Microso ft-

Visual Basic 2008

Michael Halvorson

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by Michael Halvorson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2007941088

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, Expression, FrontPage, Halo, IntelliSense, Internet
Explorer, MSDN, MS-DOS, PowerPoint, SQL Server, Visual Basic, Visual C#, Visual C++, Visual
InterDev, Visual Studio, Visual Web Developer, Windows, Windows Server, Windows Vista, and Zoo
Tycoon are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Melissa von Tschudi-Sutton

Editorial Production: Online Training Solutions, Inc.

Technical Reviewer: Robert Lyon; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X14-38546

For Henry

Acknowledgments

| gratefully acknowledge the support and assistance of the following people who helped to
plan, edit, test, produce, and market this book: Susie Bayers, Jennifer Brown, Robert Lyon,
Devon Musgrave, Jaime Odell, Leslie Phillips, Barry Preppernau, Joan Preppernau, Lucinda
Rowley, Ben Ryan, and Melissa von Tschudi-Sutton. | continue to be impressed by the pub-
lishing partnership between Microsoft Press and Online Training Solutions, Inc. (OTSI), the
editorial and production team that helped to publish this book. | am also grateful to the
Microsoft Visual Studio 2008 development team for providing me with beta software to
work with.

During the preparation of this manuscript, my son Felix often worked steadily at a giant
box of Legos located in my writing room, and regularly brought me new creations to
inspect. My son Henry also provided welcome interruptions and useful advice, insisting,
for example, that we deploy a more powerful home network or locate new software for
his beloved Macintosh computer. Thanks for the help, boys.

Table of Contents

Introductiono e Xvii
What Is Visual Basic 20087 i Xvii
Visual Basic .NET Versions ..., Xviii
Upgrading from Microsoft Visual Basic6.0........................ Xviii
Finding Your Best Starting Point in This Book............................ XixX
Visual Studio 2008 System Requirements ..., XXi
Prerelease Software. XXi
Installing and Using the Practice Files XXil
Installing the Practice Files. i XXii
Using the Practice Files...... i Xxiii
Uninstalling the Practice Files XXVii
Conventions and Features in ThisBook............ XXVili
CoNVENLIONS Xxviii
Other Features ot XXVili
Helpful Support Links XXiX
Visual Studio 2008 Software Support., XXiX
Microsoft Press Web Site i i XXiX
Support for This Book. ... XXiX

Part| Getting Started with Microsoft Visual Basic 2008
1 Exploring the Visual Studio Integrated Development

Environment 3
The Visual Studio Development Environment. 4
Sidebar: Projects and Solutions. i 7

The Visual Studio TOOISo 8

The Designer. . ..o 10

Running a Visual Basic Programo, 12

Sidebar: Thinking About Properties. ..., 13

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii

Table of Contents

The Properties Window. 14
Moving and Resizing the Programming Tools 17
Moving and Resizing Tool Windows.ooia.. 19
Docking Tool Windows. 20
Hiding Tool Windows 21
Switching Among Open Files and Tools by Using the IDE Navigator. 22
Opening a Web Browser Within Visual Studio 23
Getting Help . .. 24
Two Sources for Help: Local Help Files and Online Content........... 24
Summary of Help Commands, 29
Customizing IDE Settings to Match Step-by-Step Exercises. 29
Setting the IDE for Visual Basic Development 30
Checking Project and Compiler Settings. 31

One Step Further: Exiting Visual Studio............. 34
Chapter 1 Quick Reference.oo 35
2 Writing Your First Program oo, 37
Lucky Seven: Your First Visual Basic Program 37
Programming Steps. 38
Creating the User Interface i, 38
Setting the Properties. 45
Sidebar: Reading Propertiesin Tables 50

The Picture Box Properties. o 51
Writing the Code o 53
A Look at the Button1_Click Procedureo ... 58
Running Visual Basic Applications. i i 60
Sample Projects on Disk 62
Building an Executable File. 62
Deploying Your Application.o 64
One Step Further: Addingtoa Program 65
Chapter 2 Quick Reference. 67
3 Working with Toolbox Controls 69
The Basic Use of Controls: The Hello World Program 69
Using the DateTimePicker Control. 75
The Birthday Program. ... 75

A Word About Terminology. 80

Table of Contents

Controls for Gathering Input 82
The Input Controls DEMO.t e 85
Looking at the Input Controls Program Code 88

One Step Further: Using the LinkLabel Control. 91

Chapter 3 Quick Reference., 95

4 Working with Menus, Toolbars, and Dialog Boxes 97

Adding Menus by Using the MenuStrip Control. 98

Adding Access Keys to Menu Commands, 100
Sidebar: Menu Conventions. i 100

Processing Menu ChoiCeS.ttt e 103
Sidebar: System Clock Properties and Functions 107

Adding Toolbars with the ToolStrip Control. 108

Using Dialog Box Controls e 111

Event Procedures That Manage Common Dialog Boxes. 112
Sidebar: Controlling Color Choices
by Setting Color Dialog Box Properties........................... 115
Sidebar: Adding Nonstandard Dialog Boxes to Programs 118

One Step Further: Assigning Shortcut Keysto Menus. 118

Chapter 4 Quick Reference. 121

Part I Programming Fundamentals

5 Visual Basic Variables and Formulas, and

the .NET Framework. o i, 125
The Anatomy of a Visual Basic Program Statement...................... 125
Using Variables to Store Information 126

Setting Aside Space for Variables: The Dim Statement.............. 126
Implicit Variable Declaration o o i i 128
Using Variables ina Program.......... 129
Sidebar: Variable Naming Conventions 132
Using a Variable to Store Input 133
Sidebar: What Isa Function?o i i i i 135
Using a Variable for Output............. 136
Working with Specific Data Types. ... 138
Sidebar: User-Defined Data Types, 144

Constants: Variables That Dont Change 144

Table of Contents

Working with Visual Basic Operators, 146
Basic Math: The +,—, *, and / Operators 147
Sidebar: Shortcut Operators i 150
Using Advanced Operators: \, Mod, ", and &...................... 150

Working with Methods in the Microsoft .NET Framework 154
Sidebar: What's New in Microsoft .NET Framework 3.5? 155

One Step Further: Establishing Order of Precedence 157
Using Parenthesesina Formula 158

Chapter 5 Quick Reference........ ... i 159

6 Using Decision Structures 161

Event-Driven Programming i 162
Sidebar: Events Supported by Visual Basic Objects................. 163

Using Conditional EXpressions. 164

If...Then Decision Structurest 165
Testing Several Conditions in an /f..Then Decision Structure......... 165
Using Logical Operators in Conditional Expressions................ 170
Short-Circuiting by Using AndAlso and OrElse. 173

Select Case Decision Structurest 175
Using Comparison Operators with a Select Case Structure 176

One Step Further: Detecting Mouse Events 181

Chapter 6 Quick Reference. 183

7 UsingLoopsandTimers...............ccoiiiiiiiiienn.... 185

Writing FOr..Next LOOPS . . .« oot 186

Displaying a Counter Variable in a TextBox Control...................... 187

Creating Complex For...Next LOOPS. 190
Using a Counter That Has Greater Scope 193
Sidebar: The Exit For Statement............. .. o, 195

WHEING DO LOOPS . . . oottt 196

Avoiding an Endless Loop. 197
Sidebar: Using the Until Keyword in Do Loops. 200

The Timer Control 200

Creating a Digital Clock by Using a Timer Control....................... 201

Using a Timer Object to Seta Time Limit 204

One Step Further: Inserting Code Snippets. 207

Chapter 7 Quick Reference. 211

Table of Contents

8 Debugging Visual Basic Programs 213
Finding and Correcting Errors 214
Three Types Of ErrOrs. e 214
Identifying LOGQIC Errors. 215
Debugging 101: Using DebuggingMode o oL, 216
Tracking Variables by Using a Watch Window 221
Visualizers: Debugging Tools That Display Data......................... 223
Using the Immediate and Command Windows 225
Switching to the Command Window 227
One Step Further: Removing Breakpoints.............................. 228
Chapter 8 Quick Reference. i 229

9 Trapping Errors by Using Structured Error Handling. 231
Processing Errors by Using the Try...Catch Statement 232

When to Use Error Handlerso .. 232
Setting the Trap: The Try...Catch Code Block. 233

Path and Disc Drive Errors 234
Writing a Disc Drive Error Handler 237
Using the Finally Clause to Perform Cleanup Tasks...................... 239
More Complex Try..Catch Error Handlers 241
The Err Object.o 241
Sidebar: Raising Your OWn Errors, 245
Specifyinga Retry Period 245
Using Nested Try...Catch Blocks. 248
Comparing Error Handlers with Defensive Programming Techniques. 248
One Step Further: The Exit Try Statement 249
Chapter 9 Quick Reference. 250
10 Creating Modules and Procedures........................ 253
Working with Modules o 254
CreatingaModule. 254
Working with Public Variables.......... 258
Sidebar: Public Variables vs. Form Variables....................... 262
Creating Procedures 262

Sidebar: Advantages of General-Purpose Procedures. 263

xii Table of Contents

Writing Function Procedures.o 264
Function Syntax 264
Calling a Function Procedure., 266
Using a Function to Perform a Calculation........................ 266

Writing Sub Procedures 270
Sub Procedure Syntax. ... 270
Callinga Sub Procedure....... ... 271
Using a Sub Procedure to Manage Input.......................... 272

One Step Further: Passing Arguments by Value and by Reference......... 277

Chapter 10 Quick Reference. 279

11 Using Arrays to Manage Numeric and StringData.......... 281

Working with Arrays of Variables 281
Creating an Array. 282
Declaring a Fixed-Size Arrayo 283
Setting Aside Memory 284
Working with Array Elements 285
Creating a Fixed-Size Array to Hold Temperatures 286
Sidebar: The UBound and LBound Functions 286
Creating a DynamiC Arrayt 290

Preserving Array Contents by Using ReDim Preserve 293
Three-Dimensional Arrayst 294

One Step Further: Processing Large Arrays by Using Methods

inthe Array Class 295
The Array Class.o oo 295

Chapter 11 Quick Reference. 302

12 Working with Collections and the System.Collections
Namespacettt i it 303

Working with Object Collections. i i ... 303
Referencing Objectsin a Collection............... 304
Writing For Each...Next LOOPS 304
Experimenting with Objects in the Controls Collection 305
Using the Name Property in a For Each..Next Loop................ 308

Creating Your Own Collections i 310

Declaring New Collections. 310

Table of Contents xiii

One Step Further: VBA Collections i 315
Entering the Word Macro. 316
Chapter 12 Quick Reference.o 317
13 Exploring Text Files and String Processing................. 319
Displaying Text Files by Using a Text Box Object........................ 319
Opening a Text File for Input. i, 320
The FileOpen Function 320
Using the StreamReader Class and My.Computer.FileSystem
toOpenTextFiles 325
The StreamReader Class, 325
The My Namespace. e 326
Creating a New Text Fileon Disk. i 328
Processing Text Strings with Program Code 332
The String Class and Useful Methods and Keywords. 333
Sorting Text. . ..o ot 335
Working with ASCII Codes oo 336
Sorting StringsinaTextBoxoo i 337
One Step Further: Examining the Sort Text Program Code 340
Chapter 13 Quick Reference. 343

Part Il Designing the User Interface

14 Managing Windows Forms and Controls at Run Time 347
Adding New Formstoa Program, 347
How Forms Are Used.t 348
Working with Multiple Forms 348

Sidebar: Using the DialogResult Property in the Calling Form........ 356
Positioning Forms on the Windows Desktop 356
Minimizing, Maximizing, and Restoring Windows. 361
Adding Controls toa FormatRunTime 362
Organizing Controlsona Form....... 365
One Step Further: Specifying the Startup Object........................ 368
Sidebar: Console Applications. i i i 370

Chapter 14 Quick Reference.o 370

Xiv Table of Contents

15 Adding Graphics and Animation Effects................... 373
Adding Artwork by Using the System.Drawing Namespace. 374
Using a Form’s Coordinate System......... it 374
The System.Drawing.Graphics Class iiiuin. 375
Using the Form’s Paint Event. o i i i 376
Adding Animation to Your Programs i 378
Moving Objectsonthe Form....... 379
The Location Property. 380
Creating Animation by Using a Timer Object...................... 380
Expanding and Shrinking Objects While a Program Is Running 385
One Step Further: Changing Form Transparency........................ 387
Chapter 15 Quick Reference. 389
16 Inheriting Forms and Creating Base Classes................ 391
Inheriting a Form by Using the Inheritance Picker.................... ... 392
Creating Your Own Base Classes 397
Sidebar: Nerd Alert 398
Adding a New Class to Your Project............... 399
One Step Further: InheritingaBase Class 406
Sidebar: Further Experiments with Object-Oriented
Programmingooiii i 409
Chapter 16 Quick Reference. 409
17 Working with Printers i .. 411
Using the PrintDocument Class 411
Printing Text from a Text Box Object........... 416
Printing Multipage Text Files oo 420

One Step Further: Adding Print Preview and Page Setup Dialog Boxes. 427
Chapter 17 Quick Reference. 434

Table of Contents

Part IV Database and Web Programming

18 Getting Started with ADO.NET............ 437
Database Programming with ADO.NET, 437

Database Terminology 438

Working with an Access Database 440

The Data Sources Windowt 449

Using Bound Controls to Display Database Information.................. 455

One Step Further: SQL Statements, LINQ, and Filtering Data 459

Chapter 18 Quick Reference.o 464

19 Data Presentation Using the DataGridView Control. 465
Using DataGridView to Display Database Records. 465

Formatting DataGridView Cells. o 478
Datacentric Focus: Adding a Second Grid and Navigation Control 481

One Step Further: Updating the Original Database...................... 484

Sidebar: Data Access in a Web Forms Environment................. 487

Chapter 19 Quick Reference. 487

20 Creating Web Sites and Web Pages by Using

Visual Web Developer and ASP.NET 489
Inside ASP.INET ..o 490
Web Pages vs. Windows Forms. 491
Server Controls. 492
HTML Controlso e 493
Building a Web Site by Using Visual Web Developer 494
Considering Software Requirements
for ASP.INET Programmingouuiiiannnnaiiiiiiiin.. 494
Using the Web Page Designer. ..., 497
Adding Server ControlstoaWeb Site 500
Writing Event Procedures for Web Page Controls.................. 503
Sidebar: Validating Input FieldsonaWeb Page.................... 508
Adding Additional Web Pages and Resources to a Web Site.............. 508
Displaying Database RecordsonaWeb Page........................... 514
One Step Further: Setting the Web Site Title in Internet Explorer.......... 521

Chapter 20 Quick Reference. 523

Xv

XVi Table of Contents

Appendix

Where to Go for More Information................. 525
Visual Basic Web Sites. 525
Books About Visual Basic and Visual Studio Programming 527
Visual Basic Programmingiiiniieniiiinn.. 527

Microsoft .NET Framework. i 527

Database Programming with ADO.NET. 528

Web Programming with ASPINET i, 528

Visual Basic for Applications Programming........................ 528

General Books about Programming and Computer Science......... 529

INAEX oo 531
About the Author. e 545

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Introduction

I'm really glad that you've chosen this book to learn essential Microsoft Visual Basic 2008
programming skills and techniques. Although we're meeting for the first time in this para-
graph, the chances are that we're not all that different. | work with a computer every day and
| spend a lot of time helping friends and colleagues make their lives better (or at least more
efficient!) with new software and related technologies. Over the years, | have learned dozens
of computer applications, languages, and tools, and | have a knack for weaving them together
to solve real-world business problems. You're probably the same—the go-to tech person

in your office, school, or home—which is why you're now needing to learn, or upgrade to,
Visual Basic 2008—one of the most powerful development tools in use today.

Microsoft Visual Basic 2008 Step by Step is a comprehensive introduction to Visual Basic
programming using the Microsoft Visual Basic 2008 software. I've designed this practical,
hands-on tutorial with a variety of skill levels in mind. The result is that new programmers
can learn software development fundamentals in the context of useful, real-world applica-
tions, and experienced Visual Basic programmers can quickly master the essential tools and
programming techniques offered in the Visual Basic 2008 upgrade.

Complementing this comprehensive approach is the book’s structure—4 topically organized
parts, 20 chapters, and 53 step-by-step exercises and sample programs. By using this book,
you'll quickly learn how to create professional-quality Visual Basic 2008 applications for the
Windows operating system and a variety of Web browsers. You'll also have fun!

What Is Visual Basic 2008?

Visual Basic 2008 is a development tool that you can use to build software applications
that perform useful work and look great within a variety of settings. Using Visual Basic
2008, you can create applications for the Windows operating system, the Web, hand-held
devices, and a host of other environments and settings. The most important advantage

of Visual Basic is that it has been designed to increase productivity in your daily development
work—especially if you need to use information in databases or create solutions for the
Internet—but an important additional benefit is that once you become comfortable with
the development environment in Microsoft Visual Studio 2008, you can use the same tools
to write programs for Microsoft Visual C++ 2008, Microsoft Visual C# 2008, Microsoft Visual
Web Developer 2008, and other third-party tools and compilers.

xvii

xviii

Introduction

Visual Basic .NET Versions

So how did we get here, anyway? The first version of Visual Basic .NET (Microsoft Visual
Basic .NET 2002) was released in February 2002. The second release (Microsoft Visual Basic
.NET 2003) was widely available in March 2003. Next came Visual Basic 2005 in late 2005,
and after a long period of development and integration work, Microsoft released Visual
Basic 2008 in early 2008. Visual Basic 2008 is now so tightly integrated with Visual Studio
that it is only available as a component in the Visual Studio 2008 programming suite,
which includes Visual C#, Visual C++, Visual Web Developer, and other Microsoft .NET
development tools.

Visual Studio 2008 is sold in several different product configurations, including Standard
Edition, Professional Edition, Team Suite, and Express Edition. I've written this book to be
compatible with all editions of Visual Basic 2008 and Visual Studio 2008, but especially

with the tools and techniques available in Visual Studio Standard Edition and Visual Studio
Professional Edition. Although Visual Basic 2008 is similar in many ways to Visual Basic 2005,
there are many important differences and improvements, so | recommend that you complete
the exercises in this book using the Visual Basic 2008 software.

Note The Visual Basic 2008 software is not included with this book! The CD distributed with
most versions of this book contains practice files, sample databases, and other useful information
that requires the Visual Basic 2008 software (sold separately) for use.

Upgrading from Microsoft Visual Basic 6.0

Before Visual Basic .NET, of course, the programming world was blessed to have Visual Basic
6, originally released ten years ago in September 1998. Visual Basic 6 was so popular that
many programming enthusiasts continue to use it, especially developers outside of Europe
and North America, where hardware upgrades can be a little harder to come by. (For those
of you Visual Basic 6 users who have written me letters from Africa and Asia, thank you!) In
some respects, | can't blame you—Visual Basic 6 was and is awesome for its ease-of-use and
straightforward programming methods. But, as many of us know now, Visual Basic 6 also
made creating real professional-grade applications a bit of a chore. As a result, | always felt
like I had a speed and size complex when | chatted with friends who wrote about their fast
and tiny-footprint Visual C++ programs. To write really complex Visual Basic 6 applications,

[usually had to jump through a number of hoops.

Introduction Xix

Ten years down the road, Visual Basic 2008 makes it much, much easier to write professional-
grade Windows- and Internet-based applications that compete on an equal playing field
with Visual C++, Visual C#, and Java applications. And the beauty of Visual Basic is that it is
much easier to learn than other programming tools. Although there are a few speed bumps,
upgrading from Visual Basic 6 to Visual Basic 2008 is quite straightforward. Visual Studio
2008 offers an upgrade wizard that begins the conversion process for you, and you'll find
that many of the legacy controls, statements, functions, methods, and properties that you've
learned to use are still a part of Visual Basic 2008.

In this book | offer upgrade notes for readers who are upgrading from Visual Basic 6
because | get it: | was once a Visual Basic 6 programmer and | know what it feels like to
upgrade programs to Visual Basic .NET. So as you read this book, you'll see a comment
now and then about how syntax or conceptual paradigms have changed, and how you
can use what you know to become a solid Visual Basic 2008 programmer. And believe
me, you want this qualification on your resumé.

And here's a message for all programmers: | encourage you to assess where your overall
development skills are, and not focus only on the newest features of a programming lan-
guage that you are preparing to learn. Underlying skills, such as working with algorithms,
data structures, object-oriented programming, and debugging skills, will help you to write
better programs. For this reason, it might be just as important for you to fully understand
user-interface design and database management techniques, as it is to learn the newest
switches for a particular feature that you read about in the press. It is here that Visual Basic
6 developers want to assess and take forward all that they know about software develop-
ment. The tools change but the underlying skills often remain the same.

Finding Your Best Starting Point in This Book

This book is designed to help you build skills in a number of essential areas. You can use it if
you're new to programming, switching from another programming language, or upgrading
from Visual Basic 6 or Visual Basic 2005. Use the table on the following page to find your best
starting point in this book.

Introduction

If you are
New

To programming

Upgrading

From Visual Basic
.NET 2002, 2003,
or 2005

From Visual
Basic 6

Referencing

This book after
working through
the chapters

Follow these steps

. Install the practice files as described in the section “Installing and Using the

Practice Files” later in this introduction.

. Learn basic skills for using Visual Basic 2008 by working sequentially from

Chapter 1 through Chapter 17.

. Complete Part IV, “Database and Web Programming,” as your level of interest

or experience dictates.

. Install the practice files as described in “Installing and Using the Practice

Files” later in this section.

. Complete Chapters 1 through 4, skim Chapters 5 through 17, and complete

Chapters 18 through 20.

. For a discussion of specific features that have changed in this upgrade, read

Chapters 1,4, 5,7, 8, 13, 18, 19, 20.

. Install the practice files as described in the section “Installing and Using the

Practice Files.”

. Read Chapters 1 through 4 carefully to learn the new features of the Visual

Studio 2008 development environment.

. Pay special attention to comments that | make in several chapters that high-

light significant differences between Visual Basic 6 and Visual Basic 2008.

. Skim Chapters 5 through 13 to review the fundamentals of event-driven

programming, using variables, and writing decision structures. Give special
attention to Chapters 5, 6, 9, and 12.

. Work sequentially from Chapters 14 through 20 to learn the new Visual Basic

2008 features related to user interface design, database programming, and
Web programming.

. Use the index to locate information about specific topics, and use the table

of contents to locate information about general topics.

. Read the Quick Reference at the end of each chapter for a brief review of the

major tasks in the chapter. The Quick Reference topics are listed in the same
order as they're presented in the chapter.

Introduction xxi

Visual Studio 2008 System Requirements

You'll need the following hardware and software to complete the exercises in this book:

Windows Vista, or Windows XP with Service Pack 2, or Windows Server 2003 with
Service Pack 1

Microsoft Visual Studio 2008 (Standard Edition, Professional Edition, or Team Suite)

Minimum hardware requirement: 1.6 GHz CPU, 384 MB RAM, 1024x768 display, 5400
RPM hard disk drive

Recommended hardware requirement: 2.2 GHz or higher CPU, 1024 MB or more RAM,
1280x1024 display, 7200 RPM or higher hard disk drive. (For Windows Vista, 2.4 GHz
CPU and 768 MB RAM is recommended.)

1.22 GB of available hard disk space for the minimum installation; 2 GB of available disk
space for the full installation

CD or DVD drive

Microsoft Mouse or compatible pointing device

Note This book and the practice files were tested using Visual Studio 2008 Standard Edition and
Professional Edition on Windows Vista. You might notice a few differences if you're using other
editions of Visual Studio 2008. In particular, if you're using Visual Studio 2008 Express Edition, a
few features will be unavailable to you. In addition, all of the screen shots in this book were cap-
tured using Windows Vista. If you are using Windows XP or Windows Server 2003, you'll notice a
few differences in some of the screen shots.

Prerelease Software

This book was reviewed and tested against the Beta 2 release of Visual Studio 2008. The
Beta 2 release was the last preview before the final release of Visual Studio 2008. This book is
expected to be fully compatible with the final release of Visual Studio 2008 and Visual Basic
2008. If there are any changes or corrections for this book, they will be collected and added
to an easy-to-access Microsoft Knowledge Base article on the Web. See “Support for This
Book” later in this section.

XXii Introduction

Installing and Using the Practice Files

The CD inside this book contains the practice files that you'll use as you perform the exer-
cises in the book. For example, when you're learning how to display database tables on a
form by using the DataGridView control, you'll open one of the practice files—an academic
database named Students.mdb—and then use Visual Studio database programming tools
to access the database. By using the practice files, you won't waste time creating files that
aren't relevant to the exercise. Instead, you can concentrate on learning how to master
Visual Basic 2008 programming techniques. With the files and the step-by-step instructions
in the chapters, you'll also learn by doing, which is an easy and effective way to acquire
and remember new skills.

W Important Before you break the seal on the CD, be sure that this book matches your version
of the software. This book is designed for use with Visual Studio 2008 and the Visual Basic 2008
programming language. To find out what software you're running, you can check the product
package, or you can start the software, open a project, and then click About Microsoft Visual
Studio on the Help menu at the top of the screen.

Installing the Practice Files

Installing the practice files on your hard disk requires approximately 10 MB of disk space.
Follow these steps to install the practice files on your computer’s hard disk drive so that you
can use them with the exercises in this book.

1. Remove the CD from the package inside this book, and insert it into your CD drive.

Note An End-User License Agreement should open automatically. If this agreement does
not appear, you can double-click StartCD.exe on the CD. If you have Windows Vista, click
Computer on the Start menu, double-click the icon for your CD drive, and then double-
click StartCD.exe.

2. Review the End-User License Agreement. If you accept the terms, select the accept
option, and then click Next.

A menu appears with options related to the book.

3. Click Install Practice Files.

Introduction xxiii

4. Follow the on-screen instructions.

Note For best results when using the practice files with this book, accept the preselected

installation location, which by default is c:\vb08sbs. If you change the installation location,
you'll need to manually adjust the paths in several practice files to locate essential compo-
nents, such as artwork and database files, when you use them.

5. When the files have been installed, remove the CD from your drive and replace it in the
package inside the back cover of your book.

If you accepted the default settings, a folder named c:\vb08sbs has been created on
your hard disk drive, and the practice files have been placed in that folder. You'll find
one folder in c:\vb08sbs for each chapter in the book. (Some of the files represent
completed projects, and others will require that you enter some program code.) If
you have trouble running any of the practice files, refer to the text in the book that
describes those files.

Using the Practice Files

Each chapter in this book explains when and how to use the practice files for that chapter.
When it's time to use a practice file, the book includes instructions for opening the file. The
chapters are built around scenarios that simulate real programming projects so that you can
easily apply the skills you learn to your own work.

Note Visual Basic 2008 features a new file format for its projects and solutions. Accordingly, you
won't be able to open the practice files for this book if you're using an older version of the Visual
Basic or Visual Studio software. To see what version of Visual Basic or Visual Studio you're using,
click the About command on the Help menu.

Visual Studio is extremely customizable and can be configured to open and save projects
and solutions in different ways. The instructions in this book generally rely on the default
setting for Visual Studio. For more information about how settings within the development
environment affect how you write programs and use the practice files, see the section
“Customizing IDE Settings to Match Step-by-Step Exercises” in Chapter 1, “Exploring the
Visual Studio Integrated Development Environment.”

XXiv

Introduction

Project
Chapter 1

MusicTrivia

Chapter 2
Lucky7

Chapter 3
Birthday
CheckBox
Hello

Input
Controls

WebLink

Chapter 4

Menu

Chapter 5
Advanced Math

Basic Math
Constant Tester

Data
Types

Framework Math

Input Box

Variable Test
Chapter 6

Select
Case

User
Validation

For those of you who like to know all the details, here's a list of the Visual Basic projects
included on the CD. Each project is located in its own folder and has several support files.
Look at all the things you will be doing!

Description

A simple trivia program that welcomes you to the programming course and
displays a digital photo.

Your first program—a game that simulates a Las Vegas Lucky Seven slot machine.

Uses the DateTimePicker control to pick a date.
Demonstrates the CheckBox control and its properties.
A “Hello, world!" program that demonstrates the Label and TextBox controls.

The user interface for a graphical ordering environment, assembled using sev-
eral powerful input controls.

Demonstrates the LinkLabel control that opens a Web browser in your Visual
Basic application.

Demonstrates how to use Visual Studio dialog box controls, toolbars, and
menus.

Advanced use of operators for integer division, remainder division, exponentia-
tion, and string concatenation.

Basic use of operators for addition, subtraction, multiplication, and division.
Uses a constant to hold a fixed mathematical entity.

Demonstrates Visual Basic fundamental data types and their use with
variables.

Demonstrates the .NET Framework classes with mathematical methods.
Receives input with the InputBox function.

Declares and uses variables to store information.

Uses a Select...Case decision structure and a ListBox control to display a
welcome message in several languages.

Uses the If...Then...Else decision structure and a MaskedTextBox control to
manage a logon process.

Project
Chapter 7

Celsius
Conversion

Digital Clock

For Loop

For Loop
Icons

Timed Password

Windows Version
Snippet

Chapter 8
Debug Test

Chapter 9

Disc Drive
Error

Disc Drive
Handler

Chapter 10
Text Box Sub
TrackWins

Chapter 11

Array Class
Sorts

Dynamic

Array

Fixed Array
Chapter 12

Controls
Collection

URL
Collection

Introduction XXV

Description

Converts temperatures from Fahrenheit to Celsius by using a Do loop.

A simple digital clock program that demonstrates the Timer control.

Demonstrates using a For...Next loop to display text in a TextBox control, and
using the Chr function to create a wrap character.

Uses a global counter variable in an event procedure as an alternative to loops.
This program also displays images by using a PictureBox control.

Demonstrates how to use a Timer control to create a logon program with a
password time-out feature.

Shows how to use the new Insert Snippet command to display the current
version of Windows running on a user’s computer.

A simulated debugging problem, designed to be solved using the Visual Studio
debugging tools.

Crashes when a CD or DVD drive is used incorrectly. This project is used as the
basis of a Visual Basic error handler.

Completed error handler for loading files that demonstrates the Try...Catch
syntax.

A general-purpose Sub procedure that adds items to a list box.

A clean version of the Lucky7 slot machine project from Chapter 2, which
you enhance by using public variables and a function that computes the
game's win rate.

Shows how to create and manipulate large integer arrays.
Demonstrates the Array.Sort and Array.Reverse methods and how to use a
ProgressBar control to give the user visual feedback during long sorts.

Computes the average temperature for any number of days by using a
dynamic array.

Computes the average weekly temperature by using a fixed-length array.

Uses a For Each...Next loop and the Visual Studio Controls collection to move
objects on a form.

Demonstrates a user-defined collection containing a list of Web addresses
(URLs) recently visited by the user.

continued

Introduction

Project
Chapter 13
Quick Note

Sort Text

Text Browser
Chapter 14

Add Controls

Anchor and Dock

Desktop Bounds

Lucky Seven
Help

Chapter 15
Draw Shapes

Moving Icon
Transparent Form
Zoom In

Chapter 16

Form Inheritance

Person Class

Description

A simple note-taking utility that demonstrates the FileOpen function and the
TextBox, MenuStrip, and SaveFileDialog controls.

A text file editor with a menu bar that demonstrates how to manage Open,
Close, Save As, Insert Date, Sort Text, and Exit commands in a program.
Contains a ShellSort module for sorting arrays that can be added to other
programming projects.

Displays the contents of a text file in a Visual Basic program. Demonstrates
menu commands, a Try...Catch error handler, and the FileOpen and Linelnput
functions, and serves as a foundation for the other programs in this chapter.

Demonstrates how controls are added to a Windows Form at run time by using
program code (not the Designer).

Uses the Anchor and Dock properties of a form to align objects at run time.

Uses the StartPosition and DesktopBounds properties to position a Windows
Form at run time. Also demonstrates the FormBorderStyle property, Rectangle
structure, and ShowDialog method.

The enhanced Lucky7 program (TrackWins) from Chapter 10, which you enhance
again through the addition of a second form to display Help information.

Demonstrates a few of the useful graphics methods in the System.Drawing
namespace, including DrawéEllipse, FillRectangle, and DrawCurve.

Animates an icon on the form, moving it from the top of the form to the
bottom each time that you click the Move Down button.

Demonstrates how to change the transparency of a form by using the Me
object and the Opacity property.

Simulates zooming in, or magnifying, an object on a form (in this case, the
planet Earth).

Uses the Visual Studio Inheritance Picker to create a form that inherits its
characteristics and functionality from another form.

Demonstrates how to create new classes, properties, and methods in a Visual
Basic project. The new Person class is an employee record with first name, last
name, and date of birth fields, and it contains a method that computes the
current age of an employee.

Project

Chapter 17
Print Dialogs
Print File

Print Graphics

Print Text
Chapter 18
ADO Form

Chapter 19

DataGridView
Sample

Chapter 20
Chap20

Introduction XXVii

Description

Demonstrates how to create Print Preview and Page Setup dialog boxes.

Handles more sophisticated printing tasks, including printing a multipage text
file with wrapping lines. Includes lots of code to use in your own projects.

Prints graphics from within a Visual Basic program by using an error handler,
the Print method, and the Drawimage method.

Demonstrates how simple text is printed in a Visual Basic program.

Demonstrates how ADO.NET is used to establish a connection to a Microsoft
Office Access 2007 database and display information from it.

Shows how the DataGridView control is used to display multiple tables of data
on a form. Also demonstrates how navigation bars, datasets, and table adapters
are interconnected and bound to objects on a form.

Demonstrates using Visual Web Developer and ASP.NET to create a car loan
calculator that runs in a Web browser, offers Help information, and displays
database records.

Uninstalling the Practice Files

Use the following steps to remove the practice files added to your hard disk drive by the
Visual Basic 2008 Step by Step installation program. After uninstalling the practice files, you
can manually delete any Visual Basic project files that you have created on your own, should

you choose to do so.

If you are running the Windows Vista operating system:

1. In Control Panel, in the Programs category, click Uninstall A Program.

2. Select Microsoft Visual Basic 2008 Step by Step in the list of programs, and then click

Uninstall.

3. Follow the on-screen instructions to remove the practice files.

If you are running the Windows XP operating system:

1. In Control Panel, open Add Or Remove Programs.

2. In the Currently Installed Programs list, click Microsoft Visual Basic 2008 Step by Step.
Then click Remove.

3. Follow the on-screen instructions to remove the practice files.

Xxviii Introduction

Conventions and Features in This Book

Before you start the exercises in this book, you can save time by understanding how | provide
instructions and the elements | use to communicate information about Visual Basic program-
ming. The following lists identify stylistic conventions and discuss helpful features of the book.

Conventions

The names of all program elements—controls, objects, methods, functions, properties,
and so on—appear in italic.

Hands-on exercises for you to follow are given in numbered lists of steps (1, 2, and so
on). A round bullet (@) indicates an exercise that has only one step.

Text that you need to type appears in bold.

As you work through steps, you'll occasionally see tables with lists of properties that
you'll set in Visual Studio. Text properties appear within quotes, but you don't need to
type the quotes.

A plus sign (+) between two key names means that you must press those keys at the
same time. For example, "Press Alt+Tab” means that you hold down the Alt key while
you press Tab.

Elements labeled Note, Tip, More Info, or Important provide additional information
or alternative methods for a step. You should read these before continuing with the
exercise.

Other Features

You can learn special programming techniques, background information, or fea-
tures related to the information being discussed by reading the sidebars that appear
throughout the chapters. These sidebars often highlight difficult terminology or sug-
gest future areas for exploration.

You can learn about options or techniques that build on what you learned in a chapter
by trying the One Step Further exercise at the end of that chapter.

You can get a quick reminder of how to perform the tasks you learned by reading the
Quick Reference at the end of a chapter.

Introduction XXix

Helpful Support Links

You are invited to check out the following links that provide support for the Visual Studio
2008 software and this book'’s contents.

Visual Studio 2008 Software Support

For questions about the Visual Studio 2008 software, | recommend two Microsoft
Web sites:

B http://msdn2.microsoft.com/en-us/vbasic/ (the Microsoft Visual Basic Developer Center
home page)

B http://www.microsoft.com/communities/ (technical communities related to Microsoft
software products and technologies)

Both Web sites give you access to professional Visual Basic developers, Microsoft employees,
Visual Basic blogs, newsgroups, webcasts, technical chats, and interesting user groups. For
additional information about these and other electronic and printed resources, see the
Appendix, “Where To Go for More Information.”

Microsoft Press Web Site

The Microsoft Press Web site has descriptions for the complete line of Microsoft Press
books, information about ordering titles, notice of special features and events, additional
content for Microsoft Press books, and much more.

http://www.microsoft.com/learning/books/

Support for This Book

Every effort has been made to ensure the accuracy of this book and companion content.
Microsoft Press provides corrections for books through the Web at the following address:

http.//www.microsoft.com/mspress/support/search.aspx

XXX

Introduction

To connect directly to Microsoft Help and Support to enter a query regarding a question or
issue you may have, go to the following address:

http://support.microsoft.com

If you have comments, questions, or ideas regarding the book or companion content or if
you have questions that are not answered by querying the Knowledge Base, please send
them to Microsoft Press using either of the following methods:

E-mail:
mspinput@microsoft.com
Postal mail:

Microsoft Press

Attn: Microsoft Visual Basic 2008 Step by Step
One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through the preceding mail addresses. For
support information, please visit the Microsoft Product Support Web site at:

http://support.microsoft.com

Part |

Getting Started with
Microsoft Visual Basic 2008

Chapter 1, Exploring the Visual Studio Integrated Development Environment. . 3

Chapter 2, Writing Your First Program i, 37
Chapter 3, Working with Toolbox Controls 69
Chapter 4, Working with Menus, Toolbars, and Dialog Boxes 97

In Part I, you'll receive an overview of essential Visual Basic 2008 programming techniques
and an introduction to the tools and features that you will work with during most Visual Basic
programming sessions. You'll learn to use the Visual Studio 2008 Integrated Development
Environment, with its fulsome collection of programming tools, windows, and menu commands,
and you'll receive step-by-step instruction on how to build and run several interesting pro-
grams from scratch. This is the place to start if you're new to Visual Basic programming, or
upgrading from an earlier version.

Chapter 2 introduces how controls, forms, properties, and program code can be used in
combination to create an entertaining Lucky Seven slot machine game. Chapter 3 provides
an overview of the most useful Toolbox controls, which help you present information or
program choices to the user, gather input, work with dates and times, and connect to the
Web. Chapter 4 focuses on adding menus, toolbars, and dialog boxes to Visual Basic pro-
grams that will give your program the flair of a commercial Windows application.

Chapter 1

Exploring the Visual Studio
Integrated Development
Environment

After completing this chapter, you will be able to:
B Start Visual Studio 2008.
B Use the Visual Studio Integrated Development Environment.
B Open and run a Visual Basic program.
B Change property settings.
B Move, resize, dock, and automatically hide tool windows.
B Use the IDE Navigator.
B Open a Web browser within Visual Studio.
B Use new Help commands and customize Help.
B Customize IDE settings to match this book’s step-by-step instructions.
B Save your changes, and exit Visual Studio.

Are you ready to start working with Microsoft Visual Studio 2008? This chapter gives you the
skills you need to get up and running with the Visual Studio 2008 Integrated Development
Environment (IDE)—the place where you will write Microsoft Visual Basic programs. You
should read this chapter whether you are new to Visual Basic programming or you have used
previous versions of Visual Basic or Visual Studio.

In this chapter, you'll learn how to start Visual Studio 2008 and how to use the IDE to

open and run a simple program. You'll learn the essential Visual Studio menu commands
and programming procedures; you'll open and run a simple Visual Basic program named
Music Trivia; you'll change a programming setting called a property; and you'll practice
moving, sizing, docking, and hiding tool windows. You'll also learn how to switch between
files and tools with the IDE Navigator, open a Web browser within Visual Studio, get more
information by using online Help, and customize the IDE to match this book's step-by-step
instructions. Finally, you'll exit the development environment and save your changes.

4 Part | Getting Started with Microsoft Visual Basic 2008

The Visual Studio Development Environment

Although the programming language you'll be learning in this book is Visual Basic, the
development environment you'll be using to write programs is called the Microsoft Visual
Studio Integrated Development Environment, or IDE for short. Visual Studio is a powerful
and customizable programming workshop that contains all the tools you need to build
robust programs for Windows and the Web quickly and efficiently. Most of the features
in the Visual Studio IDE apply equally to Visual Basic, Microsoft Visual C++, and Microsoft
Visual C#. Use the following procedures to start Visual Studio now.

v Important If you haven't yet installed this book’s practice files, work through “Finding
Your Best Starting Point” and “About the CD and Practice Files” in this book's Introduction.
(I recommend that you place the project files and related subfolders in the c:\\vb08sbs folder.)
Then return to this chapter.

Start Visual Studio 2008

1. On the Windows taskbar, click Start, click All Programs, and then click the Microsoft
Visual Studio 2008 folder.

The folders and icons in the Microsoft Visual Studio 2008 folder appear in a list.

Note To perform the steps in this book, you must have a version of the Microsoft Visual
Studio 2008 software installed. Most of the procedures that | describe are designed to work
with either Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional Edition,
or Visual Studio 2008 Express Edition. If you are especially lucky, you might have access to
Visual Studio 2008 Team Suite as well. If this is the case, you'll be able to follow the proce-
dures in this book without difficulty, but you will also have access to some cool advanced
features and capabilities. However, even though it is tempting, don't try to use this book if
you have an earlier version of the Visual Basic software. If that's your situation, you'll be bet-
ter served by locating an earlier edition of my book, such as Microsoft Visual Basic 2005 Step
by Step (which describes the Visual Basic 2005 software) or Microsoft Visual Basic Professional
6.0 Step by Step (which describes the Microsoft Visual Basic 6.0 software).

2. Click the Microsoft Visual Studio 2008 icon.

If this is the first time you are starting Visual Studio, it might take a few minutes to con-
figure the environment. If you are prompted to specify the settings to use, select the
Visual Basic development settings.

Chapter 1 Exploring the Visual Studio Integrated Development Environment

When Visual Studio starts, you see the development environment on the screen

with its many menus, tools, and component windows. (These windows are sometimes
called tool windows.) You also should see a Start Page containing a set of links, MSDN
articles, and project options. The Start Page is a comprehensive source of information
about your project, as well as resources within the Visual Basic development commu-
nity. This is one avenue for receiving new information about Visual Studio after you
purchase the software.

[Start Page - Microsoft Visual Studia =
File Edit View Tools Test ‘Window Help
He NS Y=L 3 @ Erlee Bl el

X Solution Explorer > I x

THacinoL 3]

0;"- Micrpsaﬁ' -
< o Visual Studio 2008

[MusicTrivia Refactor! for Visual Basic 2008 Beta 2
S MyTestpp Fri, 31 Aug 2007 16:31:28 GMT - Refactar! far Visuz
[MusicTrivia Dewvelaper Bxpress Inc, enables Visusl Basic devalo =

and re-structure source code inside of Visual Stud
it easier ta read and less costly to raintain, Dol
wehich warks with Yisual Studic 2008 Beta 2and cc
new refactaring operations ko support the rew lar
Download Visual Studio 2008 Beta 2

Open: Project.. |Web Site.., Thu, 02 Aug 2007 17:22:16 GMT - See all of the im)
Create: Project.. |\ Site. are coming in Visual Studio 2008 with next-genera
development, integrated developrment for the Mic
systern, and industry-leading designers for Windo

Getting Started Line and Shape Controls in the New Power Pack

Mon, 20 Aug 2007 20:2425 GMT - Download the |

HowDol...7 the Yisual Basic 2005 Power Packs which now inch
What's new in Visual Basic 20057 Shape controls that enable you to drau lines, oval
Create Vour First Application vectangles o Farmms snd containers at design time
Use a Starter Kit Download the Visual Basic LINQ Hands-on Labs
Learn Yisual Basic Thi 0T lun ?A0T 23:10:47 (AT - These Wisiial Rasi
Connect With the Community -
| i | v

Ready

The first thing most developers do when they start Visual Studio is open an existing project—
either a completed solution they want to work with again or an ongoing development project.
Try opening an existing project that | created for you—the Music Trivia program.

Open a Visual Basic project

1. On the Start Page, in the Recent Projects pane, click the Open Project link.

The Open Project dialog box shown in the illustration on the next page opens on the
screen. (You can also display this dialog box by clicking the Open Project command on
the File menu or by pressing Ctrl+0.) Even if you haven't used Visual Studio before, the
Open Project dialog box will seem straightforward because it resembles the familiar
Open dialog box in Microsoft Office Word or Microsoft Office Excel.

Part |

2.

Getting Started with Microsoft Visual Basic 2008

w0 Open Project (=2

. < Yisual Studio 2008 » Projects » v [*4 [| Search pl
i)

Wy Organize ~ &8 Views ~ W New Folder

Mame Date modified Type Size Tags
My Testipp
Wikdacrosil

Projects
Bl Desktop
Recent Places
/M Computer
"E: Documents
B Pictures
‘E.I'.' Music
4 Recently Changed
PEf Searches

Public

Folders ~

File name: - lAII Project Files [*.sln;" daw;”. v|

| Open iV] [Cancel]

Tip In the Open Project dialog box, you see a number of links along the left side of the
window. The Projects link is particularly useful; it opens the Projects folder inside the
Documents\Visual Studio 2008 folder on your system. By default, Visual Studio saves your
projects in this Projects folder, giving each project its own subfolder. We'll use a different
projects folder to organize your programming coursework, however, as you'll learn below.
Additional links to useful locations on your system will appear now too. The exact shape and
content of the links will depend on the version of Windows you are using, and the way that
you have configured dialog box views. (The screen shots in this book show Windows Vista.)

Browse to the c:\vb08sbs folder on your hard disk.

The c:\vb08sbs folder is the default location for this book’s extensive sample file col-
lection, and you'll find the files there if you followed the instructions in “Installing and
Using the Practice Files” in the Introduction. If you didn't install the sample files, close
this dialog box and install them now by using the CD included with this book. Then re-
turn to this procedure and continue.

Open the chapOl\musictrivia folder, and then double-click the MusicTrivia solution file.
(If your system shows file name extensions, this file will end with .sIn.)

Chapter 1 Exploring the Visual Studio Integrated Development Environment 7

Visual Studio loads the MusicTrivia form, properties, and program code for the
MusicTrivia solution. The Start Page probably is still visible, but in the upper-right
corner of the screen, Solution Explorer lists some of the files in the solution.

% Troubleshooting If you see an error message indicating that the project you want to
open is in a newer file format, you might be trying to load Visual Basic 2008 files into
the older Visual Basic .NET 2002, 2003, or 2005 software. (Earlier versions of Visual Basic
can't open the Visual Basic 2008 projects included on the companion CD.) To check
which version of Visual Basic you're using, click the About command on the Help menu.

Visual Studio provides a special check box named Always Show Solution to control several
options related to solutions within the IDE. The check box is located on the Projects and
Solutions/General tab of the Options dialog box, which you open by clicking the Options
command on the Tools menu. If the check box is selected, a subfolder is created for each
new solution, placing the project and its files in a separate folder beneath the solution. Also,
if you select the Always Show Solution check box, a few options related to solutions appear
in the IDE, such as commands on the File menu and a solution entry in Solution Explorer. If
you like the idea of creating separate folders for solutions and seeing solution-related com-
mands and settings, select this check box. You'll learn more about these options at the end
of the chapter.

Projects and Solutions

In Visual Studio, programs under development are typically called projects or solutions
because they contain many individual components, not just one file. Visual Basic 2008
programs include a project file (vbproj) and a solution file (.sIn), and if you examine
these files within a file browsing utility such as Windows Explorer, you'll notice that the
solution file icons have a tiny 9 in them, an indication of their version number. (Visual
Basic 2008 is referred to as VB 9 internally.)

A project file contains information specific to a single programming task. A solution file
contains information about one or more projects. Solution files are useful to manage
multiple related projects and are similar to project group files (vbg) in Visual Basic 6.
The samples included with this book typically have a single project for each solution, so
opening the project file (vbproj) has the same effect as opening the solution file (.sIn).
But for a multi-project solution, you will want to open the solution file. Visual Basic 2008
offers a new file format for its projects and solutions, but the basic terminology that you
might have learned while using Visual Basic .NET 2002, 2003, or 2005 still applies.

8

Part | Getting Started with Microsoft Visual Basic 2008

The Visual Studio Tools

At this point, you should take a few moments to study the Visual Studio IDE and identify
some of the programming tools and windows that you'll be using as you complete this
course. If you've written Visual Basic programs before, you'll recognize many (but probably
not all) of the programming tools. Collectively, these features are the components that you
use to construct, organize, and test your Visual Basic programs. A few of the programming
tools also help you learn more about the resources on your system, including the larger
world of databases and Web site connections available to you. There are also several pow-
erful Help tools.

The menu bar provides access to most of the commands that control the development envi-
ronment. Menus and commands work as they do in all Windows-based programs, and you can
access them by using the keyboard or the mouse. Located below the menu bar is the Standard
toolbar, a collection of buttons that serve as shortcuts for executing commands and controlling
the Visual Studio IDE. My assumption is that you've used Word, Excel, or some other Windows
application enough to know quite a bit about toolbars, and how to use familiar toolbar com-
mands, such as Open, Save, Cut, and Paste. But you'll probably be impressed with the number
and range of toolbars provided by Visual Studio for programming tasks. In this book, you'll
learn to use several toolbars; you can see the full list of toolbars at any time by right-clicking
any toolbar in the IDE.

Along the bottom of the screen you may see the Windows taskbar. You can use the taskbar
to switch between various Visual Studio components and to activate other Windows-based
programs. You might also see taskbar icons for Windows Internet Explorer, antivirus utilities,
and other programs installed on your system. In most of my screen shots, I'll hide the taskbar,
to show more of the IDE.

The following illustration shows some of the tools and windows in the Visual Studio IDE.
Don't worry that this illustration looks different from your current development environment
view. You'll learn more about these elements (and how you adjust your views) as you work
through the chapter.

The main tools visible in this Visual Studio IDE are the Designer, Solution Explorer, the
Properties window, and the Toolbox. You might also see more-specialized tools such as
Server Explorer and Object Browser, or they may appear as tabs within the IDE. Because
no two developers’ preferences are exactly alike, it is difficult to predict what you'll see if
your Visual Studio software has already been used. (What | show is essentially the “fresh
download” or "out-of-the-box" view.)

Chapter 1 Exploring the Visual Studio Integrated Development Environment 9

[MusicTrivia - Microsoft Visual Studia = |]
File Edit View Project Build Debug Data Tools Test Window Help
HeZuE-Ha AR ES|9 0 E-B L u @ 52 o R Eg R [E et

3| Toolbox B X} » X | Solution Explorer 1%
gj [All Windows Forms - IBlsrEEE L

= || Comman Controls e —— = Musiclrivia

=1 Rk Pointer = ==

=l My Project

Buken L.] MusicTriviavb
CheckBox
&% CheckedlistBox
ZE CamboBax o
T DateTimePicker =[[mb
A Label
A LinkLabel
=3 ListBox

] Solution Explorer | 1Data Sources |
25 ListView = plorer [[31Data Sources |
=] MaskedTextBox Praperties T Ix
7 MonthCalendar MusicTrivia Systern Windows.Forms, -
= Motifylcon ‘ | it ‘ Al
L2 NurmericlpDown — —_— L

ShowdnTaskba True -

|8 PictureBox

Size 460, 328

0 ProgressBar ey 4
@ RadioButton
25 RichTextBox
abl| TextBox
B ToolTip
i Treeview

[T WebBrowser

SizeGripStyle Auto
StartPosition WindowsDefaultLo
Tag]
Text Music Trivia -

Text

The text associated with the control,

Ready

If a tool isn't visible and you want to see it, click the View menu and select the tool. Because
the View menu has expanded steadily over the years, Microsoft has moved some of the less
frequently used View tools to a submenu called Other Windows. Check there if you don't see
what you need.

The exact size and shape of the tools and windows depend on how your development envi-
ronment has been configured. With Visual Studio, you can align and attach, or dock, windows
to make visible only the elements that you want see. You can also partially conceal tools as
tabbed documents along the edge of the development environment and then switch back
and forth between documents quickly. Trying to sort out which tools are important to you
now and which you can learn about later is a difficult early challenge when you're learning
the busy Visual Studio interface. Your development environment will probably look best

if you set your monitor and Windows desktop settings so that they maximize your screen
space, but even then things can get a little crowded.

Tip Although I use a screen resolution of 800 x 600 for most of the screen shots in this book—
so that you can see the IDE clearly—I usually use 1024 x 768 for writing code. You can change
the screen resolution in Windows Vista by right-clicking the Windows desktop and clicking
Personalize. In Windows XP, you right-click the Windows desktop and click Properties.

10

Part | Getting Started with Microsoft Visual Basic 2008

The purpose of all this tool complexity is to add many new and useful features to the IDE
while providing clever mechanisms for managing the clutter. These mechanisms include fea-
tures such as docking, auto hiding, floating, and a few other window states that I'll describe
later. If you're just starting out with Visual Studio, the best way to deal with this feature ten-
sion is to hide the tools that you don't plan to use often to make room for the important
ones. The crucial tools for beginning Visual Basic programming—the ones you'll start using
right away in this book—are the Designer, the Properties window, Solution Explorer, and the
Toolbox. You won't use the Server Explorer, Class View, Object Browser, or Debug windows
until later in the book.

In the following exercises, you'll start experimenting with the crucial tools in the Visual Studio
IDE. You'll also learn how to display a Web browser within Visual Studio and how to hide the
tools that you won't use for a while.

The Designer

If you completed the last exercise (“Open a Visual Basic project”), the MusicTrivia project is
loaded in the Visual Studio development environment. However, the user interface, or form,
for the project might not yet be visible in Visual Studio. (More sophisticated projects might
contain several forms, but this simple trivia program needs only one.) To make the form of
the MusicTrivia project visible in the IDE, you display it by using Solution Explorer.

Display the Designer

1. Locate the Solution Explorer window near the upper-right corner of the Visual Studio
development environment. If you don't see Solution Explorer (if it is hidden as a tab in
a location that you cannot see or isn't currently visible), click Solution Explorer on the
View menu to display it.

When the MusicTrivia project is loaded, Solution Explorer looks like this:

Solution Explorer (=]
2| MusicTrivia
oo 2l My Project

i Triviawh

:-_:gSDIution Explorer f__:lData Sources |

Chapter 1 Exploring the Visual Studio Integrated Development Environment 11
2. Click the MusicTrivia.vb form in the Solution Explorer window.

All form files, including this one, have a tiny form icon next to them so that you
can easily identify them. When you click the form file, Visual Studio highlights it in
Solution Explorer, and some information about the file appears in the Properties
window (if it is visible).

3. Click the View Designer button in Solution Explorer to display the program’s user
interface.

The MusicTrivia form is displayed in the Designer, as shown here:

MusicTrivia.vb [Design] | Start Page

a5 Music Trivia

YWhat rock and roll
instrument is often played
with sharp, slapping thumb
movements?

| Anzwer | | Guit |

Notice that a tab for the Start Page is still visible near the top of the Designer. You
can click this tab to display the Start Page, where you can view articles and Web links,
or open additional project files. To return to Designer view, click the MusicTrivia.vb
[Design] tab near the top of the MusicTrivia form.

@ Tip If you don't see the Start Page and MusicTrivia.vb [Design] tabs, your development

environment might be in Multiple Documents view instead of Tabbed Documents view. To
change this option, click Options on the Tools menu. On the left side of the Options dialog
box, expand the Environment category, and then click General. On the right, under Window
Layout, click the Tabbed Documents option, and then click OK. The next time you start
Visual Studio, the various windows that you open have tabs, and you can switch between
them with a simple button click.

Now try running a Visual Basic program with Visual Studio.

12

Part | Getting Started with Microsoft Visual Basic 2008

Running a Visual Basic Program

Music Trivia is a simple Visual Basic program designed to familiarize you with the program-
ming tools in Visual Studio. The form you see now has been customized with five objects
(two labels, a picture, and two buttons), and I've added three lines of program code to make
the trivia program ask a simple question and display the appropriate answer. (The program
“gives away" the answer now because it is currently in design mode, but the answer is hidden
when you run the program.) You'll learn more about creating objects and adding program
code in Chapter 2, “Writing Your First Program.” For now, try running the program in the
Visual Studio IDE.

Run the Music Trivia program

1. Click the Start Debugging button (the green right-pointing arrow) on the Standard
toolbar to run the Music Trivia program in Visual Studio.

Tip You can also press F5 or click the Start Debugging command on the Debug menu to
run a program in the Visual Studio development environment.

Visual Studio loads and compiles the project into an assembly (a structured collection
of modules, data, and manifest information for a program), prepares the program for
testing or debugging, and then (if the compilation is successful) runs the program in
the development environment. While the program is running, an icon for the program
appears on the Windows taskbar. After a moment, you see the MusicTrivia form again,
this time with the photograph and answer label hidden from view, as shown here:

o5 Music Trivia |£||ﬂ|@

Ywhat rock and roll
instrument is often played
with sharp, slapping thumb
movements?

| Anzwer | | Gluit |

Music Trivia now asks its important question: What rock and roll instrument is often
played with sharp, slapping thumb movements?

Chapter 1 Exploring the Visual Studio Integrated Development Environment 13
2. Click the Answer button to reveal the solution to the question.

The program displays the answer (The Bass Guitar) below the question and then displays
a photograph of an obscure Seattle bass player demonstrating the technique. The test
program works.

a2 husic Trivia

Yhat rock and roll
instrument is often played
with sharp, slapping thumb
movements?

| Anzwer | | Cluit |

3. Click Quit to close the program.

The form closes, and the Visual Studio IDE becomes active again.

Thinking About Properties

In Visual Basic, each user interface element in a program (including the form itself)

has a set of definable properties. You can set properties at design time by using the
Properties window. Properties can also be referenced in code to do meaningful work
while the program runs. (User interface elements that receive input often use proper-
ties to convey information to the program.) At first, you might find properties a difficult
concept to grasp. Viewing them in terms of something from everyday life can help.

Consider this bicycle analogy: a bicycle is an object you use to ride from one place to
another. Because a bicycle is a physical object, it has several inherent characteristics. It
has a brand name, a color, gears, brakes, and wheels, and it's built in a particular style.
(It might be a touring bike, a mountain bike, or a bicycle built for two.) In Visual Basic
terminology, these characteristics are properties of the bicycle object. Most of the
bicycle's properties were defined when the bicycle was built. But others (tires, travel
speed, and options such as reflectors and mirrors) are properties that change while the
bicycle is used. The bike might even have intangible (that is, invisible) properties, such
as manufacture date, current owner, or rental status. As you work with Visual Basic,
you'll use object properties of both types—visible and invisible.

14

Part | Getting Started with Microsoft Visual Basic 2008

The Properties Window

You use the Properties window to change the characteristics, or property settings, of the
user interface elements on a form. A property setting is a quality of one of the objects in
your program. You can change property settings from the Properties window while you're
creating your user interface, or you can add program code via the Code Editor to change
one or more property settings while your program is running. For example, the trivia ques-
tion that the Music Trivia program displays can be modified to appear in a different font or
font size or with a different alignment. (With Visual Studio, you can display text in any font
installed on your system, just as you can in Excel or Word.)

The Properties window contains an Object list that itemizes all the user interface elements
(objects) on the form. The window also lists the property settings that can be changed for
each object. You can click one of two convenient buttons to view properties alphabetically
or by category. You'll practice changing the Font property of the first label in the Music
Trivia program now.

Change a property

1. Click the Labell object on the form. (Labell contains the text “What rock and roll
instrument is often played with short, slapping thumb movements?”)

To work with an object on a form, you must first select the object. When you select an
object, resize handles appear around it, and the property settings for the object are
displayed in the Properties window.

2. Click the Properties Window button on the Standard toolbar.

The Properties window might or might not be visible in Visual Studio, depending on
how it's been configured and used on your system. It usually appears below Solution
Explorer on the right side of the development environment. (If it is visible, you don't
need to click the button, but you should click the window to activate it.)

You'll see a window similar to the one shown on the next page:

The Properties window lists all the property settings for the first label object (Label1)
on the form. (In Visual Basic 2008, more than 60 properties are associated with
labels.) Property names are listed in the left column of the window, and the current
setting for each property is listed in the right column. Because there are so many
properties (including some that are rarely modified), Visual Studio organizes them
into categories and displays them in outline view. If a category has a plus sign (+) next

O

3. Scroll the Properties window list box until the Font property is visible.

5. Click the Font ellipsis button in the Properties window.

Chapter 1 Exploring the Visual Studio Integrated Development Environment

15

to it, you can click the collection title to display all the properties in that category. If a
category has a minus sign (-) next to it, the properties are all visible, but you can hide

the list under the category name by clicking the minus sign.

m

Properties
Labell SysternVindows.Forms.Label -
ANEP
haximumSize 0,0 -
kinimumSize 0,0
raodifiers Friend
Padding 00,00
RightToleft Mo
Size 188, 88
Tahlndesx 1
Tag
Text What rock and roll instrl.llz
Textdlign Topleft
UseCampatibleTextRe False
Usebdnemanic True
UsediaitCursar False
Wisible True -
Text
The text associated with the control,

Tip The Properties window has two handy buttons that you can use to further organize
properties. Clicking the Alphabetical button lists all the properties in alphabetical order
and puts them in just a few categories. Clicking the Categorized button organizes the
property list into many logical categories. | recommend Categorized view if you are new

to Visual Studio.

The Properties window scrolls like a regular list box. If you are in Categorized view,

Font is in the Appearance category.

Click the Font property name (in the left column).

The current font (Microsoft Sans Serif) is partially displayed in the right column, and a
button with three dots on it appears by the font name. This button is called an ellipsis
button and indicates that a dialog box is available to customize the property setting.

16 Part| Getting Started with Microsoft Visual Basic 2008

Visual Studio displays the Font dialog box, which you can use to specify new formatting
characteristics for the text in the selected label on your form. The Font dialog box con-
tains more than one formatting option; for each option you select, a different property
setting will be modified.

Fant (=3

FEont: Fant style: Size:
I Regular 1 | ful'd |

() Microsaft Uighur talic: 512 Cancel
€} Microsoft vaHei | Bold |14 2
) Microsoft i Baiti | Bold Italic 116 E

€ MingLil_HK5SCS

O MingLiU ‘ |18 |
LO MingLil_HKSESE4B = | |

Effects Sample
| Strikeout
| Underline AaBbvyiz
Script:
Wwestern =

6. Change the font style from Regular to Italic, and then click OK to confirm your changes.

Visual Studio records your changes and adjusts the property settings accordingly. You
can examine the changes by viewing your form in the Designer or by expanding the
Font category in the Properties window.

Now change a property setting for the Label? object (the label that contains the text
“The Bass Guitar”).

7. In the Designer, click the second label object (Label?2).
When you select the object, resize handles surround it.
8. Click the Font property in the Properties window.

The Label2 object has its own unique set of property settings. Although the property
names are the same as those of the Labell object, the values in the property settings
are distinct and allow the Label2 object to act independently on the form.

9. Click the Font ellipsis button, set the font style to Bold and the font size to 12 points,
and then click OK.

10. Scroll to the ForeColor property in the Properties window, and then click it in the left
column.

11. Click the ForeColor arrow in the right column, click the Custom tab, and then click a
dark purple color.

Chapter 1 Exploring the Visual Studio Integrated Development Environment 17

The text in the Label2 object is now bold and purple on the form.

o Music Trivia =B =)

Vihat rock and rolf
mstrument /s offen plaved
with sharp, sigoping thumb
movenents ? i

[}
éThe Bass Guitar

Anzwer | | Cluit |

Congratulations! You've just learned how to set properties in a Visual Basic program by
using the Visual Studio Properties window—one of the important skills in becoming a
Visual Basic programmer.

Moving and Resizing the Programming Tools

With numerous programming tools to contend with on the screen, the Visual Studio IDE

can become a pretty busy place. To give you complete control over the shape and size of
the elements in the development environment, Visual Studio lets you move, resize, dock,
and auto hide most of the interface elements that you use to build programs.

To move one of the tool windows in Visual Studio, simply click the title bar and drag the
object to a new location. If you align one window along the edge of another window, it
attaches to that window, or docks itself. Dockable windows are advantageous because they
always remain visible. (They don't become hidden behind other windows.) If you want to
see more of a docked window, simply drag one of its borders to view more content.

If you want to completely close a window, click the Close button in the upper-right corner
of the window. You can always open the window again later by clicking the appropriate
command on the View menu.

If you want an option somewhere between docking and closing a window, you might try
auto hiding a tool window at the side of the Visual Studio IDE by clicking the tiny Auto Hide
pushpin button on the right side of the tool’s title bar. This action removes the window from
the docked position and places the title of the tool at the edge of the development environ-
ment in an unobtrusive tab. When you auto hide a window, you'll notice that the tool window
remains visible as long as you keep the mouse pointer in the area of the window. When you
move the mouse to another part of the IDE, the window slides out of view.

18

Part | Getting Started with Microsoft Visual Basic 2008

To restore a window that you have auto hidden, click the tool tab at the edge of the devel-
opment environment or hold your mouse over the tab. (You can recognize a window that is
auto hidden because the pushpin in its title bar is pointing sideways.) By holding the mouse
pointer over the title, you can use the tools in what | call “peek-a-boo” mode—in other words,
to quickly display an auto hidden window, click its tab, check or set the information you need,
and then move the mouse to make the window disappear. If you ever need the tool displayed
permanently, click the Auto Hide pushpin button again so that the point of the pushpin faces
down, and the window then remains visible.

A useful capability of Visual Studio is also the ability to display windows as tabbed documents
(windows with tab handles that partially hide behind other windows) and to dock windows by
using docking guides, as shown in the following illustration.

W MusicTrivia - Microsaft Visual Studio
File Edit View Project Build Debug Data Format Tools Test Window Help

e EiE-Ha|sRaa=s9-o-0-|F 0 &%=

5| . StarkPage MusicTrivia.vb [Design] | I » x| Solution Explarer R x
9 C BlpEIEES
g o Music Trivia = NG | 2 MusicTrivia
=] - [My Project
\ (=] MusicTriviawb
Wehat rock and rolf]
instrument fs often plaved :
with sharp, sfaoping thumb b
movements? F
DTh B DG 5 \ . .
ol bassiauia - 5~ Docking Guides
p 4| » /

roemms R

el

nabled True

FlatStyle Standard
@ Font Microsoft Sans Ser
| ForeColor Il rurple
GenerateMember True
= Imzge [] tnoner
Imzgeflign MiddleCenter
|] tnone)
Use the guide dismand to choose 2 docking location. Ta prevent docking, hold down CTRL to e =

Docking guides are changeable icons that appear on the surface of the IDE when you move
a window or tool from a docked position to a new location. Because the docking guides are
associated with shaded, rectangular areas of the IDE, you can preview the results of your
docking maneuver before you actually make it.

Docking and auto hiding techniques definitely take some practice to master. Use the follow-
ing exercises to hone your windows management skills and experiment with the features of
the Visual Studio development environment. After you complete the exercises here, feel free
to configure the Visual Studio tools in a way that seems comfortable for you.

Chapter 1 Exploring the Visual Studio Integrated Development Environment 19

Moving and Resizing Tool Windows

To move and resize one of the programming tool windows in Visual Studio, follow these
steps. This exercise demonstrates how to manipulate the Properties window, but you can
work with a different tool window if you want to.

Move and resize the Properties window

1.

If the Properties window isn't visible in the development environment, click the
Properties Window button on the Standard toolbar.

The Properties window is activated in the IDE, and its title bar is highlighted.

Double-click the Properties window title bar to display the window as a floating
(undocked) window.

Using the Properties window title bar, drag the window to a new location in the
development environment, but don't dock it (yet).

Moving windows around the Visual Studio IDE gives you some flexibility with the tools
and the look of your development environment. Now you'll resize the Properties win-
dow to see more object property settings at once.

Point to the lower-right corner of the Properties window until the pointer changes to
a double-headed arrow (the resizing pointer). Then drag the lower-right border of the
window down and to the right to enlarge the window.

Properties
Label2 SystermMifindows. Forms.Label -
=B 2
Enabled True =
FlatStyle Standard
Fant Microsoft Sans Serif, 12pt, style-
ForeCala I Purple E
Generatebermber True
Image I:l {none)
Imagedlign MiddleCenter
Imagelndex I:l {none)
Imagekey |:| {none)
Imagelist (hone) A
Location 23,147 i
Locked False
dargin 3,030
MaximumSize 0,0
kinimumSize 0,0
raodifiers Friend
Padding 00,00
RightTol eft Mo i
ForeColor
The foreground colar of this component, which is used to display
text.

You can work more quickly and with more clarity of purpose in a bigger window. Feel
free to move or resize a window when you need to see more of its contents.

20

Part | Getting Started with Microsoft Visual Basic 2008

Docking Tool Windows

If a tool window is floating over the development environment, you can return it to its original
docked position by double-clicking the window's title bar. (Notice that you used this same tech-
nique in the previous exercise to undock a docked window. Double-clicking a title bar works
like a toggle, a state that switches back and forth between two standard positions.) You can

also attach or dock a floating tool in a different place. You might want to do this if you need

to make more room in Visual Studio for a particular programming task, such as creating a user
interface with the Designer. Try docking the Properties window in a different location now.

Dock the Properties window

1. Verify that the Properties window (or another tool that you want to dock) is floating

over the Visual Studio IDE in an undocked position.

If you completed the previous exercise, the Properties window is undocked now.

. Drag the title bar of the Properties window to the top, bottom, right, or left edge of

the development environment (your choice!), taking care to drag the mouse pointer
over one of the docking guides (small arrows) on the edge of the Visual Studio IDE, or
the collection of four docking guides (called a diamond guide) in the center.

As you move the mouse over a docking guide, the Properties window snaps into place,
and a blue shaded rectangle indicates how your window will appear when you release
the mouse button. Note that there are several valid docking locations for tool windows
in Visual Studio, so you might want to try two or three different spots until you find
one that looks right to you. (A window should be located in a place that's handy and

not in the way of other needed tools.)

[MusicTrivia - Microsoft Visual Studio o (e =
File Edit Wiew Project Build Debug Data Tools Test ‘Window Help
e E - bR 9 -0-0-CE b uom%=(3% QR e
Start Page MusicTrivia.vb [Design] ~ 3 | Solution Explarer 0 x

[atenL 5]

What rock and rolf |
fnstument is often plaved |
with sharp, slapping thomb

movements? \

8 Music Trivia e

~1
Properies = —|
Bngwer ‘ | Quit ‘ Label2 SystermMindous Forms.Label
25 LB #
Enabled True
Flatstyle Standar
Font Microsd
ForeCalor M ru
Generatehember True
Image [] tn
Trsgedlign Middle
Imnagelndes 1 i
Use the guide diamond to choose a dacking Iocation, Ta prevent dacking, hald down CTRL, Tmagekey [Tin

(2 MusicTrivia
L [My Project
EE] MusicTrivia.vh

Chapter 1 Exploring the Visual Studio Integrated Development Environment 21
3. Release the mouse button to dock the Properties window.

The window snaps into place in its new home.

Q Tip To switch between dockable, tabbed documents, and floating window styles, right-
click the window's title bar (or tab, if it is a tabbed document), and then click the option
you want. Although the Properties window works very well as a dockable window, you'll
probably find that larger windows (the Visual Studio Start Page, for example) work best
as tabbed document windows.

4. Try docking the Properties window several more times in different places to get the feel
of how docking works.

| guarantee that although a few of these window procedures seem confusing at first,
after a while they'll become routine for you. In general, you want to create window
spaces that have enough room for the information you need to see and use while you
work on more important tasks in the Designer and in the Code Editor.

Hiding Tool Windows

To hide a tool window, click the Auto Hide pushpin button on the right side of the title bar to
conceal the window beneath a tool tab on the edge of the IDE, and click it again to restore the
window to its docked position. You can also use the Auto Hide command on the Window menu
(or right-click a title bar and select Auto Hide) to auto hide a tool window. Give it a try now.

Use the Auto Hide feature

1. Locate the Auto Hide pushpin button on the title bar of the Properties window.

The pushpin is currently in the “down,” or “pushed in,” position, meaning that the
Properties window is “pinned” open and auto hide is disabled.

2. Click the Auto Hide button on the Properties window title bar.

The Properties window slides off the screen and is replaced by a small tab named
Properties. The benefit of enabling auto hide, of course, is that the process frees up
additional work area in Visual Studio. But the hidden window is also quickly accessible.

3. Hold the mouse pointer over the Properties tab. (You can also click the Properties tab
if you want.)

The Properties window immediately slides back into view.
4. Click elsewhere within the IDE, and the window disappears again.

5. Finally, display the Properties window again, and then click the pushpin button on the
Properties window title bar.

The Properties window returns to its familiar docked position, and you can use it
without worrying about it sliding away.

22 Part| Getting Started with Microsoft Visual Basic 2008

Spend some time moving, resizing, docking, and auto hiding tool windows in Visual
Studio now, to create your version of the perfect work environment. As you work
through this book, you'll want to adjust your window settings periodically to adapt
your work area to the new tools you're using.

@ Tip Visual Studio 2008 lets you save your window and programming environment settings and
copy them to a second computer or share them with members of your programming team. To
experiment with this feature, click the Import And Export Settings command on the Tools menu
and follow the wizard instructions to export (save) or import (load) settings from a file.

Switching Among Open Files and Tools by Using
the IDE Navigator

Visual Studio 2008 has a feature that makes it even easier to switch among open files and
programming tools in the development environment. This feature is called the IDE Navigator,
and it lets you cycle through open files and tools by using key combinations, in much the
same way that you cycle through open programs on the Windows taskbar. Give it a try now.

Use the IDE Navigator

1. Hold down the Ctrl key and press Tab to open the IDE Navigator.

The IDE Navigator opens, and displays the open files and tools in the IDE. Your screen
will look similar to the following:

B MusicTrivia.vh [Design]

Active Tool Windows Active Files

P Properties 2] MusicTriviawb [Design]
L_;] Solution Explorer B startPage

_j Data Sources

S0+ Toolbox

The farws Guitar

Ciwb08shshchaplhusicTrivia\MusicTrivia\husicTriviawvh

2. While holding down the Ctrl key, press Tab repeatedly to cycle through the open files
until the file you want is highlighted.

To cycle through the files in the reverse direction, hold down Ctrl+Shift and press Tab.

Chapter 1 Exploring the Visual Studio Integrated Development Environment 23

3. While holding down the Ctrl key, press the arrow keys to cycle through both the open
files and the open tools.

You can also select an open file (or tool) by clicking its name.
4. When you're finished with the IDE Navigator, release the Ctrl key.

The last selected item in the IDE Navigator will become active.

Tip To cycle through open tools without opening the IDE Navigator, you can also press Alt+F7.
Shift+Alt+F7 lets you cycle through the tools in the reverse direction.

Opening a Web Browser Within Visual Studio

A handy feature in Visual Studio is the ability to open a simple Web browser within the de-
velopment environment. The browser appears as a tabbed document window in the IDE, so it
takes up little space but can be opened immediately when needed. You could open a stand-
alone Web browser (such as Internet Explorer) and keep it nearby on the Windows taskbar,
but running a Web browser within Visual Studio makes examining Web sites and copying
data into Visual Studio even easier. Try using the Visual Studio Web browser now.

Open the Visual Studio Web browser

1. Click the Other Windows submenu on the View menu, and then click the Web Browser
command.

The Web Browser window appears, as shown here:

0 MusicTrivia - Microsaft Wisual Studio =
File Edit View Project Build Debug Dats Tosls Test ‘Windew Help
de=E-Ha B =2 2O » S QW R
Back [# 4 A°| @ HowDol ~ 2 Search | 3 Index 43 Contents |] Help Favorites) MSDN Forums 4 _
.| ~Wisual Basic Developer Center | MusicTriviawh [Design] | Start Page v X |Solubion Esplarer-.. - I X
= || URL: hitpssimseinz.micrasoft.com/en-us/vbasic/defaul aspx = &G &
g

. . - .|| A MusicTrivia
Welcome | SignIn Add LIVE SEARCH ko your Browser! | United States - English v | Microsoft.com ;
=4 My Project

i . - L =] MusicTriviawh
ITISdI'I : Visual Basic Developer Center E E
MSOM b Developer Centers b Visual Basic Developer Center Home b
Visual Basic

Wisual Basic is a tool for productively building type-safe and object-oriented applications. It
sliows develapers to crasts & wids range of Windows, Web, mabile, and Office applications
built on the .WET Framewaork

B o © 2

Featured Resource "How Do I' Videos
Basic Instincts: How Do I: The Interop Support and
Extension Upgrade Yisual Forms Toolkit 2.0 Forums
Methods in Yisual Basic Projects to is now live! Join the commi =
7 W v 3 Solution E... [1Dzta Sour.. |

Ready

24 Part| Getting Started with Microsoft Visual Basic 2008

The browser is a tabbed document window by default, but you can change it into a
floating window or a docked window by right-clicking the window title bar and then
clicking the Floating or Dockable commands.

Q Tip You can change the default page that appears in the Web Browser window by
changing the setting in the Options dialog box. Open the Options dialog box by clicking
Options on the Tools menu. Select the Show All Settings checkbox, expand Environment,
and then click Web Browser. Change the Home Page setting to a URL you want for the
default page.

2. Experiment with the browser and how it functions within the IDE.

Although the browser is more basic than Internet Explorer or another full-featured
browser, you will soon find it a useful addition to the Visual Studio tool collection.

3. When you're finished, click the Close button on the right side of the Web browser title
bar to close the window. (If your browser window appears as a tabbed window, you
might need to change it to a floating window first.)

Getting Help

Visual Studio includes an electronic reference center called Microsoft Visual Studio 2008
Documentation that you can use to learn more about the Visual Studio IDE, the Visual Basic
programming language, resources in the Microsoft .NET Framework, online communities that
specialize in Visual Basic and Visual Studio, and the remaining tools in the Visual Studio suite.
Take a moment to explore these Help resources now before moving on to Chapter 2, where
you'll build your first program.

Two Sources for Help: Local Help Files and Online Content
Essentially, there are two basic resources for electronic help within Visual Studio:

B You can access the local Help files that were installed during the Visual Studio 2008
setup process.

B You can access online (Internet-based) Help via MSDN Online, MSDN newsgroups,
and a collection of developer Web sites sponsored by Microsoft called the Codezone
Community. The Codezone Community is especially valuable, because the group in-
cludes professional developers who are using Visual Studio and Visual Basic 2008 to
write real-world applications; the content and advice they offer is continually updated
and therefore reflects current trends, concerns, and triumphs within the Visual Basic
programming community.

Chapter 1 Exploring the Visual Studio Integrated Development Environment 25

Configure your Help system now to offer both local and online Help resources as you learn
about Visual Basic.

Set Help system options

1.

Click How Do | on the Help menu to open the Help system.

Visual Studio offers its assistance through an HTML-based tool called Microsoft Document
Explorer. You can use several commands on the Help menu to open Document Explorer.
Each command opens and configures Document Explorer to display a different type of
information. How Do | is one of the best starting places; it presents a hierarchical list of
common programming tasks that you can use to quickly find the information you need.
Your screen looks something like this:

@) How Dalin Wisual Basic - Microsoft Visual Studio Dacumentation - Micrasoft Docurnent Explarer [EEE

File Edit View Tools ‘Windew Help

3 Back] W A”| @ HowDol » O Search |3 Index 4% Contents 7] Help Faverites | = %) MSDN Forums 4, -

Help Favarites ~ & 3| How Do lin Visual Basic | Search | - X
e X [URL: ity fmsdnzmicrosoft comyen-us/library/TO0F4441 blel 4677 0550 T8SFS6ha3LVS B asps. =

= Help Topics

Visusl Basic Language Concepts -
DataSet Class l

Walkthraugh: Creating a Basic
\Walkthrough: Debugging Web
Walkthrough: Sending Dataset
Honw to: Bind Data to the Wind
How to: Hide Colurmns in the \ send 8 community Cantent
BindingMavigatar Control (iir Click to Rate and Give Feedback Jsr¥
BindingSource Component Ow

How Do I is your gateway to key task-based topics about Visual Basic programming and

&5CI Character Codes application development. The eszential categories of what you can do with Visual Basic are
Walkthraughs Creating Your (|| listed in this topic. The links provide pointers to important procedure-based Help pages.

What's Mew in Yisual Basic

How Do I in Visual Basic

I

J| Learn the visual Basic Language (How Do I in Visual Basic)

= Help Searches £ Object-oriented Programming ... Manage Control Flow ... Wark with Variables ... Handle
Currently no searches have b |f Errors and Exceptions .. more
Uparade For Visual Basic 6 Users (How Do I Visual Basic)
Upgrade a Visual Basic 6 Application . Learn the .MET Framework .. mare
Data Access (How Do I in Visual Basic)
Getting Started Load Data ... Validate Data more
Deployment (How Do 1 in Visual Basic)
Deploy with ClickOnce .. Use Setup Projacts . Use other Deployment Projects .. more
Windows Applications (How Do I in Visual Basic)
T = s Forms and Controls . Data .. Printing ... more
@ Contents| | 3 Index| 7] Help Fa... [| § « [)
Ready

Click one or more topics within the How Do | list to explore the type of material
provided.

The Help system contains hundreds of technical descriptions and tutorials (many with
sample code). Now you'll configure Help to display just the content that you want when
it opens.

On the Document Explorer menu bar, click Tools, and then click the Options command.

You are presented with customization options that you can use to configure how the
Help system works and (most importantly) what resources Help checks when it searches
for information.

26 Part |
4.

Getting Started with Microsoft Visual Basic 2008
Expand the Help category and then click Online.

Your screen looks similar to the following:

Options |E|
b Ehvironment o Wéhen loading Help content
4 Help @ Try online first, then local
General ' Try local first, then anline
Online Try local only, not online
International Settings
Keyboard Search these providers: LCodezone Cormrmunity:
Web Browser 7] Lacal Help |T| :-._:'-4GuysFromRolla.c0m =
[¥] MASDM Online |T| [¥] Aspalliance.corm =
[V] Codezane Community T [V] C# Cornercom
[¥] Questions [¥] CodeGuru.cam
[¥] DewCity.net
7] Developer Fusion (UK) =

4iGuysFromRolla.com is one of the =
Internet's largest Active Server Pages
and MET resource sites, 4Guys

Read the privacy staterment..,

| Ok | I Cancel

My recommendation is that you set your online options as shown in this screen.
Select the top option button to load Help content first from online sources (the

most up-to-date), and then from local sources on your hard disk. (If you have a slow
Internet connection or no Internet connection, you'll probably be better served by
using only local sources, however.) Next be sure that MSDN Online and Codezone
Community are selected so that Visual Studio loads recent articles from Visual Basic
developers each time that you use the Search command. If you find after a while that
you prefer one or two Codezone communities over the others, you can adjust the
search order or remove items from the list.

Select the configuration options that make sense to you, and then click OK to save them.

You can return to the Options menu within Document Explorer any time that the Help
system is open. Now try using another useful feature, the Help favorites list, which
operates much like the Favorites list within Internet Explorer.

Chapter 1 Exploring the Visual Studio Integrated Development Environment 27

Maintain a Favorites list within Help

1. On the Document Explorer toolbar, click the Add To Help Favorites button (the one
next to the Help Favorites button, with the icon of a page with a plus sign (+) on it).

When you click this button, Document Explorer adds the article that is currently visible
to your preferred list of Help documents. Now you can always have your favorite Help
resources organized and right at your fingertips!

2. Click the Search tab at the top of the Document Explorer window.

The Search window opens, providing a tool that you can use to make specific text-based
searches within your local and online Help resources.

3. Click the Language arrow (a content filter), and remove the check marks from all
languages except Visual Basic.

You can configure the Help system to limit your search to just the languages, tech-
nologies, and topics that you want by using the filter arrows. Because you are just

starting with Visual Studio, you might want to limit your search to just Visual Basic
for now.

4. In the Search text box, type data controls, and press Enter.

Visual Studio searches for the text strings ‘data’ and ‘controls’ in your local Help files
and online in MSDN, newsgroup, and Codezone communities. Pay particular attention
to the Sort By list box in the Search window, which you can use to select how articles
found by Search are displayed.

5. Click the MSDN Online Help source on the right side of the window to display the
results of your online search.

The online Help information displayed is dynamic; it will change periodically to reflect
new information published on MSDN.

6. Save the first (highlighted) item to your Help Favorites list.

7. Click the Search tab and then click the Save Search button on the Document Explorer
toolbar.

Q Tip In addition to Help articles, you can save important search results in your Favorites list.

28

Part |

10.

11.

12.

Getting Started with Microsoft Visual Basic 2008

Your screen looks similar to the following illustration. Notice that the Help Favorites
window now holds the two new favorites that you have saved: “How Do | in Visual
Basic” (under Help Topics) and “data controls” (under Help Searches).

@l Search - Microsoft Wisual Studio Documentstion - Microsoft Docurment Explarer ===
File Edit View Tools Windew Help
Back @ A | @ HowDol » Q Search [3Index @ Contents (] Help Favorites) MSDM Forums A =
Help Favorites > 8% . HowDolinVisual Basic” Search v x
de X data cantrals v [Searcs
= Help Topics - Language: Yisual Basic
Hiriy Do if Wi sl Baft © Tethmomay Servers & Enterprise, SQU Server 2000, SGI Server 2005, Visual Studio 2005, Web |-
DataSet Clsss cennoloay: Developraent, Windows Forms, Windows Vista
Walkthrough: Creating a Basic ~ ContentType: Addins 8 Macros, Templates 8 Starter Kits
Walkthrough: Det ek
Walkthrough: Sending Dataset Searched for: data controls Sortby: Rank - 4] 1-20 of 100 results b
How to: Bind Dats to the Wind
How to: Hide Colurnns in the \
EindingMavigator Control (wir|| [e e Cofliais SampIE Local Help (1)

This sample dermonstrates howta use your own
cantrols with the Data Sources window, ... Download
sarnple. This sample demanstrates how to use your

BindingSource Component O
ASCI Character Codes

Walkthrough: Creating Your O own controls with the Dats Sources window.
What's Mew in Yisusl Basic
5 Help Searches 4 MSDN Online (100}
daf Data Source Controls Overview Custorn Data Controls Sample

Data Source Controls Owerview

ASPMNET includes data source cantrals that allow you Data Source Contrals, Part 1: The Basic

to wark with differant types of data sources such s a
database, an ML file, ar 3 middle-tier business

bt Codezone Community (100}

Bind Option Buttons to Data Contrals
Using Dynasets vs, Using Data Cantrol
How to Lse twa different Data Control

Data Source Controls, Part 1: The Basics
Nikhil Kothari Microsaft Corporation. Movember
. - 2005, Applies to: Microsoft Wisual Studio Questions (100)
2005 Microsoft ASPMET 2.0 Data Source Cantrals. e B T o e
W J v

v
5 Contents [Index| 5] Help Fa.. [||[4 |

Ready

Click the Rename button in the Help Favorites window. (You can also right-click the
search that you saved, and then click Rename.)

Document Explorer highlights the name that you used for your search and allows you
to rename it so that your favorite more closely matches the actual search. This step is
optional, but | find it useful.

Type Data Sources window and controls, and press Enter.

Document Explorer changes the name of the search within your Favorites list. | chose
this title because it seemed clearer to me than my original search string. (However, you
might want to specify a different title that more closely matches the search results that
you have achieved.)

Click How Do I In Visual Basic in the Help Favorites window.

The first article that you saved appears in Document Explorer. Now you'll practice de-
leting a favorite, a skill that becomes important when your list of favorite Help articles
grows long and you need to thin it out.

Right-click the How Do | In Visual Basic item in the Help Favorites window and then
click Delete.

If you are prompted to confirm your intention to delete this favorite, click Yes.

Chapter 1 Exploring the Visual Studio Integrated Development Environment 29

The How Do | article is deleted from your favorites list (but not from the Help system).

13. Click the Close button on the Document Explorer title bar.

There are additional Help features to learn and experiment with, but now is a good time for
me to summarize the important Help commands and for you to turn to the writing of your

first program in the next chapter.

Summary of Help Commands

Here is a short compilation of useful Help commands and their uses within the Visual

Studio IDE.

To get Help information
Organized by programming task

About the feature or command
you're currently using

By topic or activity
While working in the Code Editor

While working in a dialog box

By searching for a specific
keyword

From MSDN and independent
Visual Studio Web sites

About contacting Microsoft for
product support

Do this
On the Visual Studio Help menu, click How Do I.
On the Visual Studio Help menu, click Dynamic Help.

On the Visual Studio Help menu, click Contents.

Click the keyword or program statement you're interested in,
and then press F1.

Click the Help button (question mark) in select dialog boxes
(for example, the dialog box displayed when you choose the
Options command on the Tools menu).

On the Help menu, click Search, and type the term you're
looking for. Filter and organize the search results using the
Sort By list box.

On the Help menu, click MSDN Forums.

On the Help menu, click Technical Support.

Customizing IDE Settings to Match Step-by-Step
Exercises

Like the tool windows and the Help system, the compiler settings within the Visual Studio
development environment are highly customizable. It is important to review a few of these
settings now so that your version of Visual Studio is configured in a way that is compatible
with the step-by-step programming exercises that follow. You will also learn how to cus-
tomize Visual Studio generally so that as you gain programming experience, you can set
up Visual Studio in the way that is most productive for you.

30

Part | Getting Started with Microsoft Visual Basic 2008

Setting the IDE for Visual Basic Development

The first setting that you need to check was established when Visual Studio was first installed
on your machine. During setup, you were asked how you wanted Visual Studio to configure
your general development environment. Since Visual Studio is a multi-purpose programming
tool, you had many options—Visual Basic development, Visual C++ development, Visual C#
development, Web development, and even a general-purpose programming environment
that closely matches previous versions of Visual Studio. The selection you made configured
not only the Code Editor and the development tools available to you, but also the menu and
toolbar commands, and the contents of several tool windows. For this reason, if you plan to
use this book to learn Visual Basic programming but originally configured your software for
a different language, a few of the menu commands and procedures described in this book
will not exactly match your current software configuration. (The location of the Web Browser
command, discussed above, is one example.)

Fortunately, you can fix this inconsistency and practice changing your environment settings

by using the Import And Export Settings command on the Tools menu. The following steps

show you how to change your environment setting to Visual Basic development, the recom-
mended setting for this book.

Set the IDE for Visual Basic development

1. On the Tools menu, click Import And Export Settings.

You can use the wizard that appears to save your environment settings for use on
another computer, load settings from another computer, or reset your settings—the
option that you want to select now.

2. Click Reset All Settings, and then click Next.

Visual Studio asks you if you want to save your current settings in a file before you
configure the IDE for a different type of programming. It is always a good idea to
save your current settings as a backup, so that you can return to them if the new
ones don't work out.

3. Verify that the Yes, Save My Current Settings button is selected, and note the file name
and folder location in which Visual Studio plans to save the settings.

If you want to go back to these settings, you'll use this same wizard and the Import
Selected Environmental Settings button to restore them.

4. Click Next to view the default list of settings that you can use for Visual Studio.

Depending on what Visual Studio components are installed, you will see a list of settings
similar to those shown in the following illlustration:

Chapter 1 Exploring the Visual Studio Integrated Development Environment 31

Import and Export Settings Wiizard |i|

a/ 5 ! Choose a Default Collection of Settings

Which collection of settings do you want to reset to?

3, General Development Settings Descriptian:

= st S Optirnizes the environment so you can

B

5L Wisual C++ Development Settings

focus on building waorld-class applications,
This collection of settings contains
customizations to the window layout,

(5 Wreb Developrent Settings command menus and keyboard shortcuts
to make common Yisual Basic cormrmands
rnore accessible,

al C#t Development Se&ings

| Einish | | Cancel |

| < Previous

5. Click Visual Basic Development Settings (if it is not already selected), and click Finish.

The wizard switches your IDE settings, including menu commands, toolbars, and settings
within a few dialog boxes, tool windows, and the Code Editor. If a Help window is still
open from an earlier exercise, you see a warning reminding you that the Help system
cannot be updated fully until you close and restart Help.

Feel free to repeat this customization process any time that you need to reset your
settings (for example, if you make a customization mistake that you regret), or if you
want to customize Visual Studio for another programming tool.

6. Click Close to close the wizard.

Checking Project and Compiler Settings

If you just reset your environment settings for Visual Basic development, you are now ready
to begin the programming exercises. But if you didn't reset your settings—for example, if
you were already configured for Visual Basic development and have been using Visual Studio
2008 for a while, or if your computer is a shared resource used by other programmers who
might have modified the default settings (perhaps in a college computer lab)—complete the
following steps to verify that your settings related to projects, solutions, and the Visual Basic
compiler match those that | use in the book.

32

Part |

Getting Started with Microsoft Visual Basic 2008

Check project and compiler settings

1.

2.

3.

Click the Options command on the Tools menu to display the Options dialog box.

The Options dialog box is your window to many of the customizable settings within
Visual Studio. To see all the settings that you can adjust, click to select the Show All
Settings check box in the lower-left corner of the dialog box.

Expand the Projects And Solutions category and then click the General item in the
Options dialog box.

This group of check boxes and options configures the Visual Studio project and solution
settings.

So that your software matches the settings used in this book, adjust your settings to

match those shown in the following dialog box:

— Set this to the location of the book's
practice files (c:\vb08sbs)

Tpmere ERr=
Ervironment Wisua| Studio projects location: -
Projects and Solutions Ciwb0#sbs u
General))
S Visual Studic user praject templates location;
Dt CAlsers\Michael Halvorsom\DocumentsiWisus! Stucio 2008 Templates\Proje [. |
WC++ Directories Visual Studio user itern templates lacation:
VG Praect Setting s Ci\Users\Michael Halvorsom\Docurnents\Wisual Studio 20084 Templates\ltern E
Source Contral
Text Editor] Always show Error List if build finishes with errors sm—
Database Toals [#] Track Agtive Item in Solution Explarer Remove Checkma rks
Debugging 7] Show sdvanced build configurations
Disie ool [F Aty showssoltion from boxes so that
HTML Designer
Office Tools E!SEVE new projects when created instructions related tO
Test Taolks [V1'Warn userwhen the project [ocation is NOt trUsted ee—— X .
Text Templating [Shows Qutput window when build starts Openlng pr‘OJeCtS
Windaws Forms Designer [T Prornpt for syrbolic renaming when renarming files
Workfcw Designer match the book
i_lﬂsmw all settings OK

|-Se|ect this checkbox to show
all available settings

In particular, | recommend that you clear the check marks from the Always Show
Solution and Save New Projects When Created check boxes. The first option shows
additional solution commands in the IDE, which is not necessary for solutions that con-
tain only one project (the situation for most programs in this book). The second option
(in contrast with Visual Studio .NET 2003 and Visual Basic 6) causes Visual Studio to
postpone saving your project until you click the Save All command on the File menu
and provide a location for saving the file. This “delayed save” feature allows you to
create a test program, compile and debug the program, and even run it without actu-
ally saving the project on disk—a useful feature when you want to create a quick test
program that you might want to discard instead of saving. (An equivalent situation in
word-processing terms is when you open a new Word document, enter an address for

Chapter 1 Exploring the Visual Studio Integrated Development Environment 33

a mailing label, print the address, and then exit Word without saving the file.) With this
default setting, the exercises in this book prompt you to save your projects after you
create them, although you can also save your projects in advance by selecting the Save
New Projects When Created check box.

You'll also notice that | have highlighted the c:\vb08sbs folder as the location for Visual
Studio projects, the default location for this book's sample files. Most of the projects
that you create will be stored in this folder, and they will have a "“My” prefix to distin-
guish them from the completed project | provide for you to examine.

After you have adjusted these settings, you're ready to check four Visual Basic compiler
settings.

. Click the VB Defaults item in the Options dialog box.

Visual Studio displays a list of four compiler settings: Option Explicit, Option Strict,
Option Compare, and Option Infer. Your screen looks like this:

Options [-7-|sa]
Errvironrnent Default project settings:

Projects and Solutions

Getieral Option Explicit: |On v|

Build and Run | Option Strict: |Of'f v|
WEB Defaults —
WC++ Directories | Option Compare: |Binary v|
WC ++ Praject Settings | Option Infer |C)r17V|
Source Control | -
Text Editor

Database Tools

Debugging |

Device Toals

HTrAL Designer

Office Tools

Test Toals

Text Ternplating ‘

Windows Forms Designer

Weorkflow Designer |

|1 Showe all settings | QK | I Cancel |

Although a detailed description of these settings is beyond the scope of this chapter,
you'll want to verify that Option Explicit is set to On and Option Strict is set to Off—the
default settings for Visual Basic programming within Visual Studio. Option Explicit On

is a setting that requires you to declare a variable before using it in a program—a very
good programming practice that | want to encourage. Option Strict Off allows variables
and objects of different types to be combined under certain circumstances without
generating a compiler error. (For example, a number can be assigned to a text box
object without error.) Although this is a potentially worrisome programming practice,
Option Strict Off is a useful setting for certain types of demonstration programs. If you
don't keep this setting, a few projects will display error messages when you run them.

34

Part |

Getting Started with Microsoft Visual Basic 2008

Option Compare determines the comparison method when different strings are com-
pared and sorted. For more information about comparing strings and sorting text, see
Chapter 13, “Exploring Text Files and String Processing.”

Option Infer is a new setting in Visual Basic 2008. If you set Option Strict to Off and you
set Option Infer to On, you can declare variables without explicitly stating a data type.
Or rather, if you make such a declaration, the Visual Basic compiler will infer (or take

an educated guess) about the data type based on the initial assignment you made for
the variable. The designers of Visual Basic have allowed this type of declaration in the
hopes of saving you computer memory. You'll learn more about the feature in Chapter
5, “Visual Basic Variables and Formulas, and the .NET Framework”.

As a general rule, | recommend that you set Option Infer to Off to avoid unexpected
results in how variables are used in your programs. | have set Option Infer to Off in
most of the sample projedcts included on the companion CD.

Feel free to examine additional settings in the Options dialog box related to your pro-
gramming environment and Visual Studio. When you're finished, click OK to close the
Options dialog box.

You're ready to exit Visual Studio and start programming.

One Step Further: Exiting Visual Studio

Each chapter in this book concludes with a section titled “One Step Further” that enables

you to practice an additional skill related to the topic at hand. After the “"One Step Further”
tutorial, I've compiled a Quick Reference table that reprises the important concepts dis-

cussed in each chapter.

When you're finished using Visual Studio for the day, save any projects that are open, and

close the development environment. Give it a try.

Exit Visual Studio

1.

Save any changes you've made to your program by clicking the Save All button on the
Standard toolbar.

As you learned in the preceding section, the default behavior in Visual Studio 2008

is that you give your program a name when you begin a project or solution, but you
don't specify a file location and save the project until you click the Save All button or
the Save All command on the File menu. You've made a few changes to your project, so
you should save your changes now.

On the File menu, click the Exit command.

The Visual Studio program closes. Time to move on to your first program in Chapter 2!

Chapter 1 Exploring the Visual Studio Integrated Development Environment 35

Chapter 1 Quick Reference

To
Start Visual Studio

Open an existing
project

Compile and run a
program

Set properties

Resize a tool window

Move a tool window

Dock a tool window

Auto hide a docked
tool window

Disable Auto Hide for
a docked tool window

Switch between open
files

Switch between open
tools

Get Help

Customize Help

Configure the Visual
Studio environment
for Visual Basic
development

Customize IDE
settings

Exit Visual Studio

Do this

Click Start on the taskbar, click All Programs, click the Microsoft Visual Studio
2008 folder, and then click the Microsoft Visual Studio 2008 program icon.
Start Visual Studio. Click Open Project on the File menu.

or

On the Start Page, click Project at the bottom of the Recent Projects pane.
Click the Start Debugging button on the Standard toolbar.

or

Press F5.

Click the form object whose properties you want to set. In the Properties
window, click the property name in the left column, and then change the
corresponding property setting in the right column.

Display the tool as a floating window (if it is currently docked), and resize it
by dragging its edges.

Display the tool as a floating window (if it is in a docked state), and then
drag its title bar.

With the mouse pointer, drag the window's title bar over a docking guide to
preview how it will appear, and then release the mouse button to snap the
tool into place.

Click the Auto Hide pushpin button on the right side of the title bar of the
tool window. The window hides behind a small tab at the edge of the devel-
opment environment until you hold the mouse over it.

Click the tool tab, and then click the Auto Hide pushpin button.

Hold down the Ctrl key and press Tab to display the IDE Navigator. While
holding down the Ctrl key, press Tab to scroll through the list of open files.
Use the arrow keys to scroll through both the list of open files and tools. You
can also click on a file or tool in the IDE Navigator to switch to it.

Press Alt+F7 to scroll in a forward direction through the open tools in the
IDE. Press Alt+Shift+F7 to scroll in the reverse direction.

Start the Help system (hosted by the Microsoft Document Explorer) by click-
ing a command on the Help menu.

In Document Explorer, click the Options command on the Tools menu.

Click the Import And Export Settings command on the Tools menu, click
Reset All Settings and the Next button. Click Yes, Save My Current Settings,
and the Next button. Finally click Visual Basic Development Settings and the
Finish button, and then click Close.

Click the Options command on the Tools menu, and then customize Visual
Studio settings by category. To view and customize project settings, click the
General item in the Projects And Solutions category. To view and customize
compiler settings, click the VB Defaults item in the same category.

On the File menu, click Exit.

Chapter 2
Writing Your First Program

After completing this chapter, you will be able to:
B Create the user interface for a new program.
B Set the properties for each object in your user interface.
B Write program code.
B Save and run the program.
B Build an executable file.

As you learned in Chapter 1, “Exploring the Visual Studio Integrated Development Environment,”
the Microsoft Visual Studio 2008 Integrated Development Environment (IDE) contains several
powerful tools to help you run and manage your programs. Visual Studio also contains every-
thing you need to build your own applications for Windows and the Web from the ground up.

In this chapter, you'll learn how to create a simple but attractive user interface with the con-
trols in the Visual Studio Toolbox. Next you'll learn how to customize the operation of these
controls with property settings. Then you'll see how to identify just what your program should
do by writing program code. Finally, you'll learn how to save and run your new program (a Las
Vegas-style slot machine) and how to compile it as an executable file.

Lucky Seven: Your First Visual Basic Program

The Windows-based application you're going to construct is Lucky Seven, a game program
that simulates a lucky number slot machine. Lucky Seven has a simple user interface and can
be created and compiled in just a few minutes using Microsoft Visual Basic. Here's what your
program will look like when it's finished:

o5 Forml [E=H o8 (=T

| Spin |

7 < S

End

Lucky Seven

37

38 Part| Getting Started with Microsoft Visual Basic 2008

Programming Steps

The Lucky Seven user interface contains two buttons, three lucky number boxes, a digital
photo depicting your winnings, and the label “"Lucky Seven.” | produced these elements

by creating seven objects on the Lucky Seven form and then changing several properties
for each object. After | designed the interface, | added program code for the Spin and End
buttons to process the user’s button clicks and produce the random numbers. To re-create
Lucky Seven, you'll follow three essential programming steps in Visual Basic: Create the user
interface, set the properties, and write the program code. The following table shows the
process for Lucky Seven.

Programming step Number of items
1. Create the user interface. 7 objects

2. Set the properties. 13 properties

3. Write the program code. 2 objects

Creating the User Interface

In this exercise, you'll start building Lucky Seven by first creating a new project and then
using controls in the Toolbox to construct the user interface.

Create a new project

1. Start Visual Studio 2008.

2. On the Visual Studio File menu, click New Project.

Tip You can also start a new programming project by clicking the blue Project link to the
right of Create at the bottom of the Recent Projects pane on the Start Page.

The New Project dialog box opens.

Chapter 2 Writing Your First Program 39

Mew Project 5|
e T [NETFramemork3s ~|[E=
4 Visual Basic | Visual Studio installed templates
Windows | E i — = Iﬁ j
-8 = B
Office = [- = =V 2
Smart Device indows ClassLibrary PP WPF Browser Cansale Crystal
Database | Forms &p.. Application Application Application Reports ..
Test [— —m
7 Vi <V Ve
wer B &2 &8 @ & &
A/eh | Empty Windows WPF Custom WPFUser Windows Reports
Warkflow | Project Service Controllib.. Control. Forms.. Application
Other Languages
Other Project Types ‘ My Templates
Test Projects j 3
|
Search
| Online Te..
& praject for creating an application with a Windows user interface (MET Framewark 3.5
Hame: WindowsApplicationl
| ok || cancel |

The New Project dialog box provides access to the major project types available for
writing Windows applications. If you indicated during setup that you are a Visual Basic
programmer, Visual Basic is your primary development option (as shown here), but
the other languages in Visual Studio (Visual C# and C++) are always available through
this dialog box. Although you will select a basic Windows application project in this
exercise, this dialog box is also the gateway to other types of development projects,
such as a Web application, console application, smart device (Microsoft .NET Compact
Framework) application, or Visual Studio deployment project.

In the upper-right corner of the New Project dialog box, you will notice a drop-down list
box. This is a new feature of Visual Studio 2008 that is called multi-targeting. This drop-
down list allows you specify the version of the .NET Framework that your application will
target. For example, if you select .NET Framework 3.5, any computer that your applica-
tion will run on must have the .NET Framework 3.5 installed. Visual Studio will show only
options that will work with the selected version of the .NET Framework. Applications
created with Visual Basic 2005 all targeted the .NET Framework 2.0. If you upgrade
programs created in Visual Basic 2005 to Visual Basic 2008, they will continue to target
the .NET Framework 2.0. Unless you have a specific need, you can just leave this drop-
down list at its default setting of .NET Framework 3.5. You'll learn more about the .NET
Framework in Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework.”

40 Part| Getting Started with Microsoft Visual Basic 2008

3. Click the Windows Forms Application icon in the Templates area of the dialog box, if it
is not already selected.

Visual Studio prepares the development environment for Visual Basic Windows
application programming.

4. In the Name text box, type MyLucky7.

Visual Studio assigns the name MyLucky7 to your project. (You'll specify a folder loca-
tion for the project later.) I'm recommending the “My" prefix here so you don't confuse
your new application with the Lucky7 project I've created for you on disk.

Q Tip If your New Project dialog box contains Location and Solution Name text boxes, you
need to specify a folder location and solution name for your new programming project now.
The presence of these text boxes is controlled by a check box in the Tools/Options dialog
box, but it is not the default setting. Throughout this book, you will be instructed to save
your projects (or discard them) after you have completed the programming exercise. For
more information about this “"delayed saving” feature and default settings, see “Customizing
IDE Settings to Match Step-by-Step Exercises” in Chapter 1.

5. Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays the blank
Windows form that you will use to build your user interface.

Now you'll enlarge the form and create the two buttons in the interface.

Create the user interface

1. Point to the lower-right corner of the form until the mouse pointer changes to a
resizing pointer, and then drag to increase the size of the form to make room for
the objects in your program.

As you resize the form, scroll bars might appear in the Designer to give you access to
the entire form you're creating. Depending on your screen resolution and the Visual
Studio tools you have open, you might not be able to see the entire form at once.
Don't worry about this—your form can be small or it can fill the entire screen because
the scroll bars give you access to the entire form.

Chapter 2 Writing Your First Program 41

Size your form so that it is about the size of the form shown here. If you want to match
my example exactly, you can use the width and height dimensions (485 pixels x 278
pixels) shown in the lower-right corner of the screen.

[TuckyT - Microsoft Visual Studio [E=R [Ex
File Edit View Project Build Debug Dats Tools Test MWindow Help
A5 - a &G e A e 2 = | E R (3 A
5:| - FormLvh [Designl' | Stort Fage « X | Solution Explarer - i x
4 2pEEEL
g o Farml o lEE= Lucky?

o = My Project

= Selution Exple... [1Dats Sources
Froperties - Ix
FormLwb File Properties -

| 2= 4

Build Action Compile

Copy to Outpu Do not copy
Custarn Toal

Custom Tool

File Name Formlub

Build Action
How the file relates o the build and
deplayment processes,

Ready 115,15 3 4950278

To see the entire form without obstruction, you can resize or close the other program-
ming tools, as you learned in Chapter 1. (Return to Chapter 1 if you have questions
about resizing windows or tools.)

Now you'll practice adding a button object on the form.
Click the Toolbox tab to display the Toolbox window in the IDE.

The Toolbox contains all of the controls that you'll use to build Visual Basic programs in
this book. The controls suitable for creating a Windows application are visible now be-
cause you selected the Windows Application project type earlier. Controls are organized
by type, and by default the Common Controls category is visible. (If the Toolbox is not
visible now, click Toolbox on the View menu to display it.)

42 Part| Getting Started with Microsoft Visual Basic 2008

3. Double-click the Button control in the Toolbox, and then move the mouse pointer away
from the Toolbox.

Visual Studio creates a default-sized button object on the form and hides the Toolbox,
as shown here:

The button is named Buttonl because it is the first button in the program. (You should make a
mental note of this button name—you'll see it again when you write your program code.) The
new button object is selected and enclosed by resize handles. When Visual Basic is in design
mode (that is, whenever the Visual Studio IDE is active), you can move objects on the form by
dragging them with the mouse, and you can resize them by using the resize handles. While a
program is running, however, the user can't move interface elements unless you've changed a
property in the program to allow this. You'll practice moving and resizing the button now.

Move and resize a button

1. Point to the button so that the pointer changes to a four-headed arrow, and then drag
the button down and to the right.

The button moves across the surface of the form. If you move the object near the edge of
the form or another object (if other objects are present), it automatically aligns itself to a
hidden grid when it is an inch or so away. A little blue “snapline” also appears to help you
gauge the distance of this object from the edge of the form or the other object. The grid
is not displayed on the form by default, but you can use the snapline to judge distances
with almost the same effect.

Q Tip If you want to display the design mode grid as in Microsoft Visual Studio .NET 2003
and Visual Basic 6, click the Options command on the Tools menu, expand Windows
Form Designer, and then click General. Set ShowGrid to True, and set LayOutMode to
SnapToGrid. You will need to close and reopen the form for the change to take effect.

4.

Chapter 2 Writing Your First Program 43
Position the mouse pointer on the lower-right corner of the button.

When the mouse pointer rests on a resize handle of a selected object, it becomes a
resizing pointer. You can use the resizing pointer to change the size of an object.

Enlarge the button by dragging the pointer down and to the right.
When you release the mouse button, the button changes size and snaps to the grid.

Use the resizing pointer to return the button to its original size.

Now you'll add a second button to the form, below the first button.

Add a second button

1.
2.

O

Click the Toolbox tab to display the Toolbox.

Click the Button control in the Toolbox (single-click this time), and then move the
mouse pointer over the form.

The mouse pointer changes to crosshairs and a button icon. The crosshairs are designed
to help you draw the rectangular shape of the button on the form, and you can use this
method as an alternative to double-clicking to create a control of the default size.

Drag the pointer down and to the right. Release the mouse button to complete the
button, and watch it snap to the form.

Resize the button object so that it is the same size as the first button, and then move it
below the first button on the form. (Use the snapline feature to help you.)

Tip At any time, you can delete an object and start over again by selecting the object
on the form and then pressing Delete. Feel free to create and delete objects to practice
creating your user interface.

Now you'll add the labels used to display the numbers in the program. A label is a special
user interface element designed to display text, numbers, or symbols when a program runs.
When the user clicks the Lucky Seven program's Spin button, three random numbers appear
in the label boxes. If one of the numbers is a 7, the user wins.

Add the number labels

1. Double-click the Label control in the Toolbox.

Visual Studio creates a label object on the form. If you're familiar with earlier versions
of Visual Studio or Visual Basic, you'll notice that the label object is smaller than in
previous versions by default. It is just large enough to hold the text contained in the
object, but it can also be resized.

Getting Started with Microsoft Visual Basic 2008

2. Drag the Labell object to the right of the two button objects.

Your form looks something like this:

o5 Forml [l]

[Butoml | bl

| Button2 |

. Double-click the Label control in the Toolbox to create a second label object.
This label object will be named Label2 in the program.

. Double-click the Label control again to create a third label object.

. Move the second and third label objects to the right of the first one on the form.

Allow plenty of space between the three labels because you will use them to display
large numbers when the program runs.

Now you'll use the Label control to add a descriptive label to your form. This will be the
fourth and final label in the program.

. Double-click the Label control in the Toolbox.

. Drag the Label4 object below the two command buttons.

When you've finished, your four labels should look like those in the following illustration.
(You can move your label objects if they don't look quite right.)

2 Farml =) E | =)

Label Label2 Label3

| Buttari

| Button2

o-

Chapter 2 Writing Your First Program 45

Now you'll add a picture box to the form to graphically display the payout you'll receive
when you draw a 7 and hit the jackpot. A picture box is designed to display bitmaps, icons,
digital photos, and other artwork in a program. One of the best uses for a picture box is to
display a JPEG image file.

Add a picture

1. Click the PictureBox control in the Toolbox.

2. Using the control’s drawing pointer, create a large rectangular box below the second
and third labels on the form.

Leave a little space below the labels for their size to grow as | mentioned earlier. When
you've finished, your picture box object looks similar to this:

o5 Forml E=H|ED] |@

| Buttar Label Label2 Label3

| Button2

Labeld

This object will be named PictureBox1 in your program; you'll use this name later in the
program code.

Now you're ready to customize your interface by setting a few properties.

Setting the Properties

As you discovered in Chapter 1, you can change properties by selecting objects on the form
and changing their settings in the Properties window. You'll start by changing the property
settings for the two buttons.

Set the button properties

1. Click the first button (Buttonl) on the form.

The button is selected and is surrounded by resize handles.

46 Part |

Getting Started with Microsoft Visual Basic 2008

2. Click the Properties window title bar.

O

Tip If the Properties window isn't visible, click the Properties Window command on the
View menu, or press F4.

3. A the top of the Properties window, click the Categorized button.

For information about categorized properties, see “The Properties Window" in Chapter 1.

Resize the Properties window (if necessary) so that there is plenty of room to see the
property names and their current settings.

Once you get used to setting properties, you will probably use the Properties win-
dow without enlarging it, but making it bigger helps when you first try to use it. The
Properties window in the following illustration is a good size for setting properties:

Properties
Buttonl Systernindows.Forms. Button -
R EF
BackgroundImagelayout Tile L
Cursor Default

e

Flat&ppearance

FlatStyle Standard =
Fant Microsoft Sans Serif, 8,25y

FareColar - ControlText

Image I:l {none)

Imagedlign MiddleCenter

Imagelndex I:l {none)

Imagekiey I:l (hone)

Imagelist {none)

RightToleft Mo

Teut Buttonl |Z|

Textdlign MiddleCenter -
Text

The text associated with the contral,

The Properties window lists the settings for the first button. These include settings for
the background color, text, font height, and width of the button. Because there are so
many properties, Visual Studio organizes them into categories and displays them in
outline view. If you want to see the properties in a category, click the plus sign (+) next
to the category title.

. Scroll in the Properties window until you see the Text property located in the

Appearance category.

6. Double-click the Text property in the left column of the Properties window.

Chapter 2 Writing Your First Program 47
The current Text setting ("Buttonl”) is highlighted in the Properties window.
7. Type Spin, and press Enter.

The Text property changes to “Spin” in the Properties window and on the button on
the form. Now you'll change the Text property of the second button to “End”. (You'll
select the second button in a new way this time.)

8. Open the Object list at the top of the Properties window.

A list of the interface objects in your program appears as follows:

Properties

Button2 System.Wind.ows.Fo.rms.Button
Form1 Systemifindows. Forms Form
Labell Systemifindows. Forms.Label
Label2 Systemifindows. Forms.Label
Label3 System.\ifindows. Forms.Label
Labeld Systemdifindows. Forms.Label
PictureBox1 Systern ifindows Forms PictureBox

e =TT — —

Imagedlign MiddleCenter

Imagelndex I:l {none)

Imagekiey I:l (hone)

Imagelist {none)

RightToleft Mo

Text Spin

Textdlign MiddleCenter ¥
Text

The text associated with the contral,

9. Click Button2 System.Windows.Forms.Button (the second button) in the list box.

The property settings for the second button appear in the Properties window, and
Visual Studio highlights Button2 on the form.

10. Double-click the current Text property ("Button2”), type End, and then press Enter.

The text of the second button changes to “End".

Tip Using the Object list is a handy way to switch between objects in your program. You
can also switch between objects on the form by clicking each object.

Now you'll set the properties for the labels in the program. The first three labels will hold the
random numbers generated by the program and will have identical property settings. (You'll
set most of them as a group.) The descriptive label settings will be slightly different.

48

Part |

Getting Started with Microsoft Visual Basic 2008

Set the number label properties

1.

Click the first number label (Labell), hold down the Shift key, click the second and third
number labels, and then release the Shift key. (If the Properties window is in the way,
move it to a new place.)

A selection rectangle and resize handles appear around each label you click. You'll
change the TextAlign, BorderStyle, and Font properties now so that the numbers that
will appear in the labels will be centered, boxed, and identical in font and font size. (All

of these properties are located in the Appearance category of the Properties window.)
You'll also set the AutoSize property to False so that you can change the size of the labels
according to your precise specifications. (The AutoSize property is located in the Layout
category.)

Tip When more than one object is selected, only those properties that can be changed
for the group are displayed in the Properties window.

Click the AutoSize property in the Properties window, and then click the arrow that
appears to the right.

Set the AutoSize property to False so that you can size the labels manually.
Click the TextAlign property, and then click the arrow that appears to the right.

A graphical assortment of alignment options appears in the list box; you can use these
settings to align text anywhere within the borders of the label object.

Click the center option (MiddleCenter).

The TextAlign property for each of the selected labels changes to MiddleCenter.

. Click the BorderStyle property, and then click the arrow that appears to the right.

The valid property settings (None, FixedSingle, and Fixed3D) appear in the list box.
Click FixedSingle in the list box to add a thin border around each label.

Click the Font property, and then click the ellipsis button (the button with three dots
that's located next to the current font setting).

The Font dialog box opens.

Change the font to Times New Roman, the font style to Bold, and the font size to 24,
and then click OK.

The label text appears in the font, style, and size you specified.

10.

11.

12.
13.

Chapter 2 Writing Your First Program 49

Now you'll set the text for the three labels to the number 0—a good “placeholder” for
the numbers that will eventually fill these boxes in your game. (Because the program
produces the actual numbers, you could also delete the text, but putting a placeholder
here gives you something to base the size of the labels on.)

Click a blank area on the form to remove the selection from the three labels, and
then click the first label.

Double-click the Text property, type 0, and then press Enter.

The text of the Labell object is set to 0. You'll use program code to set this property to
a random “slot machine” number later in this chapter.

Change the text in the second and third labels on the form to 0 also.
Move and resize the labels now so that they are appropriately spaced.

Your form looks something like this:

a7 Forml

Spin

End

—
—

Labeld

Now you'll change the Text, Font, and ForeColor properties of the fourth label.

Set the descriptive label properties

1.

2
3.
4

Click the fourth label object (Label4) on the form.

. Change the Text property in the Properties window to Lucky Seven.

Click the Font property, and then click the ellipsis button.

. Use the Font dialog box to change the font to Arial, the font style to Bold, and the font

size to 18. Then click OK.

The font in the Label4 object is updated, and the label is resized automatically to hold
the larger font size because the object’s AutoSize property is set to True.

50

Part | Getting Started with Microsoft Visual Basic 2008

5. Click the ForeColor property in the Properties window, and then click the arrow in the

second column.

Visual Studio displays a list box with Custom, Web, and System tabs for setting the

foreground colors (the color of text) of the label object. The Custom tab offers many of
the colors available in your system. The Web tab sets colors for Web pages and lets you
pick colors using their common names. The System tab displays the current colors used

for user interface elements in your system.
6. Click the purple color on the Custom tab.
The text in the label box changes to purple.

Now you're ready to set the properties for the last object.

Reading Properties in Tables

In this chapter, you've set the properties for the Lucky Seven program step by

step. In future chapters, the instructions to set properties will be presented in table
format unless a setting is especially tricky. Here are the properties you've set so far in
the Lucky Seven program in table format, as they'd look later in the book. Settings you
need to type in are shown in quotation marks. You shouldn't type the quotation marks.

Object Property
Buttonl Text
Button2 Text
Labell, Label2, Label3 AutoSize
BorderStyle
Font
Text
TextAlign
Label4 Text
Font
ForeColor
PictureBox1 Image
SizeMode

Visible

Setting

“Spin”

"End”

False

FixedSingle

Times New Roman, Bold, 24-point
"o

MiddleCenter

"Lucky Seven”

Arial, Bold, 18-point

Purple
“c:\vb08sbs\chap02\paycoins.jpg”
Stretchlmage

False

Chapter 2 Writing Your First Program 51

The Picture Box Properties

When the person playing your game hits the jackpot (that is, when at least one 7 appears

in the number labels on the form), the picture box object will contain a picture of a person
dispensing money. This picture is a digitized image from an unpublished fourteenth-century
German manuscript stored in JPEG format. (As a history professor, | run across these things.)
You need to set the SizeMode property to accurately size the picture and set the Image
property to specify the name of the JPEG file that you will load into the picture box. You
also need to set the Visible property, which specifies the picture state at the beginning of
the program.

Set the picture box properties

1.
2.

Click the picture box object on the form.

Click the SizeMode property in the Properties window (listed in the Behavior
category), click the arrow to the right, and then click Stretchimage.

Setting SizeMode to Stretchlmage before you open a graphic causes Visual Studio to
resize the graphic to the exact dimensions of the picture box. (Typically, you set this
property before you set the Image property.)

Click the Image property in the Properties window, and then click the ellipsis button in
the second column.

The Select Resource dialog box opens.

Click the Local Resource option, and then click the Import button.
In the Open dialog box, navigate to the c:\vb08sbs\chap02 folder.
This folder contains the digital photo PayCoins.jpg.

Select PayCoins.jpg, and then click Open.

52

Part |

7.

Getting Started with Microsoft Visual Basic 2008

A medieval illustration of one person paying another appears in the Select Resource
dialog box. (The letter "W" represents winning.)

Select Resource

Resource context

@ Local resource:

Impaortt.. | | Clear

1 Project resource file:
Resources.resx

[N

| Ok ‘ | Cancel

Click OK.

The PayCoins photo is loaded into the picture box. Because the photo is relatively small
(24 KB), it opens quickly on the form.

Resize the picture box object now to fix any distortion problems that you see in the
image.

| sized my picture box object to be 148 pixels wide by 143 pixels high. You can match
this size by using the width and height dimensions located on the lower-right side of
the Visual Studio IDE. (The dimensions of the selected object are given on the lower-
right side, and the location on the form of the object’s upper-left corner is given to
the left of the dimensions.)

This particular image displays best when the picture box object retains a square shape.

Note Asyou look at the picture box object, you might notice a tiny shortcut arrow near
its upper-right corner. This arrow is a button that you can click to quickly change a few
common picture box settings and open the Select Resource dialog box. (You'll see the
shortcut arrow again in Chapter 4, "Working with Menus, Toolbars, and Dialog Boxes,”
when you use the ToolStrip control.)

Now you'll change the Visible property to False so that the image will be invisible when
the program starts.

Click the Visible property in the Behavior category of the Properties window, and
then click the arrow to the right.

Chapter 2 Writing Your First Program 53
The valid settings for the Visible property appear in a list box.
10. Click False to make the picture invisible when the program starts.

Setting the Visible property to False affects the picture box when the program runs, but
not now while you're designing it. Your completed form looks similar to this:

-

a5 Forml = IraEirEs]

| Spin |

| End 0 0 0

Lucky Seven

Tip You can also double-click property names that have True and False settings (so-called
Boolean properties), to toggle back and forth between True and False. Default Boolean
properties are shown in regular type, and changed settings appear in bold.

11. You are done setting properties for now, so if your Properties window is floating,
double-click its title bar to return it to the docked position.

Writing the Code

Now you're ready to write the code for the Lucky Seven program. Because most of the
objects you've created already "know” how to work when the program runs, they're ready
to receive input from the user and process it. The inherent functionality of objects is one
of the great strengths of Visual Studio and Visual Basic—after objects are placed on a form
and their properties are set, they're ready to run without any additional programming.
However, the “meat” of the Lucky Seven game—the code that actually calculates random
numbers, displays them in boxes, and detects a jackpot—is still missing from the program.
This computing logic can be built into the application only by using program statements—
code that clearly spells out what the program should do at each step of the way. Because
the Spin and End buttons drive the program, you'll associate the code for the game with
those buttons. You enter and edit Visual Basic program statements in the Code Editor.

In the following steps, you'll enter the program code for Lucky Seven in the Code Editor.

54

Part |

Getting Started with Microsoft Visual Basic 2008

Use the Code Editor

1.

Double-click the End button on the form.

The Code Editor appears as a tabbed document window in the center of the Visual
Studio IDE, as shown here:

[TuckyT - Microsoft Visual Studia (=2 (=R
Eile Edit iew Project Build Debug Dzta Tools Tegt MWindow Help
Ao Ec-Ha| % G Bl=2|9 c-E-2|) Sz(=cz o Eak
Forml.vb*| Formlub [Design]* | Start Page » X | Solution Explorer - Ix
/ = .
% Button? - 7 Click = 2 E EE A
EPublic Class Formil | O Lucky?
‘ <[B My Project
L. [Z] Formlub

& Private 3ub ButtonZ_Click(ByVal sender is $ystem.cbject, Byval
- End Sub
‘— End Class

= ._an\utiun Explo.., _‘jData Sources
Properties -1 x
Button2 Click Attributes s

5= &)

. T (

Ln4 Cold Che NS

Ready

Inside the Code Editor are program statements associated with the current form.
Program statements that are used together to perform some action are typically
grouped in a programming construct called a procedure. A common type of proce-
dure is a Sub procedure, sometimes called a subroutine. Sub procedures include a Sub
keyword in the first line and end with End Sub. Procedures are typically executed when
certain events occur, such as when a button is clicked. When a procedure is associated
with a particular object and an event, it is called an event handler or an event procedure.

When you double-clicked the End button (Button?2), Visual Studio automatically added
the first and last lines of the Button2_Click event procedure, as the following code shows.
(The first line was wrapped to stay within the book margins.) You may notice other bits
of code in the Code Editor (words like Public and Class), which Visual Studio has added
to define important characteristics of the form, but | won't emphasize them here.

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

End Sub

Chapter 2 Writing Your First Program 55

The body of a procedure fits between these lines and is executed whenever a user ac-
tivates the interface element associated with the procedure. In this case, the event is a
mouse click, but as you'll see later in the book, it could also be a different type of event.

2. Type End, and then press the Enter key.

When you type the statement, Visual Studio recognizes End as a unique reserved
word or keyword and displays it in a list box with Common and All tabs. This list box
is called IntelliSense because it tries to intelligently help you write code, and you can
browse through various Visual Basic keywords and objects alphabetically. (In this way,
the language is partially discoverable through the IDE itself.)

After you press the Enter key, the letters in End turn blue and are indented, indicating
that Visual Basic recognizes End as one of several hundred unique keywords within the
Visual Basic language. You use the End keyword to stop your program and remove it
from the screen. In this case, End is also a complete program statement, a self-contained
instruction executed by the Visual Basic compiler, the part of Visual Studio that processes
or parses each line of Visual Basic source code, combining the result with other resources
to create an executable file. Program statements are a little like complete sentences in

a human language—statements can be of varying lengths but must follow the gram-
matical “rules” of the compiler. In Visual Studio, program statements can be composed
of keywords, properties, object names, variables, numbers, special symbols, and other
values. You'll learn more about how program statements are constructed in Chapter 5.

As you enter program statements and make other edits, the Code Editor handles many
of the formatting details for you, including adjusting indentation and spacing and add-
ing any necessary parentheses. The exact spelling, order, and spacing of items within
program statements is referred to as statement syntax.

When you pressed the Enter key, the End statement was indented to set it apart from
the Private Sub and End Sub statements. This indenting scheme is one of the program-
ming conventions you'll see throughout this book to keep your programs clear and
readable. The group of conventions regarding how code is organized in a program is
often referred to as program style.

Now that you've written the code associated with the End button, you'll write code for the
Spin button. These program statements will be a little more extensive and will give you a
chance to learn more about statement syntax and program style. You'll study many of the
program statements later in this book, so you don't need to know everything about them
now. Just focus on the general structure of the code and on typing the program statements
exactly as they are printed.

56 Part |

Getting Started with Microsoft Visual Basic 2008

Write code for the Spin button

1. Click the View Designer button in the Solution Explorer window to display your form

again.

Note When the Code Editor is visible, you won't be able to see the form you're working
on. The View Designer button is one mechanism you can use to display it again. (If more
than one form is loaded in Solution Explorer, click the form you want to display first.) You
can also click the Form1l.vb [Design] tab at the top edge of the Code Editor. If you don't
see tabs at the top of the Code Editor, enable Tabbed Documents view in the Options
dialog box, as discussed in a Tip in Chapter 1.

Double-click the Spin button.

After a few moments, the Code Editor appears, and an event procedure associated with
the Buttonl button appears near the Button2 event procedure.

Although you changed the text of this button to “Spin”, its name in the program is still
Buttonl. (The name and the text of an interface element can be different to suit the
needs of the programmer.) Each object can have several procedures associated with
it, one for each event it recognizes. The click event is the one you're interested in now
because users will click the Spin and End buttons when they run the program.

. Type the following program lines between the Private Sub and End Sub statements.

Press Enter after each line, press Tab to indent, and take care to type the program
statements exactly as they appear here. (The Code Editor will scroll to the left as you
enter the longer lines.) If you make a mistake (usually identified by a jagged underline),
delete the incorrect statements and try again.

Tip Asyou enter the program code, Visual Basic formats the text and displays different
parts of the program in color to help you identify the various elements. When you begin
to type a property, Visual Basic also displays the available properties for the object you're
using in a list box, so you can double-click the property or keep typing to enter it yourself.
If Visual Basic displays an error message, you might have misspelled a program statement.
Check the line against the text in this book, make the necessary correction, and continue
typing. (You can also delete a line and type it from scratch.) In addition, Visual Basic might
add necessary code automatically. For example, when you type the following code, Visual
Basic automatically adds the End If line. Readers of previous editions of this book have
found this first typing exercise to be the toughest part of this chapter—"But Mr. Halvorson,
I know | typed it just as you wrote it!"—so please give this program code your closest
attention. | promise you, it works!

PictureBox1l.Visible = False
Labell.Text
Label2.Text
Label3.Text
' if any number
If (Labell.Text
Or (Label3.Text =
PictureBox1.
Beep()
End If

"7") Then

Visible = True

Chapter 2 Writing Your First Program

' hide picture
CStr(Int(Rnd() * 10)) '
CStr(Int(RndQ * 10))

CStr(Int(Rnd() *

pick numbers

10))

is 7 display picture and beep
"7") Or (Label2.Text = "7") _

When you've finished, the Code Editor looks as shown in the following graphic:

[LuckyT - Microsoft Wisusl Studio == =T
File Edit View Praject Build Debug Data Tools Test ‘Window Help
el W= R ™ -] B2 - F-B b u @502 0 e @
FormLvb*| Formtub [Design]* | Start Page + X | Solution Explorer LA x
F - = E B &
¥ Buttonl - 7 Click C= R E EE S
OPFwslic Class Formi 1| A Ludky7
S|y project
& Private Sub Button? Click(ByVal sender ks System.Cbject, ByVal - [Formlvb
End
End Sub
] Private $ub Buttonl Click(ByVal sender is System.Object, Bvval |_
PictureBox1.Visible = False thide picture 0
Labell.Text = CStr{Int{Rnd{) * 10)) 'pick numbers
Lebelz.Text = CStr(Int(Rnd() * 10))) Solution Explo... [1Dats Saurces
Label3.Text = CStriIntiRnd(] * 10)) =
'if any number is 7 display picturs and play sound Praperties T Ix
Tf (Labell.Text = "7%) Or (Labelz.Text = "77) _ Buttond_Click Attibutes =
Or (Label3.Text = "7") Then c
PictureBox1.Visikle = True 25 1
Beep ()
End If
End Sub
LEnd Class
‘ i v
Ready Lnis Col 15 Chis S

4. Click the Save All command on the File menu to save your additions to the program.

The Save All command saves everything in your project—the project file, the form
file, any code modules, and other related components in your application. Since
this is the first time that you have saved your project, the Save Project dialog box
opens, prompting you for the name and location of the project. (If your copy of
Visual Studio is configured to prompt you for a location when you first create your
project, you won't see the Save Project dialog box now—Visual Studio just saves

your changes.)

5. Browse and select a location for your files.

| recommend that you use the c:\vb08sbs\chap02 folder (the location of the book’s
sample files), but the location is up to you. Since you used the “My" prefix when you
originally opened your project, this version won't overwrite the Lucky7 practice file

that | built for you on disk.

57

58 Part| Getting Started with Microsoft Visual Basic 2008
6. Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program'’s solution
files, which is not necessary for solutions that contain only one project (the situation for
most programs in this book).

7. Click Save to save your files.

Note If you want to save just the item you are currently working on (the form, the code
module, or something else), you can use the Save command on the File menu. If you want
to save the current item with a different name, you can use the Save As command.

A Look at the Buttonl Click Procedure

The Button1_Click procedure is executed when the user clicks the Spin button on the form. The
procedure uses some pretty complicated statements, and because | haven't formally introduced
them yet, it might look a little confusing. However, if you take a closer look, you'll probably see

a few things that look familiar. Taking a peek at the contents of these procedures will give you a
feel for the type of program code you'll be creating later in this book. (If you'd rather not stop for
this preview, feel free to skip to the next section, “Running Visual Basic Applications.”)

The Button1_Click procedure performs three tasks:

B [t hides the digital photo.
B |t creates three random numbers for the number labels.
B |t displays the photo when the number 7 appears.

Let's look at each of these steps individually.

Hiding the photo is accomplished with the following line:
PictureBoxl.Visible = False ' hide picture

This line is made up of two parts: a program statement and a comment.

The PictureBox1.Visible = False program statement sets the Visible property of the picture
box object (PictureBox1) to False (one of two possible settings). You might remember that
you set this property to False once before by using the Properties window. You're doing it
again now in the program code because the first task is a spin and you need to clear away
a photo that might have been displayed in a previous game. Because the property will

be changed at run time and not at design time, you must set the property by using pro-
gram code. This is a handy feature of Visual Basic, and I'll talk about it more in Chapter 3,
“Working with Toolbox Controls.”

Chapter 2 Writing Your First Program 59

The second part of the first line (the part displayed in green type on your screen) is called
a comment. Comments are explanatory notes included in program code following a single
quotation mark (‘). Programmers use comments to describe how important statements
work in a program. These notes aren’t processed by Visual Basic when the program runs;
they exist only to document what the program does. You'll want to use comments often
when you write Visual Basic programs to leave an easy-to-understand record of what
you're doing.

The next three lines handle the random number computations. Does this concept sound
strange? You can actually make Visual Basic generate unpredictable numbers within specific
guidelines—in other words, you can create random numbers for lottery contests, dice games,
or other statistical patterns. The Rnd function in each line creates a random number between
0 and 1 (a number with a decimal point and several decimal places), and the Int function
returns the integer portion of the result of multiplying the random number by 10. This com-
putation creates random numbers between 0 and 9 in the program—just what you need for
this particular slot machine application.

Labell.Text = CStr(Int(Rnd() * 10)) ' pick numbers

You then need to jump through a little hoop in your code. You need to copy these random
numbers into the three label boxes on the form, but first the numbers need to be converted
to text with the CStr (convert to string) function. Notice how CStr, Int, and Rnd are all con-
nected together in the program statement—they work collectively to produce a result like a
mathematical formula. After the computation and conversion, the values are assigned to the
Text properties of the first three labels on the form, and the assignment causes the numbers
to be displayed in bold, 24-point, Times New Roman font in the three number labels.

The following illustration shows how Visual Basic evaluates one line of code step by step
to generate the random number 7 and copy it to a label object. Visual Basic evaluates the
expression just like a mathematician solving a mathematical formula.

Graphic 2-15

Exarmple:
Labell. Text = CStrlnt(Rnd() * 107)

Code Result
Rnd() 0.7055475
Rnd() * 10 7.055475
Int(Rnd() * 10 7
CStr(nt(Rnd() = 107 i

Labell.Text = CStr{int(Rnd() * 105 7

60

Part | Getting Started with Microsoft Visual Basic 2008

The last group of statements in the program checks whether any of the random numbers is 7.
If one or more of them is, the program displays the medieval manuscript depiction of a pay-
out, and a beep announces the winnings.

' if any number is 7 display picture and beep
If (Labell.Text = "7") Or (Label2.Text = "7") _
Or (Label3.Text = "7") Then

PictureBox1l.Visible = True

Beep()
End If

Each time the user clicks the Spin button, the ButtonI_Click procedure is executed, or called,
and the program statements in the procedure are run again.

Running Visual Basic Applications

Congratulations! You're ready to run your first real program. To run a Visual Basic program
from the development environment, you can do any of the following:

B Click Start Debugging on the Debug menu.
B Click the Start Debugging button on the Standard toolbar.
B Press F5.

Try running your Lucky Seven program now. If Visual Basic displays an error message, you
might have a typing mistake or two in your program code. Try to fix it by comparing the
printed version in this book with the one you typed, or load Lucky7 from your hard disk
and run it.

Run the Lucky Seven program

1. Click the Start Debugging button on the Standard toolbar.

The Lucky Seven program compiles and runs in the IDE. After a few seconds, the user
interface appears, just as you designed it.

2. Click the Spin button.

The program picks three random numbers and displays them in the labels on the form,
as follows:

Chapter 2 Writing Your First Program 61

o Farml =[5 | R
| Spin |

| End 7 5 5

Lucky Seven

Because a 7 appears in the first label box, the digital photo depicting the payoff appears,
and the computer beeps. You win! (The sound you hear depends on your Default Beep
setting in the Sound Control Panel. To make this game sound really cool, change the
Default Beep sound to something more dynamic.)

. Click the Spin button 15 or 16 more times, watching the results of the spins in the
number boxes.

About half the time you spin, you hit the jackpot—pretty easy odds. (The actual odds
are about 2.8 times out of 10; you're just lucky at first.) Later on you might want to
make the game tougher by displaying the photo only when two or three 7s appear,
or by creating a running total of winnings.

. When you've finished experimenting with your new creation, click the End button.

The program stops, and the development environment reappears on your screen.

Tip If you run this program again, you might notice that Lucky Seven displays exactly
the same sequence of random numbers. There is nothing wrong here—the Visual Basic
Rnd function was designed to display a repeating sequence of numbers at first so that
you can properly test your code using output that can be reproduced again and again.
To create truly “random” numbers, use the Randomize function in your code, as shown
in the exercise at the end of this chapter. The .NET Framework, which you'll learn to use
later, also supplies random number functions.

62 Part| Getting Started with Microsoft Visual Basic 2008

Sample Projects on Disk

If you didn't build the MyLucky7 project from scratch (or if you did build the project and want
to compare what you created to what | built for you as | wrote the chapter), take a moment to
open and run the completed Lucky7 project, which is located in the c:\vb08sbs\chap02\lucky7
folder on your hard disk (the default location for the practice files for this chapter). If you need
a refresher course on opening projects, see the detailed instructions in Chapter 1. If you are
asked if you want to save changes to the MyLucky7 project, be sure to click Save.

This book is a step-by-step tutorial, so you will benefit most from building the projects on your
own and experimenting with them. But after you have completed the projects, it is often a
good idea to compare what you have with the practice file “solution” that | provide, especially
if you run into trouble. To make this easy, | will give you the name of the solution files on disk
before you run the completed program in most of the step-by-step exercises.

After you have compared the MyLucky7 project to the Lucky7 solution files on disk, re-open
MyLucky7, and prepare to compile it as an executable file. If you didn't create MyLucky7, use
my solution file to complete the exercise.

Building an Executable File

Your last task in this chapter is to complete the development process and create an appli-
cation for Windows, or an executable file. Windows applications created with Visual Studio
have the file name extension .exe and can be run on any system that contains Windows
and the necessary support files. (Visual Basic installs these support files—including the .NET
Framework files—automatically.) If you plan to distribute your applications, see “Deploying
Your Application” later in the chapter.

At this point, you need to know that Visual Studio can create two types of executable files for
your project: a debug build and a release build.

Debug builds are created automatically by Visual Studio when you create and test your
program. They are stored in a folder called bin\debug within your project folder. The debug
executable file contains debugging information that makes the program run slightly slower.

Release builds are optimized executable files stored in the bin\release folder within your
project. To customize the settings for your release build, you click the [ProjectName]
Properties command on the Project menu, and then click the Compile tab, where you
see a list of compilation options that looks like this:

Chapter 2 Writing Your First Program 63

[TuckyT - Microsoft Visual Studic o e =)
Eile | Edit Wiew Project Build Debug Dats Took Test Window Help
AeEE-Ha &= e S=lE2: | E @ EL
Lucky7 | Start Page | Formiub | FormLub [Design] v X | Solution Explorer - Lucky? = & X
Application] Lucky?
Build output path: Z =i My Praject
Carnpile T L. E Formluh
Debug Cormpile Options:
Referenees Option explicit: Option strict:
[on - [of
Resaurces
Option compare: Option infer:
Services |E|nary v‘ |On i
= Selution Exple... [1Dat Sources
Settings Warning configurations: :
P il - x
Signing Condition Htification i i
s e
My Extensi @24
s Late binding; call could fail at run time [r4ane AP
Security Irplicit type; object assurmed [tane
o Use of variable prior ta assignment [warming
Function/Operstor without return value |warming
Unused local variable |iwarming
Disable all warnings -
< m v
Ready

Try creating a release build named MyLucky7.exe now.

Create an executable file

1.

4.

On the Build menu, click the Build MyLucky7 command.

The Build command creates a bin\release folder in which to store your project (if the
folder doesn't already exist) and compiles the source code in your project. The result is
an executable file named MyLucky7.exe. To save you time, Visual Studio often creates
temporary executable files while you develop your application; however, it's always a
good idea to recompile your application manually with the Build or Rebuild commands
when you reach an important milestone.

Try running this program outside the Visual Studio IDE now from the Windows Start
menu.

On the Windows taskbar, click Start.
The next command depends on the version of Windows you're using.

If you have Windows Vista, type run in the Search text box and press Enter to open
the Run dialog box. If you have Windows XP or earlier, click the Run command to
open the Run dialog box.

Click Browse and then navigate to the c:\vb08sbs\chap02\mylucky7\bin\release folder.

64

Part | Getting Started with Microsoft Visual Basic 2008
5. Click the MyLucky7.exe application icon, click Open, and then click OK.

The Lucky Seven program loads and runs in Windows. Because this is a simple test
application and it does not possess a formal publisher certificate that emphasizes its
reliability or authenticity, you may see the following message: “The publisher could
not be verified. Are you sure you want to run this software?” If this happens to you,
click Yes to run the program anyway. (Creating such certificates is beyond the scope
of this book, but this program is quite safe.)

6. Click Spin a few times to verify the operation of the game, and then click End.

Q Tip You can also run Windows applications, including compiled Visual Basic programs, by
opening Windows Explorer and double-clicking the executable file. To create a shortcut
icon for MyLucky7.exe on the Windows desktop, right-click the Windows desktop, point
to New, and then click Shortcut. When you're prompted for the location of your applica-
tion file, click Browse, and select the MyLucky7.exe executable file. Click the OK, Next, and
Finish buttons. Windows places an icon on the desktop that you can double-click to run
your program.

7. On the File menu, click Exit to close Visual Studio and the MyLucky7 project.

The Visual Studio development environment closes.

Deploying Your Application

Visual Studio helps you distribute your Visual Basic applications by providing several options
for deployment—that is, for installing the application on one or more computer systems.
Whereas Visual Basic 6 requires a sophisticated setup program that copies dynamic-link
libraries (DLLs) and support files and registers the application with the operating system,
Visual Studio 2008 applications are compiled as assemblies—deployment units consisting

of one or more files necessary for the program to run. Assemblies contain four elements:
Microsoft intermediate language (MSIL) code, metadata, a manifest, and supporting files
and resources.

Assemblies are so comprehensive and self-describing that Visual Studio applications don't
need to be formally registered with the operating system to run. This means that theoretically
a Visual Basic 2008 application can be installed by simply copying the assembly for the pro-
gram to a second computer that has the correct version of the .NET Framework installed—a
process called XCOPY installation, after the MS-DOS XCOPY command that copies a complete
directory (folder) structure from one location to another. In practice, however, it isn't practical
to deploy Visual Basic applications by using a copy procedure such as XCOPY (via the com-
mand prompt) or Windows Explorer. For commercial applications, an installation program
with a graphical user interface is usually preferred, and it's often desirable to register the pro-
gram with the operating system so that it can be uninstalled later by using Control Panel.

Chapter 2 Writing Your First Program 65

Although the advanced options related to deployment and security go beyond the scope of
this book, you should be familiar with your deployment options. To manage the deployment
process, Visual Studio 2008 supports two deployment technologies, ClickOnce and Windows
Installer.

With ClickOnce you can create an installation service for desktop applications that users can
access on their own with minimal interaction. With ClickOnce you can specify prerequisites,
such as the .NET Framework, and you can easily publish updates as you make improvements
to your program. You can publish your program to a Web server or a file server. You can get
started with ClickOnce at any time by using the Publish command on the Build menu. You can
also specify ClickOnce settings by using the Properties command on the Project menu. You
specify ClickOnce settings on the Publish tab of the Project Designer.

Windows Installer is a more classic installation process. In Visual Studio, you add a setup or
a Windows Installer project to your solution, which automatically creates a setup program
for the application. This setup project can be customized to allow for different methods

of installation, such as from CD-ROMs or Web servers. You can get started with Windows
Installer by using the New Project command on the File menu to create a custom setup
project. (Select the Setup And Deployment option under Other Project Types to see a list
of setup templates and wizards.)

One Step Further: Adding to a Program

You can restart Visual Studio at any time and work on a programming project you've stored
on disk. You'll restart Visual Studio now and add a Randomize statement to the Lucky Seven
program.

Reload Lucky Seven

1. On the Windows taskbar, click Start, click All Programs, click Microsoft Visual Studio
2008, and then click the Microsoft Visual Studio 2008 program icon.

A list of the projects that you've most recently worked on appears on the Visual Studio
Start Page in the Recent Project pane. Because you just finished working with Lucky
Seven, the MyLucky7 project should be first on the list.

2. Click the MyLucky7 link to open the Lucky Seven project.

The Lucky Seven program opens, and the MyLucky7 form appears. (If you don't see the
form, click Form1.vb in Solution Explorer, and then click the View Designer button.)

Now you'll add the Randomize statement to the Form_Load procedure, a special
procedure that is associated with the form and that is executed each time the pro-
gram is started.

66 Part| Getting Started with Microsoft Visual Basic 2008
3. Double-click the form (not one of the objects) to display the Form_Load procedure.

The Form_Load procedure appears in the Code Editor, as shown here:

7 LuckyT - Microsoft Visual Studio ==
File Edit Miew Project Build Debug Dsta Tools Test Window Help
A - S £ Wt 20) b s=[Z2 | Qe @
Form1.vb"| Formiuh [Design]* | Start Page x| Solution Explorer 0 x
- =) = E &
7 (Farm1 Events) ~ 7 Load B 2E EE A
Labell.Text = CStr(Int{Rnd() * 10)) 'pick numbers — ;:ELV“"‘V?)
Labelz.Text = CStr{Int{Rndi] * 10]) 5 o 5 My Project
Labeld.Text = CStr{Int{Rndi) * 10} E5] Farmlvh
'if any number is 7 display picture and play sound
If (Labell.Text = “77) Or (LabelZ.Text = "77) _
Or (Label3.Text = "7") Then
PictureBox1.Visible = True
Beep ()
End If
End Sub
) Solution Explo.. [F]Dats Saurces
2} Private Sub Forml_Load(ByVal sender ks System.Object, ByVal e J= =
Properties -~ 1 x
I End Sub Form1_Load Attributes =
LEnd Class
o= 5]
@ |4
« I '
Ready Ln22 Colg Chy NS

4. Type Randomize, and then press Enter.

The Randomize statement is added to the program and will be executed each time
the program starts. Randomize uses the system clock to create a truly random starting
point, or seed, for the Rnd statement used in the Button1_Click procedure. As | men-
tioned earlier, without the Randomize statement, the Lucky Seven program produces
the same string of random spins every time you restart the program. With Randomize
in place, the program spins randomly every time it runs, and the numbers don't follow
a recognizable pattern.

5. Run the new version of Lucky Seven, and then save the project. If you plan to use the
new version a lot, you might want to create a new .exe file, too.

6. When you're finished, click Close Project on the File menu.

The files associated with the Lucky Seven program are closed.

To
Create a user interface

Move an object

Resize an object

Delete an object
Open the Code Editor

Write program code

Save a program

Save a form file

Create an .exe file

Deploy an application
by using ClickOnce
technology

Reload a project

Chapter 2 Writing Your First Program 67

Chapter 2 Quick Reference

Do this

Use Toolbox controls to place objects on your form, and then set the
necessary properties. Resize the form and the objects as appropriate.

Point to the object, and when a four-headed arrow appears, drag the object.
Click the object to select it, and then drag the resize handle attached to the
part of the object you want to resize.

Click the object, and then press the Delete key.

Double-click an object on the form (or the form itself).

or

Select a form or a module in Solution Explorer, and then click the View Code
button.

Type Visual Basic program statements associated with objects in the Code
Editor.

On the File menu, click the Save All command.

or

Click the Save All button on the Standard toolbar.

Make sure the form is open, and then on the File menu, click the Save
command.

or

Click the Save button on the Standard toolbar.

On the Build menu, click the Build or Rebuild command.

Click the Publish command on the Build menu, and then use the Publish
wizard to specify the location and settings for the application.

On the File menu, click the Open Project command.

or

On the File menu, point to Recent Projects, and then click the desired
project.

or

Click the project in the recent projects list on the Visual Studio Start Page.

Chapter 3
Working with Toolbox Controls

After completing this chapter, you will be able to:
B Use TextBox and Button controls to create a Hello World program.
B Use the DateTimePicker control to display your birth date.
B Use CheckBox, RadioButton, ListBox, and ComboBox controls to process user input.

B Use the LinkLabel control and the Process.Start method to display a Web page by using
your system’s default browser.

As you learned in earlier chapters, Microsoft Visual Studio 2008 controls are the graphical
tools you use to build the user interface of a Microsoft Visual Basic program. Controls are
located in the development environment'’s Toolbox, and you use them to create objects on
a form with a simple series of mouse clicks and dragging motions.

Windows Forms controls are specifically designed for building Microsoft Windows applications,
and you'll find them organized on the All Windows Forms tab of the Toolbox, although many
of the controls are also accessible on tabs such as Common Controls, Containers, and Printing.
(You used a few of these controls in the previous chapter.) You'll learn about other controls, in-
cluding the tools you use to build database applications and Web pages, later in the book.

In this chapter, you'll learn how to display information in a text box, work with date and time
information on your system, process user input, and display a Web page within a Visual Basic
program. The exercises in this chapter will help you design your own Visual Basic applications
and will teach you more about objects, properties, and program code.

The Basic Use of Controls: The Hello World Program

A great tradition in introductory programming books is the Hello World program, which
demonstrates how the simplest utility can be built and run in a given programming lan-
guage. In the days of character-based programming, Hello World was usually a two-line or
three-line program typed in a program editor and assembled with a stand-alone compiler.
With the advent of complex operating systems and programming tools, however, the typical
Hello World has grown into a more sophisticated program containing dozens of lines and
requiring several programming tools for its construction. Fortunately, creating a Hello World
program is still quite simple with Visual Studio and Visual Basic 2008. You can construct a
complete user interface by creating two objects, setting two properties, and entering one
line of code. Give it a try.

69

70 Part| Getting Started with Microsoft Visual Basic 2008
Create a Hello World program

1. Start Visual Studio 2008 if it isn't already open.
2. On the File menu, click New Project.

Visual Studio displays the New Project dialog box, which prompts you for the name of
your project and for the template that you want to use.

Note Use the following instructions each time you want to create a new project on your
hard disk.

3. Ensure that the Visual Basic project type and the Windows category are selected, and
then click the Windows Forms Application template.

These selections indicate that you'll be building a stand-alone Visual Basic application
that will run under Windows.

4. Remove the default project name (WindowsApplicationl) from the Name text box, and
then type MyHello.

Note Throughout this book, | ask you to create sample projects with the "My" prefix,
to distinguish your own work from the practice files | include on the companion
CD-ROM. However, I'll usually show projects in the Solution Explorer without the
"My" prefix (because I've built the projects without it.)

The New Project dialog box now looks like this:

Mew Project 7|l
Project types: Templates: [HET Framenork 35 ~|[E)=
Visual Basic Visual Studio installed templates
Windos - - — — ﬁ -
Office =° e L L = 3: 5
Smart Device Windows Class Library WIPF WPRF Browser Cansale Crystal
Database Forms .. fpplication Application Application Reports 4.
Test — —
WCE Vg :Vg | | ﬂ\’a j"s
Ak Erpty Windows WPF Custom WPFlser Windows Reports
Warkflaw Project Service ControlLib.. Contral.., Forms.. Application
Other Languages
Other Project Types My Templates
Test Projects j
Search
Online Te..
A praject for creating an application with a Windows user interface (NET Framework 3.5)
Marne: MyHello
ok [cancel

5. Click OK to create your new project.

Chapter 3 Working with Toolbox Controls 71

The new project is created, and a blank form appears in the Designer, as shown in the
following illustration. The two controls you'll use in this exercise, Button and TextBox,

are visible in the Toolbox, which appears in the illustration as a docked window. If your
programming tools are configured differently, take a few moments to organize them as
shown in the illustration. (Chapter 1, "Exploring the Visual Studio Integrated Development
Environment,” describes how to configure the IDE if you need a refresher course.)

[Hella - Microseft Visual Studia [E=REEE
File Edit View Project Build Debug Data Format Tools Test MWindow Help
e EE-da Bl=2 S = R 3 %= (5 % |l g o (B &L
Toolbox -~ 1 X FormLvb [Design]| Start Page > X | Solution Explorer -1 x
All Windaws Forms B 22 F|EEAL
m s Forml (=3 e e 2 Hello
K Pointer Lo 4 My Project
Button] Formlvb
[CheckBox

B2 CheckedlistBox
% ComboBox

T DateTimePicker

I

A Label

A LinkLabel

= t“tB?x g Solution Expla... []Date Sources
22% Listyiew =

-] MaskedTextBox Properties TR
7] MonthCalendar Form1 Systern.Windows.Farms.Fa =

= Notifylean

== (A7 (5] #
@ |4 L=

£ MumericUpDown

R bt o za} ShowlnTaskbar True &

- i Size 300, 300

@ Rmfreass ar SizeGripStyle Auta

> adioButton StartPasition WindowsDefaul

25 RichTextBox Tag

bl TextBo Text Forml 5

L ToolTip

s Text

i TreeView o

- The text assacisted with the contral,
5 WebBrowser

Ready

6. Click the TextBox control on the Common Controls tab of the Toolbox.

7. Draw a text box similar to this:

- Farml =5 e =

H m's
0 0

Text boxes are used to display text on a form or to get user input while a program is
running. How a text box works depends on how you set its properties and how you ref-
erence the text box in the program code. In this program, a text box object will be used
to display the message “Hello, world!" when you click a button object on the form.

72

Part |

10.

11.

Getting Started with Microsoft Visual Basic 2008

Note Readers who experimented with Visual Basic some time ago will notice that the
TextBox control no longer contains a default Text property value of “TextBox1". The de-
fault text box is now empty.

You'll add a button to the form now.

. Click the Button control in the Toolbox.

. Draw a button below the text box on the form.

Your form looks something like this:

a5 Farml = EoE T

Buttor

As you learned in Chapter 2, “Writing Your First Program,” buttons are used to get the
most basic input from a user. When a user clicks a button, he or she is requesting that
the program perform a specific action immediately. In Visual Basic terms, the user is
using the button to create an event that needs to be processed in the program. Typical
buttons in a program are the OK button, which a user clicks to accept a list of options
and to indicate that he or she is ready to proceed; the Cancel button, which a user
clicks to discard a list of options; and the Quit button, which a user clicks to exit the
program. In each case, you should use these buttons in the standard way so that they
work as expected when the user clicks them. A button’s characteristics (like those of all
objects) can be modified with property settings and references to the object in pro-
gram code.

Set the following property for the button object by using the Properties window:

Object Property Setting
Buttonl Text 2 objects

For more information about setting properties and reading them in tables, see the
section entitled "The Properties Window" in Chapter 1.

Double-click the OK button, and type the following program statement between the
Private Sub Buttonl_Click and End Sub statements in the Code Editor:

Chapter 3 Working with Toolbox Controls 73

TextBox1l.Text = "Hello, world!"

Note Asyou type statements, Visual Studio displays a list box containing all valid items
that match your text. After you type the TextBox1 object name and a period, Visual Studio
displays a list box containing all the valid properties and methods for text box objects,
to jog your memory if you've forgotten the complete list. This list box is called Microsoft
IntelliSense and can be very helpful when you are writing code. If you click an item in the
list box, you will typically get a ToolTip that provides a short description of the selected
item. You can add the property from the list to your code by double-clicking it or by using
the arrow keys to select it and then pressing Tab. You can also continue typing to enter the
property yourself. (I usually just keep typing, unless I'm exploring new features.)

The statement you've entered changes the Text property of the text box to “Hello,
world!” when the user clicks the button at run time. (The equal sign (=) assigns every-
thing between the quotation marks to the Text property of the TextBox1 object.) This
example changes a property at run time—one of the most common uses of program
code in a Visual Basic program.

Now you're ready to run the Hello World program.

Run the Hello World program

Q Tip The complete Hello World program is located in the c:\vb08sbs\chap03\hello folder.

1. Click the Start Debugging button on the Standard toolbar.

The Hello World program compiles and, after a few seconds, runs in the Visual Studio
IDE.

2. Click OK.

The program displays the greeting “Hello, world!" in the text box, as shown here:

a5 Farml = e

Hello, waorld!

74

Part |

9.

Getting Started with Microsoft Visual Basic 2008

When you clicked the OK button, the program code changed the Text property of the
empty TextBoxI text box to “Hello, world!” and displayed this text in the box. If you
didn't get this result, repeat the steps in the previous section, and build the program
again. You might have set a property incorrectly or made a typing mistake in the pro-
gram code. (Syntax errors appear with a jagged underline in the Code Editor.)

Click the Close button in the upper-right corner of the Hello World program window to
stop the program.

Note To stop a program running in Visual Studio, you can also click the Stop Debugging
button on the Standard toolbar to close the program.

. Click the Save All button on the Standard toolbar to save your new project to disk.

Visual Studio now prompts you for a name and a location for the project.

. Click the Browse button.

The Project Location dialog box opens. You use this dialog box to specify the location
of your project and to create new folders for your projects if necessary. Although you
can save your projects in any location (the Documents\Visual Studio 2008\Projects
folder is a common location), in this book | instruct you to save your projects in the
c\vb08sbs folder, the default location for your Step by Step practice files. If you ever
want to remove all the files associated with this programming course, you'll know
just where the files are, and you'll be able to remove them easily by deleting the
entire folder.

. Browse to the c:\vb08sbs\chap03 folder.
. Click the Select Folder or Open button to open the folder you specified.

. Clear the check mark from the Create Directory For Solution check box if it is selected.

Because this solution contains only one project (which is the case for most of the solu-
tions in this book), you don't need to create a separate root folder to hold the solution
files for the project. (However, you can create an extra folder if you want.)

Click Save to save the project and its files.

Congratulations—you've joined the ranks of programmers who've written a Hello World
program. Now let’s try another control.

Chapter 3 Working with Toolbox Controls 75

Using the DateTimePicker Control

Some Visual Basic controls display information, and others gather information from the
user or process data behind the scenes. In this exercise, you'll work with the DateTimePicker
control, which prompts the user for a date or time by using a graphical calendar with scroll
arrows. Although your use of the control will be rudimentary at this point, experimenting
with DateTimePicker will give you an idea of how much Visual Basic controls can do for you
automatically and how you process the information that comes from them.

The Birthday Program

The Birthday program uses a DateTimePicker control and a Button control to prompt the user
for the date of his or her birthday. It then displays that information by using a message box.
Give it a try now.

Build the Birthday program

1. On the File menu, click Close Project to close the MyHello project.
The files associated with the Hello World program close.

2. On the File menu, click New Project.
The New Project dialog box opens.

3. Create a new Visual Basic Windows Forms Application project named MyBirthday.
The new project is created, and a blank form appears in the Designer.

4. Click the DateTimePicker control in the Toolbox.

5. Draw a date/time picker object in the middle of the form, as shown in the following
illustration.

o5 Forml |?||ﬁ|

76

Part |

Getting Started with Microsoft Visual Basic 2008

The date/time picker object by default displays the current date, but you can adjust the
displayed date by changing the object’s Value property. Displaying the date is a handy
design guide—it lets you size the date/time picker object appropriately when you're
creating it.

Click the Button control in the Toolbox, and then add a button object below the date/
time picker.

You'll use this button to display your birth date and to verify that the date/time picker
works correctly.

In the Properties window, change the Text property of the button object to Show My
Birthday.

Now you'll add a few lines of program code to a procedure associated with the button
object. This is an event procedure because it runs when an event, such as a mouse click,
occurs, or fires, in the object.

Double-click the button object on the form to display its default event procedure, and
then type the following program statements between the Private Sub and End Sub
statements in the Button1_Click event procedure:

MsgBox("Your birth date was " & DateTimePickerl.Text)
MsgBox("Day of the year: " & _

DateTimePickerl.Value.DayOfYear.ToString())
These program statements display two message boxes (small dialog boxes) with infor-
mation from the date/time picker object. The first line uses the Text property of the
date/time picker to display the birth date information you select when using the object
at run time. The MsgBox function displays the string value “Your birth date was” in addi-
tion to the textual value held in the date/time picker’s Text property. These two pieces
of information are joined together by the string concatenation operator (&).
You'll learn more about the MsgBox function and the string concatenation operator
in Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework.”

The second and third lines collectively form one program statement and have been
broken by the line continuation character (_) because the statement was a bit too long
to print in this book.

Chapter 3 Working with Toolbox Controls 77

Note Program lines can be more than 65,000 characters long in the Visual Studio Code
Editor, but it's usually easiest to work with lines of 80 or fewer characters. You can divide
long program statements among multiple lines by using a space and a line continuation
character (_) at the end of each line in the statement, except the last line. (You cannot
use a line continuation character to break a string that's in quotation marks, however.)

| use the line continuation character in this exercise to break the second line of code
into two parts.

The statement DateTimePickerl.Value.DayOfYear.ToString() uses the date/time picker
object to calculate the day of the year in which you were born, counting from January
1. This is accomplished by the DayOfYear property and the ToString method, which
converts the numeric result of the date calculation to a textual value that's more easily
displayed by the MsgBox function.

Methods are special statements that perform an action or a service for a particular ob-

ject, such as converting a number to a string or adding items to a list box. Methods dif-
fer from properties, which contain a value, and event procedures, which execute when

a user manipulates an object. Methods can also be shared among objects, so when you
learn how to use a particular method, you'll often be able to apply it to several circum-
stances. We'll discuss several important methods as you work through this book.

After you enter the code for the ButtonI_Click event procedure, the Code Editor looks
similar to this:

Start Page ' Form1.vb - X
[iGeneral) ~ [](Declarations) -
| B Pwlic Cclass Forml =

| -

= Frivate Zub Buttonl Click(EyVal sender Ais Zystem.Chject, EByvVal e

M=sgBox ("Your birth date was " & DateTimePickerl.Text)
MsgBox ("Day of the year: " & _
DateTimePickerl.Value.Daylf¥ear. ToString())
+ End Zub
I—Enci Class

9. Click the Save All button to save your changes to disk, and specify c:\vb08sbs\chap03 as

the folder location.

Now you're ready to run the Birthday program.

78 Part| Getting Started with Microsoft Visual Basic 2008

Run the Birthday program

Q Tip The complete Birthday program is located in the c:\vb08sbs\chap03\birthday folder.

1. Click the Start Debugging button on the Standard toolbar.

The Birthday program starts to run in the IDE. The current date is displayed in the
date/time picker.

2. Click the arrow in the date/time picker to display the object in Calendar view.

Your form looks like the following illustration, with a different date.

o5 Forml == @

‘wednesday, September 10, 2008 | [+

4 September, 2008 ’

Sun Mon Tue Wed Thu Fri Sat
Ell 1 2 3 4 5 6
7 g 91011 12 13
14 15 16 17 18 19 20
A 2 B3 M4 B 2w 7
28 29 3D 1 2 3
5 6 7 g g9 10 1
[Today: 9/10/2008

3. Click the Left scroll arrow to look at previous months on the calendar.

Notice that the text box portion of the object also changes as you scroll the date. The
“today” value at the bottom of the calendar doesn’t change, however.

Although you can scroll all the way back to your exact birthday, you might not have
the patience to scroll month by month. To move to your birth year faster, select the
year value in the date/time picker text box and enter a new year.

4. Select the four-digit year in the date/time picker text box.
When you select the date, the date/time picker closes.

5. Type your birth year in place of the year that's currently selected, and then click the
arrow again.

The calendar reappears in the year of your birth.

Chapter 3 Working with Toolbox Controls 79

6. Click the scroll arrow again to locate the month in which you were born, and then click

the exact day on which you were born.
If you didn't know the day of the week you were born on, now you can find out!

When you select the final date, the date/time picker closes, and your birth date is dis-
played in the text box. You can click the button object to see how this information is
made available to other objects on your form.

Click the Show My Birthday button.

Visual Basic executes your program code and displays a message box containing the
day and date of your birth. Notice how the two dates match:

o5 Forml = |[= [

Saturday . Apil 18,1964 [+

Birthday

Your birth date was Saturday, &pril 18, 1964

QK

Click OK in the message box.

A second message box appears indicating the day of the year on which you were born—
everything seems to work! You'll find this control to be quite capable—not only does it
remember the new date or time information that you enter, but it also keeps track of the
current date and time, and it can display this date and time information in a variety of
useful formats.

Note To configure the date/time picker object to display times instead of dates, set the
object’s Format property to Time.

Click OK to close the message box, and then click the Close button on the form.

You're finished using the DateTimePicker control for now.

80

Part | Getting Started with Microsoft Visual Basic 2008

A Word About Terminology

So far in this book I've used several different terms to describe items in a Visual Basic program.
Do you know what all these items are yet? It's worth listing several of them now to clear up
any confusion.

Program statement
A program statement is a line of code in a Visual Basic program, a self-contained in-
struction executed by the Visual Basic compiler that performs useful work within the
application. Program statements can vary in length (some contain only one Visual Basic
keyword!), but all program statements must follow syntax rules defined and enforced by
the Visual Basic compiler. In Visual Studio 2008, program statements can be composed
of keywords, properties, object names, variables, numbers, special symbols, and other
values. (See Chapter 2 and Chapter 5.)

Keyword
A keyword is a reserved word within the Visual Basic language that is recognized by the
Visual Basic compiler and performs useful work. (For example, the End keyword stops
program execution.) Keywords are one of the basic building blocks of program state-
ments; they work together with objects, properties, variables, and other values to form
complete lines of code and (therefore) instructions for the compiler and operating sys-
tem. Most keywords are shown in blue type in the Code Editor. (See Chapter 2.)

Variable
A variable is a special container used to hold data temporarily in a program. The pro-
grammer creates variables by using the Dim statement and then uses these variables
to store the results of a calculation, file names, input, and so on. Numbers, names, and
property values can be stored in variables. (See Chapter 5.)

Control
A control is a tool you use to create objects in a Visual Basic program (most commonly,
objects are created on a form). You select controls from the Toolbox and use them to
draw objects with the mouse on a form. You use most controls to create user interface
elements, such as buttons, picture boxes, and list boxes. (See especially Chapters 2
through 4.)

Object
An object is an element that you create in a Visual Basic program with a control in
the Toolbox. (In addition, objects are sometimes supplied by other system components
and many of these objects contain data.) In Visual Basic, the form itself is also an object.
Technically speaking, objects are instances of a class that supports properties, methods,
and events. Objects also have what is known as inherent functionality—they know
how to operate and can respond to certain situations on their own. (A list box
“knows” how to scroll, for example.) (See Chapters 1 through 4.)

Chapter 3 Working with Toolbox Controls 81

Class
A class is a blueprint or template for one or more objects that defines what the object
does. Accordingly, a class defines what an object can do, but is not the object itself. In
Visual Basic, you can use existing Visual Studio classes (like System.Math and System.
Windows.Forms.Form), and you can build your own classes and inherit properties, meth-
ods, and events from them. (Inheritance allows one class to acquire the pre-existing
interface and behavior characteristics of another class.) Although classes might sound
esoteric at this point, they are a key feature of Visual Studio 2008, and in this book, you
will use them to build user interfaces rapidly and to extend the work that you do to
other programming projects. (See Chapters 5 and 16.)

Namespace
A namespace is a hierarchical library of classes organized under a unique name, such
as System.Windows or System.Diagnostics. To access the classes and underlying objects
within a namespace, you place an Imports statement at the top of your program code.
Every project in Visual Studio also has a root namespace, which is set using the project’s
Properties page. Namespaces are referred to as object libraries or class libraries in
Visual Studio books and documentation. (See Chapter 5.)

Property
A property is a value, or characteristic, held by an object. For example, a button
object has a Text property to specify the text that appears on the button and an
Image property to specify the path to an image file that should appear on the but-
ton face. In Visual Basic, properties can be set at design time by using the Properties
window or at run time by using statements in the program code. In code, the format
for setting a property is

Object.Property = Value

where Object is the name of the object you're customizing, Property is the characteristic
you want to change, and Value is the new property setting. For example,

Buttonl.Text = "Hello"

could be used in the program code to set the Text property of the Buttonl object to
“Hello". (See Chapters 1 through 3.)

Event procedure
An event procedure is a block of code that's executed when an object is manipulated
in a program. For example, when the Buttonl object is clicked, the ButtonI_Click event
procedure is executed. Event procedures typically evaluate and set properties and
use other program statements to perform the work of the program. (See Chapters 1
through 3.)

82 Part| Getting Started with Microsoft Visual Basic 2008

Method
A method is a special statement that performs an action or a service for a particular
object in a program. In program code, the notation for using a method is

Object.Method(Value)

where Object is the name of the object you want to work with, Method is the action
you want to perform, and Value is an optional argument to be used by the method.
For example, the statement

ListBox1l.Items.Add("Check™)

uses the Add method to put the word Check in the ListBox1 list box. Methods and prop-
erties are often identified by their position in a collection or object library, so don't be
surprised if you see long references such as System.Drawing.Image.FromFile, which would
be read as "the FromFile method, which is a member of the Image class, which is a mem-
ber of the System.Drawing object library.” (See Chapters 1 through 5.)

Controls for Gathering Input

Visual Basic provides several mechanisms for gathering input in a program. Text boxes
accept typed input, menus present commands that can be clicked or chosen with the
keyboard, and dialog boxes offer a variety of elements that can be chosen individually or
selected in a group. In this exercise, you'll learn how to use four important controls that
help you gather input in several different situations. You'll learn about the RadioButton,
CheckBox, ListBox, and ComboBox controls. You'll explore each of these objects as you
use a Visual Basic program called Input Controls, which is the user interface for a simple,
graphics-based ordering system. As you run the program, you'll get some hands-on ex-
perience with the input objects. In the next chapter, I'll discuss how these objects can be
used along with menus in a full-fledged program.

As a simple experiment, try using the CheckBox control now to see how user input is
processed on a form and in program code.

Experiment with the CheckBox control

1. On the File menu, click Close Project to close the Birthday project.
2. On the File menu, click New Project.
The New Project dialog box opens.
3. Create a new Visual Basic Windows Forms Application project named MyCheckBox.

The new project is created, and a blank form appears in the Designer.

Chapter 3 Working with Toolbox Controls 83

. Click the CheckBox control in the Toolbox.

. Draw two check box objects on the form, one above the other.

Check boxes appear as objects on your form just as other objects do. You'll have to
click the CheckBox control in the Toolbox a second time for the second check box.

. Using the PictureBox control, draw two square picture box objects beneath the two
check boxes.

. Set the following properties for the check box and picture box objects:

Object Property Setting
CheckBox1 Checked True
Text "Calculator”
CheckBox2 Text "Copy machine”
PictureBox1 Image c:\vb08sbs\chap03\calcultr
SizeMode Stretchimage
PictureBox2 SizeMode Stretchimage

In this walkthrough, you'll use the check boxes to display and hide images of a calculator
and a copy machine. The Text property of the check box object determines the contents
of the check box label in the user interface. With the Checked property, you can set a
default value for the check box. Setting Checked to True places a check mark in the box,
and setting Checked to False (the default setting) removes the check mark. | use the
SizeMode properties in the picture boxes to size the images so that they stretch to fit

in the picture box.

Your form looks something like this:

o Farml [E=E|Ec

|V Calculator

|| Copy machine

84

Part |

8.

10.

Getting Started with Microsoft Visual Basic 2008

Double-click the first check box object to open the CheckBox1_CheckedChanged event
procedure in the Code Editor, and then enter the following program code:

If CheckBoxl.CheckState = 1 Then

PictureBoxl.Image = System.Drawing.Image.FromFile _

("c:\vb08sbs\chap03\calcultr™)

PictureBox1.Visible = True
Else

PictureBox1l.Visible = False
End If
The CheckBox1_CheckedChanged event procedure runs only if the user clicks in the first
check box object. The event procedure uses an If.. Then decision structure (described
in Chapter 6, "Using Decision Structures”) to confirm the current status, or state, of the
first check box, and it displays a calculator picture from the c:\vb08sbs\chap03 folder if
a check mark is in the box. The CheckState property holds a value of 1 if there’s a check
mark present and 0 if there's no check mark present. (You can also use the CheckState.
Checked enumeration, which appears in IntelliSense when you type, as an alternative to
setting the value to 1.) | use the Visible property to display the picture if a check mark
is present or to hide the picture if a check mark isn't present. Notice that | wrapped the
long line that loads the image into the picture box object by using the line continuation
(L) character.

Click the View Designer button in Solution Explorer to display the form again,
double-click the second check box, and then add the following code to the
CheckBox2_Checked-Changed event procedure:

If CheckBox2.CheckState = 1 Then
PictureBox2.Image = System.Drawing.Image.FromFile
("c:\vb08sbs\chap03\copymach™)
PictureBox2.Visible = True
Else
PictureBox2.Visible = False
End If

This event procedure is almost identical to the one that you just entered; only the
names of the image (copymach), the check box object (CheckBox2), and the picture
box object (PictureBox?2) are different.

Click the Save All button on the Standard toolbar to save your changes, specifying the
c\vb08sbs\chap03 folder as the location.

Run the CheckBox program

O

1.

Tip The complete CheckBox program is located in the c:\vb08sbs\chap03\checkbox folder.

Click the Start Debugging button on the Standard toolbar.

Chapter 3 Working with Toolbox Controls 85

Visual Basic runs the program in the IDE. The calculator image appears in a picture box
on the form, and the first check box contains a check mark.

. Select the Copy Machine check box.

Visual Basic displays the copy machine image, as shown here:

a5 Farml =5 o =

|| Calculator

[¥] Copy machine

Experiment with different combinations of check boxes, selecting or clearing the boxes
several times to test the program. The program logic you added with a few short lines
of Visual Basic code manages the boxes perfectly. (You'll learn much more about pro-
gram code in upcoming chapters.)

4. Click the Close button on the form to end the program.

The Input Controls Demo

Now that you've had a little experience with check boxes, run and examine the Input Controls
demonstration program that | created to simulate a graphical ordering environment that
makes more extensive use of check boxes, radio buttons, a list box, and a combo box. If you
work in a business that does a lot of order entry, you might want to expand this program
into a full-featured graphical order entry program. After you experiment with Input Controls,
spend some time learning how the four input controls work in the program. They were
created in a few short steps by using Visual Basic and the techniques you just learned.

Run the Input Controls program

1.

On the File menu, click Open Project.
The Open Project dialog box opens.

Open the c:\vb08sbs\chap03\input controls folder, and then double-click the Input
Controls project file (Input Controls.vbproj).

86

Part | Getting Started with Microsoft Visual Basic 2008

As | mentioned earlier, you may open either the project file (Input Controls.vbproj) or
the solutions file (Input Controls.sIn) to open solutions with only one project. In either
case, the Input Controls project opens in the IDE.

3. If the project’s form isn't visible, click the Form1.vb form in Solution Explorer, and then
click the View Designer button.

4. Move or close the windows that block your view of the form so that you can see how
the objects are laid out.

You see a form similar to this:

a5 Online Shopper ===
The Online Shopper

Clutfit pour office now by choozing the office products you need Products Orderad
uging radio buttons, check boxes, a list box, and a combo box,

C I ired : I
QrpLenlERied] Peripheralz [one only] I

@ PC :ListBox‘I
Macintosh [N RE e |

Laptop

Office Equipment [0-3] e N - e
Payment Method =
Anzwering Machine

Calculator
Quit

[] Copy machine

The Input Controls form contains radio button, check box, list box, combo box, picture
box, button, and label objects. These objects work together to create a simple order
entry program that demonstrates how the Visual Basic input objects work. When the
Input Controls program is run, it loads images from the c:\vb08sbs\chap03\input con-
trols folder and displays them in the six picture boxes on the form.

Note If you installed the practice files in a location other than the default c:\vb08sbs
folder, the statements in the program that load the artwork from the disk contain an in-
correct path. (Each statement begins with c:\\vb08sbs\chap03\input controls, as you'll see
soon.) If this is the case, you can make the program work by renaming your practice files
folder \vb08sbs or by changing the paths in the Code Editor by using the editing keys or
the Quick Replace command on the Edit menu.

5. Click the Start Debugging button on the Standard toolbar.
The program runs in the IDE.
6. Click the Laptop radio button in the Computer box.

Chapter 3 Working with Toolbox Controls 87

The image of a laptop computer appears in the Products Ordered area on the right
side of the form. The user can click various options, and the current choice is depicted
in the order area on the right. In the Computer box, a group of radio buttons is used
to gather input from the user.

Radio buttons force the user to choose one (and only one) item from a list of possibili-
ties. (Radio buttons are called option buttons in Visual Basic 6.) When radio buttons are
placed inside a group box object on a form, the radio buttons are considered to be part
of a group, and only one option can be chosen. To create a group box, click the GroupBox
control on the Containers tab of the Toolbox, and then draw the control on your form.
(The GroupBox control replaces the Frame control in Visual Basic 6.) You can give the
group of radio buttons a title (as | have) by setting the Text property of the group box
object. When you move a group box object on the form, the controls within it also move.

. Click to select the Answering Machine, Calculator, and Copy Machine check boxes in
the Office Equipment box.

Check boxes are used in a program so that the user can select more than one option

at a time from a list. Click to clear the Calculator check box again, and notice that the
picture of the calculator disappears from the order area. Because each user interface
element responds to click events as they occur, order choices are reflected immediately.
The code that completes these tasks is nearly identical to the code you entered earlier
in the CheckBox program.

. Click Satellite Dish in the Peripherals list box.
A picture of a satellite dish is added to the order area.

List boxes are used to get a single response from a list of choices. They are created with
the ListBox control, and might contain many items to choose from. (Scroll bars appear
if the list of items is longer than the list box.) Unlike radio buttons, a list box doesn’t
require that the user be presented with a default selection. And from a programmatic
standpoint, items in a list box can be added to, removed from, or sorted while the pro-
gram is running. If you would like to see check marks next to the items in your list box,
use the CheckedListBox control in the Toolbox instead of the ListBox control.

. Now choose U.S. Dollars (sorry, no credit) from the payment list in the Payment
Method combo box.

Combo boxes, or drop-down list boxes, are similar to regular list boxes, but they take
up less space. (The “combo” in a combo box basically comes from a “combination”

of an editable text box and a drop-down list.) Visual Basic automatically handles the
opening, closing, and scrolling of the list box. All you do as a programmer is create the
combo box by using the ComboBox control in the Toolbox, set the Text property to
provide directions or a default value, and then write code to add items to the combo
box and to process the user's combo box selection. You'll see examples of each task in
the program code for the Input Controls demonstration in the next section.

88

Part | Getting Started with Microsoft Visual Basic 2008

After you make your order selections, your screen looks something like this:

o' Online Shopper [E=2EoR (=)
The Online Shopper
Outfit your office now by choosing the office products you need Products Orderad

uging radio buttonz, check boxes, a list box, and a combo box,

Computer [required)

Peripheralz [one only]

CRE Extra hard disk

" Macintash

@+ Laptop

1 Office Equipment [0-3]

¥ Answering Machine

I Caleulatar
Quit

v Copy machine

10. Practice making a few more changes to the order list (try different computers, peripherals,
and payment methods), and then click the Quit button in the program to exit.

When you click Quit, the program closes, and the IDE appears.

Looking at the Input Controls Program Code

Although you haven't had much formal experience with program code yet, it's worth taking a
quick look at a few event procedures in Input Controls to see how the program processes input
from the user interface elements. In these procedures, you'll see the If...Then and Select Case
statements at work. You'll learn about these and other decision structures in Chapter 6. For
now, concentrate on the CheckState property, which changes when a check box is selected,
and the SelectedIndex property, which changes when a list box is selected.

Examine check box and list box code

1. Be sure the program has stopped running, and then double-click the Answering
Machine check box in the Office Equipment group box to display the CheckBox1_
CheckedChanged event procedure in the Code Editor.

You see the following program code:

'If the CheckState property for a check box is 1, it has a mark in it
If CheckBoxl.CheckState = 1 Then
PictureBox2.Image = System.Drawing.Image.FromFile _
("c:\vb08sbs\chap03\input controls\answmach")
PictureBox2.Visible = True
Else
'If there is no mark, hide the image
PictureBox2.Visible = False
End If

Chapter 3 Working with Toolbox Controls 89

As you learned in Chapter 2, the first line of this event procedure is a comment. Comments
are displayed in green type and are simply notes written by the programmer to describe
what's important or interesting about this particular piece of program code. (Comments
are also occasionally generated by automated programming tools that compile programs
or insert code snippets.) | wrote this comment to remind myself that the CheckState
property contains a crucial value in this routine—a value of 1 if the first check box

was checked.

The rest of the event procedure is nearly identical to the one you just wrote in the
CheckBox program. If you scroll down in the Code Editor, you see a similar event pro-
cedure for the CheckBox2 and CheckBox3 objects.

. At the top edge of the Code Editor, click the Form1.vb [Design] tab to display the form
again, and then double-click the Peripherals list box on the form.

The ListBox1_SelectedindexChanged event procedure appears in the Code Editor. You
see the following program statements:

'The item you picked (0-2) is held in the SelectedIndex property
Select Case ListBoxl.SelectedIndex
Case 0
PictureBox3.Image = System.Drawing.Image.FromFile _
("c:\vb08sbs\chap03\input controls\harddisk™)
Case 1
PictureBox3.Image = System.Drawing.Image.FromFile
("c:\vb08sbs\chap03\input controls\printer")
Case 2
PictureBox3.Image = System.Drawing.Image.FromFile _
("c:\vb08sbs\chap03\input controls\satedish")
End Select

Here you see code that executes when the user clicks an item in the Peripherals list box in
the program. In this case, the important keyword is ListBox1.SelectedIindex, which is read
“the Selectedindex property of the list box object named ListBox1." After the user clicks an
item in the list box, the SelectedIndex property returns a number that corresponds to the
location of the item in the list box. (The first item is numbered 0, the second item is num-
bered 1, and so on.)

In the previous code, SelectedIndex is evaluated by the Select Case decision structure,
and a different image is loaded depending on the value of the Selectedindex property.
If the value is O, a picture of a hard disk is loaded; if the value is 1, a picture of a printer
is loaded; and if the value is 2, a picture of a satellite dish is loaded. You'll learn more
about how the Select Case decision structure works in Chapter 6.

. At the top edge of the Code Editor, click the Form1.vb [Design] tab to display the form
again, and then double-click the form (not any of the objects) to display the code asso-
ciated with the form itself.

20

Part |

Getting Started with Microsoft Visual Basic 2008

The FormI1_Load event procedure appears in the Code Editor. This is the procedure that'’s
executed each time the Input Controls program is loaded into memory. Programmers
put program statements in this special procedure when they want them executed every
time a form loads. (Your program can display more than one form, or none at all, but
the default behavior is that Visual Basic loads and runs the FormI_Load event procedure
each time the user runs the program.) Often, as in the Input Controls program, these
statements define an aspect of the user interface that couldn’t be created by using the
controls in the Toolbox or the Properties window.

Here's what the FormI_Load event procedure looks like for this program:

'These program statements run when the form loads
PictureBox1l.Image = System.Drawing.Image.FromFile _
("c:\vb08sbs\chap03\input controls\pcomputr")
'Add items to a list box Tike this:
ListBox1l.Items.Add("Extra hard disk")
ListBox1l.Items.Add("Printer™)
ListBox1l.Items.Add("Satellite dish")
'Combo boxes are also filled with the Add method:
ComboBox1.Items.Add("U.S. Dollars")
ComboBox1.Items.Add("Check™)
ComboBox1.Items.Add("English Pounds™")
Three lines in this event procedure are comments displayed in green type. The second
line in the event procedure loads the personal computer image into the first picture
box. (This line is broken in two using a space and the line continuation character, but
the compiler still thinks of it as one line.) Loading an image establishes the default set-
ting reflected in the Computer radio button group box. Note also that text between

double quotes is displayed in red type.

The next three lines add items to the Peripherals list box (ListBoxI) in the program. The
words in quotes will appear in the list box when it appears on the form. Below the list
box program statements, the items in the Payment Method combo box (ComboBox1)
are specified. The important keyword in both these groups is Add, which is a special
function, or method, that adds items to list box and combo box objects.

You're finished using the Input Controls program. Take a few minutes to examine any other

parts of the program you're interested in, and then move on to the next exercise.

Chapter 3 Working with Toolbox Controls 91

Q Tip As noted on the previous page, most of the images in this simple example were

loaded using an absolute path name in the program code. This works fine as long as the
image exists at the specified path. However, in a commercial application, you can't always be
sure that your user won't move around your application files, causing programs like this one
to generate an error when the files they use are no longer in the expected location. To make
your applications more seaworthy or robust, it is usually better to use relative paths when ac-
cessing images and other resources. You can also embed images and other resources within
your application. For information about this handy technique, which is carefully described
within your very own Visual Studio documentation files, see “How to: Create Embedded
Resources” and “Accessing Application Resources” in the Visual Studio 2008 documentation.

One Step Further: Using the LinkLabel Control

Providing access to the Web is now a standard feature of many Windows applications, and
with Visual Studio, adding this functionality is easier than ever. You can create a Visual Basic
program that runs from a Web server by creating a Web Forms project and using controls

in the Toolbox optimized for the Web. Alternatively, you can use Visual Basic to create a
Windows application that opens a Web browser within the application, providing access to
the Web while remaining a Windows program running on a client computer. We'll postpone
writing Web Forms projects for a little while longer in this book, but in the following exercise
you'll learn how to use the LinkLabel Toolbox control to create a Web link in a Windows pro-
gram that provides access to the Internet through Windows Internet Explorer or the default
Web browser on your system.

Note To learn more about writing Web-aware Visual Basic 2008 applications, read Chapter 20,
“Creating Web Sites and Web Pages Using Visual Web Developer and ASP.NET.”

Create the WebLink program
1. On the File menu, click Close Project to close the Input Controls project.
2. On the File menu, click New Project.
The New Project dialog box opens.
3. Create a new Visual Basic Windows Forms Application project named MyWebLink.

The new project is created, and a blank form appears in the Designer.

92

Part |

4.

Getting Started with Microsoft Visual Basic 2008

Click the LinkLabel control in the Toolbox, and draw a rectangular link label object on
your form.

Link label objects look like label objects, except that all label text is displayed in blue
underlined type on the form.

Set the Text property of the link label object to the URL for the Microsoft Press home
page:
http://www.microsoft.com/learning/books/

Your form looks like this:

o5 Forml =R

Click the form in the IDE to select it. (Click the form itself, not the link label object.)

This is the technique you use to view the properties of the default form, Forml, in the
Properties window. Like other objects in your project, the form also has properties that
you can set.

Set the Text property of the form object to Web Link Test.

The Text property for a form controls what appears on the form'’s title bar at design
time and when the program runs. Although this customization isn't related exclusively
to the Web, | thought you'd enjoy picking up that skill now, before we move on to
other projects. (We'll customize the title bar in most of the programs we build.)

Double-click the link label object, and then type the following program code in the
LinkLabell_LinkClicked event procedure:

' Change the color of the Tink by setting LinkVisited to True.

LinkLabell.LinkVisited = True

' Use the Process.Start method to open the default browser

' using the Microsoft Press URL:

System.Diagnostics.Process.Start _
("http://www.microsoft.com/learning/books/")

Chapter 3 Working with Toolbox Controls 93

I've included comments in the program code to give you some practice entering them.
As soon as you enter the single quote character ('), Visual Studio changes the color of
the line to green, identifying the line as a comment. Comments are for documentation
purposes only—they aren't evaluated or executed by the compiler.

The two program statements that aren't comments control how the link works. Setting
the LinkVisited property to True gives the link that dimmer color of purple, which indi-
cates in many browsers that the HTML document associated with the link has already
been viewed. Although setting this property isn't necessary to display a Web page,

it's a good programming practice to provide the user with information in a way that's
consistent with other applications.

The second program statement (which | have broken into two lines) runs the default
Web browser (such as Internet Explorer) if the browser isn't already running. (If the
browser is running, the URL just loads immediately.) The Start method in the Process
class performs the important work, by starting a process or executable program ses-
sion in memory for the browser. The Process class, which manages many other aspects
of program execution, is a member of the System.Diagnostics namespace. By including
an Internet address or a URL along with the Start method, I'm letting Visual Basic know
that | want to view a Web site, and Visual Basic is clever enough to know that the de-
fault system browser is the tool that would best display that URL, even though | didn't
identify the browser by name.

An exciting feature of the Process.Start method is that it can be used to run other
Windows applications, too. If | did want to identify a particular browser by name to
open the URL, | could have specified one using the following syntax. (Here I'll request
the Internet Explorer browser.)

System.Diagnostics.Process.Start("IExplore.exe", _
"http://www.microsoft.com/Tearning/books/")

Here two arguments are used with the Start method, separated by a comma. The exact

location for the program named IExplore.exe on my system isn't specified, but Visual

Basic will search the current system path for it when the program runs.

If I wanted to run a different application with the Start method—for example, if | wanted
to run the Microsoft Word application and open the document c:\myletter.doc—I could
use the following syntax:

System.Diagnostics.Process.Start("Winword.exe", _
"c:\myTletter.doc™)

As you can see, the Start method in the Process class is very useful.

Now that you've entered your code, you should save your project. (If you experimented
with the Start syntax as | showed you, restore the original code shown at the beginning
of step 8 first.)

94

Part |

Getting Started with Microsoft Visual Basic 2008

9. Click the Save All button on the Standard toolbar to save your changes, and specify c:\

vb08sbs\chap03 as the location.

You can now run the program.

Run the WebLink program

O

Tip The complete WebLink program is located in the c:\vb08sbs\chap03\weblink folder.

1. Click the Start Debugging button on the Standard toolbar to run the WebLink program.

The form opens and runs, showing its Web site link and handsome title bar text.

Click the link to open the Web site at http://www.microsoft.com/learning/books/.

Recall that it's only a happy coincidence that the link label Text property contains the
same URL as the site you named in the program code. (It is not necessary that these
two items match.) You can enter any text you like in the link label. You can also use
the Image property for a link label to specify a picture to display in the background
of the link label. The following figure shows what the Microsoft Press Web page looks
like (in English) when the WebLink program displays it using Internet Explorer.

& Microsaft Press Books Overiew - Micrasoft Computer Books - Windows Intmet Explorer

[E=RE=E

b

File Edit View Favorites Tools Help

D httpisrwmmmmicrosoft.com/learing/bocks/deFault mspx

e [Microsaft Press Baoks Overview—Microsoft Corn... [|

- \ ‘7| % | [Microsoft Learning 2~

i~ B v & v [Page = G Tools » @ &

Microsoft | Learning

Quick Links = | Home | Worldwide -

Search Microsoft.com for:

Learning Home |
Learning Manager

Learning & Reference technologies, and programs.

Microsoft Press Books

Microsoft Training 3 ‘
13 ‘
Skills Assessments |

|

Certification

Microsoft Certifications »

Exams >

Information For

IT Professionals |
Developers

Business Managers
Educators

Beginnars. |
i |

Community

Microsoft Press Books Overview

Find books from Microsoft Press that will enable you to get the most from Microsoft taals,

View New and Upcoming Titles

Get the latest information about new titles from Microsoft Press
befare they are officially released, and catch up on titles that have
been released in the last few months.

Hame & Ofice Users Books About Microsoft Products and Technologies

Check out Microsoft Press books that focus on technologies such as Microsoft .NET. Read the
Iatest information about products including Microsoft Office and Microsoft Windows and learn
sbout Microsoft developer toals—and more.

Books to Help You at Work or Home

i

Pattarns & Practices
Solutions Accelerators |

Are you an IT professional or a developer? Do you run a small business? Are you an educator?
Are you looking for information that can help you use Microsoft products at home or in the
office? Find baoks written specifically to meet your needs.

D Internet | Protected Mode: On 0% -

Chapter 3 Working with Toolbox Controls 95

3. Display the form again. (Click the Web Link Test form icon on the Windows taskbar if
the form isn't visible.)

Notice that the link now appears in a dimmed style. Like a standard Web link, your link
label communicates that it's been used (but is still active) by the color and intensity that

it appears in.

4. Click the Close button on the form to quit the test utility.

You're finished writing code in this chapter, and you're gaining valuable experience with
some of the Toolbox controls available for creating Windows Forms applications. Let's

keep going!

To

Create a text box
Create a button
Change a property at

run time

Create a radio button

Create a check box
Create a list box

Create a drop-down
list box

Add items to a list box

Use a comment in
code

Display a Web page

Chapter 3 Quick Reference

Do this

Click the TextBox control, and draw the box.

Click the Button control, and draw the button.

Change the value of the property by using program code. For example:
Labell.Text = "Hello!"

Use the RadioButton control. To create multiple radio buttons, place more
than one button object inside a box that you create by using the GroupBox
control.

Click the CheckBox control, and draw a check box.
Click the ListBox control, and draw a list box.

Click the ComboBox control, and draw a drop-down list box.

Include statements with the Add method in the FormI_Load event procedure
of your program. For example:

ListBox1l.Items.Add("Printer™)

Type a single quotation mark (') in the Code Editor, and then type a descrip-
tive comment that will be ignored by the compiler. For example:

' Use the Process.Start method to start IE

Create a link to the Web page by using the LinkLabel control, and then open
the link in a browser by using the Process.Start method in program code.

Chapter 4
Working with Menus, Toolbars, and
Dialog Boxes

After completing this chapter, you will be able to:
B Add menus to your programs by using the MenuStrip control.
B Process menu and toolbar selections by using event procedures and the Code Editor.
B Add toolbars and buttons by using the ToolStrip control.
m Use the OpenFileDialog and ColorDialog controls to create standard dialog boxes.
B Add access keys and shortcut keys to menus.

In Chapter 3, “Working with Toolbox Controls,” you used several Microsoft Visual Studio 2008
controls to gather input from the user while he or she used a program. In this chapter, you'll
learn how to present choices to the user by creating professional-looking menus, toolbars,
and dialog boxes.

A menu is located on the menu bar and contains a list of related commands; a toolbar con-
tains buttons and other tools that perform useful work in a program. Most menu and toolbar
commands are executed immediately after they're clicked; for example, when the user clicks
the Copy command on the Edit menu, information is copied to the Clipboard immediately. If a
menu command is followed by an ellipsis (...), however, clicking the command displays a dialog
box requesting more information before the command is carried out, and many toolbar but-
tons also display dialog boxes.

In this chapter, you'll learn how to use the MenuStrip and ToolStrip controls to add a profes-
sional look to your application’s user interface. You'll also learn how to process menu, toolbar,
and dialog box commands.

97

98 Part| Getting Started with Microsoft Visual Basic 2008

Adding Menus by Using the MenuStrip Control

The MenuStrip control is a tool that adds menus to your programs, which you can customize
with property settings in the Properties window. With MenuStrip, you can add new menus,
modify and reorder existing menus, and delete old menus. You can also create a standard
menu configuration automatically, and you can enhance your menus with special effects,
such as access keys, check marks, and keyboard shortcuts. The menus look perfect—just like
a professional Microsoft Windows application—but MenuStrip creates only the visible part of
your menus and commands. You still need to write event procedures that process the menu
selections and make the commands perform useful work. In the following exercise, you'll take
your first steps with this process by using the MenuStrip control to create a Clock menu con-
taining commands that display the current date and time.

Create a menu

1. Start Visual Studio.
2. On the File menu, click New Project.
The New Project dialog box opens.
3. Create a new Windows Forms Application project named MyMenu.

4. Click the MenuStrip control on the Menus & Toolbars tab of the Toolbox, and then draw
a menu control on your form.

Don't worry about the location—Visual Studio will move the control and resize it
automatically. Your form looks like the one shown here:

,::“f Forml =x =] |%l

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 29

The menu strip object doesn't appear on your form, but below it. That's different from
Microsoft Visual Basic 6, which in one way or another displays all objects on the form
itself—even those that don't have a visual representation when the program ran, such
as the Timer control. But in Visual Studio, non-visible objects, such as menus and timers,
are displayed in the IDE in a separate pane named the component tray, and you can
select them, set their properties, or delete them from this pane.

In addition to the menu strip object in the component tray, Visual Studio displays a
visual representation of the menu you created at the top of the form. The Type Here
tag encourages you to click the tag and enter the title of your menu. After you enter the
first menu title, you can enter submenu titles and other menu names by pressing

the arrow keys and typing additional names. Best of all, you can come back to this
in-line Menu Designer later and edit what you've done or add additional menu items—
the menu strip object is fully customizable and with it you can create an exciting menu-
driven user interface like the ones you've seen in the best Windows applications.

Click the Type Here tag, type Clock, and then press Enter.

The word “Clock” is entered as the name of your first menu, and two additional Type
Here tags appear with which you can create submenu items below the new Clock menu
or additional menu titles. The submenu item is currently selected.

. Type Date to create a Date command for the Clock menu, and then press Enter.

Visual Studio adds the Date command to the menu and selects the next submenu item.
Type Time to create a Time command for the menu, and then press Enter.

You now have a Clock menu with two menu commands, Date and Time. You could
continue to create additional menus or commands, but what you've done is sufficient
for this example program. Your form looks like the one shown here:

a! Forml ===

Clock |
Date
Tirme

[TypeHere]

100 Part| Getting Started with Microsoft Visual Basic 2008
8. Click the form to close the Menu Designer.

The Menu Designer closes, and your form opens in the IDE with a new Clock menu.
You're ready to start customizing the menu now.

Adding Access Keys to Menu Commands

With most applications, you can access and execute menu commands by using the key-
board. For example, in Visual Studio you can open the File menu by pressing the Alt

key and then pressing the F key. Once the File menu is open, you can open a project

by pressing the P key. The key that you press in addition to the Alt key and the key that
you press to execute a command in an open menu are called access keys. You can identify
the access key of a menu item because it's underlined.

Visual Studio makes it easy to provide access key support. To add an access key to a menu
item, activate the Menu Designer, and then type an ampersand (&) before the appropriate
letter in the menu name. When you open the menu at run time (when the program is run-
ning), your program automatically supports the access key.

Menu Conventions

By convention, each menu title and menu command in a Windows application has an
initial capital letter. File and Edit are often the first two menu names on the menu bar,
and Help is usually the last. Other common menu names are View, Format, and Window.
No matter what menus and commands you use in your applications, take care to be
clear and consistent with them. Menus and commands should be easy to use and should
have as much in common as possible with those in other Windows-based applications.
As you create menu items, use the following guidelines:

B Use short, specific captions consisting of one or two words at most.

B Assign each menu item an access key. Use the first letter of the item if possible,
or the access key that is commonly assigned (such as x for Exit).

B Menu items at the same level must have a unique access key.

B |f a command is used as an on/off toggle, place a check mark to the left of the
item when it's active. You can add a check mark by setting the Checked property
of the menu command to True in the Properties window.

B Place an ellipsis (...) after a menu command that requires the user to enter more
information before the command can be executed. The ellipsis indicates that
you'll open a dialog box if the user selects this item.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes

Note By default, most versions of Windows don't display the underline for access keys in a pro-
gram until you press the Alt key for the first time. In Windows 2000, you can turn off this option
(making the underline visible at all times) by clicking the Effects tab of the Display control panel.
In Windows XP and Windows Server 2003, you can turn off this option by using the Effects but-
ton on the Appearance tab of the Display Properties control panel. In Windows Vista, you can

101

turn off this option by clicking the Appearance And Personalization option in Control Panel,
clicking Ease Of Access Center, clicking Make The Keyboard Easier To Use, and then selecting
Underline Keyboard Shortcuts And Access Keys.

Try adding access keys to the Clock menu now.

Add access keys

1.

Click the Clock menu name on the form, pause a moment, and then click it again.

The menu name is highlighted, and a blinking I-beam (text-editing cursor) appears at the
end of the selection. With the I-beam, you can edit your menu name or add the amper-
sand character (&) for an access key. (If you double-clicked the menu name, the Code Editor
might have opened. If that happened, close the Code Editor and repeat step 1.)

Press the Left Arrow key five times to move the I-beam to just before the Clock
menu name.

The I-beam blinks before the letter C in Clock.
Type & to define the letter C as the access key for the Clock menu.
An ampersand appears in the text box in front of the word Clock.

Click the Date command in the menu list, and then click Date a second time to display
the I-beam.

. Type & before the letter D.

The letter D is now defined as the access key for the Date command.

Click the Time command in the menu list, and then click the command a second time
to display the I-beam.

Type & before the letter T.

The letter T is now defined as the access key for the Time command.

102 Part| Getting Started with Microsoft Visual Basic 2008
8. Press Enter.

Pressing Enter locks in your text-editing changes. Your form looks this:

a2 Farml =n =R
Clock |
Date

Now you'll practice using the Menu Designer to switch the order of the Date and Time
commands on the Clock menu. Changing the order of menu items is an important skill
because at times you'll think of a better way to define your menus.

Change the order of menu items

1. Click the Clock menu on the form to display its menu items.

To change the order of a menu item, simply drag the item to a new location on the
menu. Try it now.

2. Drag the Time menu on top of the Date menu, and then release the mouse button.

Dragging one menu item on top of another menu item means that you want to place
the first menu item ahead of the second menu item on the menu. As quickly as that,
Visual Studio moved the Time menu item ahead of the Date item.

You've finished creating the user interface for the Clock menu. Now you'll use the menu
event procedures to process the user's menu selections in the program.

Note To delete a menu item from a menu, click the unwanted item in the menu list, and then
press the Delete key. (If you try this now, remember that Visual Studio also has an Undo com-
mand, located on both the Edit menu and the Standard toolbar, so you can reverse the effects
of the deletion.)

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 103
Processing Menu Choices

After menus and commands are configured by using the menu strip object, they also
become new objects in your program. To make the menu objects do meaningful work,
you need to write event procedures for them. Menu event procedures typically contain
program statements that display or process information on the user interface form and
modify one or more menu properties. If more information is needed from the user to
process the selected command, you can write your event procedure so that it displays
a dialog box or one of the input controls you used in Chapter 3.

In the following exercise, you'll add a label object to your form to display the output of the
Time and Date commands on the Clock menu.

Add a label object to the form
1. Click the Label control in the Toolbox.

2. Create alabel in the middle of the form.

The label object appears on the form and bears the name Labell in the program code.

3. Set the following properties for the label:

Object Property Setting
Labell AutoSize False
BorderStyle FixedSingle
Font Microsoft Sans Serif, Bold, 14-point
Text (empty)
TextAlign MiddleCenter

4. Resize the label object so that it is larger (it will be holding clock and date values), and
position it in the center of the form. Your form should look similar to the following:

- Forml =)
Clock

104 Part |

Getting Started with Microsoft Visual Basic 2008

Now you'll add program statements to the Time and Date event procedures to process the
menu commands.

Note In the following exercises, you'll enter program code to process menu choices. It's OK if
you're still a bit hazy on what program code does and how you use it—you'll learn much more
about program statements in Chapters 5 through 7.

Edit the menu event procedures

1. Click the Clock menu on the form to display its commands.

2. Double-click the Time command in the menu to open an event procedure for the

command in the Code Editor.

The TimeToolStripMenultem_Click event procedure appears in the Code Editor. The
name TimeToolStripMenultem_Click includes the name Time that you gave this menu
command. The words ToolStripMenultem indicate that in its underlying technology,
the MenuStrip control is related to the ToolStrip control. (We'll see further examples
of that later in this chapter.) The _Click syntax means that this is the event procedure
that runs when a user clicks the menu item.

We'll keep this menu name for now, but if you wanted to create your own internal
names for menu objects, you could select the object, open the Properties window,
and change the Name property. Although | won't bother with that extra step in this
chapter, later in the book you'll practice renaming objects in your program to con-
form more readily to professional programming practices.

. Type the following program statement:

Labell.Text = TimeString

This program statement displays the current time (from the system clock) in the Text
property of the Labell object, replacing the previous Labell text (if any). TimeString
is a property that contains the current time formatted for display or printing. You can
use TimeString at any time in your programs to display the time accurately down to
the second. (TimeString is essentially a replacement for the older Visual Basic TIME$
statement.)

Note The Visual Basic TimeString property returns the current system time. You can set
the system time by using the Clock, Language, and Region category in the Windows Vista
Control Panel.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 105

. Press Enter.

Visual Basic interprets the line and adjusts capitalization and spacing, if necessary.
(Visual Basic checks each line for syntax errors as you enter it.)

Tip You can enter a line by pressing Enter or Esc.

. Click the View Designer button in Solution Explorer, and then double-click the Date

command on the Clock menu.

The DateToolStripMenultem_Click event procedure appears in the Code Editor. This event
procedure is executed when the user clicks the Date command on the Clock menu.

. Type the following program statement:

Labell.Text = DateString

This program statement displays the current date (from the system clock) in the Text
property of the Labell object, replacing the previous Labell text. The DateString prop-
erty is also available for general use in your programs. Assign DateString to the Text
property of an object whenever you want to display the current date on a form.

Note The Visual Basic DateString property returns the current system date. You can set

the system date by using the Clock, Language, and Region category in the Windows Vista
Control Panel.

Press Enter to enter the line.

Your screen looks similar to this:

FormLvb*| Farmluvb [Design]* | Start Page

S TimeToolStriphenultern - ¥ Click -
B Public Class Formil —1
=

End Zub

= Frivate Zub DateToolZtripMenultem Click(EyVal sender As System.Ch
| Lakell.Text = Dateltring

= Frivate Zub TimeToolZ3tripMenultem Click(EyVal sender iz System.Ch
‘ Labell.Text = TimeString

I End Zub

I—Enci Class

106 Part| Getting Started with Microsoft Visual Basic 2008

You've finished entering the menu demonstration program. Now you'll save your
changes to the project and prepare to run it.

8. Click the Save All button on the Standard toolbar, and then specify the c:\vb08sbs\chap04
folder as the location.

Run the Menu program

Q Tip The complete Menu program is located in the c:\vb08sbs\chap04\menu folder.

1. Click the Start Debugging button on the Standard toolbar.
The Menu program runs in the IDE.

2. Click the Clock menu on the menu bar.
The Clock menu appears.

3. Click the Time command.

The current system time appears in the label box, as shown here:

o5 Forml =] =)
Clock

11:26:42

Now you'll try displaying the current date by using the access keys on the menu.
4. Press and release the Alt key, and then press the letter C.
The Clock menu opens and the first item on it is highlighted.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 107
5. Press D to display the current date.
The current date appears in the label box.
6. Click the Close button on the program’s title bar to stop the program.

Congratulations! You've created a working program that makes use of menus and access
keys. In the next exercise, you'll learn how to use toolbars.

System Clock Properties and Functions

You can use various properties and functions to retrieve chronological values from the
system clock. You can use these values to create custom calendars, clocks, and alarms

in your programs. The following table lists the most useful system clock functions. For
more information, check the Visual Studio online Help.

Property or function Description

TimeString This property sets or returns the current time from the system
clock.

DateString This property sets or returns the current date from the system
clock.

Now This property returns an encoded value representing the cur-

rent date and time. This property is most useful as an argu-
ment for other system clock functions.

Hour (date) This function extracts the hour portion of the specified date/
time value (0 through 23).

Minute (date) This function extracts the minute portion of the specified
date/time value (0 through 59).

Second (date) This function extracts the second portion of the specified
date/time value (0 through 59).

Month (date) This function extracts a whole number representing the
month (1 through 12).

Year (date) This function extracts the year portion of the specified date/
time value.

Weekday (date) This function extracts a whole number representing the day of

the week (1 is Sunday, 2 is Monday, and so on).

108 Part| Getting Started with Microsoft Visual Basic 2008

Adding Toolbars with the ToolStrip Control

Parallel to the MenuStrip control, you can use the Visual Studio ToolStrip control to quickly
add toolbars to your program’s user interface. The ToolStrip control is placed on a Visual
Basic form but resides in the component tray in the IDE, just like the MenuStrip control.
You can also add a variety of features to your toolbars, including labels, combo boxes,
text boxes, and split buttons. Toolbars look especially exciting when you add them, but
remember that as with menu commands, you must write an event procedure for each
button that you want to use in your program. Still, compared with earlier versions of
Visual Basic, it is amazing how much toolbar programming and configuring the IDE

does for you. Practice creating a toolbar now.

Create a toolbar

1. Click the ToolStrip control on the Menus & Toolbars tab of the Toolbox, and then draw
a toolbar control on your form.

Don't worry about the location—Visual Studio will create a toolbar on your form
automatically and extend it across the window. The tool strip object itself appears
below the form in the component tray. On the form, the default toolbar contains
one button. Now you'll use a special shortcut feature to populate the toolbar
automatically.

2. Click the tiny shortcut arrow in the upper-right corner of the new toolbar.

The shortcut arrow points to the right and looks similar to the shortcut arrow we
saw in the PictureBox control in Chapter 2, “"Writing Your First Program.” This short-
cut arrow is called a smart tag. When you click the arrow, a ToolStrip Tasks window
opens that includes a few of the most common toolbar tasks and properties. You
can configure the toolbar quickly with these commands.

3. Click Insert Standard Items.

Visual Studio adds a collection of standard toolbar buttons to the toolbar, including
New, Open, Save, Print, Cut, Copy, Paste, and Help. Your form looks similar to the
illustration on the next page.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 109

[E= o)

B4

¥ G @ @[T

= MenuStripl

It is not necessary for you to start with a full toolbar of buttons as | have done here—
I'm merely demonstrating one of the useful "automatic” features of Visual Studio 2008.
You could also create the buttons on your toolbar one by one using the ToolStrip edit-
ing commands, as I'll demonstrate shortly. But for many applications, clicking Insert
Standard Items is a time-saving feature. Remember, however, that although these tool-
bar buttons look professional, they are not functional yet. They need event procedures
to make them work.

4. Click the Add ToolStripButton arrow on the right side of the new toolbar, then click the
Button item.

Add ToolStripButton adds additional items to your toolbar, such as buttons, labels,
split buttons, text boxes, combo boxes, and other useful interface elements. You've
now created a custom toolbar button; by default it contains a picture of a mountain
and a sun.

5. Widen the form window to ensure that you can see all of the tool strip items.
6. Right-click the new button, point to DisplayStyle, and click ImageAndText.

Your new button displays both text and a graphical image on the toolbar. Visual
Studio names your new button ToolStripButtonl in the program, and this name
appears by default on the toolbar. If necessary, widen the form window to see the
new button, because it contains the default text value ToolStripButtonl.

110 Part |
7.
8.

10.
11.

Getting Started with Microsoft Visual Basic 2008
Select the ToolStripButtonl object.

Change the ToolStripButtonl object’s Text property to Color, which is the name of your
button on the form, and then press Enter.

The Color button appears on the toolbar. You'll use this button later in the program to
change the color of text on the form. Now insert a custom bitmap for your button.

Right-click the Color button, and then click the Set Image command.
Click Local Resource (if it is not already selected), and then click the Import button.

Browse to the c:\vb08sbs\chap04 folder, click the ColorButton bitmap file that | created
for you, click Open, and then click OK.

Visual Studio loads the pink, blue, and yellow paint icon into the Color button, as
shown in the following illustration:

a5 Forml = |[&][82
Clock

DEHS 4 2@ @]

Your new button is complete, and you have learned how to add your own buttons to the
toolbar, in addition to the default items supplied by Visual Studio. Now you'll learn how to
delete and rearrange toolbar buttons.

Move and delete toolbar buttons

1.

Drag the new Color button to the left side of the toolbar.
Visual Studio lets you rearrange your toolbar buttons by using simple drag movements.
Right-click the second button in the toolbar (New), then click the Delete command.

The New button is removed from the toolbar. With the Delete command, you can de-
lete unwanted buttons, which makes it easy to customize the standard toolbar buttons
provided by the ToolStrip control.

Delete the Save and Print buttons, but be sure to keep the Color and Open buttons.

Now you'll learn to use dialog box controls and connect them to toolbar buttons.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 111

Using Dialog Box Controls

Visual Studio contains eight standard dialog box controls on the Dialogs and Printing tabs
of the Toolbox. These dialog boxes are ready-made, so you don't need to create your own
custom dialog boxes for the most common tasks in Windows applications, such as opening,
saving, and printing files. In many cases, you'll still need to write the event procedure code
that connects these dialog boxes to your program, but the user interfaces are built for you
and conform to the standards for common use among Windows applications.

The eight standard dialog box controls available to you are listed in the following table. With
a few important exceptions, they're similar to the objects provided by the CommonDialog
control in Visual Basic 6. The PrintPreviewControl control isn't listed here, but you'll find it
useful if you use the PrintPreviewDialog control.

Control name Purpose

OpenfFileDialog Gets the drive, folder name, and file name for an existing file

SaveFileDialog Gets the drive, folder name, and file name for a new file

FontDialog Lets the user choose a new font type and style

ColorDialog Lets the user select a color from a palette

FolderBrowserDialog Lets the user navigate through a computer’s folder structure and select a
folder

PrintDialog Lets the user set printing options

PrintPreviewDialog Displays a print preview dialog box like the Microsoft Word program does

PageSetupDialog Lets the user control page setup options, such as margins, paper size, and
layout

In the following exercises, you'll practice using the OpenFileDialog and ColorDialog con-
trols. The OpenFileDialog control lets your program open bitmap files, and the ColorDialog
control enables your program to change the color of the clock output. You'll connect these
dialog boxes to the toolbar that you just created, although you could just as easily connect
them to menu commands.

Add OpenfileDialog and ColorDialog controls

1. Click the OpenfFileDialog control on the Dialogs tab of the Toolbox, and then click
the form.

An open file dialog box object appears in the component tray.

2. Click the ColorDialog control on the Dialogs tab of the Toolbox, and then click the
form again.

112

Part | Getting Started with Microsoft Visual Basic 2008

The component tray now looks like this:

o

= MenuStripl 25 ToolStripl ﬁOpenFileDialogl '_'—TICUIDrDialogl

Just like the menu strip and tool strip objects, the open file dialog box and color dialog box
objects appear in the component tray, and they can be customized with property settings.

Now you'll create a picture box object by using the PictureBox control. As you've seen, the
picture box object displays artwork on a form. This time, you'll display artwork in the picture
box by using the open file dialog box object.

Add a picture box object

1. Click the PictureBox control in the Toolbox.
2. Draw a picture box object on the form, below the label.

3. Use the shortcut arrow in the picture box object to set the SizeMode property of the
picture box to Stretchlmage.

Now you'll create event procedures for the Color and Open buttons on the toolbar.

Event Procedures That Manage Common Dialog Boxes

After you create a dialog box object, you can display the dialog box in a program by doing
the following:

B Type the dialog box name with the ShowDialog method in an event procedure associated
with a toolbar button or menu command.

B [f necessary, set one or more dialog box properties by using program code before
opening the dialog box.

B Use program code to respond to the user’s dialog box selections after the dialog box
has been manipulated and closed.

In the following exercise, you'll enter the program code for the OpenToolStripButton_Click
event procedure, the routine that executes when the Open command is clicked. You'll set
the Filter property in the OpenFileDialogl object to define the file type in the Open com-
mon dialog box. (You'll specify Windows bitmaps.) Then you'll use the ShowDialog method
to display the Open dialog box. After the user has selected a file and closed this dialog box,
you'll display the file he or she selected in a picture box by setting the Image property of
the picture box object to the file name the user selected.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 113
Edit the Open button event procedure

1. Double-click the Open button on your form’s toolbar.
The OpenToolStripButton_Click event procedure appears in the Code Editor.

2. Type the following program statements in the event procedure. Be sure to type each
line exactly as it's printed here, and press the Enter key after the last line.

OpenFileDialogl.Filter = “Bitmaps (*.bmp)|*.bmp”
If OpenFileDialogl.ShowDialog() = DialogResult.OK Then
PictureBoxl.Image = System.Drawing.Image.FromFile
(OpenFileDialogl.FileName)
End If

The first three statements in the event procedure refer to three different properties of
the open file dialog box object. The first statement uses the Filter property to define

a list of valid files. (In this case, the list has only one item: *.bmp.) This is important for
the Open dialog box because a picture box object can display a number of file types,
including:

B Bitmaps (bmp files)

® Windows metafiles (emf and .wmf files)

B |cons (.ico files)

B Joint Photographic Experts Group format (jpg and .jpeg files)
B Portable Network Graphics format (.png files)

B Graphics Interchange Format (.gif files)

To add additional items to the Filter list, you can type a pipe symbol (|) between items.
For example, this program statement

OpenFileDialogl.Filter = “Bitmaps (*.bmp)|*.bmp|Metafiles (¥*.wmf)|*.wmf”
allows both bitmaps and Windows metafiles to be chosen in the Open dialog box.

The second statement in the event procedure displays the Open dialog box in the
program. ShowDialog is similar to the Show method in Visual Basic 6, but it can

be used with any Windows form. The ShowDialog method returns a result named
DialogResult, which indicates the button on the dialog box that the user clicked. To
determine whether the user clicked the Open button, an If..Then decision structure

is used to check whether the returned result equals DialogResult.OK. If it does, a valid
.bmp file path should be stored in the FileName property of the open file dialog box
object. (You'll learn more about the syntax of /f..Then decision structures in Chapter 6,
“Using Decision Structures.”)

114

Part |

Getting Started with Microsoft Visual Basic 2008

The third statement uses the file name selected in the dialog box by the user. When
the user selects a drive, folder, and file name and then clicks Open, the complete path
is passed to the program through the OpenfFileDialogl1.FileName property. The System.
Drawing.Image.FromFile method, which loads electronic artwork, is then used to copy
the specified Windows bitmap into the picture box object. (I broke this statement with
the line continuation character (_) because it was rather long.)

Now you'll write an event procedure for the Color button that you added to the toolbar.

Write the Color button event procedure

1.

3.

Display the form again, and then double-click the Color button on the toolbar that you
added to the form.

An event procedure named ToolStripButton1_Click appears in the Code Editor. The
object name includes Buttonl because it was the first non-standard button that you
added to the toolbar. (You can change the name of this object to something more in-
tuitive, such as ColorToolStripButton, by clicking the button on the form and changing
the Name property in the Properties window.)

. Type the following program statements in the event procedure:

ColorDialogl.ShowDialog()

Labell.ForeColor = ColorDialogl.Color

The first program statement uses the ShowDialog method to open the color dialog
box. As you learned earlier in this chapter, ShowDialog is the method you use to open
any form as a dialog box, including a form created by one of the standard dialog box
controls that Visual Studio provides. The second statement in the event procedure
assigns the color that the user selected in the dialog box to the ForeColor property of
the Labell object. You might remember Labell from earlier in this chapter—it's the
label box you used to display the current time and date on the form. You'll use the
color returned from the color dialog box to set the color of the text in the label.

Note that the Color dialog box can be used to set the color of any user interface
element that supports color. Other possibilities include the background color of the
form, the colors of shapes on the form, and the foreground and background colors
of objects.

Click the Save All button on the Standard toolbar to save your changes.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 115

Controlling Color Choices by Setting Color Dialog Box Properties

If you want to further customize the color dialog box, you can control what color
choices the dialog box presents to the user when the dialog box opens. You can adjust

these color settings by using the Properties window, or by setting properties by using

program code before you display the dialog box with the ShowDialog method. The

following table describes the most useful properties of the ColorDialog control. Each

property should be set with a value of True to enable the option or False to disable

the option.
Property Meaning
AllowFullOpen Set to True to enable the Define Custom Colors button in the dialog box.
AnyColor Set to True if the user can select any color shown in the dialog box.
FullOpen Set to True if you want to display the Custom Colors area when the dialog

box first opens.

ShowHelp Set to True if you want to enable the Help button in the dialog box.
SolidColorOnly Set to True if you want the user to select only solid colors (dithered colors—

those that are made up of pixels of different colors—are disabled).

Now you'll run the Menu program and experiment with the menus and dialog boxes you've
created.

Run the Menu program

O

Tip The complete Menu program is located in the c:\vb08sbs\chap04\menu folder.

1. Click the Start Debugging button on the Standard toolbar.

The program runs, and the Clock menu and the toolbar appear at the top of the screen.
On the form’s toolbar, click Open.

The Open dialog box opens. It looks great, doesn't it? Notice the Bitmaps (*.bmp) entry
in the dialog box. You defined this entry with the statement

OpenFileDialogl.Filter = “Bitmaps (*.bmp)|*.bmp”

in the OpenToolStripButton_Click event procedure. The first part of the text in quotes—
Bitmaps (*.bmp)—specifies which items are listed in the Files Of Type box. The second
part—*bmp—specifies the file name extension of the files that are to be listed in the
dialog box.

116 Part| Getting Started with Microsoft Visual Basic 2008

3. Open a folder on your system that contains bitmap images. I'm using c:\program files\
microsoft office\clipart\pub60cor\, a folder containing Microsoft Publisher files.

=

o Cipen .
OQ [|« cLIPART » PUBSOCOR - | 4 || search ol

Organize = o2 Views ~ I

it ks Mame Date modified Type Size ot
Bl Desktop H E ‘
& Recent Places E | | - | | I3
% Computer J0101856.60 01018578, JO101858.B.. J0101859.B.. JO101860.E..

P

fEi Documents

_'E Pictures I ' I I - I 1
BN o B

[Recently Changed JO101861B.. JO101962.B.. J0101863E.. JOL01864B.. JOL01865.B..

@ Searches
Public ;
' 7] 27 '
J0101866.6.., J0101867.B... PHOO780U.. PHO1035U., PHO12350..
Falders »~ -
File name: 0101856 BMP ~ | Bitmaps [".bmp) -
[Open iv] [Cancel]

4. Select one of the bitmap files, and then click the Open button.

A picture of the bitmap appears in the picture box. (I've selected a clock image.) Your
form looks similar to this:

& Form1 =8 o)

Clock
[@colr 5| % B2 @ | @

Now you'll practice using the Clock menu.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 117
5. On the Clock menu, click the Time command.
The current time appears in the label box.
6. Click the Color button on the toolbar.

The Color dialog box opens, as shown here:

Colar
Basic colors:

il N
| Iieieioed § § |
A NN NN
HE NN NN
HEEEENNN
EEENTE

LCustom colors:
R
I

| Define Custom Colors »»]

o)

The Color dialog box contains elements that you can use to change the color of the
clock text in your program. The current color setting, black, is selected.

7. Click the blue box, and then click OK.

The Color dialog box closes, and the color of the text in the clock label changes to blue.
(Not visible in this book, alas, but you'll see it on screen.)

o Farml EI

Clock
Color |__"f & 52 @ @.

14:17:17

/g
Sivey
9 B

: .3"{6.5"

118 Part| Getting Started with Microsoft Visual Basic 2008
8. On the Clock menu, click the Date command.

The current date is displayed in blue type. Now that the text color has been set in the
label, it remains blue until the color is changed again or the program closes.

9. Close the program.
The application terminates, and the Visual Studio IDE appears.

That's it! You've learned several important commands and techniques for creating menus,
toolbars, and dialog boxes in your programs. After you learn more about program code,
you'll be able to put these skills to work in your own programs.

Adding Nonstandard Dialog Boxes to Programs

What if you need to add a dialog box to your program that isn't provided by one of
the eight dialog box controls in Visual Studio? No problem—but you'll need to do a
little extra design work. As you'll learn in future chapters, a Visual Basic program can
use more than one form to receive and display information. To create nonstandard
dialog boxes, you need to add new forms to your program, add input and output
objects, and process the dialog box clicks in your program code. (These techniques
will be discussed in Chapter 14, “Managing Windows Forms and Controls at Run
Time.") In Chapter 5, "Visual Basic Variables and Formulas, and the .NET Framework,”
you'll learn how to use two handy dialog boxes that are specifically designed for
receiving text input (InputBox) and displaying text output (MsgBox). These dialog
boxes help bridge the gap between the dialog box controls and the dialog boxes
that you need to create on your own.

One Step Further: Assigning Shortcut Keys to Menus

The MenuStrip control lets you assign shortcut keys to your menus. Shortcut keys are key
combinations that a user can press to activate a command without using the menu bar. For
example, on a typical Edit menu in a Windows application, such as Microsoft Word, you
can copy selected text to the Clipboard by pressing Ctrl+C. With the MenuStrip control’s
ShortcutKeys property, you can customize this setting. Try assigning two shortcut keys to
the Clock menu in the Menu program now.

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 119

Assign shortcut keys to the Clock menu

1. Make sure that your program has stopped running and is in design mode.

You can modify a program only when it isn't running. (For an exception to this rule, see
Chapter 8: "Debugging Visual Basic Programs.”)

2. Click the Clock menu, and then click the Time command to highlight it.

Before you set the shortcut key for a menu command, you must select it. You assign
a shortcut key by setting the ShortcutKeys property for the command by using the
Properties window. (In Visual Basic .NET 2002 and 2003, this property was named
Shortcut.) The menu strip object provides an easy way for you to do this.

3. Open the Properties window, click the ShortcutKeys property, and then click the arrow
in the second column.

A pop-up menu appears that helps you assign the shortcut key.
4. Select the Ctrl check box, click the Key list box, and select the letter “T" in the list.

The Properties window looks like this:

Properties]|
TimeToolStripMenultem Systern\indows.Farms To -
RightTaoleft Mo &

RightToleftdutokdirrorlma False
ShortcutkeyDisplayString

ShorteutKe: Ctrl+T [~
ShowShal padifiers:

Size
Tag [Ctrl [shift [F] Alt
Text Key:
Textdlig
TextDirec i v|| Heset |
TextlmageRelation ImageBeforeText
ToolTipText |E
Wisible True

ShortcutKeys

The shortcut key associated with the menu item.

Q Tip Visual Basic normally displays the shortcut key combination in the menu when you

run the program, to give users a hint about which keys to press. To hide shortcut key
combinations from the user (if you're running out of space) set the ShowShortcutKeys
property to False. The shortcut key still works, but users won't see a visual reminder for
it. You can also set what will be displayed within the program as a shortcut key by setting
the ShortcutKeyDisplayString property.

120 Part |
5.

10.

11.

Getting Started with Microsoft Visual Basic 2008

Click the Date command, and then change its ShortcutKeys property setting to Ctrl+D.
Now you'll run the program and try the shortcut keys.

Click the form to close the Clock menu.

Click the Start Debugging button on the Standard toolbar.

Press Ctrl+D to run the Date command.

The current date appears in the program.

Press Ctrl+T to run the Time command.

The current time appears in the program.

Click the Clock menu.

The shortcut keys are listed beside the Time and Date commands, as shown in the
following illustration. Visual Basic adds these key combinations when you define the
shortcuts by using the ShortcutKeys property.

) Farrnl [===

[Clock |
Time Ctrl+T B | @
Date Ctrl+D

14:33:46

Close the program.

The Menu program closes, and the development environment appears.

You're ready to move deeper into writing programs now, in the part of the book | call
“Programming Fundamentals.”

To

Create a menu item

Add an access key
to a menu item

Assign a shortcut key
to a menu item

Change the order of
menu items

Add a toolbar to your
program

Use a standard dialog
box in your program

Display an Open
dialog box

Display a Color
dialog box

Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 121

Chapter 4 Quick Reference

Do this

Click the MenuStrip control, and draw a menu on your form. Click the Type
Here tag on your form, and type the name of the menus and commands
that you want to create.

Click the menu item twice to display the I-beam, and then type an ampersand
(&) followed by the letter you want to use as an access key.

Set the ShortcutKeys property of the menu item by using the Properties
window. A list of common shortcut keys is provided.

Drag the menu item you want to move to a new location.

Click the ToolStrip control, and draw a toolbar on your form. Right-click
buttons to customize them. Double-click buttons and write event proce-
dures to configure them.

Add one of the eight standard dialog box controls to your form, and then
customize it with property settings and program code. Dialog box controls
are located on the Dialogs and Printing Toolbar tabs.

Add the OpenFileDialog control to your form. Display the dialog box with
the ShowDialog method. The FileName property contains the name of the
file selected.

Add the ColorDialog control to your form. Display the dialog box with
the ShowDialog method. The Color property contains the color the user
selected.

Part Il
Programming Fundamentals

Chapter 5, Visual Basic Variables and Formulas, and the .NET Framework. ... 125
Chapter 6, Using Decision Structures.ot iiiiiiiineennnn. 161
Chapter 7, Using Loops and Timersttt 185
Chapter 8, Debugging Visual Basic Programs 213
Chapter 9, Trapping Errors by Using Structured Error Handling............. 231
Chapter 10, Creating Modules and Procedures........................... 253
Chapter 11, Using Arrays to Manage Numeric and StringData 281
Chapter 12, Working with Collections and the System.Collections

Namespace.t e e 303
Chapter 13, Exploring Text Files and String Processing 319

In Part I, “Getting Started with Microsoft Visual Basic 2008,” you learned how to create

the user interface of a Microsoft Visual Basic 2008 program and how to build and run a
program in the Microsoft Visual Studio 2008 development environment. In the nine chap-
ters in Part Il, “Programming Fundamentals,” you'll learn more about Visual Basic program
code—the statements and keywords that form the core of a Visual Basic program. You'll
learn how to manage information within programs and control how your code is executed,
and you'll learn how to use decision structures, loops, timers, arrays, collections, and text
files. You'll also learn how to debug your programs and handle run-time errors if they
occur. After you complete Part II, you'll be ready for more advanced topics, such as
customizing the user interface, database programming, and Web programming.

123

Chapter 5
Visual Basic Variables and Formulas,
and the .NET Framework

After completing this chapter, you will be able to:
B Use variables to store data in your programs.
B Get input by using the InputBox function.
B Display messages by using the MsgBox function.
B Work with different data types.
B Use variables and operators to manipulate data.
B Use methods in the .NET Framework.
B Use arithmetic operators and functions in formulas.

In this chapter, you'll learn how to use variables and constants to store data temporarily in your
program, and how to use the InputBox and MsgBox functions to gather and present informa-
tion by using dialog boxes. You'll also learn how to use functions and formulas to perform
calculations, and how to use arithmetic operators to perform tasks such as multiplication and
string concatenation. Finally, you'll learn how to tap into the powerful classes and methods of
the Microsoft .NET Framework 3.5 to perform mathematical calculations and other useful work.

The Anatomy of a Visual Basic Program Statement

As you learned in Chapter 2, “Writing Your First Program,” a line of code in a Visual Basic
program is called a program statement. A program statement is any combination of Visual
Basic keywords, properties, object names, variables, numbers, special symbols, and other
values that collectively create a valid instruction recognized by the Visual Basic compiler.
A complete program statement can be a simple keyword, such as

End

which halts the execution of a Visual Basic program, or it can be a combination of elements,
such as the following statement, which uses the TimeString property to assign the current
system time to the Text property of the Labell object:

Labell.Text = TimeString

125

126

Part Il Programming Fundamentals

The rules of construction that must be used when you build a programming statement are
called statement syntax. Visual Basic shares many of its syntax rules with earlier versions of
the BASIC programming language and with other language compilers. The trick to writing
good program statements is learning the syntax of the most useful language elements and
then using those elements correctly to process the data in your program. Fortunately, Visual
Basic does a lot of the toughest work for you, so the time you spend writing program code is
relatively short, and you can reuse the results in future programs. The Visual Studio IDE also
points out potential syntax errors and suggests corrections, much like the AutoCorrect fea-
ture of Microsoft Office Word.

In this chapter and the following chapters, you'll learn the most important Visual Basic key-
words and program statements, as well as many of the objects, properties, and methods
provided by Visual Studio controls and the .NET Framework. You'll find that these keywords
and objects complement nicely the programming skills you've already learned and will help
you write powerful programs in the future. The first topics—variables and data types—are
critical features of nearly every program.

Using Variables to Store Information

A variable is a temporary storage location for data in your program. You can use one or
many variables in your code, and they can contain words, numbers, dates, properties,
or other values. By using variables, you can assign a short and easy-to-remember name
to each piece of data you plan to work with. Variables can hold information entered by
the user at run time, the result of a specific calculation, or a piece of data you want to
display on your form. In short, variables are handy containers that you can use to store
and track almost any type of information.

Using variables in a Visual Basic program requires some planning. Before you can use a
variable, you must set aside memory in the computer for the variable’s use. This process is
a little like reserving a seat at a theater or a baseball game. I'll cover the process of making
reservations for, or declaring, a variable in the next section.

Setting Aside Space for Variables: The Dim Statement

Since the release of Microsoft Visual Basic .NET 2003, it has been necessary for Visual

Basic programmers to explicitly declare variables before using them. This was a change
from Visual Basic 6 and earlier versions of Visual Basic, where (under certain circumstances)
you could declare variables implicitly—in other words, simply by using them and without

a Dim statement. The earlier practice was flexible but rather risky—it created the potential
for variable confusion and misspelled variable names, which introduced potential bugs into
the code that might or might not be discovered later.

Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 127

In Visual Basic 2008, a bit of the past has returned in the area of variable declaration. It is
possible once again to declare a variable implicitly. | don't recommend this, however, so |
won't discuss this new feature until you learn the recommended programming practice,
which experienced programmers far and wide will praise you for adopting.

To declare a variable in Visual Basic 2008, type the variable name after the Dim statement.
(Dim stands for dimension.) This declaration reserves room in memory for the variable when
the program runs and lets Visual Basic know what type of data it should expect to see later.
Although this declaration can be done at any place in the program code (as long as the
declaration happens before the variable is used), most programmers declare variables in
one place at the top of their event procedures or code modules.

For example, the following statement creates space for a variable named LastName that will
hold a textual, or string, value:

Dim LastName As String

Note that in addition to identifying the variable by name, I've used the As keyword to give the
variable a particular type, and I've identified the type by using the keyword String. (You'll learn
about other data types later in this chapter.) A string variable contains textual information:
words, letters, symbols—even numbers. | find myself using string variables a lot; they hold
names, places, lines from a poem, the contents of a file, and many other “wordy"” data.

Why do you need to declare variables? Visual Basic wants you to identify the name and the
type of your variables in advance so that the compiler can set aside the memory the program
will need to store and process the information held in the variables. Memory management
might not seem like a big deal to you (after all, modern personal computers have lots of
RAM and gigabytes of free hard disk space), but in some programs, memory can be con-
sumed quickly, and it's a good practice to take memory allocation seriously even as you
take your first steps as a programmer. As you'll soon see, different types of variables have
different space requirements and size limitations.

Note In some earlier versions of Visual Basic, specific variable types (such as String or Integer)
aren't required—information is simply held by using a generic (and memory hungry) data type
called Variant, which can hold data of any size or format. Variants are not supported in Visual
Basic 2008. Although they are handy for beginning programmers, their design makes them slow
and inefficient, and they allow variables to be converted from one type to another too easily—
often causing unexpected results. As you'll learn later, however, you can still store information
in generic containers called Object, which are likewise general-purpose in function but rather
inefficient in size.

128

Part Il Programming Fundamentals

After you declare a variable, you're free to assign information to it in your code by using
the assignment operator (=). For example, the following program statement assigns the last
name “Jefferson” to the LastName variable:

LastName = "Jefferson"

Note that | was careful to assign a textual value to the LastName variable because its data
type is String. | can also assign values with spaces, symbols, or numbers to the variable,
such as

LastName = "1313 Mockingbird Lane"

but the variable is still considered a string value. The number portion could be used in a
mathematical formula only if it were first converted to an integer or a floating-point value
by using one of a handful of conversion functions I'll discuss later in this book.

After the LastName variable is assigned a value, it can be used in place of the name
“Jefferson” in your code. For example, the assignment statement

Labell.Text = LastName

displays “Jefferson” in the label named Labell on your form.

Implicit Variable Declaration

If you really want to declare variables “the old way" in Visual Basic 2008 —that is, without
explicitly declaring them by using the Dim statement—you can place the Option Explicit Off
statement at the very top of your form’s or module’s program code (before any event proce-
dures), and it will turn off the Visual Basic default requirement that variables be declared before
they're used. As | mentioned earlier, | don't recommend this statement as a permanent addi-
tion to your code, but you might find it useful temporarily as you convert older Visual Basic
programs to Visual Studio 2008.

Another possibility is to use the new Option Infer statement, which has been added to Visual
Basic 2008. If Option Infer is set to “On", Visual Basic will deduce or infer the type of a variable
by examining the initial assignment you make. This allows you to declare variables without
specifically identifying the type used, and allowing Visual Basic to make the determination.
For example, the expression

Dim attendance = 100

will declare the variable named attendance as an Integer, because 100 is an integer expression.
In other words, with Option Infer set to “On”, it is the same as typing

Dim attendance As Integer = 100

Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 129

Likewise, the expression

Dim address = "1012 Daisy Lane"

will declare the variable address as type String, because its initial assignment was of type
String. If you set Option Infer to “Off", however, Visual Basic will declare the variable as type
Object—a general (though somewhat bulky and inefficient) container for any type of data.

If you plan to use Option Infer to allow this type of inferred variable declaration (a flexible
approach, but one that could potentially lead to unexpected results), place the following
two statements at the top of your code module (above the Class Form statement):

Option Explicit Off
Option Infer On

Option Explicit Off allows variables to be declared as they are used, and Option Infer On
allows Visual Basic to determine the type automatically. You can also set these options
using the Options command on the Tools menu as discussed in Chapter 1, “Exploring
the Visual Studio Integrated Development Environment.”

Using Variables in a Program

Variables can maintain the same value throughout a program, or they can change values
several times, depending on your needs. The following exercise demonstrates how a variable
named LastName can contain different text values and how the variable can be assigned to
object properties.

Change the value of a variable

1. Start Visual Studio.
2. On the File menu, click Open Project.
The Open Project dialog box opens.
3. Open the Variable Test project in the c:\\vb08sbs\chapO5\variable test folder.

4. If the project’s form isn't visible, click Form1.vb in Solution Explorer, and then click the
View Designer button.

The Variable Test form opens in the Designer. Variable Test is a skeleton program—it
contains a form with labels and buttons for displaying output, but little program code.
(I create these skeleton programs now and then to save you time, although you can
also create the project from scratch.) You'll add code in this exercise.

130 Part Il Programming Fundamentals

The Variable Test form looks like this:

o5 Wariable Test |£||ﬂ|@

| Show ‘ Labell

Label2
‘ Cluit | e

The form contains two labels and two buttons. You'll use variables to display information
in each of the labels.

Note The label objects look like boxes because | set their BorderStyle properties to
Fixed3D.

5. Double-click the Show button.
The Button1_Click event procedure appears in the Code Editor.

6. Type the following program statements to declare and use the LastName variable:
Dim LastName As String

LastName = "Luther"
Labell.Text = LastName

LastName = "Bodenstein von Karlstadt"

Label2.Text = LastName

The program statements are arranged in three groups. The first statement declares
the LastName variable by using the Dim statement and the String type. After you
type this line, Visual Studio places a green jagged line under the LastName variable,
because it has been declared but not used in the program. There is nothing wrong
here—Visual Studio is just reminding you that a new variable has been created and
is waiting to be used.

Tip If