviewers
Jason Ellis

Eric Foster-Johnson
Chris Shiflett
Publishing Coordinator
Heather Fox

Cover Designer

Gary Adair
Composition

codeMantra

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN-13: 978-0-13-135064-9
ISBN-10: 0-13-135064-1

Text printed in the United States on recycled paper at Courier Stoughton in Stoughton, Massachusetts.

First printing October 2007

http://www.prenhallprofessional.com/safarienabled
www.informit.com/title/9780131350649

10 my wife, Amity, who for months put up with my working a
Sfull-time position while writing this book during what we

previously had as our spare time together.

This page intentionally left blank

Contents

ACKNOWIEAGMENTS ...ttt xiii
ADOUE the AUTROTiviiieiieiietieee ettt Xv
INtrodUCtionoo.eiiiiiieieieeee e 1

0.1 Ajax, the ACTONYM c.c.civiiiiiiiiiiiiicce s 2

0.1.1 ASynchronous.........cccececeveivieinieiniciicececeeeee e 3

0.1.2 JavaScriPt. .ot 3

0.1.3 XML .ottt 4

0.2 This BooK’S INTENTIONS ..vveverviiiieiieiieiirieieieeeiestesie e 5

0.3 Prerequisites for This BooKcccoueiririnieiiiiinininiciciencciceeens 8

Chapter 1 Usability....ccoceereesuesuensensunsnnnsensnisuensensucssesesseessessessssssesseesesssessesssessessenses 11
1.1 Interface Versus SHOWCASEc.evveueeueeuiriinieieieiseseee e 12

1.1.1 Implementationccceceeeeerenieieininienieieeeenesreeeeeeenens 14

1.2 User EXPECctationscoeveeeereerereenienenieeeetenieeeeeeneesseeseessesseeseennens 16

1.3 Indicators and Other Forms of User Feedbackccccveeueririernnnnnns 17

1.3.1 The Throbber......ccccoveieiiiiirieieieieeseeee e 17

1.3.2 Progress Indicatorscccceveerieinieininininieniicincceceneeeee 20

1.3.3 Keeping the User in the Loop......ccceeuiinniciiinnicciinne. 22

1.4 Semantic Markupcccoveirineniiiieiiincniciciecnencceeeseeseeeeee e 30

1.4.1 More Accessible......couriririirnirieieee e 30

1.4.2 Easier t0 USE c.vvieiesieriieiieierieeeeeeie et sneeae e 32

vii

viii Contents

Chapter 2

Chapter 3

1.4.3 Easier to Maintain.....c.ocecevveuerineninicincinieinccneeneeeeeneene 33
1.4.4 Easier t0 Parseccccoevireriinieieiiiniineieeeeeeseeeeeeeeeenns 34
1.5 What CSS and JavaScript Have in Commonccecceeveeereeneecnnnne. 37
AcCeSSIDILILY woveeriieinniiiiiiininininiininiineninenseeseenesesessssssaesaesaees 43
2.1 WCAG and Section 508cccoviiuiiiiiiiiiiiiiiiiiiieece 44
211 WCAG ettt 45
2.1.2 Section 508cciviiiiiiiiiiii e 51
2.2 Screen Readers Can Handle Ajaxcccoeevieuenieenincnncniccniccnne. 53
2.2.1 Content Replacementcccceevivininienieiniininenicieiiinennns 54
2.2.2 Form Validationccccccevevienieiiinininiiieiiteenceeeeceeens 55
2.3 Unobtrusive AJaxccccvueiriiiiniiiniiiiciciceeeeiee e 56
2.4 Designing with Accessibility in Mind.........cccoceciveviniinciniincennne. 58
2.4.1 High-Contrast Design........ccoeerieuenineinieinieinieeneeeeene 59
2.4.2 Zoomable Interfacecccvveivieiriecninirincnccceceee 60
2.4.3 Easily Targeted Controls.........cccccvviiiniiniiiniiiiiiiiiciine 62
2.5 WAILFARIA ..ottt 63
Client-Side Application Architecturecoveererruerrensenseesrensecsuessessecseeanee 67
3.1 Objects and Event Triggering.........ccccceevvruiiiniiiiniiiiniiiiiiiiciccnns 68
3.1.1 Native Object Event Handling.........cccccooeiiiiiiinnn 70
3.1.2 JavaScript ODbjectscccvevirieiriiiniciriciccieeeee 71
3.2 Model-View-Controller Design Patterncccoceevvieiniecinieinieennnne. 87
3.2.1 The Model ..o 88
3.2.2 The VIEW cocuiiiiiciiicicicicictc et 92
3.2.3 The Controllercceueimeirieinieiiieniccirceceseceseee 101
3.3 Event-Driven Application Development...........ccccoviiiiiiiniincnne 104

3.3.1 Advantages of Architecture.........ccoeveviriiiiiiinciiniincene. 104

Contents ix

Chapter 4 Debugging Client-Side Codeccouvvuerenrursuenensensuesrensensnessenseessessessees 107
4.1 Validation, Validation, Validation.........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn 108
4.1.1 Markup Validator.......cccccoeveviniinieiiiinininccecnceceeene 109

4.1.2 CSS Validator.....c.coevieieiiiniinieiccereseceeee e 110

4.1.3 Semantic EXtractor........cccoeveviiininciincinicicccece, 111

4.2 Browser Tools and Pluginscccccceveiniieniinincnncincineineenee 111
4.2.1 The Console....ccoiiniinieinieinieiiinciectrieereeeee s 112
4.2.2 Internet EXplorer......ccoecivivininiiiiiinininicccncceee 113

4.2.3 FITefOXiouiriieiiiriiiertcieeeeeeteet e 116

424 OPCIAuuiiiniiiiieiiriinienieteteieeteste ettt sttt 122

4.2.5 Safali.ccciiiiciiiiieee e 124

4.3 JavaScript Profiling ... 126
4.3.1 Recognizing Bottlenecks........c.ocevvrverinevineiinecineinccnnnne, 128

4.4 Unit TeStng ...c.ooviuiviiiiiiiiiiiiiiiciic e 132
441 ASSEITIONS .uveueuireiietenteieeteetentetetent st ere et se e se e e neene 134

4,42 TSt SETUP...cuiiveiiriiiiiciieicicrte et 135

4.4.3 The Test Ttself.....ccooiririeirininiieeec e 137
4.4.4 Mock ObJects.......ceiviiiiiiiiiiiiiiiiiniiicces 140

4.4.5 TeSt SUILES ..uvevvuiiiieieieiceeeeeee e 143
Chapter 5 Performance Optimization........... reseeeereentnen e b b neaaeas 145
5.1 Database Performance.........cceceouvueirieinieinieenieenieeieeeeeeeeenee 146
5.1.1 Schema .o 146
5.1.2 QUETIES c.veeeeeiieiierieeniteniee sttt see et e bt et e e sbeenreens 150

5.2 Bandwidth and Latencyccccecevvecieinincnieninininecceeeseeeeene 154
5.2.1 Bandwidth .c.coveoieiiininiiiiiniccees 154

5.2.2 LaAENCY weervirieeieienieeieeee ettt 158

X Contents

Chapter 6

Chapter 7

5.3 CaChe. i 160
5.3.1 Flesystem....ccoeuiuiiniiiiiiiiiniicciiecccee e 161
5.3.2 MemOry ...cooiiiiiiiiiiiiiiic 163
5.3.3 Completing the Implementation..........ccccoevueuiniiiiininncnns 170
5.4 Taking Advantage of HTTP/1.1 ...ccooviiiiiiiiiiiiniinicincccceeene 171
5.4.1 If-Modified-SInce.....cooveuiviieninieinieiniciiciniccicceeeas 174
5.4.2 RaNEE...cciiiiiiiiiii s 176
5.5 PHP Profilingc.cceiiiiiiciiiiiiciiinecceeeceeeeeteeeaes 178
5.5.1 Advanced PHP Debugger.........cccccoeoiniiniinniniiiiiiiiin, 179
5.5.2 Xdebug ...cooviiiiiiiiiie 182
Scalable, Maintainable Ajaxccccevueerecsenseisuccsensensucssenseesaessecsessacnees 187
6.1 General PractiCes......ccoeruerieieininienieicieieneseieeeee st 188
6.1.1 Processor Usage........cooevuiviiiiiiiiniiiiiiiiiiiicicccccces 188
6.1.2 Memory Usage........cceoivuiiiiiiiiiniiiiiiiiiiccscceeeeeees 191
6.2 A Multitude of Simple Interfacescocccevveivieenicenncniiiincinene 194
6.2.1 Modularity ...ccecevvrieiiiiiniiinicicccc e 195
6.2.2 Late Loading........cccceeiiiiiiiiiniiiiiiiiciiciccccn 198
6.3 Dense, RICh INTEITACES euvveeeeeeeeeeeeee e e e e e 201
6.3.1 Monolithic Applications..........ccccevueueruririnecinieinicireeenes 201
6.3.2 Preloading.......cccoeeiiiiiniciiniiiiiiccc e 204
Server-Side Application Architecturecovevuceersensuccensensensuecensecsnees 207
7.1 Designing Applications for Multiple Interfacesccccoeevrueinincne 208
7.2 Model-View-Controller Design Patterncccoevevreniiicineinnenne 212
7.2.1 The Model ..cc.oviiiiiiiiiiiieiee e 212
7.2.2 The Controllerccoeireinieinieiniieniicincececesecee 222
7.2.3 The VIEW vt 231
7.3 Using the Factory Pattern with Your Template Engine 237

Contents xi

Chapter 8 Keeping a Web Application Secure......ccovuevuerensensuesrensensnessensensuessecsees 243
8.1 HTTPS s 244
8.1.1 Why Use HTTPS? ...cooiiiiiiiiinicenieceeeeenceseesieees 245

8.1.2 Security Versus Performance...........cccoeeveiiiniiniinicincnnns 247

8.2 SQL INJECtiON ..veuiiiiiiiiiiciiiceiceete e 247
8.2.1 Don’t Use Magic QUOTEScceeueiiiruiriiniiiiiiicenieieeee 248
8.2.2 Filtering ..ceoveuivieuiniiiiiiiiniciniccriccceecec e 249

8.2.3 DPrepared Statements........ccecevueruerieieinenenicieeeeneeee 251

8.3 XSS s 252
8.3.1 Escaping for Markup.........cccecciniiniiininiiniiiiiciices 252

8.3.2 Escaping for URLsccccouiiiiiiiiiiiiiiiciiicccs 257

8.4 CSRE ...ttt 258
8.4.1 Check the Referer.....c.cceourivinciniiiniciniiiicnciccnieees 259
8.4.2 Submit an Additional Header.......c.cccooveuinininniincinccnes 261

8.4.3 Secondary, Random Tokens........ccccceeverenincnieinincncncnnne. 262

8.5 Don't Trust the User......cccccoiviiiniiiiiiiiiiiiiiciiceiccecceeee 265
8.6 Don’t Trust the Serverc.oveviviiviriririneeeneeeeeereeeee 266
Chapter 9 DOCUMENTING .ccuvererrerrerrirrerrernnsenesessessessesssessesssssssssssssssssssssssssssassasss 271
9.1 Yes, You Need t0 DOCUMIENT «.evvveeeeieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeseeenans 272
9.1.1 Jog Your Own Memory.......ccoooviininiiiiniiniiiiiininneennn 272
9.1.2 Lessen the Learning Curvec.occevveerieenincninicineineenes 274
9.1.3 Mind That Bus.......cccccciviviiiiiiiiiiiiiiiicciccces 274

9.2 API Documentation..........ccceueuiiiiuiiiiiiiiieiiicinieiiecieeeeieeeeeene 275
9.2.1 phpDOCUMENTOr ..ot 275

9.2.2 JSDIOC cuttiitiet et s 283

9.3 Internal Developer Documentationcccccceeiviiiiiiiiiiininiinnnne. 288

9.3.1 Coding Standards..........ccoeeirreiriineinieiniieincieeenieees 289

xii Contents

9.3.2 Programming Guides.......c.coccourueinieineineenineinieinienens 293

9.3.3 Style Guides.......cccooviiiiniiiiiiiiiiiii 295

Chapter 10 Game Development.........cceereersernnsenenesuessnsnsnsesessessssssssssessessesnesns 297
10.1 A Different Kind of SeCULItY ...ccveveueeviririeieieieireieeeceeine 299

10.1.1 Validationcceeveeeieinienieieieeeiesieseeee s 300

10.1.2 Server-Side LOGICcccuiiruiiiiiiiiiiiiiiiicicccce 302

10.2 Single Playercccocoiiiiiiiiiiiiiiiiiccccce e 304

10.2.1 Double Buffering with Canvas.........cccoeueuevirerinennnnennne 305

10.3 “Real-Time” Multiplayer........ccccoeiveineinininiicincinccnecnes 310

10.3.1 Streaming Response.........cocoveveveviiriniiniinineenienineene. 310

10.3.2 WHATWG event-source Element.........cccceeeerviinenncnnee. 315

10.3.3 Predictive ANIMAationcccceeeerierereeieneeeeeeeeseeeeenes 317

Chapter 11 CoNCIUSIONS uveeuririrreiseisressensunsscsseesenssessesseessessesseessesssssesssesssssesssessees 321
11.1 Remember the Users.......cccevirirerienieininienieeeeseseeeceeine 322

11.2 Design for the Future.........cccoeviiiiniiniiiiiiiiicccccene 323

11.3 Develop for the Future........ccoccoviiiniiiniiiniiiiciicicceees 324

Bibliographyccccoeveienenuenienicininentenniniineeenesnssssesesssssssssssssssssssssnens 325
AppPendix A ReSOUICES cuucvuerrirrisinsinsressensnnssessessnsssessessesssessessesssessessasssessessassasssenss 329
Appendix A OpenAjax.... . 333
CONLOIMANCE. ... eeueeniieieeieie ettt ettt et sse et e aessesseeneensenseeseenes 334

Namespace Registration........cccceviviiviiniininiiniininiiiecneiecn 337

Event Management........cccccviiiiiieniiniiieniininicieniescenene e 338

Acknowledgments

Several people took time out of their schedules to answer my questions while
researching various parts of this book, and they helped immensely.

Terry Chay not only engaged me in some fantastic discussions on real-world Ajax
development and how to make the book easier to read, but also introduced me around
to several of the other speakers at the 2006 Zend Conference. I greatly value the input
from someone who has no qualms about calling “bullshit” often, loudly, accurately,
and then immediately explaining it for you.

Despite his full schedule at the Zend Conference, Chris Shiflett agreed to meet for
breakfast to talk about a book on Ajax. As a specialist in PHP and web application
security, his questions and comments helped keep the focus of the security chapter in
this book on some of the primary issues Ajax developers face today.

Zend Technologies, Ltd. helped me attend the Zend/PHP Conference & Expo
2006 and arranged for a very informative phone conversation with Andi Gutmans
afterward. Though also not an Ajax developer, Andi brought several issues to the table
as a developer often working on server-side applications of Ajax-driven sites.

Jon Ferraiolo leads the OpenAjax Alliance and has no small task ahead of him
in boiling the opinions and intentions of dozens of companies into tangible, useful
tools for Ajax developers. He answered my questions about the Alliance and about the
OpenAjax Hub, greatly helping to clarify the meaning of the Hub specification and
the direction of the Alliance.

Two friends closer to home helped give support in the areas they knew best. Rev. Molly
Black, D.D., helped when I needed the advice of a trained journalist for wording issues
I ran into, and when I needed someone with a designer’s eye to help pick an appealing
cover that stayed with the feel of the book. Jason Ellis, a coworker and friend, seemed
almost as excited as I felt when I first got the book deal, and he helped read chapters

xiii

xiv Acknowledgments

and code all the way through, making sure I kept things on track, clear to the reader,
thorough, and accurate.

I definitely need to thank my agent, David Fugate, for finding me on Linkedin.com
and offering the chance to write a book to someone who hadn't written anything since
school, and Debra Williams Cauley, Executive Editor at Prentice Hall. Debra worked
closely with me from start to finish to help navigate the process surrounding the writ-
ing itself, pulling in people from all over to look over chapters, and give criticisms and
suggestions.

And for general inspiration, especially when trying to come up with interesting
code samples: Edgar Allan Poe, P.G. Wodehouse, Roald Dahl, Douglas Adams, Wade
VanLandingham, Tank Girl, Mae West, Arnold Judas Rimmer BSc. SSc., Groucho
Marx, Morgiana, Jack D. Ripper, Forbidden Zone, Vyvyan Basterd, Professor

Hubert J. Farnsworth, and others who have slipped my mind at the moment.

About the Author

Shawn M. Lauriat moved to San Francisco during the heady heyday of the dot.com boom.
After learning his lesson the hard way (as did many other developers), his family moved to
Long Beach for a year of schooling and some contract work. Upon their return to SE
he got a contract job for the EPA and his career slowly built up from there.

Between doing contract work for his own company, Frozen O, and others, he
learned a lot on his own and started teaching himself the newest of the web application
technologies. When his family moved to Austin for the weather, tech industry, and
low cost of living, a funny thing happened: His skills became very much a welcome
commodity, and he has been fending off companies ever since. He currently leads
development on the Ajax-driven web application for the most powerful build/process
automation tool in the industry, IBM Rational Build Forge.

This book is his first book and probably not his last, but he has some work to do
making music, working on his own web projects, acting as a photographer’s assistant
for his disabled wife, and playing with their two dogs and three cats. Then he’ll have
permission to write another.

This page intentionally left blank

In This Chapter

B 0.1 Ajax, the Acronym
W 0.2 This Book’s Intentions

B 0.3 Prerequisites for This Book

As the centerpiece of rich web application development, Ajax brings web
interfaces using XHTML and CSS up to desktop application interface
standards without the interfaces having to rely on plugins such as Flash or Java.
Prior to JavaScript-based server interactions, interfaces had to rely solely on full-
page loading, regardless of how one might have hacked a page into appearing
otherwise.

Until Ajax development came along (which, incidentally, started in imple-
mentation many years before the coining of the term itself), client-side
development also had no thread support. Threading, in a nutshell, allows
the spawning of new lines of logic, completely independent of those before,
adjacent to, or after it. C, Java, Perl, and many other languages have had this
support for many years (in some cases) before client-side scripting came along
in any fashionable sense. The closest JavaScript had to offer came in the form
of the setTimeout and setinterval library functions, which required delayed,
seemingly parallel execution rather than the actual spawning of processes.
While Ajax still does not provide true threading, it does bring JavaScript one

step closer.

0.1 Ajax, the Acronym
The words Asynchronous Javascript And XML make the acronym Ajax. In order

to fully understand Ajax in meaning and implementation, you must understand
each of its components. Even when using synchronous requests, or using JSON or
some other transportation method, knowing the core aspects of Ajax can only help
development practices.

Since the initial boom in popularity and resulting hype surrounding Ajax, it
can get quite easy to forget what Ajax actually means and what it doesn’t. Ajax
does exist as an incredibly useful method of communicating with the server
directly from JavaScript. It does not mean anything more than that, even if its us-
age can open up development methods previously unexplored in web application
development.

Ajax, the Acronym 3

0.1.1 Asynchronous

When requests get submitted to the server, they have no direct impact on any other
simultaneous or subsequential requests. In other words, just because a request gets
submitted before another request does not in any way ensure that it will receive its
response from the server first. Despite the seemingly simplistic concept, asynchronistic
behavior in applications often gets ignored, because asynchronicity introduces an en-
tirely new level of complexity to client-side development.

Many Ajax-based web applications use the asynchronous flag of the xuruttprequest
object solely to handle network errors (sometime without even intending to do so)
rather than to keep functionality enabled during a given request. While the direct
JavaScript-to-server communication provided by the xuruttprequest forms the core
of the technology, the asynchronous behavior it also can provide often plays the part
of the unsung hero, as it brings a wealth of flexibility and strength to client-side web
applications.

0.1.2 JavaScript
JavaScript (based on ECMAScript,' though possibly vice-versa depending on whom

you ask) has many implementations, not only in various web browsers, but also in
game development and other applications needing an easy-to-learn scripting language.
This book focuses on the implementation of JavaScript in various web browsers. These
impleMentations of JavaScript have a wide variety of incompatibilities, from Mozilla’s
SpiderMonkey? to Safari’s WebKit to Jscript and more.

Those used to server-side development or OOP (Object-Oriented Programming)
may initially get thrown off by JavaScript's prototype-based object model. This, in a
very basic sense, means that functions and methods called within a certain object get
called in the context of that object. This happens because rather than an instance having

! Ecma International, an industry association devoted to standardizing “Information and Communication Technology
(ICT) and Consumer Electronics (CE)” (What is Ecma International, www.ecma-international.org/memento/index.html),
maintains the ECMA-262 standard (www.ecma-international.org/publications/standards/Ecma-262.html) which defines the
scripting language of ECMAScript.

% http://developer.morzilla.org/en/docs/SpiderMonkey—The Gecko rendering engine’s JavaScript engine written in C is used by
Mozilla-based browsers such as Firefox (www.mozilla.com/products/firefox), SeaMonkey (www.mozilla.org/projects/seamonkey),
Camino (www.caminobrowser.org), and Epiphany (www.gnome.org/projects/epiphany).

www.ecma-international.org/memento/index.html
www.ecma-international.org/publications/standards/Ecma-262.html
www.mozilla.com/products/firefox
www.mozilla.org/projects/seamonkey
www.caminobrowser.org
www.gnome.org/projects/epiphany
http://developer.mozilla.org/en/docs/SpiderMonkey

4 Introduction

an explicit tie to its definition, its prototype merely lays out the basis for its structure
and characteristics.

The JavaScript object, xuwattprequest (originally an ActiveX control created by
Microsoft), provides the key to the entire technology conglomeration now referred to
as Ajax. It provides an interface by which JavaScript can send and receive data to and
from the server without requiring a full page load. Other methods exist for sending
and receiving data, but they each use aspects of HTML and XHTML in ways other
than designed, and, as such (while still useful in certain circumstances), they exist only

as hacks.

0.1.3 XML

XML stands for eXtensible Markup Language, as defined by the World Wide Web Con-
sortium (W3C; http://w3.o0rg), and provides a very flexible, generic text format. If
that seems to be a rather broad description, it should be. XML now uses spanning
data storage, communication, definition, description, and presentation. In Ajax, XML
refers to data transportation. The xuruttprequest object provides another useful bit
of functionality along with its HT'TP methods: When the server returns XML, the
XMLHttpRequest Object provides the responsexuw attribute, which is a read-only XML
document of the response.

Using XML, a very simple response from the server, with two named variables
(var1 and var2) each set to string values (*first value' and "second value," respectively),

might look like the following:

<?xml version="1.0"?>
<response>
<varl>first value</varl>

<var2>second value</var2>

</response>

Many Ajax-driven web applications use other formats of transporting data to and
from the server, including;

m URL-encoded—Where data takes the form used by HT'TP POST requests, as
during a form submission such as var1=first220valuesvar2=seconds20value.

m Raw text—Usually for very simple data, or when responses return the exact
markup for the JavaScript to insert into the current document:

This Book’s Intentions 5

<input type="text" name="varl" value="first value" />

<input type="text" name="var2" value="second value" />

m JavaScript Object Notation (JSON)—An increasingly popular format, JSON
formats data into a subset of raw JavaScript. This not only has the advantage of
instant parsing by client-side code, but also it tends to take up less bandwidth
than more verbose, globally understood formats such as XML. In addition, it
does so without losing the data structure as URL-encoded value pairs do:

varl:"first value",

var2: "second value"

0.2 This Book’s Intentions

Now that the technology has progressed into general usage, the Ajax developer com-
munity has a need for books covering architecture, tuning, alternative uses of Ajax,
and more. Many books and tutorials have provided good introductions, and they can
show you several different ways of implementing find-as-you-type, chat widgets, and
RSS/ATOM feed readers. Many of the resources out there explain, in great detail, the
history of Ajax and its multiple incarnations before today’s and the implementation
centered on the xurattprequest JavaScript object. See Appendix A, “Resources,” at the
end of this book for some choice suggestions.

This book, instead, looks at using Ajax to create rich, browser-based interfaces for
enterprise-level web applications, taking into account the flexibility, reusability, scal-
ability, and maintainability necessary for such an undertaking. Ajax does not exist in
this book as the latest and greatest acronym to hit web development. It instead exists as
a tool like any other—extremely useful in some instances and totally wrong in others.

For example, many reference sites would find themselves hard-pressed to use Ajax
for anything of particular value to their users. Manuals and other reference materials
that have large blocks of text for the user to read might come up with an Ajax reader,
allowing a single, scrollable pane that late-loads content as the user scrolls though it.
This sounds cool, but it destroys the ability to search the page for a particular word
or phrase. It also removes the ability to read something once you've lost your Internet
connection. Some reference sites add auto-suggestions to their search fields, but those
tend to react too slowly for general usage unless you pre-load the entire dictionary into

6 Introduction

the browser’s memory, potentially wasting a great deal of bandwidth for a feature that
only a few people might enjoy having at their disposal.

craigslist.org (see Figure 0.1) is a good example of a site that flourishes without a
flashy or cluttered interface, and it has grown to provide largely free classified services and
forums to 450 cities in 50 countries without so much as a single image on their main
page, let alone rich application functionality. The site instead focuses on content and
searching that content.

@® O O craigslist: san francisco bay area classifieds for jobs, apartments, personals, for sale, services, community, and events - Mozilla Firefox (Build 2... &
E] E] @hnp:,‘ﬁsfbav.:rargslrsl.nrgﬁ v E] _glu‘:_
L0 i o o ..
. e . ~
craigslist san francisco bay area ¥ st soy ooy pen nby usslates caprovs countries
alabama aberta argentina
alaska brit columbia australia
¥ community housing Jjobs arizona manitoba austria
post to dasificds activities lost+found apts / housing accounting / finance arkansas nbrunswick bangladesh
my account artists musicians rooms / shared admin / office cakfornia newf&lab beigium
childcare local news sublets / temporary arch / engineering ~ colorado novascaotia brazil
help, fag, abuse, legal general politics housing wanted art / media/ design connesticut ontario pei canada
Al groups rideshare housing swap biotech / science Deavace Gris CALeA
search craigslist pets volunteers vacation rentals business / mgmt ﬁ s Soskzichy E::h
_ events classes parking / storage customer service pn:IrgIB ca cities zn::‘m
> office / commercial education treal
guam moni costa rica
personals real estate for sale food / bev / hosp hawai toronto c26ch rapub
strictly platonic general labor idaho VENCOUVET gonmark
event calendar (3sss) women seek women for sale government ilinais mare .. egypt
SMTWT F S omenseckingmen bater arts+orafts human resources indiana e finland
6 7 8 5 10111120 man geckingwomen bikes auto pars internet engineers jowa e france
13/14/15/16 /17|18 /19" man geeking men boats baby+kids legal / paralegal kansas e germany
20121/22123124|25 26 migq romance books cars+trucks ~ manufacturing kentucky o great britain
277281293031 1 2 cacual encounters business cds/dvdivhs marketing /pr/ad leusiana U0 grosce
missed connections computer clothes+acc ~ medical / health maine dallas hungary
avoid scams & fraud rants and raves free collectibles nonprofit sector marfand gonvar e
job boards compared furniture electronics real estate mass P indanesia
lawsuit dismissed discussion forums general farm+garden retail / wholesale qchgan lasvegas roamd
- 1098 gits pets jewel ames+loys sales / biz dev mnesota . angales 21200
defend net neutrality I v 8 oy z mississippi italy
apple haiku phios material garage sale salon/spa/ fitness miami
weather quake tide as heath poic o household security missour| ey i)
= atheist help psych) - montana korea
Katrina Relief autos history quoor SPorting motorcycles skilledtrade/feraft o mewyerk L
best-of-craigslist beauty housing recover lickets music instr software/gqa/dba . CLakd) e “
craigslist factsheet bikes jobs religion tools photosvidoo Systems /network pompgpe PPIdERNE
=) celebs jokes rafo wanted technical support phosnix
craigslist movie & dvd comp kink science s Aat now jersey portiand micronasia
craigslist T-shirts crafis Lt shop apariahn new mexco. stheriarets
i . ot jogal spirit services tv / film / video naw york new zealand
craigslist foundation divorce inux sports bea R web / info design i bt
e uty automotive - oes g A N an oo B
progressive directory | | dring bopol L. computer household WEH_:_ggfed'“ftg north dakota (o pakistan
sduc monoy tostng Credtive laborimove [ETC] [part time] ohio afbayarea) P20ETR
system status otiquet motocy transg erotic skildtrade oKlahoma o de ":’T“ .
focdnk music travel event real estate - " ‘;::I“;’;th — :D:;‘::I"“ L
; fim npo vegan financial smbiz ads COMPuter even int cities v
terms of use privacy >
fitness open wdw o crealive labor ~ Puertorico amsterdam portugal =
ahnnt e | haln e B b logal thormpoutio W+ thedaieland seenie. riecia L7}
http://toronto.craigslist.org/ [v]

FIGURE 0.1 The default craigslist.org page.

By contrast, sites and web applications dealing with rapid browsing and editing of
a large number of smaller items, or a large number of small, editable chunks of large
items, flourish with Ajax usage. Google Maps (see Figure 0.2) brought everybody’s
attention to Ajax when it went public beta, and it uses Ajax to bring in a large number
of images and metadata in chunks according to the user’s interactions with the map.
Web applications having a large number of transactions for a given set of elements,
online games for example, save a lot of time and bandwidth by reusing the same inter-
face multiple times to submit and display similar data.

This Book’s Intentions

austin, tx

eno6 austin, tx - Coogle Maps - Mozilla Firefox (Build 2007030919) o
@ @ hnp:,t,lmaps.gmg!e.mm,t v {:E
@G| austin, x - Google Maps
Saved Locations | Sign in | Help
Web Images Video News Maps more»

IlSEar(h Mapsl

Go oogle

| Searchthemap | Find businesses

Get directions

Maps
J Search Results | | My Maps New! ‘

& Print 50 Email ©# Link to this page

% Austin, TX

T = i
¥ —
P, _Leander R =
" \ | =, >

[Trafic] [

Address:

Austin, TX

Make this my default location
Get directions: To here - From here

| Search nearby - Save to My Maps

Termpl
Kileens @ "

» Georgetoun 8

¥ Ammr"

New o=

araunzis W]

i N
(v]

REdF

NAVTEQ™ - Teuraf Use

n
nip

Done

FIGURE 0.2 Google Maps focusing on Austin, TX.

No matter what your project, you should know the options for reaching your goals,
which options work the best, and why. Ajax has a lot of buzz around it, both positive
and negative; what it really needs, instead, is a good, solid foundation for serious, real-
world application development. The OpenAjax Alliance® has started moving in this
direction, building tools to prevent name collisions between Ajax toolkits and bring-
ing companies and individuals together in an effort to promote stability, security, and
interoperability between professional-grade toolkits.

This book covers the range of topics necessary to create a well-rounded application,
regardless of the tools and technologies used. Many developers have created their own
toolkits in order to abstract the actual Ajax communication layers and to speed develop-
ment. Though none of the material here targets any particular toolkit, you easily could use
many of those in development while still following each of the chapters.

3 “The OpenAjax Alliance is an organization of leading vendors, open source projects, and companies using Ajax that are dedi-
cated to the successful adoption of open and interoperable Ajax-based Web technologies. The prime objective is to accelerate
customer success with Ajax by promoting a customer’s ability to mix and match solutions from Ajax technology providers and
by helping to drive the future of the Ajax ecosystem” (www.openajax.org).

www.openajax.org

8 Introduction

0.3 Prerequisites for This Book

Other Ajax books have spent so much time introducing the reader to all of the tech-
nologies involved (Apache, MySQL, PHP, XHTML, JavaScript, and of course the
xMLHt tpRequest object itself) that they have not had the opportunity to delve into more
advanced topics and practices. This book takes advantage of what already has been
written to assume a certain level of understanding, in order to examine and explore in
detail the more intricate methods of designing a web application to use Ajax. Instead
of looking at some of the available AJAX frameworks, this book takes a brief look at
the more experimental uses, such as game development.

As such, if you have not already worked with Ajax or some form of server-side
scripting language, database, or web server, you should probably read a book like
Understanding Ajax (Eichorn, 2000), following along with the examples. While this
Introduction establishes the technologies used and referenced later in the book, it does
so only as a quick overview, just as a professor provides a quick overview during the first
week of a semester to refresh your memory of last semester’s course.

The example code in this book uses the following technologies for each application
layer. You should have a general understanding of all of these before you begin reading

this book:

m Webserver—Apache’s HT'TPD (http://httpd.apache.org) version 2.0. As of
this writing, the Apache foundation has released the 2.2.* branch as the pri-
mary stable branch. The example configuration directives in the book should
carry over to the newer version without much deviation.

m Database Server—MySQL Database Server 5.0 (http://dev.mysgl.com/
downloads/mysql/5.0.html). The 5.0.* branch introduces a wealth of useful
functionality and stability over previous versions, including stored procedures,
triggers, views, and strict mode. As of this writing, MySQL AB has released the
5.1 branch as a beta.

m Server-Side Scripting—PHP 5.2 (www.php.net/releases/5_2_0.php).
PHP 5.2 brings an input filtering extension, a JSON library enabled by default,
greater ability to track file upload progress, vastly improved time zone handling,
and more. While PHP 6 brings global Unicode support to PHR* along with

4 PHP does not technically pay attention to the bytes of strings. It just regards them as a numbered list of bytes. While this has
the benefit of passing UTF-8 strings through PHP (even without the Multi-byte String library) unharmed, side effects can

show themselves in the strangest, often most devastating, places in your application.

www.php.net/releases/5_2_0.php
http://httpd.apache.org
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html

Prerequisites for This Book 9

cleaned-up functionality, closer integration of the new PDO database extensions,
even more drastic improvements to the object model, and, for some reason,
goto (in the form of named vreak statements), the PHP group has made it avail-
able only from source so far. It has much development left on it, but should see
greater adoption rates than PHPS5 has seen so far.

m Markup—XHTML 1.1 (www.w3.org/TR/xhtml11). While XHTML 2.0 has
reached its eighth public working draft, XHTML 1.1 maintains HTML compat-
ibility while strictly enforcing XML, modules, and the progression to XHTML
2.0. Unfortunately, Internet Explorer does not really support XHTML; rather, it
renders it as HTML. This does make quite a difference and holds many developers
back from fully embracing the XHTML modules available to them. As such,
the markup directly rendered in the browser will have content-type: text/ntml
rather than application/xhtml+xm1, as recommended by the W3C. Technically, the
specification (www.w3.org/ TR/xhtml-media-types) strongly recommends against
using text/html with anything beyond HTML 4 or XHTML 1.0 (HTML
compatible). However, it does not forbid it, as it does with the practice of using
anything aside from text/hem1 with HTML 4.

m Style—CSS 2.1 (Cascading Style Sheets, level 2 revision 1, www.w3.org/TR/
CSS21). CSS 3 introduces much of the styling and layout abilities asked for
years ago and eagerly awaited by web designers; however, it has not reached a
stable enough point for many of the browsers to support any more than some
of the basics.” Even with the much-anticipated release of Internet Explorer 7
(hereafter referred to as IE or IE7), IE still fails to completely support even the
CSS 2.0 specification. The IE development team worked very hard to improve
the state of IE’s CSS support and, while they did a fantastic job, they didn’t
quite make it all the way there. Because many resources (http://css-discuss.
incutio.com, http://blogs.msdn.com/ie, and many more) exist to cover the
hacks and fixes necessary to force IE6 and IE7 to follow your design, this book
will not go into detail of how to achieve complete, pixel-perfect, cross-browser
designs.

m Client-Side Scripting—This book will use JavaScript 1.5, together with the

xMLHt tpRequest Object, which currently exists only as an informally agreed

> Rounded borders, multiple background images, column layout, text shadows, and transparency have all made it into the Webkit
project. As of this writing, the Mozilla Gecko engine and Opera’s rendering engine both have implemented most of these.

www.w3.org/TR/xhtml11
www.w3.org/TR/xhtml-media-types
www.w3.org/TR/CSS21
www.w3.org/TR/CSS21
http://css-discuss.incutio.com
http://css-discuss.incutio.com
http://blogs.msdn.com/ie

10 Introduction

upon object and the very beginnings of a specification (www.w3.org/TR/
XMLHttpRequest as part of the Web API Working Group’s activities). Many
Ajax-type web applications and sites use Adobe Flash for text and XML com-
munication with the server; however, Flash development gets too specific for
coverage in this book. Many of the same principles and much of the architec-
ture covered still apply, but the implementation differs. ActionScript, also an
ECMAScript implementation, actually shares the syntax, object model, and
often even its development tools with JavaScript, so while the xurrttprequest
object does not exist in ActionScript, and the working DOM differs, much of
the other sample code should look very familiar and easy to follow.

Familiarity, at least to the point of understanding enough to port the code into
your language of choice, will definitely help, though this book aims to provide the
methodologies, architectures, and patterns that you can implement in your own rich
web application, no matter what technology you use to drive it. The technologies listed
previously have several benefits. The organizations behind them have made them freely
available for download and use on a wide range of platforms and have tested them in a
wide range of browsers. In addition, the technologies have large user bases and online
communities ready and willing to assist you if you run into any problems.

www.w3.org/TR/XMLHttpRequest
www.w3.org/TR/XMLHttpRequest

In This Chapter

1.1 Interface Versus Showcase

1.2 User Expectations

|
|
B 1.3 Indicators and Other Forms of User Feedback
B 1.4 Semantic Markup

|

1.5 What CSS and JavaScript Have in Common

12
16
17
30
37

11

dgar Allan Poe once said that, in short stories, every word of every sentence
needs to contribute to the piece as a whole. Anything else wastes the page’s
space and the readers’ time and should get cut.

When it comes to user interfaces, this philosophy also applies to everything on the
page, whether it be text, a form element, or a piece of media. People tend to overdo
their use of newly adopted technologies, and Ajax is no exception. Ajax usage has
exploded, much like the web technologies, which include the b1ink and marquee
HTML tags,' animated GIFs, applets, the tanie HTML tag, and Flash.

Most web designers and developers have reflexively negative reactions upon the
mention of these after their initial popularity gave way to overusage. All of these
technologies had an original, utilitarian purpose, which now is overshadowed by
the notion that they bring no benefit to the user; the only exceptions to this rule
might be the p1ink and marquee tags, which actually have specific instructions
against their usage written up by the W3C.

1.1 Interface Versus Showcase

Ajax-based functionality fits best where it makes a given task easier for the user,
rather than just replicating functionality easily achieved by simpler, faster-developed
means. Using half a dozen JavaScript files, numerous CSS files, and several Ajax calls
just to render a company home page uses a lot of time and memory for very little
benefit to the user.? It actually makes the user wait much longer than necessary while
using much more of your server resources than necessary.

Figure 1.1 shows a screenshot of Firebug, which is a CSS, DOM, and JavaScript
debugging tool for Firefox (see Chapter 4, “Debugging Client-Side Code,” for more
information on this Firefox extension). The screenshot shows the loading time and
order for all linked resources from an example of a particularly excessive corporate

web site’s default page. The page includes 18 Ajax calls, 14 style sheets, 8 JavaScript

! Neither of these tags actually exists within the HTML specification, but browsers have supported them for years, regardless.
2 This does not mean that the referenced technology does not ever have benefit to the user, just that this particular use case
does not benefit the user enough to warrant its usage.

12

Interface Versus Showcase

13

files, and the usual listing of linked image resources. This page took a total of 5.02

seconds to load over a business cable connection, with a total page weight of 627kB.

0

1Ty
Kb
oK
T
26
skE
Tzh
wie
Ba3n
frrey
LT
Frern
Y
a8k
o
Er
e
EL
Mmoo
4ib
e
&b
e
1
&ab
1
b
ne
t)
e
s
aen
Wb
i)
e
506
b
#ib
7o
[T
b
#eh
(T
mis
B
e
1
e
[T
]
I
1
a3k
i
e
&b
176b
i
sen
frry
31 KE
T
e
taks
1
LHKE
axn
e
4
s
T
T
24K
e
FELTY
e
(LT .

T
ST
Tom
J 128
it
17
L7t
200w
T
182
| abm
AxZes
| ¥
Azt
28ms
ST
om
7
| soms
e
ram
Samy

cam
s
§ St
| 8
i M
B3
1m
FTTEN

I
axm

e
152
1ham

{ 04

L 210y

s M

134
129ms
| s
13m
29T
| 308
Tdme

§ im

§

1 108
118

Ll tom
By
| 7

Wom

FIGURE 1.1 Firebug’s resource-loading profile of a corporate site’s default page.

In contrast to this Ajax overusage, adding a light-weight content-loading script that
displays a blog’s comments when requested by the user reduces loading time by using
less bandwidth; in addition, it keeps the comments in a context that is better than
jumping to a comment page with (in some cases) drastically different design.

14 Chapter 1 Usability

1.1.1 Implementation

Figure 1.2 shows a user registration interface in which the users follow three steps in order
to create their account. The numbered, tabbed interface makes it clear to the users how
long of a process they have altogether, how far they've progressed, and how far they still
have to go. The encapsulation of the form inside a tab’s container implies that going from
Step 1 to Step 2 entails changing the container, rather than the entire page. At the same
time, this DHTML usage does not distract from the purpose of the page to register an
account; it just makes it easier and faster to do so.

1. Account @ 2. Profile O 3. Confirm O
Username:

Password:

Confirm Password:

FIGURE 1.2 Tabbed interface for creating a user account.

If the page used transitions, this usage would definitely fall in the category of “show-
case” over “interface.” Some transitions, such as the fading in or initial highlighting of
changed containers, do enhance the user interface without distracting from it, because
many users will not notice (or will not have the ability to tell what has changed) when
a new element gets inserted into the DOM of the page.

The first method in Figure 1.2 simply inserts new content without transition, while
the second stakes out the allotted space and then fades in the new text. By applying
subtle transitions like the ones shown in Figure 1.3, the interface can inform the users
when their input does not pass the form validation, when an error has occurred, or
when an action has executed successfully and warrants user notification. For instance,
the users probably will want to know that the application has created their account,
but they probably will not care that the username passed the regular expression tests or
that the SQL statement executed successfully. These, together with the other actions
required to create the account, would amount to the single action about which the
users care: making a new account. The tabbed interface shown at the start of this sec-
tion could use effects like these to update the interface as the users” progress, informing
them of any corrections they need to make along the way.

Interface Versus Showcase 15

Some browsers support proprietary transitions when moving from one page to another
as either a global setting or as specified by the page itself. Some scripting packages also
implement this for either entire pages or specific containers.

Errors found

Errors found Errors found

Errors found Errors found

FIGURE 1.3 The stages of two methods of transitions when inserting a text node.

The error shown in Figure 1.4 does not come up until the user clicks to move to
the next pane (users typically will not expect the check to the server to happen until
then). They may want to review their information and correct spelling errors before
continuing. For other, longer interfaces, it might make sense to perform this check for
the users before they progressed too far past the error; however, for a form as short as
this one, making the check on the users” action makes the most sense.

1. Account @ 2. Profile O 3. Confirm O

Errors found

(Username in use) Username:

Password:

Confirm Password:

FIGURE 1.4 The tabbed interface reporting a “username in use” error.

Figure 1.5 shows an example of a user registration interface that has several dynamic
aspects to it. All of the functionality, however, has its design rooted in helping the user
register an account as quickly and easily as possible, rather than drawing attention to
the dynamic elements.

16 Chapter 1 Usability

1. Account @ 2. Profile @ 3. Confirm O

Alias:
Email Address:

Favorite Color:

FIGURE 1.5 Make necessary server-side checks before moving the user onto the next step.

1.2 User Expectations

User expectations often get left behind in Ajax-driven feature design, meaning that you
should never have to explain what will happen when the user hits a certain button or takes
some other action. The button or link should never use a generic and uninformative “click
here” or “submit” when the title of the page or “save profile” makes much more sense.

In addition, the interface should never take the user by surprise, taking the user
out of context regardless of the user’s current actions. An expired session that forces
the users to lose half an hour of filling in a form happens constantly even in the most
modern web applications, and this problem illustrates exactly the kind of frustration
you want to avoid.

The example on server-side validation in the last section touched on user expecta-
tions when working with the user registration form. Users dont expect communication
with the server in any form unless one of the following is true:

* The user initiates the action—This comes in the form of clicking a mouse button,
hitting the Enter or Return key, ending a drag-and-drop action, or performing
some other definitive event to indicate an expected response from the server.

* The action taken does not take the user out of context and happens in seam-
less integration with the current interface—Auto-saving drafts falls into this
category, along with streaming requests such as an RSS ticker.

IE does not support anything close to streaming requests, as it triggers only the onready-
statechange XMLHttpRequest event once the response completely returns from the server.
Opera, by contrast, supports the WHATWG specification defining Server-Sent Events (www.
whatwg.org/specs/web-apps/current-work/#server-sent-events).

www.whatwg.org/specs/web-apps/current-work/#server-sent-events
www.whatwg.org/specs/web-apps/current-work/#server-sent-events

Indicators and Other Forms of User Feedback 17

The more that interface designers know about the user base of an application, the
better the impact on the users. This statement may sound obvious, but designs often
ignore the current or potential user base. Communication channels between the users,
designers, and developers can do wonders for keeping up with and building on user
expectations. If the expectations of users do not seem clear, ask them directly for feed-
back and suggestions. More intuitive, less distracting interfaces promote efficient usage
more than any good-practices document ever can.

When users interact with the application, they already have expectations about
the behaviors of controls such as form inputs and links. Deviating in non-obvious
ways from that behavior can cause confusion and misuse of the application, though
deviation from the normal behavior does sometimes make sense; however, this practice
should be the exception rather than the rule. Controls resembling the status bar of a
browser or a browser’s dialog control make sense to users even when stylistically they
can have drastic differences.

1.3 Indicators and Other Forms of User Feedback

Because Ajax calls bypass browsers’ normal indicators and error handling, your
application needs to provide these in a clear, non-intrusive, manner. For example,
overlaying half the interface with a translucent block displaying a throbber removes
that functionality for the user and defeats the purpose of the asynchronicity Ajax
offers. Instead, the design of the interface needs to find a balance between staying
non-intrusive on one hand and remaining apparent enough that the user notices the
change on the other.

Athrobber is an animated image used to indicate background activity of indeterminate
duration. Browsers have one, generally in the upper-right portion of the window, which
activates on full-page loads.

1.3.1 The Throbber

For a throbber, the design should have certain elements that do not change, no mat-
ter what the current view or interface; this consistency is just like the throbber in the
browser itself. A throbber in a similar design will work fine, though it still needs to
differentiate itself from the browser’s throbber, so that the user does not confuse the
in-page throbber with the full-page load (see Figure 1.6).

18 Chapter 1 Usability

[3 3% 2% 7 UF 0 ok 0k e 3
FIGURE 1.6 Animated frames of a throbber.

Because the normal Stop button in the browser itself may or may not stop Ajax
calls, clicking the throbber should stop any current background processing. This be-
havior also applies to queued requests, because a user clicking the throbber to stop
processing would not expect processing to immediately start up after the throbber click
stops the current threads.

In order to drive the throbber (that is, to switch from a static image to an animated
one and then back again when necessary), a simple object can take care of everything
transparently:

// Throbber manager
function Throbber () { }
Throbber.prototype = {

image : null,
requests : 0,
requestOpened : function(event) {
if (this.requests == 0) {
this.image.src = '../images/throbber.gif';

}

this.requests++;

I

requestLoaded : function(event) {

this.requests--;

if (this.requests == 0) {
this.image.src = '../images/throbber_stopped.gif';
}
},
clicked : function() {

request_manager.abortAll () ;

I

// Called on window load
attach : function() {
this.image = document.getElementById('throbber') ;

if (this.image && request_manager) {

Indicators and Other Forms of User Feedback

19

request_manager.addEventListener (
'open',
[this, this.requestOpened]
)
request_manager.addEventListener (
'load"',
[this, this.requestLoaded]
)
request_manager.addEventListener (
'abort',
[this, this.requestLoaded]
)
request_manager.addEventListener (
'fail',
[this, this.requestLoaded]
)
if (this.image.addEventListener) ({
this.image.addEventListener (
'click',
function() {
Throbber.prototype.clicked.apply (
throbber,
arguments
)
},
false
)
} else if (this.image.attachEvent) {
this.image.attachEvent (
'onclick',
function() {
"Throbber.prototype.clicked.apply (
throbber,
arguments

)"

}

var throbber = new Throbber () ;

20 Chapter 1 Usability

window.addEventListener (
'load’',
function() {
Throbber.prototype.attach.apply (throbber, arguments) ;
I

false

The markup below then makes the throbper class aware of it by the element ID, and
it becomes interactive, allowing the user not only to see the indication of activity, but
also to stop the activity by clicking the image:

1.3.2 Progress Indicators

Progress indicators pose more of a challenge in Ajax-driven interfaces than in desktop
applications because of the way in which the xuruttprequest object works. You have
lictle way of reliably knowing how long a request will take, or whether it will return at
all. However, for some actions, a progress indicator does make more sense and can do
wonders in informing the users of how long they have to wait (in the case of Ajax file
uploads) or how far they have to go through a wizard-type interface (see Figure 1.7).

FIGURE 1.7 A CSS/JavaScript progress indicator displaying loaded files.

This tool presents one challenge from a usability standpoint, in that many progress
bars out there today overlay most, if not all, of the interface. Especially when they are
unannounced, these overlays can completely interrupt the user’s workflows rather than
provide additional information on a background process.

If the user should see the progress as part of the user interface, then a section of
the interface out of the user’s way could exist solely as a global output mechanism to
the user. When working with applications requiring larger screen resolutions, such as
1024x768, this method more easily fits; the page will have a large enough container
for the progress indicator to present enough information for the user to warrant its

Indicators and Other Forms of User Feedback 21

presence, as shown in Figure 1.8. More complex applications also tend to have a larger
global message rate than simpler interfaces, so dedicating space to a progress indicator
makes more sense in such a case.

Starting upload... noexit.ixt 28k of 72k

FIGURE 1.8 An in-Ul output block showing messages and progress bars for file uploads.

This method gives the user the most amount of information within the interface
without interfering with other actions the user might take, because the progress will
continue in parallel with any other requests. Using this method, the user has the ability
to check the progress without having to make any extra clicks.

You should, however, weigh this method’s drawbacks, above and beyond taking
up valuable screen real estate, against the user interface design requirements for an
application. Each added control for a progress bar will take browser resources. It may
not take much, but for an extremely complex interface, this could mean slowing down
the scripting engine that much more, especially in IE. Any images used in the prog-
ress indicators will take up memory, along with the JavaScript and CSS necessary to
manipulate and render them. Again, the memory impact should stay rather low,
but when complex web applications have sizes of up to (and beyond) 500kB, every
additional kB of data adds just a bit more data that the browser has to cope with when
rendering and managing the page during the session.

Movement in pages tends to distract people from what they want to accomplish on
that page. People generally detest animated advertising banners more viciously than
static ones purely because animations draw attention away from the primary content
of a page, even more so those users who have some form of ADHD, for whom it
becomes an accessibility issue. In order to make the progress indicator subtle enough
to avoid distraction, designers run the risk of creating indicators so subtle that they
become imperceptible, especially when taking low-vision or color-blind users into
account. Blind users, especially, will have a difficult time working with an inter-
face with inline progress indicators, because updating the DOM structure requires
focus changes in order to inform the user of the change (there will be more on this
in Chapter 2, “Accessibility”).

These drawbacks do not mean that applications should never use dedicated
containers for progress indicators; you simply need to take both sides of the usage into
consideration when designing the application interface.

22 Chapter 1 Usability

As an alternative to the preceding solution, you can model the progress indicators’
management after elinks, which is an open source, text mode browser originating from
the links project (http://links.sourceforge.net). The default behavior brings up a dialog
for a file download, as shown in Figure 1.9, presenting a progress indicator that updates
and gives metadata such as current and average download rate and size; it also gives the
user the option to continue the download as a background process (with or without
notification on completion) or to abort the process (with or without stopping the file
download that is in progress).

PHP Snapshots (3/6)
Latest CVS (6.8-dev)

* SECHCNELCTFS] (6.6M) php6.@ (tar.az) (8.2M)
http://snops.php.net/php6.@-20@70113193@. tar . bz2
(N 4
Received 2.7 MiB of 6.5 MiB

Average speed 268 KiB/s, current speed 38@ KiB/s
Elapsed time 8:1@, estimated time @:14

[N [Background with fotify 1 [[bort]

[Abort and elete file]

o ———

zip) (8.14)
Jon 13, 2007 05:30 GMT
) (8.14)
Jon 12, 2007 21:30 GMT
http://snaps.php.net/phpt.8-208701131930. tar bz [— 1

FIGURE 1.9 A file download using the elinks browser.

In applying this design to a web application, a button and access key combination
can reveal an overlay at the user’s request. This reduces the risk of distraction and can
have the objects necessary for display active only when displaying the progress indicator
to the user. This technique also takes up much less screen real estate, in the form of a
button or link, because the content itself overlays instead of displacing other content.

1.3.3 Keeping the User in the Loop

Sometimes, situations arise when the user needs to know about some event in the
application, server-side or client-side; in such cases, the application needs to display
a message outside of the normal interface interactions. Figure 1.4 showed an inline
message informing the user about the username already existing in the system. Inline
messages tend to make more sense to users, rather than removing them from the flow

http://links.sourceforge.net

Indicators and Other Forms of User Feedback 23

of the interface. However, sometimes (such as in the case of a communication error
with the server or during the notification of a completed file upload), the application
does not have a place inline for the message to appear.

In such a case, a globally accessible message queue needs to exist and display
messages in a way that brings the user’s attention temporarily away from the interface
to the content of the message itself. Similar to the dilemma in which the progress
indicators could exist in a dedicated container or in temporary overlays, global mes-
sages present the same types of options. However, if overlaid messages work better for
the application interface in question, the user will have no need to hide the message
in the manner of a progress indicator, because the message will have no purpose once
read (and reported, if necessary). As such, an increasing number of web applications
have followed the design of various operating system notification methods, usually in
displaying the queue in a cascading layout down one side of the screen, as shown in
Figure 1.10.

Warning

Something happened!

Warning

Something else happenad!

E' Notification

Okay, it stopped.

ii

FIGURE 1.10 A notification system displaying two warnings and a general message.

Implementing a consistent messaging system takes a few layers of communication,
as shown in Figure 1.11, in order to keep things abstracted enough for usage through-
out the application.

1.3.3.1 Client-Side Output Management

Abstracting the client-side output management from the actual message queue object
helps in many ways, including preventing the risk that your output constraints might
start influencing the code of the message queue itself. Because the view of the messag-
ing could get redesigned, visually or architecturally, this decoupling of message view
from the message controller makes life much easier down the road. Think of it as the
client-side template for message output.

24 Chapter 1 Usability

Server-Side Messaging

Server-Side / Data Logic

Message
Queue €——____ | Application
Logic
Y

— Server-Side Message Rendering

Client-Side Messaging

Ajax

l«— | Responses
Client-Side
Message Data Logic
Queue /

\ Application

Logic

Y
—>| XHTML Message Rendering

FIGURE 1.11 Data flow diagram showing the interactions of the server-side and client-side messaging.

function MessageOutput () { }
MessageOutput.prototype = {
/**
* A reference to the output container
*/

container : null,

/**

* Template element
*/

template : null,

Indicators and Other Forms of User Feedback

25

init : function() {
// Assumes an already created ul element with ID of "messages"
this.container = document.getElementById('messages');
// Create the template for copying into the DOM
this.template = document.createElement ('li');

Y.

display : function (message) {
var new_node = this.template.cloneNode (true) ;
new_node.setAttribute('class', message.type);
new_node.innerHTML = message.content;

this.container.appendChild (new_node) ;

var message_output = new MessageOutput () ;

window.addEventListener (
'load"',
function() {
MessageOutput.prototype.init.apply (
message_output,

arguments

1.3.3.2 Client-Side Message Queue

Because the message queue doesn’t need to know how the messages get displayed, it
has more freedom in how it handles data before passing them off to the display. This is

done without mixing data handling with the code for the view:

function Messenger() { }

Messenger.prototype = {

/**
* Create the initial queue array
*/

message_qgueue : {1},

/**

* Returns the entire queue
*/

26 Chapter 1 Usability

getQueue : function() {
return this.message_gueue;
T,

* Add a message to the specified queue

add : function(message, type) {
this.message_queue.push (

{

content : message,

type : type

1.3.3.3 Server-Side Output Management

The server-side output management of the application has the same responsibilities
and benefits as the client-side output manager, though you have a much higher likeli-
hood of working with an actual template engine, which might even reduce this aspect
to a single template. However, while the client-side output might have a system in
place to automatically remove messages from the interface after a period of time in
order to prevent the queue from running off the container (or scrolling) due to old
messages, the server-side output should display the messages and hold, giving the user
the option of closing the messages once read.

The server-side application tends to have a template engine at its disposal, greatly sim-
plifying the architecture for output. Because the architecture supporting different types
of output (JSON, XHTML, XML, and so on) removes much of the underlying logic
from code relevant for the management of output, Chapter 7, “Server-Side Application
Architecture,” will elaborate on the architecture-specific code; the code samples in this
current chapter, however, will focus on the examples of the template pieces themselves.

Rendering XHTML tends to return the output easiest to deal with, because it sim-
ply entails replacing innerntvr in JavaScript. However, this practice makes content-
based decisions in JavaScript much more difficult and generally uses up much more

bandwidth than either XML or JSON:

Indicators and Other Forms of User Feedback 27

<ul class="messages">

<?php foreach ($messages as Smessage) { ?>

<1i class="<?php echo htmlentities(Smessage->type); ?>">
<?php echo htmlentities ($Smessage->content); ?>
</1li>
<?php } ?>

Rendering JSON, especially because PHP5 has added the json_encode and json_
decode library functions, has become easier. JSON’s greatest strength and also its weak-
ness at times is that, by definition, it evaluates as JavaScript. This makes parsing on the
client side instantaneous, and with the number of libraries for other languages growing
constantly, it also makes parsing JSON in other languages (server-side or otherwise)
almost as easy and instantaneous. It also tends to use the least amount of bandwidth
out of the three options covered here, because the object notation truly supports only
two data structures: name/value pairs and ordered values:

"messages" : <?php echo json_encode (Smessages); ?>

The most flexible and most supported of the formats covered here, XML (most
prominent programming languages provide XML parsers) makes for easier reading by
the developers themselves and will not execute any code by design (in the way that
JSON will). When working with xursttprequest responses, browsers will make properly
served XML available to the client scripts as a complete DOM ready for parsing:

<messages>
<?php foreach (Smessages as Smessage) { ?>
<message type="<?php echo htmlentities (Smessage->type); ?>">
<?php echo htmlentities ($Smessage->content); ?>
</message>
<?php } ?>

</messages>

1.3.3.4 Server-Side Message Queue

This area has the same responsibilities and benefits as the client-side message queue,
though it also will need to hold the entire queue in memory until it can pass the list off

28 Chapter 1 Usability

to output generation (unless you use an out-of-memory caching system or something
with a similar result). This rarely poses a threat to the memory usage of the application
as a whole, and if it does, the application probably does not halt where it should, or it
gives error messages that are too verbose:

Keep in mind that, because it will get used globally, the message queue may hand off
the list to the output for a full page load, or it might hand off the list to the output to an
Ajax call, which then would get displayed using the client-side object.

yEE
* A drastically simplified Message object in order
* to keep the example readable
*//'
class Message {
public Scontent;
public Stype;
public function _ construct(Scontent = '', Stype = 'message') {
Sthis->content = Scontent;

Sthis->type = Stype;

class Messenger {
// The Smessage_qgqueue holds all types of messages in order to
// return all of them at once if and when requested

protected S$message_dgueue;

/*x*
* Return the entire queue
*/’

public function getQueue() {

return Sthis->message_queue;

/**
* Add a message to the specified queue
*/

public function add(smessage, Stype) {

Sthis->message_queue[] = new Message (Smessage, Stype);

Indicators and Other Forms of User Feedback 29

/ * %
/

* Creates the initial queue array
* /

public function _ construct() {

Sthis->message_queue = array();

As an end result, any object in the application can add messages to the queue as
necessary, for presentation to the user later on in processing. In this way, the manage-
ment of errors and messages stays completely separate from the rendering and presen-
tation, allowing their display in XHTML or in responses to Ajax requests. This layer of
abstraction makes maintenance much easier, by allowing the messages to follow a simple
Model-View-Controller (MVC) implementation along with the rest of the applica-
tion. (MVC is explored in detail in Chapter 3, “Client-Side Application Architecture,”
and Chapter 7, “Server-Side Application Architecture.”)

By extending the messenger class, a Logger class can override messenger: :adda () to log
a message instead of holding it in memory:

class Logger extends Messenger {
Vas:
* Override Messenger::add() to log the message appropriately
y
public function add($message, Stype) {
switch (Stype) {
case 'error':
error_log (Smessage) ;
break;
case 'message':
default:
file_put_contents (
'/tmp/application_x.log',
Smessage . "\n",
FILE_APPEND & LOCK_EX
)i
break;

30 Chapter 1 Usability

To conclude, message queues on the server- or client-side need to stay light, flexible,
and fast to develop. By decoupling the queue management from queue rendering, these
requirements come easily and intuitively.

1.4 Semantic Markup

Although many XHTML coders out there cringe at the thought of “having” to use
semantic markup (because it can require a little more CSS to lay out interfaces exactly
the way they intended), semantic markup can have many benefits in addition to the
accessibility it can bring. Semantic markup also makes XHTML more usable, easier to
read, easier to maintain, and easier to parse. Using it means using the available markup
as designed in its specification, rather than using generic markup that then emulates
the descriptive tags.

1.4.1 More Accessible

The accessibility of semantic markup goes up drastically when compared to a massive
collection of nested daiv and span tags. When screen readers read the page to the user, the
two following examples read very differently, regardless of how similar a style they have:

Because table layouts have dropped quite far down on the map as far as respectable
markup goes, this chapter will not cover the benefits of anything over table-based layouts,
especially nested table layouts. The Introduction lists XHTML as one of the prerequisites

of the book and that includes knowing the correct usage of the table tag.

<div class="heading">Important Items</div>

<div class="navigation_list">
<div>An Item</div>
<div>Another Item</div>
<div>Yet Another Item</div>
</div>

As spoken by a screen reader, this example sounds something like “Important Items.

Link: An Item. Link: Another Item. Link: Yet Another Item”:

<h3>Important Items</h3>

Semantic Markup 31

An Item
Another Item
Yet Another Item

Screen readers interpret elements of applications and their content into vocalized
representations used by blind and low-vision users to interact with visual software. Dif-
ferent screen readers all have different ways of reading pages, though the end result
should give you the same level of information.

This example will sound more like “Heading level three: Important Items. List of
three items. Bullet, Link: An Item. Bullet, Link: Another Item. Bullet, Link: Yet An-
other Item. List end.” This gives much more metadata about the list of links on the
page to the user.

The screen reader announces “Important Items” as a heading with a particular level,
informing the user as to the section’s relationship to the document as a whole. In ad-
dition, screen readers (and some browsers and browser extensions) allow the user to
navigate around the page by jumping from header to header, using the header levels to
structure the page hierarchically. This increases the flexibility of a spoken page, giving
control over the content read to the user, and reduces the time spent waiting to reach
a given place in the page.

After reading the header, the screen reader announces the list of links as a list con-
taining three items. This keeps the links list from sounding like an unidentified num-
ber of paragraphs, each having one link. The user then can skip around the list of links
using the navigation tools of the screenreader, knowing exactly how many items it has
and what sort of information each contains. Additionally, using the u1 element to ar-
range the links in the markup adds to the hierarchical structure of the page much more
than using aivs, even though the XML structure appears the same.

By using semantic markup, the current front page of www.frozen-o.com/blog has
a maximum listening time of about 250 seconds, even though the page weighs in at
over 50kB of mostly text. Even a small change, such as changing the n2s and n3s to
styled aivs, makes the maximum listening time explode to well over 1000 seconds;
this difference occurs because changing out the heading tags for aiv removed the rela-
tionship between the sections of the page, thus removing the user’s ability to navigate
between them.

www.frozen-o.com/blog

32 Chapter 1 Usability

Listening time varies greatly by the users’ settings in their screen reader, all of which
have variable speeds. The measurements used in this section come from an analysis given
normal, average settings.

1.4.2 Easier to Use

The usability and accessibility of semantic markup, and of a web application as a whole,
overlap a great deal. This does not mean that creating an accessible page necessarily cre-
ates a usable page, though in a sense, creating an unusable page that passes accessibility
testing will make it inaccessible anyway (more on this in Chapter 2).

Using semantic markup allows people with user stylesheets to have their styles ap-
plied to your markup in order to adjust the display. This ability comes in many forms,
but you could take advantage of user stylesheets to increase the size of the overall text
of a page, outline (or otherwise highlight) header tags, or specially format blockquote
tags to make them stand out more from the general text of a page. Some browsers,
browser extensions, and user scripts allow users to generate page summaries or tables of
contents from the markup, which rely heavily on header levels of the page.

The tabie tag and its dependents (caption, thead, tbody, tfoot, tr, th, and ta) have
an important place in the form of presenting tabular data. No other combination of
tags can organize data with the same depth of information and metadata for tabular
data. Emulating tables with CSS might come close, but would fail not only without
that CSS loaded, but would also fail in most text browsers and screen readers. When
dealing with organizing data sets, using the table tag correctly enables you to flexibly
highlight rows and columns, group subsets of data, clearly label related data, and in-
crease the readability of that data. It also allows users to easily navigate that data, not
only with screen readers, but also with a multitude of user scripts available to sort,
highlight, and otherwise interact with the table to more easily access the information
that interests them.

By using other tags such as address, code, and g (note that IE does not support the
q tag), you can increase the ability for users to determine the relationship between a
given section of the page or paragraph. This also enables applications to programmati-
cally determine that relationship. This makes extending the web application through
further improvements or through third-party browser extensions and scripts much
simpler. It also can make the users feel more in control of their experience with the
web application.

Semantic Markup 33

1.4.3 Easier to Maintain

The earlier, six-line examples may not have had much of a difference in their level of
readability, but what about markup consisting of 100 lines or 1000 lines? Even prop-
erly indented, syntax-highlighted code becomes an unreadable mess when you cannot
make out a particular elements relation to the structure of the page. Having more
readable code is easier to maintain and takes much less training time than having new
employees or contributors paging through dozens of different class definitions to have
almost the same ability to deduce the page structure.

In addition, your page weight will drop when using semantic markup, as you will
suddenly not require class references and definitions in order to emulate what the
header tags, lists, blockquotes, and other tags already give you. Technically, yes, you can
make <div class="pageheader”>Page Title</div> look exactly like <h1i>page Title</n1>
and vice-versa, but why not do less work with the semantic markup?

When you use semantic markup, you also reinforce the division of structure and
style. Using the appropriate tags instead of aivs or spans with class names describing the
usage makes it easier to keep from creating and using tags describing the presentation.

The following example:

Emphasize me

...can easily lead to:

Emphasize me

...rather than:

<em class="warning">
Emphasize me

With semantic markup, you get a much better Return On Investment (ROI),
because you can reach development goals faster, support a wider-reaching user base,

34 Chapter 1 Usability

and reduce the cost of software maintenance. The last of the preceding examples uses
descriptive markup as intended, making it easier to tell at a glance, or via code, what
the block of markup should mean.

1.4.4 Easier to Parse

Because semantic markup uses tag names rather than attributes to differentiate each
aspect of the page structure, developing code to work with the page structure becomes
much easier to write, to read, and to maintain. Using non-semantic markup does not
make it impossible to parse out the same elements, but the code and the performance
of that code will suffer.

Take the following two pairs of code samples, each having the content of an XHT-
ML DOM for a simple blog and a corresponding script to change the background of
the last element in every unordered list.

<div id="demo_dom">
<div class="post">
<h3>Post title</h3>

<p>Lots of post text. Lots of post text. Lots of post text. Lots of post
text. Lots of post text. Lots of post text. Lots of post text. Lots of post
text.</p>

<1li>
something
number 1number 2
</1i>
something</1i>
something</1i>

<p>Lots of post text. Lots of post text. Lots of post text. Lots of post
text. Lots of post text. Lots of post text. Lots of post text. Lots of post
text.</p>

</div>

</div>

The function definition to select the last list item in each unordered list follows:

function select () {
var demo_dom = document.getElementById('demo_dom') ;
var post_lists = demo_dom.getElementsByTagName ('ul') ;
for (var i = 0; 1 < post_lists.length; i++) {

var last_1li = post_lists.item(i).lastChild;

Semantic Markup 35

while (last_1i) {

if (last_li.nodeType == 1) {
last_1li.style.backgroundColor = '#000"';
break;

} else {
last_11i = last_li.previousSibling;

This gets the root element (as far as this example needs to have) and retrieves a
NodeList of all u1 elements contained within. It then loops through each of them, work-
ing its way from the last child node (a text node containing white space, for most of
these elements) until it finds an element node. When it finds such a node, it changes
the background color and breaks the loop.

By contrast, the following example creates the same DOM structure from generic
aiv elements with CSS classes defining the look and feel:?

<div id="demo_dom">
<div class="post">
<h3>Post title</h3>

<div>Lots of post text. Lots of post text. Lots of post text. Lots of
post text. Lots of post text. Lots of post text. Lots of post text. Lots of post
text.</div>

<div class="ul">
<div class="11i">
something

<div class="ol"><div class="11">number 1l</div><div
class="11">number 2</div></div>

</div>

<div class="11">something</div>

<div class="1li">something</div>
</div>

<div>Lots of post text. Lots of post text. Lots of post text. Lots of
post text. Lots of post text. Lots of post text. Lots of post text. Lots of post
text.</div>

</div>

</div>

3 See the example “DOM methods to outline the last list item of each emulated unordered list” on http://advancedajax.frozen-o.com
for the CSS to emulate ul and o1 elements.

http://advancedajax.frozen-o.com

36 Chapter 1 Usability

Accomplishing the same highlighting in this DOM requires a very different function:

function select () {

var demo_dom = document.getElementById('demo_dom') ;
var post_lists = demo_dom.getElementsByTagName ('div') ;
for (var i = 0; i1 < post_divs.length; i++) {

var current_div = post_divs.item(i);

if (!current_div.attributes) {

continue;
}

// Supporting IE, Opera, Safari and Mozilla takes two routes
var current_class = current_div.attributes['class'];
if (current_class) {
current_class = current_class.value;
} else if (current_div.getAttribute) ({
current_class = current_div.getAttribute('class');
}
if (current_class) {
var classes = current_class.split(' ');

// Because only Mozilla (currently) supports .indexOf ()

for (var j = 0; j < classes.length; j++) {
if (classes[j] == 'ul') {
var last_1li = current_div.lastChild;

while (last_11i) {

if (last_1li.nodeType == 1) {
last_1li.style.backgroundColor = '#000"';
break;
} else {
last_1i = last_li.previousSibling;
}
}
break;

This function gets all aiv elements in the DOM (including paragraphs, ordered lists,
list items, and post containers) and then loops though each of them, having 27 elements
to loop through rather than the three u1 elements in the first implementation. It then has
to painstakingly get the value of the c1ass attribute in two different methods to support

What CSS and JavaScript Have in Common 37

all major browsers and then loop through all class names (the c1ass attribute can reference
more than one class by naming all classes in a space-delimited list), because only Mozilla
currently supports array.prototype. indexot. Once the function finds an unordered list, it
changes the background color of the last list item exactly as before.

Even when the scripting does not have such pronounced differences, the impact can
make itself quite clear in full-scale client-side applications. When the script suddenly
works with hundreds (or even thousands) of elements, IE especially will have a consider-
able performance hit. Even taking away performance considerations for a moment, the
second select () definition has greater complexity to it, and, as such, has more chances
of breaking; in addition, it takes more work to change its behavior when necessary.

1.5 What CSS and JavaScript Have in Common

You can use both CSS and JavaScript non-intrusively, in that the user should have the
ability to disable one or both without losing any functionality or the ability to read and
use the interface. At the same time, both CSS and JavaScript tend to have many inline
and in-element declarations, breaking the practice of separating the page structure,
style, and behavior.

This does not mean that an application should have its design based entirely around
screen readers and text-based browsers and then be implemented for GUI browsers
without styles or scripting, and so on and so forth. Rather, because web-application
user interfaces tend to have a lot of potential points of failure, none of them should
keep users from using the application altogether. Here is another benefit of semantic
markup: When CSS fails to load due to network complications or disabling by the user,
it will display in a way showing the relationship of the data in the page, but it will use
the browser’s default styles in place of the application’s (see Figure 1.12).

1. Account (in progress)
2. Profile (incomplete)
3. Confirm (incomplete)

Username: | Password: | Confirm Password: Next Step

FIGURE 1.12 The tabbed user registration interface with CSS disabled.

An increasing amount of users take advantage of tools such as the NoScript (www.
noscript.net) Firefox extension to white-list sites the browser will allow to run Java-
Script. This greatly increases the likelihood of users seeing how your Ajax-driven web
application behaves without any scripting at all, let alone the xuruttprequest object.

www.noscript.net
www.noscript.net

38 Chapter 1 Usability

JavaScript may also die on a page if the user happens to stumble across a bug resulting
in a JavaScript error or exception, which should not keep the page from working via
traditional page loads.

This possible malfunction also applies on a less substantial, though more frequent
level, as different browsers have varying degrees of support for CSS, JavaScript, and the
DOM itself. As such, code will need to branch for each different implementation of a
layout or function in order to support each major browser, or it will need to degrade
gracefully enough that the users do not even realize that they have missed out on some-
thing unless they compare the interface in two browsers side by side.

The following CSS uses properties and aspects of the DOM with varying degrees
of support by the most popular rendering engines. The first letter of each paragraph’s
text changes from an inline layout to a block layout, allowing the text of the paragraph
to wrap around the letter to the right. It also appears three times as large as it would
normally, italicized, and with a line height reduced from the default in order to have
less spacing between it and the first line to wrap underneath it. It has a slight indent, a
width of lem to pad it out slightly from the default, and a black shadow 4 pixels to the
right and down from the position of the letter with a size of 3 pixels:

p {
clear: both;
margin: lem;

}

p:first-child:first-letter {
display: block;
float: left;
font-size: 3em;
font-style: italic;
line-height: .7em;
text-indent: .2em;
text-shadow: 4px 4px 3px #000;
width: lem;

IEG, lacking selectors and text-shadow support, has very little support for the CSS tested.
IE7 has much better support since the introduction of selectors, but still lacks proper
DOM support and text-shadow. Mozilla has much better DOM support, but the margins
don’t quite match. Opera has almost everything correct, though it still lacks control over
the character spacing and dimensions. Safari has support for current drafts of a few CSS3
properties and much more precise control over character spacing, kerning, and margins.

What CSS and JavaScript Have in Common 39

Edgar Allen Poe, as an editor, once wrote something
to the effect that in short stories, every word of
every sentence needs to contribute to the piece as a
whole. Anything else wastes the page's space and the
readers' time, and should get cut.

When it comes to user interfaces, this also rings true
for everything on the page, whether text, form
element, or media. Especially with regard to newly
adopted technologies, those using them tend to
overdo it.

dgar Allen Poe, as an editor, once wrote

something to the effect that in short stories,
every word of every sentence needs to contribute to
the piece as a whole. Anything else wastes the page's
space and the readers' time, and should get cut.

When it comes to user interfaces, this also rings true
for everything on the page, whether text, form
element, or media. Especially with regard to newly
adopted technologies, those using them tend to
overdo it.

gar Allen Poe, as an editor, once wrote something to
the effect that in short stories, every word of every
sentence needs to contribute to the piece as a whole.
Anything else wastes the page's space and the readers'
time, and should get cut.

When it comes to user Interfaces, this also rings true for
everything on the page, whether text, form element, or
media. Especially with regard to newly adopted
technologies, those using them tend to overdo it.

gar Allen Poe, as an editor, once wrote
something to the effect that in short stories,
every word of every sentence needs to contribute to
the piece as a whole. Anything else wastes the
page's space and the readers' time, and should get
cut.

When it comes to user interfaces, this also rings true
for everything on the page, whether text, form
element, or media. Especially with regard to newly
adopted technologies, those using them tend to
overdo it.

dgar Allen Poe, as an editor, once wrote

something to the effect that in short stories,
every word of every sentence needs to contribute to
the piece as a whole. Anything else wastes the
page's space and the readers' time, and should get
cut.

When it comes to user interfaces, this also rings true
for everything on the page, whether text, form
element, or media. Especially with regard to newly
adopted technologies, those using them tend to
overdo it.

FIGURE 1.13 An increasing amount of accurate support.

40 Chapter 1 Usability

Figure 1.13 shows an increasing amount of accurate support. (This comparison
does not include text-shadow because the W3C has not finalized CSS3.)

Coding CSS and JavaScript unobtrusively not only makes it easier for the interface
to degrade gracefully, but also it encourages clearer lines between interface structure,
design, and behavior. Besides keeping the markup clean of inline styles and scripts
(including inline event listeners such as onclick or onsubmit), it rewards good coding
practices by making maintenance easier and faster. Additionally, redesigning an appli-
cation can happen entirely in the stylesheets, as long as the JavaScript references only
class names and element IDs. Likewise, re-architecting the client-side application does
not need to impact the interface design or page structure as long as the structure, style,
and scripting have sufficient decoupling to allow it.

The examples of the rendering of different browsers of the same CSS also demon-
strate that the users of each browser would not see anything necessarily missing from
their user experience. Even the IEG users, with very little, very buggy CSS support,
have no indication that something has failed to render in their browser.

By the same token, support for JavaScript can in some cases degrade gracefully as
well. In this case, expanding on the often-used example of an event listener canceling
the action of a form or a clicked link, the application can fall back on having the server
perform actions when the client does not have the ability to take care of everything
needed for the action.

This practice comes into play not only when the browser does not have the
XMLHt tpRequest Object available, but also when other objects or methods do not exist. If
an application allows for image editing, it may prove faster, development-wise, to use
layers of PNGs or SVG in the DOM in order to provide client-side image manipula-
tion, while returning false for IE and others lacking this support. This would provide
simulated image manipulation, which then would have the resulting image file gener-
ated on the server; in addition, the interface then would fall back to full page loads and
generate temporary image files (in memory or by passing files through to the browser)
on the server in order to achieve the same result, though providing a slower, less rich
experience for the user.

In some cases, the DOM methods available in one browser may prove faster,
or more completely implemented, than others. Using document . importNode can make
importing external markup extremely fast and simple, but IE does not support it.
Many developers have simply written their own replacement for use in IE when a
native implementation does not exist.

What CSS and JavaScript Have in Common 41

Unfortunately, IE does not actually support JavaScript as a true prototypical language;
this forces developers to write object methods such as Array.prototype.indexOf in the
window object instead. In other browsers, adding or even replacing methods of globally
available objects (such as aArray, xMLHttpRequest, and String) has support by default
simply because they provide true JavaScript support.

This idea also rings true when dealing with JavaScript performance. When dealing
with animation such as fading, sliding, or anything else consisting of fluid transitions,
different browsers can have drastically different performance, especially when consid-
ering the processors and memory available on the machine itself. By writing transitions
to use variable frame rates, even the slowest supported machines still will see the end
result of the transition’s destination, even if they have a frame rate of a single frame per
second, while faster machines can have a fluid, fully animated experience.

This page intentionally left blank

In This Chapter

B 2.1 WCAG and Section 508

W 2.2 Screen Readers Can Handle Ajax

B 2.3 Unobtrusive Ajax

B 2.4 Designing with Accessibility in Mind
H 2.5 WAI-ARIA

44
53
56
58
63

43

Often regarded as uncharted territory, accessibility in Ajax-driven web
applications unfortunately tends to fall under “Here Be Dragons” on the
map of development. In order to get past this fear, or even disbelief, of having
accessible, Ajax-driven functionality, an understanding of the particular barriers
that do (and do not) exist must come first. When broken down into specifics
and quantified, the hurdles then lose their intimidation factors, and the meth-
ods to overcome them can get included into standard development practices.

Fortunately, much of what makes an Ajax-driven web application accessible stands
on the shoulders of what makes a flat web application accessible. The only new
aspect of making a web application accessible comes into play when updating the
DOM to inform the user of the new content; this practice essentially consists of
the DOM-manipulation equivalent of alternative text for images.

Before getting into how to add screen reader support in dynamic web applica-
tions, a solid understanding of the current standards and guidelines must come
first. If users cannot navigate their way to the Ajax-driven functionality, then
they will have no use for the application in the first place.

2.1 WCAG and Section 508

The Web Content Accessibility Guidelines (WCAG) 1.0 and Section 508 provide
two checklists for accessibility. Without standard rules to develop against and test,
the very definition of web accessibility would have stayed even more nebulous than
the ones we have today. While those currently used do have some gray areas in them
(to put it mildly), when you understand the intentions behind them and strive to
serve those intentions rather than explain your way around them, they do seem
worthwhile to meet, if not exceed.

As many accessibility advocates have rightfully pointed out, coding for those
with disabilities doesn’t mean coding merely for the greater good in a way that makes
developers feel better about themselves. It also means coding for their future selves,
as the vast majority of people who grow elderly have their senses dimmed in one
way or another. Having your eyesight grow worse as you grow older does not seem
a peculiar notion, and developers need to code with the mindset that their efforts

44

WCAG and Section 508 45

will survive until they need assistive technology (at the very least, zoomable screens) in
order to use the very technology written today.

211 WCAG

The W3 Web Accessibility Initiative (WAI) has the Web Content Accessibility Guide-
lines (WCAG) version 1.0 available (www.w3.org/TR/WCAG10), with the initial
draft of WCAG 2.0 provided as well (www.w3.org/TR/WCAG20). WCAG 1.0 went
through approval in May 1999, and the WAI, at the time of this writing (in 2007),
expect WCAG 2.0’s finalization and approval sometime in 2006. As such, this text will
concern itself only with WCAG 1.0.

WCAG has its checkpoint list organized into three priorities, each correspond-
ing to the W3C’s definitions of “must” (Priority 1), “should” (Priority 2), and “may”
(Priority 3). This prioritization came about in an effort to clarify certain checkpoints
(Priority 1) as essential for universal access, while checkpoints of other priorities
make it significantly easier or marginally easier for people with different accessibility
needs to access various parts of the web application.

2.1.1.1 Priority 1

Most of the Priority 1 checkpoints center on the rule that in order for all groups of
users to use a web application, any non-linear, text-based content must have a way of
getting represented as such. This means that images, frames, applets, and streaming
media need to provide alternative text describing the contents. Though this seems like
a relatively quick and easy thing to do, a surprisingly large portion of web applications
currently fails to meet this checkpoint on even the most basic level of using the img
tag’s a1t attribute.

By the same token, alternative text—which is especially common with images—
can often say much more than it should. This does not mean that alternative
text needs to stay short regardless of the content portrayed, but it does need to
stay succinct and distinct. Many web applications have links that contain text and
an icon—for instance, a “Help” link with a stylized question mark next to it. While
providing alternative text of “help” or “question mark” may seem like good alternative
text for the icon, this text would sound like “Help help” and “Help question mark,”
respectively, to the users. Because the image does not actually provide any unique

www.w3.org/TR/WCAG10
www.w3.org/TR/WCAG20

46 Chapter2 Accessibility

information and the alternative text would actually annoy you if you had to hear
“Help help” every time you passed over a help link, using ait="+ for the image’s
alternative text makes it more accessible than providing verbose text.

Other methods of displaying information via color or shapes (such as using CSS to
display an error string in red) must also provide a method of determining the same in-
formation without the visual cue. The following shows an example (using inline styles
to show the use of color) of an accessible error message:

If this were a virus you would be dead now

Using a technique like this, users able to see the image and style will see the icon
(a red “X” or some other meaningful icon) and the error message styled in red text.
Colorblind users will still see the icon (so long as it does not rely solely on color to dis-
play its meaning), which indicates that the message following it conveys an error. Users
using a screen reader will hear “Error” just prior to the message itself.

Unfortunately, the priority 1 checklist makes an easy “out” available in the form of
a link to accessible equivalents of anything the developer refuses to put into compliant
markup. Note that, despite the difference of wording from the actual checklist item,’
the previous sentence uses the term “refuses” instead. Because modern browsers all make
it very easy to create accessible web applications when the authors know how to do so,
not learning how to write accessible markup (especially to meet even just the priority 1
checklist) stems from a refusal to support the users on the part of the developer.

Having a link to the accessible version of a web application not only makes the
users needing accessible interfaces feel like second-class citizens, but also requires that
any change made to the original interface must also get made a second time in the al-
ternate site. This redundant maintenance creates ample opportunities for failure to do
so and requires 2 much more active effort to keep a site accessible rather than that for
a site that meets accessibility requirements by default. In short: Writing an accessible
web application the first time around means less work later on and more satisfied users
from the start.

! “And if all else fails (Priority 1) 11.4: If, after best efforts, you cannot create an accessible page, provide a link to an alternative
page that uses W3C technologies, is accessible, has equivalent information (or functionality), and is updated as often as the

inaccessible (original) page” (W3C, 1999).

WCAG and Section 508 47

2.1.1.2 Priority 2

The priority 2 checkpoints cover quite a lot of ground, as they describe a number
of recommendations that are more best practices than requirements for an accessible
interface. In other words, while a screen reader may make it through a malformed
document full of deprecated markup and table-based layouts, the read-out interface
will probably not make a lot of sense to the user. Where the priority 1 checklist leaves
off after describing the absolute minimum requirements for an accessible page, the
priority 2 checklist provides methods to offer (when implemented well) a decent user
experience to users with various accessibility needs.

Additionally, any element of an interface that has a set of markup available to display
it should have the markup (rather than non-markup methods) used. For example,
when displaying mathematics, use MathML, a language to describe mathematics in a
way communicable from one machine to another, rather than an image showing the
equation or formula in question. As an example, the following markup for the area of
a pie, with a thickness of a and a radius of z, makes for a much more accessible display
than an image rendering. It also means that the developer writing the markup does not
have to worry about alternative text for the image, as the browser will interpret the raw
markup for the user, as shown in Figure 2.1.

<math xmlns="&mathml; ">
<mi>π</mi>
<msup>
<mi>z</mi>
<mn>2</mn>
</msup>
<mi>a</mi>

</math>

2
Tz a

FIGURE 2.1 The previous MathML example rendered in the browser.

As described in a number of the checklist items, in order to meet WCAG level 2 stan-
dards, a web application must use semantic markup. Any headings must properly use the
n1 through ne tags, lists must use the markup available for describing and organizing lists
(a1, o1, and u1), and quotations must use the markup available rather than a given string
simply having quotation marks surround it.

48 Chapter2 Accessibility

This requirement poses a difficult problem for those writing markup, as IE does not
actually support the g tag for an inline quote. Workarounds include the following: using
CSS to break every other browser and then using &1dquo; and ” around the string
in a way that even the HTML 4 spec says you shouldn’t; using blockquote in a semantically
incorrect fashion (on which screen readers rely); using JavaScript to insert the “ and

srdquo; characters so that only IE has invalid characters, adding unnecessary characters
for most users with screen readers anyway; and implementing other equally unsatisfactory
solutions.

This rule of using semantic markup also extends to using CSS, rather than tabies,
to manage page layout. The tabie tag exists solely to display tabular data, and using
it for anything else creates inflexible layouts that confuse screen readers and creates
nothing but headaches for those in charge of maintaining the markup. Using CSS for
page layout ensures that the web application’s page structure stays cohesive, by the page
having markup semantically define and associate elements correctly.

However, when displaying tabular data, the tavie tag (along with its supporting
tags) must get used. Fortunately, this works to the favor of the markup author as well
as the users. The use of the thead, tbody, and tfoot tags, each with their corresponding
tr collections of tn tags or ta tags (in the case of tvody), gives a semantic foothold for
scripting and styles. The caption tag, which appears just after the opening tabie tag,
gives exactly what it describes; allowing the titling of a table without losing the seman-
tic coherence of an external, adjacent daiv. Thus, the caption tag gives context to the
table headings about to get read out to the user. By adding a summary attribute to the
table when appropriate, users with screen readers will have an even better idea of what
the table has organized before they get lost in the sea of table cells.

IE does not render a table until all the table’s contents loads into the browser. This
means that when a table contains thousands of rows of data, IE users will simply get a
blank screen until the entire contents load, at which point the data will appear on the
screen all at once. To keep the users from having to wait, you may want to use some sort
of filtering or pagination (or both). This may require more steps to get to the information
of interest to the users, but will get it to them faster.

In order to create accessible forms, you must use properly labeled form inputs with
explicit association between labels and their inputs, which actually kills three birds with
one stone (so to speak). First, it creates the semantically correct markup a screen reader

WCAG and Section 508 49

uses to describe the form to the user accurately. Second, this semantic association
creates an easier-to-use form for everybody, because browsers tend to allow the focus-
ing of a label to select its input, which provides a more intuitive interface (especially for
checkbox and radio inputs, because the use of labels greatly increases the clickable area to
select the input). Lastly, it provides an easier-to-style structure by default.

Consider the following form markup:

<form action="?step=2" id="registration">
<label for="username" tabindex="1">
Username:
<input id="username" name="username" type="text" />
</label>
<label for="password" tabindex="2">
Password:
<input id="password" name="password" type="password" />
</label>
<label for="password_confirm" tabindex="3">
Confirm Password:
<input id="password_confirm" name="password_confirm"
type="password" />
</label>
<input id="submit" name="submit" type="submit"
value="Next Step" tabindex="4" />

</form>

Not only does this form have clean, easy-to-read markup, but also it has the struc-
ture in place for easily written CSS to display it (as shown below):

form {
background-color: #666;
margin: 0;
overflow: auto;
padding-top: 50px;
padding-right: 20%;
padding-bottom: 50px;
padding-left: 20%;
}
label {
clear: both;
display: block;
float: left;
width: 100%;

50 Chapter 2 Accessibility

label input {
display: block;
position: relative;
left: 50%;
top: -1l.4em;

}

#submit {
float: right;

width: auto;

When combined, the form renders in a way that is easily navigable and generally
used in online forms (like the form written out in Chapter 1, “Usability”); this inter-
face is shown in Figure 2.2.

1. Account @ 2. Profile O 3. Confirm O
Username:

Password:

Confirm Password:

Next Step

FIGURE 2.2 The usable form rendered from accessible XHTML and CSS.

2.1.1.3 Priority 3

The priority 3 checklist provides a number of practices that, for the most part, en-
hance the accessibility of a web application rather than keep it from failing accessibility
tests. These cover practices such as expanding abbreviations and acronyms, identifying
the primary natural language of the document, providing a logical tab order through
form controls, and providing a way of skipping over multi-line ASCII art.

The expansion of abbreviations and acronyms comes easily; you need only
add titie attributes to the abbr and acronym tags, which browsers then offer to the
users as a mouse-over. One small detail to keep in mind is that IE does not actually
support the abbr tag, but developers can work around this by either using script-
ing or simply not caring that IE users get left out of having the ability to expand
abbreviations.

WCAG and Section 508 51

Identifying the natural language of content also comes easily, in the form of the 1ang
and »m1:1lang attributes of the nem1 tag. These get set to the locale key for the user and
can get populated from the current user’s preference or a slightly reorganized accept-
Language header, as long as the content matches it. In addition, thanks to XHTML,
the language can get set on a particular element in the markup itself. Therefore, while
the document as a whole has a 1ang of en_us, a particular element can contain £r_rr, as
demonstrated below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/
TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html lang="en" xml:lang="en" xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Vincent</title>

</head>

<body>

<hl>Vincent</hl>

<p lang="fr_ FR" xml:lang="fr_ FR">Vincent Malloy a sept ans, il est toujours poli
et fait ce qu’on lui dit.</p>

</body>
</html>

Providing logical tab ordering through form controls is as easy as adding the tabindex
attributes (these were included in the preceding registration form). By following the
order of the page structure itself and (generally speaking) the page layout as well, forms
become easier to use by those with and without assistive technology.

The WCAG as a whole contains guidelines that can make web applications more
accessible; the checkpoints include providing alternative text for images and producing
valid markup; they also include the practices that offer users added benefits, such as
expanded abbreviations and multilingual pages, to using the technology. As with any
other guideline, WCAG exists as a tool to improve your application. When seen as a
hurdle to cross, it will not help nearly as much as it can.

2.1.2 Section 508

Section 508 is a component of the United States Rehabilitation Act, which requires
federal agencies to ensure that federal employees with disabilities have electronic and
information technology user experiences that are comparable to the user experiences of
federal employees without disabilities. The 1194.22 section of Section 508 deals with

52 Chapter2 Accessibility

web-based information and applications and parallels WCAG Level 1, though Section
508 does differ in the following requirements:

(I) When pages utilize scripting languages to display content or to create interface
elements, the information provided by the script shall be identified with func-
tional text that can be read by assistive technology.

(m) When a web page requires that an applet, plug-in, or other application be pres-
ent on the client system to interpret page content, the page must provide a link

to a plug-in or applet that complies with 1194.21(a) through (1).

(n) When electronic forms are designed to be completed online, the form shall
allow people using assistive technology to access the information, field elements,
and functionality required for completion and submission of the form, including
all directions and cues.

(0) A method shall be provided that permits users to skip repetitive navigation links.

(p) When a timed response is required, the user shall be alerted and given
sufficient time to indicate more time is required” (www.section508.gov/
index.cfm?FuseAction=Content&ID=12#Web).

The first of these simply requires that scripts manipulating the DOM of the page,
or otherwise displaying content, create content that meets accessibility standards. As an
example of the type of behavior to which this applies, note that web applications that
use late-loading to generate the interface and start out with an almost completely blank
page cannot declare that they meet Section 508 compliance simply because a scan of
the markup meets requirements. If the generated interface meets requirements, then
they (assuming that the interface does not fail elsewhere) may say so truthfully.

Although the clause regarding timed responses seems minor, Ajax-driven web ap-
plications do need to keep this in mind during implementation of interfaces that have
constantly updating content. As a prime example, an in-page XML feed that is ren-
dered in a container that shows a list of linked headlines may send a request to the
server every ten seconds (or some other predetermined length of time) in order to
check for new content, displaying it when applicable. Especially when the container
displays only a single headline at a time, this activity presents a challenge to those with
a screen reader or a cognitive disability such as attention-deficit hyperactivity disorder;
it also presents a problem to those who simply take a little longer than the average
person to read and digest text. Simply adding a control to slow down (or accelerate,
for those who prefer it to update more often) the display of headlines in this example
would meet the Section 508 requirement around timed responses.

www.section508.gov/index.cfm?FuseAction=Content&ID=12#Web
www.section508.gov/index.cfm?FuseAction=Content&ID=12#Web

Screen Readers Can Handle Ajax 53

Although Section 508 refers to a United States law, many non-government
employment opportunities (United States-based and otherwise) require knowledge
of the law, as any company under contract with or receiving funds from the United
States’ government must adhere to it. Section 508 also enhances WCAG 1.0, mak-
ing a decent benchmark for web applications regardless of whether they have any-
thing to do with the United States government.

The greater the user base an application may have, the greater the possibility
that some users will have some visual, auditory, or motor impairments, making it
difficult (if not impossible) for them to use a required application. By making an
application accessible from the start, its developers will avoid the risk of having to
rush accessibility when the need suddenly arises; this hastily conceived accessibility
comes more difficultly than implementing accessibility as part of the application’s
core behavior.

2.2 Screen Readers Can Handle Ajax

If users cannot see the screen (and the web application within it), they will need some-
thing to describe and read it to them. Note that the assistive application must describe,
as well as read. As touched upon in Chapter 1, semantic markup makes these descrip-
tions much more relevant and meaningful to someone who does not (for example)
have the ability to tell at a glance that four links have anything to do with each other,
let alone that they provide navigation access to other parts of the web application.

A common misconception among Ajax developers and users alike is that screen read-
ers cannot handle dynamic content. They can, but supporting the major engines in screen
readers takes time and understanding. As a common example, Jaws and Windows-Eyes
might recognize a focus change as a point to start reading, while Home Page Reader does
not. As such, much like writing generic or all-encompassing code to support multiple
browsers, writing scripts to dynamically change the DOM structure need only include all
of the steps necessary for the most commonly used and supported screen readers.

Although use of text-only browsers such as Lynx (http://lynx.isc.org) or screen reader
simulations such as the Firefox extension, Fangs (www.standards-schmandards.com/
projects/fangs), do prove incredibly useful for quickly and easily checking a web ap-
plication on initial page load, only by using a fully-fledged screen reader can you ac-
curately and consistently test a dynamic web application. Jaws, developed by Freedom
Scientific (www.freedomscientific.com/fs_products/JAWS_HQ.asp), has commanded
a portion of the market comparable to IE’s market share of browsers, especially in
the United States.

www.standards-schmandards.com/projects/fangs
www.standards-schmandards.com/projects/fangs
http://lynx.isc.org
www.freedomscientific.com/fs_products/JAWS_HQ.asp

54 Chapter 2 Accessibility

For developers whose primary development environment does not happen to consist
of Windows and IE, the Fire Vox (http://firevox.cleworld.net) extension for Firefox has
recently come onto the scene, and it can run in Windows, Mac, and Linux. Initially writ-
ten as a demo of CLC-4-TTS,? the extension has proven quite popular and (through the
CLC-4-TTS library) has been the first of all of the big names in screen readers to offer
support for the drafted WAI-ARIA guidelines (see section 2.5, WAI-ARIA, later in this
chapter). It also provides MathML support (which Firefox supports “out of the box”)
and support for the CSS3 Speech Module.

2.2.1 Content Replacement

Because screen readers work linearly, they will not automatically jump from the cur-
rent location in the string of audio that makes up the page to the container of replaced
content. To inform the user that the DOM has changed and to bring relevant content
into the page, the element must receive focus; this communication is accomplished
with a title attribute containing something to the effect of “Switch to virtual buffer”
to ensure that the screen reader switches to the affected element; this practice also en-
sures that the user hears the new content.

The two functions below abstract out this behavior so that any JavaScript replac-
ing text or an element in the DOM can simply call the appropriate function without
having to write out each step in the process. Each function sets the titie attribute and
sets an onblur event to remove the title attribute (because once the users listen to the
updated content and move on, the interface should not instruct the users to enable the
virtual buffer should they want to revisit the element in question); the script also sets a
tabindex of -1 to ensure that the focus () call will work and then inserts the new content
into the DOM and draws focus to it:

* Abstract out the replacement of text to add screen reader support.

function setElementText (container, text) {

container.setAttribute('title', 'Switch to virtual buffer');
container.onblur = function() { this.removeAttribute('title'); }
container.tabIndex = -1;

container.firstChild.nodevalue = text;

container.focus();

2 Core Library Components for Text-to-Speech (CLC-4-TTS) was written by Charles L. Chen, who is also the author of the
Fire Vox extension.

http://firevox.clcworld.net

Screen Readers Can Handle Ajax 55

R
/

* Abstract out the replacement of an element
* to add screen reader support.
* /

function replaceAndFocusElement (new_element, old_element) {

new_element.setAttribute('title', 'Switch to virtual buffer');
new_element.onblur = function() { this.removeAttribute('title'); }
new_element. tabIndex = -1;

parent_element = old_element.parentNode;

parent_element.replaceChild(new_element, old_element) ;

new_element.focus() ;

Essentially, each of the functions prepares the target element before performing the
DOM manipulation (text or element swap) and then finally calls focus () on the ele-
ment to bring it to the user’s attention. When that happens, Jaws (for instance) simply
jumps to the focused element and reads its contents. As such, it makes sense to provide
some sort of status text, such as “update” or “additional,” as a prefix so that the user
knows that the reader has moved to another location in the DOM.

2.2.2 Form Validation

Because form validation simply consists of partial content replacement, it uses the same
techniques as used in full element replacement, abstracted out so that any number of
replacements and changes can get made and then brought to the attention of the user.
Using the three functions below, this support can get added easily to anything where
DOM manipulation needs to support screen readers:

function prepareElementForReplacement (element) {

element.setAttribute('title', 'Switch to virtual buffer');
element.onblur = function() { this.removeAttribute('title'); }
element.tabIndex = -1;

function highlightElementAfterReplacement (element) {

element. focus () ;

function notifyOfElementChanges (element) {
prepareElementForReplacement (element) ;

highlightElementAfterReplacement (element) ;

56 Chapter 2 Accessibility

By using the last of these functions, a form can perform validation, insert error
messages into the DOM at appropriate places, and then notify the user of the changes.
Using the previous registration form as an example, the following generated source
code comes after attempting to register a user with a two-word username, without
confirming the password:

<form action="?step=2" id="registration">
<div id="messages'">Errors found</div>
<label for="username" tabindex="1">
(Incorrect) Username:
<input style="" id="username" name="username" type="text" />
</label>
<label for="password" tabindex="2">
Password:
<input style="background-color: black; color: yellow;
font-weight: bold;" id="password"
name="password" type="password" />
</label>
<label for="password_confirm" tabindex="3">
(Missing) Confirm Password:
<input id="password_confirm" name="password_confirm"
type="password" />
</label>
<input id="submit" name="submit" value="Next Step"
tabindex="4" type="submit" />

</form>

By’caﬂing notifyOfElementChanges (document.getElementById(‘registration’)) aﬁfr
completion of the form validation and reporting the errors, the screen reader would
start off with “Errors found” before reading through each of the form labels and ele-
ments; now there is a status included in the form label associated with each input.

2.3 Unobtrusive Ajax

In the markup examples in the last section, you might have noticed a complete absence
of event handlers in the submit button in the form of an onciick attribute and in the
form element as an onsubmit. By attaching the onsubmit listener in the script itself, this
practice ensures that any unanticipated scripting error or failure to load (either by
HTTP error or by the user disabling JavaScript) will simply result in a full page load
and no loss of functionality to the user.

Unobtrusive Ajax 57

The following method of the profiieview object (fleshed out in its entirety in
Chapter 3, “Client-Side Application Architecture”) will get called when the document’s
load event calls its listeners:

/
VAR

* Add event listeners for various events about which this
* particular view needs to know.
*/
ProfileView.prototype.init = function() {
// The form submission itself
this.form = document.getElementById('registration');
// In this case, if no profile form exists, the
// script has no reason to attach itself to anything.
if (!profile) {
return false;
}
this.form.onsubmit = function() {
ProfileView.prototype.submit.apply (profile, arguments) ;
return false;
Yi
// Template element for dynamic form generation
this.label_template = document.createElement ('label');
var input = document.createElement ('input');
input.setAttribute('type', 'text');
this.label_template.appendChild (input) ;

This method, in addition to using the low-loaded document object to create ele-
ments as templates for replacement later on, adds its supbmit () method to the form
elements onsubmit event, which then returns false immediately afterward. If some
JavaScript error happens to work its way in (which it should not, but always code for
the worst-case scenario), the form would simply submit through the normal full-page
load and the users would not even notice the difference, unless they had the displaying
of JavaScript errors enabled in their browser.

Once the JavaScript handles the form and hands it off to the next step in the regis-
tration process, the form has the following as its rendered markup:

<form action="?step=3" id="registration">
<div id="messages'"></div>
<label tabindex="1" for="name">

Alias:

58 Chapter 2 Accessibility

<input name="name" id="name" type="text" />
</label>
<label tabindex="2" for="email">

Email Address:

<input name="email" id="email" type="text" />
</label>
<label tabindex="3" for="color">

Favorite color:

<input name="color" id="color" type="text">
</label>
<input id="submit" name="submit" value="Next Step"

tabindex="4" type="submit" />

</form>

Even though JavaScript generated this DOM structure, it still lacks any inline
styles, inline event listeners, and other direct hooks that would otherwise get discour-
aged when manually writing markup. At any step of the way, if something interrupts
the JavaScript, the application can still move forward. Just as importantly, at any given
step in the application, the markup presented to the user presents an interface just as
accessible to assistive technologies as when the user first navigated to the page.

This practice also makes the web application more usable for all users, because it
preserves the markup expected by the users, or at least the behavior of the markup as
expected by the users. In most modern browser, for example, users can hold down a
key (the command key in MacOS) while clicking a link or submitting a form for the
action to open a new tab. If the markup had inline event handlers instead of following
standards, that behavior would break, leaving a frustrated user who may choose to stop
using the web application or to create a user script to make up for the lack of support
for an expected action. In either event, coding shortcuts like inline event handlers
make the developers look as though they cut corners while writing the application
or that they simply wanted to force the user into a certain usage pattern, which never
really works anyway.

2.4 Designing with Accessibility in Mind

In order to simplify designing and developing accessible web applications, incorporating
certain ideas into the initial application design makes things much easier on everybody
involved. Doing otherwise forces attempts to shoe-horn accessibility in as one of the last
steps in the development process. Luckily for designers, the accessibility of an application

Designing with Accessibility in Mind 59

largely comes from its implementation rather than its initial design, but some aspects of
accessibility do have their roots in those initial mockups.

2.4.1 High-Contrast Design

Although most operating systems have standard ways to enhance the contrast of the
screen itself, this cannot compensate for designs that include text colors that are too close
to the element’s background. The current WCAG 2.0 document requires one of two
luminosity contrast ratios (www.w3.org/ TR/WCAG20/appendixA.html#luminosity-
contrastdef): 5:1 for Level 2 or 10:1 for Level 3.

In practice, this requirement means that the text of a page having an explicit value
set for its color needs to have an explicit value set for its background color as well. This
formatting must give sufficient contrast between the two, regardless of whether the
text also has a background image. Images can fail to load either by a user’s preference
(many mobile browser users disable images, but not CSS, if they get charged based on
bandwidth usage) or by some mishap in the loading process. Keeping background col-
ors darker or lighter makes luminosity contrast ratios much easier to increase, allowing
designers more flexibility without impeding the usage by low-vision users.

A color of rgb (100, 100, 100) on black has a luminosity contrast ratio of approx-
imately 3.55, falling short of both Level 2 and Level 3. When enhancing contrast
and having similar colors, the contrast enhancement actually lessens the readability
(see Figure 2.3).

FIGURE 2.3 Dark text on a black background before and after contrast enhancement.

A color of rgb (150, 150, 150) on black has a luminosity contrast ratio of approxi-
mately 7.22, which meets Level 2, but falls short of Level 3. Enhancement at this level
sharpens the letters more than increasing the contrast between the text and the back-
ground (see Figure 2.4).

A color of rgb (200, 200, 200) on black has a luminosity contrast ratio of ap-
proximately 12.72, which exceeds Level 2 and Level 3. Enhancement at this level also
sharpens the letters (see Figure 2.5).

www.w3.org/TR/WCAG20/appendixA.html#luminositycontrastdef
www.w3.org/TR/WCAG20/appendixA.html#luminositycontrastdef

60 Chapter 2 Accessibility

TAL

ASSORTED TALES OF CODING R
JAVASCRIPT, DOM, CS5, AND MANY
A RI

FIGURE 2.4 Lighter text on a black background before and after contrast enhancement.

TAL TAL

ASSORTED TALES OF CODING R ASSORTED TALES OF CODING R

JAVASCRIPT, DOM, C55, AND MANY JAVASCRIPT, DOM, C5S, AND MANY
A RI A R

FIGURE 2.5 Bright text on a black background before and after contrast enhancement.

A high-contrast design not only applies as an accessibility concern, but also as a
more general usability concern. Not only does eyesight tend to deteriorate with age,
but monitors do as well. A user might have perfect vision, but an aging screen can im-
pose an artificial handicap that inadvertently simulates low vision.

2.4.2 Zoomable Interface

This requirement also sits in the vast, gray area where usability and accessibility
overlap. Many designers have a bad habit of assuming that everyone has the same or
a similar screen resolution as theirs and insisting on pixel-perfect implementations.
Not only does this impose a completely unrealistic requirement on the web develop-
ers writing the markup and styles, but also it prohibits scaling of page elements by
sizing to the pixel.

Modern browsers generally will allow the zooming of text set to a font-size using
pixels, but will not zoom containers constrained to dimensions set to the pixel. This
means that while the text may increase in size to a readable point, the container caus-
ing it to wrap will decrease the number of words fitting on a single line, which makes
it much more difficult to read.

IE does not scale text set with a pixel-based font size, and web designers generally dis-
courage this technique, because displays with larger resolutions can fit many more pixels
into a smaller screen area. This results in incredibly tiny, unreadable text. Opera, on the
other hand, zooms containers, images, and text at the same time, resulting in completely
zoomable web interfaces without losing the clarity of fonts found when zooming in on the
screen as a whole.

Designing with Accessibility in Mind 61

Screen magnifiers can get around this problem by increasing the entire visible screen,
so that the physical screen shows a smaller portion of it. Scaling techniques using this
method, though, tend to create very blurred displays, as they simply represent a single
pixel of the screen using a larger number of pixels rather than intelligent scaling (see
Figures 2.6-2.8).

1. Account @ 2. Profile O 3. Confirm O

Username:
Password:

Confirm Password:

Next Step

FIGURE 2.6 A screen without any scaling.

1. Account @ 2. Profile o 3. Confirm o

Username:

Password: ______________

Confirm Password:

FIGURE 2.7 Using the browser’s built-in text zooming functionality. Note that the images do not scale,
but the text renders well.

As a designer, supporting this behavior means that the mockups created will need to
have notes attached explaining how the styles should handle page zooming or resizing
(because the two actions have the same sort of effect on page layout). Which elements
absolutely must maintain their dimensions to the pixel (generally sidebars, which do
not require as much attention as the rest of the page)? How should elements flow as
the page dimensions change?

62 Chapter 2 Accessibility

1. Account @

Username:

Password:

FIGURE 2.8 Using the screen magnification built into MacOS 10.4, the screen zooms easily; however,
the anti-aliasing can make complex fonts very difficult to read.

Web application interface layouts will not and cannot stay pixel perfect, and those
attempting to force the issue quickly find that this effort will fail. Browsers have their
own implementations of the DOM specification, and all rendering engines have their
own flaws and quirks that make pixel-perfect designs unachievable in web applications. If
designers, instead, embrace and work with the fluidity of web-based interfaces, web appli-
cations will seem much more intuitive to the users and give much more of an impression
that those behind the application understand the technology rather than fight against it.

2.4.3 Easily Targeted Controls

When using a laser mouse, trackpad, or trackball to move the cursor around the screen,
you can target pixel-sized controls in an interface without too much trouble. For those
who cannot use these devices, whether from mobility impairment or arthritis, this ac-
tion suddenly morphs into an impossibility. DHTML menus, especially multi-level
menus, already can pose a challenge to users when requiring the cursor to follow a
narrow path to keep the desired menu visible for usage.

Now imagine navigating the same menu structure with a joystick or with a device
interpreting the movement of your head to move the pointer around the screen. When
using user-triggered actions to hide interface elements (such as clicking a “close” icon
for widgets or clicking away from a menu to collapse it) and a properly zoomable in-
terface, these tasks get much less daunting.

From a design perspective, laying out elements with slightly larger fonts and a
little more padding makes them easier to read and easier for the users to interact
with the elements on the page. If an interface has too much functionality to take
advantage of slightly larger areas, then the interface itself may need a revisiting to
keep things manageable.

WAI-ARIA 63

Adding the ability for users to navigate the interface via the keyboard not only helps
those who cannot use a mouse, but also those who prefer not to; this latter group includes
people performing data entry tasks or those using Firefox’ Find-As-You-Type feature to
select and activate links. Giving users the ability to interact with the interface in multiple
ways will generally give a greater number of users an easier time of using the interface.

2.5 WAI-ARIA
The W3C WAI group has a working draft for ARIA (Accessible Rich Internet Applica-

tions), which solves many of the problems with simple markup that would otherwise
require scripted solutions. (These solutions include the method of notifying screen
readers that a particular DOM element has changed.) It also provides a more dynamic
web application approach to associating elements, allowing controls to get paired with
the affected elements and enabling a more cohesive experience for users with screen
readers or any other clients taking advantage of ARIA.

The “live regions” aspect of the current ARIA working draft introduces a particu-
larly useful set of functionality referenced from XHTML, which (once screen readers
other than Fire Vox support it) will render scripts—such as those shown in the “Screen
Readers Can Handle Ajax” section of this chapter—in a manner that is rather clumsy
and archaic by comparison. It allows elements with the aaa:1ive attribute set to ot
polite, assertive, OF rude to not only automatically bring the updated DOM element
in question to the user’s attention without losing the current context in the page, but
also to the degree specified. When set to ott (the default), it will not update the user.
When set to polite, it will wait until the user seems idle before informing the user of
an update. When set to assertive, it will update the user at the earliest convenient time
(generally at the end of the current sentence). When set to rude, it will interrupt what-
ever the user might have currently been speaking and will in most cases seem quite jar-
ring; fortunately, it will most likely get used only for fatal errors or similar situations.

Unfortunately, not only do the current scripting techniques for notifying screen
readers of DOM changes fall under the ruge category (because the script has no way to
tell the screen reader to at least finish the current sentence), but also they go even further
by removing the users from their current context and putting the focus on the changed
element so that they can hear it. This does not mean that Ajax cannot work with screen
readers, but it does mean that users with screen readers will have a more synchronous
application experience and will not hear every little change that occurs in the DOM

64 Chapter 2 Accessibility

unless it makes sense to do so; this linear application experience will continue until
screen readers start supporting WAI-ARIA.

Working with the live regions ARIA offers, attributes can mark elements as controls
for other elements by setting their aaa:control attribute to the ID of the element they
control. This causes updates to the target element to be read out immediately whenever
they have their defined control as the source of the change. This gives users instant
feedback to their actions, giving a more responsive interface regardless of the assistive
technology involved.

The atomic property introduced by ARIA fits directly into the example given earlier
in the chapter surrounding client-side form validation with support for screen readers.
The property essentially declares responsibility of its element for all of the child ele-
ments, so that any change to a child element of the atomic element will trigger a vocal
update from it, instead of the affected child. Thus, instead of having to run a series of
JavaScript commands to notify the user of the errors in the form, the form could have
aaa:atomic="true” aaa:live="polite” set in its attributes, and the client can take care of
the rest, without any additional scripting involved.

WAI-ARIA offers more control over replacement notification than is covered here,
but needs screen reader support to bring it to mainstream users. However, for that
to happen, developers need to start coding for it now. As mentioned earlier in this
chapter, Fire Vox already provides support for the aaa:1ive attribute, among other
features of WAI-ARIA, so developers can code and test today with this technology.
Taking the previous JavaScript example code, it simply takes a small tweak to support
WAI-ARIA:

function prepareElementForReplacement (element) {
var live = (arguments[l]) ? arguments[l] : 'polite';
element.setAttributeNsS (

.w3.0rg/2005/07/aaa"',

'http://v
'aaa:atomic',
yes'
)
element.setAttributeNsS (

'http://v .w3.0rg/2005/07/aaa"',

'aaa:live’,

'live'

WAI-ARIA 65

The preceding function would need only get used to elements not already flagged
with the appropriate ARIA attributes; this example should show just how easy support
for screen readers will get, especially after they support ARIA. Because screen readers
already can handle Ajax and its dynamic manipulation of the DOM, developers now
need only finer control over how screen readers do or do not interrupt the users to
inform them of updates or finer control over the ties between the user’s actions and the
changes to the DOM as a direct consequence.

This page intentionally left blank

In This Chapter

W 3.1 Objects and Event Triggering 68
B 3.2 Model-View-Controller Design Pattern 87
B 3.3 Event-Driven Application Development 104

67

Architecture is a topic of growing importance, especially when considering
the possibilities of running several Ajax/DHTML libraries in a single web
application; in fact, client-side application architecture needs just as much con-
sideration as server-side application architecture. Architectures can vary wildly,
depending on the overall application design, but all need the flexibility to react
dynamically to the actions of the user.

A main advantage over traditional full-page load web applications, event-driven
architecture flourishes in applications that maintain state. While the server-side
application must rebuild its state on each hit, the client-side application can main-
tain an interface constantly for multiple actions, while still having the ability to

rebuild the client-side state from server-side data whenever necessary.

3.1 Objects and Event Triggering

A combination of object-oriented design and light-weight event handling can go a
long way, although the coupling often can confuse those unused to JavaScript’s con-
text when calling object methods from an external object. This issue does not come
up nearly as often in procedural JavaScript, because most functions get declared and
called in the context of the window object.

By using ca11 and apply, object method calls will run in the context necessary.
These functions both belong to the Function object’s prototype, so any function dec-
laration automatically supports them. Each of the methods takes a first argument
of the object to hold the context for the function call, and each takes the argu-
ments to pass to that call as either additional arguments or as an array of arguments,
respectively.

The example below shows a man class that, when it has the wakeup method called
as the listener to an event such as c1ick or submit, will call for its valet:

function Man() { }
Man.prototype = {
valet : false,

wakeUp : function(event) {

68

Objects and Event Triggering 69

alert(this.valet + "? Some breakfast, please.");

Y
var wooster = new Man() ;

wooster.valet = "Jeeves";

Adding wooster’s wakeup method as an event listener in the following way will
result in the display of “undefined? Some breakfast, please.” This happens because,
even though the event seems to call wooster.wakeup, it really calls wooster’s reference of
the wakeup method in the context of the element generating the event itself. The tnis.
valet reference within wakeup then doesn’t exist, because the button does not have a
member variable named vaiet:

var button = document.getElementById("morning") ;
button.addEventListener (

"click",

wooster.wakeUp,

false

By using app1y in the listener, as shown in the next example, the scope will change
to that of wooster, ensuring that the man can call for his valet:

var button = document.getElementById("morning") ;
button.addEventListener (
"click",
function() {
Man.prototype.wakeUp.apply (wooster, arguments) ;
H,

false

When dealing with events and event handling in client-side applications, architectures
typically support two types of events: native object events and events in the application’s
own JavaScript objects.

70 Chapter 3 Client-Side Application Architecture

3.1.1 Native Object Event Handling

The DOM, as described by the W3C, provides an inherently neutral interface for
updating to and reading from the structure, presentation, and content of a given docu-
ment. This means that as long as all clients follow the standards, developers can write
their client-side application once and have it render and execute exactly the same each
time, regardless of the underlying rendering engine.

The availability of this unified API means that if all clients followed the standards,
you could write your JavaScript to access and manipulate the DOM nodes in your
application and have the JavaScript work perfectly in the rending engines of Mozilla-
based browsers, Internet Explorer, Opera, Konqueror, Safari (based on Konqueror’s
KHTML engine), and more. Unfortunately, the world does not come together per-
fectly, and as such, not all browsers exactly follow the standards.

The DOM Level 2 Document Object Model Events Technical Report describes the
event/listener interface to the DOM. It starts off with three essential methods to an

EventTarget:

addEventListener (
String type,
EventListener listener,
Boolean useCapture

)

removeEventListener (
String type,
EventListener listener,
Boolean useCapture

)

dispatchEvent (

Event event

These methods force DOM nodes to follow the Observer Pattern, meaning you
have the ability to pass object references to another object so that one object can let an
arbitrary number of objects know when something has happened. The part of a web
application’s client-side code that interacts with the DOM uses these methods exten-
sively to handle the users’ interaction with the UL

3.1.1.1 Internet Explorer

Internet Explorer does not follow the DOM standards when it comes to binding to
DOM events. It instead follows its own definition of an interface for event listening;

Objects and Event Triggering 71

the following methods correspond to W3C’s addeventListener and removeEventListener
methods:

Particular to event handling with respect to the DOM, the DOM specification has a
detailed description of the usecapture flag. Because the flag has little bearing on the
subject at hand with respect to this chapter, it will not get explained here.

attachEvent (
String type,
EventListener listener
)
detachEvent (
String type,

EventListener listener

This deviation from the standard forces the use of redundant calls when using
these specific methods in event handling code. Because writing duplicate code all over
your application creates a maintenance nightmare, you may want to consider abstract-
ing these calls into a single place. Someday, a version of Internet Explorer may even
support the standards, making the use of attachevent and detachivent necessary only
when supporting legacy browsers; however, no version of Internet Explorer follows
the standard today. Until Microsoft releases that version and it becomes widely used,
developers must settle for merely abstracting out the usage of these methods so that
when changes need to happen, they need only happen in one place.

The handling of calling the listeners in Internet Explorer also deviates from the
standard and the implementation in other browsers. The following section in this
chapter briefly will review JavaScript’s this implementation and how it differs from
the object models in other languages, such as Java or PHP. When other browsers call
listeners, they tend to follow the standards, so that tnis refers to the element triggering
the event. When Internet Explorer calls listeners, it calls the functions by reference and
switches the meaning of this so that you cannot tell which element triggered the event
in the first place.

3.1.2 JavaScript Objects

Thanks to JavaScripts structure, if you know arrays, you already know JavaScript objects
because

72 Chapter 3 Client-Side Application Architecture

var myobject = new Object();

myobject.someproperty = somevalue;

and

var myobject = new Object();

myobject['someproperty'] = somevalue;

both work the same way. JavaScript’s flexibility offers many ways to define objects, even
with object initializers, allowing the following example to work just as well:

var myobject = {someproperty:myvalue};

In JavaScript, keep in mind, especially when dealing with event callbacks, that the
function or method has the caller as its owner and not the object itself. Consider the
following example, in which you construct an object and assign an event listener:

function Sample (msg) {
this.message = msg;
}
Sample.prototype = new Object;
Sample.prototype.message = msg;
Sample.prototype.itClicked = function() {
alert (this.message) ;
}
var a = new Sample('I heard a click!');

document .addEventListener ('click', a.itClicked, false);

This code will actually present an undefined value in an alert dialog when you click
the page, because this will refer to the document as opposed to the variable, a. Because
document .message does not exist, you will get an error when the script tries to use its
value later on. It takes some getting used to and some rethinking on how to architect
your JavaScript, but this model actually provides support for object inheritance, as
shown in the following code (assuming you've defined the previous example):

function ExtendedSample (msg, times) {
// Create a reference to Sample's constructor
this.parent = Sample;
// Call constructor in the context of ExtendedSample

this.parent (msg) ;

Objects and Event Triggering 73

this.repeat = times;

/ Use Sample's prototype to extend it
ExtendedSample.prototype = new Sample;

/ Declare the object variables to reference in methods
ExtendedSample.prototype.message = undefined;
ExtendedSample.prototype.times = 1;

// Override the previous declaration of itClicked
ExtendedSample.prototype.itClicked = function() {
for (var i = 0; 1 < this.repeat; i++) {

alert (this.message) ;

While this example makes an incredibly annoying class for the users, it illustrates how
calling this.parent (msg) ; actually runs the object definition of samp1e with Extendedsample
as the owner. This defines message and itciicked for Extendedsample, which then proceeds
to override itclickea with the new function definition. Incidentally, this.parent does
not use any keyword in JavaScript; it relies only on how function references work in
relation to the caller/callee handling. You could declare it any way you like, but using a
variable name of the parent makes its purpose in the child object’s declaration clear.

Using objects like these, you can implement a simple event listener/dispatcher
system. Because the DOM standard already defines the methods addeventristener,
removeEventListener, and dispatchivent, why not make it easier on yourself and other
developers by following suit?

3.1.2.1 EventDispatcher

The following example demonstrates a simple custom event, an event dispatcher, and
their usage. The Eventpispatcher object has no events to start with because it gets used
as an abstract class so that it gets used only when extended and never when it is instan-
tiated directly. In addition, while this example contains a lot of code to display a single
alert, pay attention more to the decoupling of the content display from the content
retrieval that is enabled by using events:

function CustomEvent () { }

CustomEvent.prototype = {

type : 'custom'

/ Custom EventTarget equivalent

74 Chapter 3 Client-Side Application Architecture

function EventDispatcher () { }
EventDispatcher.prototype = {
// An object literal to store arrays of listeners by type

events : {1},
// If it supports the type, add the listener (capture ignored)
addEventListener : function(type, listener, capture) {

if (this.events[typel) {
this.events[type] .push(listener) ;

Iy

// If it supports the type, remove the listener (capture ignored)

removeEventListener : function(type, listener, capture) {
if (this.events[type] == undefined) {
return;
}

var index = this.events|[type].indexOf (listener) ;
if (this.events[typel] [index]) {
this.events[type].splice(index, 1);

Iy

// Cycle through all of the event listeners,
// passing the event to the callbacks
dispatchEvent : function(type, event) {
if (this.events[typel) {
for (var 1 in this.events[type]) {
if (typeof this.events|[type][i] == 'function') {
this.events[typel] [i] (event) ;
// Accepts an array of the contextual
// object and the function to call
} else if (typeof this.events|[type][i] == 'object') {
this.events|[type]l [1]1[1].call(
this.events[typel [1]1[0], event
)

/**

* Extend the CustomEvent class with a specific type

Objects and Event Triggering

75

* and an extra variable to send the name with the event.

* /
/

function NameEnteredEvent (name) {
this.type = 'pick';
this.name = name;
}
NameEnteredEvent.prototype = new CustomEvent;

/ * %
/

* Extend EventDispatcher, creating a 'pick' event.
ny
function AliasPicker () {
this.events.pick = new Array();
}
AliasPicker.prototype = new EventDispatcher;

/ * %
/

* The Watcher, in this case, simply defines a callback
* //'
function Watcher () {
this.namePicked = function(e) {

alert (e.name) ;

var picker = new AliasPicker();

var w = new Watcher();

picker.addEventListener('pick', w.namePicked, false);

picker.dispatchEvent (new NameEnteredEvent ('Bob')) ;

The nature of passing a single customevent object to corresponding listeners means

that it can pass as much information as you like and not have to change anything with

regards to how events get handled. Just extend the base customgvent class, set your type,

and create any member variables the listener will need.

By extending the Eventpispatcher, objects can have a much more loosely coupled
relationship and make it much easier to detect updates that need to occur throughout the
UL For instance, if you have a page where the username gets displayed at the top, and
the users update their name, the object responsible for updating the display of the user-

name would need only add itself as a listener to the object managing the user’s input; the
object would not need to know any of the internals or even object-specific methods of

the object responsible for updating the username in the first place.

76 Chapter 3 Client-Side Application Architecture

Callback handling works just like you would expect from any of the event
dispatching from the DOM itself. The listeners still get event instances—though
simpler forms—passed to them, in the form of generic objects carrying the relevant
information about the event in question. This practice makes the logic simpler for the
callbacks, because they will always know the format of the data passed back to them,
even when they get a subclass of the expected event.

The dispatching of events can go one of two routes, in order to simplify the handling
of scope. Because this, in JavaScript, evaluates to the current context of the method
call rather than the object owning the method call, listeners can specify an object to
use for the scope of the method call in addition to the method. This also makes coding
simpler for event generation, because a single, simple eventpispatcher declaration can
take care of the decoupling needed to have a flexible, easy-to-develop application.

3.1.2.2 XMLHttpRequest, Abstracted

XMLHt tpRequest eXists as the very core of what allows Ajax to work as a pure JavaScript
client/server communication layer. Other methods, such as using itrames or images,
do exist, but these methods rely on hidden markup, and as such, are hacks that only
emulate what the xurutcprequest supports does natively.

Using the xurrttprequest object at first glance seems to make things more difficult
when used with an object-oriented architecture, because if you set onreadystatechange
= this.someMethod; in an object, you will get only “function-undefined” errors. While
this does annoy quite a few developers, it really just forces you to create a pool of
xMLHttpRequest instances. This benefits the application quite a bit because the code
then has the ability to send more than one request at a time (never forget the asynchro-
nous part of the Ajax acronym) and promoting abstraction.

While the abstraction and pooling of xMLHt tpRequests makes application develop-
ment and asynchronous behavior much easier, only two HTTP requests to a single
server can occur at once. This stems from the HTTP specification itself and includes all
types of HTTP requests, including stylesheets, images, and requests made through the
XMLHt tpRequest object.

In the spirit of such abstraction and not having to rewrite the same xuruttprequest
functions each time, the examples used from now on will take advantage of the objects
defined in the following code (interspersed with descriptions); these examples define
a wrapper object for the native xuruttprequest object and a manager to create, retain,
and delete them:

Objects and Event Triggering 77

// A CustomEvent to pass AjaxRequests when loaded
function AjaxEvent (request) ({

this.request = request;
}
AjaxEvent.prototype = new CustomEvent;
AjaxEvent.prototype.type = 'ajax';

AjaxEvent.prototype.request = null;

The constructor for the ajaxrequest class below takes an argument for an ID, which
may seem a little out of place at first. It takes this argument because this class works
in conjunction with the ajaxrequestmanager class defined at the end of this section; the
application code uses the ajaxrequestuanager to ask for instances of the ajaxrequest
class. The ajaxrequestianager assigns an identifier for each instance before placing it
into a pool of currently active ajaxrequest instances; the pool keeps them in order so
that the application can at any time instruct the ajaxrequestuanager to abort the request
and clean up the object left behind. Without cleaning up used objects, the client-side
application will have a memory leak, because the objects will simply sit around in
memory until the user leaves the page.

At the end of the constructor, the code sets the xmruttprequest instance’s
onreadystatechange event to a function that uses app1y with a special variable, ais. The
ais variable holds a reference to the ajaxrequest instance. The statechangea method
of the ajaxrequest then gets called on ais using the app1y function, just as in the
example earlier in this chapter. By using a named reference to this rather than using this
directly, the scope of the function call from the event stays where the object needs it to
stay in the object itself:

// Instantiated by the AjaxRequestManager, not directly
function AjaxRequest (id) {
this.id = id;
// If the browser follows the standard
if (window.XMLHttpRequest) {
this.xhr = new XMLHttpRequest() ;
// ...otherwise, if Internet Explorer < 7
} else if (window.ActiveXObject) {
this.xhr = new ActiveXObject('Microsoft.XMLHTTP') ;
}
// Callback for this.xhr.onreadystatechanged
var dis = this;
this.xhr.onreadystatechange = function() {

AjaxRequest.prototype.stateChanged.apply (

78 Chapter 3 Client-Side Application Architecture

dis, arguments

The assigning of the ajaxrequest classs prototype to Eventpispatcher defines
AjaxRequest as a class extending the eventpispatcher class. By doing so, it can support
the event-driven coding practices used throughout a client-side application without
having to include any of the code defining those behaviors. The object simply defines
which events it has available (in this case, abort, fail, load, open, and send) and then
calls the EventDispatcher’S dispatchEvent method with a passed AjaxEvent instance when
it needs to trigger an event. The eventpispatcher class variables and methods then take
care of all of the logic surrounding managing listeners and the events themselves:

AjaxRequest.prototype = new EventDispatcher;
// Event dispatching
AjaxRequest.prototype.events = {

abort:[],

fail:[1,

load: [],

open: [],

send: []

}s

// Used to emulate this meaning this
AjaxRequest.prototype.id = null;
AjaxRequest.prototype.xhr = null;
AjaxRequest.prototype.aborted = false;

// Store variable/value pairs for the GET request

AjaxRequest.prototype.get = {};

// Store variable/value pairs for the POST request

AjaxRequest.prototype.post = {};

// Decide whether or not to send this.post

AjaxRequest.prototype.method = 'POST';

The following statechangea implementation has a very sparse definition, which is there
only to illustrate the handling of when the onreadystatechanged event of the xurattprequest
object returns. This definition supports triggering the load event of the ajaxrequest class
only if the xmwHttpRequest instance’s status returns 200; means the request came back

Objects and Event Triggering 79

with a 200 ox status, rather than a 404 wot rFound or some other status. In Chapter 5,
“Performance Optimization,” this method will have an expanded definition, taking
advantage of other potential return statuses:

// Callback for this.xhr.onreadystatechanged
AjaxRequest.prototype.stateChanged = function() {
// Only continue if finished returning
if (this.xhr.readyState == 4) {
try {
// Only continue if status OK
if (this.xhr.status == 200) {
var e = new AjaxEvent (this);
this.dispatchEvent ('load', e);
}
} catch (ex) {
var e = new AjaxEvent (this);
this.dispatchEvent ('fail', e);

The ajaxrequest class’s abort implementation acts mostly as an alias to the abort
method of its xuruttprequest instance. The only exception is that it also provides an
event so that all listeners to the abort event of an ajaxrequest instance can receive noti-
fication that something (either an error or a call to the abort method) has aborted the
request:

// Simple alias to abort the call
AjaxRequest.prototype.abort = function() {
this.aborted = true;
var event = new AjaxEvent (this);
event.returned = this.xhr.abort();
this.dispatchEvent ('abort', event);

return event.returned;

The open method takes care of several of the tasks that application code would other-
wise need to repeat if the application did not have this abstraction of the xuwuttprequest
object. Because the st cprequest object requires GET parameters to have their contents
encoded and then concatenated into a single string and appended to the request URL,
this method takes care of that formatting preparation. The code requiring Ajax-driven
behavior now need not contain code specifically for preparing the data for the request.

80 Chapter3 Client-Side Application Architecture

The open method also supports optional parameters to require it to use a synchronous
request and/or credentials that the server may require by way of HT'TP authentication:

// Alias to this.xhr.open, which stores the method in
// order to decide whether to bother concatenating
// this.post into url-encoded string form. Note: This
// takes only the baseurl as its url, because it encodes
// and concatenates this.get into the GET parameters.
AjaxRequest.prototype.open = function(method, url) {
this.method = method.toUpperCase() ;
var real_get = this.urlEncodeObject (this.get);

url += "?" + real_get;

var async = (typeof arguments[2] != "boolean") ? true : arguments|[2];
var user = (typeof arguments[2] != "String") ? null : arguments[3];
var pass = (typeof arguments[2] != "String") ? null : arguments[4];

var event = new AjaxEvent (this);
event.returned = this.xhr.open/(
this.method,
url,
async,
user,
pass
)
this.dispatchEvent ("open", event);

return event.returned;

The sena method, similarly to the open method defined previously, also ensures
the proper encoding of the data sent to the server, but only when it sends the request
via POST rather than the default GET method. In addition, when sending data via
POST, the sena method sets a request header of content-Type to application/x-www-
form-urlencoded, because the object sends the data in that format and the server may or
may not expect that content-Type:

// Simple alias to this.xhr.send, adjusting this.post
// depending on the request method specified.
AjaxRequest.prototype.send = function() {
if (this.aborted) {
return false;
}

var real_post = '';

Objects and Event Triggering

81

var event = new AjaxEvent (this);
if (this.method == 'POST') {
this.xhr.setRequestHeader (
'Content-Type',
'application/x-www-form-urlencoded'
)

real_post = this.urlEncodeObject (this.post);

event.returned = this.xhr.send(real_post);
} else {

event.returned = this.xhr.send();
}
this.dispatchEvent ('send', event);

return event.returned;

The uriencodeobject method of the ajaxrequest class abstracts the encoding of a
native JavaScript object into the URL-encoded data string required for sending to the

s€rver:

// Non-recursive serialization from object to

// url-encoded values

AjaxRequest.prototype.urlEncodeObject = function (obj)

var first = true;
var string = '';
for (i in obj) {
var temp_obj = objl[i];
// No need to toString() a string literal.

// In fact, doing so would corrupt the value.

if (typeof temp_obj != 'string') {
temp_obj = temp_obj.toString();

}

temp_key = encodeURIComponent (i) ;

temp_obj = encodeURIComponent (temp_obj) ;

if (first) {

first = false;
string += temp_key + '=' + temp_obj;
} else {
string += '&' + temp_key + '=' + temp_obj;

}

return string;

{

82 Chapter3 Client-Side Application Architecture

The ajaxrequestuanager class implements a second level of abstraction, by managing
the pool of requests. In this way, the application simply can request an instance (which
could later provide different types of ajaxrequest objects, as Factory patterns gener-
ally do), without having to have specific code to keep track of the instances; the only
object-specific code necessary would be the event listening already required to interact
with the classes:

// Manage pool of AjaxRequest instances
function AjaxRequestManager () { }
AjaxRequestManager.prototype = {

// Array of AjaxRequest instances

requests : [],

// Event listeners to auto-add to new requests

events : AjaxRequest.prototype.events,

// Factory-type function to instantiate AjaxRequests
createAjaxRequest : function() {

var new_id = ++requests.length;

try {
requests[new_id] = new AjaxRequest (new_id) ;
requests[new_id].events = this.events;

return requests[new_id];
} catch (e) {
alert(e);
// Clean up junk reference if necessary
if (requests[new_id]) {
requests.pop () ;
}

return false;

Iy

// Garbage collection
eliminateAjaxRequest : function(id) {
if (!requests[id]l) {
return false;
}
// Call abort in case of current activity
requests[id] .abort () ;

// First, delete the reference

Objects and Event Triggering

83

requests.splice(id, 1);
// Then, adjust the references of the remaining
// objects to match their new indices
while (id < requests.length) {
requests[id++].1id--;
}
return true;
Y,

// Provide a method to cancel all active and pending requests
abortall : function() {
for (var i = 0; i < window.requests.length; i++) {
if (window.requests[i]) {

window.requests[i] .abort() ;

Y.

// Auto-add listeners to AjaxRequest events
addEventListener : function(type, listener, capture) {
EventDispatcher.prototype.addEventListener.call (
this,
type,
listener

Y.

// If it supports the type, remove the listener (capture ignored)
removeEventListener : function(type, listener, capture) {
EventDispatcher.prototype.removeEventListener.call (
this,
type,
listener

// Global pool of AjaxRequest objects
var requests = [];
// Global Singleton of the AjaxRequestManager

var request_manager = new AjaxRequestManager () ;

84 Chapter3 Client-Side Application Architecture

3.1.2.3 Using the AjaxRequestManager

You can accomplish parallel pools by implementing 2jaxrequestmManager in a way that it
does not need to exist as a Singleton, but this will work fine for the intentions of this
book. In addition, a more fleshed-out manager would support throttling through a
cap of the number of concurrent requests. By creating multiple pools of requests, you
could throttle different types of requests according to the amount of data needed to
send and receive or according to the time required to process the request either on the
server or in the client when the response returns.

Because comments alone make for rather difficult reading, the following example
shows the way to create and execute a simple request using the 2jaxrequestianager and
resulting ajaxrequest:

// Define the callback to handle the response
function presentAnswer (event) {
// This example will just dump the response text
var answer = event.request.responseText;

alert (answer) ;

function askQuestion (query) {
// Instantiate a request
var request = request_manager.createAjaxRequest();
// Translates to a GET "ask.php?question=" + query
request.get.question = query;
request.addEventListener ('load', presentAnswer) ;
request.open('GET', 'ask.php');
request.send() ;

}

askQuestion('What if my beard were made of green spinach?');

The askouestion declaration asks the ajaxrequestmanager instance for an instance of
ajaxrequest and gets one from the next spot in the pool. It then assigns a variable to
send via cer, which will automatically get encoded from the JavaScript variable string
assignment:

question = "What if my beard were made of green spinach?";

Objects and Event Triggering 85

into the following URL-encoded string, safe to send in the request:

question=What%20if%20my%20beard%20were%20made%200£f%20green%20spinach%3F

Then, the request instance has an event listener assigned in the form of a reference
to the presentanswer function, as declared above. This code does not assign presentanswer
to the XMLHttpRequest .prototype.onreadystatechange €vent, bCC&USC thar event VVOUJd
start returning the moment the browser made a change to the xuruttprequest . prototype.
readystate. Instead, the ajaxRequestManager uses the functionality inherited from its
EventDispatcher parent and triggers a custom event, passing an ajaxevent instance, once
it has a complete, successful response to pass.

The request then opens the connection to the server by using cer with the passed
location. The variable question, set just a moment ago, will have its encoded incarnation
appended to the location, resulting in a full HTTP request (less the browser-specific
User-Agent, Accept, headers, and so on for readability) as follows:

GET /ask.php?question=What%201£f%20my%20beard%20were%20made%200£%20green%20spinach%
3F HTTP/1.1

From the declaration of ajaxrequest, you could very easily switch the question
variable to get passed via post, by assigning the variable to the object’s post member
variable instead. Then, the request would get opened with a posr request, as shown
in Figure 3.1.

function askQuestion (query) {
// Instantiate a request
var request = request_manager.createAjaxRequest () ;
// Translates to a POST "question=" + query
request.post.question = query;
request.addEventListener ('load', presentAnswer) ;
request.open('POST', 'ask.php');

request.send() ;

Rather than sending everything in the cer statement like it did before, this function
sends an HT'TP request like the following instead:

86 Chapter3 Client-Side Application Architecture

askQuestion

called

askQuestion

Call
createAjaxRequest

Set the GET
parameters

Add presentAnswer
as load event listener

Open the request via
GET to ask.php

Send the request
and return

AjaxRequestManager

createAjaxRequest

Appends an
AjaxRequest
instance to the
queue and returns it

/

Server-Side Application

Handle the request

AjaxReq