

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Michael Halvorson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Control Number: 2007941088

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, Expression, FrontPage, Halo, IntelliSense, Internet
Explorer, MSDN, MS-DOS, PowerPoint, SQL Server, Visual Basic, Visual C#, Visual C++, Visual
InterDev, Visual Studio, Visual Web Developer, Windows, Windows Server, Windows Vista, and Zoo
Tycoon are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Melissa von Tschudi-Sutton
Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Robert Lyon; Technical Review services provided by Content Master, a member
of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-38546

For Henry

Acknowledgments

I gratefully acknowledge the support and assistance of the following people who helped to

plan, edit, test, produce, and market this book: Susie Bayers, Jennifer Brown, Robert Lyon,

Devon Musgrave, Jaime Odell, Leslie Phillips, Barry Preppernau, Joan Preppernau, Lucinda

Rowley, Ben Ryan, and Melissa von Tschudi-Sutton. I continue to be impressed by the pub-

lishing partnership between Microsoft Press and Online Training Solutions, Inc. (OTSI), the

editorial and production team that helped to publish this book. I am also grateful to the

Microsoft Visual Studio 2008 development team for providing me with beta software to

work with.

During the preparation of this manuscript, my son Felix often worked steadily at a giant

box of Legos located in my writing room, and regularly brought me new creations to

inspect. My son Henry also provided welcome interruptions and useful advice, insisting,

for example, that we deploy a more powerful home network or locate new software for

his beloved Macintosh computer. Thanks for the help, boys.

Table of Contents

Introduction . xvii

What Is Visual Basic 2008? . xvii

Visual Basic .NET Versions .xviii

Upgrading from Microsoft Visual Basic 6.0 .xviii

Finding Your Best Starting Point in This Book. xix

Visual Studio 2008 System Requirements .xxi

Prerelease Software .xxi

Installing and Using the Practice Files . xxii

Installing the Practice Files . xxii

Using the Practice Files .xxiii

Uninstalling the Practice Files . xxvii

Conventions and Features in This Book .xxviii

Conventions .xxviii

Other Features .xxviii

Helpful Support Links .xxix

Visual Studio 2008 Software Support. .xxix

Microsoft Press Web Site .xxix

Support for This Book .xxix

Part I Getting Started with Microsoft Visual Basic 2008

 1 Exploring the Visual Studio Integrated Development
Environment . 3

The Visual Studio Development Environment. 4

Sidebar: Projects and Solutions . 7

The Visual Studio Tools . 8

The Designer. 10

Running a Visual Basic Program . 12

Sidebar: Thinking About Properties . 13
 vii

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents
The Properties Window. 14

Moving and Resizing the Programming Tools . 17

Moving and Resizing Tool Windows. 19

Docking Tool Windows . 20

Hiding Tool Windows . 21

Switching Among Open Files and Tools by Using the IDE Navigator 22

Opening a Web Browser Within Visual Studio . 23

Getting Help . 24

Two Sources for Help: Local Help Files and Online Content. 24

Summary of Help Commands . 29

Customizing IDE Settings to Match Step-by-Step Exercises 29

Setting the IDE for Visual Basic Development . 30

Checking Project and Compiler Settings . 31

One Step Further: Exiting Visual Studio . 34

Chapter 1 Quick Reference. 35

 2 Writing Your First Program . 37

Lucky Seven: Your First Visual Basic Program . 37

Programming Steps . 38

Creating the User Interface . 38

Setting the Properties . 45

Sidebar: Reading Properties in Tables . 50

The Picture Box Properties . 51

Writing the Code . 53

A Look at the Button1_Click Procedure . 58

Running Visual Basic Applications. 60

Sample Projects on Disk . 62

Building an Executable File. 62

Deploying Your Application . 64

One Step Further: Adding to a Program . 65

Chapter 2 Quick Reference. 67

 3 Working with Toolbox Controls . 69

The Basic Use of Controls: The Hello World Program . 69

Using the DateTimePicker Control. 75

The Birthday Program. 75

A Word About Terminology. 80

 Table of Contents ix
Controls for Gathering Input . 82

The Input Controls Demo. 85

Looking at the Input Controls Program Code . 88

One Step Further: Using the LinkLabel Control. 91

Chapter 3 Quick Reference. 95

 4 Working with Menus, Toolbars, and Dialog Boxes 97

Adding Menus by Using the MenuStrip Control . 98

Adding Access Keys to Menu Commands . 100

Sidebar: Menu Conventions . 100

Processing Menu Choices . 103

Sidebar: System Clock Properties and Functions 107

Adding Toolbars with the ToolStrip Control. 108

Using Dialog Box Controls . 111

Event Procedures That Manage Common Dialog Boxes 112

Sidebar: Controlling Color Choices

by Setting Color Dialog Box Properties . 115

Sidebar: Adding Nonstandard Dialog Boxes to Programs 118

One Step Further: Assigning Shortcut Keys to Menus. 118

Chapter 4 Quick Reference. 121

Part II Programming Fundamentals

 5 Visual Basic Variables and Formulas, and
the .NET Framework . 125

The Anatomy of a Visual Basic Program Statement . 125

Using Variables to Store Information . 126

Setting Aside Space for Variables: The Dim Statement 126

Implicit Variable Declaration . 128

Using Variables in a Program . 129

Sidebar: Variable Naming Conventions . 132

Using a Variable to Store Input . 133

Sidebar: What Is a Function? . 135

Using a Variable for Output . 136

Working with Specifi c Data Types . 138

Sidebar: User-Defi ned Data Types . 144

Constants: Variables That Don’t Change . 144

x Table of Contents
Working with Visual Basic Operators . 146

Basic Math: The +, –, *, and / Operators . 147

Sidebar: Shortcut Operators . 150

Using Advanced Operators: \, Mod, ^, and & . 150

Working with Methods in the Microsoft .NET Framework 154

Sidebar: What’s New in Microsoft .NET Framework 3.5? 155

One Step Further: Establishing Order of Precedence . 157

Using Parentheses in a Formula . 158

Chapter 5 Quick Reference. 159

 6 Using Decision Structures . 161

Event-Driven Programming . 162

Sidebar: Events Supported by Visual Basic Objects 163

Using Conditional Expressions . 164

If...Then Decision Structures . 165

Testing Several Conditions in an If...Then Decision Structure 165

Using Logical Operators in Conditional Expressions 170

Short-Circuiting by Using AndAlso and OrElse . 173

Select Case Decision Structures . 175

Using Comparison Operators with a Select Case Structure 176

One Step Further: Detecting Mouse Events . 181

Chapter 6 Quick Reference. 183

 7 Using Loops and Timers. 185

Writing For...Next Loops . 186

Displaying a Counter Variable in a TextBox Control. 187

Creating Complex For...Next Loops. 190

Using a Counter That Has Greater Scope . 193

Sidebar: The Exit For Statement. 195

Writing Do Loops . 196

Avoiding an Endless Loop. 197

Sidebar: Using the Until Keyword in Do Loops . 200

The Timer Control . 200

Creating a Digital Clock by Using a Timer Control . 201

Using a Timer Object to Set a Time Limit . 204

One Step Further: Inserting Code Snippets . 207

Chapter 7 Quick Reference. 211

 Table of Contents xi

8 Debugging Visual Basic Programs . 213

Finding and Correcting Errors . 214

Three Types of Errors . 214

Identifying Logic Errors. 215

Debugging 101: Using Debugging Mode . 216

Tracking Variables by Using a Watch Window . 221

Visualizers: Debugging Tools That Display Data. 223

Using the Immediate and Command Windows . 225

Switching to the Command Window . 227

One Step Further: Removing Breakpoints . 228

Chapter 8 Quick Reference. 229

9 Trapping Errors by Using Structured Error Handling. 231

Processing Errors by Using the Try...Catch Statement . 232

When to Use Error Handlers . 232

Setting the Trap: The Try...Catch Code Block. 233

Path and Disc Drive Errors . 234

Writing a Disc Drive Error Handler . 237

Using the Finally Clause to Perform Cleanup Tasks . 239

More Complex Try...Catch Error Handlers . 241

The Err Object. 241

Sidebar: Raising Your Own Errors . 245

Specifying a Retry Period . 245

Using Nested Try...Catch Blocks. 248

Comparing Error Handlers with Defensive Programming Techniques 248

One Step Further: The Exit Try Statement . 249

Chapter 9 Quick Reference. 250

10 Creating Modules and Procedures . 253

Working with Modules . 254

Creating a Module . 254

Working with Public Variables . 258

Sidebar: Public Variables vs. Form Variables . 262

Creating Procedures . 262

Sidebar: Advantages of General-Purpose Procedures. 263

xii Table of Contents
Writing Function Procedures . 264

Function Syntax . 264

Calling a Function Procedure. 266

Using a Function to Perform a Calculation . 266

Writing Sub Procedures . 270

Sub Procedure Syntax . 270

Calling a Sub Procedure . 271

Using a Sub Procedure to Manage Input. 272

One Step Further: Passing Arguments by Value and by Reference. 277

Chapter 10 Quick Reference. 279

 11 Using Arrays to Manage Numeric and String Data 281

Working with Arrays of Variables . 281

Creating an Array . 282

Declaring a Fixed-Size Array . 283

Setting Aside Memory . 284

Working with Array Elements . 285

Creating a Fixed-Size Array to Hold Temperatures 286

Sidebar: The UBound and LBound Functions . 286

Creating a Dynamic Array . 290

Preserving Array Contents by Using ReDim Preserve . 293

Three-Dimensional Arrays . 294

One Step Further: Processing Large Arrays by Using Methods

in the Array Class . 295

The Array Class . 295

Chapter 11 Quick Reference. 302

 12 Working with Collections and the System.Collections
Namespace . 303

Working with Object Collections. 303

Referencing Objects in a Collection . 304

Writing For Each...Next Loops . 304

Experimenting with Objects in the Controls Collection 305

Using the Name Property in a For Each...Next Loop 308

Creating Your Own Collections . 310

Declaring New Collections . 310

 Table of Contents xiii
One Step Further: VBA Collections . 315

Entering the Word Macro. 316

Chapter 12 Quick Reference. 317

 13 Exploring Text Files and String Processing 319

Displaying Text Files by Using a Text Box Object . 319

Opening a Text File for Input . 320

The FileOpen Function . 320

Using the StreamReader Class and My.Computer.FileSystem

to Open Text Files . 325

The StreamReader Class . 325

The My Namespace . 326

Creating a New Text File on Disk. 328

Processing Text Strings with Program Code . 332

The String Class and Useful Methods and Keywords. 333

Sorting Text. 335

Working with ASCII Codes . 336

Sorting Strings in a Text Box . 337

One Step Further: Examining the Sort Text Program Code 340

Chapter 13 Quick Reference. 343

Part III Designing the User Interface

 14 Managing Windows Forms and Controls at Run Time 347

Adding New Forms to a Program . 347

How Forms Are Used. 348

Working with Multiple Forms . 348

Sidebar: Using the DialogResult Property in the Calling Form. 356

Positioning Forms on the Windows Desktop . 356

Minimizing, Maximizing, and Restoring Windows. 361

Adding Controls to a Form at Run Time . 362

Organizing Controls on a Form . 365

One Step Further: Specifying the Startup Object. 368

Sidebar: Console Applications . 370

Chapter 14 Quick Reference. 370

xiv Table of Contents
 15 Adding Graphics and Animation Effects 373

Adding Artwork by Using the System.Drawing Namespace. 374

Using a Form’s Coordinate System . 374

The System.Drawing.Graphics Class . 375

Using the Form’s Paint Event . 376

Adding Animation to Your Programs . 378

Moving Objects on the Form. 379

The Location Property . 380

Creating Animation by Using a Timer Object . 380

Expanding and Shrinking Objects While a Program Is Running 385

One Step Further: Changing Form Transparency . 387

Chapter 15 Quick Reference. 389

 16 Inheriting Forms and Creating Base Classes 391

Inheriting a Form by Using the Inheritance Picker . 392

Creating Your Own Base Classes . 397

Sidebar: Nerd Alert . 398

Adding a New Class to Your Project . 399

One Step Further: Inheriting a Base Class . 406

Sidebar: Further Experiments with Object-Oriented

Programming . 409

Chapter 16 Quick Reference. 409

 17 Working with Printers . 411

Using the PrintDocument Class . 411

Printing Text from a Text Box Object . 416

Printing Multipage Text Files . 420

One Step Further: Adding Print Preview and Page Setup Dialog Boxes. 427

Chapter 17 Quick Reference. 434

 Table of Contents xv

Part IV Database and Web Programming

18 Getting Started with ADO.NET . 437

Database Programming with ADO.NET . 437

Database Terminology . 438

Working with an Access Database .440

The Data Sources Window . 449

Using Bound Controls to Display Database Information. 455

One Step Further: SQL Statements, LINQ, and Filtering Data 459

Chapter 18 Quick Reference. .464

19 Data Presentation Using the DataGridView Control. 465

Using DataGridView to Display Database Records. 465

Formatting DataGridView Cells . 478

Datacentric Focus: Adding a Second Grid and Navigation Control 481

One Step Further: Updating the Original Database. .484

Sidebar: Data Access in a Web Forms Environment. 487

Chapter 19 Quick Reference. 487

20 Creating Web Sites and Web Pages by Using
Visual Web Developer and ASP.NET . 489

Inside ASP.NET . 490

Web Pages vs. Windows Forms . 491

Server Controls . 492

HTML Controls . 493

Building a Web Site by Using Visual Web Developer . 494

Considering Software Requirements

for ASP.NET Programming . 494

Using the Web Page Designer . 497

Adding Server Controls to a Web Site . 500

Writing Event Procedures for Web Page Controls 503

Sidebar: Validating Input Fields on a Web Page. 508

Adding Additional Web Pages and Resources to a Web Site 508

Displaying Database Records on a Web Page. 514

One Step Further: Setting the Web Site Title in Internet Explorer. 521

Chapter 20 Quick Reference. 523

xvi Table of Contents
Appendix

Where to Go for More Information. 525

Visual Basic Web Sites . 525

Books About Visual Basic and Visual Studio Programming 527

Visual Basic Programming . 527

Microsoft .NET Framework. 527

Database Programming with ADO.NET . 528

Web Programming with ASP.NET . 528

Visual Basic for Applications Programming. 528

General Books about Programming and Computer Science 529

Index . 531

About the Author. 545
Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Introduction

I’m really glad that you’ve chosen this book to learn essential Microsoft Visual Basic 2008

programming skills and techniques. Although we’re meeting for the fi rst time in this para-

graph, the chances are that we’re not all that different. I work with a computer every day and

I spend a lot of time helping friends and colleagues make their lives better (or at least more

effi cient!) with new software and related technologies. Over the years, I have learned dozens

of computer applications, languages, and tools, and I have a knack for weaving them together

to solve real-world business problems. You’re probably the same—the go-to tech person

in your offi ce, school, or home—which is why you’re now needing to learn, or upgrade to,

Visual Basic 2008—one of the most powerful development tools in use today.

Microsoft Visual Basic 2008 Step by Step is a comprehensive introduction to Visual Basic

programming using the Microsoft Visual Basic 2008 software. I’ve designed this practical,

hands-on tutorial with a variety of skill levels in mind. The result is that new programmers

can learn software development fundamentals in the context of useful, real-world applica-

tions, and experienced Visual Basic programmers can quickly master the essential tools and

programming techniques offered in the Visual Basic 2008 upgrade.

Complementing this comprehensive approach is the book’s structure—4 topically organized

parts, 20 chapters, and 53 step-by-step exercises and sample programs. By using this book,

you’ll quickly learn how to create professional-quality Visual Basic 2008 applications for the

Windows operating system and a variety of Web browsers. You’ll also have fun!

What Is Visual Basic 2008?

Visual Basic 2008 is a development tool that you can use to build software applications

that perform useful work and look great within a variety of settings. Using Visual Basic

2008, you can create applications for the Windows operating system, the Web, hand-held

devices, and a host of other environments and settings. The most important advantage

of Visual Basic is that it has been designed to increase productivity in your daily development

work—especially if you need to use information in databases or create solutions for the

Internet—but an important additional benefi t is that once you become comfortable with

the development environment in Microsoft Visual Studio 2008, you can use the same tools

to write programs for Microsoft Visual C++ 2008, Microsoft Visual C# 2008, Microsoft Visual

Web Developer 2008, and other third-party tools and compilers.
 xvii

xviii Introduction
Visual Basic .NET Versions

So how did we get here, anyway? The fi rst version of Visual Basic .NET (Microsoft Visual

Basic .NET 2002) was released in February 2002. The second release (Microsoft Visual Basic

.NET 2003) was widely available in March 2003. Next came Visual Basic 2005 in late 2005,

and after a long period of development and integration work, Microsoft released Visual

Basic 2008 in early 2008. Visual Basic 2008 is now so tightly integrated with Visual Studio

that it is only available as a component in the Visual Studio 2008 programming suite,

which includes Visual C#, Visual C++, Visual Web Developer, and other Microsoft .NET

development tools.

Visual Studio 2008 is sold in several different product confi gurations, including Standard

Edition, Professional Edition, Team Suite, and Express Edition. I’ve written this book to be

compatible with all editions of Visual Basic 2008 and Visual Studio 2008, but especially

with the tools and techniques available in Visual Studio Standard Edition and Visual Studio

Professional Edition. Although Visual Basic 2008 is similar in many ways to Visual Basic 2005,

there are many important differences and improvements, so I recommend that you complete

the exercises in this book using the Visual Basic 2008 software.

Note The Visual Basic 2008 software is not included with this book! The CD distributed with

most versions of this book contains practice fi les, sample databases, and other useful information

that requires the Visual Basic 2008 software (sold separately) for use.

Upgrading from Microsoft Visual Basic 6.0

Before Visual Basic .NET, of course, the programming world was blessed to have Visual Basic

6, originally released ten years ago in September 1998. Visual Basic 6 was so popular that

many programming enthusiasts continue to use it, especially developers outside of Europe

and North America, where hardware upgrades can be a little harder to come by. (For those

of you Visual Basic 6 users who have written me letters from Africa and Asia, thank you!) In

some respects, I can’t blame you—Visual Basic 6 was and is awesome for its ease-of-use and

straightforward programming methods. But, as many of us know now, Visual Basic 6 also

made creating real professional-grade applications a bit of a chore. As a result, I always felt

like I had a speed and size complex when I chatted with friends who wrote about their fast

and tiny-footprint Visual C++ programs. To write really complex Visual Basic 6 applications,

I usually had to jump through a number of hoops.

 Introduction xix

Ten years down the road, Visual Basic 2008 makes it much, much easier to write professional-

grade Windows- and Internet-based applications that compete on an equal playing fi eld

with Visual C++, Visual C#, and Java applications. And the beauty of Visual Basic is that it is

much easier to learn than other programming tools. Although there are a few speed bumps,

upgrading from Visual Basic 6 to Visual Basic 2008 is quite straightforward. Visual Studio

2008 offers an upgrade wizard that begins the conversion process for you, and you’ll fi nd

that many of the legacy controls, statements, functions, methods, and properties that you’ve

learned to use are still a part of Visual Basic 2008.

In this book I offer upgrade notes for readers who are upgrading from Visual Basic 6

because I get it: I was once a Visual Basic 6 programmer and I know what it feels like to

upgrade programs to Visual Basic .NET. So as you read this book, you’ll see a comment

now and then about how syntax or conceptual paradigms have changed, and how you

can use what you know to become a solid Visual Basic 2008 programmer. And believe

me, you want this qualifi cation on your resumé.

And here’s a message for all programmers: I encourage you to assess where your overall

development skills are, and not focus only on the newest features of a programming lan-

guage that you are preparing to learn. Underlying skills, such as working with algorithms,

data structures, object-oriented programming, and debugging skills, will help you to write

better programs. For this reason, it might be just as important for you to fully understand

user-interface design and database management techniques, as it is to learn the newest

switches for a particular feature that you read about in the press. It is here that Visual Basic

6 developers want to assess and take forward all that they know about software develop-

ment. The tools change but the underlying skills often remain the same.

Finding Your Best Starting Point in This Book

This book is designed to help you build skills in a number of essential areas. You can use it if

you’re new to programming, switching from another programming language, or upgrading

from Visual Basic 6 or Visual Basic 2005. Use the table on the following page to fi nd your best

starting point in this book.

xx Introduction
If you are Follow these steps

New

To programming 1. Install the practice fi les as described in the section “Installing and Using the

Practice Files” later in this introduction.

 2. Learn basic skills for using Visual Basic 2008 by working sequentially from

Chapter 1 through Chapter 17.

 3. Complete Part IV, “Database and Web Programming,” as your level of interest

or experience dictates.

Upgrading

From Visual Basic

.NET 2002, 2003,

or 2005

 1. Install the practice fi les as described in “Installing and Using the Practice

Files” later in this section.

 2. Complete Chapters 1 through 4, skim Chapters 5 through 17, and complete

Chapters 18 through 20.

 3. For a discussion of specifi c features that have changed in this upgrade, read

Chapters 1, 4, 5, 7, 8, 13, 18, 19, 20.

From Visual

Basic 6

 1. Install the practice fi les as described in the section “Installing and Using the

Practice Files.”

 2. Read Chapters 1 through 4 carefully to learn the new features of the Visual

Studio 2008 development environment.

 3. Pay special attention to comments that I make in several chapters that high-

light signifi cant differences between Visual Basic 6 and Visual Basic 2008.

 4. Skim Chapters 5 through 13 to review the fundamentals of event-driven

programming, using variables, and writing decision structures. Give special

attention to Chapters 5, 6, 9, and 12.

 5. Work sequentially from Chapters 14 through 20 to learn the new Visual Basic

2008 features related to user interface design, database programming, and

Web programming.

Referencing

This book after

working through

the chapters

 1. Use the index to locate information about specifi c topics, and use the table

of contents to locate information about general topics.

 2. Read the Quick Reference at the end of each chapter for a brief review of the

major tasks in the chapter. The Quick Reference topics are listed in the same

order as they’re presented in the chapter.

If you are Follow these steps

 Introduction xxi
Visual Studio 2008 System Requirements

You’ll need the following hardware and software to complete the exercises in this book:

Q Windows Vista, or Windows XP with Service Pack 2, or Windows Server 2003 with

Service Pack 1

Q Microsoft Visual Studio 2008 (Standard Edition, Professional Edition, or Team Suite)

Q Minimum hardware requirement: 1.6 GHz CPU, 384 MB RAM, 1024×768 display, 5400

RPM hard disk drive

Q Recommended hardware requirement: 2.2 GHz or higher CPU, 1024 MB or more RAM,

1280×1024 display, 7200 RPM or higher hard disk drive. (For Windows Vista, 2.4 GHz

CPU and 768 MB RAM is recommended.)

Q 1.22 GB of available hard disk space for the minimum installation; 2 GB of available disk

space for the full installation

Q CD or DVD drive

Q Microsoft Mouse or compatible pointing device

Note This book and the practice fi les were tested using Visual Studio 2008 Standard Edition and

Professional Edition on Windows Vista. You might notice a few differences if you’re using other

editions of Visual Studio 2008. In particular, if you’re using Visual Studio 2008 Express Edition, a

few features will be unavailable to you. In addition, all of the screen shots in this book were cap-

tured using Windows Vista. If you are using Windows XP or Windows Server 2003, you’ll notice a

few differences in some of the screen shots.

Prerelease Software

This book was reviewed and tested against the Beta 2 release of Visual Studio 2008. The

Beta 2 release was the last preview before the fi nal release of Visual Studio 2008. This book is

expected to be fully compatible with the fi nal release of Visual Studio 2008 and Visual Basic

2008. If there are any changes or corrections for this book, they will be collected and added

to an easy-to-access Microsoft Knowledge Base article on the Web. See “Support for This

Book” later in this section.

xxii Introduction
Installing and Using the Practice Files

The CD inside this book contains the practice fi les that you’ll use as you perform the exer-

cises in the book. For example, when you’re learning how to display database tables on a

form by using the DataGridView control, you’ll open one of the practice fi les—an academic

database named Students.mdb—and then use Visual Studio database programming tools

to access the database. By using the practice fi les, you won’t waste time creating fi les that

aren’t relevant to the exercise. Instead, you can concentrate on learning how to master

Visual Basic 2008 programming techniques. With the fi les and the step-by-step instructions

in the chapters, you’ll also learn by doing, which is an easy and effective way to acquire

and remember new skills.

Important Before you break the seal on the CD, be sure that this book matches your version

of the software. This book is designed for use with Visual Studio 2008 and the Visual Basic 2008

programming language. To fi nd out what software you’re running, you can check the product

package, or you can start the software, open a project, and then click About Microsoft Visual

Studio on the Help menu at the top of the screen.

Installing the Practice Files

Installing the practice fi les on your hard disk requires approximately 10 MB of disk space.

Follow these steps to install the practice fi les on your computer’s hard disk drive so that you

can use them with the exercises in this book.

 1. Remove the CD from the package inside this book, and insert it into your CD drive.

Note An End-User License Agreement should open automatically. If this agreement does

not appear, you can double-click StartCD.exe on the CD. If you have Windows Vista, click

Computer on the Start menu, double-click the icon for your CD drive, and then double-

click StartCD.exe.

 2. Review the End-User License Agreement. If you accept the terms, select the accept

option, and then click Next.

A menu appears with options related to the book.

 3. Click Install Practice Files.

 Introduction xxiii
 4. Follow the on-screen instructions.

Note For best results when using the practice fi les with this book, accept the preselected

installation location, which by default is c:\vb08sbs. If you change the installation location,

you’ll need to manually adjust the paths in several practice fi les to locate essential compo-

nents, such as artwork and database fi les, when you use them.

 5. When the fi les have been installed, remove the CD from your drive and replace it in the

package inside the back cover of your book.

If you accepted the default settings, a folder named c:\vb08sbs has been created on

your hard disk drive, and the practice fi les have been placed in that folder. You’ll fi nd

one folder in c:\vb08sbs for each chapter in the book. (Some of the fi les represent

completed projects, and others will require that you enter some program code.) If

you have trouble running any of the practice fi les, refer to the text in the book that

describes those fi les.

Using the Practice Files

Each chapter in this book explains when and how to use the practice fi les for that chapter.

When it’s time to use a practice fi le, the book includes instructions for opening the fi le. The

chapters are built around scenarios that simulate real programming projects so that you can

easily apply the skills you learn to your own work.

Note Visual Basic 2008 features a new fi le format for its projects and solutions. Accordingly, you

won’t be able to open the practice fi les for this book if you’re using an older version of the Visual

Basic or Visual Studio software. To see what version of Visual Basic or Visual Studio you’re using,

click the About command on the Help menu.

Visual Studio is extremely customizable and can be confi gured to open and save projects

and solutions in different ways. The instructions in this book generally rely on the default

setting for Visual Studio. For more information about how settings within the development

environment affect how you write programs and use the practice fi les, see the section

“Customizing IDE Settings to Match Step-by-Step Exercises” in Chapter 1, “Exploring the

Visual Studio Integrated Development Environment.”

xxiv Introduction
For those of you who like to know all the details, here’s a list of the Visual Basic projects

included on the CD. Each project is located in its own folder and has several support fi les.

Look at all the things you will be doing!

Project Description

Chapter 1

MusicTrivia A simple trivia program that welcomes you to the programming course and

displays a digital photo.

Chapter 2

Lucky7 Your fi rst program—a game that simulates a Las Vegas Lucky Seven slot machine.

Chapter 3

Birthday Uses the DateTimePicker control to pick a date.

CheckBox Demonstrates the CheckBox control and its properties.

Hello A “Hello, world!” program that demonstrates the Label and TextBox controls.

Input

Controls

The user interface for a graphical ordering environment, assembled using sev-

eral powerful input controls.

WebLink Demonstrates the LinkLabel control that opens a Web browser in your Visual

Basic application.

Chapter 4

Menu Demonstrates how to use Visual Studio dialog box controls, toolbars, and

menus.

Chapter 5

Advanced Math Advanced use of operators for integer division, remainder division, exponentia-

tion, and string concatenation.

Basic Math Basic use of operators for addition, subtraction, multiplication, and division.

Constant Tester Uses a constant to hold a fi xed mathematical entity.

Data

Types

Demonstrates Visual Basic fundamental data types and their use with

variables.

Framework Math Demonstrates the .NET Framework classes with mathematical methods.

Input Box Receives input with the InputBox function.

Variable Test Declares and uses variables to store information.

Chapter 6

Select

Case

Uses a Select...Case decision structure and a ListBox control to display a

welcome message in several languages.

User

Validation

Uses the If...Then...Else decision structure and a MaskedTextBox control to

manage a logon process.

Project Description

 Introduction xxv
Project Description

Chapter 7

Celsius

Conversion

Converts temperatures from Fahrenheit to Celsius by using a Do loop.

Digital Clock A simple digital clock program that demonstrates the Timer control.

For Loop Demonstrates using a For...Next loop to display text in a TextBox control, and

using the Chr function to create a wrap character.

For Loop

Icons

Uses a global counter variable in an event procedure as an alternative to loops.

This program also displays images by using a PictureBox control.

Timed Password Demonstrates how to use a Timer control to create a logon program with a

password time-out feature.

Windows Version

Snippet

Shows how to use the new Insert Snippet command to display the current

version of Windows running on a user’s computer.

Chapter 8

Debug Test A simulated debugging problem, designed to be solved using the Visual Studio

debugging tools.

Chapter 9

Disc Drive

Error

Crashes when a CD or DVD drive is used incorrectly. This project is used as the

basis of a Visual Basic error handler.

Disc Drive

Handler

Completed error handler for loading fi les that demonstrates the Try...Catch

syntax.

Chapter 10

Text Box Sub A general-purpose Sub procedure that adds items to a list box.

TrackWins A clean version of the Lucky7 slot machine project from Chapter 2, which

you enhance by using public variables and a function that computes the

game’s win rate.

Chapter 11

Array Class

Sorts

Shows how to create and manipulate large integer arrays.

Demonstrates the Array.Sort and Array.Reverse methods and how to use a

ProgressBar control to give the user visual feedback during long sorts.

Dynamic

Array

Computes the average temperature for any number of days by using a

dynamic array.

Fixed Array Computes the average weekly temperature by using a fi xed-length array.

Chapter 12

Controls

Collection

Uses a For Each…Next loop and the Visual Studio Controls collection to move

objects on a form.

URL

Collection

Demonstrates a user-defi ned collection containing a list of Web addresses

(URLs) recently visited by the user.

Project Description

continued

xxvi Introduction
Project Description

Chapter 13

Quick Note A simple note-taking utility that demonstrates the FileOpen function and the

TextBox, MenuStrip, and SaveFileDialog controls.

Sort Text A text fi le editor with a menu bar that demonstrates how to manage Open,

Close, Save As, Insert Date, Sort Text, and Exit commands in a program.

Contains a ShellSort module for sorting arrays that can be added to other

programming projects.

Text Browser Displays the contents of a text fi le in a Visual Basic program. Demonstrates

menu commands, a Try...Catch error handler, and the FileOpen and LineInput

functions, and serves as a foundation for the other programs in this chapter.

Chapter 14

Add Controls Demonstrates how controls are added to a Windows Form at run time by using

program code (not the Designer).

Anchor and Dock Uses the Anchor and Dock properties of a form to align objects at run time.

Desktop Bounds Uses the StartPosition and DesktopBounds properties to position a Windows

Form at run time. Also demonstrates the FormBorderStyle property, Rectangle

structure, and ShowDialog method.

Lucky Seven

Help

The enhanced Lucky7 program (TrackWins) from Chapter 10, which you enhance

again through the addition of a second form to display Help information.

Chapter 15

Draw Shapes Demonstrates a few of the useful graphics methods in the System.Drawing

namespace, including DrawEllipse, FillRectangle, and DrawCurve.

Moving Icon Animates an icon on the form, moving it from the top of the form to the

bottom each time that you click the Move Down button.

Transparent Form Demonstrates how to change the transparency of a form by using the Me

object and the Opacity property.

Zoom In Simulates zooming in, or magnifying, an object on a form (in this case, the

planet Earth).

Chapter 16

Form Inheritance Uses the Visual Studio Inheritance Picker to create a form that inherits its

characteristics and functionality from another form.

Person Class Demonstrates how to create new classes, properties, and methods in a Visual

Basic project. The new Person class is an employee record with fi rst name, last

name, and date of birth fi elds, and it contains a method that computes the

current age of an employee.

Project Description

 Introduction xxvii

Project Description

Chapter 17

Print Dialogs Demonstrates how to create Print Preview and Page Setup dialog boxes.

Print File Handles more sophisticated printing tasks, including printing a multipage text

fi le with wrapping lines. Includes lots of code to use in your own projects.

Print Graphics Prints graphics from within a Visual Basic program by using an error handler,

the Print method, and the DrawImage method.

Print Text Demonstrates how simple text is printed in a Visual Basic program.

Chapter 18

ADO Form Demonstrates how ADO.NET is used to establish a connection to a Microsoft

Offi ce Access 2007 database and display information from it.

Chapter 19

DataGridView

Sample

Shows how the DataGridView control is used to display multiple tables of data

on a form. Also demonstrates how navigation bars, datasets, and table adapters

are interconnected and bound to objects on a form.

Chapter 20

Chap20 Demonstrates using Visual Web Developer and ASP.NET to create a car loan

calculator that runs in a Web browser, offers Help information, and displays

database records.

Uninstalling the Practice Files

Use the following steps to remove the practice fi les added to your hard disk drive by the

Visual Basic 2008 Step by Step installation program. After uninstalling the practice fi les, you

can manually delete any Visual Basic project fi les that you have created on your own, should

you choose to do so.

If you are running the Windows Vista operating system:

 1. In Control Panel, in the Programs category, click Uninstall A Program.

 2. Select Microsoft Visual Basic 2008 Step by Step in the list of programs, and then click

Uninstall.

 3. Follow the on-screen instructions to remove the practice fi les.

If you are running the Windows XP operating system:

 1. In Control Panel, open Add Or Remove Programs.

 2. In the Currently Installed Programs list, click Microsoft Visual Basic 2008 Step by Step.

Then click Remove.

 3. Follow the on-screen instructions to remove the practice fi les.

Project Description

xxviii Introduction
Conventions and Features in This Book

Before you start the exercises in this book, you can save time by understanding how I provide

instructions and the elements I use to communicate information about Visual Basic program-

ming. The following lists identify stylistic conventions and discuss helpful features of the book.

Conventions

Q The names of all program elements—controls, objects, methods, functions, properties,

and so on—appear in italic.

Q Hands-on exercises for you to follow are given in numbered lists of steps (1, 2, and so

on). A round bullet (O) indicates an exercise that has only one step.

Q Text that you need to type appears in bold.

Q As you work through steps, you’ll occasionally see tables with lists of properties that

you’ll set in Visual Studio. Text properties appear within quotes, but you don’t need to

type the quotes.

Q A plus sign (+) between two key names means that you must press those keys at the

same time. For example, “Press Alt+Tab” means that you hold down the Alt key while

you press Tab.

Q Elements labeled Note, Tip, More Info, or Important provide additional information

or alternative methods for a step. You should read these before continuing with the

exercise.

Other Features

Q You can learn special programming techniques, background information, or fea-

tures related to the information being discussed by reading the sidebars that appear

throughout the chapters. These sidebars often highlight diffi cult terminology or sug-

gest future areas for exploration.

Q You can learn about options or techniques that build on what you learned in a chapter

by trying the One Step Further exercise at the end of that chapter.

Q You can get a quick reminder of how to perform the tasks you learned by reading the

Quick Reference at the end of a chapter.

 Introduction xxix
Helpful Support Links

You are invited to check out the following links that provide support for the Visual Studio

2008 software and this book’s contents.

Visual Studio 2008 Software Support

For questions about the Visual Studio 2008 software, I recommend two Microsoft

Web sites:

Q http://msdn2.microsoft.com/en-us/vbasic/ (the Microsoft Visual Basic Developer Center

home page)

Q http://www.microsoft.com/communities/ (technical communities related to Microsoft

software products and technologies)

Both Web sites give you access to professional Visual Basic developers, Microsoft employees,

Visual Basic blogs, newsgroups, webcasts, technical chats, and interesting user groups. For

additional information about these and other electronic and printed resources, see the

Appendix, “Where To Go for More Information.”

Microsoft Press Web Site

The Microsoft Press Web site has descriptions for the complete line of Microsoft Press

books, information about ordering titles, notice of special features and events, additional

content for Microsoft Press books, and much more.

http://www.microsoft.com/learning/books/

Support for This Book

Every effort has been made to ensure the accuracy of this book and companion content.

Microsoft Press provides corrections for books through the Web at the following address:

http://www.microsoft.com/mspress/support/search.aspx

xxx Introduction
To connect directly to Microsoft Help and Support to enter a query regarding a question or

issue you may have, go to the following address:

http://support.microsoft.com

If you have comments, questions, or ideas regarding the book or companion content or if

you have questions that are not answered by querying the Knowledge Base, please send

them to Microsoft Press using either of the following methods:

E-mail:

mspinput@microsoft.com

Postal mail:

Microsoft Press

Attn: Microsoft Visual Basic 2008 Step by Step

One Microsoft Way

Redmond, WA 98052-6399

Please note that product support is not offered through the preceding mail addresses. For

support information, please visit the Microsoft Product Support Web site at:

http://support.microsoft.com

Microsoft Visual Basic 2008 Step by Step

Part I

Getting Started with
Microsoft Visual Basic 2008

In this part:

Chapter 1, Exploring the Visual Studio Integrated Development Environment. . 3

Chapter 2, Writing Your First Program . 37

Chapter 3, Working with Toolbox Controls . 69

Chapter 4, Working with Menus, Toolbars, and Dialog Boxes 97

In Part I, you’ll receive an overview of essential Visual Basic 2008 programming techniques

and an introduction to the tools and features that you will work with during most Visual Basic

programming sessions. You’ll learn to use the Visual Studio 2008 Integrated Development

Environment, with its fulsome collection of programming tools, windows, and menu commands,

and you’ll receive step-by-step instruction on how to build and run several interesting pro-

grams from scratch. This is the place to start if you’re new to Visual Basic programming, or

upgrading from an earlier version.

Chapter 2 introduces how controls, forms, properties, and program code can be used in

combination to create an entertaining Lucky Seven slot machine game. Chapter 3 provides

an overview of the most useful Toolbox controls, which help you present information or

program choices to the user, gather input, work with dates and times, and connect to the

Web. Chapter 4 focuses on adding menus, toolbars, and dialog boxes to Visual Basic pro-

grams that will give your program the fl air of a commercial Windows application.
 1

Chapter 1

Exploring the Visual Studio
Integrated Development
Environment

After completing this chapter, you will be able to:

Q Start Visual Studio 2008.

Q Use the Visual Studio Integrated Development Environment.

Q Open and run a Visual Basic program.

Q Change property settings.

Q Move, resize, dock, and automatically hide tool windows.

Q Use the IDE Navigator.

Q Open a Web browser within Visual Studio.

Q Use new Help commands and customize Help.

Q Customize IDE settings to match this book’s step-by-step instructions.

Q Save your changes, and exit Visual Studio.

Are you ready to start working with Microsoft Visual Studio 2008? This chapter gives you the

skills you need to get up and running with the Visual Studio 2008 Integrated Development

Environment (IDE)—the place where you will write Microsoft Visual Basic programs. You

should read this chapter whether you are new to Visual Basic programming or you have used

previous versions of Visual Basic or Visual Studio.

In this chapter, you’ll learn how to start Visual Studio 2008 and how to use the IDE to

open and run a simple program. You’ll learn the essential Visual Studio menu commands

and programming procedures; you’ll open and run a simple Visual Basic program named

Music Trivia; you’ll change a programming setting called a property; and you’ll practice

moving, sizing, docking, and hiding tool windows. You’ll also learn how to switch between

fi les and tools with the IDE Navigator, open a Web browser within Visual Studio, get more

information by using online Help, and customize the IDE to match this book’s step-by-step

instructions. Finally, you’ll exit the development environment and save your changes.
 3

4 Part I Getting Started with Microsoft Visual Basic 2008
The Visual Studio Development Environment

Although the programming language you’ll be learning in this book is Visual Basic, the

development environment you’ll be using to write programs is called the Microsoft Visual

Studio Integrated Development Environment, or IDE for short. Visual Studio is a powerful

and customizable programming workshop that contains all the tools you need to build

robust programs for Windows and the Web quickly and effi ciently. Most of the features

in the Visual Studio IDE apply equally to Visual Basic, Microsoft Visual C++, and Microsoft

Visual C#. Use the following procedures to start Visual Studio now.

Important If you haven’t yet installed this book’s practice fi les, work through “Finding

Your Best Starting Point” and “About the CD and Practice Files” in this book’s Introduction.

(I recommend that you place the project fi les and related subfolders in the c:\vb08sbs folder.)

Then return to this chapter.

Start Visual Studio 2008

 1. On the Windows taskbar, click Start, click All Programs, and then click the Microsoft

Visual Studio 2008 folder.

The folders and icons in the Microsoft Visual Studio 2008 folder appear in a list.

Note To perform the steps in this book, you must have a version of the Microsoft Visual

Studio 2008 software installed. Most of the procedures that I describe are designed to work

with either Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional Edition,

or Visual Studio 2008 Express Edition. If you are especially lucky, you might have access to

Visual Studio 2008 Team Suite as well. If this is the case, you’ll be able to follow the proce-

dures in this book without diffi culty, but you will also have access to some cool advanced

features and capabilities. However, even though it is tempting, don’t try to use this book if

you have an earlier version of the Visual Basic software. If that’s your situation, you’ll be bet-

ter served by locating an earlier edition of my book, such as Microsoft Visual Basic 2005 Step

by Step (which describes the Visual Basic 2005 software) or Microsoft Visual Basic Professional

6.0 Step by Step (which describes the Microsoft Visual Basic 6.0 software).

 2. Click the Microsoft Visual Studio 2008 icon.

If this is the fi rst time you are starting Visual Studio, it might take a few minutes to con-

fi gure the environment. If you are prompted to specify the settings to use, select the

Visual Basic development settings.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 5

When Visual Studio starts, you see the development environment on the screen

with its many menus, tools, and component windows. (These windows are sometimes

called tool windows.) You also should see a Start Page containing a set of links, MSDN

articles, and project options. The Start Page is a comprehensive source of information

about your project, as well as resources within the Visual Basic development commu-

nity. This is one avenue for receiving new information about Visual Studio after you

purchase the software.

The fi rst thing most developers do when they start Visual Studio is open an existing project—

either a completed solution they want to work with again or an ongoing development project.

Try opening an existing project that I created for you—the Music Trivia program.

Open a Visual Basic project

1. On the Start Page, in the Recent Projects pane, click the Open Project link.

The Open Project dialog box shown in the illustration on the next page opens on the

screen. (You can also display this dialog box by clicking the Open Project command on

the File menu or by pressing Ctrl+O.) Even if you haven’t used Visual Studio before, the

Open Project dialog box will seem straightforward because it resembles the familiar

Open dialog box in Microsoft Offi ce Word or Microsoft Offi ce Excel.

6 Part I Getting Started with Microsoft Visual Basic 2008

Tip In the Open Project dialog box, you see a number of links along the left side of the

window. The Projects link is particularly useful; it opens the Projects folder inside the

Documents\Visual Studio 2008 folder on your system. By default, Visual Studio saves your

projects in this Projects folder, giving each project its own subfolder. We’ll use a different

projects folder to organize your programming coursework, however, as you’ll learn below.

Additional links to useful locations on your system will appear now too. The exact shape and

content of the links will depend on the version of Windows you are using, and the way that

you have confi gured dialog box views. (The screen shots in this book show Windows Vista.)

2. Browse to the c:\vb08sbs folder on your hard disk.

The c:\vb08sbs folder is the default location for this book’s extensive sample fi le col-

lection, and you’ll fi nd the fi les there if you followed the instructions in “Installing and

Using the Practice Files” in the Introduction. If you didn’t install the sample fi les, close

this dialog box and install them now by using the CD included with this book. Then re-

turn to this procedure and continue.

3. Open the chap01\musictrivia folder, and then double-click the MusicTrivia solution fi le.

(If your system shows fi le name extensions, this fi le will end with .sln.)

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 7
Visual Studio loads the MusicTrivia form, properties, and program code for the

MusicTrivia solution. The Start Page probably is still visible, but in the upper-right

corner of the screen, Solution Explorer lists some of the fi les in the solution.

Troubleshooting If you see an error message indicating that the project you want to

open is in a newer fi le format, you might be trying to load Visual Basic 2008 fi les into

the older Visual Basic .NET 2002, 2003, or 2005 software. (Earlier versions of Visual Basic

can’t open the Visual Basic 2008 projects included on the companion CD.) To check

which version of Visual Basic you’re using, click the About command on the Help menu.

Visual Studio provides a special check box named Always Show Solution to control several

options related to solutions within the IDE. The check box is located on the Projects and

Solutions/General tab of the Options dialog box, which you open by clicking the Options

command on the Tools menu. If the check box is selected, a subfolder is created for each

new solution, placing the project and its fi les in a separate folder beneath the solution. Also,

if you select the Always Show Solution check box, a few options related to solutions appear

in the IDE, such as commands on the File menu and a solution entry in Solution Explorer. If

you like the idea of creating separate folders for solutions and seeing solution-related com-

mands and settings, select this check box. You’ll learn more about these options at the end

of the chapter.

Projects and Solutions

In Visual Studio, programs under development are typically called projects or solutions

because they contain many individual components, not just one fi le. Visual Basic 2008

programs include a project fi le (.vbproj) and a solution fi le (.sln), and if you examine

these fi les within a fi le browsing utility such as Windows Explorer, you’ll notice that the

solution fi le icons have a tiny 9 in them, an indication of their version number. (Visual

Basic 2008 is referred to as VB 9 internally.)

A project fi le contains information specifi c to a single programming task. A solution fi le

contains information about one or more projects. Solution fi les are useful to manage

multiple related projects and are similar to project group fi les (.vbg) in Visual Basic 6.

The samples included with this book typically have a single project for each solution, so

opening the project fi le (.vbproj) has the same effect as opening the solution fi le (.sln).

But for a multi-project solution, you will want to open the solution fi le. Visual Basic 2008

offers a new fi le format for its projects and solutions, but the basic terminology that you

might have learned while using Visual Basic .NET 2002, 2003, or 2005 still applies.

8 Part I Getting Started with Microsoft Visual Basic 2008
The Visual Studio Tools

At this point, you should take a few moments to study the Visual Studio IDE and identify

some of the programming tools and windows that you’ll be using as you complete this

course. If you’ve written Visual Basic programs before, you’ll recognize many (but probably

not all) of the programming tools. Collectively, these features are the components that you

use to construct, organize, and test your Visual Basic programs. A few of the programming

tools also help you learn more about the resources on your system, including the larger

world of databases and Web site connections available to you. There are also several pow-

erful Help tools.

The menu bar provides access to most of the commands that control the development envi-

ronment. Menus and commands work as they do in all Windows-based programs, and you can

access them by using the keyboard or the mouse. Located below the menu bar is the Standard

toolbar, a collection of buttons that serve as shortcuts for executing commands and controlling

the Visual Studio IDE. My assumption is that you’ve used Word, Excel, or some other Windows

application enough to know quite a bit about toolbars, and how to use familiar toolbar com-

mands, such as Open, Save, Cut, and Paste. But you’ll probably be impressed with the number

and range of toolbars provided by Visual Studio for programming tasks. In this book, you’ll

learn to use several toolbars; you can see the full list of toolbars at any time by right-clicking

any toolbar in the IDE.

Along the bottom of the screen you may see the Windows taskbar. You can use the taskbar

 to switch between various Visual Studio components and to activate other Windows-based

programs. You might also see taskbar icons for Windows Internet Explorer, antivirus utilities,

and other programs installed on your system. In most of my screen shots, I’ll hide the taskbar,

to show more of the IDE.

The following illustration shows some of the tools and windows in the Visual Studio IDE.

Don’t worry that this illustration looks different from your current development environment

view. You’ll learn more about these elements (and how you adjust your views) as you work

through the chapter.

The main tools visible in this Visual Studio IDE are the Designer, Solution Explorer, the

Properties window, and the Toolbox. You might also see more-specialized tools such as

Server Explorer and Object Browser, or they may appear as tabs within the IDE. Because

no two developers’ preferences are exactly alike, it is diffi cult to predict what you’ll see if

your Visual Studio software has already been used. (What I show is essentially the “fresh

download” or “out-of-the-box” view.)

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 9
If a tool isn’t visible and you want to see it, click the View menu and select the tool. Because

the View menu has expanded steadily over the years, Microsoft has moved some of the less

frequently used View tools to a submenu called Other Windows. Check there if you don’t see

what you need.

The exact size and shape of the tools and windows depend on how your development envi-

ronment has been confi gured. With Visual Studio, you can align and attach , or dock, windows

to make visible only the elements that you want see. You can also partially conceal tools as

tabbed documents along the edge of the development environment and then switch back

and forth between documents quickly. Trying to sort out which tools are important to you

now and which you can learn about later is a diffi cult early challenge when you’re learning

the busy Visual Studio interface. Your development environment will probably look best

if you set your monitor and Windows desktop settings so that they maximize your screen

space, but even then things can get a little crowded.

Tip Although I use a screen resolution of 800 × 600 for most of the screen shots in this book—

so that you can see the IDE clearly—I usually use 1024 × 768 for writing code. You can change

the screen resolution in Windows Vista by right-clicking the Windows desktop and clicking

Personalize. In Windows XP, you right-click the Windows desktop and click Properties.

10 Part I Getting Started with Microsoft Visual Basic 2008

The purpose of all this tool complexity is to add many new and useful features to the IDE

while providing clever mechanisms for managing the clutter. These mechanisms include fea-

tures such as docking, auto hiding, fl oating, and a few other window states that I’ll describe

later. If you’re just starting out with Visual Studio, the best way to deal with this feature ten-

sion is to hide the tools that you don’t plan to use often to make room for the important

ones. The crucial tools for beginning Visual Basic programming—the ones you’ll start using

right away in this book—are the Designer, the Properties window, Solution Explorer, and the

Toolbox. You won’t use the Server Explorer, Class View, Object Browser, or Debug windows

until later in the book.

In the following exercises, you’ll start experimenting with the crucial tools in the Visual Studio

IDE. You’ll also learn how to display a Web browser within Visual Studio and how to hide the

tools that you won’t use for a while.

The Designer

If you completed the last exercise (“Open a Visual Basic project”), the MusicTrivia project is

loaded in the Visual Studio development environment. However, the user interface, or form,

for the project might not yet be visible in Visual Studio. (More sophisticated projects might

contain several forms, but this simple trivia program needs only one.) To make the form of

the MusicTrivia project visible in the IDE, you display it by using Solution Explorer.

Display the Designer

1. Locate the Solution Explorer window near the upper-right corner of the Visual Studio

development environment. If you don’t see Solution Explorer (if it is hidden as a tab in

a location that you cannot see or isn’t currently visible), click Solution Explorer on the

View menu to display it.

When the MusicTrivia project is loaded, Solution Explorer looks like this:

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 11

2. Click the MusicTrivia.vb form in the Solution Explorer window.

All form fi les, including this one, have a tiny form icon next to them so that you

can easily identify them. When you click the form fi le, Visual Studio highlights it in

Solution Explorer, and some information about the fi le appears in the Properties

window (if it is visible).

3. Click the View Designer button in Solution Explorer to display the program’s user

interface.

The MusicTrivia form is displayed in the Designer, as shown here:

Notice that a tab for the Start Page is still visible near the top of the Designer. You

can click this tab to display the Start Page, where you can view articles and Web links,

or open additional project fi les. To return to Designer view, click the MusicTrivia.vb

[Design] tab near the top of the MusicTrivia form.

Tip If you don’t see the Start Page and MusicTrivia.vb [Design] tabs, your development

environment might be in Multiple Documents view instead of Tabbed Documents view. To

change this option, click Options on the Tools menu. On the left side of the Options dialog

box, expand the Environment category, and then click General. On the right, under Window

Layout, click the Tabbed Documents option, and then click OK. The next time you start

Visual Studio, the various windows that you open have tabs, and you can switch between

them with a simple button click.

Now try running a Visual Basic program with Visual Studio.

12 Part I Getting Started with Microsoft Visual Basic 2008

Running a Visual Basic Program

Music Trivia is a simple Visual Basic program designed to familiarize you with the program-

ming tools in Visual Studio. The form you see now has been customized with fi ve objects

(two labels, a picture, and two buttons), and I’ve added three lines of program code to make

the trivia program ask a simple question and display the appropriate answer. (The program

“gives away” the answer now because it is currently in design mode, but the answer is hidden

when you run the program.) You’ll learn more about creating objects and adding program

code in Chapter 2, “Writing Your First Program.” For now, try running the program in the

Visual Studio IDE.

Run the Music Trivia program

1. Click the Start Debugging button (the green right-pointing arrow) on the Standard

toolbar to run the Music Trivia program in Visual Studio.

Tip You can also press F5 or click the Start Debugging command on the Debug menu to

run a program in the Visual Studio development environment.

Visual Studio loads and compiles the project into an assembly (a structured collection

of modules, data, and manifest information for a program), prepares the program for

testing or debugging, and then (if the compilation is successful) runs the program in

the development environment. While the program is running, an icon for the program

appears on the Windows taskbar. After a moment, you see the MusicTrivia form again,

this time with the photograph and answer label hidden from view, as shown here:

Music Trivia now asks its important question: What rock and roll instrument is often

played with sharp, slapping thumb movements?

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 13

2. Click the Answer button to reveal the solution to the question.

The program displays the answer (The Bass Guitar) below the question and then displays

a photograph of an obscure Seattle bass player demonstrating the technique. The test

program works.

3. Click Quit to close the program.

The form closes, and the Visual Studio IDE becomes active again.

Thinking About Properties

In Visual Basic, each user interface element in a program (including the form itself)

has a set of defi nable properties. You can set properties at design time by using the

Properties window. Properties can also be referenced in code to do meaningful work

while the program runs. (User interface elements that receive input often use proper-

ties to convey information to the program.) At fi rst, you might fi nd properties a diffi cult

concept to grasp. Viewing them in terms of something from everyday life can help.

Consider this bicycle analogy: a bicycle is an object you use to ride from one place to

another. Because a bicycle is a physical object, it has several inherent characteristics. It

has a brand name, a color, gears, brakes, and wheels, and it’s built in a particular style.

(It might be a touring bike, a mountain bike, or a bicycle built for two.) In Visual Basic

terminology, these characteristics are properties of the bicycle object. Most of the

bicycle’s properties were defi ned when the bicycle was built. But others (tires, travel

speed, and options such as refl ectors and mirrors) are properties that change while the

bicycle is used. The bike might even have intangible (that is, invisible) properties, such

as manufacture date, current owner, or rental status. As you work with Visual Basic,

you’ll use object properties of both types—visible and invisible.

14 Part I Getting Started with Microsoft Visual Basic 2008
The Properties Window

You use the Properties window to change the characteristics, or property settings, of the

user interface elements on a form. A property setting is a quality of one of the objects in

your program. You can change property settings from the Properties window while you’re

creating your user interface, or you can add program code via the Code Editor to change

one or more property settings while your program is running. For example, the trivia ques-

tion that the Music Trivia program displays can be modifi ed to appear in a different font or

font size or with a different alignment. (With Visual Studio, you can display text in any font

installed on your system, just as you can in Excel or Word.)

The Properties window contains an Object list that itemizes all the user interface elements

(objects) on the form. The window also lists the property settings that can be changed for

each object. You can click one of two convenient buttons to view properties alphabetically

or by category. You’ll practice changing the Font property of the fi rst label in the Music

Trivia program now.

Change a property

 1. Click the Label1 object on the form. (Label1 contains the text “What rock and roll

instrument is often played with short, slapping thumb movements?”)

To work with an object on a form, you must fi rst select the object. When you select an

object, resize handles appear around it, and the property settings for the object are

displayed in the Properties window.

 2. Click the Properties Window button on the Standard toolbar.

The Properties window might or might not be visible in Visual Studio, depending on

how it’s been confi gured and used on your system. It usually appears below Solution

Explorer on the right side of the development environment. (If it is visible, you don’t

need to click the button, but you should click the window to activate it.)

You’ll see a window similar to the one shown on the next page:

The Properties window lists all the property settings for the fi rst label object (Label1)

on the form. (In Visual Basic 2008, more than 60 properties are associated with

labels.) Property names are listed in the left column of the window, and the current

setting for each property is listed in the right column. Because there are so many

properties (including some that are rarely modifi ed), Visual Studio organizes them

into categories and displays them in outline view. If a category has a plus sign (+) next

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 15

to it, you can click the collection title to display all the properties in that category. If a

category has a minus sign (-) next to it, the properties are all visible, but you can hide

the list under the category name by clicking the minus sign.

Tip The Properties window has two handy buttons that you can use to further organize

properties. Clicking the Alphabetical button lists all the properties in alphabetical order

and puts them in just a few categories. Clicking the Categorized button organizes the

property list into many logical categories. I recommend Categorized view if you are new

to Visual Studio.

3. Scroll the Properties window list box until the Font property is visible.

The Properties window scrolls like a regular list box. If you are in Categorized view,

Font is in the Appearance category.

4. Click the Font property name (in the left column).

The current font (Microsoft Sans Serif) is partially displayed in the right column, and a

button with three dots on it appears by the font name. This button is called an ellipsis

button and indicates that a dialog box is available to customize the property setting.

5. Click the Font ellipsis button in the Properties window.

16 Part I Getting Started with Microsoft Visual Basic 2008

Visual Studio displays the Font dialog box, which you can use to specify new formatting

characteristics for the text in the selected label on your form. The Font dialog box con-

tains more than one formatting option; for each option you select, a different property

setting will be modifi ed.

6. Change the font style from Regular to Italic, and then click OK to confi rm your changes.

Visual Studio records your changes and adjusts the property settings accordingly. You

can examine the changes by viewing your form in the Designer or by expanding the

Font category in the Properties window.

Now change a property setting for the Label2 object (the label that contains the text

“The Bass Guitar”).

7. In the Designer, click the second label object (Label2).

When you select the object, resize handles surround it.

8. Click the Font property in the Properties window.

The Label2 object has its own unique set of property settings. Although the property

names are the same as those of the Label1 object, the values in the property settings

are distinct and allow the Label2 object to act independently on the form.

9. Click the Font ellipsis button, set the font style to Bold and the font size to 12 points,

and then click OK.

10. Scroll to the ForeColor property in the Properties window, and then click it in the left

column.

11. Click the ForeColor arrow in the right column, click the Custom tab, and then click a

dark purple color.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 17
The text in the Label2 object is now bold and purple on the form.

Congratulations! You’ve just learned how to set properties in a Visual Basic program by

using the Visual Studio Properties window—one of the important skills in becoming a

Visual Basic programmer.

Moving and Resizing the Programming Tools

With numerous programming tools to contend with on the screen, the Visual Studio IDE

can become a pretty busy place. To give you complete control over the shape and size of

the elements in the development environment, Visual Studio lets you move, resize, dock,

and auto hide most of the interface elements that you use to build programs.

To move one of the tool windows in Visual Studio, simply click the title bar and drag the

object to a new location. If you align one window along the edge of another window, it

attaches to that window, or docks itself. Dockable windows are advantageous because they

always remain visible. (They don’t become hidden behind other windows.) If you want to

see more of a docked window, simply drag one of its borders to view more content.

If you want to completely close a window, click the Close button in the upper-right corner

of the window. You can always open the window again later by clicking the appropriate

command on the View menu.

If you want an option somewhere between docking and closing a window, you might try

auto hiding a tool window at the side of the Visual Studio IDE by clicking the tiny Auto Hide

pushpin button on the right side of the tool’s title bar. This action removes the window from

the docked position and places the title of the tool at the edge of the development environ-

ment in an unobtrusive tab. When you auto hide a window, you’ll notice that the tool window

remains visible as long as you keep the mouse pointer in the area of the window. When you

move the mouse to another part of the IDE, the window slides out of view.

18 Part I Getting Started with Microsoft Visual Basic 2008
To restore a window that you have auto hidden, click the tool tab at the edge of the devel-

opment environment or hold your mouse over the tab. (You can recognize a window that is

auto hidden because the pushpin in its title bar is pointing sideways.) By holding the mouse

pointer over the title, you can use the tools in what I call “peek-a-boo” mode—in other words,

to quickly display an auto hidden window, click its tab, check or set the information you need,

and then move the mouse to make the window disappear. If you ever need the tool displayed

permanently, click the Auto Hide pushpin button again so that the point of the pushpin faces

down, and the window then remains visible.

A useful capability of Visual Studio is also the ability to display windows as tabbed documents

(windows with tab handles that partially hide behind other windows) and to dock windows by

using docking guides, as shown in the following illustration.

Docking Guides

Docking guides are changeable icons that appear on the surface of the IDE when you move

a window or tool from a docked position to a new location. Because the docking guides are

associated with shaded, rectangular areas of the IDE, you can preview the results of your

docking maneuver before you actually make it.

Docking and auto hiding techniques defi nitely take some practice to master. Use the follow-

ing exercises to hone your windows management skills and experiment with the features of

the Visual Studio development environment. After you complete the exercises here, feel free

to confi gure the Visual Studio tools in a way that seems comfortable for you.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 19

Moving and Resizing Tool Windows

To move and resize one of the programming tool windows in Visual Studio, follow these

steps. This exercise demonstrates how to manipulate the Properties window, but you can

work with a different tool window if you want to.

Move and resize the Properties window

1. If the Properties window isn’t visible in the development environment, click the

Properties Window button on the Standard toolbar.

The Properties window is activated in the IDE, and its title bar is highlighted.

2. Double-click the Properties window title bar to display the window as a fl oating

(undocked) window.

3. Using the Properties window title bar, drag the window to a new location in the

development environment, but don’t dock it (yet).

Moving windows around the Visual Studio IDE gives you some fl exibility with the tools

and the look of your development environment. Now you’ll resize the Properties win-

dow to see more object property settings at once.

4. Point to the lower-right corner of the Properties window until the pointer changes to

a double-headed arrow (the resizing pointer). Then drag the lower-right border of the

window down and to the right to enlarge the window.

You can work more quickly and with more clarity of purpose in a bigger window. Feel

free to move or resize a window when you need to see more of its contents.

20 Part I Getting Started with Microsoft Visual Basic 2008

Docking Tool Windows

If a tool window is fl oating over the development environment, you can return it to its original

docked position by double-clicking the window’s title bar. (Notice that you used this same tech-

nique in the previous exercise to undock a docked window. Double-clicking a title bar works

like a toggle, a state that switches back and forth between two standard positions.) You can

also attach or dock a fl oating tool in a different place. You might want to do this if you need

to make more room in Visual Studio for a particular programming task, such as creating a user

interface with the Designer. Try docking the Properties window in a different location now.

Dock the Properties window

1. Verify that the Properties window (or another tool that you want to dock) is fl oating

over the Visual Studio IDE in an undocked position.

If you completed the previous exercise, the Properties window is undocked now.

2. Drag the title bar of the Properties window to the top, bottom, right, or left edge of

the development environment (your choice!), taking care to drag the mouse pointer

over one of the docking guides (small arrows) on the edge of the Visual Studio IDE, or

the collection of four docking guides (called a diamond guide) in the center.

As you move the mouse over a docking guide, the Properties window snaps into place,

and a blue shaded rectangle indicates how your window will appear when you release

the mouse button. Note that there are several valid docking locations for tool windows

in Visual Studio, so you might want to try two or three different spots until you fi nd

one that looks right to you. (A window should be located in a place that’s handy and

not in the way of other needed tools.)

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 21

3. Release the mouse button to dock the Properties window.

The window snaps into place in its new home.

Tip To switch between dockable, tabbed documents, and fl oating window styles, right-

click the window’s title bar (or tab, if it is a tabbed document), and then click the option

you want. Although the Properties window works very well as a dockable window, you’ll

probably fi nd that larger windows (the Visual Studio Start Page, for example) work best

as tabbed document windows.

4. Try docking the Properties window several more times in different places to get the feel

of how docking works.

I guarantee that although a few of these window procedures seem confusing at fi rst,

after a while they’ll become routine for you. In general, you want to create window

spaces that have enough room for the information you need to see and use while you

work on more important tasks in the Designer and in the Code Editor.

Hiding Tool Windows

To hide a tool window, click the Auto Hide pushpin button on the right side of the title bar to

conceal the window beneath a tool tab on the edge of the IDE, and click it again to restore the

window to its docked position. You can also use the Auto Hide command on the Window menu

(or right-click a title bar and select Auto Hide) to auto hide a tool window. Give it a try now.

Use the Auto Hide feature

1. Locate the Auto Hide pushpin button on the title bar of the Properties window.

The pushpin is currently in the “down,” or “pushed in,” position, meaning that the

Properties window is “pinned” open and auto hide is disabled.

2. Click the Auto Hide button on the Properties window title bar.

The Properties window slides off the screen and is replaced by a small tab named

Properties. The benefi t of enabling auto hide, of course, is that the process frees up

additional work area in Visual Studio. But the hidden window is also quickly accessible.

3. Hold the mouse pointer over the Properties tab. (You can also click the Properties tab

if you want.)

The Properties window immediately slides back into view.

4. Click elsewhere within the IDE, and the window disappears again.

5. Finally, display the Properties window again, and then click the pushpin button on the

Properties window title bar.

The Properties window returns to its familiar docked position, and you can use it

without worrying about it sliding away.

22 Part I Getting Started with Microsoft Visual Basic 2008
Spend some time moving, resizing, docking, and auto hiding tool windows in Visual

Studio now, to create your version of the perfect work environment. As you work

through this book, you’ll want to adjust your window settings periodically to adapt

your work area to the new tools you’re using.

Tip Visual Studio 2008 lets you save your window and programming environment settings and

copy them to a second computer or share them with members of your programming team. To

experiment with this feature, click the Import And Export Settings command on the Tools menu

and follow the wizard instructions to export (save) or import (load) settings from a fi le.

Switching Among Open Files and Tools by Using
the IDE Navigator

Visual Studio 2008 has a feature that makes it even easier to switch among open fi les and

programming tools in the development environment. This feature is called the IDE Navigator,

and it lets you cycle through open fi les and tools by using key combinations, in much the

same way that you cycle through open programs on the Windows taskbar. Give it a try now.

Use the IDE Navigator

 1. Hold down the Ctrl key and press Tab to open the IDE Navigator.

The IDE Navigator opens, and displays the open fi les and tools in the IDE. Your screen

will look similar to the following:

 2. While holding down the Ctrl key, press Tab repeatedly to cycle through the open fi les

until the fi le you want is highlighted.

To cycle through the fi les in the reverse direction, hold down Ctrl+Shift and press Tab.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 23
 3. While holding down the Ctrl key, press the arrow keys to cycle through both the open

fi les and the open tools.

You can also select an open fi le (or tool) by clicking its name.

 4. When you’re fi nished with the IDE Navigator, release the Ctrl key.

The last selected item in the IDE Navigator will become active.

Tip To cycle through open tools without opening the IDE Navigator, you can also press Alt+F7.

Shift+Alt+F7 lets you cycle through the tools in the reverse direction.

Opening a Web Browser Within Visual Studio

A handy feature in Visual Studio is the ability to open a simple Web browser within the de-

velopment environment. The browser appears as a tabbed document window in the IDE, so it

takes up little space but can be opened immediately when needed. You could open a stand-

alone Web browser (such as Internet Explorer) and keep it nearby on the Windows taskbar,

but running a Web browser within Visual Studio makes examining Web sites and copying

data into Visual Studio even easier. Try using the Visual Studio Web browser now.

Open the Visual Studio Web browser

 1. Click the Other Windows submenu on the View menu, and then click the Web Browser

command.

The Web Browser window appears, as shown here:

24 Part I Getting Started with Microsoft Visual Basic 2008
The browser is a tabbed document window by default, but you can change it into a

fl oating window or a docked window by right-clicking the window title bar and then

clicking the Floating or Dockable commands.

Tip You can change the default page that appears in the Web Browser window by

changing the setting in the Options dialog box. Open the Options dialog box by clicking

Options on the Tools menu. Select the Show All Settings checkbox, expand Environment,

and then click Web Browser. Change the Home Page setting to a URL you want for the

default page.

 2. Experiment with the browser and how it functions within the IDE.

Although the browser is more basic than Internet Explorer or another full-featured

browser, you will soon fi nd it a useful addition to the Visual Studio tool collection.

 3. When you’re fi nished, click the Close button on the right side of the Web browser title

bar to close the window. (If your browser window appears as a tabbed window, you

might need to change it to a fl oating window fi rst.)

Getting Help

Visual Studio includes an electronic reference center called Microsoft Visual Studio 2008

Documentation that you can use to learn more about the Visual Studio IDE, the Visual Basic

programming language, resources in the Microsoft .NET Framework, online communities that

specialize in Visual Basic and Visual Studio, and the remaining tools in the Visual Studio suite.

Take a moment to explore these Help resources now before moving on to Chapter 2, where

you’ll build your fi rst program.

Two Sources for Help: Local Help Files and Online Content

Essentially, there are two basic resources for electronic help within Visual Studio:

Q You can access the local Help fi les that were installed during the Visual Studio 2008

setup process.

Q You can access online (Internet-based) Help via MSDN Online, MSDN newsgroups,

and a collection of developer Web sites sponsored by Microsoft called the Codezone

Community. The Codezone Community is especially valuable, because the group in-

cludes professional developers who are using Visual Studio and Visual Basic 2008 to

write real-world applications; the content and advice they offer is continually updated

and therefore refl ects current trends, concerns, and triumphs within the Visual Basic

programming community.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 25

Confi gure your Help system now to offer both local and online Help resources as you learn

about Visual Basic.

Set Help system options

1. Click How Do I on the Help menu to open the Help system.

Visual Studio offers its assistance through an HTML-based tool called Microsoft Document

Explorer. You can use several commands on the Help menu to open Document Explorer.

Each command opens and confi gures Document Explorer to display a different type of

information. How Do I is one of the best starting places; it presents a hierarchical list of

common programming tasks that you can use to quickly fi nd the information you need.

Your screen looks something like this:

2. Click one or more topics within the How Do I list to explore the type of material

provided.

The Help system contains hundreds of technical descriptions and tutorials (many with

sample code). Now you’ll confi gure Help to display just the content that you want when

it opens.

3. On the Document Explorer menu bar, click Tools, and then click the Options command.

You are presented with customization options that you can use to confi gure how the

Help system works and (most importantly) what resources Help checks when it searches

for information.

26 Part I Getting Started with Microsoft Visual Basic 2008

4. Expand the Help category and then click Online.

Your screen looks similar to the following:

My recommendation is that you set your online options as shown in this screen.

Select the top option button to load Help content fi rst from online sources (the

most up-to-date), and then from local sources on your hard disk. (If you have a slow

Internet connection or no Internet connection, you’ll probably be better served by

using only local sources, however.) Next be sure that MSDN Online and Codezone

Community are selected so that Visual Studio loads recent articles from Visual Basic

developers each time that you use the Search command. If you fi nd after a while that

you prefer one or two Codezone communities over the others, you can adjust the

search order or remove items from the list.

5. Select the confi guration options that make sense to you, and then click OK to save them.

You can return to the Options menu within Document Explorer any time that the Help

system is open. Now try using another useful feature, the Help favorites list, which

operates much like the Favorites list within Internet Explorer.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 27

Maintain a Favorites list within Help

1. On the Document Explorer toolbar, click the Add To Help Favorites button (the one

next to the Help Favorites button, with the icon of a page with a plus sign (+) on it).

When you click this button, Document Explorer adds the article that is currently visible

to your preferred list of Help documents. Now you can always have your favorite Help

resources organized and right at your fi ngertips!

2. Click the Search tab at the top of the Document Explorer window.

The Search window opens, providing a tool that you can use to make specifi c text-based

searches within your local and online Help resources.

3. Click the Language arrow (a content fi lter), and remove the check marks from all

languages except Visual Basic.

You can confi gure the Help system to limit your search to just the languages, tech-

nologies, and topics that you want by using the fi lter arrows. Because you are just

starting with Visual Studio, you might want to limit your search to just Visual Basic

for now.

4. In the Search text box, type data controls, and press Enter.

Visual Studio searches for the text strings ‘data’ and ‘controls’ in your local Help fi les

and online in MSDN, newsgroup, and Codezone communities. Pay particular attention

to the Sort By list box in the Search window, which you can use to select how articles

found by Search are displayed.

5. Click the MSDN Online Help source on the right side of the window to display the

results of your online search.

The online Help information displayed is dynamic; it will change periodically to refl ect

new information published on MSDN.

6. Save the fi rst (highlighted) item to your Help Favorites list.

7. Click the Search tab and then click the Save Search button on the Document Explorer

toolbar.

Tip In addition to Help articles, you can save important search results in your Favorites list.

28 Part I Getting Started with Microsoft Visual Basic 2008

Your screen looks similar to the following illustration. Notice that the Help Favorites

window now holds the two new favorites that you have saved: “How Do I in Visual

Basic” (under Help Topics) and “data controls” (under Help Searches).

8. Click the Rename button in the Help Favorites window. (You can also right-click the

search that you saved, and then click Rename.)

Document Explorer highlights the name that you used for your search and allows you

to rename it so that your favorite more closely matches the actual search. This step is

optional, but I fi nd it useful.

9. Type Data Sources window and controls, and press Enter.

Document Explorer changes the name of the search within your Favorites list. I chose

this title because it seemed clearer to me than my original search string. (However, you

might want to specify a different title that more closely matches the search results that

you have achieved.)

10. Click How Do I In Visual Basic in the Help Favorites window.

The fi rst article that you saved appears in Document Explorer. Now you’ll practice de-

leting a favorite, a skill that becomes important when your list of favorite Help articles

grows long and you need to thin it out.

11. Right-click the How Do I In Visual Basic item in the Help Favorites window and then

click Delete.

12. If you are prompted to confi rm your intention to delete this favorite, click Yes.

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 29
The How Do I article is deleted from your favorites list (but not from the Help system).

 13. Click the Close button on the Document Explorer title bar.

There are additional Help features to learn and experiment with, but now is a good time for

me to summarize the important Help commands and for you to turn to the writing of your

fi rst program in the next chapter.

Summary of Help Commands

Here is a short compilation of useful Help commands and their uses within the Visual

Studio IDE.

To get Help information Do this

Organized by programming task On the Visual Studio Help menu, click How Do I.

About the feature or command

you’re currently using

On the Visual Studio Help menu, click Dynamic Help.

By topic or activity On the Visual Studio Help menu, click Contents.

While working in the Code Editor Click the keyword or program statement you’re interested in,

and then press F1.

While working in a dialog box Click the Help button (question mark) in select dialog boxes

(for example, the dialog box displayed when you choose the

Options command on the Tools menu).

By searching for a specifi c

keyword

On the Help menu, click Search, and type the term you’re

looking for. Filter and organize the search results using the

Sort By list box.

From MSDN and independent

Visual Studio Web sites

On the Help menu, click MSDN Forums.

About contacting Microsoft for

product support

On the Help menu, click Technical Support.

Customizing IDE Settings to Match Step-by-Step
Exercises

Like the tool windows and the Help system, the compiler settings within the Visual Studio

development environment are highly customizable. It is important to review a few of these

settings now so that your version of Visual Studio is confi gured in a way that is compatible

with the step-by-step programming exercises that follow. You will also learn how to cus-

tomize Visual Studio generally so that as you gain programming experience, you can set

up Visual Studio in the way that is most productive for you.

To get Help information Do this

30 Part I Getting Started with Microsoft Visual Basic 2008

Setting the IDE for Visual Basic Development

The fi rst setting that you need to check was established when Visual Studio was fi rst installed

on your machine. During setup, you were asked how you wanted Visual Studio to confi gure

your general development environment. Since Visual Studio is a multi-purpose programming

tool, you had many options—Visual Basic development, Visual C++ development, Visual C#

development, Web development, and even a general-purpose programming environment

that closely matches previous versions of Visual Studio. The selection you made confi gured

not only the Code Editor and the development tools available to you, but also the menu and

toolbar commands, and the contents of several tool windows. For this reason, if you plan to

use this book to learn Visual Basic programming but originally confi gured your software for

a different language, a few of the menu commands and procedures described in this book

will not exactly match your current software confi guration. (The location of the Web Browser

command, discussed above, is one example.)

Fortunately, you can fi x this inconsistency and practice changing your environment settings

by using the Import And Export Settings command on the Tools menu. The following steps

show you how to change your environment setting to Visual Basic development, the recom-

mended setting for this book.

Set the IDE for Visual Basic development

1. On the Tools menu, click Import And Export Settings.

You can use the wizard that appears to save your environment settings for use on

another computer, load settings from another computer, or reset your settings—the

option that you want to select now.

2. Click Reset All Settings, and then click Next.

Visual Studio asks you if you want to save your current settings in a fi le before you

confi gure the IDE for a different type of programming. It is always a good idea to

save your current settings as a backup, so that you can return to them if the new

ones don’t work out.

3. Verify that the Yes, Save My Current Settings button is selected, and note the fi le name

and folder location in which Visual Studio plans to save the settings.

If you want to go back to these settings, you’ll use this same wizard and the Import

Selected Environmental Settings button to restore them.

4. Click Next to view the default list of settings that you can use for Visual Studio.

Depending on what Visual Studio components are installed, you will see a list of settings

similar to those shown in the following illlustration:

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 31

5. Click Visual Basic Development Settings (if it is not already selected), and click Finish.

The wizard switches your IDE settings, including menu commands, toolbars, and settings

within a few dialog boxes, tool windows, and the Code Editor. If a Help window is still

open from an earlier exercise, you see a warning reminding you that the Help system

cannot be updated fully until you close and restart Help.

Feel free to repeat this customization process any time that you need to reset your

settings (for example, if you make a customization mistake that you regret), or if you

want to customize Visual Studio for another programming tool.

6. Click Close to close the wizard.

Checking Project and Compiler Settings

If you just reset your environment settings for Visual Basic development, you are now ready

to begin the programming exercises. But if you didn’t reset your settings—for example, if

you were already confi gured for Visual Basic development and have been using Visual Studio

2008 for a while, or if your computer is a shared resource used by other programmers who

might have modifi ed the default settings (perhaps in a college computer lab)—complete the

following steps to verify that your settings related to projects, solutions, and the Visual Basic

compiler match those that I use in the book.

32 Part I Getting Started with Microsoft Visual Basic 2008

Check project and compiler settings

1. Click the Options command on the Tools menu to display the Options dialog box.

The Options dialog box is your window to many of the customizable settings within

Visual Studio. To see all the settings that you can adjust, click to select the Show All

Settings check box in the lower-left corner of the dialog box.

2. Expand the Projects And Solutions category and then click the General item in the

Options dialog box.

This group of check boxes and options confi gures the Visual Studio project and solution

settings.

3. So that your software matches the settings used in this book, adjust your settings to

match those shown in the following dialog box:

Set this to the location of the book's

practice files (c:\vb08sbs)

Remove checkmarks

from boxes so that

instructions related to

opening projects

match the book

Select this checkbox to show

all available settings

In particular, I recommend that you clear the check marks from the Always Show

Solution and Save New Projects When Created check boxes. The fi rst option shows

additional solution commands in the IDE, which is not necessary for solutions that con-

tain only one project (the situation for most programs in this book). The second option

(in contrast with Visual Studio .NET 2003 and Visual Basic 6) causes Visual Studio to

postpone saving your project until you click the Save All command on the File menu

and provide a location for saving the fi le. This “delayed save” feature allows you to

create a test program, compile and debug the program, and even run it without actu-

ally saving the project on disk—a useful feature when you want to create a quick test

program that you might want to discard instead of saving. (An equivalent situation in

word-processing terms is when you open a new Word document, enter an address for

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 33

a mailing label, print the address, and then exit Word without saving the fi le.) With this

default setting, the exercises in this book prompt you to save your projects after you

create them, although you can also save your projects in advance by selecting the Save

New Projects When Created check box.

You’ll also notice that I have highlighted the c:\vb08sbs folder as the location for Visual

Studio projects, the default location for this book’s sample fi les. Most of the projects

that you create will be stored in this folder, and they will have a “My” prefi x to distin-

guish them from the completed project I provide for you to examine.

After you have adjusted these settings, you’re ready to check four Visual Basic compiler

settings.

4. Click the VB Defaults item in the Options dialog box.

Visual Studio displays a list of four compiler settings: Option Explicit, Option Strict,

Option Compare, and Option Infer. Your screen looks like this:

Although a detailed description of these settings is beyond the scope of this chapter,

you’ll want to verify that Option Explicit is set to On and Option Strict is set to Off—the

default settings for Visual Basic programming within Visual Studio. Option Explicit On

is a setting that requires you to declare a variable before using it in a program—a very

good programming practice that I want to encourage. Option Strict Off allows variables

and objects of different types to be combined under certain circumstances without

generating a compiler error. (For example, a number can be assigned to a text box

object without error.) Although this is a potentially worrisome programming practice,

Option Strict Off is a useful setting for certain types of demonstration programs. If you

don’t keep this setting, a few projects will display error messages when you run them.

34 Part I Getting Started with Microsoft Visual Basic 2008
Option Compare determines the comparison method when different strings are com-

pared and sorted. For more information about comparing strings and sorting text, see

Chapter 13, “Exploring Text Files and String Processing.”

Option Infer is a new setting in Visual Basic 2008. If you set Option Strict to Off and you

set Option Infer to On, you can declare variables without explicitly stating a data type.

Or rather, if you make such a declaration, the Visual Basic compiler will infer (or take

an educated guess) about the data type based on the initial assignment you made for

the variable. The designers of Visual Basic have allowed this type of declaration in the

hopes of saving you computer memory. You’ll learn more about the feature in Chapter

5, “Visual Basic Variables and Formulas, and the .NET Framework”.

As a general rule, I recommend that you set Option Infer to Off to avoid unexpected

results in how variables are used in your programs. I have set Option Infer to Off in

most of the sample projedcts included on the companion CD.

 5. Feel free to examine additional settings in the Options dialog box related to your pro-

gramming environment and Visual Studio. When you’re fi nished, click OK to close the

Options dialog box.

You’re ready to exit Visual Studio and start programming.

One Step Further: Exiting Visual Studio

Each chapter in this book concludes with a section titled “One Step Further” that enables

you to practice an additional skill related to the topic at hand. After the “One Step Further”

tutorial, I’ve compiled a Quick Reference table that reprises the important concepts dis-

cussed in each chapter.

When you’re fi nished using Visual Studio for the day, save any projects that are open, and

close the development environment. Give it a try.

Exit Visual Studio

 1. Save any changes you’ve made to your program by clicking the Save All button on the

Standard toolbar.

As you learned in the preceding section, the default behavior in Visual Studio 2008

is that you give your program a name when you begin a project or solution, but you

don’t specify a fi le location and save the project until you click the Save All button or

the Save All command on the File menu. You’ve made a few changes to your project, so

you should save your changes now.

 2. On the File menu, click the Exit command.

The Visual Studio program closes. Time to move on to your fi rst program in Chapter 2!

 Chapter 1 Exploring the Visual Studio Integrated Development Environment 35
Chapter 1 Quick Reference

To Do this

Start Visual Studio Click Start on the taskbar, click All Programs, click the Microsoft Visual Studio

2008 folder, and then click the Microsoft Visual Studio 2008 program icon.

Open an existing

project

Start Visual Studio. Click Open Project on the File menu.

or

On the Start Page, click Project at the bottom of the Recent Projects pane.

Compile and run a

program

Click the Start Debugging button on the Standard toolbar.

or

Press F5.

Set properties Click the form object whose properties you want to set. In the Properties

window, click the property name in the left column, and then change the

corresponding property setting in the right column.

Resize a tool window Display the tool as a fl oating window (if it is currently docked), and resize it

by dragging its edges.

Move a tool window Display the tool as a fl oating window (if it is in a docked state), and then

drag its title bar.

Dock a tool window With the mouse pointer, drag the window’s title bar over a docking guide to

preview how it will appear, and then release the mouse button to snap the

tool into place.

Auto hide a docked

tool window

Click the Auto Hide pushpin button on the right side of the title bar of the

tool window. The window hides behind a small tab at the edge of the devel-

opment environment until you hold the mouse over it.

Disable Auto Hide for

a docked tool window

Click the tool tab, and then click the Auto Hide pushpin button.

Switch between open

fi les

Hold down the Ctrl key and press Tab to display the IDE Navigator. While

holding down the Ctrl key, press Tab to scroll through the list of open fi les.

Use the arrow keys to scroll through both the list of open fi les and tools. You

can also click on a fi le or tool in the IDE Navigator to switch to it.

Switch between open

tools

Press Alt+F7 to scroll in a forward direction through the open tools in the

IDE. Press Alt+Shift+F7 to scroll in the reverse direction.

Get Help Start the Help system (hosted by the Microsoft Document Explorer) by click-

ing a command on the Help menu.

Customize Help In Document Explorer, click the Options command on the Tools menu.

Confi gure the Visual

Studio environment

for Visual Basic

development

Click the Import And Export Settings command on the Tools menu, click

Reset All Settings and the Next button. Click Yes, Save My Current Settings,

and the Next button. Finally click Visual Basic Development Settings and the

Finish button, and then click Close.

Customize IDE

settings

Click the Options command on the Tools menu, and then customize Visual

Studio settings by category. To view and customize project settings, click the

General item in the Projects And Solutions category. To view and customize

compiler settings, click the VB Defaults item in the same category.

Exit Visual Studio On the File menu, click Exit.

To Do this

Chapter 2

Writing Your First Program

After completing this chapter, you will be able to:

Q Create the user interface for a new program.

Q Set the properties for each object in your user interface.

Q Write program code.

Q Save and run the program.

Q Build an executable fi le.

As you learned in Chapter 1, “Exploring the Visual Studio Integrated Development Environment,”

the Microsoft Visual Studio 2008 Integrated Development Environment (IDE) contains several

powerful tools to help you run and manage your programs. Visual Studio also contains every-

thing you need to build your own applications for Windows and the Web from the ground up.

In this chapter, you’ll learn how to create a simple but attractive user interface with the con-

trols in the Visual Studio Toolbox. Next you’ll learn how to customize the operation of these

controls with property settings. Then you’ll see how to identify just what your program should

do by writing program code. Finally, you’ll learn how to save and run your new program (a Las

Vegas–style slot machine) and how to compile it as an executable fi le.

Lucky Seven: Your First Visual Basic Program

The Windows-based application you’re going to construct is Lucky Seven, a game program

that simulates a lucky number slot machine. Lucky Seven has a simple user interface and can

be created and compiled in just a few minutes using Microsoft Visual Basic. Here’s what your

program will look like when it’s fi nished:
 37

38 Part I Getting Started with Microsoft Visual Basic 2008
Programming Steps

The Lucky Seven user interface contains two buttons, three lucky number boxes, a digital

photo depicting your winnings, and the label “Lucky Seven.” I produced these elements

by creating seven objects on the Lucky Seven form and then changing several properties

for each object. After I designed the interface, I added program code for the Spin and End

buttons to process the user’s button clicks and produce the random numbers. To re-create

Lucky Seven, you’ll follow three essential programming steps in Visual Basic: Create the user

interface, set the properties, and write the program code. The following table shows the

process for Lucky Seven.

Programming step Number of items

1. Create the user interface. 7 objects

2. Set the properties. 13 properties

3. Write the program code. 2 objects

Creating the User Interface

In this exercise, you’ll start building Lucky Seven by fi rst creating a new project and then

using controls in the Toolbox to construct the user interface.

Create a new project

 1. Start Visual Studio 2008.

 2. On the Visual Studio File menu, click New Project.

Tip You can also start a new programming project by clicking the blue Project link to the

right of Create at the bottom of the Recent Projects pane on the Start Page.

The New Project dialog box opens.

Programming step Number of items

 Chapter 2 Writing Your First Program 39
The New Project dialog box provides access to the major project types available for

writing Windows applications. If you indicated during setup that you are a Visual Basic

programmer, Visual Basic is your primary development option (as shown here), but

the other languages in Visual Studio (Visual C# and C++) are always available through

this dialog box. Although you will select a basic Windows application project in this

exercise, this dialog box is also the gateway to other types of development projects,

such as a Web application, console application, smart device (Microsoft .NET Compact

Framework) application, or Visual Studio deployment project.

In the upper-right corner of the New Project dialog box, you will notice a drop-down list

box. This is a new feature of Visual Studio 2008 that is called multi-targeting. This drop-

down list allows you specify the version of the .NET Framework that your application will

target. For example, if you select .NET Framework 3.5, any computer that your applica-

tion will run on must have the .NET Framework 3.5 installed. Visual Studio will show only

options that will work with the selected version of the .NET Framework. Applications

created with Visual Basic 2005 all targeted the .NET Framework 2.0. If you upgrade

programs created in Visual Basic 2005 to Visual Basic 2008, they will continue to target

the .NET Framework 2.0. Unless you have a specifi c need, you can just leave this drop-

down list at its default setting of .NET Framework 3.5. You’ll learn more about the .NET

Framework in Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework.”

40 Part I Getting Started with Microsoft Visual Basic 2008

3. Click the Windows Forms Application icon in the Templates area of the dialog box, if it

is not already selected.

Visual Studio prepares the development environment for Visual Basic Windows

application programming.

4. In the Name text box, type MyLucky7.

Visual Studio assigns the name MyLucky7 to your project. (You’ll specify a folder loca-

tion for the project later.) I’m recommending the “My” prefi x here so you don’t confuse

your new application with the Lucky7 project I’ve created for you on disk.

Tip If your New Project dialog box contains Location and Solution Name text boxes, you

need to specify a folder location and solution name for your new programming project now.

The presence of these text boxes is controlled by a check box in the Tools/Options dialog

box, but it is not the default setting. Throughout this book, you will be instructed to save

your projects (or discard them) after you have completed the programming exercise. For

more information about this “delayed saving” feature and default settings, see “Customizing

IDE Settings to Match Step-by-Step Exercises” in Chapter 1.

5. Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays the blank

Windows form that you will use to build your user interface.

Now you’ll enlarge the form and create the two buttons in the interface.

Create the user interface

1. Point to the lower-right corner of the form until the mouse pointer changes to a

 resizing pointer, and then drag to increase the size of the form to make room for

the objects in your program.

As you resize the form, scroll bars might appear in the Designer to give you access to

the entire form you’re creating. Depending on your screen resolution and the Visual

Studio tools you have open, you might not be able to see the entire form at once.

Don’t worry about this—your form can be small or it can fi ll the entire screen because

the scroll bars give you access to the entire form.

 Chapter 2 Writing Your First Program 41

Size your form so that it is about the size of the form shown here. If you want to match

my example exactly, you can use the width and height dimensions (485 pixels × 278

pixels) shown in the lower-right corner of the screen.

To see the entire form without obstruction, you can resize or close the other program-

ming tools, as you learned in Chapter 1. (Return to Chapter 1 if you have questions

about resizing windows or tools.)

Now you’ll practice adding a button object on the form.

2. Click the Toolbox tab to display the Toolbox window in the IDE.

The Toolbox contains all of the controls that you’ll use to build Visual Basic programs in

this book. The controls suitable for creating a Windows application are visible now be-

cause you selected the Windows Application project type earlier. Controls are organized

by type, and by default the Common Controls category is visible. (If the Toolbox is not

visible now, click Toolbox on the View menu to display it.)

42 Part I Getting Started with Microsoft Visual Basic 2008
 3. Double-click the Button control in the Toolbox, and then move the mouse pointer away

from the Toolbox.

Visual Studio creates a default-sized button object on the form and hides the Toolbox,

as shown here:

The button is named Button1 because it is the fi rst button in the program. (You should make a

mental note of this button name—you’ll see it again when you write your program code.) The

new button object is selected and enclosed by resize handles. When Visual Basic is in design

mode (that is, whenever the Visual Studio IDE is active), you can move objects on the form by

dragging them with the mouse, and you can resize them by using the resize handles. While a

program is running, however, the user can’t move interface elements unless you’ve changed a

property in the program to allow this. You’ll practice moving and resizing the button now.

Move and resize a button

 1. Point to the button so that the pointer changes to a four-headed arrow, and then drag

the button down and to the right.

The button moves across the surface of the form. If you move the object near the edge of

the form or another object (if other objects are present), it automatically aligns itself to a

hidden grid when it is an inch or so away. A little blue “snapline” also appears to help you

gauge the distance of this object from the edge of the form or the other object. The grid

is not displayed on the form by default, but you can use the snapline to judge distances

with almost the same effect.

Tip If you want to display the design mode grid as in Microsoft Visual Studio .NET 2003

and Visual Basic 6, click the Options command on the Tools menu, expand Windows

Form Designer, and then click General. Set ShowGrid to True, and set LayOutMode to

SnapToGrid. You will need to close and reopen the form for the change to take effect.

 Chapter 2 Writing Your First Program 43

2. Position the mouse pointer on the lower-right corner of the button.

When the mouse pointer rests on a resize handle of a selected object, it becomes a

resizing pointer. You can use the resizing pointer to change the size of an object.

3. Enlarge the button by dragging the pointer down and to the right.

When you release the mouse button, the button changes size and snaps to the grid.

4. Use the resizing pointer to return the button to its original size.

Now you’ll add a second button to the form, below the fi rst button.

Add a second button

1. Click the Toolbox tab to display the Toolbox.

2. Click the Button control in the Toolbox (single-click this time), and then move the

mouse pointer over the form.

The mouse pointer changes to crosshairs and a button icon. The crosshairs are designed

to help you draw the rectangular shape of the button on the form, and you can use this

method as an alternative to double-clicking to create a control of the default size.

3. Drag the pointer down and to the right. Release the mouse button to complete the

button, and watch it snap to the form.

4. Resize the button object so that it is the same size as the fi rst button, and then move it

below the fi rst button on the form. (Use the snapline feature to help you.)

Tip At any time, you can delete an object and start over again by selecting the object

on the form and then pressing Delete. Feel free to create and delete objects to practice

creating your user interface.

Now you’ll add the labels used to display the numbers in the program. A label is a special

 user interface element designed to display text, numbers, or symbols when a program runs.

When the user clicks the Lucky Seven program’s Spin button, three random numbers appear

in the label boxes. If one of the numbers is a 7, the user wins.

Add the number labels

1. Double-click the Label control in the Toolbox.

Visual Studio creates a label object on the form. If you’re familiar with earlier versions

of Visual Studio or Visual Basic, you’ll notice that the label object is smaller than in

previous versions by default. It is just large enough to hold the text contained in the

object, but it can also be resized.

44 Part I Getting Started with Microsoft Visual Basic 2008

2. Drag the Label1 object to the right of the two button objects.

Your form looks something like this:

3. Double-click the Label control in the Toolbox to create a second label object.

This label object will be named Label2 in the program.

4. Double-click the Label control again to create a third label object.

5. Move the second and third label objects to the right of the fi rst one on the form.

Allow plenty of space between the three labels because you will use them to display

large numbers when the program runs.

Now you’ll use the Label control to add a descriptive label to your form. This will be the

fourth and fi nal label in the program.

6. Double-click the Label control in the Toolbox.

7. Drag the Label4 object below the two command buttons.

When you’ve fi nished, your four labels should look like those in the following illustration.

(You can move your label objects if they don’t look quite right.)

 Chapter 2 Writing Your First Program 45
Now you’ll add a picture box to the form to graphically display the payout you’ll receive

when you draw a 7 and hit the jackpot. A picture box is designed to display bitmaps, icons,

digital photos, and other artwork in a program. One of the best uses for a picture box is to

display a JPEG image fi le.

Add a picture

 1. Click the PictureBox control in the Toolbox.

 2. Using the control’s drawing pointer, create a large rectangular box below the second

and third labels on the form.

Leave a little space below the labels for their size to grow as I mentioned earlier. When

you’ve fi nished, your picture box object looks similar to this:

This object will be named PictureBox1 in your program; you’ll use this name later in the

program code.

Now you’re ready to customize your interface by setting a few properties.

Setting the Properties

As you discovered in Chapter 1, you can change properties by selecting objects on the form

and changing their settings in the Properties window. You’ll start by changing the property

settings for the two buttons.

Set the button properties

 1. Click the fi rst button (Button1) on the form.

The button is selected and is surrounded by resize handles.

46 Part I Getting Started with Microsoft Visual Basic 2008

2. Click the Properties window title bar.

Tip If the Properties window isn’t visible, click the Properties Window command on the

View menu, or press F4.

3. A the top of the Properties window, click the Categorized button.

For information about categorized properties, see “The Properties Window” in Chapter 1.

4. Resize the Properties window (if necessary) so that there is plenty of room to see the

property names and their current settings.

Once you get used to setting properties, you will probably use the Properties win-

dow without enlarging it, but making it bigger helps when you fi rst try to use it. The

Properties window in the following illustration is a good size for setting properties:

The Properties window lists the settings for the fi rst button. These include settings for

the background color, text, font height, and width of the button. Because there are so

many properties, Visual Studio organizes them into categories and displays them in

outline view. If you want to see the properties in a category, click the plus sign (+) next

to the category title.

5. Scroll in the Properties window until you see the Text property located in the

Appearance category.

6. Double-click the Text property in the left column of the Properties window.

 Chapter 2 Writing Your First Program 47

The current Text setting (“Button1”) is highlighted in the Properties window.

7. Type Spin, and press Enter.

The Text property changes to “Spin” in the Properties window and on the button on

the form. Now you’ll change the Text property of the second button to “End”. (You’ll

select the second button in a new way this time.)

8. Open the Object list at the top of the Properties window.

A list of the interface objects in your program appears as follows:

9. Click Button2 System.Windows.Forms.Button (the second button) in the list box.

The property settings for the second button appear in the Properties window, and

Visual Studio highlights Button2 on the form.

10. Double-click the current Text property (“Button2”), type End, and then press Enter.

The text of the second button changes to “End”.

Tip Using the Object list is a handy way to switch between objects in your program. You

can also switch between objects on the form by clicking each object.

Now you’ll set the properties for the labels in the program. The fi rst three labels will hold the

random numbers generated by the program and will have identical property settings. (You’ll

set most of them as a group.) The descriptive label settings will be slightly different.

48 Part I Getting Started with Microsoft Visual Basic 2008

Set the number label properties

1. Click the fi rst number label (Label1), hold down the Shift key, click the second and third

number labels, and then release the Shift key. (If the Properties window is in the way,

move it to a new place.)

A selection rectangle and resize handles appear around each label you click. You’ll

change the TextAlign, BorderStyle, and Font properties now so that the numbers that

will appear in the labels will be centered, boxed, and identical in font and font size. (All

of these properties are located in the Appearance category of the Properties window.)

You’ll also set the AutoSize property to False so that you can change the size of the labels

according to your precise specifi cations. (The AutoSize property is located in the Layout

category.)

Tip When more than one object is selected, only those properties that can be changed

for the group are displayed in the Properties window.

2. Click the AutoSize property in the Properties window, and then click the arrow that

appears to the right.

3. Set the AutoSize property to False so that you can size the labels manually.

4. Click the TextAlign property, and then click the arrow that appears to the right.

A graphical assortment of alignment options appears in the list box; you can use these

settings to align text anywhere within the borders of the label object.

5. Click the center option (MiddleCenter).

The TextAlign property for each of the selected labels changes to MiddleCenter.

6. Click the BorderStyle property, and then click the arrow that appears to the right.

The valid property settings (None, FixedSingle, and Fixed3D) appear in the list box.

7. Click FixedSingle in the list box to add a thin border around each label.

8. Click the Font property, and then click the ellipsis button (the button with three dots

that’s located next to the current font setting).

The Font dialog box opens.

9. Change the font to Times New Roman, the font style to Bold, and the font size to 24,

and then click OK.

The label text appears in the font, style, and size you specifi ed.

 Chapter 2 Writing Your First Program 49

Now you’ll set the text for the three labels to the number 0—a good “placeholder” for

the numbers that will eventually fi ll these boxes in your game. (Because the program

produces the actual numbers, you could also delete the text, but putting a placeholder

here gives you something to base the size of the labels on.)

10. Click a blank area on the form to remove the selection from the three labels, and

then click the fi rst label.

11. Double-click the Text property, type 0, and then press Enter.

The text of the Label1 object is set to 0. You’ll use program code to set this property to

a random “slot machine” number later in this chapter.

12. Change the text in the second and third labels on the form to 0 also.

13. Move and resize the labels now so that they are appropriately spaced.

Your form looks something like this:

 Now you’ll change the Text, Font, and ForeColor properties of the fourth label.

Set the descriptive label properties

1. Click the fourth label object (Label4) on the form.

2. Change the Text property in the Properties window to Lucky Seven.

3. Click the Font property, and then click the ellipsis button.

4. Use the Font dialog box to change the font to Arial, the font style to Bold, and the font

size to 18. Then click OK.

The font in the Label4 object is updated, and the label is resized automatically to hold

the larger font size because the object’s AutoSize property is set to True.

50 Part I Getting Started with Microsoft Visual Basic 2008

5. Click the ForeColor property in the Properties window, and then click the arrow in the

second column.

Visual Studio displays a list box with Custom, Web, and System tabs for setting the

foreground colors (the color of text) of the label object. The Custom tab offers many of

the colors available in your system. The Web tab sets colors for Web pages and lets you

pick colors using their common names. The System tab displays the current colors used

for user interface elements in your system.

6. Click the purple color on the Custom tab.

The text in the label box changes to purple.

Now you’re ready to set the properties for the last object.

Reading Properties in Tables

In this chapter, you’ve set the properties for the Lucky Seven program step by

step. In future chapters, the instructions to set properties will be presented in table

format unless a setting is especially tricky. Here are the properties you’ve set so far in

the Lucky Seven program in table format, as they’d look later in the book. Settings you

need to type in are shown in quotation marks. You shouldn’t type the quotation marks.

Object Property Setting

Button1 Text “Spin”

Button2 Text “End”

Label1, Label2, Label3 AutoSize

BorderStyle

Font

Text

TextAlign

False

FixedSingle

Times New Roman, Bold, 24-point

“0”

MiddleCenter

Label4 Text

Font

ForeColor

“Lucky Seven”

Arial, Bold, 18-point

Purple

PictureBox1 Image

SizeMode

Visible

“c:\vb08sbs\chap02\paycoins.jpg”

StretchImage

False

Object Property Setting

 Chapter 2 Writing Your First Program 51
The Picture Box Properties

When the person playing your game hits the jackpot (that is, when at least one 7 appears

in the number labels on the form), the picture box object will contain a picture of a person

dispensing money. This picture is a digitized image from an unpublished fourteenth-century

German manuscript stored in JPEG format. (As a history professor, I run across these things.)

You need to set the SizeMode property to accurately size the picture and set the Image

property to specify the name of the JPEG fi le that you will load into the picture box. You

also need to set the Visible property, which specifi es the picture state at the beginning of

the program.

Set the picture box properties

 1. Click the picture box object on the form.

 2. Click the SizeMode property in the Properties window (listed in the Behavior

category), click the arrow to the right, and then click StretchImage.

Setting SizeMode to StretchImage before you open a graphic causes Visual Studio to

resize the graphic to the exact dimensions of the picture box. (Typically, you set this

property before you set the Image property.)

 3. Click the Image property in the Properties window, and then click the ellipsis button in

the second column.

The Select Resource dialog box opens.

 4. Click the Local Resource option, and then click the Import button.

 5. In the Open dialog box, navigate to the c:\vb08sbs\chap02 folder.

This folder contains the digital photo PayCoins.jpg.

 6. Select PayCoins.jpg, and then click Open.

52 Part I Getting Started with Microsoft Visual Basic 2008

A medieval illustration of one person paying another appears in the Select Resource

dialog box. (The letter “W” represents winning.)

7. Click OK.

The PayCoins photo is loaded into the picture box. Because the photo is relatively small

(24 KB), it opens quickly on the form.

8. Resize the picture box object now to fi x any distortion problems that you see in the

image.

I sized my picture box object to be 148 pixels wide by 143 pixels high. You can match

this size by using the width and height dimensions located on the lower-right side of

the Visual Studio IDE. (The dimensions of the selected object are given on the lower-

right side, and the location on the form of the object’s upper-left corner is given to

the left of the dimensions.)

This particular image displays best when the picture box object retains a square shape.

Note As you look at the picture box object, you might notice a tiny shortcut arrow near

its upper-right corner. This arrow is a button that you can click to quickly change a few

common picture box settings and open the Select Resource dialog box. (You’ll see the

shortcut arrow again in Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes,”

when you use the ToolStrip control.)

Now you’ll change the Visible property to False so that the image will be invisible when

the program starts.

9. Click the Visible property in the Behavior category of the Properties window, and

then click the arrow to the right.

 Chapter 2 Writing Your First Program 53
The valid settings for the Visible property appear in a list box.

 10. Click False to make the picture invisible when the program starts.

Setting the Visible property to False affects the picture box when the program runs, but

not now while you’re designing it. Your completed form looks similar to this:

Tip You can also double-click property names that have True and False settings (so-called

Boolean properties), to toggle back and forth between True and False. Default Boolean

properties are shown in regular type, and changed settings appear in bold.

 11. You are done setting properties for now, so if your Properties window is fl oating,

double-click its title bar to return it to the docked position.

Writing the Code

Now you’re ready to write the code for the Lucky Seven program. Because most of the

objects you’ve created already “know” how to work when the program runs, they’re ready

to receive input from the user and process it. The inherent functionality of objects is one

of the great strengths of Visual Studio and Visual Basic—after objects are placed on a form

and their properties are set, they’re ready to run without any additional programming.

However, the “meat” of the Lucky Seven game—the code that actually calculates random

numbers, displays them in boxes, and detects a jackpot—is still missing from the program.

This computing logic can be built into the application only by using program statements—

code that clearly spells out what the program should do at each step of the way. Because

the Spin and End buttons drive the program, you’ll associate the code for the game with

those buttons. You enter and edit Visual Basic program statements in the Code Editor.

In the following steps, you’ll enter the program code for Lucky Seven in the Code Editor.

54 Part I Getting Started with Microsoft Visual Basic 2008

Use the Code Editor

1. Double-click the End button on the form.

The Code Editor appears as a tabbed document window in the center of the Visual

Studio IDE, as shown here:

Inside the Code Editor are program statements associated with the current form.

Program statements that are used together to perform some action are typically

grouped in a programming construct called a procedure. A common type of proce-

dure is a Sub procedure, sometimes called a subroutine. Sub procedures include a Sub

keyword in the fi rst line and end with End Sub. Procedures are typically executed when

certain events occur, such as when a button is clicked. When a procedure is associated

with a particular object and an event, it is called an event handler or an event procedure.

When you double-clicked the End button (Button2), Visual Studio automatically added

the fi rst and last lines of the Button2_Click event procedure, as the following code shows.

(The fi rst line was wrapped to stay within the book margins.) You may notice other bits

of code in the Code Editor (words like Public and Class), which Visual Studio has added

to defi ne important characteristics of the form, but I won’t emphasize them here.

Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

End Sub

 Chapter 2 Writing Your First Program 55

The body of a procedure fi ts between these lines and is executed whenever a user ac-

tivates the interface element associated with the procedure. In this case, the event is a

mouse click, but as you’ll see later in the book, it could also be a different type of event.

2. Type End, and then press the Enter key.

When you type the statement, Visual Studio recognizes End as a unique reserved

word or keyword and displays it in a list box with Common and All tabs. This list box

is called IntelliSense because it tries to intelligently help you write code, and you can

browse through various Visual Basic keywords and objects alphabetically. (In this way,

the language is partially discoverable through the IDE itself.)

After you press the Enter key, the letters in End turn blue and are indented, indicating

that Visual Basic recognizes End as one of several hundred unique keywords within the

Visual Basic language. You use the End keyword to stop your program and remove it

from the screen. In this case, End is also a complete program statement, a self-contained

instruction executed by the Visual Basic compiler, the part of Visual Studio that processes

or parses each line of Visual Basic source code, combining the result with other resources

to create an executable fi le. Program statements are a little like complete sentences in

a human language—statements can be of varying lengths but must follow the gram-

matical “rules” of the compiler. In Visual Studio, program statements can be composed

of keywords, properties, object names, variables, numbers, special symbols, and other

values. You’ll learn more about how program statements are constructed in Chapter 5.

As you enter program statements and make other edits, the Code Editor handles many

of the formatting details for you, including adjusting indentation and spacing and add-

ing any necessary parentheses. The exact spelling, order, and spacing of items within

program statements is referred to as statement syntax.

When you pressed the Enter key, the End statement was indented to set it apart from

the Private Sub and End Sub statements. This indenting scheme is one of the program-

ming conventions you’ll see throughout this book to keep your programs clear and

readable. The group of conventions regarding how code is organized in a program is

often referred to as program style.

Now that you’ve written the code associated with the End button, you’ll write code for the

Spin button. These program statements will be a little more extensive and will give you a

chance to learn more about statement syntax and program style. You’ll study many of the

program statements later in this book, so you don’t need to know everything about them

now. Just focus on the general structure of the code and on typing the program statements

exactly as they are printed.

56 Part I Getting Started with Microsoft Visual Basic 2008

Write code for the Spin button

1. Click the View Designer button in the Solution Explorer window to display your form

again.

Note When the Code Editor is visible, you won’t be able to see the form you’re working

on. The View Designer button is one mechanism you can use to display it again. (If more

than one form is loaded in Solution Explorer, click the form you want to display fi rst.) You

can also click the Form1.vb [Design] tab at the top edge of the Code Editor. If you don’t

see tabs at the top of the Code Editor, enable Tabbed Documents view in the Options

dialog box, as discussed in a Tip in Chapter 1.

2. Double-click the Spin button.

After a few moments, the Code Editor appears, and an event procedure associated with

the Button1 button appears near the Button2 event procedure.

Although you changed the text of this button to “Spin”, its name in the program is still

Button1. (The name and the text of an interface element can be different to suit the

needs of the programmer.) Each object can have several procedures associated with

it, one for each event it recognizes. The click event is the one you’re interested in now

because users will click the Spin and End buttons when they run the program.

3. Type the following program lines between the Private Sub and End Sub statements.

Press Enter after each line, press Tab to indent, and take care to type the program

statements exactly as they appear here. (The Code Editor will scroll to the left as you

enter the longer lines.) If you make a mistake (usually identifi ed by a jagged underline),

delete the incorrect statements and try again.

Tip As you enter the program code, Visual Basic formats the text and displays different

parts of the program in color to help you identify the various elements. When you begin

to type a property, Visual Basic also displays the available properties for the object you’re

using in a list box, so you can double-click the property or keep typing to enter it yourself.

If Visual Basic displays an error message, you might have misspelled a program statement.

Check the line against the text in this book, make the necessary correction, and continue

typing. (You can also delete a line and type it from scratch.) In addition, Visual Basic might

add necessary code automatically. For example, when you type the following code, Visual

Basic automatically adds the End If line. Readers of previous editions of this book have

found this fi rst typing exercise to be the toughest part of this chapter—“But Mr. Halvorson,

I know I typed it just as you wrote it!”—so please give this program code your closest

attention. I promise you, it works!

 Chapter 2 Writing Your First Program 57

PictureBox1.Visible = False ' hide picture

Label1.Text = CStr(Int(Rnd() * 10)) ' pick numbers

Label2.Text = CStr(Int(Rnd() * 10))

Label3.Text = CStr(Int(Rnd() * 10))

' if any number is 7 display picture and beep

If (Label1.Text = "7") Or (Label2.Text = "7") _

Or (Label3.Text = "7") Then

 PictureBox1.Visible = True

 Beep()

End If

When you’ve fi nished, the Code Editor looks as shown in the following graphic:

4. Click the Save All command on the File menu to save your additions to the program.

The Save All command saves everything in your project—the project fi le, the form

fi le, any code modules, and other related components in your application. Since

this is the fi rst time that you have saved your project, the Save Project dialog box

opens, prompting you for the name and location of the project. (If your copy of

Visual Studio is confi gured to prompt you for a location when you fi rst create your

project, you won’t see the Save Project dialog box now—Visual Studio just saves

your changes.)

5. Browse and select a location for your fi les.

I recommend that you use the c:\vb08sbs\chap02 folder (the location of the book’s

sample fi les), but the location is up to you. Since you used the “My” prefi x when you

originally opened your project, this version won’t overwrite the Lucky7 practice fi le

that I built for you on disk.

58 Part I Getting Started with Microsoft Visual Basic 2008
 6. Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program’s solution

fi les, which is not necessary for solutions that contain only one project (the situation for

most programs in this book).

 7. Click Save to save your fi les.

Note If you want to save just the item you are currently working on (the form, the code

module, or something else), you can use the Save command on the File menu. If you want

to save the current item with a different name, you can use the Save As command.

A Look at the Button1_Click Procedure

The Button1_Click procedure is executed when the user clicks the Spin button on the form. The

procedure uses some pretty complicated statements, and because I haven’t formally introduced

them yet, it might look a little confusing. However, if you take a closer look, you’ll probably see

a few things that look familiar. Taking a peek at the contents of these procedures will give you a

feel for the type of program code you’ll be creating later in this book. (If you’d rather not stop for

this preview, feel free to skip to the next section, “Running Visual Basic Applications.”)

The Button1_Click procedure performs three tasks:

Q It hides the digital photo.

Q It creates three random numbers for the number labels.

Q It displays the photo when the number 7 appears.

Let’s look at each of these steps individually.

Hiding the photo is accomplished with the following line:

PictureBox1.Visible = False ' hide picture

This line is made up of two parts: a program statement and a comment.

The PictureBox1.Visible = False program statement sets the Visible property of the picture

box object (PictureBox1) to False (one of two possible settings). You might remember that

you set this property to False once before by using the Properties window. You’re doing it

again now in the program code because the fi rst task is a spin and you need to clear away

a photo that might have been displayed in a previous game. Because the property will

be changed at run time and not at design time, you must set the property by using pro-

gram code. This is a handy feature of Visual Basic, and I’ll talk about it more in Chapter 3,

“Working with Toolbox Controls.”

 Chapter 2 Writing Your First Program 59
The second part of the fi rst line (the part displayed in green type on your screen) is called

a comment. Comments are explanatory notes included in program code following a single

quotation mark ('). Programmers use comments to describe how important statements

work in a program. These notes aren’t processed by Visual Basic when the program runs;

they exist only to document what the program does. You’ll want to use comments often

when you write Visual Basic programs to leave an easy-to-understand record of what

you’re doing.

The next three lines handle the random number computations. Does this concept sound

strange? You can actually make Visual Basic generate unpredictable numbers within specifi c

guidelines—in other words, you can create random numbers for lottery contests, dice games,

or other statistical patterns. The Rnd function in each line creates a random number between

0 and 1 (a number with a decimal point and several decimal places), and the Int function

returns the integer portion of the result of multiplying the random number by 10. This com-

putation creates random numbers between 0 and 9 in the program—just what you need for

this particular slot machine application.

Label1.Text = CStr(Int(Rnd() * 10)) ' pick numbers

You then need to jump through a little hoop in your code. You need to copy these random

numbers into the three label boxes on the form, but fi rst the numbers need to be converted

to text with the CStr (convert to string) function. Notice how CStr, Int, and Rnd are all con-

nected together in the program statement—they work collectively to produce a result like a

mathematical formula. After the computation and conversion, the values are assigned to the

Text properties of the fi rst three labels on the form, and the assignment causes the numbers

to be displayed in bold, 24-point, Times New Roman font in the three number labels.

The following illustration shows how Visual Basic evaluates one line of code step by step

to generate the random number 7 and copy it to a label object. Visual Basic evaluates the

expression just like a mathematician solving a mathematical formula.

60 Part I Getting Started with Microsoft Visual Basic 2008
The last group of statements in the program checks whether any of the random numbers is 7.

If one or more of them is, the program displays the medieval manuscript depiction of a pay-

out, and a beep announces the winnings.

' if any number is 7 display picture and beep

If (Label1.Text = "7") Or (Label2.Text = "7") _

Or (Label3.Text = "7") Then

 PictureBox1.Visible = True

 Beep()

End If

Each time the user clicks the Spin button, the Button1_Click procedure is executed, or called,

and the program statements in the procedure are run again.

Running Visual Basic Applications

Congratulations! You’re ready to run your fi rst real program. To run a Visual Basic program

from the development environment, you can do any of the following:

Q Click Start Debugging on the Debug menu.

Q Click the Start Debugging button on the Standard toolbar.

Q Press F5.

Try running your Lucky Seven program now. If Visual Basic displays an error message, you

might have a typing mistake or two in your program code. Try to fi x it by comparing the

printed version in this book with the one you typed, or load Lucky7 from your hard disk

and run it.

Run the Lucky Seven program

 1. Click the Start Debugging button on the Standard toolbar.

The Lucky Seven program compiles and runs in the IDE. After a few seconds, the user

interface appears, just as you designed it.

 2. Click the Spin button.

The program picks three random numbers and displays them in the labels on the form,

as follows:

 Chapter 2 Writing Your First Program 61

Because a 7 appears in the fi rst label box, the digital photo depicting the payoff appears,

and the computer beeps. You win! (The sound you hear depends on your Default Beep

setting in the Sound Control Panel. To make this game sound really cool, change the

Default Beep sound to something more dynamic.)

3. Click the Spin button 15 or 16 more times, watching the results of the spins in the

number boxes.

About half the time you spin, you hit the jackpot—pretty easy odds. (The actual odds

are about 2.8 times out of 10; you’re just lucky at fi rst.) Later on you might want to

make the game tougher by displaying the photo only when two or three 7s appear,

or by creating a running total of winnings.

4. When you’ve fi nished experimenting with your new creation, click the End button.

The program stops, and the development environment reappears on your screen.

Tip If you run this program again, you might notice that Lucky Seven displays exactly

the same sequence of random numbers. There is nothing wrong here—the Visual Basic

Rnd function was designed to display a repeating sequence of numbers at fi rst so that

you can properly test your code using output that can be reproduced again and again.

To create truly “random” numbers, use the Randomize function in your code, as shown

in the exercise at the end of this chapter. The .NET Framework, which you’ll learn to use

later, also supplies random number functions.

62 Part I Getting Started with Microsoft Visual Basic 2008
Sample Projects on Disk

If you didn’t build the MyLucky7 project from scratch (or if you did build the project and want

to compare what you created to what I built for you as I wrote the chapter), take a moment to

open and run the completed Lucky7 project, which is located in the c:\vb08sbs\chap02\lucky7

folder on your hard disk (the default location for the practice fi les for this chapter). If you need

a refresher course on opening projects, see the detailed instructions in Chapter 1. If you are

asked if you want to save changes to the MyLucky7 project, be sure to click Save.

This book is a step-by-step tutorial, so you will benefi t most from building the projects on your

own and experimenting with them. But after you have completed the projects, it is often a

good idea to compare what you have with the practice fi le “solution” that I provide, especially

if you run into trouble. To make this easy, I will give you the name of the solution fi les on disk

before you run the completed program in most of the step-by-step exercises.

After you have compared the MyLucky7 project to the Lucky7 solution fi les on disk, re-open

MyLucky7, and prepare to compile it as an executable fi le. If you didn’t create MyLucky7, use

my solution fi le to complete the exercise.

Building an Executable File

Your last task in this chapter is to complete the development process and create an appli-

cation for Windows, or an executable fi le. Windows applications created with Visual Studio

have the fi le name extension .exe and can be run on any system that contains Windows

and the necessary support fi les. (Visual Basic installs these support fi les—including the .NET

Framework fi les—automatically.) If you plan to distribute your applications, see “Deploying

Your Application” later in the chapter.

At this point, you need to know that Visual Studio can create two types of executable fi les for

your project: a debug build and a release build.

Debug builds are created automatically by Visual Studio when you create and test your

program. They are stored in a folder called bin\debug within your project folder. The debug

executable fi le contains debugging information that makes the program run slightly slower.

Release builds are optimized executable fi les stored in the bin\release folder within your

project. To customize the settings for your release build, you click the [ProjectName]

Properties command on the Project menu, and then click the Compile tab, where you

see a list of compilation options that looks like this:

 Chapter 2 Writing Your First Program 63

Try creating a release build named MyLucky7.exe now.

Create an executable fi le

1. On the Build menu, click the Build MyLucky7 command.

The Build command creates a bin\release folder in which to store your project (if the

folder doesn’t already exist) and compiles the source code in your project. The result is

an executable fi le named MyLucky7.exe. To save you time, Visual Studio often creates

temporary executable fi les while you develop your application; however, it’s always a

good idea to recompile your application manually with the Build or Rebuild commands

when you reach an important milestone.

Try running this program outside the Visual Studio IDE now from the Windows Start

menu.

2. On the Windows taskbar, click Start.

The next command depends on the version of Windows you’re using.

3. If you have Windows Vista, type run in the Search text box and press Enter to open

the Run dialog box. If you have Windows XP or earlier, click the Run command to

open the Run dialog box.

4. Click Browse and then navigate to the c:\vb08sbs\chap02\mylucky7\bin\release folder.

64 Part I Getting Started with Microsoft Visual Basic 2008
 5. Click the MyLucky7.exe application icon, click Open, and then click OK.

The Lucky Seven program loads and runs in Windows. Because this is a simple test

application and it does not possess a formal publisher certifi cate that emphasizes its

reliability or authenticity, you may see the following message: “The publisher could

not be verifi ed. Are you sure you want to run this software?” If this happens to you,

click Yes to run the program anyway. (Creating such certifi cates is beyond the scope

of this book, but this program is quite safe.)

 6. Click Spin a few times to verify the operation of the game, and then click End.

Tip You can also run Windows applications, including compiled Visual Basic programs, by

opening Windows Explorer and double-clicking the executable fi le. To create a shortcut

icon for MyLucky7.exe on the Windows desktop, right-click the Windows desktop, point

to New, and then click Shortcut. When you’re prompted for the location of your applica-

tion fi le, click Browse, and select the MyLucky7.exe executable fi le. Click the OK, Next, and

Finish buttons. Windows places an icon on the desktop that you can double-click to run

your program.

 7. On the File menu, click Exit to close Visual Studio and the MyLucky7 project.

The Visual Studio development environment closes.

Deploying Your Application

Visual Studio helps you distribute your Visual Basic applications by providing several options

for deployment—that is, for installing the application on one or more computer systems.

Whereas Visual Basic 6 requires a sophisticated setup program that copies dynamic-link

libraries (DLLs) and support fi les and registers the application with the operating system,

Visual Studio 2008 applications are compiled as assemblies—deployment units consisting

of one or more fi les necessary for the program to run. Assemblies contain four elements:

Microsoft intermediate language (MSIL) code, metadata, a manifest, and supporting fi les

and resources.

Assemblies are so comprehensive and self-describing that Visual Studio applications don’t

need to be formally registered with the operating system to run. This means that theoretically

a Visual Basic 2008 application can be installed by simply copying the assembly for the pro-

gram to a second computer that has the correct version of the .NET Framework installed—a

process called XCOPY installation, after the MS-DOS XCOPY command that copies a complete

directory (folder) structure from one location to another. In practice, however, it isn’t practical

to deploy Visual Basic applications by using a copy procedure such as XCOPY (via the com-

mand prompt) or Windows Explorer. For commercial applications, an installation program

with a graphical user interface is usually preferred, and it’s often desirable to register the pro-

gram with the operating system so that it can be uninstalled later by using Control Panel.

 Chapter 2 Writing Your First Program 65
Although the advanced options related to deployment and security go beyond the scope of

this book, you should be familiar with your deployment options. To manage the deployment

process, Visual Studio 2008 supports two deployment technologies, ClickOnce and Windows

Installer.

With ClickOnce you can create an installation service for desktop applications that users can

access on their own with minimal interaction. With ClickOnce you can specify prerequisites,

such as the .NET Framework, and you can easily publish updates as you make improvements

to your program. You can publish your program to a Web server or a fi le server. You can get

started with ClickOnce at any time by using the Publish command on the Build menu. You can

also specify ClickOnce settings by using the Properties command on the Project menu. You

specify ClickOnce settings on the Publish tab of the Project Designer.

Windows Installer is a more classic installation process. In Visual Studio, you add a setup or

a Windows Installer project to your solution, which automatically creates a setup program

for the application. This setup project can be customized to allow for different methods

of installation, such as from CD-ROMs or Web servers. You can get started with Windows

Installer by using the New Project command on the File menu to create a custom setup

project. (Select the Setup And Deployment option under Other Project Types to see a list

of setup templates and wizards.)

One Step Further: Adding to a Program

You can restart Visual Studio at any time and work on a programming project you’ve stored

on disk. You’ll restart Visual Studio now and add a Randomize statement to the Lucky Seven

program.

Reload Lucky Seven

 1. On the Windows taskbar, click Start, click All Programs, click Microsoft Visual Studio

2008, and then click the Microsoft Visual Studio 2008 program icon.

A list of the projects that you’ve most recently worked on appears on the Visual Studio

Start Page in the Recent Project pane. Because you just fi nished working with Lucky

Seven, the MyLucky7 project should be fi rst on the list.

 2. Click the MyLucky7 link to open the Lucky Seven project.

The Lucky Seven program opens, and the MyLucky7 form appears. (If you don’t see the

form, click Form1.vb in Solution Explorer, and then click the View Designer button.)

Now you’ll add the Randomize statement to the Form_Load procedure, a special

procedure that is associated with the form and that is executed each time the pro-

gram is started.

66

Part I Getting Started with Microsoft Visual Basic 2008

3. Double-click the form (not one of the objects) to display the Form_Load procedure.

The Form_Load procedure appears in the Code Editor, as shown here:

4. Type Randomize, and then press Enter.

The Randomize statement is added to the program and will be executed each time

the program starts. Randomize uses the system clock to create a truly random starting

point, or seed, for the Rnd statement used in the Button1_Click procedure. As I men-

tioned earlier, without the Randomize statement, the Lucky Seven program produces

the same string of random spins every time you restart the program. With Randomize

in place, the program spins randomly every time it runs, and the numbers don’t follow

a recognizable pattern.

5. Run the new version of Lucky Seven, and then save the project. If you plan to use the

new version a lot, you might want to create a new .exe fi le, too.

6. When you’re fi nished, click Close Project on the File menu.

The fi les associated with the Lucky Seven program are closed.

 Chapter 2 Writing Your First Program 67
Chapter 2 Quick Reference

To Do this

Create a user interface Use Toolbox controls to place objects on your form, and then set the

necessary properties. Resize the form and the objects as appropriate.

Move an object Point to the object, and when a four-headed arrow appears, drag the object.

Resize an object Click the object to select it, and then drag the resize handle attached to the

part of the object you want to resize.

Delete an object Click the object, and then press the Delete key.

Open the Code Editor Double-click an object on the form (or the form itself).

or

Select a form or a module in Solution Explorer, and then click the View Code

button.

Write program code Type Visual Basic program statements associated with objects in the Code

Editor.

Save a program On the File menu, click the Save All command.

or

Click the Save All button on the Standard toolbar.

Save a form fi le Make sure the form is open, and then on the File menu, click the Save

command.

or

Click the Save button on the Standard toolbar.

Create an .exe fi le On the Build menu, click the Build or Rebuild command.

Deploy an application

by using ClickOnce

technology

Click the Publish command on the Build menu, and then use the Publish

wizard to specify the location and settings for the application.

Reload a project On the File menu, click the Open Project command.

or

On the File menu, point to Recent Projects, and then click the desired

project.

or

Click the project in the recent projects list on the Visual Studio Start Page.

To Do this

Chapter 3

Working with Toolbox Controls

After completing this chapter, you will be able to:

Q Use TextBox and Button controls to create a Hello World program.

Q Use the DateTimePicker control to display your birth date.

Q Use CheckBox, RadioButton, ListBox, and ComboBox controls to process user input.

Q Use the LinkLabel control and the Process.Start method to display a Web page by using

your system’s default browser.

As you learned in earlier chapters, Microsoft Visual Studio 2008 controls are the graphical

tools you use to build the user interface of a Microsoft Visual Basic program. Controls are

located in the development environment’s Toolbox, and you use them to create objects on

a form with a simple series of mouse clicks and dragging motions.

Windows Forms controls are specifi cally designed for building Microsoft Windows applications,

and you’ll fi nd them organized on the All Windows Forms tab of the Toolbox, although many

of the controls are also accessible on tabs such as Common Controls, Containers, and Printing.

(You used a few of these controls in the previous chapter.) You’ll learn about other controls, in-

cluding the tools you use to build database applications and Web pages, later in the book.

In this chapter, you’ll learn how to display information in a text box, work with date and time

information on your system, process user input, and display a Web page within a Visual Basic

program. The exercises in this chapter will help you design your own Visual Basic applications

and will teach you more about objects, properties, and program code.

The Basic Use of Controls: The Hello World Program

A great tradition in introductory programming books is the Hello World program, which

demonstrates how the simplest utility can be built and run in a given programming lan-

guage. In the days of character-based programming, Hello World was usually a two-line or

three-line program typed in a program editor and assembled with a stand-alone compiler.

With the advent of complex operating systems and programming tools, however, the typical

Hello World has grown into a more sophisticated program containing dozens of lines and

requiring several programming tools for its construction. Fortunately, creating a Hello World

program is still quite simple with Visual Studio and Visual Basic 2008. You can construct a

complete user interface by creating two objects, setting two properties, and entering one

line of code. Give it a try.
 69

70 Part I Getting Started with Microsoft Visual Basic 2008

Create a Hello World program

1. Start Visual Studio 2008 if it isn’t already open.

2. On the File menu, click New Project.

Visual Studio displays the New Project dialog box, which prompts you for the name of

your project and for the template that you want to use.

Note Use the following instructions each time you want to create a new project on your

hard disk.

3. Ensure that the Visual Basic project type and the Windows category are selected, and

then click the Windows Forms Application template.

These selections indicate that you’ll be building a stand-alone Visual Basic application

that will run under Windows.

4. Remove the default project name (WindowsApplication1) from the Name text box, and

then type MyHello.

Note Throughout this book, I ask you to create sample projects with the “My” prefi x,

to distinguish your own work from the practice fi les I include on the companion

CD-ROM. However, I’ll usually show projects in the Solution Explorer without the

“My” prefi x (because I’ve built the projects without it.)

The New Project dialog box now looks like this:

5. Click OK to create your new project.

 Chapter 3 Working with Toolbox Controls 71

The new project is created, and a blank form appears in the Designer, as shown in the

following illustration. The two controls you’ll use in this exercise, Button and TextBox,

are visible in the Toolbox, which appears in the illustration as a docked window. If your

programming tools are confi gured differently, take a few moments to organize them as

shown in the illustration. (Chapter 1, “Exploring the Visual Studio Integrated Development

Environment,” describes how to confi gure the IDE if you need a refresher course.)

6. Click the TextBox control on the Common Controls tab of the Toolbox.

7. Draw a text box similar to this:

Text boxes are used to display text on a form or to get user input while a program is

running. How a text box works depends on how you set its properties and how you ref-

erence the text box in the program code. In this program, a text box object will be used

to display the message “Hello, world!” when you click a button object on the form.

72 Part I Getting Started with Microsoft Visual Basic 2008

Note Readers who experimented with Visual Basic some time ago will notice that the

TextBox control no longer contains a default Text property value of “TextBox1”. The de-

fault text box is now empty.

You’ll add a button to the form now.

8. Click the Button control in the Toolbox.

9. Draw a button below the text box on the form.

Your form looks something like this:

As you learned in Chapter 2, “Writing Your First Program,” buttons are used to get the

most basic input from a user. When a user clicks a button, he or she is requesting that

the program perform a specifi c action immediately. In Visual Basic terms, the user is

using the button to create an event that needs to be processed in the program. Typical

buttons in a program are the OK button, which a user clicks to accept a list of options

and to indicate that he or she is ready to proceed; the Cancel button, which a user

clicks to discard a list of options; and the Quit button, which a user clicks to exit the

program. In each case, you should use these buttons in the standard way so that they

work as expected when the user clicks them. A button’s characteristics (like those of all

objects) can be modifi ed with property settings and references to the object in pro-

gram code.

10. Set the following property for the button object by using the Properties window:

Object Property Setting

Button1 Text 2 objects

For more information about setting properties and reading them in tables, see the

section entitled “The Properties Window” in Chapter 1.

11. Double-click the OK button, and type the following program statement between the

Private Sub Button1_Click and End Sub statements in the Code Editor:

Object Property Setting

 Chapter 3 Working with Toolbox Controls 73

TextBox1.Text = "Hello, world!"

Note As you type statements, Visual Studio displays a list box containing all valid items

that match your text. After you type the TextBox1 object name and a period, Visual Studio

displays a list box containing all the valid properties and methods for text box objects,

to jog your memory if you’ve forgotten the complete list. This list box is called Microsoft

IntelliSense and can be very helpful when you are writing code. If you click an item in the

list box, you will typically get a ToolTip that provides a short description of the selected

item. You can add the property from the list to your code by double-clicking it or by using

the arrow keys to select it and then pressing Tab. You can also continue typing to enter the

property yourself. (I usually just keep typing, unless I’m exploring new features.)

The statement you’ve entered changes the Text property of the text box to “Hello,

world!” when the user clicks the button at run time. (The equal sign (=) assigns every-

thing between the quotation marks to the Text property of the TextBox1 object.) This

example changes a property at run time—one of the most common uses of program

code in a Visual Basic program.

Now you’re ready to run the Hello World program.

Run the Hello World program

Tip The complete Hello World program is located in the c:\vb08sbs\chap03\hello folder.

1. Click the Start Debugging button on the Standard toolbar.

The Hello World program compiles and, after a few seconds, runs in the Visual Studio

IDE.

2. Click OK.

The program displays the greeting “Hello, world!” in the text box, as shown here:

74 Part I Getting Started with Microsoft Visual Basic 2008

When you clicked the OK button, the program code changed the Text property of the

empty TextBox1 text box to “Hello, world!” and displayed this text in the box. If you

didn’t get this result, repeat the steps in the previous section, and build the program

again. You might have set a property incorrectly or made a typing mistake in the pro-

gram code. (Syntax errors appear with a jagged underline in the Code Editor.)

3. Click the Close button in the upper-right corner of the Hello World program window to

stop the program.

Note To stop a program running in Visual Studio, you can also click the Stop Debugging

button on the Standard toolbar to close the program.

4. Click the Save All button on the Standard toolbar to save your new project to disk.

Visual Studio now prompts you for a name and a location for the project.

5. Click the Browse button.

The Project Location dialog box opens. You use this dialog box to specify the location

of your project and to create new folders for your projects if necessary. Although you

can save your projects in any location (the Documents\Visual Studio 2008\Projects

folder is a common location), in this book I instruct you to save your projects in the

c:\vb08sbs folder, the default location for your Step by Step practice fi les. If you ever

want to remove all the fi les associated with this programming course, you’ll know

just where the fi les are, and you’ll be able to remove them easily by deleting the

entire folder.

6. Browse to the c:\vb08sbs\chap03 folder.

7. Click the Select Folder or Open button to open the folder you specifi ed.

8. Clear the check mark from the Create Directory For Solution check box if it is selected.

Because this solution contains only one project (which is the case for most of the solu-

tions in this book), you don’t need to create a separate root folder to hold the solution

fi les for the project. (However, you can create an extra folder if you want.)

9. Click Save to save the project and its fi les.

Congratulations—you’ve joined the ranks of programmers who’ve written a Hello World

program. Now let’s try another control.

 Chapter 3 Working with Toolbox Controls 75
Using the DateTimePicker Control

Some Visual Basic controls display information, and others gather information from the

user or process data behind the scenes. In this exercise, you’ll work with the DateTimePicker

control, which prompts the user for a date or time by using a graphical calendar with scroll

arrows. Although your use of the control will be rudimentary at this point, experimenting

with DateTimePicker will give you an idea of how much Visual Basic controls can do for you

automatically and how you process the information that comes from them.

The Birthday Program

The Birthday program uses a DateTimePicker control and a Button control to prompt the user

for the date of his or her birthday. It then displays that information by using a message box.

Give it a try now.

Build the Birthday program

 1. On the File menu, click Close Project to close the MyHello project.

The fi les associated with the Hello World program close.

 2. On the File menu, click New Project.

The New Project dialog box opens.

 3. Create a new Visual Basic Windows Forms Application project named MyBirthday.

The new project is created, and a blank form appears in the Designer.

 4. Click the DateTimePicker control in the Toolbox.

 5. Draw a date/time picker object in the middle of the form, as shown in the following

illustration.

76 Part I Getting Started with Microsoft Visual Basic 2008

The date/time picker object by default displays the current date, but you can adjust the

displayed date by changing the object’s Value property. Displaying the date is a handy

design guide—it lets you size the date/time picker object appropriately when you’re

creating it.

6. Click the Button control in the Toolbox, and then add a button object below the date/

time picker.

You’ll use this button to display your birth date and to verify that the date/time picker

works correctly.

7. In the Properties window, change the Text property of the button object to Show My

Birthday.

Now you’ll add a few lines of program code to a procedure associated with the button

object. This is an event procedure because it runs when an event, such as a mouse click,

occurs, or fi res, in the object.

8. Double-click the button object on the form to display its default event procedure, and

then type the following program statements between the Private Sub and End Sub

statements in the Button1_Click event procedure:

MsgBox("Your birth date was " & DateTimePicker1.Text)

MsgBox("Day of the year: " & _

 DateTimePicker1.Value.DayOfYear.ToString())

These program statements display two message boxes (small dialog boxes) with infor-

mation from the date/time picker object. The fi rst line uses the Text property of the

date/time picker to display the birth date information you select when using the object

at run time. The MsgBox function displays the string value “Your birth date was” in addi-

tion to the textual value held in the date/time picker’s Text property. These two pieces

of information are joined together by the string concatenation operator (&) .

You’ll learn more about the MsgBox function and the string concatenation operator

in Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework.”

The second and third lines collectively form one program statement and have been

broken by the line continuation character (_) because the statement was a bit too long

to print in this book.

 Chapter 3 Working with Toolbox Controls 77

Note Program lines can be more than 65,000 characters long in the Visual Studio Code

Editor, but it’s usually easiest to work with lines of 80 or fewer characters. You can divide

long program statements among multiple lines by using a space and a line continuation

character (_) at the end of each line in the statement, except the last line. (You cannot

use a line continuation character to break a string that’s in quotation marks, however.)

I use the line continuation character in this exercise to break the second line of code

into two parts.

The statement DateTimePicker1.Value.DayOfYear.ToString() uses the date/time picker

object to calculate the day of the year in which you were born, counting from January

1. This is accomplished by the DayOfYear property and the ToString method, which

converts the numeric result of the date calculation to a textual value that’s more easily

displayed by the MsgBox function.

Methods are special statements that perform an action or a service for a particular ob-

ject, such as converting a number to a string or adding items to a list box. Methods dif-

fer from properties, which contain a value, and event procedures, which execute when

a user manipulates an object. Methods can also be shared among objects, so when you

learn how to use a particular method, you’ll often be able to apply it to several circum-

stances. We’ll discuss several important methods as you work through this book.

After you enter the code for the Button1_Click event procedure, the Code Editor looks

similar to this:

9. Click the Save All button to save your changes to disk, and specify c:\vb08sbs\chap03 as

the folder location.

Now you’re ready to run the Birthday program.

78 Part I Getting Started with Microsoft Visual Basic 2008

Run the Birthday program

Tip The complete Birthday program is located in the c:\vb08sbs\chap03\birthday folder.

1. Click the Start Debugging button on the Standard toolbar.

The Birthday program starts to run in the IDE. The current date is displayed in the

date/time picker.

2. Click the arrow in the date/time picker to display the object in Calendar view.

Your form looks like the following illustration, with a different date.

3. Click the Left scroll arrow to look at previous months on the calendar.

Notice that the text box portion of the object also changes as you scroll the date. The

“today” value at the bottom of the calendar doesn’t change, however.

Although you can scroll all the way back to your exact birthday, you might not have

the patience to scroll month by month. To move to your birth year faster, select the

year value in the date/time picker text box and enter a new year.

4. Select the four-digit year in the date/time picker text box.

When you select the date, the date/time picker closes.

5. Type your birth year in place of the year that’s currently selected, and then click the

arrow again.

The calendar reappears in the year of your birth.

 Chapter 3 Working with Toolbox Controls 79

6. Click the scroll arrow again to locate the month in which you were born, and then click

the exact day on which you were born.

If you didn’t know the day of the week you were born on, now you can fi nd out!

When you select the fi nal date, the date/time picker closes, and your birth date is dis-

played in the text box. You can click the button object to see how this information is

made available to other objects on your form.

7. Click the Show My Birthday button.

Visual Basic executes your program code and displays a message box containing the

day and date of your birth. Notice how the two dates match:

8. Click OK in the message box.

A second message box appears indicating the day of the year on which you were born—

everything seems to work! You’ll fi nd this control to be quite capable—not only does it

remember the new date or time information that you enter, but it also keeps track of the

current date and time, and it can display this date and time information in a variety of

useful formats.

Note To confi gure the date/time picker object to display times instead of dates, set the

object’s Format property to Time.

9. Click OK to close the message box, and then click the Close button on the form.

You’re fi nished using the DateTimePicker control for now.

80 Part I Getting Started with Microsoft Visual Basic 2008
A Word About Terminology

So far in this book I’ve used several different terms to describe items in a Visual Basic program.

Do you know what all these items are yet? It’s worth listing several of them now to clear up

any confusion.

Program statement

A program statement is a line of code in a Visual Basic program, a self-contained in-

struction executed by the Visual Basic compiler that performs useful work within the

application. Program statements can vary in length (some contain only one Visual Basic

keyword!), but all program statements must follow syntax rules defi ned and enforced by

the Visual Basic compiler. In Visual Studio 2008, program statements can be composed

of keywords, properties, object names, variables, numbers, special symbols, and other

values. (See Chapter 2 and Chapter 5.)

Keyword

A keyword is a reserved word within the Visual Basic language that is recognized by the

Visual Basic compiler and performs useful work. (For example, the End keyword stops

program execution.) Keywords are one of the basic building blocks of program state-

ments; they work together with objects, properties, variables, and other values to form

complete lines of code and (therefore) instructions for the compiler and operating sys-

tem. Most keywords are shown in blue type in the Code Editor. (See Chapter 2.)

Variable

A variable is a special container used to hold data temporarily in a program. The pro-

grammer creates variables by using the Dim statement and then uses these variables

to store the results of a calculation, fi le names, input, and so on. Numbers, names, and

property values can be stored in variables. (See Chapter 5.)

Control

A control is a tool you use to create objects in a Visual Basic program (most commonly,

objects are created on a form). You select controls from the Toolbox and use them to

draw objects with the mouse on a form. You use most controls to create user interface

elements, such as buttons, picture boxes, and list boxes. (See especially Chapters 2

through 4.)

Object

An object is an element that you create in a Visual Basic program with a control in

the Toolbox. (In addition, objects are sometimes supplied by other system components

and many of these objects contain data.) In Visual Basic, the form itself is also an object.

Technically speaking, objects are instances of a class that supports properties, methods,

and events. Objects also have what is known as inherent functionality—they know

how to operate and can respond to certain situations on their own. (A list box

“knows” how to scroll, for example.) (See Chapters 1 through 4.)

 Chapter 3 Working with Toolbox Controls 81
Class

A class is a blueprint or template for one or more objects that defi nes what the object

does. Accordingly, a class defi nes what an object can do, but is not the object itself. In

Visual Basic, you can use existing Visual Studio classes (like System.Math and System.

Windows.Forms.Form), and you can build your own classes and inherit properties, meth-

ods, and events from them. (Inheritance allows one class to acquire the pre-existing

interface and behavior characteristics of another class.) Although classes might sound

esoteric at this point, they are a key feature of Visual Studio 2008, and in this book, you

will use them to build user interfaces rapidly and to extend the work that you do to

other programming projects. (See Chapters 5 and 16.)

Namespace

A namespace is a hierarchical library of classes organized under a unique name, such

as System.Windows or System.Diagnostics. To access the classes and underlying objects

within a namespace, you place an Imports statement at the top of your program code.

Every project in Visual Studio also has a root namespace, which is set using the project’s

Properties page. Namespaces are referred to as object libraries or class libraries in

Visual Studio books and documentation. (See Chapter 5.)

Property

A property is a value, or characteristic, held by an object. For example, a button

object has a Text property to specify the text that appears on the button and an

Image property to specify the path to an image fi le that should appear on the but-

ton face. In Visual Basic, properties can be set at design time by using the Properties

window or at run time by using statements in the program code. In code, the format

for setting a property is

Object.Property = Value

where Object is the name of the object you’re customizing, Property is the characteristic

you want to change, and Value is the new property setting. For example,

Button1.Text = "Hello"

could be used in the program code to set the Text property of the Button1 object to

“Hello”. (See Chapters 1 through 3.)

Event procedure

An event procedure is a block of code that’s executed when an object is manipulated

in a program. For example, when the Button1 object is clicked, the Button1_Click event

procedure is executed. Event procedures typically evaluate and set properties and

use other program statements to perform the work of the program. (See Chapters 1

through 3.)

82 Part I Getting Started with Microsoft Visual Basic 2008
Method

A method is a special statement that performs an action or a service for a particular

object in a program. In program code, the notation for using a method is

Object.Method(Value)

where Object is the name of the object you want to work with, Method is the action

you want to perform, and Value is an optional argument to be used by the method.

For example, the statement

ListBox1.Items.Add("Check")

uses the Add method to put the word Check in the ListBox1 list box. Methods and prop-

erties are often identifi ed by their position in a collection or object library, so don’t be

surprised if you see long references such as System.Drawing.Image.FromFile, which would

be read as “the FromFile method, which is a member of the Image class, which is a mem-

ber of the System.Drawing object library.” (See Chapters 1 through 5.)

Controls for Gathering Input

Visual Basic provides several mechanisms for gathering input in a program. Text boxes

accept typed input, menus present commands that can be clicked or chosen with the

keyboard, and dialog boxes offer a variety of elements that can be chosen individually or

selected in a group. In this exercise, you’ll learn how to use four important controls that

help you gather input in several different situations. You’ll learn about the RadioButton,

CheckBox, ListBox, and ComboBox controls. You’ll explore each of these objects as you

use a Visual Basic program called Input Controls, which is the user interface for a simple,

graphics-based ordering system. As you run the program, you’ll get some hands-on ex-

perience with the input objects. In the next chapter, I’ll discuss how these objects can be

used along with menus in a full-fl edged program.

As a simple experiment, try using the CheckBox control now to see how user input is

processed on a form and in program code.

Experiment with the CheckBox control

 1. On the File menu, click Close Project to close the Birthday project.

 2. On the File menu, click New Project.

The New Project dialog box opens.

 3. Create a new Visual Basic Windows Forms Application project named MyCheckBox.

The new project is created, and a blank form appears in the Designer.

 Chapter 3 Working with Toolbox Controls 83

4. Click the CheckBox control in the Toolbox.

5. Draw two check box objects on the form, one above the other.

Check boxes appear as objects on your form just as other objects do. You’ll have to

click the CheckBox control in the Toolbox a second time for the second check box.

6. Using the PictureBox control, draw two square picture box objects beneath the two

check boxes.

7. Set the following properties for the check box and picture box objects:

Object Property Setting

CheckBox1 Checked

Text

True

“Calculator”

CheckBox2 Text “Copy machine”

PictureBox1 Image

SizeMode

c:\vb08sbs\chap03\calcultr

StretchImage

PictureBox2 SizeMode StretchImage

In this walkthrough, you’ll use the check boxes to display and hide images of a calculator

and a copy machine. The Text property of the check box object determines the contents

of the check box label in the user interface. With the Checked property, you can set a

default value for the check box. Setting Checked to True places a check mark in the box,

and setting Checked to False (the default setting) removes the check mark. I use the

SizeMode properties in the picture boxes to size the images so that they stretch to fi t

in the picture box.

Your form looks something like this:

Object Property Setting

84 Part I Getting Started with Microsoft Visual Basic 2008

8. Double-click the fi rst check box object to open the CheckBox1_CheckedChanged event

procedure in the Code Editor, and then enter the following program code:

If CheckBox1.CheckState = 1 Then

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\calcultr")

 PictureBox1.Visible = True

Else

 PictureBox1.Visible = False

End If

The CheckBox1_CheckedChanged event procedure runs only if the user clicks in the fi rst

check box object. The event procedure uses an If…Then decision structure (described

in Chapter 6, “Using Decision Structures”) to confi rm the current status, or state, of the

fi rst check box, and it displays a calculator picture from the c:\vb08sbs\chap03 folder if

a check mark is in the box. The CheckState property holds a value of 1 if there’s a check

mark present and 0 if there’s no check mark present. (You can also use the CheckState.

Checked enumeration, which appears in IntelliSense when you type, as an alternative to

setting the value to 1.) I use the Visible property to display the picture if a check mark

is present or to hide the picture if a check mark isn’t present. Notice that I wrapped the

long line that loads the image into the picture box object by using the line continuation

(_) character.

9. Click the View Designer button in Solution Explorer to display the form again,

double-click the second check box, and then add the following code to the

CheckBox2_Checked-Changed event procedure:

If CheckBox2.CheckState = 1 Then

 PictureBox2.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\copymach")

 PictureBox2.Visible = True

Else

 PictureBox2.Visible = False

End If

This event procedure is almost identical to the one that you just entered; only the

names of the image (copymach), the check box object (CheckBox2), and the picture

box object (PictureBox2) are different.

10. Click the Save All button on the Standard toolbar to save your changes, specifying the

c:\vb08sbs\chap03 folder as the location.

Run the CheckBox program

Tip The complete CheckBox program is located in the c:\vb08sbs\chap03\checkbox folder.

1. Click the Start Debugging button on the Standard toolbar.

 Chapter 3 Working with Toolbox Controls 85

Visual Basic runs the program in the IDE. The calculator image appears in a picture box

on the form, and the fi rst check box contains a check mark.

2. Select the Copy Machine check box.

Visual Basic displays the copy machine image, as shown here:

3. Experiment with different combinations of check boxes, selecting or clearing the boxes

several times to test the program. The program logic you added with a few short lines

of Visual Basic code manages the boxes perfectly. (You’ll learn much more about pro-

gram code in upcoming chapters.)

4. Click the Close button on the form to end the program.

The Input Controls Demo

Now that you’ve had a little experience with check boxes, run and examine the Input Controls

demonstration program that I created to simulate a graphical ordering environment that

makes more extensive use of check boxes, radio buttons, a list box, and a combo box. If you

work in a business that does a lot of order entry, you might want to expand this program

into a full-featured graphical order entry program. After you experiment with Input Controls,

spend some time learning how the four input controls work in the program. They were

created in a few short steps by using Visual Basic and the techniques you just learned.

Run the Input Controls program

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the c:\vb08sbs\chap03\input controls folder, and then double-click the Input

Controls project fi le (Input Controls.vbproj).

86 Part I Getting Started with Microsoft Visual Basic 2008

As I mentioned earlier, you may open either the project fi le (Input Controls.vbproj) or

the solutions fi le (Input Controls.sln) to open solutions with only one project. In either

case, the Input Controls project opens in the IDE.

3. If the project’s form isn’t visible, click the Form1.vb form in Solution Explorer, and then

click the View Designer button.

4. Move or close the windows that block your view of the form so that you can see how

the objects are laid out.

You see a form similar to this:

The Input Controls form contains radio button, check box, list box, combo box, picture

box, button, and label objects. These objects work together to create a simple order

entry program that demonstrates how the Visual Basic input objects work. When the

Input Controls program is run, it loads images from the c:\vb08sbs\chap03\input con-

trols folder and displays them in the six picture boxes on the form.

Note If you installed the practice fi les in a location other than the default c:\vb08sbs

folder, the statements in the program that load the artwork from the disk contain an in-

correct path. (Each statement begins with c:\vb08sbs\chap03\input controls, as you’ll see

soon.) If this is the case, you can make the program work by renaming your practice fi les

folder \vb08sbs or by changing the paths in the Code Editor by using the editing keys or

the Quick Replace command on the Edit menu.

5. Click the Start Debugging button on the Standard toolbar.

The program runs in the IDE.

6. Click the Laptop radio button in the Computer box.

 Chapter 3 Working with Toolbox Controls 87

The image of a laptop computer appears in the Products Ordered area on the right

side of the form. The user can click various options, and the current choice is depicted

in the order area on the right. In the Computer box, a group of radio buttons is used

to gather input from the user.

Radio buttons force the user to choose one (and only one) item from a list of possibili-

ties. (Radio buttons are called option buttons in Visual Basic 6.) When radio buttons are

placed inside a group box object on a form, the radio buttons are considered to be part

of a group, and only one option can be chosen. To create a group box, click the GroupBox

control on the Containers tab of the Toolbox, and then draw the control on your form.

(The GroupBox control replaces the Frame control in Visual Basic 6.) You can give the

group of radio buttons a title (as I have) by setting the Text property of the group box

object. When you move a group box object on the form, the controls within it also move.

7. Click to select the Answering Machine, Calculator, and Copy Machine check boxes in

the Offi ce Equipment box.

Check boxes are used in a program so that the user can select more than one option

at a time from a list. Click to clear the Calculator check box again, and notice that the

picture of the calculator disappears from the order area. Because each user interface

element responds to click events as they occur, order choices are refl ected immediately.

The code that completes these tasks is nearly identical to the code you entered earlier

in the CheckBox program.

8. Click Satellite Dish in the Peripherals list box.

A picture of a satellite dish is added to the order area.

List boxes are used to get a single response from a list of choices. They are created with

the ListBox control, and might contain many items to choose from. (Scroll bars appear

if the list of items is longer than the list box.) Unlike radio buttons, a list box doesn’t

require that the user be presented with a default selection. And from a programmatic

standpoint, items in a list box can be added to, removed from, or sorted while the pro-

gram is running. If you would like to see check marks next to the items in your list box,

use the CheckedListBox control in the Toolbox instead of the ListBox control.

9. Now choose U.S. Dollars (sorry, no credit) from the payment list in the Payment

Method combo box.

Combo boxes, or drop-down list boxes, are similar to regular list boxes, but they take

up less space. (The “combo” in a combo box basically comes from a “combination”

of an editable text box and a drop-down list.) Visual Basic automatically handles the

opening, closing, and scrolling of the list box. All you do as a programmer is create the

combo box by using the ComboBox control in the Toolbox, set the Text property to

provide directions or a default value, and then write code to add items to the combo

box and to process the user’s combo box selection. You’ll see examples of each task in

the program code for the Input Controls demonstration in the next section.

88 Part I Getting Started with Microsoft Visual Basic 2008

After you make your order selections, your screen looks something like this:

10. Practice making a few more changes to the order list (try different computers, peripherals,

and payment methods), and then click the Quit button in the program to exit.

When you click Quit, the program closes, and the IDE appears.

Looking at the Input Controls Program Code

Although you haven’t had much formal experience with program code yet, it’s worth taking a

quick look at a few event procedures in Input Controls to see how the program processes input

from the user interface elements. In these procedures, you’ll see the If…Then and Select Case

statements at work. You’ll learn about these and other decision structures in Chapter 6. For

now, concentrate on the CheckState property, which changes when a check box is selected,

and the SelectedIndex property, which changes when a list box is selected.

Examine check box and list box code

1. Be sure the program has stopped running, and then double-click the Answering

Machine check box in the Offi ce Equipment group box to display the CheckBox1_

CheckedChanged event procedure in the Code Editor.

You see the following program code:

'If the CheckState property for a check box is 1, it has a mark in it

If CheckBox1.CheckState = 1 Then

 PictureBox2.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\input controls\answmach")

 PictureBox2.Visible = True

Else

 'If there is no mark, hide the image

 PictureBox2.Visible = False

End If

 Chapter 3 Working with Toolbox Controls 89

As you learned in Chapter 2, the fi rst line of this event procedure is a comment. Comments

are displayed in green type and are simply notes written by the programmer to describe

what’s important or interesting about this particular piece of program code. (Comments

are also occasionally generated by automated programming tools that compile programs

or insert code snippets.) I wrote this comment to remind myself that the CheckState

property contains a crucial value in this routine—a value of 1 if the fi rst check box

was checked.

The rest of the event procedure is nearly identical to the one you just wrote in the

CheckBox program. If you scroll down in the Code Editor, you see a similar event pro-

cedure for the CheckBox2 and CheckBox3 objects.

2. At the top edge of the Code Editor, click the Form1.vb [Design] tab to display the form

again, and then double-click the Peripherals list box on the form.

The ListBox1_SelectedIndexChanged event procedure appears in the Code Editor. You

see the following program statements:

'The item you picked (0-2) is held in the SelectedIndex property

Select Case ListBox1.SelectedIndex

 Case 0

 PictureBox3.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\input controls\harddisk")

 Case 1

 PictureBox3.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\input controls\printer")

 Case 2

 PictureBox3.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\input controls\satedish")

End Select

Here you see code that executes when the user clicks an item in the Peripherals list box in

the program. In this case, the important keyword is ListBox1.SelectedIndex, which is read

“the SelectedIndex property of the list box object named ListBox1.” After the user clicks an

item in the list box, the SelectedIndex property returns a number that corresponds to the

location of the item in the list box. (The fi rst item is numbered 0, the second item is num-

bered 1, and so on.)

In the previous code, SelectedIndex is evaluated by the Select Case decision structure,

and a different image is loaded depending on the value of the SelectedIndex property.

If the value is 0, a picture of a hard disk is loaded; if the value is 1, a picture of a printer

is loaded; and if the value is 2, a picture of a satellite dish is loaded. You’ll learn more

about how the Select Case decision structure works in Chapter 6.

3. At the top edge of the Code Editor, click the Form1.vb [Design] tab to display the form

again, and then double-click the form (not any of the objects) to display the code asso-

ciated with the form itself.

90 Part I Getting Started with Microsoft Visual Basic 2008
The Form1_Load event procedure appears in the Code Editor. This is the procedure that’s

executed each time the Input Controls program is loaded into memory. Programmers

put program statements in this special procedure when they want them executed every

time a form loads. (Your program can display more than one form, or none at all, but

the default behavior is that Visual Basic loads and runs the Form1_Load event procedure

each time the user runs the program.) Often, as in the Input Controls program, these

statements defi ne an aspect of the user interface that couldn’t be created by using the

controls in the Toolbox or the Properties window.

Here’s what the Form1_Load event procedure looks like for this program:

'These program statements run when the form loads

PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap03\input controls\pcomputr")

'Add items to a list box like this:

ListBox1.Items.Add("Extra hard disk")

ListBox1.Items.Add("Printer")

ListBox1.Items.Add("Satellite dish")

'Combo boxes are also filled with the Add method:

ComboBox1.Items.Add("U.S. Dollars")

ComboBox1.Items.Add("Check")

ComboBox1.Items.Add("English Pounds")

Three lines in this event procedure are comments displayed in green type. The second

line in the event procedure loads the personal computer image into the fi rst picture

box. (This line is broken in two using a space and the line continuation character, but

the compiler still thinks of it as one line.) Loading an image establishes the default set-

ting refl ected in the Computer radio button group box. Note also that text between

double quotes is displayed in red type.

The next three lines add items to the Peripherals list box (ListBox1) in the program. The

words in quotes will appear in the list box when it appears on the form. Below the list

box program statements, the items in the Payment Method combo box (ComboBox1)

are specifi ed. The important keyword in both these groups is Add, which is a special

function, or method, that adds items to list box and combo box objects.

You’re fi nished using the Input Controls program. Take a few minutes to examine any other

parts of the program you’re interested in, and then move on to the next exercise.

 Chapter 3 Working with Toolbox Controls 91
Tip As noted on the previous page, most of the images in this simple example were

loaded using an absolute path name in the program code. This works fi ne as long as the

image exists at the specifi ed path. However, in a commercial application, you can’t always be

sure that your user won’t move around your application fi les, causing programs like this one

to generate an error when the fi les they use are no longer in the expected location. To make

your applications more seaworthy or robust, it is usually better to use relative paths when ac-

cessing images and other resources. You can also embed images and other resources within

your application. For information about this handy technique, which is carefully described

within your very own Visual Studio documentation fi les, see “How to: Create Embedded

Resources” and “Accessing Application Resources” in the Visual Studio 2008 documentation.

One Step Further: Using the LinkLabel Control

Providing access to the Web is now a standard feature of many Windows applications, and

with Visual Studio, adding this functionality is easier than ever. You can create a Visual Basic

program that runs from a Web server by creating a Web Forms project and using controls

in the Toolbox optimized for the Web. Alternatively, you can use Visual Basic to create a

Windows application that opens a Web browser within the application, providing access to

the Web while remaining a Windows program running on a client computer. We’ll postpone

writing Web Forms projects for a little while longer in this book, but in the following exercise

you’ll learn how to use the LinkLabel Toolbox control to create a Web link in a Windows pro-

gram that provides access to the Internet through Windows Internet Explorer or the default

Web browser on your system.

Note To learn more about writing Web-aware Visual Basic 2008 applications, read Chapter 20,

“Creating Web Sites and Web Pages Using Visual Web Developer and ASP.NET.”

Create the WebLink program

 1. On the File menu, click Close Project to close the Input Controls project.

 2. On the File menu, click New Project.

The New Project dialog box opens.

 3. Create a new Visual Basic Windows Forms Application project named MyWebLink.

The new project is created, and a blank form appears in the Designer.

92 Part I Getting Started with Microsoft Visual Basic 2008

4. Click the LinkLabel control in the Toolbox, and draw a rectangular link label object on

your form.

Link label objects look like label objects, except that all label text is displayed in blue

underlined type on the form.

5. Set the Text property of the link label object to the URL for the Microsoft Press home

page:

http://www.microsoft.com/learning/books/

Your form looks like this:

6. Click the form in the IDE to select it. (Click the form itself, not the link label object.)

This is the technique you use to view the properties of the default form, Form1, in the

Properties window. Like other objects in your project, the form also has properties that

you can set.

7. Set the Text property of the form object to Web Link Test.

The Text property for a form controls what appears on the form’s title bar at design

time and when the program runs. Although this customization isn’t related exclusively

to the Web, I thought you’d enjoy picking up that skill now, before we move on to

other projects. (We’ll customize the title bar in most of the programs we build.)

8. Double-click the link label object, and then type the following program code in the

LinkLabel1_LinkClicked event procedure:

' Change the color of the link by setting LinkVisited to True.

LinkLabel1.LinkVisited = True

' Use the Process.Start method to open the default browser

' using the Microsoft Press URL:

System.Diagnostics.Process.Start _

 ("http://www.microsoft.com/learning/books/")

 Chapter 3 Working with Toolbox Controls 93
I’ve included comments in the program code to give you some practice entering them.

As soon as you enter the single quote character ('), Visual Studio changes the color of

the line to green, identifying the line as a comment. Comments are for documentation

purposes only—they aren’t evaluated or executed by the compiler.

The two program statements that aren’t comments control how the link works. Setting

the LinkVisited property to True gives the link that dimmer color of purple, which indi-

cates in many browsers that the HTML document associated with the link has already

been viewed. Although setting this property isn’t necessary to display a Web page,

it’s a good programming practice to provide the user with information in a way that’s

consistent with other applications.

The second program statement (which I have broken into two lines) runs the default

Web browser (such as Internet Explorer) if the browser isn’t already running. (If the

browser is running, the URL just loads immediately.) The Start method in the Process

class performs the important work, by starting a process or executable program ses-

sion in memory for the browser. The Process class, which manages many other aspects

of program execution, is a member of the System.Diagnostics namespace. By including

an Internet address or a URL along with the Start method, I’m letting Visual Basic know

that I want to view a Web site, and Visual Basic is clever enough to know that the de-

fault system browser is the tool that would best display that URL, even though I didn’t

identify the browser by name.

An exciting feature of the Process.Start method is that it can be used to run other

Windows applications, too. If I did want to identify a particular browser by name to

open the URL, I could have specifi ed one using the following syntax. (Here I’ll request

the Internet Explorer browser.)

System.Diagnostics.Process.Start("IExplore.exe", _

 "http://www.microsoft.com/learning/books/")

Here two arguments are used with the Start method, separated by a comma. The exact

location for the program named IExplore.exe on my system isn’t specifi ed, but Visual

Basic will search the current system path for it when the program runs.

If I wanted to run a different application with the Start method—for example, if I wanted

to run the Microsoft Word application and open the document c:\myletter.doc—I could

use the following syntax:

System.Diagnostics.Process.Start("Winword.exe", _

 "c:\myletter.doc")

As you can see, the Start method in the Process class is very useful.

Now that you’ve entered your code, you should save your project. (If you experimented

with the Start syntax as I showed you, restore the original code shown at the beginning

of step 8 fi rst.)

94 Part I Getting Started with Microsoft Visual Basic 2008

9. Click the Save All button on the Standard toolbar to save your changes, and specify c:\

vb08sbs\chap03 as the location.

You can now run the program.

Run the WebLink program

Tip The complete WebLink program is located in the c:\vb08sbs\chap03\weblink folder.

1. Click the Start Debugging button on the Standard toolbar to run the WebLink program.

The form opens and runs, showing its Web site link and handsome title bar text.

2. Click the link to open the Web site at http://www.microsoft.com/learning/books/.

Recall that it’s only a happy coincidence that the link label Text property contains the

same URL as the site you named in the program code. (It is not necessary that these

two items match.) You can enter any text you like in the link label. You can also use

the Image property for a link label to specify a picture to display in the background

of the link label. The following fi gure shows what the Microsoft Press Web page looks

like (in English) when the WebLink program displays it using Internet Explorer.

 Chapter 3 Working with Toolbox Controls 95
 3. Display the form again. (Click the Web Link Test form icon on the Windows taskbar if

the form isn’t visible.)

Notice that the link now appears in a dimmed style. Like a standard Web link, your link

label communicates that it’s been used (but is still active) by the color and intensity that

it appears in.

 4. Click the Close button on the form to quit the test utility.

You’re fi nished writing code in this chapter, and you’re gaining valuable experience with

some of the Toolbox controls available for creating Windows Forms applications. Let’s

keep going!

Chapter 3 Quick Reference

To Do this

Create a text box Click the TextBox control, and draw the box.

Create a button Click the Button control, and draw the button.

Change a property at

run time

Change the value of the property by using program code. For example:

Label1.Text = "Hello!"

Create a radio button Use the RadioButton control. To create multiple radio buttons, place more

than one button object inside a box that you create by using the GroupBox

control.

Create a check box Click the CheckBox control, and draw a check box.

Create a list box Click the ListBox control, and draw a list box.

Create a drop-down

list box

Click the ComboBox control, and draw a drop-down list box.

Add items to a list box Include statements with the Add method in the Form1_Load event procedure

of your program. For example:

ListBox1.Items.Add("Printer")

Use a comment in

code

Type a single quotation mark (‘) in the Code Editor, and then type a descrip-

tive comment that will be ignored by the compiler. For example:

' Use the Process.Start method to start IE

Display a Web page Create a link to the Web page by using the LinkLabel control, and then open

the link in a browser by using the Process.Start method in program code.

To Do this

Chapter 4

Working with Menus, Toolbars, and
Dialog Boxes

After completing this chapter, you will be able to:

Q Add menus to your programs by using the MenuStrip control.

Q Process menu and toolbar selections by using event procedures and the Code Editor.

Q Add toolbars and buttons by using the ToolStrip control.

Q Use the OpenFileDialog and ColorDialog controls to create standard dialog boxes.

Q Add access keys and shortcut keys to menus.

In Chapter 3, “Working with Toolbox Controls,” you used several Microsoft Visual Studio 2008

controls to gather input from the user while he or she used a program. In this chapter, you’ll

learn how to present choices to the user by creating professional-looking menus, toolbars,

and dialog boxes.

A menu is located on the menu bar and contains a list of related commands; a toolbar con-

tains buttons and other tools that perform useful work in a program. Most menu and toolbar

commands are executed immediately after they’re clicked; for example, when the user clicks

the Copy command on the Edit menu, information is copied to the Clipboard immediately. If a

menu command is followed by an ellipsis (…), however, clicking the command displays a dialog

box requesting more information before the command is carried out, and many toolbar but-

tons also display dialog boxes.

In this chapter, you’ll learn how to use the MenuStrip and ToolStrip controls to add a profes-

sional look to your application’s user interface. You’ll also learn how to process menu, toolbar,

and dialog box commands.
 97

98 Part I Getting Started with Microsoft Visual Basic 2008
Adding Menus by Using the MenuStrip Control

The MenuStrip control is a tool that adds menus to your programs, which you can customize

with property settings in the Properties window. With MenuStrip, you can add new menus,

modify and reorder existing menus, and delete old menus. You can also create a standard

menu confi guration automatically, and you can enhance your menus with special effects,

such as access keys, check marks, and keyboard shortcuts. The menus look perfect—just like

a professional Microsoft Windows application—but MenuStrip creates only the visible part of

your menus and commands. You still need to write event procedures that process the menu

selections and make the commands perform useful work. In the following exercise, you’ll take

your fi rst steps with this process by using the MenuStrip control to create a Clock menu con-

taining commands that display the current date and time.

Create a menu

 1. Start Visual Studio.

 2. On the File menu, click New Project.

The New Project dialog box opens.

 3. Create a new Windows Forms Application project named MyMenu.

 4. Click the MenuStrip control on the Menus & Toolbars tab of the Toolbox, and then draw

a menu control on your form.

Don’t worry about the location—Visual Studio will move the control and resize it

automatically. Your form looks like the one shown here:

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 99

The menu strip object doesn’t appear on your form, but below it. That’s different from

Microsoft Visual Basic 6, which in one way or another displays all objects on the form

itself—even those that don’t have a visual representation when the program ran, such

as the Timer control. But in Visual Studio, non-visible objects, such as menus and timers,

are displayed in the IDE in a separate pane named the component tray, and you can

select them, set their properties, or delete them from this pane.

In addition to the menu strip object in the component tray, Visual Studio displays a

visual representation of the menu you created at the top of the form. The Type Here

tag encourages you to click the tag and enter the title of your menu. After you enter the

fi rst menu title, you can enter submenu titles and other menu names by pressing

the arrow keys and typing additional names. Best of all, you can come back to this

in-line Menu Designer later and edit what you’ve done or add additional menu items—

the menu strip object is fully customizable and with it you can create an exciting menu-

driven user interface like the ones you’ve seen in the best Windows applications.

5. Click the Type Here tag, type Clock, and then press Enter.

The word “Clock” is entered as the name of your fi rst menu, and two additional Type

Here tags appear with which you can create submenu items below the new Clock menu

or additional menu titles. The submenu item is currently selected.

6. Type Date to create a Date command for the Clock menu, and then press Enter.

Visual Studio adds the Date command to the menu and selects the next submenu item.

7. Type Time to create a Time command for the menu, and then press Enter.

You now have a Clock menu with two menu commands, Date and Time. You could

continue to create additional menus or commands, but what you’ve done is suffi cient

for this example program. Your form looks like the one shown here:

100 Part I Getting Started with Microsoft Visual Basic 2008
 8. Click the form to close the Menu Designer.

The Menu Designer closes, and your form opens in the IDE with a new Clock menu.

You’re ready to start customizing the menu now.

Adding Access Keys to Menu Commands

With most applications, you can access and execute menu commands by using the key-

board. For example, in Visual Studio you can open the File menu by pressing the Alt

key and then pressing the F key. Once the File menu is open, you can open a project

by pressing the P key. The key that you press in addition to the Alt key and the key that

you press to execute a command in an open menu are called access keys. You can identify

the access key of a menu item because it’s underlined.

Visual Studio makes it easy to provide access key support. To add an access key to a menu

item, activate the Menu Designer, and then type an ampersand (&) before the appropriate

letter in the menu name. When you open the menu at run time (when the program is run-

ning), your program automatically supports the access key.

Menu Conventions

By convention, each menu title and menu command in a Windows application has an

initial capital letter. File and Edit are often the fi rst two menu names on the menu bar,

and Help is usually the last. Other common menu names are View, Format, and Window.

No matter what menus and commands you use in your applications, take care to be

clear and consistent with them. Menus and commands should be easy to use and should

have as much in common as possible with those in other Windows–based applications.

As you create menu items, use the following guidelines:

Q Use short, specifi c captions consisting of one or two words at most.

Q Assign each menu item an access key. Use the fi rst letter of the item if possible,

or the access key that is commonly assigned (such as x for Exit).

Q Menu items at the same level must have a unique access key.

Q If a command is used as an on/off toggle, place a check mark to the left of the

item when it’s active. You can add a check mark by setting the Checked property

of the menu command to True in the Properties window.

Q Place an ellipsis (…) after a menu command that requires the user to enter more

information before the command can be executed. The ellipsis indicates that

you’ll open a dialog box if the user selects this item.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 101
Note By default, most versions of Windows don’t display the underline for access keys in a pro-

gram until you press the Alt key for the fi rst time. In Windows 2000, you can turn off this option

(making the underline visible at all times) by clicking the Effects tab of the Display control panel.

In Windows XP and Windows Server 2003, you can turn off this option by using the Effects but-

ton on the Appearance tab of the Display Properties control panel. In Windows Vista, you can

turn off this option by clicking the Appearance And Personalization option in Control Panel,

clicking Ease Of Access Center, clicking Make The Keyboard Easier To Use, and then selecting

Underline Keyboard Shortcuts And Access Keys.

Try adding access keys to the Clock menu now.

Add access keys

 1. Click the Clock menu name on the form, pause a moment, and then click it again.

The menu name is highlighted, and a blinking I-beam (text-editing cursor) appears at the

end of the selection. With the I-beam, you can edit your menu name or add the amper-

sand character (&) for an access key. (If you double-clicked the menu name, the Code Editor

might have opened. If that happened, close the Code Editor and repeat step 1.)

 2. Press the Left Arrow key fi ve times to move the I-beam to just before the Clock

menu name.

The I-beam blinks before the letter C in Clock.

 3. Type & to defi ne the letter C as the access key for the Clock menu.

An ampersand appears in the text box in front of the word Clock.

 4. Click the Date command in the menu list, and then click Date a second time to display

the I-beam.

 5. Type & before the letter D.

The letter D is now defi ned as the access key for the Date command.

 6. Click the Time command in the menu list, and then click the command a second time

to display the I-beam.

 7. Type & before the letter T.

The letter T is now defi ned as the access key for the Time command.

102 Part I Getting Started with Microsoft Visual Basic 2008
 8. Press Enter.

Pressing Enter locks in your text-editing changes. Your form looks this:

Now you’ll practice using the Menu Designer to switch the order of the Date and Time

commands on the Clock menu. Changing the order of menu items is an important skill

because at times you’ll think of a better way to defi ne your menus.

Change the order of menu items

 1. Click the Clock menu on the form to display its menu items.

To change the order of a menu item, simply drag the item to a new location on the

menu. Try it now.

 2. Drag the Time menu on top of the Date menu, and then release the mouse button.

Dragging one menu item on top of another menu item means that you want to place

the fi rst menu item ahead of the second menu item on the menu. As quickly as that,

Visual Studio moved the Time menu item ahead of the Date item.

You’ve fi nished creating the user interface for the Clock menu. Now you’ll use the menu

event procedures to process the user’s menu selections in the program.

Note To delete a menu item from a menu, click the unwanted item in the menu list, and then

press the Delete key. (If you try this now, remember that Visual Studio also has an Undo com-

mand, located on both the Edit menu and the Standard toolbar, so you can reverse the effects

of the deletion.)

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 103
Processing Menu Choices

After menus and commands are confi gured by using the menu strip object, they also

become new objects in your program. To make the menu objects do meaningful work,

you need to write event procedures for them. Menu event procedures typically contain

program statements that display or process information on the user interface form and

modify one or more menu properties. If more information is needed from the user to

process the selected command, you can write your event procedure so that it displays

a dialog box or one of the input controls you used in Chapter 3.

In the following exercise, you’ll add a label object to your form to display the output of the

Time and Date commands on the Clock menu.

Add a label object to the form

 1. Click the Label control in the Toolbox.

 2. Create a label in the middle of the form.

The label object appears on the form and bears the name Label1 in the program code.

 3. Set the following properties for the label:

Object Property Setting

Label1 AutoSize

BorderStyle

Font

Text

TextAlign

False

FixedSingle

Microsoft Sans Serif, Bold, 14-point

(empty)

MiddleCenter

 4. Resize the label object so that it is larger (it will be holding clock and date values), and

position it in the center of the form. Your form should look similar to the following:

Object Property Setting

104 Part I Getting Started with Microsoft Visual Basic 2008
Now you’ll add program statements to the Time and Date event procedures to process the

menu commands.

Note In the following exercises, you’ll enter program code to process menu choices. It’s OK if

you’re still a bit hazy on what program code does and how you use it—you’ll learn much more

about program statements in Chapters 5 through 7.

Edit the menu event procedures

 1. Click the Clock menu on the form to display its commands.

 2. Double-click the Time command in the menu to open an event procedure for the

command in the Code Editor.

The TimeToolStripMenuItem_Click event procedure appears in the Code Editor. The

name TimeToolStripMenuItem_Click includes the name Time that you gave this menu

command. The words ToolStripMenuItem indicate that in its underlying technology,

the MenuStrip control is related to the ToolStrip control. (We’ll see further examples

of that later in this chapter.) The _Click syntax means that this is the event procedure

that runs when a user clicks the menu item.

We’ll keep this menu name for now, but if you wanted to create your own internal

names for menu objects, you could select the object, open the Properties window,

and change the Name property. Although I won’t bother with that extra step in this

chapter, later in the book you’ll practice renaming objects in your program to con-

form more readily to professional programming practices.

 3. Type the following program statement:

Label1.Text = TimeString

This program statement displays the current time (from the system clock) in the Text

property of the Label1 object, replacing the previous Label1 text (if any). TimeString

is a property that contains the current time formatted for display or printing. You can

use TimeString at any time in your programs to display the time accurately down to

the second. (TimeString is essentially a replacement for the older Visual Basic TIME$

statement.)

Note The Visual Basic TimeString property returns the current system time. You can set

the system time by using the Clock, Language, and Region category in the Windows Vista

Control Panel.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 105

4. Press Enter.

Visual Basic interprets the line and adjusts capitalization and spacing, if necessary.

(Visual Basic checks each line for syntax errors as you enter it.)

Tip You can enter a line by pressing Enter or Esc.

5. Click the View Designer button in Solution Explorer, and then double-click the Date

command on the Clock menu.

The DateToolStripMenuItem_Click event procedure appears in the Code Editor. This event

procedure is executed when the user clicks the Date command on the Clock menu.

6. Type the following program statement:

Label1.Text = DateString

This program statement displays the current date (from the system clock) in the Text

property of the Label1 object, replacing the previous Label1 text. The DateString prop-

erty is also available for general use in your programs. Assign DateString to the Text

property of an object whenever you want to display the current date on a form.

Note The Visual Basic DateString property returns the current system date. You can set

the system date by using the Clock, Language, and Region category in the Windows Vista

Control Panel.

7. Press Enter to enter the line.

Your screen looks similar to this:

106 Part I Getting Started with Microsoft Visual Basic 2008

You’ve fi nished entering the menu demonstration program. Now you’ll save your

changes to the project and prepare to run it.

8. Click the Save All button on the Standard toolbar, and then specify the c:\vb08sbs\chap04

folder as the location.

Run the Menu program

Tip The complete Menu program is located in the c:\vb08sbs\chap04\menu folder.

1. Click the Start Debugging button on the Standard toolbar.

The Menu program runs in the IDE.

2. Click the Clock menu on the menu bar.

The Clock menu appears.

3. Click the Time command.

The current system time appears in the label box, as shown here:

Now you’ll try displaying the current date by using the access keys on the menu.

4. Press and release the Alt key, and then press the letter C.

The Clock menu opens and the fi rst item on it is highlighted.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 107

5. Press D to display the current date.

The current date appears in the label box.

6. Click the Close button on the program’s title bar to stop the program.

Congratulations! You’ve created a working program that makes use of menus and access

keys. In the next exercise, you’ll learn how to use toolbars.

System Clock Properties and Functions

You can use various properties and functions to retrieve chronological values from the

system clock. You can use these values to create custom calendars, clocks, and alarms

in your programs. The following table lists the most useful system clock functions. For

more information, check the Visual Studio online Help.

Property or function Description

TimeString This property sets or returns the current time from the system

clock.

DateString This property sets or returns the current date from the system

clock.

Now This property returns an encoded value representing the cur-

rent date and time. This property is most useful as an argu-

ment for other system clock functions.

Hour (date) This function extracts the hour portion of the specifi ed date/

time value (0 through 23).

Minute (date) This function extracts the minute portion of the specifi ed

date/time value (0 through 59).

Second (date) This function extracts the second portion of the specifi ed

date/time value (0 through 59).

Month (date) This function extracts a whole number representing the

month (1 through 12).

Year (date) This function extracts the year portion of the specifi ed date/

time value.

Weekday (date) This function extracts a whole number representing the day of

the week (1 is Sunday, 2 is Monday, and so on).

Property or function Description

108 Part I Getting Started with Microsoft Visual Basic 2008
Adding Toolbars with the ToolStrip Control

Parallel to the MenuStrip control, you can use the Visual Studio ToolStrip control to quickly

add toolbars to your program’s user interface. The ToolStrip control is placed on a Visual

Basic form but resides in the component tray in the IDE, just like the MenuStrip control.

You can also add a variety of features to your toolbars, including labels, combo boxes,

text boxes, and split buttons. Toolbars look especially exciting when you add them, but

remember that as with menu commands, you must write an event procedure for each

button that you want to use in your program. Still, compared with earlier versions of

Visual Basic, it is amazing how much toolbar programming and confi guring the IDE

does for you. Practice creating a toolbar now.

Create a toolbar

 1. Click the ToolStrip control on the Menus & Toolbars tab of the Toolbox, and then draw

a toolbar control on your form.

Don’t worry about the location—Visual Studio will create a toolbar on your form

automatically and extend it across the window. The tool strip object itself appears

below the form in the component tray. On the form, the default toolbar contains

one button. Now you’ll use a special shortcut feature to populate the toolbar

automatically.

 2. Click the tiny shortcut arrow in the upper-right corner of the new toolbar.

The shortcut arrow points to the right and looks similar to the shortcut arrow we

saw in the PictureBox control in Chapter 2, “Writing Your First Program.” This short-

cut arrow is called a smart tag. When you click the arrow, a ToolStrip Tasks window

opens that includes a few of the most common toolbar tasks and properties. You

can confi gure the toolbar quickly with these commands.

 3. Click Insert Standard Items.

Visual Studio adds a collection of standard toolbar buttons to the toolbar, including

New, Open, Save, Print, Cut, Copy, Paste, and Help. Your form looks similar to the

illustration on the next page.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 109

It is not necessary for you to start with a full toolbar of buttons as I have done here—

I’m merely demonstrating one of the useful “automatic” features of Visual Studio 2008.

You could also create the buttons on your toolbar one by one using the ToolStrip edit-

ing commands, as I’ll demonstrate shortly. But for many applications, clicking Insert

Standard Items is a time-saving feature. Remember, however, that although these tool-

bar buttons look professional, they are not functional yet. They need event procedures

to make them work.

4. Click the Add ToolStripButton arrow on the right side of the new toolbar, then click the

Button item.

Add ToolStripButton adds additional items to your toolbar, such as buttons, labels,

split buttons, text boxes, combo boxes, and other useful interface elements. You’ve

now created a custom toolbar button; by default it contains a picture of a mountain

and a sun.

5. Widen the form window to ensure that you can see all of the tool strip items.

6. Right-click the new button, point to DisplayStyle, and click ImageAndText.

Your new button displays both text and a graphical image on the toolbar. Visual

Studio names your new button ToolStripButton1 in the program, and this name

appears by default on the toolbar. If necessary, widen the form window to see the

new button, because it contains the default text value ToolStripButton1.

110 Part I Getting Started with Microsoft Visual Basic 2008

7. Select the ToolStripButton1 object.

8. Change the ToolStripButton1 object’s Text property to Color, which is the name of your

button on the form, and then press Enter.

The Color button appears on the toolbar. You’ll use this button later in the program to

change the color of text on the form. Now insert a custom bitmap for your button.

9. Right-click the Color button, and then click the Set Image command.

10. Click Local Resource (if it is not already selected), and then click the Import button.

11. Browse to the c:\vb08sbs\chap04 folder, click the ColorButton bitmap fi le that I created

for you, click Open, and then click OK.

Visual Studio loads the pink, blue, and yellow paint icon into the Color button, as

shown in the following illustration:

Your new button is complete, and you have learned how to add your own buttons to the

toolbar, in addition to the default items supplied by Visual Studio. Now you’ll learn how to

delete and rearrange toolbar buttons.

Move and delete toolbar buttons

1. Drag the new Color button to the left side of the toolbar.

Visual Studio lets you rearrange your toolbar buttons by using simple drag movements.

2. Right-click the second button in the toolbar (New), then click the Delete command.

The New button is removed from the toolbar. With the Delete command, you can de-

lete unwanted buttons, which makes it easy to customize the standard toolbar buttons

provided by the ToolStrip control.

3. Delete the Save and Print buttons, but be sure to keep the Color and Open buttons.

Now you’ll learn to use dialog box controls and connect them to toolbar buttons.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 111
Using Dialog Box Controls

Visual Studio contains eight standard dialog box controls on the Dialogs and Printing tabs

of the Toolbox. These dialog boxes are ready-made, so you don’t need to create your own

custom dialog boxes for the most common tasks in Windows applications, such as opening,

saving, and printing fi les. In many cases, you’ll still need to write the event procedure code

that connects these dialog boxes to your program, but the user interfaces are built for you

and conform to the standards for common use among Windows applications.

The eight standard dialog box controls available to you are listed in the following table. With

a few important exceptions, they’re similar to the objects provided by the CommonDialog

control in Visual Basic 6. The PrintPreviewControl control isn’t listed here, but you’ll fi nd it

useful if you use the PrintPreviewDialog control.

Control name Purpose

OpenFileDialog Gets the drive, folder name, and fi le name for an existing fi le

SaveFileDialog Gets the drive, folder name, and fi le name for a new fi le

FontDialog Lets the user choose a new font type and style

ColorDialog Lets the user select a color from a palette

FolderBrowserDialog Lets the user navigate through a computer’s folder structure and select a

folder

PrintDialog Lets the user set printing options

PrintPreviewDialog Displays a print preview dialog box like the Microsoft Word program does

PageSetupDialog Lets the user control page setup options, such as margins, paper size, and

layout

In the following exercises, you’ll practice using the OpenFileDialog and ColorDialog con-

trols. The OpenFileDialog control lets your program open bitmap fi les, and the ColorDialog

control enables your program to change the color of the clock output. You’ll connect these

dialog boxes to the toolbar that you just created, although you could just as easily connect

them to menu commands.

Add OpenFileDialog and ColorDialog controls

 1. Click the OpenFileDialog control on the Dialogs tab of the Toolbox, and then click

the form.

An open fi le dialog box object appears in the component tray.

 2. Click the ColorDialog control on the Dialogs tab of the Toolbox, and then click the

form again.

Control name Purpose

112 Part I Getting Started with Microsoft Visual Basic 2008
The component tray now looks like this:

Just like the menu strip and tool strip objects, the open fi le dialog box and color dialog box

objects appear in the component tray, and they can be customized with property settings.

Now you’ll create a picture box object by using the PictureBox control. As you’ve seen, the

picture box object displays artwork on a form. This time, you’ll display artwork in the picture

box by using the open fi le dialog box object.

Add a picture box object

 1. Click the PictureBox control in the Toolbox.

 2. Draw a picture box object on the form, below the label.

 3. Use the shortcut arrow in the picture box object to set the SizeMode property of the

picture box to StretchImage.

Now you’ll create event procedures for the Color and Open buttons on the toolbar.

Event Procedures That Manage Common Dialog Boxes

After you create a dialog box object, you can display the dialog box in a program by doing

the following:

Q Type the dialog box name with the ShowDialog method in an event procedure associated

with a toolbar button or menu command.

Q If necessary, set one or more dialog box properties by using program code before

opening the dialog box.

Q Use program code to respond to the user’s dialog box selections after the dialog box

has been manipulated and closed.

In the following exercise, you’ll enter the program code for the OpenToolStripButton_Click

event procedure, the routine that executes when the Open command is clicked. You’ll set

the Filter property in the OpenFileDialog1 object to defi ne the fi le type in the Open com-

mon dialog box. (You’ll specify Windows bitmaps.) Then you’ll use the ShowDialog method

to display the Open dialog box. After the user has selected a fi le and closed this dialog box,

you’ll display the fi le he or she selected in a picture box by setting the Image property of

the picture box object to the fi le name the user selected.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 113

Edit the Open button event procedure

1. Double-click the Open button on your form’s toolbar.

The OpenToolStripButton_Click event procedure appears in the Code Editor.

2. Type the following program statements in the event procedure. Be sure to type each

line exactly as it’s printed here, and press the Enter key after the last line.

OpenFileDialog1.Filter = “Bitmaps (*.bmp)|*.bmp”

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

 PictureBox1.Image = System.Drawing.Image.FromFile _

 (OpenFileDialog1.FileName)

End If

The fi rst three statements in the event procedure refer to three different properties of

the open fi le dialog box object. The fi rst statement uses the Filter property to defi ne

a list of valid fi les. (In this case, the list has only one item: *.bmp.) This is important for

the Open dialog box because a picture box object can display a number of fi le types,

including:

Q Bitmaps (.bmp fi les)

Q Windows metafi les (.emf and .wmf fi les)

Q Icons (.ico fi les)

Q Joint Photographic Experts Group format (.jpg and .jpeg fi les)

Q Portable Network Graphics format (.png fi les)

Q Graphics Interchange Format (.gif fi les)

To add additional items to the Filter list , you can type a pipe symbol (|) between items.

For example, this program statement

OpenFileDialog1.Filter = “Bitmaps (*.bmp)|*.bmp|Metafiles (*.wmf)|*.wmf”

allows both bitmaps and Windows metafi les to be chosen in the Open dialog box.

The second statement in the event procedure displays the Open dialog box in the

program. ShowDialog is similar to the Show method in Visual Basic 6, but it can

be used with any Windows form. The ShowDialog method returns a result named

DialogResult, which indicates the button on the dialog box that the user clicked. To

determine whether the user clicked the Open button, an If…Then decision structure

is used to check whether the returned result equals DialogResult.OK. If it does, a valid

.bmp fi le path should be stored in the FileName property of the open fi le dialog box

object. (You’ll learn more about the syntax of If…Then decision structures in Chapter 6,

“Using Decision Structures.”)

114 Part I Getting Started with Microsoft Visual Basic 2008

The third statement uses the fi le name selected in the dialog box by the user. When

the user selects a drive, folder, and fi le name and then clicks Open, the complete path

is passed to the program through the OpenFileDialog1.FileName property. The System.

Drawing.Image.FromFile method, which loads electronic artwork, is then used to copy

the specifi ed Windows bitmap into the picture box object. (I broke this statement with

the line continuation character (_) because it was rather long.)

Now you’ll write an event procedure for the Color button that you added to the toolbar.

Write the Color button event procedure

1. Display the form again, and then double-click the Color button on the toolbar that you

added to the form.

An event procedure named ToolStripButton1_Click appears in the Code Editor. The

object name includes Button1 because it was the fi rst non-standard button that you

added to the toolbar. (You can change the name of this object to something more in-

tuitive, such as ColorToolStripButton, by clicking the button on the form and changing

the Name property in the Properties window.)

2. Type the following program statements in the event procedure:

ColorDialog1.ShowDialog()

Label1.ForeColor = ColorDialog1.Color

The fi rst program statement uses the ShowDialog method to open the color dialog

box. As you learned earlier in this chapter, ShowDialog is the method you use to open

any form as a dialog box, including a form created by one of the standard dialog box

controls that Visual Studio provides. The second statement in the event procedure

assigns the color that the user selected in the dialog box to the ForeColor property of

the Label1 object. You might remember Label1 from earlier in this chapter—it’s the

label box you used to display the current time and date on the form. You’ll use the

color returned from the color dialog box to set the color of the text in the label.

Note that the Color dialog box can be used to set the color of any user interface

element that supports color. Other possibilities include the background color of the

form, the colors of shapes on the form, and the foreground and background colors

of objects.

3. Click the Save All button on the Standard toolbar to save your changes.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 115

Controlling Color Choices by Setting Color Dialog Box Properties

If you want to further customize the color dialog box, you can control what color

choices the dialog box presents to the user when the dialog box opens. You can adjust

these color settings by using the Properties window, or by setting properties by using

program code before you display the dialog box with the ShowDialog method. The

following table describes the most useful properties of the ColorDialog control . Each

property should be set with a value of True to enable the option or False to disable

the option.

Property Meaning

AllowFullOpen Set to True to enable the Defi ne Custom Colors button in the dialog box.

AnyColor Set to True if the user can select any color shown in the dialog box.

FullOpen Set to True if you want to display the Custom Colors area when the dialog

box fi rst opens.

ShowHelp Set to True if you want to enable the Help button in the dialog box.

SolidColorOnly Set to True if you want the user to select only solid colors (dithered colors—

those that are made up of pixels of different colors—are disabled).

Now you’ll run the Menu program and experiment with the menus and dialog boxes you’ve

created.

Run the Menu program

Tip The complete Menu program is located in the c:\vb08sbs\chap04\menu folder.

1. Click the Start Debugging button on the Standard toolbar.

The program runs, and the Clock menu and the toolbar appear at the top of the screen.

2. On the form’s toolbar, click Open.

The Open dialog box opens. It looks great, doesn’t it? Notice the Bitmaps (*.bmp) entry

in the dialog box. You defi ned this entry with the statement

OpenFileDialog1.Filter = “Bitmaps (*.bmp)|*.bmp”

in the OpenToolStripButton_Click event procedure. The fi rst part of the text in quotes—

Bitmaps (*.bmp)—specifi es which items are listed in the Files Of Type box. The second

part—*.bmp—specifi es the fi le name extension of the fi les that are to be listed in the

dialog box.

Property Meaning

116 Part I Getting Started with Microsoft Visual Basic 2008

3. Open a folder on your system that contains bitmap images. I’m using c:\program fi les\

microsoft offi ce\clipart\pub60cor\, a folder containing Microsoft Publisher fi les.

4. Select one of the bitmap fi les, and then click the Open button.

A picture of the bitmap appears in the picture box. (I’ve selected a clock image.) Your

form looks similar to this:

Now you’ll practice using the Clock menu.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 117

5. On the Clock menu, click the Time command.

The current time appears in the label box.

6. Click the Color button on the toolbar.

The Color dialog box opens, as shown here:

The Color dialog box contains elements that you can use to change the color of the

clock text in your program. The current color setting, black, is selected.

7. Click the blue box, and then click OK.

The Color dialog box closes, and the color of the text in the clock label changes to blue.

(Not visible in this book, alas, but you’ll see it on screen.)

118 Part I Getting Started with Microsoft Visual Basic 2008
 8. On the Clock menu, click the Date command.

The current date is displayed in blue type. Now that the text color has been set in the

label, it remains blue until the color is changed again or the program closes.

 9. Close the program.

The application terminates, and the Visual Studio IDE appears.

That’s it! You’ve learned several important commands and techniques for creating menus,

toolbars, and dialog boxes in your programs. After you learn more about program code,

you’ll be able to put these skills to work in your own programs.

Adding Nonstandard Dialog Boxes to Programs

What if you need to add a dialog box to your program that isn’t provided by one of

the eight dialog box controls in Visual Studio? No problem—but you’ll need to do a

little extra design work. As you’ll learn in future chapters, a Visual Basic program can

use more than one form to receive and display information. To create nonstandard

dialog boxes, you need to add new forms to your program, add input and output

objects, and process the dialog box clicks in your program code. (These techniques

will be discussed in Chapter 14, “Managing Windows Forms and Controls at Run

Time.”) In Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework,”

you’ll learn how to use two handy dialog boxes that are specifi cally designed for

receiving text input (InputBox) and displaying text output (MsgBox). These dialog

boxes help bridge the gap between the dialog box controls and the dialog boxes

that you need to create on your own.

One Step Further: Assigning Shortcut Keys to Menus

The MenuStrip control lets you assign shortcut keys to your menus. Shortcut keys are key

combinations that a user can press to activate a command without using the menu bar. For

example, on a typical Edit menu in a Windows application, such as Microsoft Word, you

can copy selected text to the Clipboard by pressing Ctrl+C. With the MenuStrip control’s

ShortcutKeys property , you can customize this setting. Try assigning two shortcut keys to

the Clock menu in the Menu program now.

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 119

Assign shortcut keys to the Clock menu

1. Make sure that your program has stopped running and is in design mode.

You can modify a program only when it isn’t running. (For an exception to this rule, see

Chapter 8: “Debugging Visual Basic Programs.”)

2. Click the Clock menu, and then click the Time command to highlight it.

Before you set the shortcut key for a menu command, you must select it. You assign

a shortcut key by setting the ShortcutKeys property for the command by using the

Properties window. (In Visual Basic .NET 2002 and 2003, this property was named

Shortcut.) The menu strip object provides an easy way for you to do this.

3. Open the Properties window, click the ShortcutKeys property, and then click the arrow

in the second column.

A pop-up menu appears that helps you assign the shortcut key.

4. Select the Ctrl check box, click the Key list box, and select the letter “T” in the list.

The Properties window looks like this:

Tip Visual Basic normally displays the shortcut key combination in the menu when you

run the program, to give users a hint about which keys to press. To hide shortcut key

combinations from the user (if you’re running out of space) set the ShowShortcutKeys

property to False. The shortcut key still works, but users won’t see a visual reminder for

it. You can also set what will be displayed within the program as a shortcut key by setting

the ShortcutKeyDisplayString property.

120 Part I Getting Started with Microsoft Visual Basic 2008

5. Click the Date command, and then change its ShortcutKeys property setting to Ctrl+D.

Now you’ll run the program and try the shortcut keys.

6. Click the form to close the Clock menu.

7. Click the Start Debugging button on the Standard toolbar.

8. Press Ctrl+D to run the Date command.

The current date appears in the program.

9. Press Ctrl+T to run the Time command.

The current time appears in the program.

10. Click the Clock menu.

The shortcut keys are listed beside the Time and Date commands, as shown in the

following illustration. Visual Basic adds these key combinations when you defi ne the

shortcuts by using the ShortcutKeys property.

11. Close the program.

The Menu program closes, and the development environment appears.

You’re ready to move deeper into writing programs now, in the part of the book I call

“Programming Fundamentals.”

 Chapter 4 Working with Menus, Toolbars, and Dialog Boxes 121
Chapter 4 Quick Reference

To Do this

Create a menu item Click the MenuStrip control, and draw a menu on your form. Click the Type

Here tag on your form, and type the name of the menus and commands

that you want to create.

Add an access key

to a menu item

Click the menu item twice to display the I-beam, and then type an ampersand

(&) followed by the letter you want to use as an access key.

Assign a shortcut key

to a menu item

Set the ShortcutKeys property of the menu item by using the Properties

window. A list of common shortcut keys is provided.

Change the order of

menu items

Drag the menu item you want to move to a new location.

Add a toolbar to your

program

Click the ToolStrip control, and draw a toolbar on your form. Right-click

buttons to customize them. Double-click buttons and write event proce-

dures to confi gure them.

Use a standard dialog

box in your program

Add one of the eight standard dialog box controls to your form, and then

customize it with property settings and program code. Dialog box controls

are located on the Dialogs and Printing Toolbar tabs.

Display an Open

dialog box

Add the OpenFileDialog control to your form. Display the dialog box with

the ShowDialog method. The FileName property contains the name of the

fi le selected.

Display a Color

dialog box

Add the ColorDialog control to your form. Display the dialog box with

the ShowDialog method. The Color property contains the color the user

selected.

To Do this

Microsoft Visual Basic 2008 Step by Step

Part II

Programming Fundamentals

In this part:

Chapter 5, Visual Basic Variables and Formulas, and the .NET Framework 125

Chapter 6, Using Decision Structures. 161

Chapter 7, Using Loops and Timers . 185

Chapter 8, Debugging Visual Basic Programs . 213

Chapter 9, Trapping Errors by Using Structured Error Handling. 231

Chapter 10, Creating Modules and Procedures . 253

Chapter 11, Using Arrays to Manage Numeric and String Data 281

Chapter 12, Working with Collections and the System.Collections

Namespace . 303

Chapter 13, Exploring Text Files and String Processing . 319

In Part I, “Getting Started with Microsoft Visual Basic 2008,” you learned how to create

the user interface of a Microsoft Visual Basic 2008 program and how to build and run a

program in the Microsoft Visual Studio 2008 development environment. In the nine chap-

ters in Part II, “Programming Fundamentals,” you’ll learn more about Visual Basic program

code—the statements and keywords that form the core of a Visual Basic program. You’ll

learn how to manage information within programs and control how your code is executed,

and you’ll learn how to use decision structures, loops, timers, arrays, collections, and text

fi les. You’ll also learn how to debug your programs and handle run-time errors if they

occur. After you complete Part II, you’ll be ready for more advanced topics, such as

customizing the user interface, database programming, and Web programming.
 123

Chapter 5

Visual Basic Variables and Formulas,
and the .NET Framework

After completing this chapter, you will be able to:

Q Use variables to store data in your programs.

Q Get input by using the InputBox function.

Q Display messages by using the MsgBox function.

Q Work with different data types.

Q Use variables and operators to manipulate data.

Q Use methods in the .NET Framework.

Q Use arithmetic operators and functions in formulas.

In this chapter, you’ll learn how to use variables and constants to store data temporarily in your

program, and how to use the InputBox and MsgBox functions to gather and present informa-

tion by using dialog boxes. You’ll also learn how to use functions and formulas to perform

calculations, and how to use arithmetic operators to perform tasks such as multiplication and

string concatenation. Finally, you’ll learn how to tap into the powerful classes and methods of

the Microsoft .NET Framework 3.5 to perform mathematical calculations and other useful work.

The Anatomy of a Visual Basic Program Statement

As you learned in Chapter 2, “Writing Your First Program,” a line of code in a Visual Basic

program is called a program statement. A program statement is any combination of Visual

Basic keywords, properties, object names, variables, numbers, special symbols, and other

values that collectively create a valid instruction recognized by the Visual Basic compiler.

A complete program statement can be a simple keyword, such as

End

which halts the execution of a Visual Basic program, or it can be a combination of elements,

such as the following statement, which uses the TimeString property to assign the current

system time to the Text property of the Label1 object:

Label1.Text = TimeString
 125

126 Part II Programming Fundamentals
The rules of construction that must be used when you build a programming statement are

called statement syntax. Visual Basic shares many of its syntax rules with earlier versions of

the BASIC programming language and with other language compilers. The trick to writing

good program statements is learning the syntax of the most useful language elements and

then using those elements correctly to process the data in your program. Fortunately, Visual

Basic does a lot of the toughest work for you, so the time you spend writing program code is

relatively short, and you can reuse the results in future programs. The Visual Studio IDE also

points out potential syntax errors and suggests corrections, much like the AutoCorrect fea-

ture of Microsoft Offi ce Word.

In this chapter and the following chapters, you’ll learn the most important Visual Basic key-

words and program statements, as well as many of the objects, properties, and methods

provided by Visual Studio controls and the .NET Framework. You’ll fi nd that these keywords

and objects complement nicely the programming skills you’ve already learned and will help

you write powerful programs in the future. The fi rst topics—variables and data types—are

critical features of nearly every program.

Using Variables to Store Information

A variable is a temporary storage location for data in your program. You can use one or

many variables in your code, and they can contain words, numbers, dates, properties,

or other values. By using variables, you can assign a short and easy-to-remember name

to each piece of data you plan to work with. Variables can hold information entered by

the user at run time, the result of a specifi c calculation, or a piece of data you want to

display on your form. In short, variables are handy containers that you can use to store

and track almost any type of information.

Using variables in a Visual Basic program requires some planning. Before you can use a

variable, you must set aside memory in the computer for the variable’s use. This process is

a little like reserving a seat at a theater or a baseball game. I’ll cover the process of making

reservations for, or declaring, a variable in the next section.

Setting Aside Space for Variables: The Dim Statement

Since the release of Microsoft Visual Basic .NET 2003, it has been necessary for Visual

Basic programmers to explicitly declare variables before using them. This was a change

from Visual Basic 6 and earlier versions of Visual Basic, where (under certain circumstances)

you could declare variables implicitly—in other words, simply by using them and without

a Dim statement. The earlier practice was fl exible but rather risky—it created the potential

for variable confusion and misspelled variable names, which introduced potential bugs into

the code that might or might not be discovered later.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 127
In Visual Basic 2008, a bit of the past has returned in the area of variable declaration. It is

possible once again to declare a variable implicitly. I don’t recommend this, however, so I

won’t discuss this new feature until you learn the recommended programming practice,

which experienced programmers far and wide will praise you for adopting.

To declare a variable in Visual Basic 2008, type the variable name after the Dim statement.

(Dim stands for dimension.) This declaration reserves room in memory for the variable when

the program runs and lets Visual Basic know what type of data it should expect to see later.

Although this declaration can be done at any place in the program code (as long as the

declaration happens before the variable is used), most programmers declare variables in

one place at the top of their event procedures or code modules.

For example, the following statement creates space for a variable named LastName that will

hold a textual, or string, value:

Dim LastName As String

Note that in addition to identifying the variable by name, I’ve used the As keyword to give the

variable a particular type, and I’ve identifi ed the type by using the keyword String. (You’ll learn

about other data types later in this chapter.) A string variable contains textual information:

words, letters, symbols—even numbers. I fi nd myself using string variables a lot; they hold

names, places, lines from a poem, the contents of a fi le, and many other “wordy” data.

Why do you need to declare variables? Visual Basic wants you to identify the name and the

type of your variables in advance so that the compiler can set aside the memory the program

will need to store and process the information held in the variables. Memory management

might not seem like a big deal to you (after all, modern personal computers have lots of

RAM and gigabytes of free hard disk space), but in some programs, memory can be con-

sumed quickly, and it’s a good practice to take memory allocation seriously even as you

take your fi rst steps as a programmer. As you’ll soon see, different types of variables have

different space requirements and size limitations.

Note In some earlier versions of Visual Basic, specifi c variable types (such as String or Integer)

aren’t required—information is simply held by using a generic (and memory hungry) data type

called Variant, which can hold data of any size or format. Variants are not supported in Visual

Basic 2008. Although they are handy for beginning programmers, their design makes them slow

and ineffi cient, and they allow variables to be converted from one type to another too easily—

often causing unexpected results. As you’ll learn later, however, you can still store information

in generic containers called Object, which are likewise general-purpose in function but rather

ineffi cient in size.

128 Part II Programming Fundamentals
After you declare a variable, you’re free to assign information to it in your code by using

the assignment operator (=). For example, the following program statement assigns the last

name “Jefferson” to the LastName variable:

LastName = "Jefferson"

Note that I was careful to assign a textual value to the LastName variable because its data

type is String. I can also assign values with spaces, symbols, or numbers to the variable,

such as

LastName = "1313 Mockingbird Lane"

but the variable is still considered a string value. The number portion could be used in a

mathematical formula only if it were fi rst converted to an integer or a fl oating-point value

by using one of a handful of conversion functions I’ll discuss later in this book.

After the LastName variable is assigned a value, it can be used in place of the name

“Jefferson” in your code. For example, the assignment statement

Label1.Text = LastName

displays “Jefferson” in the label named Label1 on your form.

Implicit Variable Declaration

If you really want to declare variables “the old way” in Visual Basic 2008—that is, without

explicitly declaring them by using the Dim statement—you can place the Option Explicit Off

statement at the very top of your form’s or module’s program code (before any event proce-

dures), and it will turn off the Visual Basic default requirement that variables be declared before

they’re used. As I mentioned earlier, I don’t recommend this statement as a permanent addi-

tion to your code, but you might fi nd it useful temporarily as you convert older Visual Basic

programs to Visual Studio 2008.

Another possibility is to use the new Option Infer statement, which has been added to Visual

Basic 2008. If Option Infer is set to “On”, Visual Basic will deduce or infer the type of a variable

by examining the initial assignment you make. This allows you to declare variables without

specifi cally identifying the type used, and allowing Visual Basic to make the determination.

For example, the expression

Dim attendance = 100

will declare the variable named attendance as an Integer, because 100 is an integer expression.

In other words, with Option Infer set to “On”, it is the same as typing

Dim attendance As Integer = 100

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 129

U

Likewise, the expression

Dim address = "1012 Daisy Lane"

will declare the variable address as type String, because its initial assignment was of type

String. If you set Option Infer to “Off”, however, Visual Basic will declare the variable as type

Object—a general (though somewhat bulky and ineffi cient) container for any type of data.

If you plan to use Option Infer to allow this type of inferred variable declaration (a fl exible

approach, but one that could potentially lead to unexpected results), place the following

two statements at the top of your code module (above the Class Form statement):

Option Explicit Off

Option Infer On

Option Explicit Off allows variables to be declared as they are used, and Option Infer On

allows Visual Basic to determine the type automatically. You can also set these options

using the Options command on the Tools menu as discussed in Chapter 1, “Exploring

the Visual Studio Integrated Development Environment.”

sing Variables in a Program

Variables can maintain the same value throughout a program, or they can change values

several times, depending on your needs. The following exercise demonstrates how a variable

named LastName can contain different text values and how the variable can be assigned to

object properties.

Change the value of a variable

1. Start Visual Studio.

2. On the File menu, click Open Project.

The Open Project dialog box opens.

3. Open the Variable Test project in the c:\vb08sbs\chap05\variable test folder.

4. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Variable Test form opens in the Designer. Variable Test is a skeleton program—it

contains a form with labels and buttons for displaying output, but little program code.

(I create these skeleton programs now and then to save you time, although you can

also create the project from scratch.) You’ll add code in this exercise.

130 Part II Programming Fundamentals

The Variable Test form looks like this:

The form contains two labels and two buttons. You’ll use variables to display information

in each of the labels.

Note The label objects look like boxes because I set their BorderStyle properties to

Fixed3D.

5. Double-click the Show button.

The Button1_Click event procedure appears in the Code Editor.

6. Type the following program statements to declare and use the LastName variable:

Dim LastName As String

LastName = "Luther"

Label1.Text = LastName

LastName = "Bodenstein von Karlstadt"

Label2.Text = LastName

The program statements are arranged in three groups. The fi rst statement declares

the LastName variable by using the Dim statement and the String type. After you

type this line, Visual Studio places a green jagged line under the LastName variable,

because it has been declared but not used in the program. There is nothing wrong

here—Visual Studio is just reminding you that a new variable has been created and

is waiting to be used.

Tip If the variable name still has a jagged underline when you fi nish writing your program,

it could be a sign that you misspelled a variable name somewhere within your code.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 131

The second and third lines assign the name “Luther” to the LastName variable and

then display this name in the fi rst label on the form. This example demonstrates one

of the most common uses of variables in a program—transferring information to

a property. As you have seen before, all string values assigned to variables are dis-

played in red type.

The fourth line assigns the name “Bodenstein von Karlstadt” to the LastName variable

(in other words, it changes the contents of the variable). Notice that the second string

is longer than the fi rst and contains a few blank spaces. When you assign text strings

to variables, or use them in other places, you need to enclose the text within quotation

marks. (You don’t need to do this with numbers.)

Finally, keep in mind another important characteristic of the variables being declared

in this event procedure—they maintain their scope, or hold their value, only within the

event procedure you’re using them in. Later in this chapter, you’ll learn how to declare

variables so that they can be used in any of your form’s event procedures.

7. Click the Form1.vb [Design] tab to display the form again.

8. Double-click the Quit button.

The Button2_Click event procedure appears in the Code Editor.

9. Type the following program statement to stop the program:

End

Your screen looks like this:

10. Click the Save All button on the Standard toolbar to save your changes.

132 Part II Programming Fundamentals

11. Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the IDE.

12. Click the Show button.

The program declares the variable, assigns two values to it, and copies each value

to the appropriate label on the form. The program produces the output shown in

the following fi gure.

13. Click the Quit button to stop the program.

The program stops, and the development environment returns.

Variable Naming Conventions

Naming variables can be a little tricky because you need to use names that are short

but intuitive and easy to remember. To avoid confusion, use the following conventions

when naming variables:

Q Begin each variable name with a letter or underscore. This is a Visual Basic re-

quirement. Variable names can contain only letters, underscores, and numbers.

Q Although variable names can be virtually any length, try to keep them under 33

characters to make them easier to read. (Variable names are limited to 255 char-

acters in Visual Basic 6, but that’s no longer a constraint.)

Q Make your variable names descriptive by combining one or more words when

it makes sense to do so. For example, the variable name SalesTaxRate is much

clearer than Tax or Rate.

Q Use a combination of uppercase and lowercase characters and numbers. An

accepted convention is to capitalize the fi rst letter of each word in a variable; for

example, DateOfBirth. However, some programmers prefer to use so-called camel

casing (making the fi rst letter of a variable name lowercase) to distinguish variable

names from functions and module names, which usually begin with uppercase

letters. Examples of camel casing include dateOfBirth, employeeName, and

counter.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 133
Q Don’t use Visual Basic keywords, objects, or properties as variable names. If you

do, you’ll get an error when you try to run your program.

Q Optionally, you can begin each variable name with a two-character or three-

character abbreviation corresponding to the type of data that’s stored in the

variable. For example, use strName to show that the Name variable contains

string data. Although you don’t need to worry too much about this detail now,

you should make a note of this convention for later—you’ll see it in parts of the

Visual Studio documentation and in many of the advanced books about Visual

Basic programming. (This convention and abbreviation scheme was originally

created by Microsoft Distinguished Engineer Charles Simonyi and is sometimes

called the Hungarian Naming Convention.)

Using a Variable to Store Input

One practical use for a variable is to temporarily hold information that was entered by the

user. Although you can often use an object such as a list box or a text box to gather this infor-

mation, at times you might want to deal directly with the user and save the input in a variable

rather than in a property. One way to gather input is to use the InputBox function to display a

dialog box on the screen and then use a variable to store the text the user types. You’ll try this

approach in the following example.

Get input by using the InputBox function

 1. On the File menu, click Open Project.

The Open Project dialog box opens.

 2. Open the Input Box project in the c:\vb08sbs\chap05\input box folder.

The Input Box project opens in the IDE. Input Box is a skeleton program.

 3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The form contains one label and two buttons. You’ll use the InputBox function to get

input from the user, and then you’ll display the input in the label on the form.

 4. Double-click the Input Box button.

The Button1_Click event procedure appears in the Code Editor.

134 Part II Programming Fundamentals

5. Type the following program statements to declare two variables and call the InputBox

function:

Dim Prompt, FullName As String

Prompt = "Please enter your name."

FullName = InputBox(Prompt)

Label1.Text = FullName

This time, you’re declaring two variables by using the Dim statement: Prompt and

FullName. Both variables are declared using the String type. (You can declare as many

variables as you want on the same line, as long as they are of the same type.) Note that

in Visual Basic 6, this same syntax would have produced different results. Dim would

create the Prompt variable using the Variant type (because no type was specifi ed) and

the FullName variable using the String type. But this logical inconsistency has been

fi xed in Visual Basic versions 2002 and later.

The second line in the event procedure assigns a text string to the Prompt variable.

This message is used as a text argument for the InputBox function. (An argument is

a value or an expression passed to a procedure or a function.) The next line calls the

InputBox function and assigns the result of the call (the text string the user enters) to

the FullName variable. InputBox is a special Visual Basic function that displays a dia-

log box on the screen and prompts the user for input. In addition to a prompt string,

the InputBox function supports other arguments you might want to use occasionally.

Consult the Visual Studio documentation for details.

After InputBox has returned a text string to the program, the fourth statement in the

procedure places the user’s name in the Text property of the Label1 object, which

displays it on the form.

Note In older versions of BASIC, the InputBox function included a $ character at the end

to help programmers remember that the function returned information in the string ($)

data type. String variables were also identifi ed with the $ symbol on occasion. These days

we don’t use character abbreviations for data types. String ($), Integer (%), and the other

type abbreviations are now relics.

6. Save your changes.

7. Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the IDE.

8. Click the Input Box button.

Visual Basic executes the Button1_Click event procedure, and the Input Box dialog box

opens on your screen, as shown here:

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 135

9. Type your full name, and then click OK.

The InputBox function returns your name to the program and places it in the FullName

variable. The program then uses the variable to display your name on the form, as

shown here:

Use the InputBox function in your programs anytime you want to prompt the user for

information. You can use this function in combination with the other input controls to

regulate the fl ow of data into and out of a program. In the next exercise, you’ll learn

how to use a similar function to display text in a dialog box.

10. Click the Quit button on the form to stop the program.

The program stops, and the development environment reappears.

What Is a Function?

InputBox is a special Visual Basic keyword known as a function. A function is a statement

that performs meaningful work (such as prompting the user for information or calculating

an equation) and then returns a result to the program. The value returned by a function

can be assigned to a variable, as it was in the Input Box program, or it can be assigned to

a property or another statement or function. Visual Basic functions often use one or more

arguments to defi ne their activities. For example, the InputBox function you just executed

used the Prompt variable to display dialog box instructions for the user. When a function

uses more than one argument, commas separate the arguments, and the whole group of

arguments is enclosed in parentheses. The following statement shows a function call that

has two arguments:

FullName = InputBox(Prompt, Title)

Notice that I’m using italic in this syntax description to indicate that certain items are

placeholders for information you specify. This is a style you’ll fi nd throughout the book

and in the Visual Studio documentation.

136 Part II Programming Fundamentals
Using a Variable for Output

You can display the contents of a variable by assigning the variable to a property (such as

the Text property of a label object) or by passing the variable as an argument to a dialog box

function. One useful dialog box function for displaying output is the MsgBox function. When

you call the MsgBox function, it displays a dialog box, sometimes called a message box, with

various options that you can specify. Like InputBox, it takes one or more arguments as input,

and the results of the function call can be assigned to a variable. The syntax for the MsgBox

function is

ButtonClicked = MsgBox(Prompt, Buttons, Title)

where Prompt is the text to be displayed in the message box; Buttons is a number that specifi es

the buttons, icons, and other options to display for the message box; and Title is the text dis-

played in the message box title bar. The variable ButtonClicked is assigned the result returned

by the function, which indicates which button the user clicked in the dialog box.

If you’re just displaying a message using the MsgBox function, the ButtonClicked variable, the

assignment operator (=), the Buttons argument, and the Title argument are optional. You’ll

be using the Title argument, but you won’t be using the others in the following exercise; for

more information about them (including the different buttons you can include in MsgBox

and a few more options), search for MsgBox Function in the Visual Studio documentation.

Note Visual Basic provides both the MsgBox function and the MessageBox class for displaying

text in a message box. The MessageBox class is part of the System.Windows.Forms namespace, it

takes arguments much like MsgBox, and it is displayed by using the Show method. I’ll use both

MsgBox and MessageBox in this book.

Now you’ll add a MsgBox function to the Input Box program to display the name the user

enters in the Input Box dialog box.

Display a message by using the MsgBox function

 1. If the Code Editor isn’t visible, double-click the Input Box button on the Input Box form.

The Button1_Click event procedure appears in the Code Editor. (This is the code you

entered in the last exercise.)

 2. Select the following statement in the event procedure (the last line):

Label1.Text = FullName

This is the statement that displays the contents of the FullName variable in the label.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 137

3. Press the Delete key to delete the line.

The statement is removed from the Code Editor.

4. Type the following line into the event procedure as a replacement:

MsgBox(FullName, , "Input Results")

This new statement will call the MsgBox function, display the contents of the FullName

variable in the dialog box, and place the words Input Results in the title bar. (The op-

tional Buttons argument and the ButtonClicked variable are irrelevant here and have

been omitted.) Your event procedure looks like this:

5. Click the Start Debugging button on the Standard toolbar.

6. Click the Input Box button, type your name in the input box, and then click OK.

Visual Basic stores the input in the program in the FullName variable and then displays

it in a message box. Your screen looks similar to this:

7. Click OK to close the message box. Then click Quit to close the program.

The program closes, and the development environment returns.

138 Part II Programming Fundamentals
Working with Specifi c Data Types

The String data type is useful for managing text in your programs, but what about numbers,

dates, and other types of information? To allow for the effi cient memory management of all

types of data, Visual Basic provides several additional data types that you can use for your

variables. Many of these are familiar data types from earlier versions of BASIC or Visual Basic,

and some of the data types were introduced in Visual Studio 2005 to allow for the effi cient

processing of data in newer 64-bit computers.

The following table lists the fundamental (or elementary) data types in Visual Basic. Four new

data types were added in Visual Basic 2005: SByte, UShort, UInteger, and ULong. SByte allows

for “signed” byte values—that is, for both positive and negative numbers. UShort, UInteger,

and ULong are “unsigned” data types—meaning that they cannot hold negative numbers.

(However, as unsigned data types they offer twice the positive-number range of their signed

counterparts, as shown in the table below.) If your program needs to perform a lot of calcu-

lations, you’ll gain a performance advantage in your programs if you choose the right data

type for your variables—a size that’s neither too big nor too small. In the next exercise, you’ll

see how several of these data types work.

Note Variable storage size is measured in bits. The amount of space required to store one

standard (ASCII) keyboard character in memory is 8 bits, which equals 1 byte.

Data type Size Range Sample usage

Short 16-bit -32,768 through 32,767 Dim Birds As Short

Birds = 12500

UShort 16-bit 0 through 65,535 Dim Days As UShort

Days = 55000

Integer 32-bit -2,147,483,648 through

2,147,483,647

Dim Insects As Integer

Insects = 37500000

UInteger 32-bit 0 through 4,294,967,295 Dim Joys As UInteger

Joys = 3000000000

Long 64-bit -9,223,372,036,854,775,808 to 9,223,

372,036,854,775,807

Dim WorldPop As Long

WorldPop = 4800000004

ULong 64-bit 0 through 18,446,744,073,709,551,

615

Dim Stars As ULong

Stars = _

1800000000000000000

Single 32-bit

fl oating point

-3.4028235E38 through

3.4028235E38

Dim Price As Single

Price = 899.99

Double 64-bit

fl oating point

-1.79769313486231E308 through

1.79769313486231E308

Dim Pi As Double

Pi = 3.1415926535

Data type Size Range Sample usage

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 139

Data type Size Range Sample usage

Decimal 128-bit 0 through +/-79,228,162,514,264,

337,593,543,950,335 (+/-7.9...E+28)

with no decimal point; 0 through

+/-7.922816251426433759354395

0335 with 28 places to the right of

the decimal. Append “D” if you want

to force Visual Basic to initialize a

Decimal.

Dim Debt As Decimal

Debt = 7600300.5D

Byte 8-bit 0 through 255 (no negative

numbers)

Dim RetKey As Byte

RetKey = 13

SByte 8-bit -128 through 127 Dim NegVal As SByte

NegVal = -20

Char 16-bit Any Unicode symbol in the range

0–65,535. Append “c” when initial-

izing a Char.

Dim UnicodeChar As Char

UnicodeChar = " "c

String Usually 16-bits

per character

0 to approximately 2 billion

16-bit Unicode characters

Dim Dog As String

Dog = "pointer"

Boolean 16-bit True or False. (During conversions,

0 is converted to False, other values

to True.)

Dim Flag as Boolean

Flag = True

Date 64-bit January 1, 0001, through

December 31, 9999

Dim Birthday as Date

Birthday = #3/1/1963#

Object 32-bit Any type can be stored in a variable

of type Object.

Dim MyApp As Object

MyApp = CreateObject _

("Word.Application")

Use fundamental data types in code

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Data Types project from the c:\vb08sbs\chap05\data types folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

Data Types is a complete Visual Basic program that I created to demonstrate how the

fundamental data types work. You’ll run the program to see what the data types look

like, and then you’ll look at how the variables are declared and used in the program

code. You’ll also learn where to place variable declarations so that they’re available to

all the event procedures in your program.

Data type Size Range Sample usage

140 Part II Programming Fundamentals

4. Click the Start Debugging button on the Standard toolbar.

The following application window opens:

The Data Types program lets you experiment with 11 data types, including integer,

single-precision fl oating point, and date. The program displays an example of each

type when you click its name in the list box.

5. Click the Integer type in the list box.

The number 37500000 appears in the Sample Data box. Note that with the Short,

Integer, and Long data types, you can’t insert or display commas. To display commas,

you’ll need to use the Format function.

6. Click the Date type in the list box.

The date 3/1/1963 appears in the Sample Data box.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 141

7. Click each data type in the list box to see how Visual Basic displays it in the Sample

Data box.

8. Click the Quit button to stop the program.

Now you’ll examine how the fundamental data types are declared at the top of the

form and how they’re used in the ListBox1_SelectedIndexChanged event procedure.

9. Double-click the form itself (not any objects on the form), and enlarge the Code Editor

to see more of the program code.

The Code Editor looks like this:

Scroll to the top of the Code Editor to see the dozen or so program statements I added

to declare 11 variables in your program—one for each of the fundamental data types

in Visual Basic. (I didn’t create an example for the SByte, UShort, UInteger, and ULong

types, because they closely resemble their signed or unsigned counterparts.) By placing

each Dim statement here, at the top of the form’s code initialization area, I’m ensuring

that the variables will be valid, or will have scope, for all of the form’s event procedures.

That way, I can set the value of a variable in one event procedure and read it in another.

Normally, variables are valid only in the event procedure in which they’re declared.

To make them valid across the form, you need to declare variables at the top of your

form’s code.

Note I’ve given each variable the same name as I did in the data types table earlier in the

chapter so that you can see the examples I showed you in actual program code.

142 Part II Programming Fundamentals

10. Scroll down in the Code Editor, and examine the Form1_Load event procedure.

You’ll see the following statements, which add items to the list box object in the

program. (You might remember this syntax from Chapter 3, “Working with Toolbox

Controls”—I used some similar statements there.)

11. Scroll down and examine the ListBox1_SelectedIndexChanged event procedure.

The ListBox1_SelectedIndexChanged event procedure processes the selections you

make in the list box and looks like this:

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 143

The heart of the event procedure is a Select Case decision structure. In the next chapter,

we’ll discuss how this group of program statements selects one choice from many. For

now, notice how each section of the Select Case block assigns a sample value to one of

the fundamental data type variables and then assigns the variable to the Text property

of the Label4 object on the form. I used code like this in Chapter 3 to process list box

choices, and you can use these techniques to work with list boxes and data types in

your own programs.

Note If you have more than one form in your project, you need to declare variables in a

slightly different way (and place) to give them scope throughout your program (that is, in

each form that your project contains). The type of variable that you’ll declare is a public, or

global, variable, and it’s declared in a module, a special fi le that contains declarations and

procedures not associated with a particular form. For information about creating public

variables in modules, see Chapter 10, “Creating Modules and Procedures.”

12. Scroll through the ListBox1_SelectedIndexChanged event procedure, and examine each

of the variable assignments closely.

Try changing the data in a few of the variable assignment statements and running the

program again to see what the data looks like. In particular, you might try assigning

values to variables that are outside their accepted range, as shown in the data types

table presented earlier. If you make such an error, Visual Basic adds a jagged line below

the incorrect value in the Code Editor, and the program won’t run until you change it.

To learn more about your mistake, you can point to the jagged underlined value and

read a short tooltip error message about the problem.

Tip By default, a green jagged line indicates a warning, a red jagged line indicates a syntax

error, a blue jagged line indicates a compiler error, and a purple jagged line indicates some

other error.

13. If you made any changes you want to save to disk, click the Save All button on the

Standard toolbar.

144 Part II Programming Fundamentals
User-Defi ned Data Types

Visual Basic also lets you create your own data types. This feature is most useful when

you’re dealing with a group of data items that naturally fi t together but fall into different

data categories. You create a user-defi ned type (UDT) by using the Structure statement,

and you declare variables associated with the new type by using the Dim statement. Be

aware that the Structure statement cannot be located in an event procedure—it must

be located at the top of the form along with other variable declarations, or in a code

module.

For example, the following declaration creates a user-defi ned data type named Employee

that can store the name, date of birth, and hire date associated with a worker:

Structure Employee

 Dim Name As String

 Dim DateOfBirth As Date

 Dim HireDate As Date

End Structure

After you create a data type, you can use it in the program code for the form’s or module’s

event procedures. The following statements use the new Employee type. The fi rst state-

ment creates a variable named ProductManager, of the Employee type, and the second

statement assigns the name “Greg Baker” to the Name component of the variable:

Dim ProductManager As Employee

ProductManager.Name = "Greg Baker"

This looks a little similar to setting a property, doesn’t it? Visual Basic uses the same

notation for the relationship between objects and properties as it uses for the rela-

tionship between user-defi ned data types and component variables.

Constants: Variables That Don’t Change

If a variable in your program contains a value that never changes (such as π, a fi xed math-

ematical entity), you might consider storing the value as a constant instead of as a variable.

A constant is a meaningful name that takes the place of a number or a text string that

doesn’t change. Constants are useful because they increase the readability of program

code, they can reduce programming mistakes, and they make global changes easier to

accomplish later. Constants operate a lot like variables, but you can’t modify their values

at run time. They are declared with the Const keyword, as shown in the following example:

Const Pi As Double = 3.14159265

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 145

This statement creates a constant named Pi that can be used in place of the value of π in the

program code. To make a constant available to all the objects and event procedures in your

form, place the statement at the top of your form along with other variable and structure

declarations that will have scope in all of the form’s event procedures. To make the constant

available to all the forms and modules in a program (not just Form1), create the constant in a

code module, with the Public keyword in front of it. For example:

Public Const Pi As Double = 3.14159265

The following exercise demonstrates how you can use a constant in an event procedure.

Use a constant in an event procedure

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Constant Tester project in the c:\vb08sbs\chap05\constant tester folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Constant Tester form opens in the Designer. Constant Tester is a skeleton program.

The user interface is fi nished, but you need to type in the program code.

4. Double-click the Show Constant button on the form.

The Button1_Click event procedure appears in the Code Editor.

5. Type the following statements in the Button1_Click event procedure:

Const Pi As Double = 3.14159265

Label1.Text = Pi

Tip The location you choose for your declarations should be based on how you plan to

use the constants or the variables. Programmers typically keep the scope for declarations

as small as possible, while still making them available for code that needs to use them. For

example, if a constant is needed only in a single event procedure, you should put the con-

stant declaration within that event procedure. However, you could also place the declara-

tion at the top of the form’s code, which would give all the event procedures in your form

access to it.

6. Click the Start Debugging button on the Standard toolbar to run the program.

146 Part II Programming Fundamentals
 7. Click the Show Constant button.

The Pi constant appears in the label box, as shown here:

 8. Click the Quit button to stop the program.

Constants are useful in program code, especially in involved mathematical formulas,

such as Area = πr2. The next section describes how you can use operators and variables

to write similar formulas.

Working with Visual Basic Operators

A formula is a statement that combines numbers, variables, operators, and keywords to create

a new value. Visual Basic contains several language elements designed for use in formulas. In

this section, you’ll practice working with arithmetic (or mathematical) operators, the symbols

used to tie together the parts of a formula. With a few exceptions, the arithmetic symbols

you’ll use are the ones you use in everyday life, and their operations are fairly intuitive. You’ll

see each operator demonstrated in the following exercises.

Visual Basic includes the following arithmetic operators:

Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

\ Integer (whole number) division

Mod Remainder division

^ Exponentiation (raising to a power)

& String concatenation (combination)

Operator Description

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 147

Basic Math: The +, –, *, and / Operators

The operators for addition, subtraction, multiplication, and division are pretty straightforward

and can be used in any formula where numbers or numeric variables are used. The following

exercise demonstrates how you can use them in a program.

Work with basic operators

1. On the File menu, click Open Project.

2. Open the Basic Math project in the c:\vb08sbs\chap05\basic math folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Basic Math form opens in the Designer. The Basic Math program demonstrates how

the addition, subtraction, multiplication, and division operators work with numbers you

type. It also demonstrates how you can use text box, radio button, and button objects

to process user input in a program.

4. Click the Start Debugging button on the Standard toolbar.

The Basic Math program runs in the IDE. The program displays two text boxes in which

you enter numeric values, a group of operator radio buttons, a box that displays results,

and two button objects (Calculate and Quit).

5. Type 100 in the Variable 1 text box, and then press Tab.

The insertion point, or focus, moves to the second text box.

6. Type 17 in the Variable 2 text box.

You can now apply any of the mathematical operators to the values in the text boxes.

7. Click the Addition radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 117 appears in the Result

box, as shown in the following illustration.

148 Part II Programming Fundamentals

8. Practice using the subtraction, multiplication, and division operators with the two

numbers in the variable boxes. (Click Calculate to calculate each formula.)

The results appear in the Result box. Feel free to experiment with different numbers in

the variable text boxes. (Try a few numbers with decimal points if you like.) I used the

Double data type to declare the variables, so you can use very large numbers.

Now try the following test to see what happens:

9. Type 100 in the Variable 1 text box, type 0 in the Variable 2 text box, click the Division

radio button, and then click Calculate.

Dividing by zero is not allowed in mathematical calculations, because it produces an

infi nite result. But Visual Basic is able to handle this calculation and displays a value of

Infi nity in the Result text box. Being able to handle some divide-by-zero conditions is a

feature that Visual Basic 2008 automatically provides.

10. When you’ve fi nished contemplating this and other tests, click the Quit button.

The program stops, and the development environment returns.

Now take a look at the program code to see how the results were calculated. Basic Math

uses a few of the standard input controls you experimented with in Chapter 3 and an event

procedure that uses variables and operators to process the simple mathematical formulas.

The program declares its variables at the top of the form so that they can be used in all of

the Form1 event procedures.

Examine the Basic Math program code

1. Double-click the Calculate button on the form.

The Code Editor displays the Button1_Click event procedure. At the top of the form’s

code, you’ll see the following statement, which declares two variables of type Double:

'Declare FirstNum and SecondNum variables

Dim FirstNum, SecondNum As Double

I used the Double type because I wanted a large, general purpose variable type that

could handle many different numbers—integers, numbers with decimal points, very

big numbers, small numbers, and so on. The variables are declared on the same line

by using the shortcut notation. Both FirstNum and SecondNum are of type Double,

and are used to hold the values input in the fi rst and second text boxes, respectively.

2. Scroll down in the Code Editor to see the contents of the Button1_Click event

procedure.

Your screen looks similar to this:

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 149
The fi rst two statements in the event procedure transfer data entered in the text box

objects into the FirstNum and SecondNum variables.

'Assign text box values to variables

FirstNum = TextBox1.Text

SecondNum = TextBox2.Text

The TextBox control handles the transfer with the Text property—a property that accepts

text entered by the user and makes it available for use in the program. I’ll make frequent

use of the TextBox control in this book. When it’s set to multiline and resized, it can dis-

play many lines of text—even a whole fi le!

After the text box values are assigned to the variables, the event procedure determines

which radio button has been selected, calculates the mathematical formula, and dis-

plays the result in a third text box. The fi rst radio button test looks like this:

'Determine checked button and calculate

If RadioButton1.Checked = True Then

 TextBox3.Text = FirstNum + SecondNum

End If

Remember from Chapter 3 that only one radio button object in a group box object can

be selected at any given time. You can tell whether a radio button has been selected by

evaluating the Checked property. If it’s True, the button has been selected. If the Checked

property is False, the button has not been selected. After this simple test, you’re ready to

compute the result and display it in the third text box object. That’s all there is to using

basic arithmetic operators. (You’ll learn more about the syntax of If...Then tests in

Chapter 6, “Using Decision Structures.”)

You’re done using the Basic Math program.

150 Part II Programming Fundamentals

Shortcut Operators

An interesting feature of Visual Basic is that you can use shortcut operators for math-

ematical and string operations that involve changing the value of an existing variable.

For example, if you combine the + symbol with the = symbol, you can add to a vari-

able without repeating the variable name twice in the formula. Thus, you can write the

formula X = X + 6 by using the syntax X += 6. The following table shows examples of

these shortcut operators.

Operation Long-form syntax Shortcut syntax

Addition (+) X = X + 6 X += 6

Subtraction (-) X = X – 6 X -= 6

Multiplication (*) X = X * 6 X *= 6

Division (/) X = X / 6 X /= 6

Integer division (\) X = X \ 6 X \= 6

Exponentiation (̂) X = X ^ 6 X ^= 6

String concatenation (&) X = X & “ABC” X &= “ABC”

Using Advanced Operators: \, Mod, ^, and &

In addition to the four basic arithmetic operators, Visual Basic includes four advanced opera-

tors, which perform integer division (\), remainder division (Mod), exponentiation (̂), and string

concatenation (&). These operators are useful in special-purpose mathematical formulas and

text processing applications. The following utility (a slight modifi cation of the Basic Math pro-

gram) shows how you can use each of these operators in a program.

Work with advanced operators

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Advanced Math project in the c:\vb08sbs\chap05\advanced math folder.

3. If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the

View Designer button.

The Advanced Math form opens in the Designer. The Advanced Math program is

identical to the Basic Math program, with the exception of the operators shown in

the radio buttons and in the program.

Operation Long-form syntax Shortcut syntax

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 151

4. Click the Start Debugging button on the Standard toolbar.

The program displays two text boxes in which you enter numeric values, a group of

operator radio buttons, a text box that displays results, and two buttons.

5. Type 9 in the Variable 1 text box, and then press Tab.

6. Type 2 in the Variable 2 text box.

You can now apply any of the advanced operators to the values in the text boxes.

7. Click the Integer Division radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 4 appears in the Result box,

as shown here:

Integer division produces only the whole number result of the division operation.

Although 9 divided by 2 equals 4.5, the integer division operation returns only the fi rst

part, an integer (the whole number 4). You might fi nd this result useful if you’re work-

ing with quantities that can’t easily be divided into fractional components, such as the

number of adults who can fi t in a car.

8. Click the Remainder radio button, and then click the Calculate button.

The number 1 appears in the Result box. Remainder division (modulus arithmetic)

returns the remainder (the part left over) after two numbers are divided. Because 9

divided by 2 equals 4 with a remainder of 1 (2 * 4 + 1 = 9), the result produced by

the Mod operator is 1. In addition to adding an early-seventies vibe to your code, the

Mod operator can help you track “leftovers” in your calculations, such as the amount

of money left over after a fi nancial transaction.

9. Click the Exponentiation radio button, and then click the Calculate button.

The number 81 appears in the Result box. The exponentiation operator (̂) raises a

number to a specifi ed power. For example, 9 ^ 2 equals 92, or 81. In a Visual Basic

formula, 92 is written 9 ^ 2.

152 Part II Programming Fundamentals

10. Click the Concatenation radio button, and then click the Calculate button.

The number 92 appears in the Result box. The string concatenation operator (&) com-

bines two strings in a formula, but not through addition. The result is a combination

of the “9” character and the “2” character. String concatenation can be performed on

numeric variables—for example, if you’re displaying the inning-by-inning score of a

baseball game as they do in old-time score boxes—but concatenation is more com-

monly performed on string values or variables.

Because I declared the FirstNum and SecondNum variables as type Double, you can’t

combine words or letters by using the program code as written. As an example, try the

following test, which causes an error and ends the program.

11. Type birth in the Variable 1 text box, type day in the Variable 2 text box, verify that

Concatenation is selected, and then click Calculate.

Visual Basic is unable to process the text values you entered, so the program stops

running, and an error message appears on the screen.

This type of error is called a run-time error—an error that surfaces not during the design

and compilation of the program, but later, when the program is running and encounters

a condition that it doesn’t know how to process. If this seems odd, you might imagine

that Visual Basic is simply offering you a modern rendition of the robot plea “Does not

compute!” from the best science fi ction fi lms of the 1950s. The computer-speak message

“Conversion from string “birth” to type ‘Double’ is not valid” means that the words you

entered in the text boxes (“birth” and “day”) could not be converted, or cast, by Visual

Basic to variables of the type Double. Double types can only contain numbers. Period.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 153

As we shall explore in more detail later, Visual Studio doesn’t leave you hanging with

such a problem, but provides a dialog box with different types of information to help

you resolve the run-time error. For now, you have learned another important lesson

about data types and when not to mix them.

12. Click the Stop Debugging button on the Standard toolbar to end the program.

Your program ends and returns you to the development environment.

Note In Chapter 8, “Debugging Visual Basic Programs,” you’ll learn about debugging

mode, which allows you to track down the defects, or bugs, in your program code.

Now take a look at the program code to see how variables were declared and how the

advanced operators were used.

13. Scroll to the code at the top of the Code Editor.

You see the following comment and program statement:

'Declare FirstNum and SecondNum variables

Dim FirstNum, SecondNum As Double

As you might recall from the previous exercise, FirstNum and SecondNum are the

variables that hold numbers coming in from the TextBox1 and TextBox2 objects.

14. Change the data type from Double to String so that you can properly test how the

string concatenation (&) operator works.

15. Scroll down in the Code Editor to see how the advanced operators are used in the

program code.

You see the following code:

'Assign text box values to variables

FirstNum = TextBox1.Text

SecondNum = TextBox2.Text

'Determine checked button and calculate

If RadioButton1.Checked = True Then

 TextBox3.Text = FirstNum \ SecondNum

End If

If RadioButton2.Checked = True Then

 TextBox3.Text = FirstNum Mod SecondNum

End If

If RadioButton3.Checked = True Then

 TextBox3.Text = FirstNum ^ SecondNum

End If

If RadioButton4.Checked = True Then

 TextBox3.Text = FirstNum & SecondNum

End If

154 Part II Programming Fundamentals
Like the Basic Math program, this program loads data from the text boxes and places it

in the FirstNum and SecondNum variables. The program then checks to see which radio

button the user checked and computes the requested formula. In this event procedure,

the integer division (\), remainder (Mod), exponentiation (̂), and string concatenation

(&) operators are used. Now that you’ve changed the data type of the variables to String,

run the program again to see how the & operator works on text.

 16. Click the Start Debugging button.

 17. Type birth in the Variable 1 text box, type day in the Variable 2 text box, click

Concatenation, and then click Calculate.

The program now concatenates the string values and doesn’t produce a run-time error,

as shown here:

 18. Click the Quit button to close the program.

You’re fi nished working with the Advanced Math program.

Tip Run-time errors are diffi cult to avoid completely—even the most sophisticated application

programs, such as Microsoft Word or Microsoft Excel, sometimes run into error conditions that

they can’t handle, producing run-time errors, or crashes. Designing your programs to handle many

different data types and operating conditions helps you produce solid, or robust, applications. In

Chapter 9, “Trapping Errors by Using Structured Error Handling,” you’ll learn about another helpful

tool for preventing run-time error crashes—the structured error handler.

Working with Methods in the Microsoft .NET Framework

Now and then you’ll want to do a little extra number crunching in your programs. You might

need to round a number, calculate a complex mathematical expression, or introduce random-

ness into your programs. The math methods shown in the following table can help you work

with numbers in your formulas. These methods are provided by the Microsoft .NET Framework,

a class library that lets you tap into the power of the Windows operating system and accom-

plish many of the common programming tasks that you need to create your projects. The

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 155
.NET Framework is a major feature of Visual Studio that is shared by Visual Basic, Microsoft

Visual C++, Microsoft Visual C#, and other tools in Visual Studio. It’s an underlying interface

that becomes part of the Windows operating system itself, and it is installed on each com-

puter that runs Visual Studio programs.

The .NET Framework is organized into classes that you can use in your programming

projects. The process is quite simple, and you’ll experiment with how it works now by

using a math method in the System.Math class of the .NET Framework.

What’s New in Microsoft .NET Framework 3.5?

Visual Studio 2008 includes a new version of the .NET Framework—Microsoft .NET

Framework 3.5. This is an update to the .NET Framework 3.0 software that provided

support for the Windows Vista operating system, and the .NET Framework 2.0 soft-

ware that shipped with Visual Studio 2005 and provided support for 64-bit processors.

Version 3.5 adds new classes that provide additional functionality for distributed mo-

bile applications, interprocess communication, time zone operations, ASP.NET, Visual

Web Developer, and much more. The .NET Framework 3.5 also includes support for

new advanced technologies, such as Language Integrated Query (LINQ) for querying

different types of data, Windows Presentation Foundation (WPF) for creating complex

graphics, Windows Communication Foundation (WCF) for creating applications that

work with Web services, and Windows Workfl ow Foundation (WF) for creating work-

fl ow-type applications. Many of the improvements in the .NET Framework will come

to you automatically as you use Visual Basic 2008, and some will become useful as you

explore advanced programming techniques.

The following table offers a partial list of the math methods in the System.Math class. The

argument n in the table represents the number, variable, or expression you want the

method to evaluate. If you use any of these methods, be sure that you put the statement

Imports System.Math

at the very top of your form’s code in the Code Editor.

Method Purpose

Abs(n) Returns the absolute value of n.

Atan(n) Returns the arctangent, in radians, of n.

Cos(n) Returns the cosine of the angle n. The angle n is expressed in radians.

Exp(n) Returns the constant e raised to the power n.

Sign(n) Returns -1 if n is less than 0, 0 if n is 0, and +1 if n is greater than 0.

Sin(n) Returns the sine of the angle n. The angle n is expressed in radians.

Sqrt(n) Returns the square root of n.

Tan(n) Returns the tangent of the angle n. The angle n is expressed in radians.

Method Purpose

156 Part II Programming Fundamentals

Use the System.Math class to compute square roots

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Visual Basic Windows Forms Application project named My Framework

Math.

The new project is created, and a blank form opens in the Designer.

3. Click the Button control on the Windows Forms tab of the Toolbox, and create a button

object at the top of your form.

4. Click the TextBox control in the Toolbox, and draw a text box below the button object.

5. Set the Text property of the button object to Square Root.

6. Double-click the button object to display the Code Editor.

7. At the very top of the Code Editor, above the Public Class Form1 statement, type the

following program statement:

Imports System.Math

The System.Math class is a collection of methods provided by the .NET Framework for

arithmetic operations. The .NET Framework is organized in a hierarchical fashion and can

be very deep. The Imports statement makes it easier to reference classes, properties, and

methods in your project. For example, if you didn’t include the previous Imports state-

ment, to call the Sqrt method you would have to type System.Math.Sqrt instead of just

Sqrt. The Imports statement must be the fi rst statement in your program—it must come

even before the variables that you declare for the form and the Public Class Form1 state-

ment that Visual Basic automatically provides.

8. Move down in the Code Editor, and add the following code to the Button1_Click event

procedure between the Private Sub and End Sub statements:

Dim Result As Double

Result = Sqrt(625)

TextBox1.Text = Result

These three statements declare a variable of the double type named Result, use the

Sqrt method to compute the square root of 625, and assign the Result variable to the

Text property of the text box object so that the answer is displayed.

9. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap05 folder as the location.

10. Click the Start Debugging button on the Standard toolbar.

The Framework Math program runs in the IDE.

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 157

 11. Click the Square Root button.

Visual Basic calculates the square root of 625 and displays the result (25) in the text box.

As you can see here, the Sqrt method works!

 12. Click the Close button on the form to end the program.

To make it easier to reference classes, properties, and methods in the .NET Framework, in-

clude the Imports statement, and specify the appropriate namespace or class. You can use

this technique to use any class in the .NET Framework, and you’ll see many more examples

of this technique as you work through Microsoft Visual Basic 2008 Step by Step.

One Step Further: Establishing Order of Precedence

In the previous few exercises, you experimented with several arithmetic operators and one

string operator. Visual Basic lets you mix as many arithmetic operators as you like in a formula,

as long as each numeric variable and expression is separated from another by one operator.

For example, this is an acceptable Visual Basic formula:

Total = 10 + 15 * 2 / 4 ^ 2

The formula processes several values and assigns the result to a variable named Total. But

how is such an expression evaluated by Visual Basic? In other words, what sequence does

Visual Basic follow when solving the formula? You might not have noticed, but the order of

evaluation matters a great deal in this example.

Visual Basic solves this dilemma by establishing a specifi c order of precedence for math-

ematical operations. This list of rules tells Visual Basic which operator to use fi rst, second,

and so on when evaluating an expression that contains more than one operator.

158 Part II Programming Fundamentals
The following table lists the operators from fi rst to last in the order in which they are evaluated.

(Operators on the same level in this table are evaluated from left to right as they appear in an

expression.)

Operator Order of precedence

() Values within parentheses are always evaluated fi rst.

^ Exponentiation (raising a number to a power) is second.

– Negation (creating a negative number) is third.

* / Multiplication and division are fourth.

\ Integer division is fi fth.

Mod Remainder division is sixth.

+ - Addition and subtraction are last.

Given the order of precedence in this table, the expression

Total = 10 + 15 * 2 / 4 ^ 2

is evaluated by Visual Basic in the following steps. (Shading is used to show each step in the

order of evaluation.)

Total = 10 + 15 * 2 / 4 ^ 2

Total = 10 + 15 * 2 / 16

Total = 10 + 30 / 16

Total = 10 + 1.875

Total = 11.875

Using Parentheses in a Formula

You can use one or more pairs of parentheses in a formula to clarify the order of precedence.

For example, Visual Basic calculates the formula

Number = (8 - 5 * 3) ^ 2

by determining the value within the parentheses (-7) before doing the exponentiation—even

though exponentiation is higher in order of precedence than subtraction and multiplication,

according to the preceding table. You can further refi ne the calculation by placing nested

parentheses in the formula. For example,

Number = ((8 - 5) * 3) ^ 2

directs Visual Basic to calculate the difference in the inner set of parentheses fi rst, perform

the operation in the outer parentheses next, and then determine the exponentiation. The

result produced by the two formulas is different: the fi rst formula evaluates to 49 and the

second to 81. Parentheses can change the result of a mathematical operation, as well as

make it easier to read.

Operator Order of precedence

 Chapter 5 Visual Basic Variables and Formulas, and the .NET Framework 159
Chapter 5 Quick Reference

To Do this

Declare a variable Type Dim followed by the variable name, the As keyword, and the variable

data type in the program code. To make the variable valid in all of a form’s

event procedures, place this statement at the top of the code for the form,

before any event procedures. For example:

Dim Country As String

Change the value of a

variable

Assign a new value with the assignment operator of (=). For example:

Country = "Japan"

Get input by using a

dialog box

Use the InputBox function, and assign the result to a variable. For example:

UserName = InputBox("What is your name?")

Display output in a

dialog box

Use the MsgBox function. (The string to be displayed in the dialog box can

be stored in a variable.) For example:

Forecast = "Rain, mainly on the plain."

MsgBox(Forecast, , "Spain Weather Report")

Create a constant Type the Const keyword followed by the constant name, the assignment

operator (=), the constant data type, and the fi xed value. For example:

Const JackBennysAge As Short = 39

Create a formula Link together numeric variables or values with one of the seven arithmetic

operators, and then assign the result to a variable or a property. For example:

Result = 1 ^ 2 * 3 \ 4 'this equals 0

Combine text strings Use the string concatenation operator (&). For example:

Msg = "Hello" & "," & " world!"

Make it easier to

reference a class

library from the

.NET Framework

Place an Imports statement at the very top of the form’s code that identifi es

the class library. For example:

Imports System.Math

Make a call to a

method from an

included class

library

Use the method name, and include any necessary arguments so that it can

be used in a formula or a program statement. For example, to make a call to

the Sqrt method in the System.Math class:

Hypotenuse = Sqrt(x ^ 2 + y ^ 2)

Control the evaluation

order in a formula

Use parentheses in the formula. For example:

Result = 1 + 2 ^ 3 \ 4 'this equals 3

Result = (1 + 2) ^ (3 \ 4) 'this equals 1

To Do this

Chapter 6

Using Decision Structures

After completing this chapter, you will be able to:

Q Write conditional expressions.

Q Use an If...Then statement to branch to a set of program statements based on a varying

condition.

Q Use the MaskedTextBox control to receive user input in a specifi c format.

Q Short-circuit an If...Then statement.

Q Use a Select Case statement to select one choice from many options in program code.

Q Use the Name property to rename objects within a program.

Q Manage mouse events and write a MouseHover event handler.

In the past few chapters, you used several features of Microsoft Visual Basic 2008 to process

user input. You used menus, toolbars, dialog boxes, and other Toolbox controls to display

choices for the user, and you processed input by using property settings, variables, operators,

formulas, and the Microsoft .NET Framework.

In this chapter, you’ll learn how to branch conditionally to a specifi c area in your program

based on input you receive from the user. You’ll also learn how to evaluate one or more prop-

erties or variables by using conditional expressions, and then execute one or more program

statements based on the results. In short, you’ll increase your programming vocabulary by

creating code blocks called decision structures that control how your program executes, or

fl ows, internally.
 161

162 Part II Programming Fundamentals
Event-Driven Programming

The programs you’ve written so far in this book have displayed Toolbox controls, menus, tool-

bars, and dialog boxes on the screen, and with these programs, users could manipulate the

screen elements in whatever order they saw fi t. The programs put the user in charge, waited

patiently for a response, and then processed the input predictably. In programming circles, this

methodology is known as event-driven programming. You build a program by creating a group

of “intelligent” objects that know how to respond when the user interacts with them, and then

the program processes the input by using event procedures associated with the objects. The

following diagram shows how an event-driven program works in Visual Basic:

Receive input by

using object.

Process input by

using event procedure.

Return control

to the user.

Program input can also come from the computer system itself. For example, your program

might be notifi ed when a piece of electronic mail arrives or when a specifi ed period of

time has elapsed on the system clock. The computer, not the user, triggers these events.

Regardless of how an event is triggered, Visual Basic reacts by calling the event procedure

associated with the object that recognized the event. So far, you’ve dealt primarily with the

Click, CheckedChanged, and SelectedIndexChanged events. However, Visual Basic objects

also can respond to several other types of events.

The event-driven nature of Visual Basic means that most of the computing done in your

programs is accomplished by event procedures. These event-specifi c blocks of code process

input, calculate new values, display output, and handle other tasks.

In this chapter, you’ll learn how to use decision structures to compare variables, properties,

and values, and how to execute one or more statements based on the results. In Chapter 7,

“Using Loops and Timers,” you’ll use loops to execute a group of statements over and over

until a condition is met or while a specifi c condition is true. Together, these powerful fl ow-

control structures will help you build your event procedures so that they can respond to

almost any situation.

 Chapter 6 Using Decision Structures 163
Events Supported by Visual Basic Objects

Each object in Visual Basic has a predefi ned set of events to which it can respond. These

events are listed when you select an object name in the Class Name list box at the top

of the Code Editor and then click the Method Name arrow. (Events are visually identifi ed

in Visual Studio by a lightning bolt icon.) You can write an event procedure for any of

these events, and if that event occurs in the program, Visual Basic will execute the event

procedure that’s associated with it. For example, a list box object supports more than 60

events, including Click, DoubleClick, DragDrop, DragOver, GotFocus, KeyDown, KeyPress,

KeyUp, LostFocus, MouseDown, MouseMove, MouseUp, MouseHover, TextChanged, and

Validated. You probably won’t need to write code for more than three or four of these

events in your applications, but it’s nice to know that you have so many choices when

you create elements in your interface. The following illustration shows a partial listing

of the events for a list box object in the Code Editor:

Class Name

Events

164 Part II Programming Fundamentals
Using Conditional Expressions

One of the most useful tools for processing information in an event procedure is a conditional

expression. A conditional expression is a part of a complete program statement that asks a

True-or-False question about a property, a variable, or another piece of data in the program

code. For example, the conditional expression

Price < 100

evaluates to True if the Price variable contains a value that is less than 100, and it evaluates to

False if Price contains a value that is greater than or equal to 100.

You can use the following comparison operators in a conditional expression:

Comparison operator Meaning

= Equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The following table shows some conditional expressions and their results. You’ll work with

conditional expressions several times in this chapter.

Conditional expression Result

10 <> 20 True (10 is not equal to 20)

Score < 20 True if Score is less than 20; otherwise, False

Score = Label1.Text True if the Text property of the Label1 object contains the same value

as the Score variable; otherwise, False

TextBox1.Text = "Bill" True if the word “Bill” is in the TextBox1 object; otherwise, False

Comparison operator Meaning

Conditional expression Result

 Chapter 6 Using Decision Structures 165
If...Then Decision Structures

When a conditional expression is used in a special block of statements called a decision

structure, it controls whether other statements in your program are executed and in what

order they’re executed. You can use an If...Then decision structure to evaluate a condition in

the program and take a course of action based on the result. In its simplest form, an If...Then

decision structure is written on a single line:

If condition Then statement

where condition is a conditional expression, and statement is a valid Visual Basic program

statement. For example,

If Score >= 20 Then Label1.Text = "You win!"

is an If...Then decision structure that uses the conditional expression

Score >= 20

to determine whether the program should set the Text property of the Label1 object to “You

win!” If the Score variable contains a value that’s greater than or equal to 20, Visual Basic sets

the Text property; otherwise, it skips the assignment statement and executes the next line in

the event procedure. This sort of comparison always results in a True or False value. A condi-

tional expression never results in maybe.

Testing Several Conditions in an If...Then Decision Structure

Visual Basic also supports an If...Then decision structure that you can use to include several

conditional expressions. This block of statements can be several lines long and contains the

important keywords ElseIf, Else, and End If.

If condition1 Then

 statements executed if condition1 is True

ElseIf condition2 Then

 statements executed if condition2 is True

[Additional ElseIf conditions and statements can be placed here]

Else

 statements executed if none of the conditions is True

End If

In this structure, condition1 is evaluated fi rst. If this conditional expression is True, the block of

statements below it is executed, one statement at a time. (You can include one or more pro-

gram statements.) If the fi rst condition isn’t True, the second conditional expression (condition2)

is evaluated. If the second condition is True, the second block of statements is executed. (You

can add additional ElseIf conditions and statements if you have more conditions to evaluate.)

If none of the conditional expressions is True, the statements below the Else keyword are

executed. Finally, the whole structure is closed by the End If keywords.

166 Part II Programming Fundamentals
The following code shows how a multiple-line If...Then structure could be used to determine

the amount of tax due in a hypothetical progressive tax return. (The income and percentage

numbers are from the projected United States Internal Revenue Service 2007 Tax Rate Schedule

for single fi ling status.)

Dim AdjustedIncome, TaxDue As Double

AdjustedIncome = 50000

If AdjustedIncome <= 7825 Then '10% tax bracket

 TaxDue = AdjustedIncome * 0.1

ElseIf AdjustedIncome <= 31850 Then '15% tax bracket

 TaxDue = 782.5 + ((AdjustedIncome - 7825) * 0.15)

ElseIf AdjustedIncome <= 77100 Then '25% tax bracket

 TaxDue = 4386.25 + ((AdjustedIncome - 31850) * 0.25)

ElseIf AdjustedIncome <= 160850 Then '28% tax bracket

 TaxDue = 15698.75 + ((AdjustedIncome - 77100) * 0.28)

ElseIf AdjustedIncome <= 349700 Then '33% tax bracket

 TaxDue = 39148.75 + ((AdjustedIncome - 160850) * 0.33)

Else '35% tax bracket

 TaxDue = 101469.25 + ((AdjustedIncome - 349700) * 0.35)

End If

Important The order of the conditional expressions in your If...Then and ElseIf statements is

critical. What happens if you reverse the order of the conditional expressions in the tax com-

putation example and list the rates in the structure from highest to lowest? Taxpayers in the 10

percent, 15 percent, 25 percent, 28 percent, and 33 percent tax brackets are all placed in the

35 percent tax bracket because they all have an income that’s less than or equal to $349,700.

(Visual Basic stops at the fi rst conditional expression that is True, even if others are also True.)

Because all the conditional expressions in this example test the same variable, they need to be

listed in ascending order to get the taxpayers to fall out in the right places. Moral: when you

use more than one conditional expression, consider the order carefully.

This useful decision structure tests the double-precision variable AdjustedIncome at the fi rst

income level and subsequent income levels until one of the conditional expressions evaluates

to True, and then determines the taxpayer’s income tax accordingly. With some simple modifi -

cations, it could be used to compute the tax owed by any taxpayer in a progressive tax system,

such as the one in the United States. Provided that the tax rates are complete and up to date

and that the value in the AdjustedIncome variable is correct, the program as written will give

the correct tax owed for single U.S. taxpayers for 2007. If the tax rates change, it’s a simple

matter to update the conditional expressions. With an additional decision structure to deter-

mine taxpayers’ fi ling status, the program readily extends itself to include all U.S. taxpayers.

 Chapter 6 Using Decision Structures 167
Tip Expressions that can be evaluated as True or False are also known as Boolean expressions,

and the True or False result can be assigned to a Boolean variable or property. You can assign

Boolean values to certain object properties or Boolean variables that have been created by using

the Dim statement and the As Boolean keywords.

In the next exercise, you’ll use an If...Then decision structure that recognizes users as they

enter a program—a simple way to get started with writing your own decision structures.

You’ll also learn how to use the MaskedTextBox control to receive input from the user in a

specifi c format.

Validate users by using If...Then

 1. Start Visual Studio, and create a new Windows Forms Application project named My

User Validation.

The new project is created, and a blank form opens in the Designer.

 2. Click the form, and set the form’s Text property to “User Validation”.

 3. Use the Label control to create a label on your form, and use the Properties window to

set the Text property to “Enter Your Social Security Number”.

 4. Use the Button control to create a button on your form, and set the button’s Text

property to “Sign In”.

 5. Click the MaskedTextBox control on the Common Controls tab in the Toolbox, and

then create a masked text box object on your form below the label.

The MaskedTextBox control is similar to the TextBox control that you have been using,

but by using MaskedTextBox, you can control the format of the information entered by

the user into your program. You control the format by setting the Mask property; you

can use a predefi ned format supplied by the control or choose your own format.

You’ll use the MaskedTextBox control in this program to require that users enter a

Social Security Number in the standard nine-digit format used by the United States

Internal Revenue Service.

 6. With the MaskedTextBox1 object selected, click the Mask property in the Properties

window, and then click the ellipses button next to it.

The Input Mask dialog box opens, showing a list of your predefi ned formatting

patterns, or masks.

168 Part II Programming Fundamentals

7. Click Social Security Number in the list.

The Input Mask dialog box looks like this:

Although you won’t use it now, take a moment to note the <Custom> option, which

you can use later to create your own input masks using numbers and placeholder

characters such as a hyphen (-).

8. Click OK to accept Social Security Number as your input mask.

Visual Studio displays your input mask in the MaskedTextBox1 object, as shown in the

following illustration:

9. Double-click the Sign In button.

The Button1_Click event procedure appears in the Code Editor.

 Chapter 6 Using Decision Structures 169

10. Type the following program statements in the event procedure:

If MaskedTextBox1.Text = "555-55-1212" Then

 MsgBox("Welcome to the system!")

Else

 MsgBox("I don’t recognize this number")

End If

This simple If...Then decision structure checks the value of the MaskedTextBox1

object’s Text property, and if it equals “555-55-1212”, the structure displays the mes-

sage “Welcome to the system!”. If the number entered by the user is some other value,

the structure displays the message “I don’t recognize this number”. The beauty in this

program, however, is how the MaskedTextBox1 object automatically fi lters input to

ensure that it is in the correct format.

11. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap06 folder as the location for your project.

12. Click the Start Debugging button on the Standard toolbar.

The program runs in the IDE. The form prompts the user to enter a Social Security

number (SSN) in the appropriate format, and displays underlines and hyphens to offer

the user a hint of the format required.

13. Type abcd to test the input mask.

Visual Basic prevents the letters from being displayed, because letters do not fi t the

requested format. A nine-digit SSN is required.

14. Type 1234567890 to test the input mask.

Visual Basic displays the number 123-45-6789 in the masked text box, ignoring the

tenth digit that you typed. Again, Visual Basic has forced the user’s input into

the proper format. Your form looks like this:

170 Part II Programming Fundamentals

15. Click the Sign In button.

Visual Basic displays the message “I don’t recognize this number”, because the SSN

does not match the number the If...Then decision structure is looking for.

16. Click OK, delete the SSN from the masked text box, enter 555-55-1212 as the number,

and then click Sign In again.

This time the decision structure recognizes the number and displays a welcome message.

You see the following message box:

Your code has prevented an unauthorized user from using the program, and you’ve

learned a useful skill related to controlling input from the user.

17. Exit the program.

Using Logical Operators in Conditional Expressions

You can test more than one conditional expression in If...Then and ElseIf clauses if you

want to include more than one selection criterion in your decision structure. The extra

conditions are linked together by using one or more of the logical operators listed in the

following table.

Logical operator Meaning

And If both conditional expressions are True, then the result is True.

Or If either conditional expression is True, then the result is True.

Not If the conditional expression is False, then the result is True. If the conditional

expression is True, then the result is False.

Xor If one and only one of the conditional expressions is True, then the result is

True. If both are True or both are False, then the result is False. (Xor stands for

exclusive Or.)

Logical operator Meaning

 Chapter 6 Using Decision Structures 171

Tip When your program evaluates a complex expression that mixes different operator types, it

evaluates mathematical operators fi rst, comparison operators second, and logical operators third.

The following table lists some examples of the logical operators at work. In the expressions, it

is assumed that the Vehicle string variable contains the value “Bike”, and the integer variable

Price contains the value 200.

Logical expression Result

Vehicle = "Bike" And Price < 300 True (both conditions are True)

Vehicle = "Car" Or Price < 500 True (one condition is True)

Not Price < 100 True (condition is False)

Vehicle = "Bike" Xor Price < 300 False (both conditions are True)

In the following exercise, you’ll modify the My User Validation program to prompt the user

for a personal identifi cation number (PIN) during the validation process. To do this, you will

add a second text box to get the PIN from the user, and then modify the If...Then clause in

the decision structure so that it uses the And operator to verify the PIN.

Add password protection by using the And operator

1. Display the User Validation form, and use the Label control to add a second descriptive

label to the form below the fi rst masked text box.

2. Set the new label’s Text property to “PIN”.

3. Add a second MaskedTextBox control to the form below the fi rst masked text box and

the new label.

4. Click the shortcut arrow on the MaskedTextBox2 object to open the MaskedTextBox

Tasks list, and then click the Set Mask command to display the Input Mask dialog box.

5. Click the Numeric (5 digits) input mask, and then click OK.

Like many PINs found online, this PIN will be fi ve digits long. Again, if the user types a

password of a different length or format, it will be rejected.

6. Double-click the Sign In button to display the Button1_Click event procedure in the

Code Editor.

7. Modify the event procedure so that it contains the following code:

If MaskedTextBox1.Text = "555-55-1212" _

And MaskedTextBox2.Text = "54321" Then

 MsgBox("Welcome to the system!")

Else

 MsgBox("I don’t recognize this number")

End If

Logical expression Result

172 Part II Programming Fundamentals

The statement now includes the And logical operator, which requires that the user’s

PIN correspond with his or her SSN before the user is admitted to the system. (In this

case, the valid PIN is 54321; in a real-world program, this value would be extracted

along with the SSN from a secure database.) I modifi ed the earlier program by adding

a line continuation character (_) to the end of the fi rst line, and by adding the second

line beginning with And.

8. Click the Start Debugging button on the Standard toolbar.

The program runs in the IDE.

9. Type 555-55-1212 in the Social Security Number masked text box.

10. Type 54321 in the PIN masked text box.

11. Click the Sign In button.

The user is welcomed to the program, as shown in the following screen.

12. Click OK to close the message box.

13. Experiment with other values for the SSN and PIN.

Test the program carefully to be sure that the welcome message is not displayed when

other PINs or SSNs are entered.

14. Click the Close button on the form when you’re fi nished.

The program ends, and the development environment returns.

Tip You can further customize this program by using the PasswordChar property in

masked text box objects. The PasswordChar property can be used to display a placeholder

character, such as an asterisk (*), when the user types. (You specify the character by using

the Properties window.) Using a password character gives users additional secrecy as they

enter their protected password—a standard feature of such operations.

 Chapter 6 Using Decision Structures 173
Short-Circuiting by Using AndAlso and OrElse

Visual Basic offers two logical operators that you can use in your conditional statements,

AndAlso and OrElse. These operators work the same as And and Or respectively, but offer

an important subtlety in the way they’re evaluated that will be new to programmers experi-

enced with Visual Basic 6.

Consider an If statement that has two conditions that are connected by an AndAlso operator.

For the statements of the If structure to be executed, both conditions must evaluate to True.

If the fi rst condition evaluates to False, Visual Basic skips to the next line or the Else statement

immediately, without testing the second condition. This partial, or short-circuiting, evaluation

of an If statement makes logical sense—why should Visual Basic continue to evaluate the If

statement if both conditions cannot be True?

The OrElse operator works in a similar fashion. Consider an If statement that has two condi-

tions that are connected by an OrElse operator. For the statements of the If structure to be

executed, at least one condition must evaluate to True. If the fi rst condition evaluates to True,

Visual Basic begins to execute the statements in the If structure immediately, without testing

the second condition.

Here’s an example of the short-circuit situation in Visual Basic, a simple routine that uses

an If statement and an AndAlso operator to test two conditions and display the message

“Inside If” if both conditions are True:

Dim Number As Integer = 0

If Number = 1 AndAlso MsgBox("Second condition test") Then

 MsgBox("Inside If")

Else

 MsgBox("Inside Else")

End If

The MsgBox function itself is used as the second conditional test, which is somewhat

unusual, but the strange syntax is completely valid and gives us a perfect opportunity

to see how short-circuiting works up close. The text “Second condition test” appears in

a message box only if the Number variable is set to 1; otherwise, the AndAlso operator

short-circuits the If statement, and the second condition isn’t evaluated. If you actually try

this code, remember that it’s for demonstration purposes only—you wouldn’t want to use

MsgBox with this syntax as a test because it doesn’t really test anything. But by changing

the Number variable from 0 to 1 and back, you can get a good idea of how the AndAlso

statement and short-circuiting work.

174 Part II Programming Fundamentals
Here’s a second example of how short-circuiting functions in Visual Basic when two condi-

tions are evaluated using the AndAlso operator. This time, a more complex conditional test

(7 / HumanAge <= 1) is used after the AndAlso operator to determine what some people

call the “dog age” of a person:

Dim HumanAge As Integer

HumanAge = 7

'One year for a dog is seven years for a human

If HumanAge <> 0 AndAlso 7 / HumanAge <= 1 Then

 MsgBox("You are at least one dog year old")

Else

 MsgBox("You are less than one dog year old")

End If

As part of a larger program that determines the so-called dog age of a person by dividing

his or her current age by 7, this bare-bones routine tries to determine whether the value in

the HumanAge integer variable is at least 7. (If you haven’t heard the concept of “dog age”

before, bear with me—following this logic, a 28-year-old person would be four dog years

old. This has been suggested as an interesting way of relating to dogs, since dogs have a

lifespan of roughly one-seventh that of humans.) The code uses two If statement conditions

and can be used in a variety of different contexts—I used it in the Click event procedure

for a button object. The fi rst condition checks to see whether a non-zero number has been

placed in the HumanAge variable—I’ve assumed momentarily that the user has enough

sense to place a positive age into HumanAge because a negative number would produce

incorrect results. The second condition tests whether the person is at least seven years old.

If both conditions evaluate to True, the message “You are at least one dog year old” is dis-

played in a message box. If the person is less than seven, the message “You are less than

one dog year old” is displayed.

Now imagine that I’ve changed the value of the HumanAge variable from 7 to 0. What

happens? The fi rst If statement condition is evaluated as False by the Visual Basic compiler,

and that evaluation prevents the second condition from being evaluated, thus halting, or

short-circuiting, the If statement and saving us from a nasty “divide by zero” error that

could result if we divided 7 by 0 (the new value of the HumanAge variable). We wouldn’t

have had the same luck in Visual Basic 6. Setting the HumanAge variable to 0 in Visual

Basic 6 would have produced a run-time error and a crash, because the entire If statement

would have been evaluated, and division by zero isn’t permitted in Visual Basic 6. In Visual

Studio, we get a benefi t from the short-circuiting behavior.

In summary, the AndAlso and OrElse operators in Visual Basic open up a few new possibilities

for Visual Basic programmers, including the potential to prevent run-time errors and other

unexpected results. It’s also possible to improve performance by placing conditions that

are time consuming to calculate at the end of the condition statement, because Visual Basic

doesn’t perform these expensive condition calculations unless it’s necessary. However, you

need to think carefully about all the possible conditions that your If statements might en-

counter as variable states change during program execution.

 Chapter 6 Using Decision Structures 175
Select Case Decision Structures

With Visual Basic, you can also control the execution of statements in your programs by using

Select Case decision structures. You used Select Case structures in Chapters 3 and 5 of this book

when you wrote event procedures to process list box and combo box choices. A Select Case

structure is similar to an If...Then...ElseIf structure, but it’s more effi cient when the branching

depends on one key variable, or test case. You can also use Select Case structures to make

your program code more readable.

The syntax for a Select Case structure looks like this:

Select Case variable

 Case value1

 statements executed if value1 matches variable

 Case value2

 statements executed if value2 matches variable

 Case value3

 statements executed if value3 matches variable

 ...

 Case Else

 statements executed if no match is found

End Select

A Select Case structure begins with the Select Case keywords and ends with the End Select key-

words. You replace variable with the variable, property, or other expression that is to be the

key value, or test case, for the structure. You replace value1, value2, and value3 with numbers,

strings, or other values related to the test case being considered. If one of the values matches

the variable, the statements below the Case clause are executed, and then Visual Basic jumps to

the line after the End Select statement and picks up execution there. You can include any num-

ber of Case clauses in a Select Case structure, and you can include more than one value in a

Case clause. If you list multiple values after a case, separate them with commas.

The following example shows how a Select Case structure could be used to print an appropriate

message about a person’s age and cultural milestones in a program. Since the Age variable con-

tains a value of 18, the string “You can vote now!” is assigned to the Text property of the label

object. (You’ll notice that the “milestones” have an American slant to them; please customize

freely to match your cultural setting.)

Dim Age As Integer

Age = 18

Select Case Age

 Case 16

 Label1.Text = "You can drive now!"

 Case 18

 Label1.Text = "You can vote now!"

 Case 21

 Label1.Text = "You can drink wine with your meals."

 Case 65

 Label1.Text = “Time to retire and have fun!”

End Select

176 Part II Programming Fundamentals
A Select Case structure also supports a Case Else clause that you can use to display a mes-

sage if none of the preceding cases matches the Age variable. Here’s how Case Else would

work in the following example—note that I’ve changed the value of Age to 25 to trigger

the Case Else clause:

Dim Age As Integer

Age = 25

Select Case Age

 Case 16

 Label1.Text = "You can drive now!"

 Case 18

 Label1.Text = "You can vote now!"

 Case 21

 Label1.Text = "You can drink wine with your meals."

 Case 65

 Label1.Text = "Time to retire and have fun!"

 Case Else

 Label1.Text = "You’re a great age! Enjoy it!"

End Select

Using Comparison Operators with a Select Case Structure

You can use comparison operators to include a range of test values in a Select Case structure.

The Visual Basic comparison operators that can be used are =, <>, >, <, >=, and <=. To use

the comparison operators, you need to include the Is keyword or the To keyword in the ex-

pression to identify the comparison you’re making. The Is keyword instructs the compiler to

compare the test variable to the expression listed after the Is keyword. The To keyword iden-

tifi es a range of values. The following structure uses Is, To, and several comparison operators

to test the Age variable and to display one of fi ve messages:

Select Case Age

 Case Is < 13

 Label1.Text = "Enjoy your youth!"

 Case 13 To 19

 Label1.Text = "Enjoy your teens!"

 Case 21

 Label1.Text = "You can drink wine with your meals."

 Case Is > 100

 Label1.Text = "Looking good!"

 Case Else

 Label1.Text = "That’s a nice age to be."

End Select

 Chapter 6 Using Decision Structures 177

If the value of the Age variable is less than 13, the message “Enjoy your youth!” is displayed.

For the ages 13 through 19, the message “Enjoy your teens!” is displayed, and so on.

A Select Case decision structure is usually much clearer than an If...Then structure and is more

effi cient when you’re making three or more branching decisions based on one variable or

property. However, when you’re making two or fewer comparisons, or when you’re working

with several different values, you’ll probably want to use an If...Then decision structure.

In the following exercise, you’ll see how you can use a Select Case structure to process input

from a list box. You’ll use the ListBox1.Text and ListBox1.SelectedIndexChanged properties to

collect the input, and then you’ll use a Select Case structure to display a greeting in one of

four languages.

Use a Select Case structure to process input from a list box

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Windows Forms Application project named My Select Case.

A blank form opens in the Designer.

3. Click the Label control in the Toolbox, and then draw a label near the top of the form to

display a title for the program.

4. Use the Label control to create a second label object below the fi rst.

You’ll use this label as a title for the list box.

5. Click the ListBox control in the Toolbox, and then create a list box below the second

label.

6. Use the Label control to draw two more labels below the list box to display program

output.

7. Use the Button control to create a small button on the bottom of the form.

8. Open the Properties window, and then set the properties shown in the table on the

following page for the objects that you have just created.

178 Part II Programming Fundamentals
Since there are so many objects, you’ll also assign Name properties to help you easily

identify the control on the form and within your program code. (When the properties in

the Properties window are sorted alphabetically, you’ll fi nd Name listed in parentheses

near the top of the Properties window.) I recommend that you use the Name property

whenever you have more than four or fi ve objects in a program. In this example, I’ve

given the objects names that feature a three-character prefi x to identify the object

type, such as btn (for button), lbl (for label), and lst (for list box).

Object Property Setting

Form1 Text “Case Greeting”

Label1 Font

Name

Text

Times New Roman, Bold, 12-point

lblTitle

“International Welcome Program”

Label2 Name

Text

lblTextBoxLabel

“Choose a country”

Label3 Font

Name

Text

10-point

lblCountry

(empty)

Label4 AutoSize

BorderStyle

ForeColor

Name

Text

False

Fixed3D

Red

lblGreeting

(empty)

ListBox1 Name lstCountryBox

Button1 Name

Text

btnQuit

“Quit”

When you’ve fi nished setting properties, your form looks similar to this:

Object Property Setting

 Chapter 6 Using Decision Structures 179

Now you’ll enter the program code to initialize the list box.

9. Double-click the form.

The Form1_Load event procedure appears in the Code Editor.

10. Type the following program code to initialize the list box:

lstCountryBox.Items.Add("England")

lstCountryBox.Items.Add("Germany")

lstCountryBox.Items.Add("Mexico")

lstCountryBox.Items.Add("Italy")

These lines use the Add method of the list box object to add entries to the list box on

your form.

11. Click the Form1.vb [Design] tab at the top of the Code Editor to switch back to the

Designer, and then double-click the list box object on your form to edit its event

procedure.

The lstCountryBox_SelectedIndexChanged event procedure appears in the Code Editor.

12. Type the following lines to process the list box selection made by the user:

lblCountry.Text = lstCountryBox.Text

Select Case lstCountryBox.SelectedIndex

 Case 0

 lblGreeting.Text = "Hello, programmer"

 Case 1

 lblGreeting.Text = "Hallo, programmierer"

 Case 2

 lblGreeting.Text = "Hola, programador"

 Case 3

 lblGreeting.Text = "Ciao, programmatore"

End Select

The fi rst line copies the name of the selected list box item to the Text property of the

third label on the form (which you renamed lblCountry). The most important property

used in the statement is lstCountryBox.Text, which contains the exact text of the item

selected in the list box. The remaining statements are part of the Select Case decision

structure. The structure uses the lstCountryBox.SelectedIndex property as a test case

variable and compares it to several values. The SelectedIndex property always contains

the number of the item selected in the list box; the item at the top is 0 (zero), the second

item is 1, the next item is 2, and so on. By using SelectedIndex, the Select Case structure

can quickly identify the user’s choice and display the correct greeting on the form.

13. Display the form again, and double-click the Quit button (btnQuit).

The btnQuit_Click event procedure appears in the Code Editor.

14. Type End in the event procedure.

180 Part II Programming Fundamentals

15. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap06 folder as the location.

Now run the program, and see how the Select Case statement works.

Tip The complete Select Case project is located in the c:\vb08sbs\chap06\select case

folder.

16. Click the Start Debugging button on the Standard toolbar to run the program.

17. Click each of the country names in the Choose A Country list box.

The program displays a greeting for each of the countries listed. The following illustra-

tion shows the greeting for Italy:

18. Click the Quit button to stop the program.

The program stops, and the development environment returns.

You’ve fi nished working with If...Then and Select Case decision structures in this chapter. You’ll

have several additional opportunities to work with them in this book, however. If...Then and

Select Case are two of the crucial decision-making mechanisms in the Visual Basic program-

ming language, and you’ll fi nd that you use them in almost every program that you write.

 Chapter 6 Using Decision Structures 181
One Step Further: Detecting Mouse Events

I began this chapter by discussing a few of the events that Visual Basic programs can respond

to, and as the chapter progressed, you learned how to manage different types of events by

using the If...Then and Select Case decision structures. In this section, you’ll add an event han-

dler to the Select Case program that detects when the pointer “hovers” over the Country list

box for a moment or two. You’ll write the special routine, or event handler, by building a list

box event procedure for the MouseHover event, one of several mouse-related activities that

Visual Basic can monitor and process. This event procedure will display the message “Please

click the country name” if the user points to the country list box for a moment or two but

doesn’t make a selection, perhaps because he or she doesn’t know how to make a selection

or has become engrossed in another task.

Add a mouse event handler

 1. Open the Code Editor if it isn’t already open.

 2. At the top of the Code Editor, click the Class Name arrow, and then click the lstCountryBox

object.

You can use the ToolTip feature to help identify elements like the Class Name list box in

Visual Studio, which is another example of the MouseHover event within the IDE.

 3. Click the Method Name arrow, and then click the MouseHover event.

Visual Basic opens the lstCountryBox_MouseHover event procedure in the Code Editor,

as shown here:

Class Name MouseHover event

Each object on the form has one event procedure that opens automatically when you

double-click the object on the form. You need to open the remaining event procedures

by using the Method Name list box.

182 Part II Programming Fundamentals

4. Type the following program statements in the lstCountryBox_MouseHover event

procedure:

If lstCountryBox.SelectedIndex < 0 Or _

 lstCountryBox.SelectedIndex > 4 Then

 lblGreeting.Text = "Please click the country name"

End If

This If statement evaluates the SelectedIndex property of the list box object by using

two conditional statements and the Or operator. The event handler assumes that if

there’s a value between 1 and 4 in the SelectedIndex property, the user doesn’t need

help picking the country name (he or she has already selected a country). But if the

SelectedIndex property is outside that range, the event handler displays the message

“Please click the country name” in the greeting label at the bottom of the form. This

Help message appears when the user holds the pointer over the list box and dis-

appears when a country name is selected.

5. Click the Start Debugging button to run the program.

6. Hold the pointer over the country list box, and wait a few moments.

The message “Please click the country name” appears in red text in the label, as

shown here:

7. Click a country name in the list box.

The translated greeting appears in the label, and the Help message disappears.

8. Click the Quit button to stop the program.

You’ve learned how to process mouse events in a program, and you’ve also learned

that writing event handlers is quite simple. Try writing additional event handlers on

your own as you continue reading this book—it will help you learn more about the

events available to Visual Studio objects, and it will give you more practice with

If...Then and Select Case decision structures.

 Chapter 6 Using Decision Structures 183
Chapter 6 Quick Reference

To Do this

Write a conditional

expression

Use one of the following comparison operators

between two values: =, <>, >, <, >=, or <=.

Use an If...Then

decision structure

Use the following syntax:

If condition1 Then

 statements executed if condition1 True

ElseIf condition2 Then

 statements executed if condition2 True

Else

 statements executed if none are True

End If

Receive input from the

user in a specifi c format

Add a MaskedTextBox control to your form, and specify the input format

by confi guring the Mask property.

Use a Select Case

decision structure

Use the following syntax:

Select Case variable

Case value1

 statements executed if value1 matches

Case value2

 statements executed if value2 matches

Case Else

 statements executed if none match

End Select

Rename an object in a

program

Select the object that you want to rename, and then modify the

object’s (Name) property by using the Properties window. If you give

the object a three-character prefi x that identifi es its object type (btn,

lbl, lst, etc.), the object is easier to spot in program code.

Make two comparisons in

a conditional expression

Use a logical operator between comparisons (And, Or, Not, or Xor).

Short-circuit an If...Then

statement

If...Then statements can be short-circuited when the AndAlso and OrElse

operators are used and two or more conditional expressions are given.

Depending on the result of the fi rst condition, Visual Basic might not

evaluate the additional conditions, and the statement is short-circuited.

Write an event handler In the Code Editor, click an object name in the Class Name list box, and

then click an event name in the Method Name list box. Add program

statements to the event procedure (called an event handler) that respond

to the event you are customizing.

To Do this

Chapter 7

Using Loops and Timers

After completing this chapter, you will be able to:

Q Use a For...Next loop to execute statements a set number of times.

Q Display output in a multiline text box by using string concatenation.

Q Use a Do loop to execute statements until a specifi c condition is met.

Q Use the Timer control to execute code at specifi c times.

Q Create your own digital clock and timed password utility.

Q Use the new Insert Snippet command to insert ready-made code templates or snippets

into the Code Editor.

In Chapter 6, “Using Decision Structures,” you learned how to use the If...Then and Select Case

decision structures to choose which statements to execute in a program. You also learned

how to process user input and evaluate different conditions in a program, and how to de-

termine which block of program statements to execute based on changing conditions. Now

you’ll continue learning about program execution and fl ow control by using loops to execute

a block of statements over and over again. You’ll also create a digital clock and other inter-

esting utilities that perform actions at set times or in relation to intervals on your computer’s

system clock.

In this chapter, you’ll use a For...Next loop to execute statements a set number of times,

and you’ll use a Do loop to execute statements until a conditional expression is met. You’ll

also learn how to display more than one line of text in a text box object by using the string

concatenation (&) operator, and you’ll learn how to use the Visual Studio Timer control to

execute code at specifi c intervals in your program. Finally, you’ll learn how to use the Insert

Snippet command to insert code templates into your programs—a time-saving feature with-

in the Microsoft Visual Studio IDE.
 185

186 Part II Programming Fundamentals
Writing For...Next Loops

With a For...Next loop , you can execute a specifi c group of program statements a set number

of times in an event procedure or a code module. This approach can be useful if you’re per-

forming several related calculations, working with elements on the screen, or processing several

pieces of user input. A For...Next loop is really just a shorthand way of writing out a long list of

program statements. Because each group of statements in such a list does essentially the same

thing, you can defi ne just one group of statements and request that it be executed as many

times as you want.

The syntax for a For...Next loop looks like this:

For variable = start To end

 statements to be repeated

Next [variable]

In this syntax statement, For, To, and Next are required keywords, as is the equal to operator (=).

You replace variable with the name of a numeric variable that keeps track of the current loop

count (the variable after Next is optional), and you replace start and end with numeric values

representing the starting and stopping points for the loop. (Note that you must declare vari-

able before it’s used in the For...Next statement.) The line or lines between the For and Next

statements are the instructions that are repeated each time the loop is executed.

For example, the following For...Next loop sounds four beeps in rapid succession from the

computer’s speaker (although the result might be diffi cult to hear):

Dim i As Integer

For i = 1 To 4

 Beep()

Next i

This loop is the functional equivalent of writing the Beep statement four times in a procedure.

The compiler treats it the same as

Beep()

Beep()

Beep()

Beep()

The variable used in the loop is i, a single letter that, by convention, stands for the fi rst integer

counter in a For...Next loop and is declared as an Integer type. Each time the loop is executed,

the counter variable is incremented by one. (The fi rst time through the loop, the variable con-

tains a value of 1, the value of start; the last time through, it contains a value of 4, the value of

end.) As you’ll see in the following examples, you can use this counter variable to great advan-

tage in your loops.

 Chapter 7 Using Loops and Timers 187
Displaying a Counter Variable in a TextBox Control

A counter variable is just like any other variable in an event procedure. It can be assigned to

properties, used in calculations, or displayed in a program. One of the practical uses for a

counter variable is to display output in a TextBox control. You used the TextBox control earlier

in this book to display a single line of output, but in this chapter, you’ll display many lines of

text by using a TextBox control. The trick to displaying more than one line is simply to set the

Multiline property of the TextBox control to True and to set the ScrollBars property to Vertical.

Using these simple settings, the one-line text box object becomes a multiline text box object

with scroll bars for easy access.

Display information by using a For...Next loop

 1. Start Visual Studio, and create a new Visual Basic Windows Forms Application project

named My For Loop.

A blank form opens in the Designer. Your fi rst programming step is to add a Button

control to the form, but this time you’ll do it in a new way.

 2. Double-click the Button control in the Toolbox.

Visual Studio places a button object in the upper-left corner of the form. With the

Button control and many others, double-clicking is a quick way to create a standard-

sized object on the form. Now you can drag the button object where you want it and

customize it with property settings.

 3. Drag the button object to the right, and center it near the top of the form.

 4. Open the Properties window, and then set the Text property of the button to “Loop”.

 5. Double-click the TextBox control in the Toolbox.

Visual Studio creates a small text box object on the form.

 6. Set the Multiline property of the text box object to True, and then set the ScrollBars

property of the text box object to Vertical.

These settings prepare the text box for displaying more than one line of text.

 7. Move the text box below the button, and enlarge it so that it takes up two-thirds of

the form.

 8. Double-click the Loop button on the form.

The Button1_Click event procedure appears in the Code Editor.

188 Part II Programming Fundamentals

9. Type the following program statements in the procedure:

Dim i As Integer

Dim Wrap As String

Wrap = Chr(13) & Chr(10)

For i = 1 To 10

 TextBox1.Text = TextBox1.Text & "Line " & i & Wrap

Next i

This event procedure declares two variables, one of type Integer (i) and one of type

String (Wrap). It then assigns a string value representing the carriage return character to

the second variable.

Tip In programmer terms, a carriage return character is the equivalent of pressing the

Enter key on the keyboard. I created a special variable for this character in the program

code, which is made up of return and linefeed elements, to make coding a carriage return

less cumbersome. The return element, Chr(13) moves the I-beam to the beginning of the

line. The linefeed element, Chr(10), reminiscent of an older style typewriter, moves the I-

beam to the next line.

After the variable declaration and assignment, I use a For...Next loop to display Line

X 10 times in the text box object, where X is the current value of the counter variable

(in other words, Line 1 through Line 10). The string concatenation characters (&) join

together the component parts of each line in the text box. First, the entire value of the

text box, which is stored in the Text property, is added to the object so that previous

lines aren’t discarded when new ones are added. Next, the “Line” string, the current line

number, and the carriage return character (Wrap) are combined to display a new line

and move the I-beam to the left margin and down one line. The Next statement com-

pletes the loop.

Note that Visual Studio automatically adds the Next statement to the bottom of the

loop when you type For to begin the loop. In this case, I edited the Next statement to

include the i variable name—this is an optional syntax clarifi cation that I like to use.

(The variable name makes it clear which variable is being updated, especially in nested

For...Next loops.)

10. Click the Save All button on the Standard toolbar to save your changes, and specify the

c:\vb08sbs\chap07 folder as the location.

Now you’re ready to run the program.

Tip The complete For Loop program is available in the c:\vb08sbs\chap07\for loop folder.

 Chapter 7 Using Loops and Timers 189

11. Click the Start Debugging button on the Standard toolbar.

12. Click the Loop button.

The For...Next loop displays 10 lines in the text box, as shown here:

13. Click the Loop button again.

The For...Next loop displays another 10 lines on the form. (You can see any nonvisible

lines by using the vertical scroll bar to scroll down.) Each time the loop is repeated, it

adds 10 more lines to the text box object.

Tip Worried about running out of room in the text box object? It will take a while if you’re

displaying only simple text lines. A multiline text box object has a limit of 64 KB of text! If

you want even more space and formatting options, you can use the RichTextBox control in

the Toolbox—a similar but even more capable control for displaying and manipulating text.

14. Click the Close button on the form to stop the program.

As you can see, a For...Next loop can considerably simplify your code and reduce the

total number of statements that you need to type. In the previous example, a loop

three lines long processed the equivalent of 10 program statements each time you

clicked the Loop button.

190 Part II Programming Fundamentals
Creating Complex For...Next Loops

The counter variable in a For...Next loop can be a powerful tool in your programs. With a

little imagination, you can use it to create several useful sequences of numbers in your loops.

To create a loop with a counter pattern other than 1, 2, 3, 4, and so on, you can specify a dif-

ferent value for start in the loop and then use the Step keyword to increment the counter at

different intervals. For example, the code

Dim i As Integer

Dim Wrap As String

Wrap = Chr(13) & Chr(10)

For i = 5 To 25 Step 5

 TextBox1.Text = TextBox1.Text & "Line " & i & Wrap

Next i

displays the following sequence of line numbers in a text box:

Line 5

Line 10

Line 15

Line 20

Line 25

You can also specify decimal values in a loop if you declare i as a single-precision or double-

precision type. For example, the For...Next loop

Dim i As Single

Dim Wrap As String

Wrap = Chr(13) & Chr(10)

For i = 1 To 2.5 Step 0.5

 TextBox1.Text = TextBox1.Text & "Line " & i & Wrap

Next i

displays the following line numbers in a text box:

Line 1

Line 1.5

Line 2

Line 2.5

In addition to displaying the counter variable, you can use the counter to set properties,

calculate values, or process fi les. The exercise on the following page shows how you can

use the counter to open Visual Basic icons that are stored on your hard disk in fi les that

have numbers in their names. You’ll fi nd many icons, bitmaps, and animation fi les in the

c:\program fi les\microsoft visual studio 9.0\common7\vs2005imagelibrary folder. These

fi les are contained in a compressed .zip fi le, so you will need to extract the fi les. Also note

that Microsoft changes the location for these types of fi les on occasion.

 Chapter 7 Using Loops and Timers 191

Open fi les by using a For...Next loop

1. On the File menu, click the New Project command.

The New Project dialog box opens.

2. Create a new Windows Forms Application project named My For Loop Icons.

Your new project starts, and a blank form opens in the Designer.

Note If you’re opening the project from the practice fi les I provided, you’ll see slightly

different code than what is shown in step 7 below, because we modify the For Loop Icons

project in the next exercise.

3. Click the PictureBox control in the Toolbox, and then draw a medium-sized picture box

object centered on the top half of the form.

4. Click the Button control, and then draw a very wide button below the picture box.

(You’ll put a longer than usual label on the button.)

5. Set the following properties for the two objects:

Object Property Setting

PictureBox1 BorderStyle

SizeMode

Fixed3D

StretchImage

Button1 Text “Display Four Faces”

6. Double-click the Display Four Faces button on the form to display the event procedure

for the button object.

The Button1_Click event procedure appears in the Code Editor.

7. Type the following For...Next loop:

Dim i As Integer

For i = 1 To 4

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap07\face0" & i & ".ico")

 MsgBox("Click here for next face.")

Next

Tip The FromFile method in this event procedure is too long to fi t on one line in this book,

so I broke it into two lines by using a space and the line continuation character (_). You can

use this character anywhere in your program code except within a string expression.

Object Property Setting

192 Part II Programming Fundamentals

The loop uses the FromFile method to load four icon fi les from the c:\vb08sbs\chap07

folder on your hard disk. The fi le name is created by using the counter variable and the

concatenation operator you used earlier in this chapter. The code

PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap07\face0" & i & ".ico")

combines a path, a fi le name, and the .ico extension to create four valid fi le names of

icons on your hard disk. In this example, you’re loading face01.ico, face02.ico, face03.

ico, and face04.ico into the picture box. This statement works because several fi les in

the c:\vb08sbs\chap07 folder have the fi le name pattern facexx.ico. By recognizing the

pattern, you can build a For...Next loop around the fi le names.

Note The message box function (MsgBox) is used primarily to slow the action down so

that you can see what’s happening in the For...Next loop. In a normal application, you

probably wouldn’t use such a function (but you’re welcome to).

8. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap07 folder as the location.

9. Click the Start Debugging button to run the program, and then click the Display Four

Faces button.

The For...Next loop loads the fi rst face into the picture box, and then displays this

message box:

Note If Visual Basic displays an error message, ensure that your program code has no typos,

and then verify that the icon fi les are in the path you specifi ed in the program. If you installed

the Step by Step practice fi les in a folder other than the default folder, or if you moved your

icon fi les after installation, the path in the event procedure might not be correct.

 Chapter 7 Using Loops and Timers 193

 10. Click OK to display the next face.

Your screen looks something like this:

11. Click OK three more times to see the entire face collection.

You can repeat the sequence if you want.

12. When you’re fi nished, click the Close button on the form.

The program stops, and the development environment returns.

Using a Counter That Has Greater Scope

Are there times when using a For...Next loop isn’t that effi cient or elegant? Sure. In fact,

the preceding example, although useful as a demonstration, was a little hampered by the

intrusive behavior of the message box, which opened four times in the For...Next loop and

distracted the user from the form, where we want his or her attention to be. Is there a way

we can do away with that intrusive message box?

One solution is to remove both the MsgBox function and the For...Next loop, and substi-

tute in their place a counter variable that has greater scope throughout the form. As you

learned in Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework,” you

can declare a variable that has scope (or maintains its value) throughout the entire form

by placing a Dim statement for the variable at the top of the form in the Code Editor—a

special location above the event procedures. In the following exercise, you’ll use an Integer

variable named Counter that maintains its value between calls to the Button1_Click event

procedure, and you’ll use that variable to open the same icon fi les without using the

MsgBox function to pause the action.

194 Part II Programming Fundamentals

Use a global counter

1. Open the Code Editor for the My For Loop Icons project.

2. Move the insertion point above the Button1_Click event procedure, and directly below

the Public Class Form1 statement, declare an Integer variable named Counter by using

this syntax:

Dim Counter As Integer = 1

Notice that Visual Studio separates the declaration that you’ve just entered from the

event procedure with a solid line and displays the word “(Declarations)” in the Method

Name list box. You’ve also done something unusual here—in addition to declaring the

Counter variable, you’ve also assigned the variable a value of 1. Declaring and assign-

ing at the same time isn’t permitted in Visual Basic 6, but it has been a handy feature

of Visual Basic since version 2002. In Chapter 5, I used this syntax to declare a constant,

but this is the fi rst time that I’ve used it for variable declarations.

3. Within the Button1_Click event procedure, change the code so that it precisely matches

the following group of program statements. (Delete any statements that aren’t here.)

PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb08sbs\chap07\face0" & Counter & ".ico")

Counter += 1

If Counter = 5 Then Counter = 1

As you can see, I’ve deleted the declaration for the i integer, the For and Next statements,

and the MsgBox function, and I’ve changed the way the FromFile method works. (I’ve

replaced the i variable with the Counter variable.) I’ve also added two new statements

that use the Counter variable. The fi rst statement adds 1 to Counter (Counter += 1), and

the second statement resets the Counter variable if the value has been incremented to

5. (Resetting the variable in this way allows the list of icon fi les to cycle indefi nitely.) The

Counter += 1 syntax is a shortcut feature in Visual Basic 2005 and 2008—the functional

equivalent of the following statement:

Counter = Counter + 1

Now you’ll run the program.

Tip The modifi ed For Loop Icons program is available in the c:\vb08sbs\chap07\for loop

icons folder.

4. Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the development environment.

5. Click the Display Four Faces button several times. (Notice how the mood of the faces

develops from glum to cheery.)

 Chapter 7 Using Loops and Timers 195

6. When you’re fi nished, click the Close button on the form to stop the program.

As you can see, this solution is a little more elegant than the previous example because the

user can click just one button, not a form button and a message box button. The shortcoming

of the interface in the fi rst program wasn’t the fault of the For...Next loop, however, but rather

the limitation I imposed that the Button1_Click event procedure use only local variables (in

other words, variables that were declared within the event procedure itself). Between button

clicks, these local variables lost their value, and the only way I could increment the counter

was to build a loop. By using an Integer variable with a greater scope, I can preserve the value

of the Counter variable between clicks and use that numeric information to display fi les within

the Button1_Click event procedure.

The Exit For Statement

Most For...Next loops run to completion without incident, but now and then you’ll fi nd it

useful to end the computation of a For...Next loop if a particular “exit condition” occurs.

Visual Basic allows for this possibility by providing the Exit For statement, which you can

use to terminate the execution of a For...Next loop early and move execution to the fi rst

statement after the loop.

For example, the following For...Next loop prompts the user for 10 names and displays

them one by one in a text box unless the user enters the word “Done”:

Dim i As Integer

Dim InpName As String

For i = 1 To 10

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName = "Done" Then Exit For

 TextBox1.Text = InpName

Next i

If the user does enter “Done”, the Exit For statement terminates the loop, and execution

picks up with the statement after Next.

196 Part II Programming Fundamentals
Writing Do Loops

As an alternative to a For...Next loop, you can write a Do loop that executes a group of state-

ments until a certain condition is True. Do loops are valuable because often you can’t know

in advance how many times a loop should repeat. For example, you might want to let the

user enter names in a database until the user types the word “Done” in an input box. In that

case, you can use a Do loop to cycle indefi nitely until the “Done” text string is entered.

A Do loop has several formats, depending on where and how the loop condition is evaluated.

The most common syntax is

Do While condition

 block of statements to be executed

Loop

For example, the following Do loop prompts the user for input and displays that input in a

text box until the word “Done” is typed in the input box:

Dim InpName As String

Do While InpName <> "Done"

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName <> "Done" Then TextBox1.Text = InpName

Loop

The conditional statement in this loop is InpName <> "Done", which the Visual Basic com-

piler translates to mean “loop as long as the InpName variable doesn’t contain exactly the

word ‘Done’.” This brings up an interesting fact about Do loops: if the condition at the top of

the loop isn’t True when the Do statement is fi rst evaluated, the Do loop is never executed.

Here, if the InpName string variable did contain the “Done” value before the loop started

(perhaps from an earlier assignment in the event procedure), Visual Basic would skip the

loop altogether and continue with the line below the Loop keyword.

If you always want the loop to run at least once in a program, put the conditional test at the

bottom of the loop. For example, the loop

Dim InpName As String

Do

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName <> "Done" Then TextBox1.Text = InpName

Loop While InpName <> "Done"

is essentially the same as the previous Do loop, but here the loop condition is tested after a

name is received from the InputBox function. This has the advantage of updating the InpName

variable before the conditional test in the loop so that a preexisting “Done” value won’t cause

the loop to be skipped. Testing the loop condition at the bottom ensures that your loop is ex-

ecuted at least once, but often it forces you to add a few extra statements to process the data.

 Chapter 7 Using Loops and Timers 197
Note The previous code samples asked the user to type “Done” to quit. Note that the test of the

entered text is case sensitive, which means that typing “done” or “DONE” doesn’t end the program.

You can make the test case-insensitive by using the StrComp function, which I’ll discuss in Chapter

13, “Exploring Text Files and String Processing.”

Avoiding an Endless Loop

Because of the relentless nature of Do loops, it’s very important to design your test conditions

so that each loop has a true exit point. If a loop test never evaluates to False, the loop executes

endlessly, and your program might not respond to input. Consider the following example:

Dim Number as Double

Do

 Number = InputBox("Enter a number to square. Type –1 to quit.")

 Number = Number * Number

 TextBox1.Text = Number

Loop While Number >= 0

In this loop, the user enters number after number, and the program squares each number and

displays it in the text box. Unfortunately, when the user has had enough, he or she can’t quit

because the advertised exit condition doesn’t work. When the user enters -1, the program

squares it, and the Number variable is assigned the value 1. (The problem can be fi xed by set-

ting a different exit condition.) Watching for endless loops is essential when you’re writing Do

loops. Fortunately, they’re pretty easy to spot if you test your programs thoroughly.

Important Be sure that each loop has a legitimate exit condition.

The following exercise shows how you can use a Do loop to convert Fahrenheit temperatures

to Celsius temperatures. The simple program prompts the user for input by using the InputBox

function, converts the temperature, and displays the output in a message box.

Convert temperatures by using a Do loop

 1. On the File menu, click New Project.

The New Project dialog box opens.

 2. Create a new Visual Basic Windows Forms Application project named My Celsius

Conversion.

198 Part II Programming Fundamentals

The new project is created, and a blank form opens in the Designer. This time, you’ll

place all the code for your program in the Form1_Load event procedure so that Visual

Basic immediately prompts you for the Fahrenheit temperature when you start the

application. You’ll use an InputBox function to request the Fahrenheit data, and

you’ll use a MsgBox function to display the converted value.

3. Double-click the form.

The Form1_Load event procedure appears in the Code Editor.

4. Type the following program statements in the Form1_Load event procedure:

Dim FTemp, Celsius As Single

Dim strFTemp As String

Dim Prompt As String = "Enter a Fahrenheit temperature."

Do

 strFTemp = InputBox(Prompt, "Fahrenheit to Celsius")

 If strFTemp <> "" Then

 FTemp = CSng(strFTemp)

 Celsius = Int((FTemp + 40) * 5 / 9 - 40)

 MsgBox(Celsius, , "Temperature in Celsius")

 End If

Loop While strFTemp <> ""

End

Tip Be sure to include the End statement at the bottom of the Form1_Load event procedure.

This code handles the calculations for the project. The fi rst line declares two single-

precision variables, FTemp and Celsius, to hold the Fahrenheit and Celsius temperatures,

respectively. The second line declares a string variable named strFTemp that holds a

string version of the Fahrenheit temperature. The third line declares a string variable

named Prompt, which will be used in the InputBox function, and assigns it an initial

value. The Do loop repeatedly prompts the user for a Fahrenheit temperature, converts

the number to Celsius, and then displays it on the screen by using the MsgBox function.

The value that the user enters in the input box is stored in the strFTemp variable. The

InputBox function always returns a value of type string, even if the user enters numbers.

Because we want to perform mathematical calculations on the entered value, strFTemp

must be converted to a number. The CSng function is used to convert a string into the

Single data type. CSng is one of many conversion functions you can use to convert a string

to a different data type. The converted single value is then stored in the FTemp variable.

The loop executes until the user clicks the Cancel button or until the user presses Enter

or clicks OK with no value in the input box. Clicking the Cancel button or entering no

value returns an empty string (“”). The loop checks for the empty string by using a

While conditional test at the bottom of the loop. The program statement

Celsius = Int((FTemp + 40) * 5 / 9 - 40)

 Chapter 7 Using Loops and Timers 199

handles the conversion from Fahrenheit to Celsius in the program. This statement

employs a standard conversion formula, but it uses the Int function to return a value

that contains no decimal places to the Celsius variable. (Everything to the right of the

decimal point is discarded.) This cutting sacrifi ces accuracy, but it helps you avoid long,

unsightly numbers such as 21.11111, the Celsius value for 70 degrees Fahrenheit.

5. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap07 folder as the location.

Now you’ll try running the program.

Tip The complete Celsius Conversion program is available in the c:\vb08sbs\chap07\celsius

conversion folder.

6. Click the Start Debugging button on the Standard toolbar.

The program starts, and the InputBox function prompts you for a Fahrenheit temperature.

7. Type 212.

Your screen looks like this:

8. Click OK.

The temperature 212 degrees Fahrenheit is converted to 100 degrees Celsius, as shown

in this message box:

9. Click OK. Then type 72 in the input box, and click OK again.

The temperature 72 degrees Fahrenheit is converted to 22 degrees Celsius.

10. Click OK, and then click Cancel in the input box.

The program closes, and the development environment returns.

200 Part II Programming Fundamentals
Using the Until Keyword in Do Loops

The Do loops you’ve worked with so far have used the While keyword to execute a

group of statements as long as the loop condition remains True. With Visual Basic,

you can also use the Until keyword in Do loops to cycle until a certain condition is

True. Use the Until keyword at the top or bottom of a Do loop to test a condition, just

like the While keyword. For example, the following Do loop uses the Until keyword to

loop repeatedly until the user enters the word “Done” in the input box:

Dim InpName As String

Do

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName <> "Done" Then TextBox1.Text = InpName

Loop Until InpName = "Done"

As you can see, a loop that uses the Until keyword is similar to a loop that uses the While

keyword, except that the test condition usually contains the opposite operator—the =

(equal to) operator versus the <> (not equal to) operator, in this case. If using the Until

keyword makes sense to you, feel free to use it with test conditions in your Do loops.

The Timer Control

As we wrap up our consideration of fl ow control tools and techniques in this chapter, you

should also consider the benefi ts of using the Visual Studio Timer control, which you can use

to execute a group of statements for a specifi c period of time or at specifi c intervals. The Timer

control is essentially an invisible stopwatch that gives you access to the system clock in your

programs. The Timer control can be used like an egg timer to count down from a preset time,

to cause a delay in a program, or to repeat an action at prescribed intervals.

Although timer objects aren’t visible at run time, each timer is associated with an event proce-

dure that runs every time the timer’s preset interval has elapsed. You set a timer’s interval by

using the Interval property, and you activate a timer by setting the timer’s Enabled property

to True. Once a timer is enabled, it runs constantly—executing its event procedure at the pre-

scribed interval—until the user stops the program or the timer object is disabled.

 Chapter 7 Using Loops and Timers 201
Creating a Digital Clock by Using a Timer Control

One of the most straightforward uses for a Timer control is creating a custom digital clock. In

the following exercise, you’ll create a simple digital clock that keeps track of the current time

down to the second. In the example, you’ll set the Interval property for the timer to 1000,

directing Visual Studio to update the clock time every 1000 milliseconds, or once a second.

Because the Windows operating system is a multitasking environment and other programs

also require processing time, Visual Studio might not update the clock every second, but it

always catches up if it falls behind. To keep track of the time at other intervals, such as once

every tenth of a second, you simply adjust the number in the Interval property.

Create the Digital Clock program

 1. On the File menu, click the New Project command, and create a new Windows Forms

Application project named My Digital Clock.

The new project is created and a blank form opens in the Designer.

 2. Resize the form to a small rectangular window (one that’s wider than it is tall).

You don’t want the clock to take up much room.

 3. Double-click the Timer control on the Components tab of the Toolbox.

This is the fi rst time that you have used the Components tab and the Timer control in

this book. (The Components tab provides a number of interesting controls that work

“behind the scenes” in your programs.) Visual Studio creates a small timer object in the

component tray beneath your form, as shown here:

202 Part II Programming Fundamentals

Recall from Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes,” that cer-

tain Visual Studio controls don’t have a visual representation on the form, and when

objects for these controls are created, they appear in the component tray beneath

the form. (This was the case for the MenuStrip and ToolStrip controls that you used in

Chapter 4.) However, you can still select controls in this special pane and set properties

for them, as you’ll do for the timer object in this exercise.

4. Click the Label control in the Toolbox, and then draw a very large label object on the

form—a label that’s almost the size of the entire form itself.

You’ll use the label to display the time in the clock, and you want to create a very big

label to hold the 24-point type you’ll be using.

Note When you fi rst create the label object, it resizes automatically to hold the text

“Label1” in the default size. But when you set the AutoSize property to False in the next

step, the label object is restored to the size you originally created.

5. Open the Properties window, and set the following properties for the form and the two

objects in your program:

Object Property Setting

Label1 AutoSize

Font

Text

TextAlign

False

Times New Roman, Bold, 24-point

(empty)

MiddleCenter

Timer1 Enabled

Interval

True

1000

Form1 Text “Digital Clock”

Tip If you’d like to put some artwork in the background of your clock, set the Background-

Image property of the Form1 object to the path of a graphics fi le.

Now you’ll write the program code for the timer.

6. Double-click the timer object in the component tray.

The Timer1_Tick event procedure appears in the Code Editor. Experienced Visual Basic 6

programmers will notice that this event procedure has been renamed from Timer1_Timer

to Timer1_Tick, clarifying what this event procedure does in the program (that is, the

event procedure runs each time that the timer clock ticks).

7. Type the following statement:

Label1.Text = TimeString

Object Property Setting

 Chapter 7 Using Loops and Timers 203

This statement gets the current time from the system clock and assigns it to the Text

property of the Label1 object. (If you’d like to have the date displayed in the clock as well

as the time, use the System.DateTime.Now property instead of the TimeString property.)

Only one statement is required in this program because you set the Interval property for

the timer by using the Properties window. The timer object handles the rest.

8. Click the Save All button on the Standard toolbar to save your changes. Specify

c:\vb08sbs\chap07 as the folder location.

Tip The complete Digital Clock program is available in the c:\vb08sbs\chap07\digital

clock folder.

9. Click the Start Debugging button on the Standard toolbar to run the clock.

The clock appears, as shown in the following illustration. (Your time will be different,

of course.)

If you used the System.DateTime.Now property, you’ll see the date in the clock also, as

shown here:

I needed to enlarge the label object and the form a little here to get the date and time

to appear on one line. If your system clock information also wrapped, close the program,

and resize your label and form.

10. Watch the clock for a few moments.

Visual Basic updates the time every second.

11. Click the Close button in the title bar to stop the clock.

The Digital Clock program is so handy that you might want to compile it into an executable

fi le and use it now and then on your computer. Feel free to customize it by using your own

artwork, text, and colors.

204 Part II Programming Fundamentals
Using a Timer Object to Set a Time Limit

Another interesting use of a timer object is to set it to wait for a given period of time before

either permitting or prohibiting an action. You can also use this timer technique to display

a welcome message or a copyright message on the screen or to repeat an event at a set in-

terval, such as saving a fi le every 10 minutes. Again, this is a little like setting an egg timer in

your program. You set the Interval property with the delay you want, and then you start the

clock ticking by setting the Enabled property to True.

The following exercise shows how you can use this approach to set a time limit for entering a

password. (The password for this program is “secret.”) The program uses a timer to close its

own program if a valid password isn’t entered in 15 seconds. (Normally, a program like this

would be part of a larger application.)

Set a password time limit

 1. On the File menu, click the New Project command, and create a new Windows Forms

Application project named My Timed Password.

The new project is created, and a blank form opens in the Designer.

 2. Resize the form to a small rectangular window about the size of an input box.

 3. Click the TextBox control in the Toolbox, and then draw a text box for the password in

the middle of the form.

 4. Click the Label control in the Toolbox, and then draw a long label above the text box.

 5. Click the Button control in the Toolbox, and then draw a button below the text box.

 6. Double-click the Timer control on the Components tab of the Toolbox.

Visual Studio adds a timer object to the component tray below the form.

 7. Set the properties in the following table for the program:

Object Property Setting

Label1 Text “Enter your password within 15 seconds”

TextBox1 PasswordChar “*”

Button1 Text “Try Password”

Timer1 Enabled

Interval

True

15000

Form1 Text “Password”

Object Property Setting

 Chapter 7 Using Loops and Timers 205

The PasswordChar setting displays asterisk (*) characters in the text box as the user enters

a password. Setting the timer Interval property to 15000 gives the user 15 seconds to

enter a password and click the Try Password button. Setting the Enabled property to True

starts the timer running when the program starts. (If the timer wasn’t needed until later in

the program, you could disable this property and then enable it in an event procedure.)

Your form looks like this:

8. Double-click the timer object in the component tray, and then type the following

statements in the Timer1_Tick event procedure:

MsgBox("Sorry, your time is up.")

End

The fi rst statement displays a message indicating that the time has expired, and the

second statement stops the program. Visual Basic executes this event procedure if the

timer interval reaches 15 seconds and a valid password hasn’t been entered.

9. Display the form, double-click the button object, and then type the following statements

in the Button1_Click event procedure:

If TextBox1.Text = "secret" Then

 Timer1.Enabled = False

 MsgBox("Welcome to the system!")

 End

Else

 MsgBox("Sorry, friend, I don’t know you.")

End If

This program code tests whether the password entered in the text box is “secret.” If

it is, the timer is disabled, a welcome message is displayed, and the program ends.

(A more useful program would continue working rather than ending here.) If the

password entered isn’t a match, the user is notifi ed with a message box and is given

another chance to enter the password. But the user has only 15 seconds to do so!

10. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap07 folder as the location.

206 Part II Programming Fundamentals

Test the Timed Password program

Tip The complete Timed Password program is available in the c:\vb08sbs\chap07\timed

password folder.

1. Click the Start Debugging button to run the program.

The program starts, and the 15-second clock starts ticking.

2. Type open in the text box.

The asterisk characters hide your input, as shown here:

3. Click the Try Password button.

The following message box opens on the screen, noting your incorrect response:

4. Click OK, and then wait patiently until the sign-on period expires.

The program displays the time-up message shown in this message box:

5. Click OK to end the program.

6. Run the program again, type secret (the correct password) in the text box, and then

click Try Password.

 Chapter 7 Using Loops and Timers 207
The program displays this message:

 7. Click OK to end the program.

The Visual Basic development environment appears.

As you can imagine, there are many practical uses for timer objects. As with For...Next loops

and Do loops, you can use timer objects to repeat commands and procedures as many times

as you need in a program. Combined with what you learned about the If...Then and Select

Case decision structures in Chapter 6, you now have several statements, controls, and tech-

niques that can help you organize your programs and make them respond to user input and

data processing tasks in innovative ways. Learning to pick the best tool for the fl ow-control

situation at hand takes some practice, of course, but you’ll have ample opportunity to try

these tools and techniques as you continue working in the following chapters, and as you

construct interesting applications on your own. In fact, you might take the opportunity right

now to create a simple project or two from scratch before you tackle the next chapter, which

discusses debugging. How about creating a digital clock that displays a different piece of art

in a picture box object every 30 seconds?

One Step Further: Inserting Code Snippets

If you enjoyed using the system clock and other Windows resources in this chapter, you

might enjoy one additional example that uses the Computer.Info object to display useful

information about the operating system you’re currently using. This example also demon-

strates an interesting feature of Visual Studio called the Insert Snippet command, which

lets you insert ready-made code templates or snippets into the Code Editor from a list of

common programming tasks. Visual Studio comes automatically confi gured with a library

of useful code snippets, and you can add additional snippets from your own programs or

from online resources such as MSDN. The following exercise shows you how to use this

helpful feature.

Insert the Current Windows Version Snippet

 1. On the File menu, click the New Project command, and create a new Windows Forms

Application project named My Windows Version Snippet.

The new project is created, and a blank form opens in the Designer.

208 Part II Programming Fundamentals

2. Create a new button object in the middle of the form, and set the Text property of the

button to “Display Windows Version”.

3. Double-click the button object to display the Button1_Click event procedure.

Now you’ll use the Insert Snippet command to insert a code template that automatically

returns information about the version of Windows installed on your computer. Note that

this particular snippet is just one example from a list of dozens of useful code templates.

4. Click the Edit menu, point to the Microsoft IntelliSense submenu, and then click the

Insert Snippet command.

The Insert Snippet list box appears in the Code Editor, as shown in the following illustra-

tion. Depending on what components of Visual Studio you have installed, your snippet

list will have some differences.

Tip You can also open the snippet list by right-clicking in the Designer and selecting

Insert Snippet.

The Insert Snippet list box is a navigation tool that you can use to explore the snippet

library and insert snippets into your program at the insertion point. To open a folder in

the list box, double click the folder name. To return to the previous folder in the folder

hierarchy, press the Backspace key.

5. Scroll to the bottom of the list box, and then double-click the Windows System -

Logging, Processes, Registry, Services folder.

 Chapter 7 Using Loops and Timers 209

In this folder you’ll fi nd snippets related to querying and setting operating system

settings.

6. Double-click the Windows - System Information folder.

A list of system information snippets appears. Now you’ll select the snippet that returns

information about the current version of Windows.

7. Double-click the snippet entitled “Determine the Current Windows Version.”

Visual Studio inserts the following two lines of code into the Button1_Click event

procedure at the insertion point:

Dim osVersion As String

osVersion = My.Computer.Info.OSVersion

These statements declare the string variable osVersion to hold version information about

the operating system, and then use the Computer.Info object to fi ll the variable with cur-

rent information. The snippet also uses the My namespace to gather information about

your computer. The My namespace is a “speed-dial” feature of Visual Basic designed

to reduce the time it takes to code common tasks, and I will introduce it more fully in

Chapter 13.

This code snippet is called a template because it supplies the majority of the code that

you need to insert for a particular task, but the code is not fully integrated into your

project yet. In this case, we should add a second variable to hold the name of the op-

erating system (because there are different Windows versions), and we’ll add a MsgBox

function to display the results for the user. (In other cases, you might need to add con-

trols to your form, create new variables or data structures, or write additional program

statements that use the snippet.)

8. Press the Enter key twice to add a blank line below the snippet.

9. Type the following program statements:

Dim osName As String

osName = My.Computer.Info.OSFullName

MsgBox(osName & vbCr & osVersion)

These statements declare a second variable named osName that will hold the Windows

version retrieved by the OSFullName property of the Computer.Info object. There is

also a MsgBox function that displays the two returned values: the operating system

name (osName) and the operating system version number (osVersion). As you prob-

ably know, the operating system version number has now become quite detailed in

Microsoft Windows, because Windows has the ability to be updated automatically over

the Web each time a new security update or improvement is released. Examining the

version number is therefore a handy way to see whether your system is up-to-date and

safe.

210 Part II Programming Fundamentals

You’ll also notice that I used vbCr. This is a constant that represents a carriage return.

This can be used as an alternative to the Chr(13) statement that was used earlier in the

chapter. There are several of these constants that can be helpful. When you type “vb” in

the Code Editor, you’ll see a list of all of these constants. Your screen looks like this:

10. Click Save All to save your changes, and specify the c:\vb08sbs\chap07 folder as the

location.

11. Click Start Debugging to run the program.

Visual Studio runs the program in the IDE.

12. Click the Display Windows Version button to display the version information returned

by the snippet.

Your dialog box looks similar to the following:

13. Click OK to close the dialog box, and then click the Close button to end the program.

You’ve learned a handy skill that will allow you to insert a variety of useful code templates

into your own programs.

 Chapter 7 Using Loops and Timers 211
Tip To insert new snippets or reorganize the snippets you have, click the Code Snippets Manager

command on the Tools menu. The Code Snippets Manager dialog box gives you complete control

over the contents of the Insert Snippet list box, and also contains a mechanism for gathering new

snippets online.

Chapter 7 Quick Reference

To Do this

Execute a group of

program statements

a specifi c number of

times

Insert the statements between For and Next statements in a loop. For

example:

Dim i As Integer

For i = 1 To 10

 MsgBox("Press OK already!")

Next

Use a specifi c se-

quence of numbers

with statements

Insert the statements in a For...Next loop, and use the To and Step keywords

to defi ne the sequence of numbers. For example:

Dim i As Integer

For i = 2 To 8 Step 2

 TextBox1.Text = TextBox1.Text & i

Next

Avoid an endless Do

loop

Be sure the loop has a test condition that can evaluate to False.

Declare a variable and

assign a value to it at

the same time

Use Dim to declare the variable, and then assign a value with the equal to

(=) operator. For example:

Dim Counter As Integer = 1

Exit a For...Next loop

prematurely

Use the Exit For statement. For example:

Dim InpName As String

Dim i As Integer

For i = 1 To 10

 InpName = InputBox("Name?")

 If InpName = "Trotsky" Then Exit For

 TextBox1.Text = InpName

Next

Execute a group of

program statements

until a specifi c condi-

tion is met

Insert the statements between Do and Loop statements. For example:

Dim Query As String = ""

Do While Query <> "Yes"

 Query = InputBox("Trotsky?")

 If Query = “Yes” Then MsgBox("Hi")

Loop

To Do this

212 Part II Programming Fundamentals
To Do this

Loop until a specifi c

condition is True

Use a Do loop with the Until keyword. For example:

Dim GiveIn As String

Do

 GiveIn = InputBox("Say 'Uncle'")

Loop Until GiveIn = "Uncle"

Loop for a specifi c

period of time in your

program

Use the Timer control.

Insert a code snippet

into your program

In the Code Editor, position the insertion point (I-beam) at the location

where you want to insert the snippet. On the Edit menu, click IntelliSense,

and then click Insert Snippet. Browse to the snippet that you want to

use, and then double-click the snippet name.

Add or reorganize

snippets in the Insert

Snippet list box

Click the Code Snippet Manager command on the Tools menu.

To Do this

Chapter 8

Debugging Visual Basic Programs

After completing this chapter, you will be able to:

Q Identify different types of errors in your programs.

Q Use Visual Studio debugging tools to set breakpoints and correct mistakes.

Q Use the Autos and Watch windows to examine variables during program execution.

Q Use a visualizer to examine string data types and complex data types within the IDE.

Q Use the Immediate and Command windows to change the value of variables and

execute commands in Visual Studio.

Q Remove breakpoints.

In the past few chapters, you’ve had plenty of opportunity to make programming mistakes in

your code. Unlike human conversation, which usually works well despite occasional grammati-

cal mistakes and mispronunciations, communication between a software developer and the

Microsoft Visual Basic compiler is successful only when the precise rules and regulations of the

Visual Basic programming language are followed.

In this chapter, you’ll learn more about the software defects, or bugs, that stop Visual Basic

programs from running. You’ll learn about the different types of errors that turn up in pro-

grams and how to use the Microsoft Visual Studio debugging tools to detect and correct

these defects. What you learn will be useful as you experiment with the programs in this

book and when you write longer programs in the future.

Why focus on debugging now? Some programming books skip this topic altogether or

place it near the end of the book (after you’ve learned all the language features of a par-

ticular product). There is a certain logic to postponing the discussion, but I think it makes

the most sense to master debugging techniques while you learn to program so that detect-

ing and correcting errors becomes part of your standard approach to writing programs

and solving problems. At this point in Microsoft Visual Basic 2008 Step by Step, you know

just enough about objects, decision structures, and statement syntax to create interest-

ing programs but also enough to get yourself into a little bit of trouble! As you’ll soon see,

however, Visual Studio 2008 makes it easy to uncover your mistakes and get back on the

straight and narrow.
 213

214 Part II Programming Fundamentals
Finding and Correcting Errors

The defects you’ve encountered in your programs so far have probably been simple typing

mistakes or syntax errors. But what if you discover a nastier problem in your program—one

you can’t fi nd and correct by a simple review of the objects, properties, and statements

you’ve used? The Visual Studio IDE contains several tools that help you track down and fi x

errors in your programs. These tools won’t stop you from making mistakes, but they often

ease the pain when you encounter one.

Three Types of Errors

Three types of errors can occur in a Visual Basic program: syntax errors, run-time errors, and

logic errors:

Q A syntax error (or compiler error) is a mistake (such as a misspelled property or keyword)

that violates the programming rules of Visual Basic. Visual Basic will point out several

types of syntax errors in your programs while you enter program statements, and it

won’t let you run a program until you fi x each syntax error.

Q A run-time error is a mistake that causes a program to stop unexpectedly during ex-

ecution. Run-time errors occur when an outside event or an undiscovered syntax error

forces a program to stop while it’s running. For instance, if you misspell a fi le name

when you use the System.Drawing.Image.FromFile method, or if you try to read the

fl oppy drive and it doesn’t contain a disk, your code will generate a run-time error.

Q A logic error is a human error—a mistake that causes the program code to produce

the wrong results. Most debugging efforts are focused on tracking down logic errors

introduced by the programmer.

If you encounter a syntax error, you often can solve the problem by using the Visual Studio

documentation to learn more about the error message, and you can fi x the mistake by pay-

ing close attention to the exact syntax of the functions, objects, methods, and properties

that you have used. In the Code Editor, incorrect statements are underlined with a jagged

line, and you can learn more about the error by holding the mouse pointer over the state-

ment. The illustration on the following page shows the error message that appears in Visual

Studio when I type the keyword Case incorrectly as “Csae” and then hold the mouse pointer

over the error. This error message appears as a ScreenTip.

 Chapter 8 Debugging Visual Basic Programs 215
Syntax error identified by the Visual Basic compiler

Tip By default, a green jagged line indicates a warning, a red jagged line indicates

a syntax error, a blue jagged line indicates a compiler error, and a purple jagged line

indicates some other error.

If you encounter a run-time error, you often can address the problem by correcting your

typing. For example, if a bitmap loads incorrectly into a picture box object, the problem

might simply be a misspelled path. However, many run-time errors require a more thorough

solution. You can add a structured error handler—a special block of program code that

recognizes a run-time error when it happens, suppresses any error messages, and adjusts

program conditions to handle the problem—to your programs. I discuss the new syntax for

structured error handlers in Chapter 9, “Trapping Errors by Using Structured Error Handling.”

Identifying Logic Errors

Logic errors in your programs are often the most diffi cult to fi x. They’re the result of faulty

reasoning and planning, not a misunderstanding about Visual Basic syntax. Consider the

following If...Then decision structure, which evaluates two conditional expressions and then

displays one of two messages based on the result.

If Age > 13 And Age < 20 Then

 TextBox2.Text = "You're a teenager"

Else

 TextBox2.Text = "You're not a teenager"

End If

216 Part II Programming Fundamentals
Can you spot the problem with this decision structure? A teenager is a person who is between

13 and 19 years old, inclusive, but the structure fails to identify the person who’s exactly 13.

(For this age, the structure erroneously displays the message “You’re not a teenager.”) This

type of mistake isn’t a syntax error (because the statements follow the rules of Visual Basic); it’s

a mental mistake or logic error. The correct decision structure contains a greater than or equal

to operator (>=) in the fi rst comparison after the If...Then statement, as shown here:

If Age >= 13 And Age < 20 Then

Believe it or not, this type of mistake is the most common problem in a Visual Basic program.

Code that produces the expected results most of the time—but not all of the time—is the

hardest to test and to fi x.

Debugging 101: Using Debugging Mode

One way to identify a logic error is to execute your program code one line at a time and

examine the content of one or more variables or properties as they change. To do this, you

can enter debugging mode (or break mode) while your program is running and then view

your code in the Code Editor. Debugging mode gives you a close-up look at your program

while the Visual Basic compiler is executing it. It’s kind of like pulling up a chair behind the

pilot and copilot and watching them fl y the airplane. But in this case, you can touch the

controls.

While you’re debugging your application, you’ll use buttons on the Standard toolbar and

the Debug toolbar, as well as commands on the Debug menu and special buttons and win-

dows in the IDE. The following illustration shows the debugging buttons on the Standard

and Debug toolbars, which you can open by pointing to the Toolbars command on the

View menu and then clicking Standard or Debug.

Show Next Statement
Immediate

Locals
Watch 1

Call Stack
Show Threads in Source

Breakpoints

Immediate
Error List

Step Out
Step Over

Step Into
Stop Debugging

Break All
Start Debugging

Navigate Backward
Navigate Forward

 Chapter 8 Debugging Visual Basic Programs 217

In the following exercise, you’ll set a breakpoint—a place in a program where execution stops.

You’ll then use debugging mode to fi nd and correct the logic error you discovered earlier in

the If...Then structure. (The error is part of an actual program.) To isolate the problem, you’ll

use the Step Into button on the Standard toolbar to execute program instructions one at a

time, and you’ll use the Autos window to examine the value of key program variables and

properties. Pay close attention to this debugging strategy. You can use it to correct many

types of glitches in your own programs.

Debug the Debug Test program

1. Start Visual Studio.

2. On the File menu, click Open Project.

The Open Project dialog box opens.

3. Open the Debug Test project in the c:\vb08sbs\chap08\debug test folder.

The project opens in the development environment.

4. If the form isn’t visible, display it now.

The Debug Test program prompts the user for his or her age. When the user clicks

the Test button, the program informs the user whether he or she is a teenager. The

program still has the problem with 13-year-olds that we identifi ed earlier in the

chapter, however. You’ll open the Debug toolbar now, and set a breakpoint to fi nd

the problem.

5. If the Debug toolbar isn’t visible, click the View menu, point to Toolbars, and then

click Debug.

The Debug toolbar appears below or to the right of the Standard toolbar.

6. Click the Start Debugging button on the Standard toolbar.

The program runs and the Debug Test form opens.

7. Remove the 0 from the Age text box, type 14, and then click the Test button.

The program displays the message “You’re a teenager.” So far, the program displays

the correct result.

8. Type 13 in the Age text box, and then click the Test button.

218 Part II Programming Fundamentals

The program displays the message “You’re not a teenager,” as shown in the following

illustration.

This result is a bug.

This answer is incorrect, and you need to look at the program code to fi x the problem.

9. Click the Quit button on the form, and then open the Code Editor.

10. Move the mouse pointer to the Margin Indicator bar (the gray bar just beyond the left

margin of the Code Editor window), next to the statement Age = TextBox1.Text in the

Button1_Click event procedure, and then click the bar to set a breakpoint.

The breakpoint immediately appears in red. See the following illustration for the

breakpoint’s location and shape:

Breakpoint
Margin Indicator bar

11. Click the Start Debugging button to run the program again.

The form opens just like before, and you can continue your tests.

12. Type 13 in the Age text box, and then click Test.

 Chapter 8 Debugging Visual Basic Programs 219

Visual Basic opens the Code Editor again and displays the Button1_Click event

procedure—the program code currently being executed by the compiler. The state-

ment that you selected as a breakpoint is highlighted in yellow, and an arrow appears

in the Margin Indicator bar, as shown in the following illustration:

You can tell that Visual Studio is now in debugging mode because the word

“Debugging” appears in its title bar. In debugging mode you have an opportunity

to see how the logic in your program is evaluated.

Note You can also enter debugging mode in a Visual Basic program by placing the Stop

statement in your program code where you’d like to pause execution. This is an older, but

still reliable, method for entering debugging mode in a Visual Basic program.

13. Place the pointer over the Age variable in the Code Editor.

Visual Studio displays the message “Age | 0.” While you’re in debugging mode, you can

display the value of variables or properties by simply holding the mouse pointer over

the value in the program code. Age currently holds a value of 0 because it hasn’t yet

been fi lled by the TextBox1 text box—that statement is the next statement the com-

piler will evaluate.

14. Click the Step Into button on the Debug toolbar to execute the next program statement.

The Step Into button executes the next program statement in the event procedure (the

line that’s currently highlighted). By clicking the Step Into button, you can see how

the program state changes when just one more program statement is evaluated. If

you hold the pointer over the Age variable now, you’ll see that it contains a value of 13.

220 Part II Programming Fundamentals

15. On the Debug menu, point to Windows, and then click Autos.

The Windows submenu provides access to the entire set of debugging windows in

Visual Studio. The Autos window shows the state of variables and properties currently

being used (not only the properties you are currently setting, but others as well).

As you can see in the following illustration, the Age variable holds a value of 13, the

TextBox1.Text property holds a string of “13”, and the TextBox2.Text property currently

holds an empty string (“”).

16. Click the Step Into button twice more.

The If statement evaluates the conditional expression to False, and the compiler moves

to the Else statement in the decision structure. Here’s our bug—the decision structure

logic is incorrect because a 13-year-old is a teenager.

17. Select the conditional test Age > 13, and then hold the pointer over the selected text.

Visual Studio evaluates the condition and displays the message “Age > 13 | False.”

18. Select the conditional test Age < 20, and then hold the pointer over the selected text.

Visual Studio displays the message “Age < 20 | True.” The pointer has given us an addi-

tional clue—only the fi rst conditional test is producing an incorrect result! Because a

13-year-old is a teenager, Visual Basic should evaluate the test to True, but the Age > 13

condition returns a False value. And this forces the Else clause in the decision structure

to be executed. Do you recognize the problem? The fi rst comparison needs the greater

than or equal to (>=) operator to specifi cally test for this boundary case of 13. You’ll stop

debugging now so that you can fi x this logic error.

 Chapter 8 Debugging Visual Basic Programs 221
 19. Click the Stop Debugging button on the Standard toolbar.

 20. In the Code Editor, add the equal to sign (=) to the fi rst condition in the If statement so

that it reads

If Age >= 13 And Age < 20 Then

 21. Run the program again and test your solution, paying particular attention to the numbers

12, 13, 19, and 20—the boundary, or “fringe,” cases that are likely to cause problems.

Remember that you still have a breakpoint set, so you’ll enter debugging mode

when you run the program again. Use the Step In button to watch the program fl ow

around the crucial If statement, and use the Autos window to track the value of your

variables as you complete the tests. When the form opens, enter a new value and try

the test again. In addition, you might fi nd that selecting certain expressions, such as

the conditional tests, and holding the pointer over them gives you a better under-

standing of how they’re being evaluated. (You’ll learn how to remove the breakpoint

later in the chapter.)

 22. When you’re fi nished experimenting with debugging mode, click the Stop Debugging

button on the Standard toolbar to end the program.

Congratulations! You’ve successfully used debugging mode to fi nd and correct a logic error

 in a program.

Tracking Variables by Using a Watch Window

The Autos window is useful for examining the state of certain variables and properties as

they’re evaluated by the compiler, but items in the Autos window persist, or maintain their

values, only for the current statement (the statement highlighted in the debugger) and the

previous statement (the statement just executed). When your program goes on to execute

code that doesn’t use the variables, they disappear from the Autos window.

To view the contents of variables and properties throughout the execution of a program,

you need to use a Watch window, a special Visual Studio tool that tracks important values

for you as long as you’re working in debugging mode. In Visual Basic 6, you can open one

Watch window to examine variables as they change. In Visual Studio, you can open up to

four Watch windows, numbered Watch 1, Watch 2, Watch 3, and Watch 4. When you are in

debugging mode, you can open these windows, by pointing to the Windows command on

the Debug menu, pointing to Watch, and then clicking the window you want on the Watch

submenu. You can also add expressions, such as Age >= 13, to a Watch window.

222 Part II Programming Fundamentals

Open a Watch window

Tip The Debug Test project is located in the c:\vb08sbs\chap08\debug

test folder.

1. Click the Start Debugging button on the Standard toolbar to run the Debug Test

program again.

I’m assuming that the breakpoint you set on the line Age = TextBox1.Text in the

previous exercise is still present. If that breakpoint isn’t set, stop the program now,

and set the breakpoint by clicking in the Margin Indicator bar next to the statement,

as shown in step 10 of the previous exercise, and then start the program again.

2. Type 20 in the Age text box, and then click Test.

The program stops at the breakpoint, and Visual Studio enters debugging mode, which

is where you need to be if you want to add variables, properties, or expressions to a

 Watch window. One way to add an item is to select its value in the Code Editor, right

click the selection, and then click the Add Watch command.

3. Select the Age variable, right click it, and then click the Add Watch command.

Visual Studio opens the Watch 1 window and adds the Age variable to it. The value

for the variable is currently 0, and the Type column in the window identifi es the Age

variable as an Integer type.

Another way to add an item is to drag the item from the Code Editor into the Watch

window.

4. Select the TextBox2.Text property, and drag it to the empty row in the Watch 1 window.

When you release the mouse button, Visual Studio adds the property and displays its

value. (Right now, the property is an empty string.)

5. Select the expression Age < 20, and add it to the Watch window.

Age < 20 is a conditional expression, and you can use the Watch window to display

its logical, or Boolean, value, much as you did by holding the pointer over a condition

earlier in this chapter. Your Watch window looks like this:

 Chapter 8 Debugging Visual Basic Programs 223
Now step through the program code to see how the values in the Watch 1 window

change.

 6. Click the Step Into button on the Debug toolbar.

Tip Instead of clicking the Step Into button on the Debug toolbar, you can press the F8

key on the keyboard.

The Age variable is set to 20, and the Age < 20 condition evaluates to False. These values

are displayed in red type in the Watch window because they’ve just been updated.

 7. Click the Step Into button three more times.

The Else clause is executed in the decision structure, and the value of the TextBox2.Text

property in the Watch window changes to “You’re not a teenager.” This conditional test

is operating correctly. Because you’re satisfi ed with this condition, you can remove the

test from the Watch window.

 8. Click the Age < 20 row in the Watch window, and then press Delete.

Visual Studio removes the value from the Watch window. As you can see, adding and

removing values from the Watch window is a speedy process.

Leave Visual Studio running in debugging mode for now. You’ll continue using the Watch

window in the next section.

Visualizers: Debugging Tools That Display Data

Although you can use the Watch, Autos, and Locals windows to examine simple data

types such as Integer and String in the IDE, you’ll eventually be faced with more complex

data in your programs. For example, you might be examining a variable or property con-

taining structured information from a database (a dataset) or a string containing HTML or

XML formatting information from a Web page. So that you can examine this type of item

more closely in a debugging session, Visual Studio offers a set of tools in the IDE called

visualizers. The icon for a visualizer is a small magnifying glass.

The Visual Studio 2008 IDE offers four standard visualizers: the text, HTML, and XML visualizers

(which work on string objects), and the dataset visualizer (which works for DataSet, DataView,

and DataTable objects). Microsoft has implied that it will offer additional visualizers as down-

loads at some point in the future, and they have designed Visual Studio so that third-party

developers can write their own visualizers and install them into the Visual Studio debugger. In

the following exercise, you’ll see how the text visualizer works. (For this exercise, I assume that

you are still in debugging mode and that the Watch window is open with a few expressions in

it from the Debug Test program.)

224 Part II Programming Fundamentals

Open a text visualizer in the debugger

1. Look on the right side of the Watch window for a small magnifying glass icon.

A magnifying glass icon indicates that a visualizer is available for the variable or property

that you are examining in a Watch window, an Autos window, or a Locals window. If you

completed the previous exercise, the TextBox2.Text property shows a visualizer now.

2. Click the visualizer arrow.

When the property you are examining is a text (string) property, Visual Studio offers

three visualizers: a simple text visualizer that displays the selected string expression as

readable text, an HTML visualizer that converts HTML code to a Web page, and an XML

visualizer that converts XML code to a viewable document. The Watch window looks

like this:

3. Click the Text Visualizer option.

Visual Studio opens a dialog box and displays the contents of the TextBox2.Text property.

Your screen looks like this:

 Chapter 8 Debugging Visual Basic Programs 225
Although this particular result offers little more than the Watch window did, the ben-

efi ts of the visualizer tool become immediately obvious when the Text property of a

multiline text box object is displayed, or when you examine variables or properties

containing database information or Web documents. You’ll experiment with these

more sophisticated data types later in the book.

 4. Click Close to close the Text Visualizer dialog box.

Leave Visual Studio running in debugging mode. You’ll continue using the Watch window

in the next section, too.

Tip In debugging mode , visualizers also appear within pop-up windows called DataTips in

the Code Editor. When you point to a variable or property within the Code Editor during a

debugging session, a DataTip appears, and you can click the visualizer icon for more infor-

mation as you did in the previous exercise.

Using the Immediate and Command Windows

So far, you’ve used the Visual Studio debugging tools that allow you to enter debugging

mode, execute code one statement at a time, and examine the value of important variables,

properties, and expressions in your program. Now you’ll learn how to change the value of

a variable by using the Immediate window, and you’ll learn how to run commands, such as

Save All or Print, within the Visual Studio IDE by using the Command window. The windows

contain scroll bars, so you can execute more than one command and view the results by

using the arrow keys.

The following exercises demonstrate how the Immediate and Command windows work. I

discuss these windows together because, with the following special commands, you can

switch between them:

Q In the Immediate window, the >cmd command switches to the Command window.

Q In the Command window, the immed command switches to the Immediate window.

The exercises assume that you’re debugging the Debug Test program in debugging mode.

Use the Immediate window to modify a variable

 1. On the Debug menu, point to Windows, and then click Immediate.

When you select the command, Visual Studio opens the Immediate window and prepares

the compiler to receive commands from you while the Debug Test program is running.

This is a very handy feature, because you can test program conditions on the fl y, without

stopping the program and inserting program statements in the Code Editor.

226 Part II Programming Fundamentals

2. In the Immediate window, type Age = 17, and then press Enter.

You’ve just used the Immediate window to change the value of a variable. The value of

the Age variable in the Watch window immediately changes to 17, and the next time

the If statement is executed, the value in the TextBox2.Text property will change to

“You’re a teenager.” Your Immediate window looks like this:

3. Type the following statement in the Immediate window, and then press Enter:

TextBox2.Text = "You're a great age!"

The Text property of the TextBox2 object is immediately changed to “You’re a great

age!” In the Immediate window, you can change the value of properties, as well as

variables.

4. Display the Watch 1 window if it is not currently visible. (Click the Watch 1 tab in the

Visual Studio IDE.)

The Watch window looks like this:

As you can see, both items now contain new values, and this gives you the opportunity

to test the program further.

5. Click the Step Into button two times to display the Debug Test form again.

Notice that the Text property of the TextBox2 object has been changed, as you directed,

but the Text property of the TextBox1 object still holds a value of 20 (not 17). This is

because you changed the Age variable in the program, not the property that assigned

a value to Age. Your screen looks like the one on the following page.

 Chapter 8 Debugging Visual Basic Programs 227
The Immediate window has many uses—it provides an excellent companion to the Watch

window, and it can help you experiment with specifi c test cases that might otherwise be very

diffi cult to enter into your program.

Switching to the Command Window

The text-based Command window offers a complement to the Visual Studio Immediate

window. Reminiscent of the MS-DOS command prompt, it can be used to run interface

commands in the Visual Studio IDE. For example, entering the File.SaveAll command in

the Command window saves all the fi les in the current project. (This command is the equiva-

lent of the Save All command on the File menu.) If you already have the Immediate window

open, you can switch between the Immediate and the Command windows by entering the

>cmd and immed commands, respectively. You can also click the View menu, point to Other

Windows, and then click Command Window to open the Command window. You’ll practice

using the Command window in the following exercise.

Run the File.SaveAll command

 1. In the Immediate window, type >cmd, and then press Enter to switch to the Command

window.

The Command window opens, and the Immediate or Watch window might now be

partially (or totally) hidden. (You can return to the Immediate window by clicking its

tab or typing immed in the Command window.) The > prompt appears, a visual clue

that you are now working in the Command window.

 2. Type File.SaveAll in the Command window, and then press Enter.

228 Part II Programming Fundamentals
As you begin typing File, all the Visual Studio commands associate with the File

menu and fi le operations appear in a pop-up list box. This Microsoft IntelliSense

feature offers a useful way to learn about the many commands that can be executed

within the Command window. After you type File.SaveAll and press Enter, Visual

Studio saves the current project, and the command prompt returns, as shown in

the following illustration:

 3. Experiment with other commands now if you like. (Begin your commands with menu

names to discover the different commands available.) When you’re fi nished, click the

Close button in both the Command and Immediate windows. You’re fi nished with them

for now.

One Step Further: Removing Breakpoints

If you’ve been following the instructions in this chapter carefully, the Debug Test program is

still running and has a breakpoint in it. Follow these steps to remove the breakpoint and end

the program. You’re fi nished debugging the Debug Test program.

Remove a breakpoint

 1. In the Code Editor, click the red circle associated with the breakpoint in the Margin

Indicator bar.

The breakpoint disappears. That’s all there is to it! But note that if you have more

than one breakpoint in a program, you can remove them all by clicking the Delete All

Breakpoints command on the Debug menu. Visual Studio saves breakpoints with your

project, so it’s important to know how to remove them; otherwise, they’ll still be in

your program, even if you close Visual Studio and restart it!

 2. Click the Stop Debugging button on the Standard toolbar.

The Debug Test program ends.

 3. On the View menu, point to Toolbars, and then click Debug.

The Debug toolbar closes.

 Chapter 8 Debugging Visual Basic Programs 229
You’ve learned the fundamental techniques of debugging Visual Basic programs with

Visual Studio. Place a bookmark in this chapter so that you can return to it as you encoun-

ter problems later in the book. In the next chapter, you’ll learn how to handle run-time

errors by using structured error handling techniques.

Chapter 8 Quick Reference

To Do this

Display the Debug toolbar On the View menu, point to Toolbars, and then click Debug.

Set a breakpoint In the Code Editor, click in the Margin Indicator bar next to the state-

ment where you want to stop program execution. When the compiler

reaches the breakpoint, it will enter debugging mode.

or

Place a Stop statement in the program code where you want to enter

debugging mode.

Execute one line of code in

the Code Editor

Click the Step Into button on the Standard toolbar.

Examine a variable, a

property, or an expression

in the Code Editor

In debugging mode, select the value in the Code Editor, and then hold

the pointer over it.

Use the Autos window to

examine a variable on the

current or previous line

In debugging mode, click the Debug menu, point to Windows, and

then click Autos.

Add a variable, a property,

or an expression to a Watch

window

In debugging mode, select the value in the Code Editor, right click the

value, and then click Add Watch.

Display a Watch window In debugging mode, click the Debug menu, point to Windows, point

to Watch, and then click the window.

Display HTML, XML, or

dataset information during

a debugging session

Click the visualizer icon in an Autos, a Watch, a Locals, or a DataTip

window during a debugging session.

Open the Immediate

window

Click the Debug menu, point to Windows, and then click Immediate.

Run a command in the

Visual Studio IDE from the

Command window

At the > prompt, type the name of the command, and then press

Enter. For example, to save the current project, type File.SaveAll, and

then press Enter.

Switch to the Command

window from the

Immediate window

Type >cmd, and then press Enter. To switch back to the Immediate

window, type immed, and then press Enter.

Remove one or more

breakpoints

Click the breakpoint in the Margin Indicator bar of the Code Editor.

or

Click the Delete All Breakpoints command on the Debug menu.

Stop debugging Click the Stop Debugging button on the Standard toolbar.

To Do this

Chapter 9

Trapping Errors by Using Structured
Error Handling

After completing this chapter, you will be able to:

Q Manage run-time errors by using the Try...Catch error handler.

Q Create a disc drive error handler that tests specifi c error conditions by using the Catch

When statement.

Q Write complex error handlers that use the Err object and Err.Number and Err.Description

properties to identify exceptions.

Q Build nested Try...Catch statements.

Q Use error handlers in combination with defensive programming techniques.

Q Leave error handlers prematurely by using the Exit Try statement.

In Chapter 8, “Debugging Visual Basic Programs,” you learned how to recognize run-time

errors in a Microsoft Visual Basic program and how to locate logic errors and other defects

in your program code by using the Microsoft Visual Studio 2008 debugging tools. In this

chapter, you’ll learn how to build blocks of code that handle run-time errors, also referred

to as exceptions, which occur as a result of normal operating conditions—for example, errors

due to a CD or DVD not being in an optical drive, a broken Internet connection, or an offl ine

printer. These routines are called structured error handlers (or structured exception handlers),

and you can use them to recognize run-time errors, suppress unwanted error messages, and

adjust program conditions so that your application can regain control and run again.

Fortunately, Visual Basic offers the powerful Try...Catch code block for handling errors. In

this chapter, you’ll learn how to trap run-time errors by using Try...Catch code blocks, and

you’ll learn how to use the Err.Number and Err.Description properties to identify specifi c

run-time errors. You’ll also learn how to use multiple Catch statements to write more fl ex-

ible error handlers, build nested Try...Catch code blocks, and use the Exit Try statement to

exit a Try...Catch code block prematurely. The programming techniques you’ll learn are a

major improvement over what was possible with Visual Basic 6.0, and they are similar to

the structured error handlers provided by the most advanced programming languages,

such as Java and C++. The most reliable, or robust, Visual Basic programs make use of

several error handlers to manage unforeseen circumstances and provide users with con-

sistent and trouble-free computing experiences.
 231

232 Part II Programming Fundamentals
Processing Errors by Using the Try...Catch Statement

A program crash is an unexpected problem from which a program can’t recover. You might

have experienced your fi rst program crash when Visual Basic couldn’t load artwork from a

fi le, or in the previous chapter, when you intentionally introduced errors into your program

code during debugging. It’s not that Visual Basic isn’t smart enough to handle the glitch; it’s

just that the program hasn’t been “told” what to do when something goes wrong.

Fortunately, you don’t have to live with occasional errors that cause your programs to crash.

You can write special Visual Basic routines, called structured error handlers, to manage and

respond to run-time errors before they force the Visual Basic compiler to terminate your pro-

gram. An error handler handles a run-time error by telling the program how to continue when

one of its statements doesn’t work. Error handlers can be placed in each event procedure

where there is potential for trouble, or in generic functions or subprograms that receive control

after an error has occurred and handle the problem systematically. (You’ll learn more about

writing functions and subprograms in Chapter 10, “Creating Modules and Procedures.”)

Error handlers handle, or trap, a problem by using a Try...Catch code block and a

special error-handling object named Err. The Err object has a Number property that

identifi es the error number and a Description property that you can use to display a

description of the error. For example, if the run-time error is associated with loading

a fi le from a CD or DVD drive, your error handler might display a custom error message

that identifi es the problem and prompts the user to insert a CD or DVD, rather than

allowing the failed operation to crash the program.

When to Use Error Handlers

You can use error handlers in any situation where an action (either expected or unexpected)

has the potential to produce an error that stops program execution. Typically, error handlers

are used to manage external events that infl uence a program—for example, events caused

by a failed network or Internet connection, a CD, DVD or diskette not being inserted correctly

in the drive, or an offl ine printer or scanner. The table on the following page lists potential

problems that can be addressed by error handlers.

 Chapter 9 Trapping Errors by Using Structured Error Handling 233
Problem Description

Network/Internet

problems

Network servers, Internet connections, and other resources that fail, or go

down, unexpectedly.

Database problems Unable to make a database connection, a query can’t be processed or

times out, a database returns an error, and so on.

Disk drive problems Unformatted or incorrectly formatted CDs, DVDs, diskettes, or media that

aren’t properly inserted, bad sectors, CDs, DVDs, or diskettes that are full,

problems with a CD or DVD drive, and so on.

Path problems A path to a necessary fi le that is missing or incorrect.

Printer problems Printers that are offl ine, out of paper, out of memory, or otherwise

unavailable.

Software not installed A fi le or component that your application relies on but that is not installed

on the user’s computer, or an operating system incompatibility.

Security problems An application or process that attempts to modify operating system fi les,

use the Internet inappropriately, or modify other programs or fi les.

Permissions problems User permissions that are not appropriate for performing a task.

Overfl ow errors An activity that exceeds the allocated storage space.

Out-of-memory errors Insuffi cient application or resource space available in the Microsoft

Windows memory management scheme.

Clipboard problems Problems with data transfer or the Windows Clipboard.

Logic errors Syntax or logic errors undetected by the compiler and previous tests (such

as an incorrectly spelled fi le name).

Setting the Trap: The Try...Catch Code Block

The code block used to handle a run-time error is called Try...Catch. You place the Try

statement in an event procedure right before the statement you’re worried about, and

the Catch statement follows immediately with a list of the statements that you want to run

if a run-time error actually occurs. A number of optional statements, such as Catch When,

Finally, Exit Try, and nested Try...Catch code blocks can also be included, as the examples in

this chapter will demonstrate. However, the basic syntax for a Try...Catch exception handler

is simply the following:

Try

 Statements that might produce a run-time error

Catch

 Statements to run if a run-time error occurs

Finally

 Optional statements to run whether an error occurs or not

End Try

Problem Description

234 Part II Programming Fundamentals
The Try statement identifi es the beginning of an error handler in which Try, Catch, and End

Try are required keywords, and Finally and the statements that follow are optional. Note

that programmers sometimes call the statements between the Try and Catch keywords

protected code because any run-time errors resulting from these statements won’t cause

the program to crash. (Instead, Visual Basic executes the error-handling statements in the

Catch code block.)

Path and Disc Drive Errors

The following example demonstrates a common run-time error situation—a problem with

a path, disc drive, or attached peripheral device. To complete this exercise, you’ll load a

sample Visual Basic project that I created to show how artwork fi les are opened in a picture

box object on a Windows form.

To prepare for the exercise, insert a blank CD or DVD into drive D (or equivalent), and use

Windows Explorer or your CD or DVD creation software to copy or burn the fi leopen.bmp

fi le to it. Alternatively, you can copy the .bmp fi le to a diskette in drive A or another type

of removable storage media, such as an attached digital camera, memory stick, or Iomega

Zip Drive.

Tip You’ll fi nd the fi leopen.bmp fi le, along with the Disc Drive Error project, in the

c:\vb08sbs\chap09 folder.

To complete the exercise, you’ll need to be able to remove the CD or DVD, or connect and

disconnect your external storage device, as test conditions dictate, and you’ll need to modify

the program code below with the drive letter you’re using. You’ll use the CD or DVD (or

equivalent media) throughout the chapter to force run-time errors and recover from them.

Experiment with disc drive errors

 1. Insert a blank CD or DVD in drive D (or the drive in which you create CDs or DVDs), and

copy the fi leopen.bmp fi le to it.

Use Windows Explorer or a third-party CD or DVD creation program to copy the fi le and

burn the disc. If you’re using a different external storage device, connect the device or

insert a blank disc, copy fi leopen.bmp to it, and make a note of the drive letter Windows

assigns to the device.

 2. Start Visual Studio, and then open the Disc Drive Error project, which is located in the

c:\vb08sbs\chap09\disc drive error folder.

The Disc Drive Error project opens in the IDE.

 Chapter 9 Trapping Errors by Using Structured Error Handling 235

3. If the project’s form isn’t visible, display it now.

The Disc Drive Error project is a skeleton program that displays the fi leopen.bmp fi le in

a picture box when the user clicks the Check Drive button. I designed the project as a

convenient way to create and trap run-time errors, and you can use it throughout this

chapter to build error handlers by using the Try...Catch code block.

4. Double-click the Check Drive button on the form to display the Button1_Click event

procedure.

You’ll see the following line of program code between the Private Sub and End Sub

statements:

PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

As you’ve learned in earlier chapters, the FromFile method opens the specifi ed fi le.

This particular use of FromFile opens the fi leopen.bmp fi le on drive D and displays it

in a picture box. However, if the CD or DVD is missing, the CD or DVD tray is open, the

fi le is not on the CD or DVD, or there is another problem with the path or drive letter

specifi ed in the code, the statement produces a “File Not Found” error in Visual Basic.

This is the run-time error we want to trap.

Note If your CD or DVD drive or attached peripheral device is using a drive letter other

than “D” now, change the drive letter in this program statement to match the letter you’re

using. For example, a fl oppy disk drive typically requires the letter “A.” Memory sticks, digital

cameras, and other detachable media typically use “E,” “F,” or higher letters for the drive.

5. With your CD or DVD still in drive D (or equivalent), click the Start Debugging button

on the Standard toolbar to run the program.

The form for the project opens, as shown here:

236 Part II Programming Fundamentals

6. Click the Check Drive button on the form.

The program loads the fi leopen.bmp fi le from the CD or DVD and displays it in the

picture box, as shown in the following illustration:

The SizeMode property of the picture box object is set to StretchImage, so the fi le fi lls

the entire picture box object. Now see what happens when the CD or DVD isn’t in the

drive when the program attempts to load the fi le.

7. Remove the CD or DVD from the drive.

If you are using a different media type, remove it now. If you are testing with a

removable storage device, follow your usual procedure to safely remove or turn

it off, and remove the media containing fi leopen.bmp.

8. Click the Check Drive button again on the form.

The program can’t fi nd the fi le, and Visual Basic issues a run-time error, or unhandled

exception, which causes the program to crash. Visual Studio enters debugging mode,

highlights the problem statement, and displays the dialog box shown on the fol-

lowing page.

 Chapter 9 Trapping Errors by Using Structured Error Handling 237
Notice how helpful Visual Studio is trying to be here, by offering troubleshooting

tips to assist you in locating the source of the unhandled exception that has stopped

the program. The Actions list allows you to learn even more about the specifi c error

message that is displayed at the top of the dialog box.

 9. Click the Stop Debugging button on the Standard toolbar to close the program.

The development environment returns.

Now you’ll modify the code to handle this plausible error scenario in the future.

Writing a Disc Drive Error Handler

The problem with the Disc Drive Error program isn’t that it somehow defi es the inherent

capabilities of Visual Basic to process errors. We just haven’t specifi ed what Visual Basic

should do when it encounters an exception that it doesn’t know how to handle. The solu-

tion to this problem is to write a Try...Catch code block that recognizes the error and tells

Visual Basic what to do about it. You’ll add this error handler now.

238 Part II Programming Fundamentals

Use Try...Catch to trap the error

1. Display the Button1_Click event procedure if it isn’t visible in the Code Editor.

You need to add an error handler to the event procedure that’s causing the problems.

As you’ll see in this example, you actually build the Try...Catch code block around the

code that’s the potential source of trouble, protecting the rest of the program from

the run-time errors it might produce.

2. Modify the event procedure so that the existing FromFile statement fi ts between Try

and Catch statements, as shown in the following code block:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Please insert the disc in drive D!")

End Try

You don’t need to retype the FromFile statement—just type the Try, Catch, MsgBox, and

End Try statements above and below it. If Visual Studio adds Catch, variable declaration,

or End Try statements in the wrong place, simply delete the statements and retype them

as shown in the book. (The Code Editor tries to be helpful, but its Auto Complete feature

sometimes gets in the way.)

This program code demonstrates the most basic use of a Try...Catch code block. It

places the problematic FromFile statement in a Try code block so that if the program

code produces an error, the statements in the Catch code block are executed. The

Catch code block simply displays a message box asking the user to insert the required

disc in drive D so that the program can continue. This Try...Catch code block contains

no Finally statement, so the error handler ends with the keywords End Try.

Again, if you are using a removable storage device or media associated with a different

drive letter, you would make those changes in the statements that you just typed.

Test the error handler

1. Remove the CD or DVD from drive D, and click the Start Debugging button to run the

program.

2. Click the Check Drive button.

 Chapter 9 Trapping Errors by Using Structured Error Handling 239
Instead of stopping program execution, Visual Basic invokes the Catch statement, which

displays the following message box:

 3. Click OK, and then click the Check Drive button again.

The program displays the message box again, asking you to insert the disc properly in

drive D. Each time there’s a problem loading the fi le, this message box appears.

 4. Insert the disc in drive D, wait a moment for the system to recognize the CD or DVD

(close any windows that appear when you insert the disc), click OK, and then click the

Check Drive button again.

The bitmap graphic appears in the picture box, as expected. The error handler has

completed its work effectively—rather than the program crashing inadvertently, it’s

told you how to correct your mistake, and you can now continue working with the

application.

 5. Click Close on the form to stop the program.

It’s time to learn some of the variations of the Try...Catch error handler.

Using the Finally Clause to Perform Cleanup Tasks

As the syntax description for Try...Catch noted earlier in the chapter, you can use the optional

Finally clause with Try...Catch to execute a block of statements regardless of how the compiler

executes the Try or Catch blocks. In other words, whether or not the Try statements produced

a run-time error, there might be some code that you need to run each time an error handler is

fi nished. For example, you might want to update variables or properties, display the results of

a computation, close database connections, or perform “cleanup” operations by clearing vari-

ables or disabling unneeded objects on a form.

The following exercise demonstrates how the Finally clause works, by displaying a second

message box whether or not the FromFile method produces a run-time error.

240 Part II Programming Fundamentals

Use Finally to display a message box

1. Display the Button1_Click event procedure, and then edit the Try...Catch code block so

that it contains two additional lines of code above the End Try statement. The complete

error handler should look like this:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Please insert the disc in drive D!")

Finally

 MsgBox("Error handler complete")

End Try

The Finally statement indicates to the compiler that a fi nal block of code should be

executed whether or not a run-time error is processed. To help you learn exactly how

this feature works, I’ve inserted a MsgBox function to display a test message after the

Finally statement. Although this simple use of the Finally statement is helpful for test-

ing purposes, in a real program you’ll probably want to use the Finally code block

to update important variables or properties, display data, or perform other cleanup

operations.

2. Remove the CD or DVD from drive D, and then click the Start Debugging button to run

the program.

3. Click the Check Drive button.

The error handler displays a dialog box asking you to insert the disc in drive D.

4. Click OK.

The program executes the Finally clause in the error handler, and the following message

box appears:

5. Click OK, insert the disc in drive D, and then click the Check Drive button again.

The fi le appears in the picture box as expected. In addition, the Finally clause is exe-

cuted, and the “Error handler complete” message box appears again. As I noted earlier,

Finally statements are executed at the end of a Try...Catch block whether or not there’s

an error.

6. Click OK, and then click the Close button on the form to stop the program.

 Chapter 9 Trapping Errors by Using Structured Error Handling 241
More Complex Try...Catch Error Handlers

As your programs become more sophisticated, you might fi nd it useful to write more complex

Try...Catch error handlers that manage a variety of run-time errors and unusual error-handling

situations. Try...Catch provides for this complexity by:

Q Permitting multiple lines of code in each Try, Catch, or Finally code block.

Q Offering the Catch When syntax, which tests specifi c error conditions.

Q Allowing nested Try...Catch code blocks, which can be used to build sophisticated and

robust error handlers.

In addition, by using a special error-handling object named Err, you can identify and pro-

cess specifi c run-time errors and conditions in your program. You’ll investigate each of

these error-handling features in the following section.

The Err Object

As a legacy of earlier versions of Visual Basic, a useful mechanism in Visual Basic 2008

called the Err object is updated with detailed error-handling information each time a run-

time error occurs in a program. Although there are newer ways to manage errors utilizing

the Microsoft .NET Framework, such as the powerful Exception object, we’ll begin our work

with error handling messages by seeing how the Err object provides information about the

type of error that has taken place in a program.

The most useful Err properties for identifying run-time errors are Err.Number and Err.Description.

Err.Number contains the number of the most recent run-time error, and Err.Description contains

a short error message that matches the run-time error number. By using the Err.Number

and Err.Description properties together in an error handler, you can recognize specifi c

errors and respond to them, and you can give the user helpful information about how

he or she should respond.

You can clear the Err object by using the Err.Clear method (which discards previous error

information), but if you use the Err object within a Catch code block, clearing the Err object

isn’t usually necessary because Catch blocks are entered only when a run-time error has just

occurred in a neighboring Try code block.

The table on the following page lists many of the run-time errors that Visual Basic applications

can encounter. In addition to these error codes, you’ll fi nd that some Visual Basic libraries and

other components (such as database and system components) provide their own unique error

messages, which often can be discovered by using the Visual Studio documentation. Note that

despite the error message descriptions, some errors don’t appear as you might expect them

to, so you’ll need to specifi cally test the error numbers (when possible) by observing how the

Err.Number property changes during program execution. Unused error numbers in the range

1–1000 are reserved for future use by Visual Basic.

242 Part II Programming Fundamentals
Error number Default error message

5 Procedure call or argument is not valid

6 Overfl ow

7 Out of memory

9 Subscript out of range

11 Division by zero

13 Type mismatch

48 Error in loading DLL

51 Internal error

52 Bad fi le name or number

53 File not found

55 File already open

57 Device I/O error

58 File already exists

61 Disk full

62 Input past end of fi le

67 Too many fi les

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Cannot rename with different drive

75 Path/File access error

76 Path not found

91 Object variable or With block variable not set

321 File format is not valid

322 Cannot create necessary temporary fi le

380 Property value is not valid

381 Property array index is not valid

422 Property not found

423 Property or method not found

424 Object required

429 Cannot create Microsoft ActiveX component

430 Class does not support Automation or does not support expected interface

438 Object does not support this property or method

440 Automation error

460 Clipboard format is not valid

Error number Default error message

 Chapter 9 Trapping Errors by Using Structured Error Handling 243

Error number Default error message

461 Method or data member not found

462 The remote server machine does not exist or is unavailable

463 Class not registered on local machine

481 Picture is not valid

482 Printer error

The following exercise uses the Err.Number and Err.Description properties in a Try...Catch

error handler to test for more than one run-time error condition. This capability is made

possible by the Catch When syntax, which you’ll use to test for specifi c error conditions in

a Try...Catch code block.

Test for multiple run-time error conditions

1. In the Button1_Click event procedure, edit the Try...Catch error handler so that it looks

like the following code block. (The original FromFile statement is the same as the code

you used in the previous exercises, but the Catch statements are all new.)

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch When Err.Number = 53 'if File Not Found error

 MsgBox("Check pathname and disc drive")

Catch When Err.Number = 7 'if Out Of Memory error

 MsgBox("Is this really a bitmap?", , Err.Description)

Catch

 MsgBox("Problem loading file", , Err.Description)

End Try

The Catch When syntax is used twice in the error handler, and each time the syntax is

used with the Err.Number property to test whether the Try code block produced a par-

ticular type of run-time error. If the Err.Number property equals the number 53, the File

Not Found run-time error has occurred during the fi le open procedure, and the mes-

sage “Check pathname and disc drive” is displayed in a message box. If the Err.Number

property is equal to the number 7, an Out of Memory error has occurred—probably the

result of loading a fi le that doesn’t actually contain artwork. (I get this error if I acciden-

tally try to open a Microsoft Offi ce Word document in a picture box object by using the

FromFile method.)

The fi nal Catch statement handles all other run-time errors that could potentially

occur during a fi le-opening process—it’s a general “catch-all” code block that prints

a general error message inside a message box and a specifi c error message from the

Err.Description property in the title bar of the message box.

2. Click the Start Debugging button to run the program.

Error number Default error message

244 Part II Programming Fundamentals

3. Remove the CD or DVD from drive D.

4. Click the Check Drive button.

The error handler displays the error message “Check pathname and disc drive” in a

message box. The fi rst Check When statement works.

5. Click OK, and then click Close on the form to end the program.

6. Insert the CD or DVD again, and then use Windows Explorer or another tool to copy

a second fi le to the CD or DVD that isn’t an artwork fi le. For example, copy a Word

document or a Microsoft Offi ce Excel spreadsheet to the CD or DVD.

You won’t open this fi le in Word or Excel, but you will try to open it (unsuccessfully,

we hope) in your program’s picture box object. (If your CD or DVD software or drive

doesn’t allow you to add additional fi les to a CD or DVD after you have burned it, you

might need to create a second CD or DVD with the two fi les.)

7. In the Code Editor, change the name of the fi leopen.bmp fi le in the FromFile program

statement to the name of the fi le (Word, Excel, or other) you copied to the CD or DVD

in drive D.

Using a fi le with a different format gives you an opportunity to test a second type of

run-time error—an Out of Memory exception, which occurs when Visual Basic attempts

to load a fi le that isn’t a graphic or has too much information for a picture box.

8. Run the program again, and click the Check Drive button.

The error handler displays the following error message:

Notice that I have used the Err.Description property to display a short description of the

problem (“Out of memory.”) in the message box title bar. Using this property in your

error handler can give the user a clearer idea of what has happened.

9. Click OK, and then click Close on the form to stop the program.

10. Change the fi le name back to fi leopen.bmp in the FromFile method. (You’ll use it in the

next exercise.)

The Catch When statement is very powerful. By using Catch When in combination with the

Err.Number and Err.Description properties, you can write sophisticated error handlers that

recognize and respond to several types of exceptions.

 Chapter 9 Trapping Errors by Using Structured Error Handling 245

Raising Your Own Errors

For testing purposes and other specialized uses, you can artifi cially generate your own

run-time errors in a program with a technique called throwing, or raising, exceptions.

To accomplish this, you use the Err.Raise method with one of the error numbers in the

table presented earlier. For example, the following syntax uses the Raise method to

produce a Disc Full run-time error and then handles the error by using a Catch When

statement:

Try

 Err.Raise(61) 'raise Disc Full error

Catch When Err.Number = 61

 MsgBox("Error: Disc is full")

End Try

When you learn how to write your own procedures, you can generate your own errors

by using this technique and return them to the calling routine.

Specifying a Retry Period

Another strategy you can use in an error handler is to try an operation a few times and then

disable it if the problem isn’t resolved. For example, in the following exercise, a Try...Catch

block employs a counter variable named Retries to track the number of times the message

“Please insert the disc in drive D!” is displayed, and after the second time, the error handler

disables the Check Drive button. The trick to this technique is declaring the Retries variable

at the top of the form’s program code so that it has scope throughout all of the form’s event

procedures. The Retries variable is then incremented and tested in the Catch code block.

The number of retries can be modifi ed by simply changing the “2” in the statement, as

shown here:

If Retries <= 2

Use a variable to track run-time errors

1. In the Code Editor, scroll to the top of the form’s program code, and directly below the

Public Class Form1 statement, type the following variable declaration:

Dim Retries As Short = 0

Retries is declared as a Short integer variable because it won’t contain very big numbers.

It’s assigned an initial value of 0 so that it resets properly each time the program runs.

246 Part II Programming Fundamentals

2. In the Button1_Click event procedure, edit the Try...Catch error handler so that it looks

like the following code block:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 Retries += 1

 If Retries <= 2 Then

 MsgBox("Please insert the disc in drive D!")

 Else

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End If

End Try

The Try block tests the same fi le-opening procedure, but this time, if an error occurs,

the Catch block increments the Retries variable and tests the variable to be sure that

it’s less than or equal to 2. The number 2 can be changed to allow any number of

retries—currently it allows only two run-time errors. After two errors, the Else clause

is executed, and a message box appears indicating that the fi le-loading feature has

been disabled. The Check Drive button is then disabled—in other words, grayed out

and rendered unusable for the remainder of the program.

Tip This revised version of the error handler that you have been building has been renamed

 Disc Drive Handler and is stored in the c:\vb08sbs\chap09\disc drive handler folder.

3. Click the Start Debugging button to run the program.

4. Remove the CD or DVD from drive D.

5. Click the Check Drive button.

The error handler displays the error message “Please insert the disc in drive D!” in

a message box, as shown here. Behind the scenes, the Retries variable is also incre-

mented to 1.

 Chapter 9 Trapping Errors by Using Structured Error Handling 247

6. Click OK, and then click the Check Drive button again.

The Retries variable is set to 2, and the message “Please insert the disc in drive D!”

appears again.

7. Click OK, and then click the Check Drive button a third time.

The Retries variable is incremented to 3, and the Else clause is executed. The message

“File Load feature disabled” appears, as shown here:

8. Click OK in the message box.

The Check Drive button is disabled on the form, as shown here:

The error handler has responded to the disc drive problem by allowing the user a few

tries to fi x the problem, and then it has disabled the problematic button. (In other

words, the user can no longer click the button.) This disabling action stops future

run-time errors, although the program might no longer function exactly as it was

originally designed.

9. Click the Close button to stop the program.

248 Part II Programming Fundamentals
Using Nested Try...Catch Blocks

You can also use nested Try...Catch code blocks in your error handlers. For example, the

following disc drive error handler uses a second Try...Catch block to retry the fi le open

operation a single time if the fi rst attempt fails and generates a run-time error:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Insert the disc in drive D, then click OK!")

 Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

 Catch

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End Try

End Try

If the user inserts the disc in the drive as a result of the message prompt, the second Try

block opens the fi le without error. However, if a fi le-related run-time error still appears, the

second Catch block displays a message saying that the fi le load feature is being disabled,

and the button is disabled.

In general, nested Try...Catch error handlers work well as long as you don’t have too many

tests or retries to manage. If you do need to retry a problematic operation many times, use

a variable to track your retries, or develop a function containing an error handler that can

be called repeatedly from your event procedures. (For more information about creating

 functions, see Chapter 10.)

Comparing Error Handlers with Defensive
Programming Techniques

Error handlers aren’t the only mechanism for protecting a program against run-time errors.

For example, the following program code uses the File.Exists method in the System.IO name-

space of the .NET Framework class library to check whether a fi le exists on CD or DVD before

it’s opened:

If File.Exists("d:\fileopen.bmp") Then

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Else

 MsgBox("Cannot find fileopen.bmp on drive D.")

End If

 Chapter 9 Trapping Errors by Using Structured Error Handling 249
This If...Then statement isn’t an actual error handler because it doesn’t prevent a run-time

error from halting a program. Instead, it’s a validation technique that some programmers

call defensive programming. It uses a handy method in the .NET Framework class library to

verify the intended fi le operation before it’s actually attempted in the program code. And in

this particular case, testing to see whether the fi le exists with the .NET Framework method

is actually faster than waiting for Visual Basic to issue an exception and recover from a run-

time error using an error handler.

Note To get this particular program logic to work, the following statement must be included

in the declarations section at the very top of the form’s program code to make reference to the

.NET Framework class library that’s being invoked:

Imports System.IO

For more information about utilizing the Imports statement to use the objects, properties,

and methods in the .NET Framework class libraries, see Chapter 5, “Visual Basic Variables and

Formulas, and the .NET Framework.”

When should you use defensive programming techniques, and when should you use structured

error handlers? The answer is really that you should use a combination of defensive program-

ming and structured error-handling techniques in your code. Defensive programming logic is

usually the most effi cient way to manage potential problems. As I mentioned earlier when dis-

cussing the If...Then code block, the File.Exists method is actually faster than using a Try...Catch

error handler, so it also makes sense to use a defensive programming technique if performance

issues are involved. You should use defensive programming logic for errors that you expect

to occur frequently in your program. Use structured error handlers for errors that you don’t

expect to occur very often. Structured error handlers are essential if you have more than one

condition to test and if you want to provide the user with numerous options for responding to

the error. Structured error handlers also allow you to gracefully handle errors that you aren’t

even aware of!

One Step Further: The Exit Try Statement

You’ve learned a lot about error handlers in this chapter; now you’re ready to put them to

work in your own programs. But before you move on to the next chapter, here’s one more

syntax option for Try...Catch code blocks that you might fi nd useful: the Exit Try statement.

Exit Try is a quick and slightly abrupt technique for exiting a Try...Catch code block prema-

turely. If you’ve written Visual Basic programs before, you might notice its similarity to the

Exit For and Exit Sub statements, which you can use to leave a structured routine early. Using

the Exit Try syntax, you can jump completely out of the current Try or Catch code block. If

there’s a Finally code block, this code will be executed, but Exit Try lets you jump over any

remaining Try or Catch statements you don’t want to execute.

250 Part II Programming Fundamentals
The following sample routine shows how the Exit Try statement works. It fi rst checks to see

whether the Enabled property of the PictureBox1 object is set to False, a fl ag that might in-

dicate that the picture box isn’t ready to receive input. If the picture box isn’t yet enabled,

the Exit Try statement skips to the end of the Catch code block, and the fi le load operation

isn’t attempted.

Try

 If PictureBox1.Enabled = False Then Exit Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 Retries += 1

 If Retries <= 2 Then

 MsgBox("Please insert the disc in drive D!")

 Else

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End If

End Try

The example builds on the last error handler you experimented with in this chapter (the

Disc Drive Handler project). If you’d like to test the Exit Try statement in the context of that

program, open the Disc Drive Handler project and enter the If statement that contains the

Exit Try in the Code Editor. You’ll also need to use the Properties window to disable the pic-

ture box object on the form (in other words, set its Enabled property to False).

Congratulations! You’ve learned a number of important fundamental programming tech-

niques in Visual Basic, including how to write error handlers. Now you’re ready to increase

your programming effi ciency by learning to write Visual Basic modules and procedures.

Chapter 9 Quick Reference

To Do this

Detect and process

run-time errors

Build an error handler by using one or more Try...Catch code blocks. For

example, the following error handler code tests for path or disc drive

problems:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile _

 ("d:\fileopen.bmp")

Catch

 MsgBox("Check path or insert disc")

Finally

 MsgBox("Error handler complete")

End Try

To Do this

 Chapter 9 Trapping Errors by Using Structured Error Handling 251
To Do this

Test for specifi c error

conditions in an event

handler

Use the Catch When syntax and the Err.Number property. For example:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile _

 ("d:\fileopen.bmp")

Catch When Err.Number = 53 'if File Not Found

 MsgBox("Check pathname and disc drive")

Catch When Err.Number = 7 'if Out Of Memory

 MsgBox("Is this really a bitmap?", , _

 Err.Description)

Catch

 MsgBox("Problem loading file", , _

 Err.Description)

End Try

Create your own

errors in a program

Use the Err.Raise method. For example, the following code generates a Disc

Full error and handles it:

Try

 Err.Raise(61) 'raise Disc Full error

Catch When Err.Number = 61

 MsgBox("Error: Disc is full")

End Try

Write nested Try...

Catch error handlers

Place one Try...Catch code block within another. For example:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile _

 ("d:\fileopen.bmp")

Catch

 MsgBox("Insert the disc in drive D!")

 Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile _

 ("d:\fileopen.bmp")

 Catch

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End Try

End Try

Exit the current Try or

Catch code block

Use the Exit Try statement in the Try or the Catch code block. For example:

If PictureBox1.Enabled = False Then Exit Try

To Do this

Chapter 10

Creating Modules and
Procedures

After completing this chapter, you will be able to:

Q Employ structured programming techniques and create modules containing public

variables and procedure defi nitions.

Q Practice using public variables that have a global scope.

Q Increase programming effi ciency by creating user-defi ned functions and Sub

procedures.

Q Master the syntax for calling and using user-defi ned procedures.

Q Pass arguments to procedures by value and by reference.

In the fi rst nine chapters of this book, you have used event procedures such as Button1_Click,

Timer1_Tick, and Form1_Load to manage events and organize the fl ow of your programs. In

Microsoft Visual Basic programming, all executable statements must be placed inside some

procedure; only general declarations and instructions to the compiler can be placed outside

a procedure’s scope. In this chapter, you’ll continue to organize your programs by breaking

computing tasks into discrete logical units.

You’ll start by learning how to create modules, which are separate areas within a pro-

gram that contain global, or public, variables and Function and Sub procedures. You’ll

learn how to declare and use public variables, and you’ll learn how to build general-

purpose procedures that save coding time and can be used in more than one project.

The skills you’ll learn will be especially applicable to larger programming projects and

team development efforts.
 253

254 Part II Programming Fundamentals
Working with Modules

As you write longer programs, you’re likely to have several forms and event procedures

that use some of the same variables and routines. By default, variables are local to an event

procedure—they can be read or changed only within the event procedure in which they

were created. You can also declare variables at the top of a form’s program code and give

the variables a greater scope throughout the form. However, if you create multiple forms in

a project, the variables declared at the top of a form are valid only in the form in which they

were declared. Likewise, event procedures are by default declared as private and are only

local to the form in which they are created. For example, you can’t call the Button1_Click

event procedure from a second form named Form2 if the event procedure is declared to

be private to Form1. (You’ll learn how to add additional forms to your project in Chapter 14,

“Managing Windows Forms and Controls at Run Time.”)

To share variables and procedures among all the forms and event procedures in a project, you

can declare them in one or more modules included in the project. A module is a special fi le

that has a .vb fi le name extension and contains variable declarations and procedures that can

be used anywhere in the program. (In Visual Basic 6, standard modules have a .bas extension.)

Like forms, modules are listed separately in Solution Explorer. Unlike forms, modules

contain only code and don’t have a user interface. And although modules have some simi-

larities with classes (formerly called class modules), they are unlike classes in that they are

not object-oriented, do not defi ne the structure and characteristics of objects, and cannot

be inherited. (You’ll learn more about creating classes in Chapter 16, “Inheriting Forms and

Creating Base Classes.”)

Creating a Module

To create a new module in a program, you click the Add New Item button on the Standard

toolbar or click the Add New Item command on the Project menu. You can also click the

Add Module command on the Project menu.) A dialog box opens, in which you select the

Module template and specify the name of the module. A new, blank module then appears in

the Code Editor. The fi rst module in a program is named Module1.vb by default, but you can

change the name by right-clicking the module in Solution Explorer, selecting Rename, and

typing a new name. You can also rename a module by changing the File Name property in

the Properties window. Try creating an empty module in a project now.

 Chapter 10 Creating Modules and Procedures 255

Create and save a module

1. Start Microsoft Visual Studio 2008, and create a new Visual Basic Windows Forms

Application project named My Module Test.

The new project is created, and a blank form opens in the Designer.

2. Click the Add New Item command on the Project menu.

The Add New Item dialog box opens.

3. Select the Module template.

The default name, Module1.vb, appears in the Name text box.

Tip The Add New Item dialog box offers several templates that you can use in your

projects. Each template has different characteristics and includes starter code to help

you use them. Visual Studio 2008 includes many new and updated Windows Forms

templates, including Explorer Form, Splash Screen, and Login Form, plus numerous

class-related templates. You’ll use these templates after you read the introductory

material about object-oriented programming in Chapter 16.

4. Click the Add button.

256 Part II Programming Fundamentals

Visual Basic adds Module1 to your project. The module appears in the Code Editor, as

shown here:

The Method Name list box indicates that the general declarations section of the mod-

ule is open. Variables and procedures declared in this section are available to the entire

project. (You’ll try declaring variables and procedures later.)

5. Double-click the Solution Explorer title bar to see the entire Solution Explorer window.

Select Module1.vb if it is not already highlighted. Solution Explorer appears, as

shown here:

Solution Explorer lists the module you added to the program in the list of components

for the project. The name Module1 identifi es the default fi le name of the module. You’ll

change this fi le name in the following steps.

6. Double-click the Properties window title bar to see the window full size.

The Properties window displays the properties for Module1.vb, as shown here:

 Chapter 10 Creating Modules and Procedures 257

Because a module contains only code, it has only a few properties. By using the most

signifi cant property, File Name, you can create a custom fi le name for the module to

describe its purpose. Give this identifying label some thought because later you might

want to incorporate your module into another solution. The remaining properties for

the module are useful for more sophisticated projects—you don’t need to worry about

them now.

7. Change the File Name property to Math Functions.vb or another fi le name that

sounds impressive, and then press Enter. (I’m granting you considerable leeway here

because this project is simply for testing purposes—you won’t actually create math

functions or any other “content” for the module, and later you’ll discard it.)

The fi le name for your module is updated in the Properties window, Solution Explorer,

and the Code Editor.

8. Return the Properties window and Solution Explorer to their regular docked positions

by double-clicking their title bars.

As you can see, working with modules in a project is a lot like working with forms. In the next

exercise, you’ll add a public variable to a module.

Tip To remove a module from a project, click the module in Solution Explorer, and then click

the Exclude From Project command on the Project menu. Exclude From Project doesn’t delete the

module from your hard disk, but it does remove the link between the specifi ed module and

the current project. You can reverse the effects of this command by clicking the Add Existing

Item command on the Project menu, selecting the fi le that you want to add to the project,

and then clicking Add.

258 Part II Programming Fundamentals
Working with Public Variables

Declaring a global, or public, variable in a module is simple—you type the keyword Public

followed by the variable name and a type declaration. After you declare the variable, you can

read it, change it, or display it in any procedure in your program. For example, the program

statement

Public RunningTotal As Integer

declares a public variable named RunningTotal of type Integer.

The following exercises demonstrate how you can use a public variable named Wins in a

module. You’ll revisit Lucky Seven, the fi rst program you created in this book, and you’ll use

the Wins variable to record how many spins you win as the slot machine runs.

Note Lucky Seven is the slot machine program from Chapter 2, “Writing Your First Program.”

Revisit the Lucky Seven project

 1. Click the Close Project command on the File menu to close the Module Test project.

Because you have named (but not saved) the project yet, you see the following

dialog box:

You don’t need to keep this project on your hard disk; it was only for testing purposes.

To demonstrate the “close without saving” feature in Visual Studio 2008, you’ll discard

the project now.

 2. Click the Discard button.

Visual Studio discards the entire project, removing any temporary fi les associated with

the module from your computer’s memory and hard disk. It seems like a rather obvious

feature, but I wanted to demonstrate that the ability to close a project without saving it

is a welcome improvement to the software and just the thing for this type of test. (Just

be careful with it, OK?) Now you’ll open a more substantial project and modify it.

 3. Open the TrackWins project in the c:\vb08sbs\chap10\trackwins\lucky7 folder.

The project opens in the IDE.

 Chapter 10 Creating Modules and Procedures 259

4. If the form isn’t visible, display it now.

You see the following user interface:

The Track Wins project is the same slot machine program that you created in Chapter

2. With this program, the user can click a spin button to display random numbers in

three number boxes, and if the number 7 appears in one of the boxes, the computer

beeps and displays a bitmap showing an enticing, though quite dated, cash payout. I’ve

simply renamed the Lucky7 solution in this chapter so that you won’t confuse this new

version with the original.

5. Click the Start Debugging button on the Standard toolbar to run the program.

6. Click the Spin button six or seven times, and then click the End button.

As you might recall, the program uses the Rnd function to generate three random

numbers each time you click the Spin button. If one of the numbers is a 7, the event

procedure for the Spin button (Button1_Click) displays a cash payout picture and beeps.

Now you’ll edit the form and add a module to enhance the program.

Add a module

1. Click the Label control in the Toolbox, and then create a new rectangular label on the

form below the Lucky Seven label.

2. Set the properties shown in the following table for the new label. To help identify the

new label in the program code, you’ll change the new label object’s name to lblWins.

Object Property Setting

Label5 Font

ForeColor

Name

Text

TextAlign

Arial, Bold Italic, 12-point

Green (on Custom tab)

lblWins

“Wins: 0”

MiddleCenter

Object Property Setting

260 Part II Programming Fundamentals

When you’ve fi nished, your form looks similar to this:

Now you’ll add a new module to the project.

3. Click the Add New Item command on the Project menu, select the Module template,

and then click Add.

A module named Module1.vb appears in the Code Editor.

4. Move the insertion point to the blank line between the Module Module1 and End

Module statements, type Public Wins As Short, and then press Enter.

This program statement declares a public variable of the Short integer type in your

program. It’s identical to a normal variable declaration you might make in your pro-

gram code, except the Public keyword has been substituted for the Dim keyword.

When your program runs, each event procedure in the program will have access to

this variable. Your module looks like this:

5. In Solution Explorer, click TrackWins.vb, click the View Designer button, and then

double-click the Spin button.

The Button1_Click event procedure for the Spin button appears in the Code Editor.

6. Type the following statements below the Beep() statement in the event procedure:

Wins = Wins + 1

lblWins.Text = "Wins: " & Wins

 Chapter 10 Creating Modules and Procedures 261

This part of the program code increments the Wins public variable if a 7 appears

during a spin. The second statement uses the concatenation operator (&) to assign a

string to the lblWins object in the format Wins: X, in which X is the number of wins.

The completed event procedure looks like the graphic on the following page.

7. Click the Save All button on the Standard toolbar to save all your changes to disk.

Save All saves your module changes as well as the changes on your form and in your

event procedures.

8. Click the Start Debugging button to run the program.

9. Click the Spin button until you have won a few times.

The Wins label keeps track of your jackpots. Each time you win, it increments the total

by 1. After 10 spins, I had the output shown below.

262 Part II Programming Fundamentals
Note The exact number of wins will be different each time you run the program, due to

the Randomize statement in the Form1_Load event procedure.

 10. Click End to exit the program.

The public variable Wins was useful in the previous procedure because it maintained its

value through several calls to the Button1_Click event procedure. If you had declared

Wins locally in the Button1_Click event procedure, the variable would have reset each

time, just as the trip odometer in your car does when you reset it. By using a public

variable in a module, you can avoid “hitting the reset button.”

Public Variables vs. Form Variables

In the preceding exercise, you used a public variable to track the number of wins in

the slot machine program. Alternatively, you could have declared the Wins variable

at the top of the form’s program code. Both techniques produce the same result

because both a public variable and a variable declared in the general declarations area

of a form have scope throughout the entire form. Public variables are unique, however,

because they maintain their values in all the forms and modules you use in a project—

in other words, in all the components that share the same project namespace. The

project namespace keyword is set automatically when you fi rst save your project. You

can view or change the namespace name by selecting the project in Solution Explorer,

clicking the TrackWins Properties command on the Project menu, and then examining

or changing the text in the Root Namespace text box on the Application tab.

Creating Procedures

Procedures provide a way to group a set of related statements to perform a task. Visual Basic

includes two primary types of procedures:

Q Function procedures are called by name from event procedures or other procedures.

Often used for calculations, function procedures can receive arguments and always

return a value in the function name.

Q Sub procedures are called by name from event procedures or other procedures. They

can receive arguments and also pass back modifi ed values in an argument list. Unlike

functions, however, Sub procedures don’t return values associated with their particular

Sub procedure names. Sub procedures are typically used to receive or process input,

display output, or set properties.

 Chapter 10 Creating Modules and Procedures 263
Function procedures and Sub procedures can be defi ned in a form’s program code, but for

many users, creating procedures in a module is more useful because then the procedures

have scope throughout the entire project. This is especially true for procedures that might

be called general-purpose procedures—blocks of code that are fl exible and useful enough

to serve in a variety of programming contexts.

For example, imagine a program that has three mechanisms for printing a bitmap on differ-

ent forms: a menu command named Print, a Print toolbar button, and a drag-and-drop printer

icon. You could place the same printing statements in each of the three event procedures, or

you could handle printing requests from all three sources by using one procedure in a module.

Advantages of General-Purpose Procedures

General-purpose procedures provide the following benefi ts:

Q They enable you to associate an often-used group of program statements with a

familiar name.

Q They eliminate repeated lines. You can defi ne a procedure once and have your

program execute it any number of times.

Q They make programs easier to read. A program divided into a collection of

small parts is easier to take apart and understand than a program made up of

one large part.

Q They simplify program development. Programs separated into logical units are

easier to design, write, and debug. Plus, if you’re writing a program in a group

setting, you can exchange procedures and modules instead of entire programs.

Q They can be reused in other projects and solutions. You can easily incorporate

standard-module procedures into other programming projects.

Q They extend the Visual Basic language. Procedures often can perform tasks

that can’t be accomplished by individual Visual Basic keywords or Microsoft

.NET Framework methods.

264 Part II Programming Fundamentals
Writing Function Procedures

A Function procedure is a group of statements located between a Function statement

and an End Function statement. The statements in the function do the meaningful work—

typically processing text, handling input, or calculating a numeric value. You execute, or

call, a function in a program by placing the function name in a program statement along

with any required arguments.

Arguments are the data used to make functions work, and they must be included between

parentheses and be separated by commas. Basically, using a Function procedure is exactly

like using a built-in function or method such as Int, Rnd, or FromFile.

Tip Functions declared in modules are public by default. As a result, you can use them in any

event procedure within the project.

Function Syntax

The basic syntax of a function is as follows:

Function FunctionName([arguments]) As Type

 function statements

 [Return value]

End Function

The following syntax items are important:

Q FunctionName is the name of the function you’re creating.

Q As Type is a pair of keywords that specifi es the function return type. (In Visual Basic 6,

a specifi c type declaration is optional, but it’s strongly recommended in Visual Basic

2008. If you don’t provide a type, the return type defaults to Object.)

Q arguments is a list of optional arguments (separated by commas) to be used in the

function. Each argument should also be declared as a specifi c type. (By default, Visual

Basic adds the ByVal keyword to each argument, indicating that a copy of the data is

passed to the function through this argument but that any changes to the arguments

won’t be returned to the calling routine.)

 Chapter 10 Creating Modules and Procedures 265
Q function statements is a block of statements that accomplishes the work of the function.

The fi rst statements in a function typically declare local variables that will be used in

the function, and the remaining statements perform the work of the function.

Q Return is a newer statement that is not offered in Visual Basic 6—with it, you can indi-

cate when in the function code block you want to return a value to the calling procedure

and what that value is. When a Return statement is executed, the function is exited, so if

there are any function statements after the Return statement, these won’t be executed.

(Alternatively, you can use the Visual Basic 6 syntax and return a value to the calling

routine by assigning the value to FunctionName.)

Q Brackets ([]) enclose optional syntax items. Visual Basic requires those syntax items

not enclosed by brackets.

Functions always return a value to the calling procedure in the function’s name (FunctionName).

For this reason, the last statement in a function is often an assignment statement that

places the fi nal calculation of the function in FunctionName. For example, the Function

procedure TotalTax computes the state and city taxes for an item and then assigns the

result to the TotalTax name, as shown here:

Function TotalTax(ByVal Cost as Single) As Single

 Dim StateTax, CityTax As Single

 StateTax = Cost * 0.05 'State tax is 5%

 CityTax = Cost * 0.015 'City tax is 1.5%

 TotalTax = StateTax + CityTax

End Function

Alternatively, you can use the Visual Basic 2008 syntax and return a value to the calling

procedure by using the Return statement, as shown in the following function declaration:

Function TotalTax(ByVal Cost as Single) As Single

 Dim StateTax, CityTax As Single

 StateTax = Cost * 0.05 'State tax is 5%

 CityTax = Cost * 0.015 'City tax is 1.5%

 Return StateTax + CityTax

End Function

I’ll use the Return syntax most often in this book, but you can use either mechanism for

returning data from a function.

266 Part II Programming Fundamentals

Calling a Function Procedure

To call the TotalTax function in an event procedure, you use a statement similar to the

following:

lblTaxes.Text = TotalTax(500)

This statement computes the total taxes required for a $500 item and then assigns the result

to the Text property of the lblTaxes object. The TotalTax function can also take a variable as

an argument, as shown in the following statements:

Dim TotalCost, SalesPrice As Single

SalesPrice = 500

TotalCost = SalesPrice + TotalTax(SalesPrice)

The last statement uses the TotalTax function to determine the taxes for the number in the

SalesPrice variable and then adds the computed tax to SalesPrice to get the total cost of an

item. See how much clearer the code is when a function is used?

Using a Function to Perform a Calculation

In the following exercise, you’ll add a function to the Track Wins program to calculate the win

rate in the game—in other words, the percentage of spins in which one or more 7s appear.

To perform the calculation, you’ll add a function named HitRate and a public variable named

Spins to the module. Then you’ll call the HitRate function every time the Spin button is clicked.

You’ll display the results in a new label that you’ll create on the form.

Create a win rate function

1. Display the form for the Track Wins program that you’ve been modifying.

The user interface for the slot machine game appears.

2. Use the Label control to create a new label below the Wins label. Set the following

properties for the label:

Object Property Setting

Label5 Font

ForeColor

Name

Text

TextAlign

Arial, Bold Italic, 12-point

Red (on Custom tab)

lblRate

“0.0%”

MiddleCenter

Your form looks similar to the graphic on the following page.

Object Property Setting

 Chapter 10 Creating Modules and Procedures 267

3. In Solution Explorer, click the Module1.vb module, and then click the View Code

button.

The Module1 module appears in the Code Editor.

4. Type the following public variable declaration below the Public Wins As Short statement:

Public Spins As Short

The module now includes two public variables, Wins and Spins, that will be available

to all the procedures in the project. You’ll use Spins as a counter to keep track of the

number of spins you make.

5. Insert a blank line in the module, and then type the following function declaration:

Function HitRate(ByVal Hits As Short, ByVal Tries As Short) As String

 Dim Percent As Single

 Percent = Hits / Tries

 Return Format(Percent, "0.0%")

End Function

After you type the fi rst line of the function code, Visual Basic automatically adds an

End Function statement. After you type the remainder of the function’s code, your

screen looks like this:

268 Part II Programming Fundamentals

The HitRate function determines the percentage of wins by dividing the Hits argument

by the Tries argument and then adjusts the appearance of the result by using the Format

function. The HitRate function is declared as a string because the Format function returns

a string value. The Hits and the Tries arguments are placeholders for the two short integer

variables that will be passed to the function during the function call. The HitRate function

is general-purpose enough to be used with any shorter integer numbers or variables, not

only with Wins and Spins.

6. Display the form again, and then double-click the Spin button on the TrackWins form

to bring up the Button1_Click event procedure.

7. Below the fourth line of the event procedure (Label3.Text = CStr(Int(Rnd() * 10))), type

the following statement:

Spins = Spins + 1

This statement increments the Spins variable each time the user clicks Spin, and new

numbers are placed in the spin windows.

8. Scroll down in the Code Editor, and then, between the End If and the End Sub statements,

type the following statement as the last line in the Button1_Click event procedure:

lblRate.Text = HitRate(Wins, Spins)

As you type the HitRate function, notice how Visual Studio automatically displays the

names and types of the arguments for the HitRate function you just built (a nice touch).

The purpose of this statement is to call the HitRate function by using the Wins and the

Spins variables as arguments. The result returned is a percentage in string format, and

this value is assigned to the Text property of the lblRate label on the form after each

spin. Now remove the Randomize function from the Form1_Load event procedure, so

that while you test the project, your results will follow a familiar pattern.

9. Scroll down in the Code Editor to the Form1_Load event procedure, and remove or

“comment out” (place a comment character (') before) the Randomize function.

Now, each time that you run this program, the random numbers generated will follow a

predictable pattern. This helps you test your code, but when you’re fi nished testing, you’ll

want to add the function back again so that your results are truly random.

 Chapter 10 Creating Modules and Procedures 269

Now you’ll run the program.

Run the Track Wins program

1. Click the Start Debugging button to run the modifi ed Track Wins program.

2. Click the Spin button 10 times.

The fi rst fi ve times you click Spin, the win rate stays at 100.0%. You’re hitting the

jackpot every time. As you continue to click, however, the win rate adjusts to 83.3%,

71.4%, 75.0% (another win), 66.7%, and 60.0% (a total of 6 for 10). After 10 spins, your

screen looks like this:

If you continue to spin, you’ll notice that the win rate drops to about 28%. The HitRate

function shows that you were really pretty lucky when you started spinning, but after a

while reality sets in.

3. When you’re fi nished with the program, click the End button.

The program stops, and the development environment returns. You can add the

Randomize function to the Form1_Load event procedure again to see how the program

works with “true” randomness. After about 100 spins (enough iterations for statistical

variation to even out a little), you should be close to the 28% win-rate each time that

you run the program. If you like numbers, it is an interesting experiment.

4. Click the Save All button on the Standard toolbar to save your changes.

270 Part II Programming Fundamentals
Writing Sub Procedures

A Sub procedure is similar to a Function procedure, except that a Sub procedure doesn’t return

a value associated with its name. Sub procedures are typically used to get input from the user,

display or print information, or manipulate several properties associated with a condition. Sub

procedures can also be used to process and update variables received in an argument list dur-

ing a procedure call, and pass back one or more of these values to the calling program.

Sub Procedure Syntax

The basic syntax for a Sub procedure is

Sub ProcedureName([arguments])

 procedure statements

End Sub

The following syntax items are important:

Q ProcedureName is the name of the Sub procedure you’re creating.

Q arguments is a list of optional arguments (separated by commas if there’s more than one)

to be used in the Sub procedure. Each argument should also be declared as a specifi c

type. (Visual Studio adds the ByVal keyword by default to each argument, indicating that

a copy of the data is passed to the function through this argument but that any changes

to the arguments won’t be returned to the calling routine.)

Q procedure statements is a block of statements that accomplishes the work of

the procedure.

In the Sub procedure call, the number and type of arguments sent to the procedure must

match the number and type of arguments in the Sub procedure declaration, and the entire

group must be enclosed in parentheses. If variables passed to a Sub procedure are modifi ed

during the procedure, the updated variables aren’t passed back to the program unless the

procedure defi ned the arguments by using the ByRef keyword. Sub procedures declared in a

module are public by default, so they can be called by any event procedure in a project.

Important Starting in Visual Basic .NET 2002, all calls to a Sub procedure must include par-

entheses after the procedure name. A set of empty parentheses is required if there are no

arguments being passed to the procedure. This is a change from Visual Basic 6, where paren-

theses are required only when an argument is being passed by value to a Sub procedure.

You’ll learn more about passing variables by reference and by value later in this chapter.

 Chapter 10 Creating Modules and Procedures 271
For example, the following Sub procedure receives a string argument representing a person’s

name and uses a text box to wish that person happy birthday. If this Sub procedure is declared

in a module, it can be called from any event procedure in the program.

Sub BirthdayGreeting (ByVal Person As String)

 Dim Msg As String

 If Person <> "" Then

 Msg = "Happy birthday " & Person & "!"

 Else

 Msg = "Name not specified."

 End If

 MsgBox(Msg, , "Best Wishes")

End Sub

The BirthdayGreeting procedure receives the name to be greeted by using the Person

argument, a string variable received by value during the procedure call. If the value of

Person isn’t empty, or null, the specifi ed name is used to build a message string that will

be displayed with a MsgBox function. If the argument is null, the procedure displays the

message “Name not specifi ed.”

Calling a Sub Procedure

To call a Sub procedure in a program, you specify the name of the procedure, and then list

the arguments required by the Sub procedure. For example, to call the BirthdayGreeting

procedure, you could type the following statement:

BirthdayGreeting("Robert")

In this example, the BirthdayGreeting procedure would insert the name “Robert” into a

message string, and the routine would display the following message box:

The space-saving advantages of a procedure become clear when you call the procedure

many times using a variable, as shown in the example below:

Dim NewName As String

Do

 NewName = InputBox("Enter a name for greeting.", "Birthday List")

 BirthdayGreeting(NewName)

Loop Until NewName = ""

272 Part II Programming Fundamentals

Here the user can enter as many names for birthday greetings as he or she likes. The next

exercise gives you a chance to practice using a Sub procedure to handle another type of

input in a program.

Using a Sub Procedure to Manage Input

Sub procedures are often used to handle input in a program when information comes from

two or more sources and needs to be in the same format. In the following exercise, you’ll create

a Sub procedure named AddName that prompts the user for input and formats the text so that

it can be displayed on multiple lines in a text box. The procedure will save you programming

time because you’ll use it in two event procedures, each associated with a different text box.

Because the procedure will be declared in a module, you’ll need to type it in only one place.

If you add additional forms to the project, the procedure will be available to them as well.

Create a text box Sub procedure

1. On the File menu, click the Close Project command.

Visual Studio closes the current project (the Track Wins slot machine).

2. Create a new Windows Forms Application project named My Text Box Sub.

The new project is created, and a blank form opens in the Designer.

3. Use the TextBox control to create two text boxes, side by side, in the middle of

the form.

Today you’ll make some personnel decisions, and you’ll use these text boxes to hold

the names of employees you’ll be assigning to two departments.

4. Use the Label control to create two labels above the text boxes.

These labels will hold the names of the departments.

5. Use the Button control to create three buttons: one under each text box and one at the

bottom of the form.

You’ll use the fi rst two buttons to assign employees to their departments and the last

button to quit the program.

6. Set the properties shown in the following table for the objects on the form.

Because the text boxes will contain more than one line, you’ll set their Multiline proper-

ties to True and their ScrollBars properties to Vertical. These settings are typically used

when multiple lines are displayed in text boxes. You’ll also set their TabStop properties to

False and their ReadOnly properties to True so that the information can’t be modifi ed.

 Chapter 10 Creating Modules and Procedures 273

Object Property Setting

TextBox1 Multiline

Name

ReadOnly

ScrollBars

TabStop

True

txtSales

True

Vertical

False

TextBox2 Multiline

Name

ReadOnly

ScrollBars

TabStop

True

txtMkt

True

Vertical

False

Label1 Font

Name

Text

Bold

lblSales

“Sales”

Label2 Font

Name

Text

Bold

lblMkt

“Marketing”

Button1 Name

Text

btnSales

“Add Name”

Button2 Name

Text

btnMkt

“Add Name”

Button3 Name

Text

btnQuit

“Quit”

Form1 Text “Assign Department Teams”

7. Resize and position the objects so that your form looks similar to this:

Now you’ll add a module and create the general-purpose AddName Sub procedure.

Object Property Setting

274 Part II Programming Fundamentals

8. On the Project menu, click the Add New Item command, select the Module template,

and then click Add.

A new module appears in the Code Editor.

9. Type the following AddName procedure between the Module Module1 and End Module

statements:

Sub AddName(ByVal Team As String, ByRef ReturnString As String)

 Dim Prompt, Nm, WrapCharacter As String

 Prompt = "Enter a " & Team & " employee."

 Nm = InputBox(Prompt, "Input Box")

 WrapCharacter = Chr(13) + Chr(10)

 ReturnString = Nm & WrapCharacter

End Sub

This general-purpose Sub procedure uses the InputBox function to prompt the user for an

employee name. It receives two arguments during the procedure call: Team, a string con-

taining the department name; and ReturnString, an empty string variable that will contain

the formatted employee name. ReturnString is declared with the ByRef keyword so that

any changes made to this argument in the procedure will be passed back to the calling

routine through the argument.

Before the employee name is returned, carriage return and linefeed characters are

appended to the string so that each name in the text box will appear on its own line.

You can use this general technique in any string to create a new line.

Your Code Editor looks like this:

 Chapter 10 Creating Modules and Procedures 275

10. Display the form again, and then double-click the fi rst Add Name button on the form

(the button below the Sales text box). Type the following statements in the btnSales_

Click event procedure:

Dim SalesPosition As String = ""

AddName("Sales", SalesPosition)

txtSales.Text = txtSales.Text & SalesPosition

The call to the AddName Sub procedure includes one argument passed by value

(“Sales”) and one argument passed by reference (SalesPosition). The last line uses the

argument passed by reference to add text to the txtSales text box. The concatenation

operator (&) adds the new name to the end of the text in the text box.

11. In the Code Editor, click the Class Name arrow, and click the btnMkt object in the list.

Then click the Method Name arrow, and click the Click event.

The btnMkt_Click event procedure appears in the Code Editor. Using the Class Name

and Method Name list boxes is another way to practice adding event procedures.

12. Type the following statements in the event procedure:

Dim MktPosition As String = ""

AddName("Marketing", MktPosition)

txtMkt.Text = txtMkt.Text & MktPosition

This event procedure is identical to btnSales_Click, except that it sends “Marketing”

to the AddName procedure and updates the txtMkt text box. (The name of the local

return variable MktPosition was renamed to make it more intuitive.)

13. Click the Class Name arrow, and click the btnQuit object in the list. Then click the

Method Name arrow, and click the Click event.

The btnQuit_Click event procedure appears in the Code Editor.

14. Type End in the btnQuit_Click event procedure.

15. Click the Save All button on the Standard toolbar, and then specify the c:\vb08sbs\chap10

folder as the location.

That’s it! Now you’ll run the Text Box Sub program.

276 Part II Programming Fundamentals

Run the Text Box Sub program

Tip The complete Text Box Sub program is located in the c:\vb08sbs\chap10\text box

sub folder.

1. Click the Start Debugging button on the Standard toolbar to run the program.

2. Click the Add Name button under the Sales text box, and then type Maria Palermo in

the input box. (Feel free to type a different name.)

Your input box looks like this:

3. Click the OK button to add the name to the Sales text box.

The name appears in the fi rst text box.

4. Click the Add Name button under the Marketing text box, type Abraham Asante in

the Marketing input box, and then press Enter.

The name appears in the Marketing text box. Your screen looks like this:

 Chapter 10 Creating Modules and Procedures 277
 5. Enter a few more names in each of the text boxes. This is your chance to create your

own dream employee confi gurations.

Each name appears on its own line in the text boxes. The text boxes don’t scroll auto-

matically, so you won’t see every name you’ve entered if you enter more names than

can fi t in a text box. You can use the scroll bars to access names that aren’t visible.

 6. When you’ve fi nished, click the Quit button to stop the program.

You’ve demonstrated that one Sub procedure can manage input tasks from two or more event

procedures. Using this basic concept as a starting point, you can now create more sophisticated

programs that use Sub and Function procedures as organizing tools and that place common

tasks in logical units that can be called over and over again.

One Step Further: Passing Arguments by Value and
by Reference

In the discussion of Sub and Function procedures, you learned that arguments are passed to

procedures by value or by reference. Using the ByVal keyword indicates that variables should

be passed to a procedure by value (the default). Any changes made to a variable passed in by

value aren’t passed back to the calling procedure. However, as you learned in the Text Box Sub

program, using the ByRef keyword indicates that variables should be passed to a procedure by

reference, meaning that any changes made to the variable in the procedure are passed back

to the calling routine. Passing by reference can have signifi cant advantages, as long as you’re

careful not to change a variable unintentionally in a procedure. For example, consider the fol-

lowing Sub procedure declaration and call:

Sub CostPlusInterest(ByRef Cost As Single, ByRef Total As Single)

 Cost = Cost * 1.05 'add 5% to cost...

 Total = Int(Cost) 'then make integer and return

End Sub

.

.

.

Dim Price, TotalPrice As Single

Price = 100

TotalPrice = 0

CostPlusInterest(Price, TotalPrice)

MsgBox(Price & " at 5% interest is " & TotalPrice)

278 Part II Programming Fundamentals
In this example, the programmer passes two single-precision variables by reference to the

CostPlusInterest procedure: Price and TotalPrice. The programmer plans to use the updated

TotalPrice variable in the subsequent MsgBox call but has unfortunately forgotten that the

Price variable was also updated in an intermediate step in the CostPlusInterest procedure.

(Because Price was passed by reference, changes to Cost automatically result in the same

changes to Price.) This produces the following erroneous result when the program is run:

However, the programmer probably wanted to show the following message:

So how should the CostPlusInterest procedure be fi xed to produce the desired result? The

easiest way is to declare the Cost argument by using the ByVal keyword, as shown in the

following program statement:

Sub CostPlusInterest(ByVal Cost As Single, ByRef Total As Single)

By declaring Cost using ByVal, you can safely modify Cost in the CostPlusInterest procedure

without sending the changes back to the calling procedure. By keeping Total declared using

ByRef, you can modify the variable that’s being passed, and only those changes will be passed

back to the calling procedure. In general, if you use ByRef only when it’s needed, your pro-

grams will be freer of defects.

Here are some guidelines on when to use ByVal and when to use ByRef:

Q Use ByVal when you don’t want a procedure to modify a variable that’s passed to the

procedure through an argument.

Q Use ByRef when you want to allow a procedure to modify a variable that’s passed to the

procedure.

Q When in doubt, use the ByVal keyword.

 Chapter 10 Creating Modules and Procedures 279
Chapter 10 Quick Reference

To Do this

Create a new module Click the Add New Item button on the Standard toolbar, and then select the

Module template; or click the Add New Item command on the Project menu,

and then select the Module template.

Rename a module Select the module in Solution Explorer. In the Properties window, specify a

new name in the File Name property; or right-click the module in Solution

Explorer, select Rename, and specify a new name.

Remove a module

from a program

Select the module in Solution Explorer, and then click the Exclude From

Project command on the Project menu.

Add an existing

module to a project

On the Project menu, click the Add Existing Item command.

Create a public

variable

Declare the variable by using the Public keyword between the Module and

End Module keywords in a module. For example:

Public TotalSales As Integer

Create a public

function

Place the function statements between the Function and End Function

keywords in a module. Functions are public by default. For example:

Function HitRate(ByVal Hits As Short, ByVal _

 Tries As Short) As String

 Dim Percent As Single

 Percent = Hits / Tries

 Return Format(Percent, “0.0%”)

End Function

Call a Function

procedure

Type the function name and any necessary arguments in a program

statement, and assign it to a variable or property of the appropriate

return type. For example:

lblRate.Text = HitRate(Wins, Spins)

Create a public Sub

procedure

Place the procedure statements between the Sub and End Sub keywords in a

module. Sub procedures are public by default. For example:

Sub CostPlusInterest(ByVal Cost As Single, _

 ByRef Total As Single)

 Cost = Cost * 1.05

 Total = Int(Cost)

End Sub

Call a Sub procedure Type the procedure name and any necessary arguments in a program

statement. For example:

CostPlusInterest(Price, TotalPrice)

Pass an argument

by value

Use the ByVal keyword in the procedure declaration. For example:

Sub GreetPerson(ByVal Name As String)

Pass an argument

by reference

Use the ByRef keyword in the procedure declaration. For example:

Sub GreetPerson(ByRef Name As String)

To Do this

Chapter 11

Using Arrays to Manage Numeric
and String Data

After completing this chapter, you will be able to:

Q Organize information in fi xed-size and dynamic arrays.

Q Preserve array data when you redimension arrays.

Q Use arrays in your code to manage large amounts of data.

Q Use the Sort and Reverse methods in the Array class to reorder arrays.

Q Use the ProgressBar control in your programs to show how long a task is taking.

Managing information in a Microsoft Visual Basic application is an important task, and as your

programs become more substantial, you’ll need additional tools to store and process data.

A classic approach to data management in programs is to store and retrieve information in

auxiliary text fi les, as you’ll see in Chapter 13, “Exploring Text Files and String Processing.”

However, the most comprehensive approach is storing and retrieving information by using

databases, and you’ll start learning how to integrate Visual Basic programs with databases in

Chapter 18, “Getting Started with ADO.NET.

In this chapter, you’ll learn how to organize variables and other information into useful con-

tainers called arrays. You’ll learn how to streamline data-management tasks with fi xed-size

and dynamic arrays, and how to use arrays in your code to manage large amounts of data.

You’ll learn how to redimension arrays and preserve the data in arrays when you decide to

change an array’s size. To demonstrate how large arrays can be processed, you’ll use the

Sort and Reverse methods in the Microsoft .NET Framework Array class to reorder an array

containing random six-digit integer values. Finally, you’ll learn to use the ProgressBar control

to give your users an indication of how long a process (array-related or otherwise) is taking.

The techniques you’ll learn provide a solid introduction to the database programming tech-

niques that you’ll explore later in the book.

Working with Arrays of Variables

In this section, you’ll learn about arrays, a useful method for storing almost any amount of data

during program execution. Arrays are a powerful and time-tested mechanism for storing logically

related values in a program. The developers of BASIC, Pascal, C, and other popular programming

languages incorporated arrays into the earliest versions of these products to refer to a group of

values by using one name and to process those values individually or collectively.
 281

282 Part II Programming Fundamentals
Arrays can help you track a small set of values in ways that are impractical using traditional

variables. For example, imagine creating a nine-inning baseball scoreboard in a program. To

save and recall the scores for each inning of the game, you might be tempted to create two

groups of nine variables (a total of 18 variables) in the program. You’d probably name them

something like Inning1HomeTeam, Inning1VisitingTeam, and so on, to keep them straight.

Working with these variables individually would take considerable time and space in your

program. Fortunately, with Visual Basic you can organize groups of similar variables into an

array that has one common name and an easy-to-use index. For example, you can create a

two-dimensional array (two units high by nine units wide) named Scoreboard to contain the

scores for the baseball game. Let’s see how this works.

Creating an Array

You create, or declare, arrays in program code just as you declare simple variables. As usual, the

place in which you declare the array determines where it can be used, or its scope, as follows:

Q If you declare an array locally in a procedure, you can use it only in that procedure.

Q If you declare an array at the top of a form, you can use it throughout the form.

Q If you declare an array publicly in a module, you can use it anywhere in the project.

When you declare an array, you typically include the information shown in the following

table in your declaration statement.

Information in an array

declaration statement Description

Array name The name you’ll use to represent your array in the program. In general,

array names follow the same rules as variable names. (See Chapter 5,

“Visual Basic Variables and Formulas, and the .NET Framework,” for

more information about variables.)

Data type The type of data you’ll store in the array. In most cases, all the variables

in an array are the same type. You can specify one of the fundamental

data types, or if you’re not yet sure which type of data will be stored in

the array or whether you’ll store more than one type, you can specify

the Object type.

Number of dimensions The number of dimensions your array will contain. Most arrays are one-

dimensional (a list of values) or two-dimensional (a table of values), but

you can specify additional dimensions if you’re working with a complex

mathematical model, such as a three-dimensional shape.

Number of elements The number of elements your array will contain. The elements in your

array correspond directly to the array index. In Visual Basic 2008, the

fi rst array index is always 0 (zero).

Information in an array

declaration statement Description

 Chapter 11 Using Arrays to Manage Numeric and String Data 283
Tip Arrays that contain a set number of elements are called fi xed-size arrays. Arrays that contain

a variable number of elements (arrays that can expand during the execution of the program) are

called dynamic arrays.

Declaring a Fixed-Size Array

The basic syntax for a public fi xed-size array is

Dim ArrayName(Dim1Index, Dim2Index, ...) As DataType

The following arguments are important:

Q Dim is the keyword that declares the array. Use Public instead if you place the array in

a module.

Q ArrayName is the variable name of the array.

Q Dim1Index is the upper bound of the fi rst dimension of the array, which is the number

of elements minus 1.

Q Dim2Index is the upper bound of the second dimension of the array, which is the num-

ber of elements minus 1. (Additional dimensions can be included if they’re separated by

commas.)

Q DataType is a keyword corresponding to the type of data that will be included in the

array.

For example, to declare a one-dimensional string array named Employees that has room for 10

employee names (numbered 0 through 9), you can type the following in an event procedure:

Dim Employees(9) As String

In a module, the same array declaration looks like this:

Public Employees(9) As String

Using newer syntax supported by Visual Basic 2005 and 2008 (but not by Microsoft Visual

Basic .NET 2002 or 2003), you can also explicitly specify the lower bound of the array as zero

by using the following code in an event procedure:

Dim Employees(0 To 9) As String

This “0 to 9” syntax is included to make your code more readable—newcomers to your pro-

gram will understand immediately that the Employees array has 10 elements numbered 0

through 9. However, the lower bound of the array must always be zero. You cannot use this

syntax to create a different lower bound for the array.

284 Part II Programming Fundamentals
Setting Aside Memory

When you create an array, Visual Basic sets aside room for it in memory. The following

illustration shows conceptually how the 10-element Employees array is organized. The

elements are numbered 0 through 9 rather than 1 through 10 because array indexes

always start with 0. (Again, the Option Base statement in Visual Basic 6, which allows

you to index arrays beginning with the number 1, is no longer supported.)

To declare a public two-dimensional array named Scoreboard that has room for two rows

and nine columns of Short integer data, you can type this statement in an event procedure

or at the top of the form:

Dim Scoreboard(1, 8) As Short

Using the Visual Basic 2008 syntax that emphasizes the lower (zero) bound, you can also

declare the array as follows:

Dim Scoreboard(0 To 1, 0 To 8) As Short

After you declare such a two-dimensional array and Visual Basic sets aside room for it in

memory, you can use the array in your program as if it were a table of values, as shown in

the following illustration. (In this case, the array elements are numbered 0 through 1 and 0

through 8.)

 Chapter 11 Using Arrays to Manage Numeric and String Data 285
Working with Array Elements

To refer to an element of an array, you use the array name and an array index enclosed

in parentheses. The index must be an integer or an expression that results in an integer.

For example, the index could be a number such as 5, an integer variable such as num, or

an expression such as num-1. (The counter variable of a For...Next loop is often used.) For

example, the following statement assigns the value “Leslie” to the element with an index

of 5 in the Employees array example in the previous section:

Employees(5) = "Leslie"

This statement produces the following result in our Employees array:

Similarly, the following statement assigns the number 4 to row 0, column 2 (the top of the

third inning) in the Scoreboard array example in the previous section:

Scoreboard(0, 2) = 4

This statement produces the following result in our Scoreboard array:

You can use these indexing techniques to assign or retrieve any array element.

286 Part II Programming Fundamentals

Creating a Fixed-Size Array to Hold Temperatures

The following exercise uses a one-dimensional array named Temperatures to record the

daily high temperatures for a seven-day week. The program demonstrates how you can use

an array to store and process a group of related values on a form. The Temperatures array

variable is declared at the top of the form, and then temperatures are assigned to the array

by using an InputBox function and a For...Next loop, which you learned about in Chapter 7,

“Using Loops and Timers.” The loop counter is used to reference each element in the array.

The array contents are then displayed on the form by using a For...Next loop and a text box

object. The average high temperature is also calculated and displayed.

The UBound and LBound Functions

To simplify working with the array, the Fixed Array program uses the UBound function to

check for the upper bound, or top index value, of the array. UBound is an earlier Visual

Basic keyword that’s still quite useful. With it you can process arrays without referring to

the declaration statements that defi ned exactly how many values the array would hold.

The closely related LBound function, which confi rms the lower index value, or lower

bound, of an array, is still valid in Visual Basic. However, because all Visual Basic arrays

now have a lower bound of zero (0), the function simply returns a value of 0. The UBound

and LBound functions have the syntax

LBound(ArrayName)

UBound(ArrayName)

where ArrayName is the name of an array that’s been declared in the project.

Use a fi xed-size array

1. Start Microsoft Visual Studio, and create a new Visual Basic Windows Forms Application

project named My Fixed Array.

2. Draw a text box object on the form.

3. Set the Multiline property of the TextBox1 object to True so that you can resize the

object.

4. Resize the text box object so that it fi lls up most of the form.

5. Draw two wide button objects on the form below the text box object, oriented one

beside the other.

 Chapter 11 Using Arrays to Manage Numeric and String Data 287

6. Set the following properties for the form and its objects:

Object Property Setting

TextBox1 ScrollBars Vertical

Button1 Text “Enter Temps”

Button2 Text “Display Temps”

Form1 Text “Fixed Array Temps”

Your form looks like the one shown in the following graphic.

7. In Solution Explorer, click the View Code button to display the Code Editor.

8. Scroll to the top of the form’s program code, and directly below the Public Class Form1

statement, type the following array declaration:

Dim Temperatures(0 To 6) As Single

This statement creates an array named Temperatures (of the type Single) that contains

seven elements numbered 0 through 6. Because the array has been declared at the top

of the form, it is available in all the event procedures in the form.

9. Display the form again, and then double-click the Enter Temps button (Button1).

The Button1_Click event procedure appears in the Code Editor.

10. Type the following program statements to prompt the user for temperatures and to

load the input into the array:

Dim Prompt, Title As String

Dim i As Short

Prompt = "Enter the day's high temperature."

For i = 0 To UBound(Temperatures)

 Title = "Day " & (i + 1)

 Temperatures(i) = InputBox(Prompt, Title)

Next

Object Property Setting

288 Part II Programming Fundamentals

The For...Next loop uses the short integer counter variable i as an array index to load

temperatures into array elements 0 through 6. Rather than using the simplifi ed For

loop syntax

For i = 0 to 6

to process the array, I chose a slightly more complex syntax involving the UBound

function for future fl exibility. The For loop construction

For i = 0 To UBound(Temperatures)

determines the upper bound of the array by using the UBound statement. This tech-

nique is more fl exible because if the array is expanded or reduced later, the For loop

automatically adjusts itself to the new array size.

To fi ll the array with temperatures, the event procedure uses an InputBox function,

which displays the current day by using the For loop counter.

11. Display the form again, and then double-click the Display Temps button (Button2).

12. Type the following statements in the Button2_Click event procedure:

Dim Result As String

Dim i As Short

Dim Total As Single = 0

Result = "High temperatures for the week:" & vbCrLf & vbCrLf

For i = 0 To UBound(Temperatures)

 Result = Result & "Day " & (i + 1) & vbTab & _

 Temperatures(i) & vbCrLf

 Total = Total + Temperatures(i)

Next

Result = Result & vbCrLf & _

 "Average temperature: " & Format(Total / 7, "0.0")

TextBox1.Text = Result

This event procedure uses a For...Next loop to cycle through the elements in the array,

and it adds each element in the array to a string variable named Result, which is declared

at the top of the event procedure. I’ve used several literal strings, constants, and string

concatenation operators (&) to pad and format the string by using carriage returns

(vbCrLf), tab characters (vbTab), and headings. The vbCrLf constant, used here for the

fi rst time, contains the carriage return and line feed characters and is an effi cient way

to create new lines. The vbTab constant is also used here for the fi rst time to put some

distance between the day and temperature values in the Result string. At the end of the

event procedure, an average for the temperatures is determined, and the fi nal string is

assigned to the Text property of the text box object, as shown in this statement:

TextBox1.Text = Result

 Chapter 11 Using Arrays to Manage Numeric and String Data 289

13. Click the Save All button on the Standard toolbar to save the project. Specify the

c:\vb08sbs\chap11 folder as the location.

Now you’ll run the program.

Tip The complete Fixed Array program is located in the c:\vb08sbs\chap11\fi xed array

folder.

14. Click the Start Debugging button on the Standard toolbar to run the program.

15. Click the Enter Temps button, and when prompted by the InputBox function, enter seven

different temperatures. (How about using the temperatures from your last vacation?)

The InputBox function dialog box looks like this:

16. After you’ve entered the temperatures, click the Display Temps button.

Using the array, Visual Basic displays each of the temperatures in the text box and

prints an average at the bottom. Your screen looks similar to this:

17. Click the Close button on the form to end the program.

290 Part II Programming Fundamentals

Creating a Dynamic Array

As you can see, arrays are quite handy for working with lists of numbers, especially if you

process them by using For...Next loops. But what if you’re not sure how much array space

you’ll need before you run your program? For example, what if you want to let the user

choose how many temperatures are entered into the Fixed Array program?

Visual Basic handles this problem effi ciently with a special elastic container called a dynamic

array. Dynamic arrays are dimensioned at run time, either when the user specifi es the size of

the array or when logic you add to the program determines an array size based on specifi c

conditions. Dimensioning a dynamic array takes several steps because although the size of the

array isn’t specifi ed until the program is running, you need to make “reservations” for the array

at design time. To create a dynamic array, you follow these basic steps:

1. Specify the name and type of the array in the program at design time, omitting the

number of elements in the array. For example, to create a dynamic array named

Temperatures, you type

Dim Temperatures() As Single

2. Add code to determine the number of elements that should be in the array at run time.

You can prompt the user by using an InputBox function or a text box object, or you

can calculate the storage needs of the program by using properties or other logic. For

example, the following statements get the array size from the user and assign it to the

Days variable of type Short:

Dim Days As Short

Days = InputBox("How many days?", "Create Array")

3. Use the variable in a ReDim statement to dimension the array, subtracting 1 because

arrays are zero-based. For example, the following statement sets the size of the

Temperatures array at run time by using the Days variable:

ReDim Temperatures(Days - 1)

Important With ReDim, you should not try to change the number of dimensions in an

array that you’ve previously declared.

4. Use the UBound function to determine the upper bound in a For...Next loop, and process

the array elements as necessary, as shown here:

For i = 0 to UBound(Temperatures)

 Temperatures(i) = InputBox(Prompt, Title)

Next

 Chapter 11 Using Arrays to Manage Numeric and String Data 291

In the following exercise, you’ll use these steps to revise the Fixed Array program so that it

can process any number of temperatures by using a dynamic array.

Use a dynamic array to hold temperatures

1. Open the Code Editor to display the program code for the Fixed Array project.

2. Scroll to the top of the form’s code, in which you originally declared the Temperatures

fi xed array.

3. Remove 0 To 6 from the Temperatures array declaration so that the array is now a

dynamic array.

The statement looks like the following:

Dim Temperatures() As Single

4. Add the following variable declaration just below the Temperatures array declaration:

Dim Days As Integer

The integer variable Days will be used to receive input from the user and to dimension

the dynamic array at run time.

5. Scroll down in the Code Editor to display the Button1_Click event procedure, and

modify the code so that it looks like the following. (The changed or added elements

are shaded.)

Dim Prompt, Title As String

Dim i As Short

Prompt = "Enter the day's high temperature."

Days = InputBox("How many days?", "Create Array")

If Days > 0 Then ReDim Temperatures(Days - 1)

For i = 0 To UBound(Temperatures)

 Title = "Day " & (i + 1)

 Temperatures(i) = InputBox(Prompt, Title)

Next

The fourth and fi fth lines prompt the user for the number of temperatures he or she

wants to save, and then the user’s input is used to dimension a dynamic array. The If...

Then decision structure is used to verify that the number of days is greater than 0.

(Dimensioning an array with a number less than 0 or equal to zero generates an error.)

Because index 0 of the array is used to store the temperature for the fi rst day, the Days

variable is decremented by 1 when dimensioning the array. The Days variable isn’t

needed to determine the upper bound of the For...Next loop—as in the previous

example, the UBound function is used instead.

292 Part II Programming Fundamentals

6. Scroll down in the Code Editor to display the Button2_Click event procedure. Modify

the code so that it looks like the following routine. (The changed elements are shaded.)

Dim Result As String

Dim i As Short

Dim Total As Single = 0

Result = "High temperatures:" & vbCrLf & vbCrLf

For i = 0 To UBound(Temperatures)

 Result = Result & "Day " & (i + 1) & vbTab & _

 Temperatures(i) & vbCrLf

 Total = Total + Temperatures(i)

Next

Result = Result & vbCrLf & _

 "Average temperature: " & Format(Total / Days, "0.0")

TextBox1.Text = Result

The Days variable replaces the number 7 in the average temperature calculation at the

bottom of the event procedure. I also edited the “High temperatures” heading that will

be displayed in the text box.

7. Display the form.

8. Change the Text property of Form1 to “Dynamic Array.”

9. Save your changes to disk.

Tip On the companion CD, I gave this project a separate name to keep it distinct from

the Fixed Array project. The complete Dynamic Array project is located in the c:\vb08sbs\

chap11\dynamic array folder.

10. Click the Start Debugging button to run the program.

11. Click the Enter Temps button.

12. Type 5 when you’re prompted for the number of days you want to record, and then

click OK.

13. Enter fi ve temperatures when prompted.

14. When you’ve fi nished entering temperatures, click the Display Temps button.

The program displays the fi ve temperatures on the form along with their average. Your

screen looks similar to the illustration on the following page.

 Chapter 11 Using Arrays to Manage Numeric and String Data 293
 15. Click the Close button on the form to end the program.

You’ve practiced using the two most common array types in Visual Basic programming.

When you write your own programs, you’ll soon use much larger arrays, but the concepts

are the same, and you’ll be amazed at how fast Visual Basic can complete array-related

computations.

Preserving Array Contents by Using ReDim Preserve

In the previous exercise, you used the ReDim statement to specify the size of a dynamic array

at run time. However, one potential shortcoming associated with the ReDim statement is that

if you redimension an array that already has data in it, all the existing data is irretrievably lost.

After the ReDim statement is executed, the contents of a dynamic array are set to their default

value, such as zero or null. Depending on your outlook, this can be considered a useful feature

for emptying the contents of arrays, or it can be an irksome feature that requires a workaround.

Fortunately, Visual Basic 2008 provides the same useful feature that Visual Basic 6 provides

for array redimensioning, the Preserve keyword, which you use to preserve the data in an

array when you change its dimensions. The syntax for the Preserve keyword is as follows:

ReDim Preserve ArrayName(Dim1Elements, Dim2Elements, ...)

In such a ReDim statement, the array must continue to have the same number of dimensions

and contain the same type of data. In addition, there’s a caveat that you can resize only the last

array dimension. For example, if your array has two or more dimensions, you can change the

size of only the last dimension and still preserve the contents of the array. (Single-dimension

arrays automatically pass this test, so you can freely expand the size of dynamic arrays by using

the Preserve keyword.)

294 Part II Programming Fundamentals
The following examples show how you can use Preserve to increase the size of the last

dimension in a dynamic array without erasing any existing data contained in the array.

If you originally declared a dynamic string array named Philosophers by using the syntax

Dim Philosophers() As String

you can redimension the array and add data to it by using code similar to the following:

ReDim Philosophers(200)

Philosophers(200) = "Steve Harrison"

You can expand the size of the Philosophers array to 301 elements (0–300) and preserve the

existing contents, by using the following syntax:

ReDim Preserve Philosophers(300)

Three-Dimensional Arrays

A more complex example involving a three-dimensional array uses a similar syntax. Imagine

that you want to use a three-dimensional, single-precision, fl oating-point array named myCube

in your program. You can declare the myCube array by using the following syntax:

Dim myCube(,,) As Single

You can then redimension the array and add data to it by using the following code:

ReDim myCube(25, 25, 25)

myCube(10, 1, 1) = 150.46

after which you can expand the size of the third dimension in the array (while preserving the

array’s contents) by using this syntax:

ReDim Preserve myCube(25, 25, 50)

In this example, however, only the third dimension can be expanded—the fi rst and

second dimensions cannot be changed if you redimension the array by using the Preserve

keyword. Attempting to change the size of the fi rst or second dimension in this example

produces a run-time error when the ReDim Preserve statement is executed.

Experiment a little with ReDim Preserve, and see how you can use it to make your own arrays

fl exible and robust.

 Chapter 11 Using Arrays to Manage Numeric and String Data 295
One Step Further: Processing Large Arrays by Using
Methods in the Array Class

In previous sections, you learned about using arrays to store information during program

execution. In this section, you’ll learn about using methods in the Array class of the Microsoft

.NET Framework, which you can use to quickly sort, search, and reverse the elements in an

array, as well as perform other functions. The sample program I’ve created demonstrates

how these features work especially well with very large arrays. You’ll also learn how to use

the ProgressBar control.

The Array Class

When you create arrays in Visual Basic, you are using a base class that is defi ned by Visual

Basic for implementing arrays within user-created programs. This Array class also provides a

collection of methods that you can use to manipulate arrays while they are active in programs.

The most useful methods include Array.Sort, Array.Find, Array.Reverse, Array.Copy, and Array.

Clear. You can locate other interesting methods by experimenting with the Array class in the

Code Editor (by using IntelliSense) and by checking the Visual Studio documentation. The

Array class methods function much like the .NET Framework methods you have already used

in this book; that is, they are called by name and (in this case) require a valid array name as an

argument. For example, to sort an array of temperatures (such as the Temperatures array that

you created in the last exercise), you would use the following syntax:

Array.Sort(Temperatures)

You would make such a call after the Temperatures array had been declared and fi lled with

data in the program. When Visual Basic executes the Array.Sort method, it creates a temporary

storage location for the array in memory and uses a sorting routine to reorganize the array in

alphanumeric order. After the sort is complete, the original array is shuffl ed in ascending order,

with the smallest value in array location 0 and the largest value in the last array location. With

the Temperatures example above, the sort would produce an array of daily temperatures or-

ganized from coolest to hottest.

In the following exercise, you’ll see how the Array.Sort and Array.Reverse methods can be used

to quickly reorder a large array containing six-digit numbers randomly selected between 0 and

1,000,000. You’ll also experiment with the ProgressBar control, which provides useful visual

feedback for the user during long sorts.

296 Part II Programming Fundamentals

Use Array methods to sort an array of 3000 elements

1. On the File menu, click Open Project, and then open the Array Class Sorts project

located in the c:\vb08sbs\chap11 folder.

2. Display the form if it is not already visible.

Your screen looks like this:

This form looks similar to the earlier projects in this chapter and features a test box

for displaying array data. However, it also contains three buttons for manipulating

large arrays and a progress bar object that gives the user feedback during longer

array operations. (Visual feedback is useful when computations take longer than a

few seconds to complete, and if you use this code to sort an array of 3000 array

elements, a slight delay is inevitable.)

3. Click the progress bar on the form.

The ProgressBar1 object is selected on the form and is listed in the Properties window.

I created the progress bar object by using the ProgressBar control on the Common

Controls tab in the Toolbox. A progress bar is designed to display the progress of a

computation by displaying an appropriate number of colored rectangles arranged in

a horizontal progress bar. When the computation is complete, the bar is fi lled with

rectangles. (In Windows Vista, a smoothing effect is applied so that the progress bar

is gradually fi lled with a solid band of color—an especially attractive effect.) You’ve

probably seen the progress bar many times while you downloaded fi les or installed

programs within Microsoft Windows. Now you can create one in your own programs!

The important properties that make a progress bar work are the Minimum, Maximum,

and Value properties, and these are typically manipulated using program code. (The

other progress bar properties, which you can examine in the Properties window, control

how the progress bar looks and functions.) You can examine how the Minimum and

Maximum properties are set by looking at this program’s Form1_Load event procedure.

 Chapter 11 Using Arrays to Manage Numeric and String Data 297

4. Double-click the form to display the Form1_Load event procedure.

You see the following code:

For a progress bar to display an accurate indication of how long a computing task

will take to complete, you need to set relative measurements for the beginning and

the end of the bar. This is accomplished with the Minimum and Maximum properties,

which are set to match the fi rst and the last elements in the array that we are building.

As I have noted, the fi rst array element is always 0 but the last array element depends

on the size of the array, so I have used the UBound function to return that number

and set the progress bar Maximum property accordingly. The array that we are

manipulating in this exercise is RandArray, a Long integer array declared initially

to hold 500 elements (0 to 499).

5. Click the Start Debugging button to run the program.

The program runs, and the Array Class Sorts form opens on the screen. In its Form1_Load

event procedure, the program declared an array named RandArray and dimensioned

it with 500 elements. A progress bar object was calibrated to track a calculation of 500

units (the array size), and the number 500 appears to the right of the progress bar (the

work of a label object and the UBound function).

6. Click the Fill Array button.

298 Part II Programming Fundamentals

The program loads RandArray with 500 random numbers (derived by the Rnd function),

and displays the numbers in the text box. As the program processes the array and fi lls

the text box object with data, the progress bar slowly fi lls with the color green. Your

screen looks like this when the process is fi nished:

The code that produced this result is the Button1_Click event procedure, which contains

the following program statements:

'Fill the array with random numbers and display in text box

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 Dim i As Integer

 For i = 0 To UBound(RandArray)

 RandArray(i) = Int(Rnd() * 1000000)

 TextBox1.Text = TextBox1.Text & RandArray(i) & vbCrLf

 ProgressBar1.Value = i 'move progress bar

 Next i

End Sub

To get random numbers that are integers, I used the Int and Rnd functions together as I

did in Chapter 2, “Writing Your First Program,” and I multiplied the random number pro-

duced by Rnd by 1,000,000 to get whole numbers that are six digits or less. Assigning

these numbers to the array is facilitated by using a For...Next loop with an array index

that matches the loop counter (i). Filling the array is an extremely fast operation; the

slowdown (and the need for the progress bar) is caused by the assignment of array

elements to the text box object one at a time. This involves updating a user interface

component on the form 500 times, and the process takes a few seconds to complete. It

is instructional, however—the delay provides a way for me to show off the ProgressBar

control. Since the progress bar object has been calibrated to use the number of array

elements as its maximum, assigning the loop counter (i) to the progress bar’s Value

property allows the bar to display exactly how much of the calculation has been

completed.

7. Click the Sort Array button.

 Chapter 11 Using Arrays to Manage Numeric and String Data 299

The program follows a similar process to sort RandArray, this time using the Array.Sort

method to reorder the array in ascending order. (The 500 elements are listed from

lowest to highest.) Your screen looks like this:

The code that produced this result is the Button2_Click event procedure, which contains

the following program statements:

'Sort the array using the Array.Sort method and display

Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

 Dim i As Integer

 TextBox1.Text = ""

 Array.Sort(RandArray)

 For i = 0 To UBound(RandArray)

 TextBox1.Text = TextBox1.Text & RandArray(i) & vbCrLf

 ProgressBar1.Value = i 'move progress bar

 Next i

End Sub

This event procedure clears the text box object when the user clicks the Sort Array

button, and then sorts the array by using the Array.Sort method described earlier. The

sorting process is very quick. Again, the only slowdown is rebuilding the text box object

one line at a time in the For...Next loop, a process that is reported by the ProgressBar1

object and its Value property. See how simple it is to use the Array.Sort method?

8. Click the Reverse button.

The program uses the Array.Reverse method to manipulate RandArray, reordering the

array in backward or reverse order; that is, the fi rst element becomes last and the last

element becomes fi rst.

Note This method does not always produce a sorted list; the array elements are in descend-

ing order only because RandArray had been sorted previously in ascending order by the

Array.Sort method. (To examine the list more closely, use the scroll bars or the arrow keys.)

300 Part II Programming Fundamentals

Your screen looks like this:

The code that produced this result is the Button3_Click event procedure, which contains

the following program statements:

'Reverse the order of array elements using Array.Reverse

Private Sub Button3_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button3.Click

 Dim i As Integer

 TextBox1.Text = ""

 Array.Reverse(RandArray)

 For i = 0 To UBound(RandArray)

 TextBox1.Text = TextBox1.Text & RandArray(i) & vbCrLf

 ProgressBar1.Value = i 'move progress bar

 Next i

End Sub

This event procedure is identical to the Button2_Click event procedure, with the

following exception:

Array.Sort(RandArray)

has become

Array.Reverse(RandArray)

9. Click the Stop Debugging button to end the program.

 Chapter 11 Using Arrays to Manage Numeric and String Data 301

10. Scroll to the top of the Code Editor, and locate the program statement that declares

the RandArray array:

Dim RandArray(0 To 499) As Long

11. Replace 499 in the array declaration statement with 2999.

The statement now looks like this:

Dim RandArray(0 To 2999) As Long

12. Run the program again to see how declaring and fi lling an array with 3000 elements

affects program performance.

Because processing 3000 elements is much more work, Visual Basic takes a little while

to update the text box object again and again as you fi ll, sort, and reverse RandArray.

However, the progress bar keeps you posted, and you can see that with just a small

change, you can adapt what you’ve learned in this chapter to different situations. (The

secret was using the UBound function to report the size of the array to the program’s

event procedures, rather than “hard coding” the upper bound at 499.)

You can further experiment with this program by adding a Randomize statement to the

Form1_Load event procedure (to make the results truly random each time that you run the

program), or by trying additional array sizes and array types. (Try an array size of 100, 800,

2000, or 5000 elements, for example.) If you try larger numbers, you’ll eventually exceed

the amount of data that the text box object can display, but it takes you a while before you

exceed the maximum array size allowed by Visual Basic.

If you want to focus on array operations without displaying the results, place a comment

character (‘) before each line of code that manipulates a text box object to “comment out”

the text box (but not the progress bar) portions of the program. You’ll be amazed at how

fast array operations run when the results do not need to be displayed on the form. (An

array of 100,000 elements loads in just a few seconds.)

302 Part II Programming Fundamentals
Chapter 11 Quick Reference

To Do this

Create an array Dimension the array by using the Dim keyword. For example:

Dim Employees(9) As String

Create a public array Dimension the array by using the Public keyword in a module. For example:

Public Employees(9) As String

Create a public array

specifying upper and

lower bounds

Dimension the array as described earlier, but also use the To keyword. For

example:

Public Employees(0 To 9) As String

Note: The lower bound of the array must always be zero (0). As a result, this

syntax is primarily useful for code readability (and is not supported in Visual

Basic .NET 2002 and 2003).

Assign a value to an

array

Specify the array name, the index of the array element, and the value. For

example:

Employees(5) = "Leslie"

Format text strings

with carriage return

and tab characters

Use the vbCrLf and vbTab constants within your program code. (To add these

values to strings, use the & operator.)

Create a dynamic

array

Specify the name and type of the array, but omit the number of elements. (If

the array has multiple dimensions, insert commas but no numbers between

the dimensions.) In your program code, specify the size of the array by using

the ReDim statement. For example:

ReDim Temperatures(10)

Process the elements

in an array

Write a For...Next loop that uses the loop counter variable to address each

element in the array. For example:

Dim i As Short

Dim Total As Single

For i = 0 To UBound(Temperatures)

 Total = Total + Temperatures(i)

Next

Redimension an array

while preserving the

data in it

Use the Preserve keyword in your ReDim statement. For example:

ReDim Preserve myCube(25, 25, 50)

Reorder the contents

of an array

Use methods in the Array class of the .NET Framework. To sort an array

named RandArray in ascending order, use the Array.Sort method as follows:

Array.Sort(RandArray)

To reverse the order of an array named RandArray, use the Array.Reverse

method as follows:

Array.Reverse(RandArray)

To give the user visual

feedback during long

calculations

Add a ProgressBar control to your form. (You can fi nd the ProgressBar control

on the Common Controls tab of the Toolbox.) Set the Minimum, Maximum,

and Value properties for the control by using program code. The counter vari-

able in a For...Next loop often offers a good way to set the Value property.

To Do this

Chapter 12

Working with Collections and the
System.Collections Namespace

After completing this chapter, you will be able to:

Q Manipulate the Controls collection on a form.

Q Use a For Each...Next loop to cycle through objects in a collection.

Q Create your own collections for managing Web site URLs and other information.

Q Use VBA collections within Offi ce.

In this chapter, you’ll learn how to use groups of objects called collections in a Microsoft

Visual Basic program. You’ll learn how to manage information with collections, process

collection objects by using For Each...Next loops, and explore new objects within the

System.Collections namespace. When you combine collection-processing skills with what

you learned about arrays in Chapter 11, “Using Arrays to Manage Numeric and String

Data,” you’ll have much of what you need to know about managing data effectively in

a program, and you’ll have taken your fi rst steps in manipulating the object collections

exposed by Microsoft Visual Studio 2008 and popular Windows applications.

Working with Object Collections

In this section, you’ll learn about collections, a powerful mechanism for controlling objects

and other data in a Visual Basic program. You already know that objects on a form are stored

together in the same fi le. But did you also know that Visual Basic considers the objects to be

members of the same group? In Visual Studio terminology, the entire set of objects on a form

is called the Controls collection, which is part of the System.Collections namespace provided

by the .NET Framework. The Controls collection is created automatically when you open a

new form, and when you add objects to the form, they become part of that collection. In

addition, Visual Studio maintains several standard object collections that you can use when

you write your programs. In the rest of this chapter, you’ll learn the basic skills you need to

work with any collection you encounter.

Each collection in a program has its own name so that you can reference it as a distinct unit in

the program code. For example, as you just learned, the collection containing all the objects

on a form is called the Controls collection. This grouping method is similar to the way arrays

group a list of elements together under one name, and like Visual Basic arrays, the Controls

collection is zero-based.
 303

304 Part II Programming Fundamentals
If you have more than one form in a project, you can create public variables associated with

the form names and use those variables to differentiate one Controls collection from another.

(You’ll learn more about using public variables to store form data in Chapter 14, “Managing

Windows Forms and Controls at Run Time.”) You can even add controls programmatically to

the Controls collection in a form.

In addition to working with collections and objects in your own programs, you can use Visual

Studio to browse your system for other application objects and use them in your programs.

Referencing Objects in a Collection

You can reference the objects in a collection, or the individual members of the collection, by

specifying the index position of the object in the group. Visual Basic stores collection objects

in the reverse order of that in which they were created, so you can use an object’s “birth

order” to reference the object individually, or you can use a loop to step through several

objects. For example, to identify the last object created on a form, you can specify the 0

(zero) index, as shown in this example:

Controls(0).Text = "Business"

This statement sets the Text property of the last object on the form to “Business”. (The

second-to-the-last object created has an index of 1, the third-to-the-last object created

has an index of 2, and so on.) Considering this logic, it’s important that you don’t always

associate a particular object on the form with an index value, because if a new object is

added to the collection, the new object takes the 0 index spot, and the remaining object

indexes are incremented by 1.

The following For...Next loop uses a message box to display the names of the last four controls

added to a form:

Dim i As Integer

For i = 0 To 3

 MsgBox(Controls(i).Name)

Next i

Note that I’ve directed this loop to cycle from 0 to 3 because the last control object added to

a form is in the 0 position. In the following section, you’ll learn a more effi cient method for

writing such a loop.

Writing For Each...Next Loops

Although you can reference the members of a collection individually, the most useful way to

work with objects in a collection is to process them as a group. In fact, the reason collections

exist is so that you can process groups of objects effi ciently. For example, you might want to

display, move, sort, rename, or resize an entire collection of objects at once.

 Chapter 12 Working with Collections and the System.Collections Namespace 305

To handle this kind of task, you can use a special loop called For Each...Next to cycle through

objects in a collection one at a time. A For Each...Next loop is similar to a For...Next loop.

When a For Each...Next loop is used with the Controls collection, it looks like this:

Dim CtrlVar As Control

...

For Each CtrlVar In Controls

 process object

Next CtrlVar

The CtrlVar variable is declared as a Control type and represents the current object in the

For Each...Next loop. Controls (note the “s”) is the collection class I introduced earlier that

represents all the control objects on the current form. The body of the loop is used to

process the individual objects of the collection. For example, you might want to change

the Enabled, Left, Top, Text, or Visible properties of the objects in the collection, or you

might want to list the name of each object in a list box.

Experimenting with Objects in the Controls Collection

In the following exercises, you’ll use program code to manipulate the objects on a form by

using the Controls collection. The project you’ll create will have three button objects, and

you’ll create event procedures that change the Text properties of each object, move objects

to the right, and give one object in the group special treatment. The program will use three

For Each...Next loops to manipulate the objects each time the user clicks one of the buttons.

Use a For Each...Next loop to change Text properties

1. Create a new Visual Basic Windows Forms Application project named My Controls

Collection.

2. Use the Button control to draw three button objects on the left side of the form, as

shown here:

306 Part II Programming Fundamentals

3. Use the Properties window to set the Name property of the third button object

(Button3) to “btnMoveObjects”.

4. Double-click the fi rst button object (Button1) on the form.

The Button1_Click event procedure appears in the Code Editor.

5. Type the following program statements:

For Each ctrl In Controls

 ctrl.Text = "Click Me!"

Next

This For Each...Next loop steps through the Controls collection on the form one control

at a time and sets each control’s Text property to “Click Me!”. The loop uses ctrl as an

object variable in the loop, which you’ll declare in the following step.

6. Scroll to the top of the form’s program code, and directly below the statement Public

Class Form1, type the following comment and variable declaration:

'Declare a variable of type Control to represent form controls

Dim ctrl As Control

This global variable declaration creates a variable in the Control class type that repre-

sents the current form’s controls in the program. You’re declaring this variable in the

general declarations area of the form so that it is valid throughout all of the form’s

event procedures.

Now you’re ready to run the program and change the Text property for each button on

the form.

7. Click the Start Debugging button on the Standard toolbar to run the program.

8. Click the fi rst button on the form (Button1).

The Button1_Click event procedure changes the Text property for each control in the

Controls collection. Your form looks like this:

 Chapter 12 Working with Collections and the System.Collections Namespace 307

9. Click the Close button on the form.

The program ends.

Note The Text property changes made by the program have not been replicated on the

form within the Designer. Changes made at run time do not change the program’s core

property settings.

10. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap12 folder as the location.

Now you’re ready to try a different experiment with the Controls collection: using the Left

property to move each control in the Controls collection to the right.

Use a For Each...Next loop to move controls

1. Display the form again, and then double-click the second button object (Button2).

2. Type the following program code in the Button2_Click event procedure:

For Each ctrl In Controls

 ctrl.Left = ctrl.Left + 25

Next

Each time the user clicks the second button, this For Each...Next loop steps through

the objects in the Controls collection one by one and moves them 25 pixels to the

right. (To move objects 25 pixels to the left, you would subtract 25 instead.) A pixel

is a device-independent measuring unit with which you can precisely place objects

on a form.

Tip In Visual Basic 6, you normally use TWIPs instead of pixels to specify measurements.

(A TWIP is a typographical measure equal to one-twentieth of a point.)

As in the previous event procedure you typed, the ctrl variable is a “stand-in” for the

current object in the collection and contains the same property settings as the object

it represents. In this loop, you adjust the Left property, which determines an object’s

position relative to the left side of the form.

3. Click the Start Debugging button.

The program runs, and three buttons appear on the left side of the form.

308 Part II Programming Fundamentals

4. Click the second button several times.

Each time you click the button, the objects on the form gradually move to the right.

Your screen looks like this after fi ve clicks:

5. Click the Close button on the form to stop the program.

6. Click the Save All button to save your changes.

You won’t always want to move all the objects on a form as a group. With Visual

Basic, you can process collection members individually. In the next exercise, you’ll

learn how to keep the third button object in one place while the other two buttons

move to the right.

Using the Name Property in a For Each...Next Loop

If you want to process one or more members of a collection differently than you process

the others, you can use the Name property, which uniquely identifi es each object on the

form. You’ve set the Name property periodically in this book to make your program code

more readable, but Name also can be used programmatically to identify specifi c objects in

your program.

To use the Name property programmatically, single out the objects to which you want to give

special treatment, and then note their Name properties. Then as you loop through the objects

on the form by using a For Each...Next loop, you can use one or more If statements to test for

the important Name properties and handle those objects differently. For example, let’s say

you want to construct a For Each...Next loop that moves one object more slowly across the

form than the other objects. You could use an If...Then statement to spot the Name property

of the slower object and then move that object a shorter distance, by not incrementing its Left

property as much as those of the other objects.

 Chapter 12 Working with Collections and the System.Collections Namespace 309

Tip If you plan to give several objects special treatment in a For Each...Next loop, you can use

ElseIf statements with the If...Then statement, or you can use a Select Case decision structure.

In the following exercise, you’ll test the Name property of the third button object (btnMove

Objects) to give that button special treatment in a For Each...Next loop. The result will be an

event procedure that moves the top two buttons to the right but keeps the bottom button

stationary.

Tip In addition to the Name property, most objects support the Tag property. Similar to the

Name property, the Tag property is a location in which you can store string data about the object.

The Tag property is empty by default, but you can assign information to it and test it to uniquely

identify objects in your program that you want to process differently.

Use the Name property to give an object in the Controls collection special treatment

1. Display the form, and then double-click the third button object.

The btnMoveObjects_Click event procedure appears in the Code Editor. Remember that

you changed the Name property of this object from “Button3” to “btnMoveObjects” in

an earlier exercise.

2. Type the following program code in the event procedure:

For Each ctrl In Controls

 If ctrl.Name <> "btnMoveObjects" Then

 ctrl.Left = ctrl.Left + 25

 End If

Next

The new feature of this For Each...Next loop is the If...Then statement that checks each

collection member to see whether it has a Name property called “btnMoveObjects”. If

the loop encounters this marker, it passes over the object without moving it. Note that,

as in the previous examples, the ctrl variable was declared at the top of the form as a

variable of the Control type with scope throughout the form.

3. Click the Save All button to save your edits.

Tip The complete Controls Collection program is located in the c:\vb08sbs\chap12\controls

collection folder.

4. Click the Start Debugging button.

The program runs, and the three button objects appear on the form.

310 Part II Programming Fundamentals
 5. Click the third button object six or seven times.

As you click the button, the top two button objects move across the screen. The third

button stays in the same place, however, as shown here:

 6. Click the Close button on the form to stop the program.

Giving one object in a collection special treatment can be very useful. In this case, using the

Name property in the For Each...Next loop improved the readability of the program code,

suggesting numerous potential uses for a game or graphics program. As you use other types

of collections in Visual Basic, be sure to keep the Name property in mind.

Creating Your Own Collections

With Visual Basic, you can also create your own collections to track data in a program and

manipulate it systematically. Although collections are often created to hold objects, such as

user interface controls, you can also use collections to store numeric or string values while

a program is running. In this way, collections nicely complement the capabilities of arrays,

which you learned about in the last chapter.

Declaring New Collections

New collections are declared as variables in a program, and the location in which you declare

them determines their scope, or the extent to which their assigned values persist. Because

collections are so useful, I usually declare them at the top of a form or in a module.

New collection declarations require the syntax

Dim CollectionName As New Collection()

 Chapter 12 Working with Collections and the System.Collections Namespace 311

where CollectionName is the name of your collection. If you place the collection declaration in

a module, you use the Public keyword instead of the Dim keyword. After you create a collec-

tion, you can add members to it by using the Add method, and you can examine the individual

members by using a For Each...Next loop.

The following exercise shows you how to create a collection that holds string data repre-

senting the Internet addresses (Uniform Resource Locators, or URLs) you’ve recently

used while surfi ng the Web. To connect to the Web, the program will use the Visual Basic

System.Diagnostics.Process.Start method and your default Web browser, a technique that

I fi rst introduced in Chapter 3, “Working with Toolbox Controls.”

Track Internet addresses by using a new collection

1. Click the Close Project command on the File menu.

2. Create a new Windows Forms Application project named My URL Collection.

3. Draw a wide text box object at the top of the form, centered within the form.

4. Draw two wide button objects below the text box object on the form, one button below

the other.

5. Set the following properties for the form and its objects:

Object Property Setting

TextBox1 Text “http://www.microsoft.com/learning/books/”

Button1 Text “Visit Site”

Button2 Text “List Recent Sites”

Form1 Text “URL Collection”

Your form looks like this:

6. Click the View Code button in Solution Explorer to display the Code Editor.

Object Property Setting

312 Part II Programming Fundamentals

7. Move the insertion point near the top of the form’s program code, and directly below

the statement Public Class Form1, type the following variable declaration, and then

press Enter:

Dim URLsVisited As New Collection()

This statement creates a new collection and assigns it the variable name URLsVisited.

Because you’re placing the declaration in the declaration area for the form, the collec-

tion has scope throughout all of the form’s event procedures.

8. Display the form again, double-click the Visit Site button, and then type the following

code in the Button1_Click event procedure:

URLsVisited.Add(TextBox1.Text)

System.Diagnostics.Process.Start(TextBox1.Text)

This program code uses the Add method to fi ll up, or populate, the collection with

members. When the user clicks the Button1 object, the program assumes that a valid

Internet address has been placed in the TextBox1 object. Every time the Button1 object

is clicked, the current URL in TextBox1 is copied to the URLsVisited collection as a string.

Next, the System.Diagnostics.Process.Start method is called with the URL as a param-

eter. Because the parameter is a URL, the Start method attempts to open the URL

by using the default Web browser on the system. (If the URL is invalid or an Internet

connection cannot be established, the Web browser handles the error.)

Note The only URLs this program adds to the URLsVisited collection are those you’ve

specifi ed in the TextBox1 object. If you browse to additional Web sites by using your Web

browser, those sites won’t be added to the collection.

9. Display the form again, and then double-click the List Recent Sites button.

10. Type the following program code using the Code Editor:

Dim URLName As String = "", AllURLs As String = ""

For Each URLName In URLsVisited

 AllURLs = AllURLs & URLName & vbCrLf

Next URLName

MsgBox(AllURLs, MsgBoxStyle.Information, "Web sites visited")

This event procedure prints the entire collection by using a For Each...Next loop and a

MsgBox function. The routine declares a string variable named URLName to hold each

member of the collection as it’s processed and initializes the variable to empty (“”). The

value is added to a string named AllURLs by using the concatenation operator (&), and

the vbCrLf string constant is used to place each URL on its own line.

Finally, the AllURLs string, which represents the entire contents of the URLsVisited collec-

tion, is displayed in a message box. I added the MsgBoxStyle.Information argument in the

MsgBox function to emphasize that the text being displayed is general information and

not a warning. (MsgBoxStyle.Information is also a built-in Visual Basic constant.)

 Chapter 12 Working with Collections and the System.Collections Namespace 313
 11. Click the Save All button to save your changes. Specify the c:\vb08sbs\chap12 folder as

the location.

Note To run the URL Collection program, your computer must establish a connection to the

Internet and be equipped with a Web browser, such as Windows Internet Explorer.

Run the URL Collection program

Tip The complete URL Collection program is located in the c:\vb08sbs\chap12\url

collection folder.

 1. Click the Start Debugging button to run the program.

The program displays a default Web site in the URL box, so it isn’t necessary to type

your own Internet address at fi rst.

 2. Click the Visit Site button.

Visual Basic adds the Microsoft Press Web site (http://www.microsoft.com/learning/books/)

to the URLsVisited collection, opens the default Web browser on your system, and

loads the requested Web page, as shown here. (You can explore the Web site if you’re

interested.)

 3. Click the form again. (You might need to click the form’s icon on the Windows taskbar.)

 4. Click the List Recent Sites button.

314 Part II Programming Fundamentals

Visual Basic executes the event procedure for the Button2 object. You see a message

box that looks like this:

5. Click OK in the message box, type a different Web site in the form’s text box, and then

click the Visit Site button.

You might want to visit the Microsoft Visual Basic Developer Center site located at

http://msdn.microsoft.com/vbasic/ to learn more about Visual Basic.

6. Visit a few more Web sites by using the URL Collection form, and then click the List

Recent Sites button.

Each time you click List Recent Sites, the MsgBox function expands to show the growing

URL history list, as shown here:

If you visit more than a few dozen Web sites, you’ll need to replace the MsgBox function

with a multiline text box on the form. (Can you fi gure out how to write the code?)

7. When you’re fi nished, click the Close button on the form, and then close your Web

browser.

Congratulations! You’ve learned how to use the Controls collection and how to process

collections by using a For Each...Next loop. These skills will be useful whenever you work

with collections in the System.Collections namespace. As you become more familiar with

classic computer science data structures and algorithms related to list management

(stacks, queues, dictionaries, hash tables, and other structured lists), you’ll fi nd that

System.Collections provides Visual Studio equivalents to help you manage information

in extremely innovative ways. (For a few book ideas related to data structures and algo-

rithms, see “General Books About Programming and Computer Science” in the Appendix,

“Where to Go for More Information.”)

 Chapter 12 Working with Collections and the System.Collections Namespace 315
One Step Further: VBA Collections

If you decide to write Visual Basic macros for Microsoft Offi ce applications in the future,

you’ll fi nd that collections play a big role in the object models of Microsoft Offi ce Word,

Microsoft Offi ce Excel, Microsoft Offi ce Access, Microsoft Offi ce PowerPoint, and several

other applications that support the Visual Basic for Applications (VBA) programming lan-

guage. In Word, for example, all the open documents are stored in the Documents collection,

and each paragraph in the current document is stored in the Paragraphs collection. You can

manipulate these collections with a For Each...Next loop just as you did the collections in the

preceding exercises. Offi ce 2003 and the 2007 Microsoft Offi ce system offer a large installa-

tion base for solutions based on VBA.

Tip As a software developer, you should be aware that not everyone has upgraded to the 2007

Offi ce system yet. In some cases, you’ll need to offer solutions based on VBA for several Offi ce

versions, because a typical business or organization will have multiple versions of Offi ce in use.

The following sample code comes from a Word VBA macro that uses a For Each...Next loop to

search each open document in the Documents collection for a fi le named MyLetter.doc. If the

fi le is found in the collection, the macro saves the fi le by using the Save method. If the fi le isn’t

found in the collection, the macro attempts to open the fi le from the c:\vb08sbs\chap12 folder.

Dim aDoc As Document

Dim docFound As Boolean

Dim docLocation As String

docFound = False

docLocation = "c:\vb08sbs\chap12\myletter.doc"

For Each aDoc In Documents

 If InStr(1, aDoc.Name, "myletter.doc", 1) Then

 docFound = True

 aDoc.Save

 Exit For

 End If

Next aDoc

If docFound = False Then

 Documents.Open FileName:=docLocation

End If

The macro begins by declaring three variables. The aDoc object variable represents the

current collection element in the For Each...Next loop. The docFound Boolean variable

assigns a Boolean value of True if the document is found in the Documents collection. The

docLocation string variable contains the path of the MyLetter.doc fi le on disk. (This routine

assumes that the MyLetter.doc fi le is with your book sample fi les in c:\vb08sbs\chap12.)

The For Each...Next loop cycles through each document in the Documents collection,

searching for the MyLetter fi le. If the fi le is detected by the InStr function (which detects

one string in another), the fi le is saved. If the fi le isn’t found, the macro attempts to open

it by using the Open method of the Documents object.

316 Part II Programming Fundamentals
Also note the Exit For statement, which I use to exit the For Each...Next loop when the My

Letter fi le has been found and saved. Exit For is a special program statement that you can

use to exit a For...Next loop or a For Each...Next loop when continuing will cause unwanted

results. In this example, if the MyLetter.doc fi le is located in the collection, continuing the

search is fruitless, and the Exit For statement affords a graceful way to stop the loop as soon

as its task is completed.

Entering the Word Macro

I’ve included this sample Word macro to show you how you can use collections in Visual

Basic for Applications, but the source code is designed for Word, not the Visual Studio IDE.

If you aren’t working in Word, the Documents collection won’t have any meaning to the

compiler.

The steps you follow to try the macro depend on the version of Word you are using. If you

are using Word 2003, you’ll need to start Word, click the Macros command on the Macro

submenu of the Tools menu, create a new name for the macro (I used OpenMyDoc), and

then enter the code by using the Visual Basic Editor. If you are using Word 2007, you’ll need

to start Word, click the Developer tab, click the Macros command, create a new name for the

macro, and then enter the code by using the Visual Basic Editor. (If the Developer tab is not

shown, you will need to enable it in the Word Options dialog box.)

In the Visual Basic Editor, the completed macro looks like the following illustration. You can run

the macro by clicking the Run Sub/UserForm button on the toolbar, just as you would run a

program in the Visual Studio IDE.

 Chapter 12 Working with Collections and the System.Collections Namespace 317
Tip Word macros are generally compatible between versions, although I have sometimes run

into problems when upgrading VBA macros or supporting multiple versions of Offi ce. If you are

using a different version of Word, you may need to slightly modify the sample code shown here.

Chapter 12 Quick Reference

To Do this

Process objects in a

collection

Write a For Each...Next loop that addresses each member of the collection

individually. For example:

Dim ctrl As Control

For Each ctrl In Controls

 ctrl.Text = "Click Me!"

Next

Move objects in the

Controls collection

from left to right

across the screen

Modify the Control.Left property of each collection object in a For Each...

Next loop. For example:

Dim ctrl As Control

For Each ctrl In Controls

 ctrl.Left = ctrl.Left + 25

Next

Give special treatment

to an object in a col-

lection

Test the Name property of the objects in the collection by using a For Each...

Next loop. For example:

Dim ctrl As Control

For Each ctrl In Controls

 If ctrl.Name <> "btnMoveObjects" Then

 ctrl.Left = ctrl.Left + 25

 End If

Next

Create a new collec-

tion and add mem-

bers to it

Declare a variable by using the New Collection syntax. Use the Add method

to add members. For example:

Dim URLsVisited As New Collection() URLsVisited.Add(TextBox1.Text)

Use Visual Basic

for Applications

collections in Word

If you are using Word 2003, start the program, click the Macros command

on the Macro submenu of the Tools menu, give the macro a name, click

Create, and then enter the macro code by using the Visual Basic Editor. If

you are using Word 2007, start the program, click the Developer tab, click

the Macros command, give the macro a name, click Create, and then enter

the macro code by using the Visual Basic Editor.

Word exposes many useful collections, including Documents and Paragraphs.

To Do this

Chapter 13

Exploring Text Files and String
Processing

After completing this chapter, you will be able to:

Q Display a text fi le by using a text box object, the LineInput function, and the

StreamReader class.

Q Use the My namespace, a time-saving “speed dial” feature within Visual Studio 2008.

Q Save notes in a text fi le by using the PrintLine function and the SaveFileDialog control.

Q Use string processing techniques to compare, combine, and sort strings.

Managing electronic documents is an important function in any modern business, and

Microsoft Visual Basic 2008 provides numerous mechanisms for working with different

document types and manipulating the information in documents. The most basic docu-

ment type is the text fi le, which is made up of non-formatted words and paragraphs,

letters, numbers, and a variety of special-purpose characters and symbols.

In this chapter, you’ll learn how to work with information stored in text fi les on your system.

You’ll learn how to open a text fi le and display its contents in a text box object, and you’ll learn

how to create a new text fi le on disk. You’ll also learn more about managing strings in your

programs, and you’ll use methods in the Microsoft .NET Framework String and StreamReader

classes to combine, sort, and display words, lines, and entire text fi les.

Displaying Text Files by Using a Text Box Object

The simplest way to display a text fi le in a program is to use a text box object. As you have

learned, you can create text box objects in any size. If the contents of the text fi le don’t fi t

neatly in the text box, you can also add scroll bars to the text box so that the user can examine

the entire fi le. To use the Visual Basic language to load the contents of a text fi le into a text box,

you need to use four functions. These functions are described in the following table and are

demonstrated in the fi rst exercise in this chapter. As I noted earlier, several of these functions

replace older keywords in the Visual Basic language.

Function Description

FileOpen Opens a text fi le for input or output

LineInput Reads a line of input from the text fi le

EOF Checks for the end of the text fi le

FileClose Closes the text fi le

Function Description
 319

320 Part II Programming Fundamentals
Opening a Text File for Input

A text fi le consists of one or more lines of numbers, words, or characters. Text fi les are distinct

from document fi les and Web pages, which contain formatting codes, and from executable fi les,

which contain instructions for the operating system. Typical text fi les on your system are identi-

fi ed by Windows Explorer as “Text Documents” or have the fi le name extension .txt, .ini, .log, or

.inf. Because text fi les contain only ordinary, recognizable characters, you can display them

easily by using text box objects.

By using an OpenFileDialog control to prompt the user for the fi le’s path, you can let the

user choose which text fi le to open in a program. This control contains the Filter property,

which controls the type of fi les displayed; the ShowDialog method, which displays the Open

dialog box; and the FileName property, which returns the path specifi ed by the user. The

OpenFileDialog control doesn’t open the fi le; it just gets the path.

The FileOpen Function

After you get the path from the user, you open the fi le in the program by using the FileOpen

function. The abbreviated syntax for the FileOpen function is

FileOpen(fi lenumber, pathname, mode)

You can fi nd the complete list of arguments in the Visual Studio documentation. These are

the most important:

Q fi lenumber is an integer from 1 through 255.

Q pathname is a valid Microsoft Windows path.

Q mode is a keyword indicating how the fi le will be used. (You’ll use the OpenMode.Input

and OpenMode.Output modes in this chapter.)

The fi le number is associated with the fi le when it’s opened. You then use this fi le number in

your code whenever you need to refer to the open fi le. Aside from this association, there’s

nothing special about fi le numbers; Visual Basic simply uses them to keep track of the differ-

ent fi les you open in your program.

A typical FileOpen function using an OpenFileDialog object looks like this:

FileOpen(1, OpenFileDialog1.FileName, OpenMode.Input)

Here the OpenFileDialog1.FileName property represents the path, OpenMode.Input is the

mode, and 1 is the fi le number.

 Chapter 13 Exploring Text Files and String Processing 321
Tip Text fi les that are opened by using this syntax are called sequential fi les because you must

work with their contents in sequential order. In contrast, you can access the information in a

database fi le in any order. (You’ll learn more about databases in Chapter 18, “Getting Started

with ADO.NET.”)

The following exercise demonstrates how you can use an OpenFileDialog control and

the FileOpen function to open a text fi le. The exercise also demonstrates how you can

use the LineInput and EOF functions to display the contents of a text fi le in a text box and

how you can use the FileClose function to close a fi le. (For more information about using

controls on the Dialogs tab of the Toolbox to create standard dialog boxes, see Chapter 4,

“Working with Menus, Toolbars, and Dialog Boxes.”)

Run the Text Browser program

 1. Start Microsoft Visual Studio, and open the Text Browser project in the c:\vb08sbs\

chap13\text browser folder.

The project opens in the IDE.

 2. If the project’s form isn’t visible, display it now.

The Text Browser form opens, as shown here:

322 Part II Programming Fundamentals

The form contains a large text box object that has scroll bars. It also contains a menu

strip object that places Open, Close, and Exit commands on the File menu; an open fi le

dialog object; and a label providing operating instructions. I also created the property

settings shown in the following table. (Note especially the text box settings.)

Object Property Setting

txtNote Enabled

Multiline

Name

ScrollBars

False

True

txtNote

Both

CloseToolStripMenuItem Enabled False

lblNote Text

Name

“Load a text fi le with the Open command.”

lblNote

Form1 Text “Text Browser”

3. Click the Start Debugging button on the Standard toolbar.

The Text Browser program runs.

4. On the Text Browser File menu, click the Open command.

The Open dialog box opens.

5. Open the c:\vb08sbs\chap13\text browser folder.

The contents of the Text Browser folder are shown here:

Object Property Setting

 Chapter 13 Exploring Text Files and String Processing 323

6. Double-click the Badbills.txt fi le name.

Badbills, a text fi le containing an article written in 1951 in the United States about the

dangers of counterfeit money, appears in the text box, as shown here:

7. Use the scroll bars to view the entire document. Memorize number 5.

8. When you’re fi nished, click the Close command on the File menu to close the fi le, and

then click the Exit command to quit the program.

The program stops, and the IDE returns.

Now you’ll take a look at two important event procedures in the program.

Examine the Text Browser program code

1. On the Text Browser form File menu, double-click the Open command.

The OpenToolStripMenuItem_Click event procedure appears in the Code Editor.

2. Resize the Code Editor to see more of the program code, if necessary.

324 Part II Programming Fundamentals
The OpenToolStripMenuItem_Click event procedure contains the following program code:

Dim AllText As String = "", LineOfText As String = ""

OpenFileDialog1.Filter = "Text files (*.TXT)|*.TXT"

OpenFileDialog1.ShowDialog() 'display Open dialog box

If OpenFileDialog1.FileName <> "" Then

 Try 'open file and trap any errors using handler

 FileOpen(1, OpenFileDialog1.FileName, OpenMode.Input)

 Do Until EOF(1) 'read lines from file

 LineOfText = LineInput(1)

 'add each line to the AllText variable

 AllText = AllText & LineOfText & vbCrLf

 Loop

 lblNote.Text = OpenFileDialog1.FileName 'update label

 txtNote.Text = AllText 'display file

 txtNote.Enabled = True 'allow text cursor

 CloseToolStripMenuItem.Enabled = True 'enable Close command

 OpenToolStripMenuItem.Enabled = False 'disable Open command

 Catch

 MsgBox("Error opening file.")

 Finally

 FileClose(1) 'close file

 End Try

End If

This event procedure performs the following actions:

Q Declares variables and assigns a value to the Filter property of the open fi le dia-

log object.

Q Prompts the user for a path by using the OpenFileDialog1 object.

Q Traps errors by using a Try...Catch code block.

Q Opens the specifi ed fi le for input by using the FileOpen function.

Q Uses the LineInput function to copy one line at a time from the fi le into a string

named AllText.

Q Copies lines until the end of the fi le (EOF) is reached or until there’s no more

room in the string. The AllText string has room for a very large fi le, but if an error

occurs during the copying process, the Catch clause displays the error.

Q Displays the AllText string in the text box, and enables the scroll bars and text

cursor.

Q Updates the File menu commands, and closes the fi le by using the FileClose

function.

Take a moment to see how the statements in the OpenToolStripMenuItem_Click event

procedure work—especially the FileOpen, LineInput, EOF, and FileClose functions. The

error handler in the procedure displays a message and aborts the loading process if

an error occurs.

 Chapter 13 Exploring Text Files and String Processing 325
Tip For more information about the statements and functions, highlight the keyword you’re

interested in, and press F1 to see a discussion of it in the Visual Studio documentation.

 3. Display the CloseToolStripMenuItem_Click event procedure, which is executed when the

Close menu command is clicked.

The event procedure looks like this:

txtNote.Text = "" 'clear text box

lblNote.Text = "Load a text file with the Open command."

CloseToolStripMenuItem.Enabled = False 'disable Close command

OpenToolStripMenuItem.Enabled = True 'enable Open command

The procedure clears the text box, updates the lblNote label, disables the Close command,

and enables the Open command.

Now you can use this simple program as a template for more advanced programs that process

text fi les. In the next section, you’ll learn how to type your own text into a text box and how to

save the text in the text box to a fi le on disk.

Using the StreamReader Class and My.Computer.
FileSystem to Open Text Files

In addition to the Visual Basic commands that open and display text fi les, there are two

additional techniques that you can use to open text fi les in a Visual Studio program: the

StreamReader class and the My namespace. Because these techniques use .NET Framework

objects that are available in all Visual Studio programming languages, I prefer them over

the “Visual Basic only” functions. However, Microsoft has been careful to preserve multiple

fi le operation mechanisms for aesthetic and compatibility reasons, so the choice is ulti-

mately up to you.

The StreamReader Class

The StreamReader class in the .NET Framework library allows you to open and display text

fi les in your programs. I’ll use this technique several times in this book when I work with

text fi les (for example, in Chapter 16, “Inheriting Forms and Creating Base Classes”). To

make it easier to use the StreamReader class, you add the following Imports statement

to the top of your code, as discussed in Chapter 5, “Visual Basic Variables and Formulas,

and the .NET Framework”:

Imports System.IO

326 Part II Programming Fundamentals
Then, if your program contains a text box object, you can display a text fi le inside the text

box by using the following program code. (The text fi le opened in this example is Badbills.txt,

and the code assumes an object named TextBox1 has been created on your form.)

Dim StreamToDisplay As StreamReader

StreamToDisplay = New StreamReader("C:\vb08sbs\chap13\text browser\badbills.txt")

TextBox1.Text = StreamToDisplay.ReadToEnd

StreamToDisplay.Close()

TextBox1.Select(0, 0)

StreamReader is a .NET Framework alternative to opening a text fi le by using the Visual Basic

FileOpen function. In this StreamReader example, I declare a variable named StreamToDisplay

of the type StreamReader to hold the contents of the text fi le, and then I specify a valid path

for the fi le I want to open. Next I read the contents of the text fi le into the StreamToDisplay

variable by using the ReadToEnd method, which retrieves all the text in the fi le from the

current location (the beginning of the text fi le) to the end of the text fi le and assigns it to

the Text property of the text box object. The fi nal statements close the text fi le and use the

Select method to remove the selection in the text box.

The My Namespace

The second alternative to opening text fi les in a program is a helpful feature of Visual Basic

that uses the My namespace. The My namespace is a rapid access feature designed to sim-

plify accessing the .NET Framework to perform common tasks, such as manipulating forms,

exploring the host computer and its fi le system, displaying information about the current

application or its user, and accessing Web services. Most of these capabilities were previously

available through the .NET Framework Base Class Library, but due to its complexity, many

programmers found the features diffi cult to locate and use. The My namespace was added

in Visual Studio 2005 to make programming easier.

The My namespace is organized into several categories of functionality, as shown in the

following table.

Object Description

My.Application Information related to the current application, including the title, directory, and

version number.

My.Computer Information about the hardware, software, and fi les located on the current (local)

computer. My.Computer includes My.Computer.FileSystem, which you can use to

open text fi les and encoded fi les on the system.

My.Forms Information about the forms in your current Visual Studio project. Chapter 16

shows how to use My.Forms to switch back and forth between forms at run time.

My.Resources Information about your application’s resources (read only). Allows you to dynam-

ically retrieve resources for your application.

Object Description

 Chapter 13 Exploring Text Files and String Processing 327
Object Description

My.Settings Information about your application’s settings. Allows you to dynamically store

and retrieve property settings and other information for your application.

My.User Information about the current user active on My.Computer.

My.WebServices Information about Web services active on My.Computer, and a mechanism to

access new Web services.

The My namespace is truly a “speed dial” feature, fully explorable via the Microsoft

IntelliSense feature of the Code Editor. For example, to use a message box to display the

name of the current computer followed by the name of the current user in a program, you

can simply type:

MsgBox(My.User.Name)

This produces output similar to the following:

The My.Computer object can display many categories of information about your computer

and its fi les. For example, the following statement displays the current system time (the local

date and time) maintained by the computer:

MsgBox(My.Computer.Clock.LocalTime)

You can use the My.Computer.FileSystem object along with the ReadAllText method to

open a text fi le and display its contents within a text box object. Here’s the syntax you

can use if you have a text box object on your form named txtNote (as in the last sample

program) and you plan to use an open fi le dialog object named OpenFileDialog1 to get

the name of the text fi le from the user:

Dim AllText As String = ""

OpenFileDialog1.Filter = "Text files (*.TXT)|*.TXT"

OpenFileDialog1.ShowDialog() 'display Open dialog box

If OpenFileDialog1.FileName <> "" Then

 AllText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

 txtNote.Text = AllText 'display file

End If

The ReadAllText method copies the entire contents of the given text fi le to a string variable or

object (in this case, a string variable named AllText), so in terms of performance and coding

time, ReadAllText is faster than reading the fi le one line at a time with the LineInput function.

Object Description

328 Part II Programming Fundamentals
Because of this speed factor, the My namespace provides an excellent shortcut to many

common programming tasks. It is important to take note of this feature and its possible

uses, but the My namespace is effi cient here because we are reading the entire text fi le.

The LineInput function and StreamReader class offer more features than the current imple-

mentation of the My namespace, and especially the ability to process fi les one line at a time

(a crucial capability for sorting and parsing tasks, as we shall soon see). So it is best to mas-

ter each of the three methods for opening text fi les discussed in this chapter. The one you

use in actual programming practice will depend on the task at hand, and the way you plan

to use your code in the future.

Creating a New Text File on Disk

To create a new text fi le on disk by using Visual Basic, you can use many of the functions and

keywords used in the last example. Creating new fi les on disk and saving data to them is use-

ful if you plan to generate custom reports or logs, save important calculations or values, or

create a special-purpose word processor or text editor. Here’s an overview of the steps you’ll

need to follow in the program:

 1. Get input from the user or perform mathematical calculations, or do both.

 2. Assign the results of your processing to one or more variables. For example, you could

assign the contents of a text box to a string variable named InputForFile.

 3. Prompt the user for a path by using a SaveFileDialog control. You use the ShowDialog

method to display the dialog box.

 4. Use the path received in the dialog box to open the fi le for output.

 5. Use the PrintLine function to save one or more values to the open fi le.

 6. Close the fi le when you’re fi nished by using the FileClose function.

The following exercise demonstrates how you can use TextBox and SaveFileDialog controls

to create a simple note-taking utility. The program uses the FileOpen function to open a fi le,

the PrintLine function to store string data in it, and the FileClose function to close the fi le.

You can use this program to take notes at home or at work and then to stamp them with

the current date and time.

Run the Quick Note program

 1. Click the Close Project command on the File menu.

 2. Open the Quick Note project in the c:\vb08sbs\chap13\quick note folder.

The project opens in the IDE.

 Chapter 13 Exploring Text Files and String Processing 329

3. If the project’s form isn’t visible, display it now.

The Quick Note form opens, as shown in the following illustration. It looks similar

to the Text Browser form. However, I replaced the OpenFileDialog control with the

SaveFileDialog control on the form. The File menu contains the Save As, Insert Date,

and Exit commands.

I set the following properties in the project:

Object Property Setting

txtNote Multiline

Name

ScrollBars

True

txtNote

Vertical

lblNote Text “Type your note and then save it to disk.”

Form1 Text “Quick Note”

4. Click the Start Debugging button.

5. Type the following text, or some text of your own, in the text box:

How to Detect Counterfeit Coins

1. Drop coins on a hard surface. Genuine coins have a bell-like ring; most

counterfeit coins sound dull.

2. Feel all coins. Most counterfeit coins feel greasy.

3. Cut edges of questionable coins. Genuine coins are not easily cut.

Object Property Setting

330 Part II Programming Fundamentals

When you’re fi nished, your screen looks similar to this:

Tip To paste text from the Windows Clipboard into the text box, press Ctrl+V or

Shift+Insert. To copy text from the text box to the Windows Clipboard, select the text,

and then press Ctrl+C.

Now try using the commands on the File menu.

6. On the File menu, click the Insert Date command.

The current date and time appear as the fi rst line in the text box, as shown here:

The Insert Date command provides a handy way to include the current time stamp in a

fi le, which is useful if you’re creating a diary or a logbook.

7. On the File menu, click the Save As command.

The program displays a Save As dialog box with all the expected features. The default

fi le type is set to .txt. Your screen looks like the illustration on the following page.

 Chapter 13 Exploring Text Files and String Processing 331

N

8. In the Save As dialog box, open the c:\vb08sbs\chap13\quick note folder if it isn’t

already open. Then type Badcoins.txt in the File Name text box, and click Save.

The text of your document is saved in the new Badcoins.txt text fi le.

9. On the File menu, click the Exit command.

The program stops, and the development environment returns.

ow you’ll take a look at the event procedures in the program.

Examine the Quick Note program code

1. On the Quick Note form File menu, double-click the Insert Date command.

The InsertDateToolStripMenuItem_Click event procedure appears in the Code Editor.

You see the following program code:

txtNote.Text = My.Computer.Clock.LocalTime & vbCrLf & txtNote.Text

txtNote.Select(1, 0) 'remove selection

This event procedure adds the current date and time to the text box by linking together,

or concatenating, the current date (generated by the My.Computer.Clock object and the

LocalTime property), a carriage return (added by the vbCrLf constant), and the Text prop-

erty. You could use a similar technique to add just the current date (by using DateString)

or any other information to the text in the text box.

332 Part II Programming Fundamentals
 2. Take a moment to see how the concatenation statements work, and then examine the

SaveAsToolStripMenuItem_Click event procedure in the Code Editor.

You see the following program code:

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"

SaveFileDialog1.ShowDialog()

If SaveFileDialog1.FileName <> "" Then

 FileOpen(1, SaveFileDialog1.FileName, OpenMode.Output)

 PrintLine(1, txtNote.Text) 'copy text to disk

 FileClose(1)

End If

This block of statements uses a save fi le dialog object to display a Save As dialog box,

verifi es whether the user selected a fi le, opens the fi le for output as fi le number 1,

writes the value in the txtNote.Text property to disk by using the PrintLine function,

and then closes the text fi le. Note especially the statement

PrintLine(1, txtNote.Text) 'copy text to disk

which assigns the entire contents of the text box to the open fi le. PrintLine is similar to

the older Visual Basic Print and Print# statements; it directs output to the specifi ed fi le

rather than to the screen or the printer. The important point to note here is that the

entire fi le is stored in the txtNote.Text property.

 3. Review the FileOpen, PrintLine, and FileClose functions, and then close the program by

using the Close Project command on the File menu.

You’re fi nished with the Quick Note program.

Processing Text Strings with Program Code

As you learned in the preceding exercises, you can quickly open, edit, and save text fi les

to disk with the TextBox control and a handful of well-chosen program statements. Visual

Basic also provides a number of powerful statements and functions specifi cally designed

for processing the textual elements in your programs. In this section, you’ll learn how to

extract useful information from a text string, copy a list of strings into an array, and sort

a list of strings.

An extremely useful skill to develop when working with textual elements is the ability to sort

a list of strings. The basic concepts in sorting are simple. You draw up a list of items to sort,

and then compare the items one by one until the list is sorted in ascending or descending

alphabetical order.

 Chapter 13 Exploring Text Files and String Processing 333
In Visual Basic, you compare one item with another by using the same relational operators

that you use to compare numeric values. The tricky part (which sometimes provokes long-

winded discussion among computer scientists) is the specifi c sorting algorithm you use to

compare elements in a list. We won’t get into the advantages and disadvantages of different

sorting algorithms in this chapter. (The bone of contention is usually speed, which makes a

difference only when several thousand items are sorted.) Instead, we’ll explore how the basic

string comparisons are made in a sort. Along the way, you’ll learn the skills necessary to sort

your own text boxes, list boxes, fi les, and databases.

The String Class and Useful Methods and Keywords

The most common task you’ve accomplished so far with strings is concatenating them by

using the concatenation operator (&). For example, the following program statement con-

catenates three literal string expressions and assigns the result “Bring on the circus!” to the

string variable Slogan:

Dim Slogan As String

Slogan = "Bring" & " on the " & "circus!"

You can also concatenate and manipulate strings by using methods in the String class of

the .NET Framework library. For example, the String.Concat method allows equivalent string

concatenation by using this syntax:

Dim Slogan As String

Slogan = String.Concat("Bring", " on the ", "circus!")

Visual Basic 2008 features two methods for string concatenation and many other string-

processing tasks: You can use operators and functions from earlier versions of Visual Basic

(Mid, UCase, LCase, and so on), or you can use newer methods from the .NET Framework

(Substring, ToUpper, ToLower, and so on). There’s no real “penalty” for using either string-

processing technique, although the older methods exist primarily for compatibility purposes.

(By supporting both methods, Microsoft hopes to welcome upgraders and let them learn

new features at their own pace.) In the rest of this chapter, I’ll focus on the newer string-

processing functions from the .NET Framework String class. However, you can use either

string-processing method or a combination of both.

334 Part II Programming Fundamentals
The following table lists several of the .NET Framework methods that appear in subsequent

exercises and their close equivalents in the Visual Basic programming language. The fourth

column in the table provides sample code for the methods in the String class of the .NET

Framework.

.NET

Framework

method

Visual

Basic

function Description .NET Framework example

ToUpper UCase Changes letters in a string to

uppercase.

Dim Name, NewName As String

Name = "Kim"

NewName = Name.ToUpper

'NewName = "KIM"

ToLower LCase Changes letters in a string to

lowercase.

Dim Name, NewName As String

Name = "Kim"

NewName = Name.ToLower

'NewName = "kim"

Length Len Determines the number of

characters in a string.

Dim River As String

Dim Size As Short

River = "Mississippi"

Size = River.Length

'Size = 11

Substring Mid Returns a fi xed number of

characters in a string from a

given starting point. (Note:

The fi rst element in a string

has an index of 0.)

Dim Cols, Middle As String

Cols = "First Second Third"

Middle = Cols.SubString(6, 6)

'Middle = "Second"

IndexOf InStr Finds the starting point of

one string within a larger

string.

Dim Name As String

Dim Start As Short

Name = "Abraham"

Start = Name.IndexOf("h")

'Start = 4

Trim Trim Removes leading and

following spaces from a

string.

Dim Spacey, Trimmed As String

Spacey = " Hello "

Trimmed = Spacey.Trim

'Trimmed = "Hello"

Remove Removes characters from the

middle of a string.

Dim RawStr, CleanStr As String

RawStr = "Hello333 there"

CleanStr = RawStr.Remove(5, 3)

'CleanStr = "Hello there"

Insert Adds characters to the middle

of a string.

Dim Oldstr, Newstr As String

Oldstr = "Hi Felix"

Newstr = Oldstr.Insert(3, "there ")

'Newstr = "Hi there Felix"

StrComp Compares strings and

disregards case differences.

Dim str1 As String = "Soccer"

Dim str2 As String = "SOCCER"

Dim Match As Short

Match = StrComp(str1, _

 str2, CompareMethod.Text)

'Match = 0 [strings match]

.NET

Framework

method

Visual

Basic

function Description .NET Framework example

 Chapter 13 Exploring Text Files and String Processing 335
Sorting Text

Before Visual Basic can compare one character with another in a sort, it must convert each

character into a number by using a translation table called the ASCII character set (also called

the ANSI character set). ASCII is an acronym for American Standard Code for Information

Interchange. Each of the basic symbols that you can display on your computer has a different

ASCII code. These codes include the basic set of “typewriter” characters (codes 32 through

127) and special “control” characters, such as tab, line feed, and carriage return (codes 0

through 31). For example, the lowercase letter “a” corresponds to the ASCII code 97, and the

uppercase letter “A” corresponds to the ASCII code 65. As a result, Visual Basic treats these

two characters quite differently when sorting or performing other comparisons.

In the 1980s, IBM extended ASCII with codes 128 through 255, which represent accented,

Greek, and graphic characters, as well as miscellaneous symbols. ASCII and these additional

characters and symbols are typically known as the IBM extended character set.

Tip To see a table of the codes in the ASCII character set, search for “Chr, ChrW functions” in the

Visual Studio documentation, and then click ASCII Character Codes in the See Also section near

the end of the article.

The ASCII character set is still the most important numeric code for beginning programmers

to learn, but it isn’t the only character set. As the market for computers and application soft-

ware has become more global, a more comprehensive standard for character representation

called Unicode has emerged. Unicode can hold up to 65,536 symbols—plenty of space to

represent the traditional symbols in the ASCII character set plus most (written) international

languages and symbols. A standards body maintains the Unicode character set and adds

symbols to it periodically. Windows Server 2003, Windows XP, Windows Vista, and Visual

Studio have been specifi cally designed to manage ASCII and Unicode character sets. (For

more information about the relationship between Unicode, ASCII, and Visual Basic data

types, see “Working with Specifi c Data Types” in Chapter 5.)

In the following sections, you’ll learn more about using the ASCII character set to process

strings in your programs. As your applications become more sophisticated and you start

planning for the global distribution of your software, you’ll need to learn more about

Unicode and other international settings.

336 Part II Programming Fundamentals
Working with ASCII Codes

To determine the ASCII code of a particular letter, you can use the Visual Basic Asc function.

For example, the following program statement assigns the number 122 (the ASCII code for

the lowercase letter “z”) to the AscCode short integer variable:

Dim AscCode As Short

AscCode = Asc("z")

Conversely, you can convert an ASCII code to a letter with the Chr function. For example, this

program statement assigns the letter “z” to the letter character variable:

Dim letter As Char

letter = Chr(122)

The same result could also be achieved if you used the AscCode variable just declared as

shown here:

letter = Chr(AscCode)

How can you compare one text string or ASCII code with another? You simply use one of the

six relational operators Visual Basic supplies for working with textual and numeric elements.

These relational operators are shown in the following table.

Operator Meaning

<> Not equal to

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

A character is “greater than” another character if its ASCII code is higher. For example, the

ASCII value of the letter “B” is greater than the ASCII value of the letter “A,” so the expression

"A" < "B"

is true, and the expression

"A" > "B"

is false.

Operator Meaning

 Chapter 13 Exploring Text Files and String Processing 337
When comparing two strings that each contain more than one character, Visual Basic begins

by comparing the fi rst character in the fi rst string with the fi rst character in the second string

and then proceeds character by character through the strings until it fi nds a difference. For

example, the strings Mike and Michael are the same up to the third characters (“k” and “c”).

Because the ASCII value of “k” is greater than that of “c,” the expression

"Mike" > "Michael"

is true.

If no differences are found between the strings, they are equal. If two strings are equal

through several characters but one of the strings continues and the other one ends, the

longer string is greater than the shorter string. For example, the expression

"AAAAA" > "AAA"

is true.

Sorting Strings in a Text Box

The following exercise demonstrates how you can use relational operators and several string

methods and functions to sort lines of text in a text box. The program is a revision of the

Quick Note utility and features an Open command that opens an existing fi le and a Close

command that closes the fi le. There’s also a Sort Text command on the File menu that you

can use to sort the text currently displayed in the text box.

Because the entire contents of a text box are stored in one string, the program must fi rst

break that long string into smaller individual strings. These strings can then be sorted by using

the ShellSort Sub procedure, a sorting routine based on an algorithm created by Donald Shell

in 1959. To simplify these tasks, I created a module that defi nes a dynamic string array to hold

each of the lines in the text box. I also placed the ShellSort Sub procedure in the module so

that I can call it from any event procedure in the project. (For more about using modules,

see Chapter 10, “Creating Modules and Procedures.”) Although you learned how to use

the powerful Array.Sort method in Chapter 11, “Using Arrays to Manage Numeric and

String Data,” the ShellSort procedure is a more fl exible and customizable tool. Building

the routine from scratch also gives you a little more experience with processing textual

values—an important learning goal of this chapter.

338 Part II Programming Fundamentals

Another interesting aspect of this program is the routine that determines the number of lines

in the text box object. No existing Visual Basic function computes this value automatically. I

wanted the program to be able to sort a text box of any size line by line. To accomplish this, I

created the code that follows. It uses the Substring method to examine one letter at a time in

the text box object and then uses the Chr function to search for the carriage return character,

ASCII code 13, at the end of each line. (Note in particular how the Substring method is used

as part of the Text property of the txtNote object. The String class automatically provides this

method, and many others, for any properties or variables that are declared in the String type.)

Dim ln, curline, letter As String

Dim i, charsInFile, lineCount As Short

'determine number of lines in text box object (txtNote)

lineCount = 0 'this variable holds total number of lines

charsInFile = txtNote.Text.Length 'get total characters

For i = 0 To charsInFile - 1 ‘move one char at a time

 letter = txtNote.Text.Substring(i, 1) 'get letter

 If letter = Chr(13) Then 'if carriage ret found

 lineCount += 1 ‘go to next line (add to count)

 i += 1 'skip linefeed char (typically follows cr on PC)

 End If

Next i

The total number of lines in the text box is assigned to the lineCount short integer variable. I

use this value a little later to dimension a dynamic array in the program to hold each individual

text string. The resulting array of strings then gets passed to the ShellSort Sub procedure for

sorting, and ShellSort returns the string array in alphabetical order. After the string array is

sorted, I can simply copy it back to the text box by using a For loop.

Run the Sort Text program

1. Open the Sort Text project located in the c:\vb08sbs\chap13\sort text folder.

2. Click the Start Debugging button to run the program.

3. Type the following text, or some text of your own, in the text box:

Zebra

Gorilla

Moon

Banana

Apple

Turtle

 Chapter 13 Exploring Text Files and String Processing 339

Be sure to press Enter after you type “Turtle” (or your own last line) so that Visual Basic

can calculate the number of lines correctly.

4. Click the Sort Text command on the File menu.

The text you typed is sorted and redisplayed in the text box as follows:

5. Click the Open command on the File menu, and open the abc.txt fi le in the c:\vb08sbs\

chap13 folder, as shown here:

The abc.txt fi le contains 36 lines of text. Each line begins with either a letter or a number

from 1 through 10.

6. Click the Sort Text command on the File menu to sort the contents of the abc.txt fi le.

340 Part II Programming Fundamentals
The Sort Text program sorts the fi le in ascending order and displays the sorted list of

lines in the text box, as shown here:

 7. Scroll through the fi le to see the results of the alphabetical sort.

Notice that although the alphabetical portion of the sort ran perfectly, the sort produced

a strange result for one of the numeric entries—the line beginning with the number 10

appears second in the list rather than tenth. What’s happening here is that Visual Basic

read the 1 and the 0 in the number 10 as two independent characters, not as a number.

Because we’re comparing the ASCII codes of these strings from left to right, the program

produces a purely alphabetical sort. If you want to sort only numbers with this program,

you need to prohibit textual input, modify the code so that the numeric input is stored in

numeric variables, and then compare the numeric variables instead of strings.

One Step Further: Examining the Sort Text Program Code

To add a few more tools to your programming skill set and review some of the concepts that

I have discussed in the last several chapters, in the next exercise you’ll take a closer look at

the Sort Text program code.

Examine the Sort Text program

 1. On the Sort Text program File menu, click the Exit command to stop the program.

 2. Open the Code Editor for Form1, and display the code for the

SortTextToolStripMenuItem_Click event procedure.

 Chapter 13 Exploring Text Files and String Processing 341
We’ve already discussed the fi rst routine in this event procedure, which counts the

number of lines in the text box by using the Substring method to search for carriage

return codes. The remainder of the event procedure dimensions a string array, copies

each line of text into the array, calls a procedure to sort the array, and displays the re-

ordered list in the text box.

The entire SortTextToolStripMenuItem_Click event procedure looks like this:

Dim ln, curline, letter As String

Dim i, charsInFile, lineCount As Short

'determine number of lines in text box object (txtNote)

lineCount = 0 'this variable holds total number of lines

charsInFile = txtNote.Text.Length 'get total characters

For i = 0 To charsInFile - 1 'move one char at a time

 letter = txtNote.Text.Substring(i, 1) ‘get letter

 If letter = Chr(13) Then 'if carriage ret found

 lineCount += 1 'go to next line (add to count)

 i += 1 'skip linefeed char (typically follows cr on PC)

 End If

Next i

'build an array to hold the text in the text box

ReDim strArray(lineCount) 'create array of proper size

curline = 1

ln = "" 'use ln to build lines one character at a time

For i = 0 To charsInFile - 1 'loop through text again

 letter = txtNote.Text.Substring(i, 1) 'get letter

 If letter = Chr(13) Then 'if carriage return found

 curline = curline + 1 'increment line count

 i += 1 'skip linefeed char

 ln = "" 'clear line and go to next

 Else

 ln = ln & letter 'add letter to line

 strArray(curline) = ln 'and put in array

 End If

Next i

'sort array

ShellSort(strArray, lineCount)

'then display sorted array in text box

txtNote.Text = ""

curline = 1

For i = 1 To lineCount

 txtNote.Text = txtNote.Text & _

 strArray(curline) & vbCrLf

 curline += 1

Next i

txtNote.Select(1, 0) 'remove text selection

342 Part II Programming Fundamentals

The strArray array was declared in a module (Module1.vb) that’s also part of this program

(Chapter 10). By using the ReDim statement (Chapter 11), I am dimensioning strArray as

a dynamic array with the lineCount variable. This statement creates an array that has the

same number of elements as the text box has lines of text (a requirement for the ShellSort

Sub procedure). Using a For loop (Chapter 7, “Using Loops and Timers”) and the ln variable,

I scan through the text box again, looking for carriage return characters and copying each

complete line found to strArray. After the array is full of text, I call the ShellSort procedure

located in the Module1.vb module, which I discussed earlier in this chapter.

3. Display the code for the Module1.vb module in the Code Editor.

This module declares the strArray public array variable (Chapter 11) and then defi nes

the content of the ShellSort procedure. The ShellSort procedure uses an If statement

and the <= relational operator (Chapters 6, 8, and this chapter) to compare array

elements and swap any that are out of order. The procedure looks like this:

Sub ShellSort(ByRef sort() As String, ByVal numOfElements As Short)

 Dim temp As String

 Dim i, j, span As Short

 'The ShellSort procedure sorts the elements of sort()

 'array in descending order and returns it to the calling

 'procedure.

 span = numOfElements \ 2

 Do While span > 0

 For i = span To numOfElements - 1

 For j = (i - span + 1) To 1 Step -span

 If sort(j) <= sort(j + span) Then Exit For

 'swap array elements that are out of order

 temp = sort(j)

 sort(j) = sort(j + span)

 sort(j + span) = temp

 Next j

 Next i

 span = span \ 2

 Loop

End Sub

The method of the sort is to continually divide the main list of elements into sublists

that are smaller by half. The sort then compares the tops and the bottoms of the sub-

lists to see whether the elements are out of order. If the top and bottom are out of

order, they’re exchanged. The result is an array named sort() that’s sorted alphabetically

in descending order. To change the direction of the sort, simply reverse the relational

operator (change <= to >=).

The remaining event procedures in Form1 (OpenToolStripMenuItem_Click,

CloseToolStripMenuItem_Click, SaveAsToolStripMenuItem_Click, InsertDateToolStripMen

uItem_Click, and ExitToolStripMenuItem_Click) are all similar to the procedures that you

studied in the Text Browser and the Quick Note programs. (See my explanations earlier

in this chapter for the details.)

 Chapter 13 Exploring Text Files and String Processing 343
 4. Click the Close Project command on the File menu.

You’re fi nished working with strings, arrays, and text fi les for now.

Congratulations! If you’ve worked through Chapters 5 through 13, you’ve completed the

programming fundamentals portion of this book, and you are now ready to focus specifi cally

on creating professional-quality user interfaces in your programs. You have come a long way

in your study of Visual Basic programming skills and in your use of the Visual Studio IDE. Take

a short break, and I’ll see you again in Part III, “Designing the User Interface”!

Chapter 13 Quick Reference

To Do this

Open a text fi le Use the FileOpen function. For example:

FileOpen(1, OpenFileDialog1.FileName, _

 OpenMode.Input)

Get a line of input

from a text fi le

Use the LineInput function. For example:

Dim LineOfText As String

LineOfText = LineInput(1)

Check for the end of

a fi le

Use the EOF function. For example:

Dim LineOfText, AllText As String

Do Until EOF(1)

 LineOfText = LineInput(1)

 AllText = AllText & LineOfText & _

 vbCrLf

Loop

Close an open fi le Use the FileClose function. For example:

FileClose(1)

Display a text fi le by

using LineInput

Use the LineInput function to copy text from an open fi le to a string variable,

and then assign the string variable to a text box object. For example:

Dim AllText, LineOfText As String

Do Until EOF(1) 'read lines from file

 LineOfText = LineInput(1)

 AllText = AllText & LineOfText & _

 vbCrLf

Loop

txtNote.Text = AllText 'display file

Display a text

fi le by using the

StreamReader

class

Add the statement Imports System.IO to your form’s declaration section, and

then use StreamReader. For example, to display the fi le in a text box object

named TextBox1:

Dim StreamToDisplay As StreamReader

StreamToDisplay = New StreamReader(_

 "c:\vb08sbs\chap13\text browser\badbills.txt")

TextBox1.Text = StreamToDisplay.ReadToEnd StreamToDisplay.Close()

TextBox1.Select(0, 0)

To Do this

344 Part II Programming Fundamentals
To Do this

Display a text fi le

by using the My

namespace

Use the My.Computer.FileSystem object and the ReadAllText method. For

example, assuming that you are also using an open fi le dialog object named

ofd and a text box object named txtNote:

Dim AllText As String = ""

ofd.Filter = "Text files (*.TXT)|*.TXT"

ofd.ShowDialog()

If ofd.FileName <> "" Then

 AllText = _

 My.Computer.FileSystem.ReadAllText(ofd.FileName)

 txtNote.Text = AllText 'display file

End If

Display an Open

dialog box

Add an OpenFileDialog control to your form, and then use the ShowDialog

method of the open fi le dialog object. For example:

OpenFileDialog1.ShowDialog()

Create a new text fi le Use the FileOpen function. For example:

FileOpen(1, SaveFileDialog1.FileName, _

 OpenMode.Output)

Display a Save As

dialog box

Add a SaveFileDialog control to your form, and then use the ShowDialog

method of the save fi le dialog object. For example:

SaveFileDialog1.ShowDialog()

Save text to a fi le Use the Print or PrintLine function. For example:

PrintLine(1, txtNote.Text)

Convert text charac-

ters to ASCII codes

Use the Asc function. For example:

Dim Code As Short

Code = Asc("A") 'Code equals 65

Convert ASCII codes

to text characters

Use the Chr function. For example:

Dim Letter As Char

Letter = Chr(65) 'Letter equals "A"

Extract characters

from the middle of a

string

Use the Substring method or the Mid function. For example:

Dim Cols, Middle As String

Cols = "First Second Third"

Middle = Cols.SubString(6, 6)

'Middle = "Second"

To Do this

Microsoft Visual Basic 2008 Step by Step

Part III

Designing the User Interface

In this part:

Chapter 14, Managing Windows Forms and Controls at Run Time 347

Chapter 15, Adding Graphics and Animation Effects . 373

Chapter 16, Inheriting Forms and Creating Base Classes 391

Chapter 17, Working with Printers . 411

In Part II, you learned many of the core development skills necessary for writing Microsoft

Visual Basic applications. You learned how to use variables, operators, decision structures,

and the Microsoft .NET Framework; how to manage code fl ow with loops, timers, procedures,

and structured error handlers; how to debug your programs; and how to organize informa-

tion with arrays, collections, text fi les, and string processing techniques.

Each exercise you have worked with so far concentrated on one or more of these core skills

in a simple, stand-alone program. Real-world programs are rarely so simple. They usually

require you to combine the techniques in various ways and with various enhancements.

Your programs will quite often require multiple forms, used as dialog boxes, input and

output forms, reports, and so on. Because Visual Basic treats each form as a separate

object, you can think of them as simple building blocks that you can combine to create

powerful programs.

In Part III, you’ll focus again on the user interface, and you’ll learn how to add multiform

projects, animation effects, visual inheritance, and printing support to your Visual Basic

applications.
 345

Chapter 14

Managing Windows Forms and
Controls at Run Time

After completing this chapter, you will be able to:

Q Add new forms to a program and switch between multiple forms.

Q Change the position of a form on the Windows desktop.

Q Add controls to a form at run time.

Q Change the alignment of objects within a form at run time.

Q Use the Project Designer to specify the startup form.

In this chapter, you’ll learn how to add additional forms to an application to handle input,

output, and special messages. You’ll also learn how to use the Me and My.Forms objects to

switch between forms, how to use the DesktopBounds property to resize a form, how to add

Toolbox controls to a form at run time, how to change the alignment of objects within a

form, and how to specify which form runs when a program is started.

Adding New Forms to a Program

Each program you’ve written so far has used one form and a series of general-purpose dialog

boxes for input and output. In many cases, dialog boxes and a form are suffi cient for commu-

nicating with the user. But if you need to exchange more information with the user in a more

customized manner, you can add additional forms to your program. Each new form is con-

sidered an object that inherits its capabilities from the System.Windows.Forms.Form class.

The fi rst form in a program is named Form1.vb. Subsequent forms are named Form2.vb,

Form3.vb, and so on. (You can change the specifi c name for a form by using the Add New

Item dialog box or by using Solution Explorer.) Each new form has a unique name and its

own set of objects, properties, methods, and event procedures.
 347

348 Part III Designing the User Interface
The following table lists several practical uses for additional forms in your programs.

Form or forms Description

Introductory form A form that displays a welcome message, artwork, or copyright information

when the program starts

Program instructions A form that displays information and tips about how the program works

Dialog boxes Custom dialog boxes that accept input and display output in the program

A form that displays the contents of one or more fi les and artwork used in

the program

How Forms Are Used

Visual Basic gives you signifi cant fl exibility when using forms. You can make all the forms

in a program visible at the same time, or you can load and unload forms as the program

needs them. If you display more than one form at once, you can allow the user to switch

between the forms, or you can control the order in which the forms are used. A form that

must be addressed when it’s displayed on the screen is called a dialog box. Dialog boxes

(called modal forms in Visual Basic 6) retain the focus until the user clicks OK, clicks Cancel,

or otherwise dispatches them. To display an existing form as a dialog box in Visual Basic

2008, you open it by using the ShowDialog method.

If you want to display a form that the user can switch away from, you use the Show method

instead of the ShowDialog method. In Visual Basic 6, forms that can lose the application

focus are called non-modal forms or modeless forms, and you will still see these terms being

used. Most Windows applications use regular, non-modal forms when displaying informa-

tion because they give the user more fl exibility, so this style is the default when you create

a new form in Microsoft Visual Studio. Because forms are simply members of the System.

Windows.Forms.Form class, you can also create and display forms by using program code.

Working with Multiple Forms

The following exercises demonstrate how you can use a second form to display Help infor-

mation for the Lucky Seven program that you worked with in Chapter 2, “Writing Your First

Program,” and Chapter 10, “Creating Modules and Procedures.” You’ll add a second form by

using the Add Windows Form command on the Project menu, and you’ll display the form in

your program code by using the My namespace and the ShowDialog method. The second form

will display a short Readme.txt fi le that I created to display help and copyright information for

the program (the type of information you typically see in an About or a Help dialog box).

Form or forms Description

 Chapter 14 Managing Windows Forms and Controls at Run Time 349

Add a second form

1. Start Visual Studio, and then open the Lucky Seven Help project in the c:\vb08sbs\

chap14\lucky seven help folder.

The Lucky Seven Help project is the same slot machine game that you worked with in

Chapter 10. The program uses a module and a function to calculate the win rate as you

try to spin one or more 7s.

2. Display the primary form (LuckySeven.vb) in the Designer, if it isn’t already visible.

3. Click the Add Windows Form command on the Project menu to add a second form to

the project.

4. Use the scroll bar in the dialog box to locate the selected default template, Windows

Form.

You’ll see this dialog box:

You use the Add New Item dialog box to add forms, classes, modules, and other com-

ponents to your Visual Basic project. Although you selected the Add Windows Form

command, forms aren’t the only components listed here. (The Windows Form template

is selected by default, however.) The Add New Item dialog box is fl exible enough that

you can pick other project components if you change your mind.

Tip I especially recommend that you experiment with the Explorer Form template, which

allows you to add a Windows Explorer–style browser to your application, complete with

menus, toolbar, and a folder hierarchy pane.

350 Part III Designing the User Interface

5. Type HelpInfo.vb in the Name text box, and then click Add.

A second form named HelpInfo.vb is added to the Lucky Seven Help project, and the

form opens in Solution Explorer, as shown here:

Tip You can rename or delete form fi les by using Solution Explorer. To rename a fi le,

right-click the fi le, and then click the Rename command. To remove a fi le from your

project, right-click the fi le, and then click the Exclude From Project command. To

remove a fi le from your project and permanently delete it from your computer,

select the fi le, and then press Delete.

Now you’ll add some controls to the HelpInfo.vb form.

6. Use the Label control to create a label at the top of the HelpInfo.vb form. Place the

label near the left edge of the form, but leave a small indent so that there is room for

a descriptive label.

7. Use the TextBox control to create a text box object.

8. Set the Multiline property for the text box object to True so that you can resize the

object easily.

9. Resize the text box object so that it covers most of the form.

10. Use the Button control to create a button at the bottom of the form.

 Chapter 14 Managing Windows Forms and Controls at Run Time 351

11. Set the following properties for the objects on the HelpInfo.vb form:

Object Property Setting

Label1 Text “Operating Instructions for Lucky Seven Slot Machine”

TextBox1 Scrollbars Vertical

Button1 Text “OK”

HelpInfo Text “Help”

The HelpInfo.vb form looks similar to this:

Now you’ll enter a line of program code for the HelpInfo.vb form’s Button1_Click event

procedure.

12. Double-click OK to display the Button1_Click event procedure in the Code Editor.

13. Type the following program statement:

Me.DialogResult = DialogResult.OK

The HelpInfo.vb form acts as a dialog box in this project because the Lucky Seven form

opens it using the ShowDialog method. After the user has read the Help information

displayed by the dialog box, he or she will click OK, which sets the DialogResult property

of the current form to DialogResult.OK. (The Me keyword is used here to refer to the

HelpInfo form, and you’ll see this shorthand syntax from time to time when a reference is

being made to the current instance of a class or structure in which the code is executing.)

Object Property Setting

352 Part III Designing the User Interface

DialogResult.OK is a Visual Basic constant that indicates the dialog box has been closed

and should return a value of “OK” to the calling procedure. A more sophisticated dialog

box might allow for other values to be returned by parallel button event procedures, such

as DialogResult.Cancel, DialogResult.No, and DialogResult.Yes. When the DialogResult

property is set, however, the form is automatically closed.

14. At the top of the Code Editor, type the following Imports statement above the Public

Class declaration:

Imports System.IO

This statement makes it easier to reference the StreamReader class in your code. The

StreamReader class isn’t specifi cally related to defi ning or using additional forms—I’m

just using it as a quick way to add textual information to the new form I’m creating.

15. Display the HelpInfo.vb form again, and then double-click the form background.

The HelpInfo_Load event procedure appears in the Code Editor. This is the event proce-

dure that runs when the form is fi rst loaded into memory and displayed on the screen.

16. Type the following program statements:

Dim StreamToDisplay As StreamReader

StreamToDisplay = _

 New StreamReader("c:\vb08sbs\chap14\lucky seven help\readme.txt")

TextBox1.Text = StreamToDisplay.ReadToEnd

StreamToDisplay.Close()

TextBox1.Select(0, 0)

Rather than type the contents of the Help fi le into the Text property of the text box

object (which would take a long time), I’ve used the StreamReader class to open, read,

and display an appropriate Readme.txt fi le in the text box object. This fi le contains

operating instructions and general contact information.

The StreamReader class was introduced in Chapter 13, “Exploring Text Files

and String Processing,” but you might not have experimented with it yet. As you

learned, StreamReader is a.NET Framework alternative to opening a text fi le with

the My.Computer.FileSystem object or the Visual Basic FileOpen function. To make it

easier to use StreamReader in code, you include the System.IO namespace at the top

of the code for your form. Next, you declare a StreamToDisplay variable of the type

StreamReader to hold the contents of the text fi le, and open the text fi le by using a

specifi c path. Finally, you read the contents of the text fi le into the StreamToDisplay

variable by using the ReadToEnd method, which reads all the text in the fi le from the

current location (the beginning of the text fi le) to the end of the text fi le and assigns

it to the Text property of the text box object. The StreamReader.Close statement

closes the text fi le, and the Select method removes the selection from the text in

the text box object.

 Chapter 14 Managing Windows Forms and Controls at Run Time 353

You’re fi nished with the HelpInfo.vb form. Now you’ll add a button object and some code to

the fi rst form.

Display the second form by using an event procedure

1. Click LuckySeven.vb in Solution Explorer, and then click the View Designer button.

The Lucky Seven form opens in the IDE. Now you’ll add a Help button to the user

interface.

2. Use the Button control to draw a small button object in the lower-right corner of the form.

3. Use the Properties window to set the button object’s Text property to “Help”.

Your form looks something like this:

4. Double-click the Help button to display the Button3_Click event procedure in the

Code Editor.

5. Type the following program statement:

My.Forms.HelpInfo.ShowDialog()

This statement uses the My namespace (introduced in Chapter 13) to access the forms

active within the current project. As you type the statement, the Microsoft IntelliSense

feature lists the forms available in the Forms collection, as shown in the following

illustration:

354 Part III Designing the User Interface

Unlike Visual Basic .NET 2003, which required that you specifi cally declare a variable of

the form’s type before you used a second form, the My namespace in Visual Basic 2005

and 2008 makes all the forms in your project available without specifi c declaration.

Note that you can also open and manipulate forms directly (as you can in Visual Basic

6) by using the following syntax:

HelpInfo.ShowDialog()

This statement opens the HelpInfo form as a dialog box by using the ShowDialog

method.

Alternatively, you can use the Show method to open the form, but in that case, Visual

Basic won’t consider HelpInfo.vb to be a dialog box; the form is a non-modal form that

the user can switch away from and return to as needed. In addition, the DialogResult

property in the HelpInfo.vb form’s Button1_Click event procedure won’t close the

HelpInfo.vb form. Instead, the program statement Me.Close is required.

Tip Keep the differences between modal and non-modal forms in mind as you build your

own projects. There are differences between each type of form, and you’ll fi nd that each

style provides a benefi t to the user.

Now you’ll run the program to see how a multiple-form application works.

Run the program

1. Click the Start Debugging button on the Standard toolbar.

The fi rst form in the Lucky Seven project appears.

2. Click the Spin button seven or eight times to play the game.

Your screen looks similar to this:

 Chapter 14 Managing Windows Forms and Controls at Run Time 355

3. Click the Help button.

Visual Basic opens the second form in the project, HelpInfo.vb, and displays the

Readme.txt fi le in the text box object. The form looks like this:

4. Use the vertical scroll bar to view the entire Readme fi le.

5. Click OK to close the HelpInfo.vb form.

The form closes, and the fi rst form becomes active again.

6. Click the Spin button a few more times, and then click the Help button again.

The HelpInfo.vb form opens again and is fully functional. Notice that you cannot

activate the fi rst form while the second form is active. (To test this, try to click Spin

on the fi rst form while the second form is active.) Because the second form is a

dialog box (a modal form), you must address it before you can continue with

the program.

7. Click OK, and then click End on the fi rst form.

The program stops, and the development environment returns.

356 Part III Designing the User Interface
Using the DialogResult Property in the Calling Form

Although I didn’t demonstrate it in the sample program, you can use the DialogResult

property that you assigned to the dialog box to great effect in a Visual Basic program.

As I mentioned earlier, a more sophisticated dialog box might provide additional buttons

to the user—Cancel, Yes, No, Abort, and so on. Each dialog box button can be associated

with a different type of action in the main program. And in each of the dialog box’s

button event procedures, you can assign the DialogResult property for the form that

corresponds to the button name, such as the following program statement:

Me.DialogResult = DialogResult.Cancel 'user clicked Cancel button

In the calling event procedure—in other words, in the Button3_Click event procedure of

LuckySeven.vb—you can write additional program code to detect which button the user

clicked in the dialog box. This information is stored in the form’s DialogResult property,

which can be evaluated using a basic decision structure such as If...Then or Select...Case.

For example, the following code can be used in the Button3_Click event procedure to

verify whether the user clicked OK, Cancel, or another button in the dialog box. (The fi rst

line isn’t new, but reminds you of the HelpInfo form name that you are using in

this example.)

My.Forms.HelpInfo.ShowDialog()

If HelpInfo.DialogResult = DialogResult.OK Then

 MsgBox("The user clicked OK")

ElseIf HelpInfo.DialogResult = DialogResult.Cancel Then

 MsgBox("The user clicked Cancel")

Else

 MsgBox("Another button was clicked")

End If

By using creative event procedures that declare, open, and process dialog box choices,

you can add any number of forms to your programs, and you can create a user interface

that looks professional and feels fl exible and user friendly.

Positioning Forms on the Windows Desktop

You’ve learned how to add forms to your Visual Basic project and how to open and close

forms by using program code. But which tool or setting determines the placement of forms

on the Windows desktop when your program runs? As you might have noticed, the place-

ment of forms on the screen at run time is different from the placement of forms within the

Visual Studio development environment at design time. In this section, you’ll learn how to

position your forms just where you want them at run time so that users see just what you

want them to see.

 Chapter 14 Managing Windows Forms and Controls at Run Time 357

In Visual Basic 6, a graphical tool called the Form Layout window controls the placement of

forms at run time. You drag a tiny form icon within the Form Layout window to where you

want the fi nal form to appear at run time, and Visual Basic records the screen coordinates

you specify. In Visual Basic 2008, there’s no Form Layout window, but you can still position

your forms precisely on the Windows desktop.

The tool you use isn’t a graphical layout window but a property named DesktopBounds that

is maintained for each form in your project. DesktopBounds can be read or set only at run

time, and it takes the dimensions of a rectangle as an argument—that is, two point pairs

that specify the coordinates of the upper-left corner of the window and the lower-right

corner of the window. The coordinate points are expressed in pixels, and the distances to

the upper-left and lower-right corners are measured from the upper-left corner of the

screen. (You’ll learn more about the Visual Basic coordinate system in the next chapter.)

Because the DesktopBounds property takes a rectangle structure as an argument, you can

set both the size and the location of the form on the Windows desktop.

In addition to the DesktopBounds property, you can use a simpler mechanism with fewer capa-

bilities to set the location of a form at design time. This mechanism, the StartPosition property,

positions a form on the Windows desktop by using one of the following property settings:

Manual, CenterScreen, WindowsDefaultLocation, WindowsDefaultBounds, or CenterParent. The

default setting for the StartPosition property, WindowsDefaultLocation, lets Windows position

the form on the desktop where it chooses—usually the upper-left corner of the screen.

If you set StartPosition to Manual, you can manually set the location of the form by using the

Location property, in which the fi rst number (x) is the distance from the left edge of the screen

and the second number (y) is the distance from the top edge of the screen. (You’ll learn more

about the Location property in the next chapter.) If you set StartPosition to CenterScreen, the

form opens in the middle of the Windows desktop. (This is my preferred StartPosition setting.)

If you set StartPosition to WindowsDefaultBounds, the form is resized to fi t the standard win-

dow size for a Windows application, and then the form is opened in the default location for

a new Windows form. If you set StartPosition to CenterParent, the form is centered within the

parent form. This fi nal setting is especially useful in so-called multiple document interface

(MDI) applications in which parent and child windows have a special relationship.

The following exercises demonstrate how you can set the StartPosition and DesktopBounds

properties to position a Visual Basic form. You can use either technique to position your

forms on the Windows desktop at run time.

Use the StartPosition property to position the form

1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Desktop Bounds.

2. If the project’s form isn’t visible, display it now.

358 Part III Designing the User Interface

3. Click the form to display its properties in the Properties window.

4. Set the StartPosition property to CenterScreen.

Changing the StartPosition property to CenterScreen directs Visual Basic to display the

form in the center of the Windows desktop when you run the program.

5. Click the Start Debugging button to run the application.

Visual Basic loads the form and displays it in the middle of the screen, as shown here:

6. Click the Close button on the form to stop the program.

The IDE returns.

7. Set the StartPosition property to Manual.

The Manual property setting directs Visual Basic to position the form based on the

values in the Location property.

8. Set the Location property to 100, 50.

The Location property specifi es the position, in pixels, of the upper-left corner of

the form.

9. Click the Start Debugging button to run the application.

Visual Basic loads the form and then displays it on the Windows desktop 100 pixels

from the left and 50 pixels from the top, as shown on the following page.

 Chapter 14 Managing Windows Forms and Controls at Run Time 359

50 pixels100 pixels

10. Click the Close button on the form to close the program.

You’ve experimented with a few basic StartPosition settings for positioning a form at run time.

Now you’ll use the DesktopBounds property to size and position a second form window while

the program is running. You’ll also learn how to create a new form at run time without using

the Add Windows Form command on the Project menu.

Set the DesktopBounds property

1. Use the Button control to add a button object to the form, and then change the Text

property of the button object to “Create Form”.

2. Double-click the Create Form button to display the Button1_Click event procedure in

the Code Editor.

3. Type the following program code:

'Create a second form named form2

Dim form2 As New Form

'Define the Text property and border style of the form

form2.Text = "My New Form"

form2.FormBorderStyle = FormBorderStyle.FixedDialog

'Specify that the position of the form will be set manually

form2.StartPosition = FormStartPosition.Manual

'Declare a Rectangle structure to hold the form dimensions

'Upper left corner of form (200, 100)

'Width and height of form (300, 250)

Dim Form2Rect As New Rectangle(200, 100, 300, 250)

'Set the bounds of the form using the Rectangle object

form2.DesktopBounds = Form2Rect

'Display the form as a modal dialog box

form2.ShowDialog()

360 Part III Designing the User Interface

When the user clicks the Create Form button, this event procedure creates a new

form with the title “My New Form” and a fi xed border style. To use program code

to create a new form, you use the Dim statement and specify a variable name for

the form and the Form class, which is automatically included in projects as part of

the System.Windows.Forms namespace. You can then set properties such as Text,

FormBorderStyle, StartPosition, and DesktopBounds.

The StartPosition property is set to FormStartPosition.Manual to indicate that the po-

sition will be set manually. The DesktopBounds property sizes and positions the form

and requires an argument of type Rectangle. The Rectangle type is a structure that

defi nes a rectangular region and is automatically included in Visual Basic projects.

Using the Dim statement, the Form2Rect variable is declared of type Rectangle and

initialized with the form position and size values. At the bottom of the event proce-

dure, the new form is opened as a dialog box using the ShowDialog method.

Although I usually recommend placing your Dim statements together at the top of the

form, here I have placed one a little lower in the code to make it easier to understand

the context and use of the variable.

Tip The complete Desktop Bounds program is located in the c:\vb08sbs\chap14\

desktop bounds folder.

4. Click the Start Debugging button to run the program.

Visual Basic displays the fi rst form on the desktop.

5. Click the Create Form button.

Visual Basic displays the My New Form dialog box with the size and position you

specifi ed in the program code, as shown here:

 Chapter 14 Managing Windows Forms and Controls at Run Time 361

Notice that you can’t resize the second form, because the FormBorderStyle was set to

FixedDialog.

6. Close the second form, and then close the fi rst form.

Your program stops running, and the IDE returns.

7. Click the Save All button, and specify the c:\vb08sbs\chap14 folder as the location.

Minimizing, Maximizing, and Restoring Windows

In addition to establishing the size and location of a Visual Basic form, you can minimize

a form to the Windows taskbar, maximize a form so that it takes up the entire screen, or

restore a form to its normal shape. These settings can be changed at design time or at run

time based on current program conditions.

To allow a form to be both minimized and maximized, you must fi rst verify that the form’s

minimize and maximize boxes are available. Using the Properties window or program code,

you specify the following settings:

form2.MaximizeBox = True

form2.MinimizeBox = True

Then, in program code or by using the Properties window, you set the WindowState

property for the form to Minimized, Maximized, or Normal. (In code, you need to add

the FormWindowState constant, as shown below.) For example, the following program

statement minimizes form2 to the Windows taskbar:

form2.WindowState = FormWindowState.Minimized

If you want to control the maximum or minimum size of a form, set the MaximumSize

or MinimumSize properties at design time by using the Properties window. To set the

MaximumSize or MinimumSize in code, you’ll need to use a Size structure (which is similar

to the Rectangle structure used in the previous exercise), as shown here:

Dim FormSize As New Size(400, 300)

form2.MaximumSize = FormSize

362 Part III Designing the User Interface
Adding Controls to a Form at Run Time

Throughout this book, you’ve added objects to forms by using the Toolbox and the Designer.

However, as the previous exercise demonstrated, you can also create Visual Basic objects on

forms at run time, either to save development time (if you’re copying routines you have used

before) or to respond to a current need in the program. For example, you might want to gener-

ate a simple dialog box containing objects that process input only under certain conditions.

Creating objects is very simple because the fundamental classes that defi ne controls in the

Toolbox are available to all programs. Objects are declared and instantiated (or brought into

being) by using the Dim and New keywords. The following program statement shows how

this process works when a new button object named button1 is created on a form:

Dim button1 As New Button

After you create an object at run time, you can also use code to customize it with property

settings. In particular, it’s useful to specify a name and location for the object because you

didn’t specify them manually by using the Designer. For example, the following program

statements confi gure the Text and Location properties for the new button1 object:

button1.Text = "Click Me"

button1.Location = New Point(20, 25)

Finally, your code must add the following new object to the Controls collection of the form

where it will be created. This will make the object visible and active in the program:

form2.Controls.Add(button1)

If you are adding the new button to the current form (that is, if you are adding a button to

Form1 and your code is located inside a Form1 event procedure), you can use the Me object

instead. For example,

Me.Controls.Add(button1)

adds the button1 object to the Controls collection of the current form. When you do this, be

sure that a button1 object doesn’t already exist on the form you are adding it to. (Each object

must have its own, unique name.)

You can use this process to add any control in the Toolbox to a Visual Basic form. The class

name you use to declare and instantiate the control is a variation of the name that appears in

the Name property for each control.

The following exercise demonstrates how you can add a Label control and a Button control to

a new form at run time. The new form will act as a dialog box that displays the current date.

 Chapter 14 Managing Windows Forms and Controls at Run Time 363

Create new Label and Button controls

1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Add Controls.

2. Display the form (Form1.vb).

3. Use the Button control to add a button object to the form, and then change the Text

property of the button object to “Display Date”.

4. Double-click the Display Date button to display the Button1_Click event procedure in

the Code Editor.

5. Type the following program code:

'Declare new form and control objects

Dim form2 As New Form

Dim lblDate As New Label

Dim btnCancel As New Button

'Set label properties

lblDate.Text = “Current date is: " & DateString

lblDate.Size = New Size(150, 50)

lblDate.Location = New Point(80, 50)

'Set button properties

btnCancel.Text = "Cancel"

btnCancel.Location = New Point(110, 100)

'Set form properties

form2.Text = “Current Date”

form2.CancelButton = btnCancel

form2.StartPosition = FormStartPosition.CenterScreen

'Add new objects to Controls collection

form2.Controls.Add(lblDate)

form2.Controls.Add(btnCancel)

'Display form as a dialog box

form2.ShowDialog()

This event procedure displays a new form containing a label object and a button object

on the screen. The label object contains the current date as recorded by your computer’s

system clock (returned through DateString). The Text property of the button object is set

to “Cancel”.

As I mentioned earlier, you add controls to a form by declaring a variable to hold the

control, setting object properties, and adding the objects to the Controls collection. In

this exercise, I also demonstrate the Size and CancelButton properties for the fi rst time.

The Size property requires a Size structure. The New keyword is used to immediately

create the Size structure. The CancelButton property allows the user to close the dialog

box by pressing Esc or clicking the Cancel button. (The two actions are equivalent.)

364 Part III Designing the User Interface

6. Click the Save All button, and specify the c:\vb08sbs\chap14 folder as the location.

Tip The complete Add Controls program is located in the c:\vb08sbs\chap14\add controls

folder.

7. Click the Start Debugging button to run the program.

Visual Basic displays the fi rst form on the desktop.

8. Click the Display Date button.

Visual Basic displays the second form on the desktop. This form contains the label and

button objects that you defi ned by using program code. The label object contains the

current date, as shown here:

9. Click the Cancel button to close the new form.

10. Click the Display Date button again.

The new form opens as it did the fi rst time.

11. Press Esc to close the form.

Because you set the CancelButton property to the btnCancel object, clicking Cancel

and pressing Esc produce the same result.

12. Click the Close button on the form to end the program.

The program stops, and the development environment returns.

 Chapter 14 Managing Windows Forms and Controls at Run Time 365
Organizing Controls on a Form

When you add controls to a form programmatically, it takes a bit of trial and error to position

the new objects so that they’re aligned properly and look nice. After all, you don’t have the

Visual Studio Designer to help you—just the (x, y) coordinates of the Location and Size proper-

ties, which are clumsy values to work with unless you have a knack for two-dimensional think-

ing or have the time to run the program repeatedly to verify the placement of your objects.

Fortunately, Visual Basic contains several property settings that you can use to organize ob-

jects on the form at run time. These include the Anchor property, which forces an object on

the form to remain at a constant distance from the specifi ed edges of the form, and the Dock

property, which forces an object to remain attached to one edge of the form. You can use

the Anchor and Dock properties at design time, but I fi nd that they’re also very helpful for

programmatically aligning objects at run time. The following exercise shows how these prop-

erties work.

Anchor and dock objects at run time

 1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Anchor and Dock.

 2. Display the form.

 3. Click the PictureBox control, and add a picture box object in the top middle of the form.

 4. Use the TextBox control to create a text box object.

 5. Set the Multiline property for the text box object to True so that you can resize the

object appropriately.

 6. Resize the text box object so that it covers most of the bottom half of the form.

 7. Click the Button control, and add a button object to the lower-right corner of the form.

 8. Set the following properties for the form and the objects on it. (You’ll be using one

image fi le from the next chapter. Type the path name exactly or select All Files in the

Files of Type list box to see sun.ico listed.)

Object Property Setting

PictureBox1 Image

SizeMode

“c:\vbnet08sbs\chap15\sun.ico”

StretchImage

Button1 Text “Align Now”

TextBox1 Text “Anchor and Dock Samples”

Object Property Setting

366 Part III Designing the User Interface

Your form looks similar to this:

9. Double-click the Align Now button to open the Button1_Click event procedure in the

Code Editor.

10. Type the following program code:

PictureBox1.Dock = DockStyle.Top

TextBox1.Anchor = AnchorStyles.Bottom Or _

 AnchorStyles.Left Or AnchorStyles.Right Or _

 AnchorStyles.Top

Button1.Anchor = AnchorStyles.Bottom Or _

 AnchorStyles.Right

When this event procedure is executed, the Dock property of the PictureBox1 object

is used to dock the picture box to the top of the form. This forces the top edge of the

picture box object to touch and adhere to the top edge of the form—much as the

Visual Studio docking feature works in the IDE. The only surprising behavior here is

that the picture box object is also resized so that its sides adhere to the left and right

edges of the form.

Next, the Anchor property for the TextBox1 and Button1 objects is used. The Anchor

property maintains the current distance from the specifi ed edges of the form, even

if the form is resized. Note that the Anchor property maintains the object’s current

distance from the specifi ed edges—it doesn’t attach the object to the specifi ed edges

unless it’s already there. In this example, I specify that the TextBox1 object should be

anchored to all four edges of the form (bottom, left, right, and top). I use the Or

operator to combine my edge selections. I anchor the Button1 object to the bottom

and right edges of the form.

 Chapter 14 Managing Windows Forms and Controls at Run Time 367

11. Save the project, and specify the c:\vb08sbs\chap14 folder as the location.

Tip The complete Anchor and Dock program is located in the c:\vb08sbs\chap14\anchor

and dock folder.

12. Click the Start Debugging button to run the program.

The form opens, just as you designed it.

13. Move the pointer to the lower-right corner of the form until it changes into a Resize

pointer, and then enlarge the form.

Notice that the size and position of the objects on the form do not change.

14. Resize the form to its original size.

15. Click the Align Now button on the form.

The picture box object is now docked at the top edge of the form. The picture box

is also resized so that its sides adhere to the left and right edges of the form, as

shown here:

Notice that the Sun icon in the picture box is now distorted, which is a result of the

docking process.

16. Enlarge the form again.

368 Part III Designing the User Interface
As you resize the form, the picture box and text box objects are also resized. Because

the text box is anchored on all four sides, the distance between the edges of the form

and the text box remains constant. During the resizing activity, it also becomes apparent

that the button object is being repositioned. Although the distance between the button

object and the top and left edges of the form changes, the distance to the bottom and

right edges remains constant, as shown here:

 17. Experiment with the Anchor and Dock properties for a while, and try a different

bitmap image if you like. When you’re fi nished, click the Close button on the form

to end the program.

You now have the skills necessary to add new forms to a project, position them on the Windows

desktop, populate them with new controls, and align the controls by using program code.

You’ve gained a number of useful skills for working with Windows forms in a program.

One Step Further: Specifying the Startup Object

If your project contains more than one form, which form is loaded and displayed fi rst when you

run the application? Although Visual Basic normally loads the fi rst form that you created in a

project (Form1.vb), you can change the form that Visual Basic loads fi rst by adjusting a setting

in the Visual Studio Project Designer, a handy tool that I’ll introduce here for the fi rst time.

The following exercise shows you how to change the fi rst form, or startup form, by using the

Project Designer.

Switch the startup form from Form1 to Form2

 1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Startup Form.

 Chapter 14 Managing Windows Forms and Controls at Run Time 369

2. Display Form1.vb, if it isn’t already visible.

3. Click the Add Windows Form command on the Project menu.

You’ll add a new form to the project to demonstrate how switching the startup

form works.

4. Click Add to add the second form (Form2.vb) to Solution Explorer.

5. Click My Startup Form Properties on the Project menu.

The Project Designer opens, as shown here:

The Project Designer, at one time called the “property pages” because of its multiple

screens of project properties, lets you adjust settings that apply to the entire project in

one place. Here you’ll use the Application tab and the Startup Form list box to specify

a new startup form.

6. On the Application tab, click the Startup Form arrow, and then click Form2.

Visual Basic changes the startup form in your project from Form1 to Form2. When the

program runs, Form2 will be displayed, and Form1 will appear only if it’s opened using

the Show or ShowDialog method.

7. Click the Close button to close the Project Designer.

8. Click the Start Debugging button.

The program runs in the development environment, and Form2 opens.

370 Part III Designing the User Interface
 9. Click the Close button on the form to end the program.

 10. Close the project, and discard your changes—it is not necessary to save this simple

demonstration project, and you’re fi nished managing forms for now.

Although this demonstration exercise was fairly simple, you can see that Visual Basic offers you

some fl exibility in how you start your programs. You can specify the startup form, and you can

place code within that form’s Load event procedure to confi gure the program or adjust its set-

tings before the fi rst form is actually loaded.

Console Applications

If you want to write a Visual Basic application that displays no graphical user interface

at all, consider writing a console application. This Visual Studio project type processes

input and output by using a command-line console (a character-based window also

known as the command prompt).

You can specify the console application type when you create your project by using the

New Project command on the File menu (select the Console Application template), and

you can convert an existing project into a console application by displaying the Project

Designer, clicking the Application tab, and then selecting Console Application in the

Application Type list box. Console applications begin execution within the Sub Main

procedure inside a code module, because there are no forms to display. You can fi nd

out more about this topic by reviewing “Building Console Applications” in the Visual

Studio documentation.

Chapter 14 Quick Reference

To Do this

Add a new form to a

program

On the Project menu, click Add Windows Form, and then click Add.

Switch between forms

in your project, or open

hidden forms by using

program code

Use the Show or ShowDialog method. For example:

form2.ShowDialog()

You can also use the My.Forms object to display a form. For example:

My.Forms.HelpInfo.ShowDialog()

Hide the current form by using the Me object. For example:

Me.Visible = False

Display a form that is hidden by using the Me object. For example:

Me.ShowDialog()

Note that to use the Me object, your program code must be located

within the form you are manipulating.

To Do this

 Chapter 14 Managing Windows Forms and Controls at Run Time 371
To Do this

Create a new form with

program code and set its

properties

Create the form by using the Dim and New keywords and the Form class,

and then set any necessary properties. For example:

Dim form2 As New Form

form2.Text = "My New Form"

Position a startup form

on the Windows desktop

Set the StartPosition property to one of the available options, such as

CenterScreen or CenterParent.

Size and position a start-

up form on the Windows

desktop by using code

Set the StartPosition to Manual, declare a Rectangle structure that defi nes

the form’s size and position, and then use the DesktopBounds property to

size and position the form on the desktop. For example:

form2.StartPosition = FormStartPosition.Manual

Dim Form2Rect As New Rectangle _

 (200, 100, 300, 250)

form2.DesktopBounds = Form2Rect

Minimize, maximize, or

restore a form at run

time

Set the MaximizeBox and MinimizeBox properties for the form to True in

design mode to allow for maximize and minimize operations. In the pro-

gram code, set the form’s WindowState property to FormWindowState.

Minimized, FormWindowState.Maximized, or FormWindowState.Normal

when you want to change the window state of the form.

Add controls to a form at

run time

Create a control of the desired type, set its properties, and then add it to

the form’s Controls collection. For example:

Dim button1 as New Button

button1.Text = "Click Me"

button1.Location = New Point(20, 25)

form2.Controls.Add(button1)

Anchor an object a

specifi c distance

from specifi c edges

of the form

Set the Anchor property of the object, and specify the edges you want to

remain a constant distance from. Use the Or operator when specifying

multiple edges. For example:

Button1.Anchor = AnchorStyles.Bottom Or _

 AnchorStyles.Right

Dock an object to one of

the form’s edges

Set the Dock property of the object, and specify the edge you want the

object to be attached to. For example:

PictureBox1.Dock = DockStyle.Top

Specify the startup form

in a project

Click the Properties command on the Project menu to open the Project

Designer. For a Windows Forms Application project, you can specify any

form in your project as the startup form by clicking the form name in the

Startup Form list box.

Create a Visual Basic

program with no user

interface (or only a

command line interface)

Create a console application project by clicking the New Project com-

mand on the File menu, clicking the Console Application template, and

clicking OK. You then add the program code to one or more modules,

not forms, and execution begins with a procedure named Sub Main.

To Do this

Chapter 15

Adding Graphics and Animation
Effects

After completing this chapter, you will be able to:

Q Use the System.Drawing namespace to add graphics to your forms.

Q Create animation effects on your forms.

Q Expand or shrink objects on a form at run time.

Q Change the transparency of a form.

For many developers, adding artwork and special effects to an application is the most

exciting—and addictive—part of programming. Fortunately, creating impressive and useful

graphical effects with Microsoft Visual Basic 2008 is both satisfying and easy.

In this chapter, you’ll learn how to add a number of visually interesting features to your pro-

grams. You’ll learn how to create artwork on a form using the System.Drawing namespace,

how to create simple animation effects by using PictureBox and Timer controls, and how to

expand or shrink objects at run time by using the Height and Width properties. You’ll also

learn how to change the transparency of the form, and change a form’s background image

and color. When you’ve fi nished, you’ll have many of the skills you need to create a visually

exciting user interface.

What will you be able to do on your own? This is the point when your imagination takes

over. One of my favorite results is from a reader of a previous version of this book who

used what he had learned about Visual Basic and graphics to build his own electrocardio-

graph machine, complete with analog circuitry and a Windows form displaying digital

data from the homemade EKG. If this isn’t your idea of fun, you might more modestly

decide to enhance your application’s start page so that it contains custom artwork and

visual effects—perhaps in combination with one or more digital photographs loaded

into picture box objects on a form.

Even game programmers can have some serious fun using graphics in Visual Basic and

Microsoft Visual Studio. However, if you’re planning on creating the next version of Microsoft

Zoo Tycoon or Microsoft Halo, you had better plan for much more than visual output. Modern

video games contain huge libraries of objects and complex formulas for rendering graphical

images that go well beyond the scope of this book. But that still leaves a lot of room for

experimentation and fun!
 373

374 Part III Designing the User Interface
Adding Artwork by Using the System.Drawing
Namespace

Adding ready-made artwork to your programs is easy in Visual Basic. Throughout this book,

you’ve experimented with adding bitmaps and icons to a form by using picture box objects.

Now you’ll learn how to create original artwork on your forms by using the GDI+ functions

in the System.Drawing namespace, an application programming interface (API) provided by

the Microsoft .NET Framework for creating two-dimensional vector graphics, imaging, and

typography within the Windows operating system. The effects that you create can add color,

shape, and texture to your forms.

Using a Form’s Coordinate System

The fi rst thing to learn about creating graphics is the layout of the form’s predefi ned coordi-

nate system. In Visual Basic, each form has its own coordinate system. The coordinate system’s

starting point, or origin, is the upper-left corner of a form. The default coordinate system is

made up of rows and columns of device-independent picture elements, or pixels, which rep-

resent the smallest points that you can locate, or address, on a Visual Basic form.

In the Visual Basic coordinate system, rows of pixels are aligned to the x-axis (horizontal

axis), and columns of pixels are aligned to the y-axis (vertical axis). You defi ne locations in

the coordinate system by identifying the intersection of a row and a column with the nota-

tion (x, y). The (x, y) coordinates of the upper-left corner of a form are always (0, 0). The

following illustration shows how the location for a picture box object on the form is

described in the Visual Basic coordinate system:

x-axis

y-axis

(0,0) x=128 pixels

y=56 pixels
(128,56)

 Chapter 15 Adding Graphics and Animation Effects 375
Visual Basic works along with your computer’s video display driver software to determine how

pixels are displayed on the form and how shapes such as lines, rectangles, curves, and circles

are displayed. Occasionally, more than one pixel is turned on to display a particular shape,

such as the line drawing shown in the following illustration. The logic that handles this type

of rendering isn’t your responsibility—it’s handled by your display adapter and the drawing

routines in the GDI+ graphics library. The following illustration shows a zoomed-in view of the

distortion or jagged edges you sometimes see in Visual Basic and Windows applications:

Pixel (0,0)

Pixel (7,4) Pixel (15,10)

The System.Drawing.Graphics Class

The System.Drawing namespace includes numerous classes for creating artwork and special

effects in your programs. In this section, you’ll learn a little about the System.Drawing.Graphics

class, which provides methods and properties for drawing shapes on your forms. You can

learn about the other classes by referring to the Visual Studio documentation.

Whether you’re creating simple illustrations or building complex drawings, it’s important

to be able to render many of the standard geometric shapes in your programs. The follow-

ing table lists several of the fundamental drawing shapes and the methods you use in the

System.Drawing.Graphics class to create them.

Shape Method Description

Line DrawLine Simple line connecting two points.

Rectangle DrawRectangle Rectangle or square connecting four points.

Arc DrawArc Curved line connecting two points (a portion of an ellipse).

Circle/Ellipse DrawEllipse Elliptical shape that is “bounded” by a rectangle.

Polygon DrawPolygon Complex shape with a variable number of points and sides

(stored in an array).

Curve DrawCurve A curved line that passes through a variable number of points

(stored in an array); complex curves called cardinal splines can

also be drawn with this method.

Bézier splines DrawBezier A curve drawn by using four points. (Points two and three are

“control” points.)

Shape Method Description

376 Part III Designing the User Interface

In addition to the preceding methods, which create empty or “non-fi lled” shapes, there are

several methods for drawing shapes that are fi lled with color. These methods usually have a

“Fill” prefi x, such as FillRectangle, FillEllipse, and FillPolygon.

When you use a graphics method in the System.Drawing.Graphics class, you need to create

a Graphics object in your code to represent the class and either a Pen or Brush object to

indicate the attributes of the shape you want to draw, such as line width and fi ll color. The

Pen object is passed as one of the arguments to the methods that aren’t fi lled with color.

The Brush object is passed as an argument when a fi ll color is desired. For example, the fol-

lowing call to the DrawLine method uses a Pen object and four integer values to draw a line

that starts at pixel (20, 30) and ends at pixel (100, 80). The Graphics object is declared by

using the name GraphicsFun, and the Pen object is declared by using the name PenColor.

Dim GraphicsFun As Graphics

Dim PenColor As New Pen(Color.Red)

GraphicsFun = Me.CreateGraphics

GraphicsFun.DrawLine(PenColor, 20, 30, 100, 80)

The syntax for the DrawLine method is important, but also note the three lines above it,

which are required to use a method in the System.Drawing.Graphics class. You must create

variables to represent both the Graphics and Pen objects, and the Graphics variable needs

to be instantiated by using the CreateGraphics method for the Windows form. Note that the

System.Drawing.Graphics namespace is included in your project automatically—you don’t

need to include an Imports statement in your code to reference the class.

Using the Form’s Paint Event

If you test the previous DrawLine method in a program, you’ll notice that the line you created

lasts, or persists, on the form only as long as nothing else covers it up. If a dialog box opens on

the form momentarily and covers the line, the line is no longer visible when the entire form is

visible again. The line also disappears if you minimize the form window and then maximize it

again. To address this shortcoming, you need to place your graphics code in the form’s Paint

event procedure so that each time the form is refreshed, the graphics are repainted, too.

In the following exercise, you’ll create three shapes on a form by using the form’s Paint

event procedure. The shapes you draw will continue to persist even if the form is covered

or minimized.

Create line, rectangle, and ellipse shapes

1. Start Visual Studio, and create a new Windows Forms Application project named My

Draw Shapes.

2. Resize the form so that it’s longer and wider than the default form size.

 Chapter 15 Adding Graphics and Animation Effects 377

You’ll need a little extra space to create the graphics shapes. You won’t be using any

Toolbox controls, however. You’ll create the shapes by placing program code in the

form’s Form1_Paint event procedure.

3. Set the Text property of Form1 to “Draw Shapes”.

4. Click the View Code button in Solution Explorer to display the Code Editor.

5. In the Class Name list box, click Form1 Events.

Form1 Events is the list of events in your project associated with the Form1 object.

6. In the Method Name list box, click the Paint event.

7. The Form1_Paint event procedure appears in the Code Editor.

This event procedure is where you place code that should be executed when Visual

Basic refreshes the form.

8. Type the following program code:

'Prepare GraphicsFun variable for graphics calls

Dim GraphicsFun As Graphics

GraphicsFun = Me.CreateGraphics

'Use a red pen color to draw a line and an ellipse

Dim PenColor As New Pen(Color.Red)

GraphicsFun.DrawLine(PenColor, 20, 30, 100, 80)

GraphicsFun.DrawEllipse(PenColor, 10, 120, 200, 160)

'Use a green brush color to create a filled rectangle

Dim BrushColor As New SolidBrush(Color.Green)

GraphicsFun.FillRectangle(BrushColor, 150, 10, 250, 100)

'Create a blue cardinal spline curve with four points

Dim Points() As Point = {New Point(358, 280), _

 New Point(300, 320), New Point(275, 155), New Point(350, 180)}

For tension As Single = 0 To 2.5 Step 0.5

 GraphicsFun.DrawCurve(Pens.DodgerBlue, Points, tension)

Next

This sample event procedure draws four graphic shapes on your form: a red line, a red

ellipse, a green-fi lled rectangle, and a blue cardinal spline (a complex curve made up

of fi ve lines). To enable graphics programming, the routine declares a variable named

GraphicsFun in the code and uses the CreateGraphics method to activate or instantiate

the variable. The PenColor variable of type Pen is used to set the drawing color in the

line and ellipse, and the BrushColor variable of type SolidBrush is used to set the fi ll

color in the rectangle. These examples are obviously just the tip of the graphics library

iceberg—there are many more shapes, colors, and variations that you can create by

using the methods in the System.Drawing.Graphics class.

Tip The complete Draw Shapes program is located in the c:\vb08sbs\chap15\draw shapes

folder.

378 Part III Designing the User Interface
 9. Click the Start Debugging button on the Standard toolbar to run the program.

Visual Basic loads the form and executes the form’s Paint event. Your form looks like this:

 10. Minimize the form, and then restore it again.

The form’s Paint event is executed again, and the graphics shapes are refreshed on the

form.

 11. Click the Close button to end the program.

 12. Click the Save All button on the Standard toolbar to save the project, and specify the

c:\vb08sbs\chap15 folder as the location.

Now you’re ready to move on to some simple animation effects.

Adding Animation to Your Programs

Displaying bitmaps and drawing shapes adds visual interest to a program, but for program-

mers, the king of graphical effects has always been animation. Animation is the simulation

of movement produced by rapidly displaying a series of related images on the screen. Real

animation involves moving objects programmatically, and it often involves changing the size

or shape of the images along the way.

In this section, you’ll learn how to add simple animation to your programs. You’ll learn how

to update the Top and Left properties of a picture box, control the rate of animation by using

a timer object, and sense the edge of your form’s window.

 Chapter 15 Adding Graphics and Animation Effects 379
Moving Objects on the Form

In Visual Basic 6, a special method named Move allows you to move objects in the coordinate

system. The Move method is no longer supported by Visual Basic 2008 controls. However,

you can use the properties and method shown in the following table instead.

Keyword Description

Left This property can be used to move an object horizontally (left or right).

Top This property can be used to move an object vertically (up or down).

Location This property can be used to move an object to the specifi ed location.

SetBounds This method sets the boundaries of an object to the specifi ed location and size.

The following sections discuss how you can use the Left, Top, and Location properties to

move objects.

To move an object in a horizontal direction, use the Left property, which uses the syntax

object.Left = horizontal

where object is the name of the object on the form that you want to move, and horizontal is

the new horizontal, or x-axis, coordinate of the left edge of the object, measured in pixels.

For example, the following program statement moves a picture box object to a location 300

pixels to the right of the left window edge:

PictureBox1.Left = 300

To move a relative distance to the right or left, you would add or subtract pixels from the

current Left property setting. For example, to move an object 50 pixels to the right, you add

50 to the Left property, as follows:

PictureBox1.Left = PictureBox1.Left + 50

In a similar way, you can change the vertical location of an object on a form by setting the

Top property, which takes the syntax

object.Top = vertical

where object is the name of the object on the form that you want to move, and vertical is

the new vertical, or y-axis, coordinate of the top edge of the object, measured in pixels. For

example, the following program statement moves a picture box object to a location 150 pix-

els below the window’s title bar:

PictureBox1.Top = 150

Keyword Description

380 Part III Designing the User Interface
Relative movements down or up are easily made by adding or subtracting pixels from the

current Top property setting. For example, to move 30 pixels in a downward direction, you

add 30 to the current Top property, as follows:

PictureBox1.Top = PictureBox1.Top + 30

The Location Property

To move an object in both vertical and horizontal directions, you can use a combination of

the Left and Top property settings. For example, to relocate the upper-left corner of a picture

box object to the (x, y) coordinates (300, 200), you enter the following program code:

PictureBox1.Left = 300

PictureBox1.Top = 200

However, the designers of Visual Studio don’t recommend using two program statements

to relocate an object if you plan to make numerous object movements in a program (for

example, if you plan to move an object hundreds or thousands of times during an elaborate

animation effect). Instead, you should use the Location property with the syntax

object.Location = New Point(horizontal, vertical)

where object is the name of the object, horizontal is the horizontal x-axis coordinate, vertical

is the vertical y-axis coordinate, and Point is a structure identifying the pixel location for

the upper-left corner of the object. For example, the following program statement moves

a picture box object to an (x, y) coordinate of (300, 200):

PictureBox1.Location = New Point(300, 200)

To perform a relative movement using the Location property, the Location.X and Location.Y

properties are needed. For example, the program statement

PictureBox1.Location = New Point(PictureBox1.Location.X - 50, _

 PictureBox1.Location.Y - 40)

moves the picture box object 50 pixels left and 40 pixels up on the form. Although this

construction seems a bit unwieldy, it’s the recommended way to relocate objects in relative

movements on your form at run time.

Creating Animation by Using a Timer Object

The trick to creating animation in a program is placing one or more Location property updates

in a timer event procedure so that at set intervals the timer causes one or more objects to drift

across the screen. In Chapter 7, “Using Loops and Timers,” you learned how to use a timer ob-

ject to update a simple clock utility every second so that it displayed the correct time. When

 Chapter 15 Adding Graphics and Animation Effects 381

you create animation, you set the Interval property of the timer to a much faster rate—1/5

second (200 milliseconds), 1/10 second (100 milliseconds), or less. The exact rate you choose

depends on how fast you want the animation to run.

Another trick is to use the Top and Left properties and the size of the form to “sense” the edges

of the form. By using these values in an event procedure, you can stop the animation (disable

the timer) when an object reaches the edge of the form. And by using the Top property, the

Left property, form size properties, and an If...Then or Select...Case decision structure, you can

make an object appear to bounce off one or more edges of the form.

The following exercise demonstrates how you can animate a picture box containing a Sun

icon (Sun.ico) by using the Location property and a timer object. In this exercise, you’ll use

the Top property to detect the top edge of the form, and you’ll use the Size.Height property

to detect the bottom edge. The Sun icon will move back and forth between these extremes

each time you click a button.

Animate a Sun icon on your form

1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Moving Icon.

2. Using the Button control, draw two button objects in the lower-left corner of the form.

3. Using the PictureBox control, draw a small rectangular picture box object in the lower-

right corner of the form.

This is the object that you’ll animate in the program.

4. Double-click the Timer control on the Components tab of the Toolbox to add it to the

component tray below the form.

The timer object is the mechanism that controls the pace of the animation. Recall

that the timer object itself isn’t visible on the form, so it’s shown below the form in

the component tray reserved for non-visible objects.

5. Set the following properties for the button, picture box, timer, and form objects. To

set the PictureBox1 object’s Image property, select All Files in the Files of Type list box

before you browse to the fi le (fi les of the .ico type are not displayed by default).

Object Property Setting

Button1 Text “Move Up”

Button2 Text “Move Down”

PictureBox1 Image

SizeMode

“c:\vb08sbs\chap15\sun.ico”

StretchImage

Timer1 Interval 75

Form1 Text “Basic Animation”

Object Property Setting

382 Part III Designing the User Interface

After you set these properties, your form looks similar to this:

6. Double-click the Move Up button to edit its event procedure.

The Button1_Click event procedure appears in the Code Editor.

7. Type the following program code:

GoingUp = True

Timer1.Enabled = True

This simple event procedure sets the GoingUp variable to True and enables the timer

object. The actual program code to move the picture box object and sense the correct

direction is stored in the Timer1_Tick event procedure. The GoingUp variable has a jag-

ged underline now because you have not declared it yet.

8. Near the top of the form’s program code (below the statement Public Class Form1),

type the following variable declaration:

Dim GoingUp As Boolean 'GoingUp stores current direction

This variable declaration makes GoingUp available to all the event procedures in the

form, so the jagged underline in the Button1_Click event procedure is removed. I’ve

used a Boolean variable because there are only two possible directions for movement

in this program—up and down.

9. Display the form again, double-click the Move Down button, and then enter the following

program code in the Button2_Click event procedure:

GoingUp = False

Timer1.Enabled = True

 Chapter 15 Adding Graphics and Animation Effects 383

This routine is very similar to the Button1_Click event procedure, except that it changes

the direction from up to down.

10. Display the form again, double-click the Timer1 object, and then enter the following

program code in the Timer1_Tick event procedure:

If GoingUp = True Then

 'move picture box toward the top

 If PictureBox1.Top > 10 Then

 PictureBox1.Location = New Point _

 (PictureBox1.Location.X - 10, _

 PictureBox1.Location.Y - 10)

 End If

Else

 'move picture box toward the bottom

 If PictureBox1.Top < (Me.Size.Height - 75) Then

 PictureBox1.Location = New Point _

 (PictureBox1.Location.X + 10, _

 PictureBox1.Location.Y + 10)

 End If

End If

As long as the timer is enabled, this If...Then decision structure is executed every 75

milliseconds. The fi rst line in the procedure checks whether the GoingUp Boolean

variable is set to True, indicating that the icon is moving toward the top of the form.

If it’s set to True, the procedure moves the picture box object to a relative position 10

pixels closer to both the top and left edges of the form.

If the GoingUp variable is currently set to False, the decision structure moves the icon

down instead. In this case, the picture box object moves until the edge of the form

is detected. The height of the form can be determined by using the Me.Size.Height

property. (I subtract 75 from the form height so that the icon is still displayed on the

form.) The Me object in this example represents the form (Form1).

As you’ll see when you run the program, this movement gives the icon animation a

steady drifting quality. To make the icon move faster, you decrease the Interval setting for

the timer object. To make the icon move slower, you increase the Interval setting.

Run the Moving Icon program

Tip The complete Moving Icon program is located in the c:\vb08sbs\chap15\moving icon

folder.

1. Click the Start Debugging button to run the program.

The Moving Icon program runs in the IDE.

2. Click the Move Up button.

384 Part III Designing the User Interface

The picture box object moves up the form on a diagonal path, as indicated here:

After a few moments, the button comes to rest at the upper edge of the form.

Note If you placed the picture box object in the lower-right corner of the form as in-

structed in step 3 of the previous exercise, you see something similar to this illustration.

However, if you placed the picture box object in another location, or created a smaller

form, the image might drift off the screen when you click Move Up or Move Down. Can

you tell why?

3. Click the Move Down button.

The picture box moves back down again to the lower-right corner of the screen.

4. Click both buttons again several times, and ponder the animation effects.

Note that you don’t need to wait for one animation effect to end before you click the

next button. The Timer1_Tick event procedure uses the GoingUp variable immediately

to manage your direction requests, so it doesn’t matter whether the picture box has

fi nished going in one direction. Consider this effect for a moment, and imagine how

you could use a similar type of logic to build your own Visual Basic video games. You

could increase or decrease the animation rates according to specifi c conditions or

“collisions” on screen, and you could force the animated objects to move in differ-

ent directions. You could also change the picture displayed by the picture box object

based on where the icon is on the screen or what conditions it encounters.

5. When you’re fi nished running the program, click the Close button on the form to stop

the demonstration.

6. Click the Save All button to save the project, and specify the c:\vb08sbs\chap15 folder

as the location.

 Chapter 15 Adding Graphics and Animation Effects 385
Expanding and Shrinking Objects While a Program
Is Running

In addition to maintaining a Top property and a Left property, Visual Basic maintains a Height

property and a Width property for most objects on a form. You can use these properties in

clever ways to expand and shrink objects while a program is running. The following exercise

shows you how to do it.

Expand a picture box at run time

 1. On the File menu, click the Close Project command.

 2. Create a new Windows Forms Application project named My Zoom In.

 3. Display the form, click the PictureBox control in the Toolbox, and then draw a small

picture box object near the upper-left corner of the form.

 4. Set the following properties for the picture box and the form. When you set the

properties for the picture box, note the current values in the Height and Width prop-

erties within the Size property. (You can set these at design time, too.) Since this is an

image from space, we’re using a black background for the form, and a .jpg image of

stars in the background. These two form properties, BackColor and BackgroundImage,

are being introduced for the fi rst time in this chapter.

Object Property Setting

PictureBox1 Image

SizeMode

“c:\vb08sbs\chap15\earth.jpg”

StretchImage

Form1 Text

BackColor

BackgroundImage

“Approaching Earth”

Black

“c:\vb08sbs\chap15\space.jpg”

 5. Double-click the PictureBox1 object on the form.

The PictureBox1_Click event procedure appears in the Code Editor.

 6. Type the following program code in the PictureBox1_Click event procedure:

PictureBox1.Height = PictureBox1.Height + 15

PictureBox1.Width = PictureBox1.Width + 15

 7. These two lines increase the height and width of the Earth icon by 15 pixels each time

the user clicks the picture box. If you stretch your imagination a little, watching the

effect makes you feel like you’re approaching Earth in a spaceship.

Object Property Setting

386 Part III Designing the User Interface

8. Click the Save All button, and then save the project in the c:\vb08sbs\chap15 folder.

Tip The complete Zoom In program is located in the c:\vb08sbs\chap15\zoom in folder.

9. Click the Start Debugging button to run the program.

The Earth image appears alone on the form.

Stars appear in the background because you have loaded the space.jpg fi le onto the

form with the BackImage property. Any area not covered by the BackImage property

on the form will be black because you’ve used the BackColor property to simulate the

quiet melancholy of outer space.

10. Click the Earth image several times to expand it on the screen.

After 10 or 11 clicks, your screen looks similar to this:

Because the image was relatively low resolution, it will eventually become somewhat

blurry if you magnify it much more. You can address this limitation by saving smaller

images at a higher resolution. The wispy clouds on Earth mitigate the blurring problem

in this example, however. (In print, this will not look that great, so be sure to try it out

on your computer!)

11. When you get close enough to establish a standard orbit, click the Close button to quit

the program.

The program stops, and the development environment returns.

 Chapter 15 Adding Graphics and Animation Effects 387
One Step Further: Changing Form Transparency

Interested in one last special effect? With GDI+, you can do things that are diffi cult or even

impossible in earlier versions of Visual Basic. For example, you can make a form partially

transparent so that you can see through it. Let’s say you’re designing a photo-display pro-

gram that includes a separate form with various options to manipulate the photos. You can

make the option form partially transparent so that the user can see any photos beneath it

while still having access to the options.

In the following exercise, you’ll change the transparency of a form by changing the value of

the Opacity property.

Set the Opacity property

 1. On the File menu, click the Close Project command.

 2. Create a new Windows Forms Application project named My Transparent Form.

 3. Display the form, click the Button control in the Toolbox, and then draw two buttons on

the form.

 4. Set the following properties for the two buttons and the form:

Object Property Setting

Button1 Text “Set Opacity”

Button2 Text “Restore”

Form1 Text “Transparent Form”

 5. Double-click the Set Opacity button on the form.

 6. Type the following program code in the Button1_Click event procedure:

Me.Opacity = 0.75

Opacity is specifi ed as a percentage, so it has a range of 0 to 1. This line sets the Opacity

of Form1 (Me) to 75 percent.

 7. Display the form again, double-click the Restore button, and then enter the following

program code in the Button2_Click event procedure:

Me.Opacity = 1

This line restores the opacity to 100 percent.

Object Property Setting

388 Part III Designing the User Interface

8. Click the Save All button, and save the project in the c:\vb08sbs\chap15 folder.

Tip The complete Transparent Form program is located in the c:\vb08sbs\chap15\

transparent form folder.

9. Click the Start Debugging button to run the program.

10. Click the Set Opacity button.

Notice how you can see through the form, as shown here:

11. Click the Restore button.

The transparency effect is removed.

12. When you’re done testing the transparency effect, click the Close button to quit the

program.

The program stops, and the development environment returns.

 Chapter 15 Adding Graphics and Animation Effects 389
Chapter 15 Quick Reference

To Do this

Create lines or shapes

on a form

Use methods in the System.Drawing.Graphics namespace. For example,

the following program statements draw an ellipse on the form:

Dim GraphicsFun As Graphics

GraphicsFun = Me.CreateGraphics

Dim PenColor As New Pen(System.Drawing.Color.Red)

GraphicsFun.DrawEllipse(PenColor, 10, _

 120, 200, 160)

Create lines or shapes

that persist on the form

during window redraws

Place the graphics methods in the Paint event procedure for the form.

Move an object on a

form

Relocate the object by using the Location property, the New keyword,

and the Point structure. For example:

PictureBox1.Location = New Point(300, 200)

Animate an object Use a timer event procedure to modify the Left, Top, or Location properties

for an object on the form. The timer’s Interval property controls animation

speed.

Expand or shrink an

object at run time

Change the object’s Height property or Width property.

Set the background

color on a form

Change the form’s BackColor property.

Set the background

image on a form

Change the form’s BackgroundImage property.

Change the transparency

of a form

Change the form’s Opacity property.

To Do this

Chapter 16

Inheriting Forms and Creating Base
Classes

After completing this chapter, you will be able to:

Q Use the Inheritance Picker to incorporate existing forms in your projects.

Q Create your own base classes with custom properties and methods.

Q Derive new classes from base classes by using the Inherits statement.

An important skill for virtually all professional software developers today is the ability to

understand and utilize object-oriented programming (OOP) techniques. The changes associ-

ated with OOP have been gaining momentum in recent versions of Visual Basic. Although

Microsoft Visual Basic 6 offers several object-oriented programming features, experts say

that it lags behind the “true” OOP languages, such as Microsoft Visual C++, because it lacks

inheritance, a mechanism that allows one class to acquire the interface and behavior charac-

teristics of another class.

Beginning with Microsoft Visual Basic .NET 2002, the Visual Basic language and IDE have sup-

ported inheritance, which means that you can build one form in the development environment

and pass its characteristics and functionality on to other forms. In addition, you can build your

own classes and inherit properties, methods, and events from them. These capabilities have

been enhanced in Microsoft Visual Studio 2008.

In this chapter, you’ll experiment with both types of inheritance. You’ll learn how to integrate

existing forms into your projects by using the Inheritance Picker dialog box that is part of Visual

Studio 2008, and you’ll learn how to create your own classes and derive new ones from them

by using the Inherits statement. With these skills, you’ll be able to utilize many of the forms and

coding routines you’ve already developed, making Visual Basic programming a faster and more

fl exible endeavor. These improvements will help you design compelling user interfaces rapidly

and will extend the work that you have done in other programming projects.
 391

392 Part III Designing the User Interface
Inheriting a Form by Using the Inheritance Picker

In object-oriented programming syntax, inheritance means having one class receive the

objects, properties, methods, and other attributes of another class. As I mentioned in the

section “Adding New Forms to a Program” in Chapter 14, “Managing Windows Forms and

Controls at Run Time,” Visual Basic goes through this process routinely when it creates a

new form in the development environment. The fi rst form in a project (Form1) relies on the

System.Windows.Forms.Form class for its defi nition and default values. In fact, this class is

identifi ed in the Properties window when you select a form in the Designer, as shown in

the following illustration:

Although you haven’t realized it, you’ve been using inheritance all along to defi ne the Windows

forms that you’ve been using to build Visual Basic applications. Although existing forms can be

inherited by using program code as well, the designers of Visual Studio considered the task to

be so important that they designed a special dialog box in the development environment to

facilitate the process. This dialog box is called the Inheritance Picker, and it’s accessed through

the Add New Item command on the Project menu. In the following exercise, you’ll use the

Inheritance Picker to create a second copy of a dialog box in a project.

Inherit a simple dialog box

 1. Start Visual Studio, and create a new Visual Basic Windows Forms Application project

named My Form Inheritance.

 2. Display the form in the project, and use the Button control to add two button objects

at the bottom of the form, positioned side by side.

 3. Change the Text properties of the Button1 and Button2 buttons to “OK” and “Cancel”,

respectively.

 4. Double-click the OK button to display the Button1_Click event procedure in the Code

Editor.

 5. Type the following program statement:

MsgBox("You clicked OK")

 Chapter 16 Inheriting Forms and Creating Base Classes 393

6. Display the form again, double-click the Cancel button, and then type the following

program statement in the Button2_Click event procedure:

MsgBox("You clicked Cancel")

7. Display the form again, and set the Text property of the form to “Dialog Box.”

You now have a simple form that can be used as the basis of a dialog box in a program.

With some customization, you can use this basic form to process several tasks—you

just need to add the controls that are specifi c to your individual application.

8. Click the Save All button to save your project, and specify the c:\vb08sbs\chap16 folder

as the location.

Now you’ll practice inheriting the form. The fi rst step in this process is building, or

compiling, the project because you can inherit only from forms that are compiled into

.exe or .dll fi les. Each time the base form is recompiled, changes made to the base

form are passed to the derived (inherited) form.

9. Click the Build My Form Inheritance command on the Build menu.

Visual Basic compiles your project and creates an .exe fi le.

10. Click the Add New Item command on the Project menu, and then click the Windows

Forms category on the left side of the dialog box and the Inherited Form template on

the right side of the dialog box.

The Add New Item dialog box looks as shown in the following illustration.

As usual, Visual Studio lists all the possible templates you could include in your projects,

not just those related to inheritance. The Inherited Form template gives you access to

the Inheritance Picker dialog box.

394 Part III Designing the User Interface

You can also use the Name text box at the bottom of the dialog box to assign a name

to your inherited form, although it is not necessary for this example. This name will

appear in Solution Explorer and in the fi le name of the form on disk.

11. Click Add to accept the default settings for the new, inherited form.

Visual Studio displays the Inheritance Picker dialog box, as shown here:

This dialog box lists all the inheritable forms in the current project. If you want to

browse for another compiled form, click the Browse button, and locate the .dll fi le on

your system.

Note If you want to inherit a form that isn’t a component of the current project, the form

must be compiled as a .dll fi le.

12. Click Form1 in the Inheritance Picker dialog box, and then click OK.

Visual Studio creates the Form2.vb entry in Solution Explorer and displays the inherited

form in the Designer. Notice in the fi gure on the following page that the form looks

identical to the Form1 window you created earlier, except that the two buttons contain

tiny icons, which indicate that the objects come from an inherited source.

 Chapter 16 Inheriting Forms and Creating Base Classes 395

Inherited form shown

in Solution Explorer

Icon indicates this

subject is inherited.

It can be diffi cult to tell an inherited form from a base form (the tiny inheritance icons

aren’t that obvious), but you can also use Solution Explorer and the IDE tabs to distin-

guish between the forms.

Now you’ll add a few new elements to the inherited form.

Customize the inherited form

1. Use the Button control to add a third button object to Form2 (the inherited form).

2. Set the Text property for the button object to “Click Me!”.

3. Double-click the Click Me! button.

4. In the Button3_Click event procedure, type the following program statement:

MsgBox("This is the inherited form!")

5. Display Form2 again, and then try double-clicking the OK and Cancel buttons on

the form.

You can’t display or edit the event procedures or properties for these inherited objects

without taking additional steps that are beyond the scope of this chapter. (Tiny “lock”

icons indicate that the inherited objects are read-only.) However, you can add new

objects to the form to customize it.

396 Part III Designing the User Interface

6. Enlarge the form.

You can also change other characteristics of the form, such as its size and location.

Notice that if you use the Properties window to customize a form, the Object list box

displays the form from which the current form is derived.

Now set the startup object to Form2.

7. Click the My Form Inheritance Properties command on the Project menu.

The Project Designer, fi rst introduced in Chapter 14, appears.

8. On the Application tab, click the Startup Form list box, click Form2, and then close the

Project Designer.

Now run the new project.

9. Click the Start Debugging button.

The inherited form opens, as shown here. (My version is shown slightly enlarged after

following step 6 earlier in this exercise.)

10. Click OK.

The inherited form runs the event procedure it inherited from Form1, and the event

procedure displays the message box shown on the following page.

 Chapter 16 Inheriting Forms and Creating Base Classes 397
 11. Click OK, and then click the Click Me! button.

Form2 displays the inherited form message.

What this demonstrates is that Form2 (the inherited form) has its own characteristics

(a new Click Me! button and an enlarged size). Form2 also utilizes two buttons (OK

and Cancel) that were inherited from Form1 and contain the code from Form1, as

well as the exact visual representation of the buttons. This means that you can rede-

ploy the user interface and code features that you have previously created without

cumbersome cutting and pasting. In other words, you’ve encountered one of the main

benefi ts of object-oriented programming, reusing and extending existing functional-

ity. You’ve also learned to use the Visual Studio Inheritance Picker dialog box, which

offers a handy way to select objects you want to reuse.

 12. Click OK to close the message box, and then click Close on the form to end the

program.

The program stops, and the IDE returns.

Creating Your Own Base Classes

The Inheritance Picker managed the inheritance process in the previous exercise by creating

a new class in your project named Form2. To build the Form2 class, the Inheritance Picker

established a link between the Form1 class in the My Form Inheritance project and the new

form. Here’s what the new Form2 class looks like in the Code Editor:

398 Part III Designing the User Interface
The Button3_Click event procedure that you added is also a member of the new class. But

recall for a moment that the Form1 class itself relied on the System.Windows.Forms.Form

class for its fundamental behavior and characteristics. So the last exercise demonstrates that

one derived class (Form2) can inherit its functionality from another derived class (Form1),

which in turn inherited its core functionality from an original base class (Form), which is a

member of the System.Windows.Forms namespace in the Microsoft .NET Framework library.

Tip In addition to the Inheritance Picker, Visual Studio offers the Inherits statement, which

causes the current class to inherit the properties, procedures, and variables of another class. To

use the Inherits statement to inherit a form, you must place the Inherits statement at the top of

the form as the fi rst statement in the class. Although you might choose to use the Inheritance

Picker for this sort of work with forms, it is useful to know about Inherits because it can be used

for classes and interfaces other than forms, and you will probably run into it now and then in

your colleagues’ program code. You’ll see an example of the Inherits statement near the end

of this chapter.

Recognizing that classes are such a fundamental building block in Visual Basic programs,

you might very well ask how new classes are created and how these new classes might be

inherited down the road by subsequently derived classes. To ponder these possibilities, I’ll

devote the remainder of this chapter to discussing the syntax for creating classes in Visual

Basic 2008 and introducing how these user-defi ned classes might be inherited later by still

more classes. Along the way, you’ll learn how very useful creating your own classes can be.

Nerd Alert

There’s a potential danger for terminology overload when discussing class creation and

inheritance. A number of very smart computer scientists have been thinking about these

object-oriented programming concepts for several years, and there are numerous terms

and defi nitions in use for the concepts that I plan to cover. However, if you stick with me,

you’ll fi nd that creating classes and inheriting them is quite simple in Visual Basic 2008

and that you can accomplish a lot of useful work by adding just a few lines of program

code to your projects. Understanding object-oriented terminology will also help you

make sense of some of the advanced features of Visual Basic 2008, such as Language

Integrated Query (LINQ), anonymous types, extension methods, and lambda expres-

sions, which facilitate the use of classes, objects, and methods, and are sometimes em-

phasized in marketing announcements and new feature lists.

 Chapter 16 Inheriting Forms and Creating Base Classes 399

Adding a New Class to Your Project

Simply stated, a class in Visual Basic is a representation or blueprint that defi nes the struc-

ture of one or more objects. Creating a class allows you to defi ne your own objects in a

program—objects that have properties, methods, fi elds, and events, just like the objects

that the Toolbox controls create on Windows forms. To add a new class to your project, you

click the Add Class command on the Project menu, and then you defi ne the class by using

program code and a few Visual Basic keywords.

In the following exercise, you’ll create a program that prompts a new employee for his or

her fi rst name, last name, and date of birth. You’ll store this information in the properties

of a new class named Person, and you’ll create a method in the class to compute the current

age of the new employee. This project will teach you how to create your own classes and also

how to use the classes in the event procedures of your program.

Build the Person Class project

1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Person Class.

2. Use the Label control to add a label object to the top of Form1.

3. Use the TextBox control to draw two wide text box objects below the label object.

4. Use the DateTimePicker control to draw a date time picker object below the text box

objects.

You last used the DateTimePicker control to enter dates in Chapter 3, “Working with

Toolbox Controls.” Go to that chapter if you want to review this control’s basic methods

and properties.

5. Use the Button control to draw a button object below the date time picker object.

6. Set the following properties for the objects on the form:

Object Property Setting

Label1 Text “Enter employee fi rst name, last name, and date of birth.”

TextBox1 Text “First name”

TextBox2 Text “Last name”

Button1 Text “Display record”

Form1 Text “Person Class”

Object Property Setting

400 Part III Designing the User Interface

Your form looks something like this:

This is the basic user interface for a form that defi nes a new employee record for a

business. The form isn’t connected to a database, so only one record can be stored at

a time. However, you’ll learn to make such connections in Chapter 18, “Getting Started

with ADO.NET.”

Now you’ll add a class to the project to store the information in the record.

7. Click the Add Class command on the Project menu.

Visual Studio displays the Add New Item dialog box, with the Class template selected,

as shown here:

The Add New Item dialog box gives you the opportunity to name your class. Because

you can store more than one class in a new class module, you might want to specify a

name that is somewhat general.

8. Type Person.vb in the Name box, and then click Add.

 Chapter 16 Inheriting Forms and Creating Base Classes 401

Visual Studio opens a blank class module in the Code Editor and lists a fi le named

Person.vb in Solution Explorer for your project, as shown here:

Now you’ll type the defi nition of your class in the class module and learn a few new Visual

Basic keywords. You’ll follow four steps: declare class variables, create properties, create a

method, and fi nally, create an object based on the new class.

Step 1: Declare class variables

Q Below the Public Class Person program statement, type the following variable

declarations:

Private Name1 As String

Private Name2 As String

Here you declare two variables that will be used exclusively within the class module to

store the values for two string property settings. I’ve declared the variables by using the

Private keyword because, by convention, Visual Basic programmers keep their internal

class variables private—in other words, not available for inspection outside the class

module itself.

Step 2: Create properties

1. Below the variable declarations, type the following program statement, and press Enter:

Public Property FirstName() As String

This statement creates a property named FirstName, which is of type String, in your

class. When you press Enter, Visual Studio immediately supplies a code structure for

the remaining elements in the property declaration. The required elements are a Get

block, which determines what other programmers see when they check the FirstName

property; a Set block, which determines what happens when the FirstName property

is set or changed; and an End Property statement, which marks the end of the prop-

erty procedure.

402 Part III Designing the User Interface

2. Fill out the property procedure structure so that it looks like the code that follows. (The

elements you type in are shaded.)

Public Property FirstName() As String

 Get

 Return Name1

 End Get

 Set(ByVal value As String)

 Name1 = value

 End Set

End Property

The Return keyword specifi es that the Name1 string variable will be returned when the

FirstName property is referenced. The Set block assigns a string value to the Name1

variable when the property is set. Notice here especially the value variable, which is

used in property procedures to stand for the value that’s assigned to the class when a

property is set. Although this syntax might look strange, trust me for now—this is how

you create property settings in controls, although more sophisticated properties would

add additional program logic here to test values or make computations.

3. Below the End Property statement, type a second property procedure for the LastName

property in your class. It should look like the code that follows. (The shaded lines are

the ones you type.)

Public Property LastName() As String

 Get

 Return Name2

 End Get

 Set(ByVal value As String)

 Name2 = value

 End Set

End Property

This property procedure is similar to the fi rst one, except that it uses the second string

variable (Name2) that you declared at the top of the class.

You’re fi nished defi ning the two properties in your class. Now let’s move on to a

method named Age that will determine the new employee’s current age based on

his or her birth date.

Step 3: Create a method

Q Below the LastName property procedure, type the following function defi nition:

Public Function Age(ByVal Birthday As Date) As Integer

 Return Int(Now.Subtract(Birthday).Days / 365.25)

End Function

 Chapter 16 Inheriting Forms and Creating Base Classes 403
To create a method in the class that performs a specifi c action, you add a function or

a Sub procedure to your class. Although many methods don’t require arguments to

accomplish their work, the Age method I’m defi ning requires a Birthday argument of

type Date to complete its calculation. The method uses the Subtract method to sub-

tract the new employee’s birth date from the current system time, and it returns the

value expressed in days divided by 365.25—the approximate length in days of a single

year. The Int function converts this value to an integer, and this number is returned

to the calling procedure via the Return statement—just like a typical function. (For

more information about function defi nitions, see Chapter 10, “Creating Modules and

Procedures.”)

Your class defi nition is fi nished, and in the Code Editor, the Person class now looks like

the following:

Now you’ll return to Form1 and use the new class in an event procedure.

Tip Although you didn’t do it for this example, it’s usually wise to add some type-checking

logic to class modules in actual projects so that properties or methods that are improperly

used don’t trigger run-time errors that halt the program.

404 Part III Designing the User Interface

Step 4: Create an object based on the new class

1. Click the Form1.vb icon in Solution Explorer, and then click the View Designer button.

The Form1 user interface appears.

2. Double-click the Display Record button to open the Button1_Click event procedure in

the Code Editor.

3. Type the following program statements:

Dim Employee As New Person

Dim DOB As Date

Employee.FirstName = TextBox1.Text

Employee.LastName = TextBox2.Text

DOB = DateTimePicker1.Value.Date

MsgBox(Employee.FirstName & " " & Employee.LastName _

 & " is " & Employee.Age(DOB) & " years old.")

This routine stores the values entered by the user in an object named Employee that’s

declared as type Person. The New keyword indicates that you want to immediately

create a new instance of the Employee object. You’ve declared variables often in this

book—now you get to declare one based on a class you created yourself! The routine

then declares a Date variable named DOB to store the date entered by the user, and the

FirstName and LastName properties of the Employee object are set to the fi rst and last

names returned by the two text box objects on the form. The value returned by the date

and time picker object is stored in the DOB variable, and the fi nal program statement

displays a message box containing the FirstName and LastName properties plus the age

of the new employee as determined by the Age method, which returns an integer value

when the DOB variable is passed to it. After you defi ne a class in a class module, it’s a

simple matter to use it in an event procedure, as this routine demonstrates.

4. Click the Save All button to save your changes, and specify the c:\vb08sbs\chap16

folder as the location.

5. Click the Start Debugging button to run the program.

The user interface appears in the IDE, ready for your input.

6. Type a fi rst name in the First Name text box and a last name in the Last Name text box.

7. Click the date time picker object’s arrow, and scroll in the list box to a sample birth date

(the date I’m selecting is July 12, 1970).

 Chapter 16 Inheriting Forms and Creating Base Classes 405

Tip You can scroll faster into the past by clicking the year fi eld when the date/time picker

dialog box is open. Scroll arrows appear, and you can move one year at a time backward

or forward. You can also move quickly to the month you want by clicking the month fi eld

and then clicking the month.

Your form looks similar to this:

8. Click the Display Record button.

Your program stores the fi rst name and last name values in property settings and uses

the Age method to calculate the new employee’s current age. A message box displays the

result, as shown here:

9. Click OK to close the message box, and then experiment with a few different date

values, clicking Display Record each time you change the birth date fi eld.

10. When you’re fi nished experimenting with your new class, click the Close button on

the form.

The development environment returns.

406 Part III Designing the User Interface
One Step Further: Inheriting a Base Class

As promised at the beginning of this chapter, I have one more trick to show you regarding

user-defi ned classes and inheritance. Just as forms can inherit form classes, they can also

inherit classes that you’ve defi ned by using the Add Class command and a class module.

The mechanism for inheriting a base (parent) class is to use the Inherits statement to in-

clude the previously defi ned class in a new class. You can then add additional properties

or methods to the derived (child) class to distinguish it from the base class. I realize that

this may be sounding a bit abstract, so let’s try an example.

In the following exercise, you’ll modify the My Person Class project so that it stores informa-

tion about new teachers and the grades they teach. First, you’ll add a second user-defi ned

class, named Teacher, to the Person class module. This new class will inherit the FirstName

property, the LastName property, and the Age method from the Person class and will add

an additional property named Grade to store the grade in which the new teacher teaches.

Use the Inherits keyword

 1. Click the Person.vb class in Solution Explorer, and then click the View Code button.

 2. Scroll to the bottom of the Code Editor so that the insertion point is below the End

Class statement.

As I mentioned earlier, you can include more than one class in a class module, as long

as each class is delimited by Public Class and End Class statements. You’ll create a class

named Teacher in this class module, and you’ll use the Inherits keyword to incorporate

the method and properties you defi ned in the Person class.

 3. Type the following class defi nition in the Code Editor. (Type the shaded statements

below—Visual Studio adds the remaining statements automatically.)

Public Class Teacher

 Inherits Person

 Private Level As Short

 Public Property Grade() As Short

 Get

 Return Level

 End Get

 Set(ByVal value As Short)

 Level = value

 End Set

 End Property

End Class

 Chapter 16 Inheriting Forms and Creating Base Classes 407

The Inherits statement links the Person class to this new class, incorporating all of its

variables, properties, and methods. If the Person class were located in a separate module

or project, you could identify its location by using a namespace designation, just as you

identify classes when you use the Imports statement at the top of a program that uses

classes in the .NET Framework class libraries. Basically, I’ve defi ned the Teacher class as a

special type of Person class—in addition to the FirstName and LastName properties, the

Teacher class has a Grade property that records the level at which the teacher teaches.

Now you’ll use the new class in the Button1_Click event procedure.

4. Display the Button1_Click event procedure in Form1.

Rather than create a new variable to hold the Teacher class, I’ll just use the Employee

variable as it is—the only difference will be that I can now set a Grade property for the

new employee.

5. Modify the Button1_Click event procedure as follows. (The shaded lines are the ones

that you need to change.)

Dim Employee As New Teacher

Dim DOB As Date

Employee.FirstName = TextBox1.Text

Employee.LastName = TextBox2.Text

DOB = DateTimePicker1.Value.Date

Employee.Grade = InputBox("What grade do you teach?")

MsgBox(Employee.FirstName & " " & Employee.LastName _

 & " teaches grade " & Employee.Grade)

In this example, I’ve removed the current age calculation—the Age method isn’t

used—but I did this only to keep information to a minimum in the message box.

When you defi ne properties and methods in a class, you aren’t required to use

them in the program code.

Now you’ll run the program.

Tip The revised Person Class program is located in the c:\vb08sbs\chap16\person class

folder.

6. Click the Start Debugging button to run the program.

408 Part III Designing the User Interface

The new employee form opens on the screen:

7. Type your fi rst name in the First Name text box and your last name in the Last Name

text box.

8. Click the date time picker object, and scroll to your birth date.

9. Click the Display Record button.

Your program stores the fi rst name and last name values in property settings and then

displays the following input box, which prompts the new teacher for the grade he or

she teaches:

10. Type 3, and then click OK to close the input box.

The application stores the number 3 in the new Grade property and uses the

FirstName, LastName, and Grade properties to display the new employee information

in a confi rming message box. You see this message:

 Chapter 16 Inheriting Forms and Creating Base Classes 409

C

11. Experiment with a few more values if you like, and then click the Close button on the form.

The program stops, and the development environment returns. You’re fi nished working

with classes and inheritance in this chapter. Nice job!

Further Experiments with Object-Oriented Programming

If you’ve enjoyed this foray into object-oriented coding techniques, more fun awaits

you in Visual Basic 2008, a truly object-oriented programming language. In particular,

you might want to add events to your class defi nitions, create default property values,

declare and use named and anonymous types, and experiment with a polymorphic

feature called method overloading. These and other OOP features can be explored by

using the Visual Studio documentation or by perusing an advanced book on Visual

Basic programming. (See the Appendix, “Where to Go for More Information,” for a

reading list.) For the relationship between object-oriented programming and data-

bases in Visual Basic, see Part IV, “Database and Web Programming.”

hapter 16 Quick Reference

To Do this

Inherit an existing

form’s interface and

functionality

Click the Add New Item command on the Project menu, click the Inherited

Form template, specify a name for the inherited form, and then click Add.

Use the Inheritance Picker to select the form you want to inherit, and then

click OK.

Note that to be eligible for inheritance, base forms must be compiled as .exe

or .dll fi les. If you want to inherit a form that isn’t a component in the current

project, the form must be compiled as a .dll fi le.

Customize an

inherited form

Add Toolbox controls to the form, and set property settings. Note that you

won’t be able to set the properties of inherited objects on the form. These

objects are identifi ed by small icons and are inactive.

Create your own

base classes

Click the Add Class command on the Project menu, specify the class name,

and then click Add. Defi ne the class in a class module by using program code.

Hide declared

variables in a class

Use the Private keyword to hide class variables from other programmers who

examine your class. For example:

Private Name1 As String

Create a new

property in the

class

Defi ne a public property procedure in the class. For example:

Public Property FirstName() As String

 Get

 Return Name1

 End Get

 Set(ByVal value As String)

 Name1 = value

 End Set

End Property

To Do this

410 Part III Designing the User Interface
To Do this

Create a new method

in the class

Defi ne a Sub or Function procedure in the class. For example:

Public Function Age(ByVal Birthday As Date) _

 As Integer

 Return Int(Now.Subtract(Birthday).Days _

 / 365.25)

End Function

Declare an object

variable to use the

class

Use the Dim and New keywords, a variable name, and the user-defi ned class

in a program statement. For example:

Dim Employee As New Person

Set properties for an

object variable

Use the regular syntax for setting object properties. For example:

Employee.FirstName = TextBox1.Text

Inherit a base class

in a new class

Create a new class, and use the Inherits keyword to incorporate the base

class’s class defi nitions. For example:

Public Class Teacher

 Inherits Person

 Private Level As Short

 Public Property Grade() As Short

 Get

 Return Level

 End Get

 Set(ByVal value As Short)

 Level = value

 End Set

 End Property

End Class

To Do this

Chapter 17

Working with Printers

After completing this chapter, you will be able to:

Q Print graphics from a Visual Basic program.

Q Print text from a Visual Basic program.

Q Print multipage documents.

Q Create Print, Page Setup, and Print Preview dialog boxes in your programs.

In the following sections, you’ll complete your survey of user interface design and components

by learning how to add printer support to your Windows applications. Microsoft Visual Basic

2008 supports printing by offering the PrintDocument class and its many objects, methods,

and properties, which handle sending text and graphics to printers.

In this chapter, you’ll learn how to print graphics and text from Visual Basic programs, manage

multipage printing tasks, and add printing dialog boxes to your user interface. In my opinion,

this chapter is one of the most useful in the book, with lots of practical code that you can im-

mediately incorporate into real-world programming projects. Printing support doesn’t come

automatically in Visual Basic 2008, but the routines in this chapter will help you print longer

text documents and display helpful dialog boxes such as Page Setup, Print, and Print Preview

from within your programs. I’ll start the chapter with two very simple printing routines to

show you the basics, and then I’ll get considerably more sophisticated.

Using the PrintDocument Class

Most Windows applications allow users to print documents after they create them, and by

now you might be wondering just how printing works in Visual Basic programs. This is one

area where Visual Basic 2008 has improved considerably over Visual Basic 6, although the

added functionality comes at a little cost. Producing printed output from Visual Basic 2008

programs isn’t a trivial process, and the technique you use depends on the type and amount

of printed output you want to generate. In all cases, however, the fundamental mechanism

that regulates printing in Visual Basic 2008 is the PrintDocument class, which you can create

in a project in two ways:

Q By adding the PrintDocument control to a form

Q By defi ning it programmatically with a few lines of Visual Basic code
 411

412 Part III Designing the User Interface

The PrintDocument class is located in the System.Drawing.Printing namespace. The

System.Drawing.Printing namespace provides several useful objects for printing text and

graphics, including the PrinterSettings object, which contains the default print settings for

a printer; the PageSettings object, which contains print settings for a particular page; and

the PrintPageEventArgs object, which contains event information about the page that’s

about to be printed. The System.Drawing.Printing namespace is automatically incorporated

into your project. To make it easier to reference the printing objects and other important

values in this namespace, add the following Imports statement to the top of your form:

Imports System.Drawing.Printing

To learn how to use the PrintDocument class in a program, complete the following exercise,

which teaches you how to add a PrintDocument control to your project and use it to print a

graphics fi le on your system.

Use the PrintDocument control

1. Start Microsoft Visual Studio, and create a new Visual Basic Windows Forms Application

project named My Print Graphics.

A blank form opens in the Visual Studio IDE.

2. Use the Label control to draw a label object near the top of the form.

3. Use the TextBox control to draw a text box object below the label object.

The text box object will be used to type the name of the artwork fi le that you want to

open. A single-line text box will be suffi cient.

4. Use the Button control to draw a button object below the text box.

This button object will print the graphics fi le. Now you’ll add a PrintDocument control.

5. Scroll down until you see the Printing tab of the Toolbox and then double-click the

PrintDocument control.

Like the Timer control, the PrintDocument control is invisible at run time, so it’s placed

in the component tray beneath the form when you create it. Your project now has

access to the PrintDocument class and its useful printing objects.

6. Set the following properties for the objects on your form:

Object Property Setting

Label1 Text “Type the name of a graphic fi le to print.”

TextBox1 Text “c:\vb08sbs\chap15\sun.ico”

Button1 Text “Print Graphics”

Form1 Text “Print Graphics”

Object Property Setting

 Chapter 17 Working with Printers 413

Your form looks similar to this:

Now add the program code necessary to print a graphic fi le (bitmap, icon, metafi le,

JPEG fi le, and so on).

7. Double-click the Print Graphics button.

The Button1_Click event procedure appears in the Code Editor.

8. Move the insertion point to the top of the form’s code, and then type the following

program statement:

Imports System.Drawing.Printing

This Imports statement declares the System.Drawing.Printing namespace, which makes

it easier to reference the printing classes.

9. Now move the insertion point down to the Button1_Click event procedure, and enter

the following program code:

' Print using an error handler to catch problems

Try

 AddHandler PrintDocument1.PrintPage, AddressOf Me.PrintGraphic

 PrintDocument1.Print() 'print graphic

Catch ex As Exception ‘catch printing exception

 MessageBox.Show("Sorry--there is a problem printing", ex.ToString())

End Try

Note After you enter this code, you’ll see a jagged line under Me.PrintGraphic. Don’t

worry, you’ll be adding the PrintGraphic procedure in the next step.

414 Part III Designing the User Interface

This code uses the AddHandler statement, which specifi es that the PrintGraphic event

handler should be called when the PrintPage event of the PrintDocument1 object fi res.

You’ve seen error handlers in previous chapters—an event handler is a closely related

mechanism that handles system events that aren’t technically errors but that also repre-

sent crucial actions in the life cycle of an object.

In this case, the event handler being specifi ed is related to printing services, and the

request comes with specifi c information about the page to be printed, the current

printer settings, and other attributes of the PrintDocument class. Technically, the

AddressOf operator is used to identify the PrintGraphic event handler by determining

its internal address and storing it. The AddressOf operator implicitly creates an object

known as a delegate that forwards calls to the appropriate event handler when an

event occurs.

The third line of the code you just entered uses the Print method of the PrintDocument1

object to send a print request to the PrintGraphic event procedure, a routine that you’ll

create in the next step. This print request is located inside a Try code block to catch any

printing problems that might occur during the printing activity. Note that the syntax

I’m using in the Catch block is slightly different from the syntax I introduced in Chapter

9, “Trapping Errors by Using Structured Error Handling.” Here the ex variable is being

declared of type Exception to get a detailed message about any errors that occur. Using

the Exception type is another way to get at the underlying error condition that created

the problem.

10. Scroll above the Button1_Click event procedure in the Code Editor to the general

declaration space below the Public Class Form1 statement. Then type the following

Sub procedure declaration:

'Sub for printing graphic

Private Sub PrintGraphic(ByVal sender As Object, _

 ByVal ev As PrintPageEventArgs)

 ' Create the graphic using DrawImage

 ev.Graphics.DrawImage(Image.FromFile(TextBox1.Text), _

 ev.Graphics.VisibleClipBounds)

 ' Specify that this is the last page to print

 ev.HasMorePages = False

End Sub

This routine handles the printing event generated by the PrintDocument1.Print method.

I’ve declared the Sub procedure within the form’s code, but you can also declare the Sub

as a general-purpose procedure in a module. Note the ev variable in the argument list

for the PrintGraphic procedure. This variable is the crucial carrier of information about

the current print page, and it’s declared of type PrintPageEventArgs, an object in the

System.Drawing.Printing namespace.

 Chapter 17 Working with Printers 415

To actually print the graphic, the procedure uses the Graphics.DrawImage method

associated with the current print page to load a graphics fi le by using the fi le name

stored in the Text property of the TextBox1 object. (By default, I set this property to

c:\vb08sbs\chap15\sun.ico—the same Sun icon used in Chapter 15, “Adding Graphics

and Animation Effects”—but you can change this value at run time and print any art-

work fi les that you like.) Finally, I set the ev.HasMorePages property to False so that

Visual Basic understands that the print job doesn’t have multiple pages.

11. Click the Save All button on the Standard toolbar to save your changes, and specify

the c:\vb08sbs\chap17 folder as the location.

Now you’re ready to run the program. Before you do so, you might want to locate a few

graphics fi les on your system that you can print. (Just jot down the paths for now and type

them in.)

Run the Print Graphics program

Tip The complete Print Graphics program is located in the c:\vb08sbs\chap17\

print graphics folder.

1. Click the Start Debugging button on the Standard toolbar.

Your program runs in the IDE. You see this form:

2. Turn on your printer, and verify that it is online and has paper.

3. If you installed your sample fi les in the default c:\vb08sbs folder, click the Print Graphics

button now to print the Sun.ico icon graphic.

If you didn’t use the default sample fi le location, or if you want to print a different

artwork fi le, modify the text box path accordingly, and then click the Print Graphics

button.

416 Part III Designing the User Interface

The DrawImage method expands the graphic to the maximum size your printer can

produce on one page and then sends the graphic to the printer. (This “expansion

feature” fi lls up the page and gives you a closer look at the image.) Admittedly this

might not be that interesting for you, but we’ll get more sophisticated in a moment.

(If you want to modify the location or size of your output, search the Visual Studio

documentation for the “Graphics.DrawImage Method” topic, study the different

argument variations available, and then modify your program code.)

If you look closely, you see the following dialog box appear when Visual Basic sends

your print job to the printer:

This status box is also a product of the PrintDocument class, and it provides users

with a professional-looking print interface, including the page number for each

printed page.

4. Type additional paths if you like, and then click the Print Graphics button for more

printouts.

5. When you’re fi nished experimenting with the program, click the Close button on the

form.

The program stops. Not bad for your fi rst attempt at printing from a Visual Basic

program!

Printing Text from a Text Box Object

You’ve had a quick introduction to the PrintDocument control and printing graphics. Now try

using a similar technique to print the contents of a text box on a Visual Basic form. In the fol-

lowing exercise, you’ll build a simple project that prints text by using the PrintDocument class,

but this time you’ll defi ne the class by using program code without adding the PrintDocument

control to your form. In addition, you’ll use the Graphics.DrawString method to send the entire

contents of a text box object to the default printer.

Note The following program is designed to print one page or less of text. To print multiple

pages, you need to add additional program code, which will be explored later in the chapter.

I don’t want to introduce too many new printing features at once.

 Chapter 17 Working with Printers 417

Use the Graphics.DrawString method to print text

1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Print Text.

A blank form opens.

2. Use the Label control to draw a label object near the top of the form.

This label will display a line of instructions for the user.

3. Use the TextBox control to draw a text box object below the label object.

The text box object will contain the text you want to print.

4. Set the Multiline property of the text box object to True, and then expand the text box

so that it’s large enough to enter several lines of text.

5. Use the Button control to draw a button object below the text box.

This button object will print the text fi le.

6. Set the following properties for the objects on your form:

Object Property Setting

Label1 Text “Type some text in this text box object, then click Print Text.”

TextBox1 ScrollBars Vertical

Button1 Text “Print Text”

Form1 Text “Print Text”

Your form looks similar to this:

Now add the program code necessary to print the contents of the text box.

Object Property Setting

418 Part III Designing the User Interface

7. Double-click the Print Text button.

The Button1_Click event procedure appears in the Code Editor.

8. Scroll to the very top of the form’s code, and then type the following Imports

declaration:

Imports System.Drawing.Printing

This makes it easier to reference the classes in the System.Drawing.Printing namespace,

which includes the PrintDocument class and its necessary objects.

9. Now scroll back down to the Button1_Click event procedure, and enter the following

program code:

' Print using an error handler to catch problems

Try

 ' Declare PrintDoc variable of type PrintDocument

 Dim PrintDoc As New PrintDocument

 AddHandler PrintDoc.PrintPage, AddressOf Me.PrintText

 PrintDoc.Print() 'print text

Catch ex As Exception 'catch printing exception

 MessageBox.Show("Sorry--there is a problem printing", ex.ToString())

End Try

The lines that are new or changed from the Print Graphics program are shaded.

Rather than add a PrintDocument control to your form, this time you simply created

the PrintDocument programmatically by using the Dim keyword and the PrintDocument

type, which is defi ned in the System.Drawing.Printing namespace. From this point on,

the PrintDoc variable represents the PrintDocument object, and it is used to declare the

error handler and to print the text document. Note that for clarity, I renamed the Sub

procedure that will handle the print event PrintText (rather than PrintGraphic).

10. Scroll above the Button1_Click event procedure in the Code Editor to the general

declaration area. Type the following Sub procedure declaration:

'Sub for printing text

Private Sub PrintText(ByVal sender As Object, _

 ByVal ev As PrintPageEventArgs)

 'Use DrawString to create text in a Graphics object

 ev.Graphics.DrawString(TextBox1.Text, New Font("Arial", _

 11, FontStyle.Regular), Brushes.Black, 120, 120)

 ' Specify that this is the last page to print

 ev.HasMorePages = False

End Sub

This routine handles the printing event generated by the PrintDoc.Print method. The

changes from the PrintGraphic procedure in the previous exercises are also shaded.

As you can see, when you print text, you need to use a new method.

 Chapter 17 Working with Printers 419

Rather than use Graphics.DrawImage, which renders a graphics image, you must use

Graphics.DrawString, which prints a text string. I’ve specifi ed the text in the Text prop-

erty of the text box object to print some basic font formatting (Arial, 11 point, regular

style, black color), and (x, y) coordinates (120, 120) on the page to start drawing. These

specifi cations will give the printed output a default look that’s similar to the text box on

the screen. Like last time, I’ve also set the ev.HasMorePages property to False to indi-

cate that the print job doesn’t have multiple pages.

11. Click the Save All button on the toolbar to save your changes, and specify c:\vb08sbs\

chap17 as the folder location.

Now you’ll run the program to see how a text box object prints.

Run the Print Text program

Tip The complete Print Text program is located in the c:\vb08sbs\chap17\print text folder.

1. Click the Start Debugging button on the toolbar.

Your program runs in the IDE.

2. Verify that your printer is on.

3. Type some sample text in the text box. If you type multiple lines, be sure to include a

carriage return at the end of each line.

Wrapping isn’t supported in this demonstration program—very long lines will potentially

extend past the right margin. (Again, we’ll solve this problem soon.) Your form looks

something like this:

420 Part III Designing the User Interface
 4. Click the Print Text button.

The program displays a printing dialog box and prints the contents of your text box.

 5. Modify the text box, and try additional printouts, if you like.

 6. When you’re fi nished, click the Close button on the form to stop the program.

Now you know how to print both text and graphics from a program.

Printing Multipage Text Files

The printing techniques that you’ve just learned are useful for simple text documents,

but they have a few important limitations. First, the method I used doesn’t allow for long

lines—in other words, text that extends beyond the right margin. Unlike the text box object,

the PrintDocument object doesn’t automatically wrap lines when they reach the edge of the

paper. If you have fi les that don’t contain carriage returns at the end of lines, you’ll need to

write the code that handles these long lines.

The second limitation is that the Print Text program can’t print more than one page of text.

Indeed, it doesn’t even understand what a page of text is—the printing procedure simply

sends the text to the default printer. If the text block is too long to fi t on a single page, the

additional text won’t be printed. To handle multipage printouts, you need to create a virtual

page of text called the PrintPage and then add text to it until the page is full. When the page

is full, it is sent to the printer, and this process continues until there is no more text to print.

At that point, the print job ends.

If fi xing these two limitations sounds complicated, don’t despair yet—there are a few handy

mechanisms that help you create virtual text pages in Visual Basic and help you print text fi les

with long lines and several pages of text. The fi rst mechanism is the PrintPage event, which

occurs when a page is printed. PrintPage receives an argument of the type PrintPageEventArgs,

which provides you with the dimensions and characteristics of the current printer page. Another

mechanism is the Graphics.MeasureString method. The MeasureString method can be used to

determine how many characters and lines can fi t in a rectangular area of the page. By using

these mechanisms and others, it’s relatively straightforward to construct procedures that

process multipage print jobs.

Complete the following steps to build a program named Print File that opens text fi les

of any length and prints them. The Print File program also demonstrates how to use the

RichTextBox, PrintDialog, and OpenFileDialog controls. The RichTextBox control is a more

robust version of the TextBox control you just used to display text. The PrintDialog control

 Chapter 17 Working with Printers 421

displays a standard Print dialog box so that you can specify various print settings. The

OpenFileDialog control lets you select a text fi le for printing. (You used OpenFileDialog in

Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes.”)

Manage print requests with RichTextBox, OpenFileDialog, and PrintDialog controls

1. Click the Close Project command on the File menu, and then create a new Windows

Forms Application project named My Print File.

A blank form opens.

2. Use the Button control in the Toolbox to draw two buttons in the upper-left corner of

the form.

This program has a simple user interface, but the printing techniques you’ll learn are

easily adaptable to much more complex solutions.

3. Click the RichTextBox control in the Toolbox, and then draw a rich text box object that

covers the bottom half of the form.

4. Double-click the OpenFileDialog control on the Dialogs tab to add an open fi le dialog

object to the component tray below your form.

You’ll use the open fi le dialog object to browse for text fi les on your system.

5. Double-click the PrintDocument control on the Printing tab to add a print document

object to the component tray.

You’ll use the print document object to support printing in your application.

6. Double-click the PrintDialog control on the Printing tab to add a print dialog object to

the component tray.

You’ll use the print dialog object to open a Print dialog box in your program.

7. Now set the following properties for the objects on your form:

Object Property Setting

Button1 Name

Text

btnOpen

“Open”

Button2 Name

Enabled

Text

btnPrint

False

“Print”

Form1 Text “Print File”

Object Property Setting

422 Part III Designing the User Interface

Your form looks something like this:

Now add the program code necessary to open the text fi le and print it.

8. Double-click the Open button.

The btnOpen_Click event procedure appears in the Code Editor.

9. Scroll to the top of the form, and enter the following code:

Imports System.IO 'for FileStream class

Imports System.Drawing.Printing

These statements make it easier to reference the FileStream class and the classes for

printing.

10. Move the cursor below the Public Class Form1 statement, and then enter the following

variable declarations:

Private PrintPageSettings As New PageSettings

Private StringToPrint As String

Private PrintFont As New Font("Arial", 10)

These statements defi ne important information about the pages that will be printed.

11. Scroll to the btnOpen_Click event procedure, and then type the program code shown

on the following page.

 Chapter 17 Working with Printers 423

Dim FilePath As String

'Display Open dialog box and select text file

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

OpenFileDialog1.ShowDialog()

'If Cancel button not selected, load FilePath variable

If OpenFileDialog1.FileName <> "" Then

 FilePath = OpenFileDialog1.FileName

 Try

 'Read text file and load into RichTextBox1

 Dim MyFileStream As New FileStream(FilePath, FileMode.Open)

 RichTextBox1.LoadFile(MyFileStream, _

 RichTextBoxStreamType.PlainText)

 MyFileStream.Close()

 'Initialize string to print

 StringToPrint = RichTextBox1.Text

 'Enable Print button

 btnPrint.Enabled = True

 Catch ex As Exception

 'display error messages if they appear

 MessageBox.Show(ex.Message)

 End Try

End If

When the user clicks the Open button, this event procedure displays an Open dialog

box using a fi lter that displays only text fi les. When the user selects a fi le, the fi le name

is assigned to a public string variable named FilePath, which is declared at the top of the

event procedure. The procedure then uses a Try...Catch error handler to load the text fi le

into the RichTextBox1 object. To facilitate the loading process, I’ve used the FileStream

class and the Open fi le mode, which places the complete contents of the text fi le into the

MyFileStream variable. Finally, the event procedure enables the Print button (btnPrint) so

that the user can print the fi le. In short, this routine opens the fi le and enables the print

button on the form but doesn’t do any printing itself.

Now you’ll add the necessary program code to display the Print dialog box and print the fi le

by using logic that monitors the dimensions of the current text page.

Add code for the btnPrint and PrintDocument1 objects

1. Display the form again, and then double-click the Print button (btnPrint) to display its

event procedure in the Code Editor.

424 Part III Designing the User Interface

2. Type the following program code:

Try

 'Specify current page settings

 PrintDocument1.DefaultPageSettings = PrintPageSettings

 'Specify document for print dialog box and show

 StringToPrint = RichTextBox1.Text

 PrintDialog1.Document = PrintDocument1

 Dim result As DialogResult = PrintDialog1.ShowDialog()

 'If click OK, print document to printer

 If result = DialogResult.OK Then

 PrintDocument1.Print()

 End If

Catch ex As Exception

 'Display error message

 MessageBox.Show(ex.Message)

End Try

This event procedure sets the default print settings for the document and assigns the

contents of the RichTextBox1 object to the StringToPrint string variable (defi ned at the top

of the form) in case the user changes the text in the rich text box. It then opens the Print

dialog box and allows the user to adjust any print settings (printer, number of copies, the

print-to-fi le option, and so on). If the user clicks OK, the event procedure sends this print

job to the printer by issuing the following statement:

PrintDocument1.Print()

3. Display the form again, and then double-click the PrintDocument1 object in the

component tray.

Visual Studio adds the PrintPage event procedure for the PrintDocument1 object.

4. Type the following program code in the PrintDocument1_PrintPage event procedure:

Dim numChars As Integer

Dim numLines As Integer

Dim stringForPage As String

Dim strFormat As New StringFormat

'Based on page setup, define drawable rectangle on page

Dim rectDraw As New RectangleF(_

 e.MarginBounds.Left, e.MarginBounds.Top, _

 e.MarginBounds.Width, e.MarginBounds.Height)

'Define area to determine how much text can fit on a page

'Make height one line shorter to ensure text doesn't clip

Dim sizeMeasure As New SizeF(e.MarginBounds.Width, _

 e.MarginBounds.Height - PrintFont.GetHeight(e.Graphics))

'When drawing long strings, break between words

strFormat.Trimming = StringTrimming.Word

'Compute how many chars and lines can fit based on sizeMeasure

e.Graphics.MeasureString(StringToPrint, PrintFont, _

 sizeMeasure, strFormat, numChars, numLines)

'Compute string that will fit on a page

stringForPage = StringToPrint.Substring(0, numChars)

 Chapter 17 Working with Printers 425

'Print string on current page

e.Graphics.DrawString(stringForPage, PrintFont, _

 Brushes.Black, rectDraw, strFormat)

'If there is more text, indicate there are more pages

If numChars < StringToPrint.Length Then

 'Subtract text from string that has been printed

 StringToPrint = StringToPrint.Substring(numChars)

 e.HasMorePages = True

Else

 e.HasMorePages = False

 'All text has been printed, so restore string

 StringToPrint = RichTextBox1.Text

End If

This event procedure handles the actual printing of the text document, and it does so

by carefully defi ning a printing area (or printing rectangle) based on the settings in the

Page Setup dialog box. Any text that fi ts within this area can be printed normally; text

that’s outside this area needs to be wrapped to the following lines, or pages, as you’d

expect to happen in a standard Windows application.

The printing area is defi ned by the rectDraw variable, which is based on the RectangleF

class. The strFormat variable and the Trimming method are used to trim strings that

extend beyond the edge of the right margin. The actual text strings are printed by

the DrawString method, which you’ve already used in this chapter. The HasMorePages

property is used to specify whether there are additional pages to be printed. If no

additional pages remain, the HasMorePage property is set to False, and the contents

of the StringToPrint variable are restored to the contents of the RichTextBox1 object.

5. Click the Save All button on the toolbar to save your changes, and specify the

c:\vb08sbs\chap17 folder as the location.

That’s a lot of typing! But now you’re ready to run the program and see how printing text

fi les on multiple pages works.

Run the Print File program

Tip The complete Print File program is located in the c:\vb08sbs\chap17\print fi le folder.

1. Click the Start Debugging button on the toolbar.

Your program runs in the IDE. Notice that the Print button is currently disabled because

you haven’t selected a fi le yet.

2. Click the Open button.

The program displays an Open dialog box.

3. Browse to the c:\vb08sbs\chap17 folder, and then click the longfi le.txt fi le.

In Windows Vista, your Open dialog box looks like this:

426 Part III Designing the User Interface

4. Click Open to select the fi le.

Your program loads the text fi le into the rich text box object on the form and then

enables the Print button. This fi le is long and has a few lines that wrap so that you can

test the wide margin and multipage printing options. Your form looks like this:

5. Verify that your printer is on, and then click the Print button.

Visual Basic displays the Print dialog box, customized with the name and settings for

your printer, as shown in the following illustration:

 Chapter 17 Working with Printers 427
Many of the options in the Print dialog box are active, and you can experiment with

them as you would a regular Windows application.

 6. Click Print to print the document.

Your program submits the four-page print job to the Windows print queue. After a

moment (and if your printer is ready), the printer begins printing the document. As in

previous exercises, a dialog box automatically opens to show you the printing status

and give you an indication of how many pages your printed document will be.

 7. Click the Close button on the form to stop the program.

You’ve just created a set of very versatile printing routines which can be added to any Visual

Basic application that needs to print multiple pages of text!

One Step Further: Adding Print Preview and Page Setup
Dialog Boxes

The Print File application is ready to handle several printing tasks, but its interface isn’t as

visually compelling as that of a commercial Windows application. You can make your pro-

gram more fl exible and interesting by adding a few extra dialog box options to supplement

the Print dialog box that you experimented with in the previous exercise.

Two additional printing controls are available on the Printing tab of the Toolbox, and they work

much like the familiar PrintDialog and OpenFileDialog controls that you’ve used in this book:

428 Part III Designing the User Interface

Q The PrintPreviewDialog control displays a custom Print Preview dialog box.

Q The PageSetupDialog control displays a custom Page Setup dialog box.

As with other dialog boxes, you can add these printing controls to your form by using the

Toolbox, or you can create them programmatically.

In the following exercise, you’ll add Print Preview and Page Setup dialog boxes to the Print

File program you’ve been working with. In the completed practice fi les, I’ve named this

project Print Dialogs so that you can distinguish the code of the two projects, but you

can add the dialog box features directly to the Print File project if you want.

Add PrintPreviewDialog and PageSetupDialog controls

1. If you didn’t complete the previous exercise, open the Print File project from the

c:\vb08sbs\chap17\print fi le folder.

The Print File project is the starting point for this project.

2. Display the form, and then use the Button control to add two additional buttons to the

top of the form.

3. Double-click the PrintPreviewDialog control on the Printing tab of the Toolbox.

A print preview dialog object is added to the component tray.

4. Double-click the PageSetupDialog control on the Printing tab of the Toolbox.

A page setup dialog object is added to the component tray. If the objects in the

component tray obscure one another, you can drag them to a better (more visible)

location, or you can right-click the component tray and select Line Up Icons.

5. Set the following properties for the button objects on the form:

Object Property Setting

Button1 Name

Enabled

Text

btnSetup

False

“Page Setup”

Button2 Name

Enabled

Text

btnPreview

False

“Print Preview”

Your form looks like this:

Object Property Setting

 Chapter 17 Working with Printers 429

6. Double-click the Page Setup button (btnSetup) to display the btnSetup_Click event

procedure in the Code Editor.

7. Type the following program code:

Try

 'Load page settings and display page setup dialog box

 PageSetupDialog1.PageSettings = PrintPageSettings

 PageSetupDialog1.ShowDialog()

Catch ex As Exception

 'Display error message

 MessageBox.Show(ex.Message)

End Try

The code for creating a Page Setup dialog box in this program is quite simple because the

PrintPageSettings variable has already been defi ned at the top of the form. This variable

holds the current page defi nition information, and when it’s assigned to the PageSettings

property of the PageSetupDialog1 object, the ShowDialog method automatically loads a

dialog box that allows the user to modify what the program has selected as the default

page orientation, margins, and so on. The Try...Catch error handler simply handles any er-

rors that might occur when the ShowDialog method is used.

8. Display the form again, and then double-click the Print Preview button (btnPreview)

to display the btnPreview_Click event procedure.

9. Type the following program code:

430 Part III Designing the User Interface

Try

 'Specify current page settings

 PrintDocument1.DefaultPageSettings = PrintPageSettings

 'Specify document for print preview dialog box and show

 StringToPrint = RichTextBox1.Text

 PrintPreviewDialog1.Document = PrintDocument1

 PrintPreviewDialog1.ShowDialog()

Catch ex As Exception

 'Display error message

 MessageBox.Show(ex.Message)

End Try

In a similar way, the btnPreview_Click event procedure assigns the PrintPageSettings

variable to the DefaultPageSettings property of the PrintDocument1 object, and then

it copies the text in the rich text box object to the StringToPrint variable and opens

the Print Preview dialog box. Print Preview automatically uses the page settings data

to display a visual representation of the document as it will be printed—you don’t

need to display this information manually.

Now you’ll make a slight modifi cation to the program code in the btnOpen_Click event

procedure.

10. Scroll up to the btnOpen_Click event procedure in the Code Editor.

This is the procedure that displays the Open dialog box, opens a text fi le, and enables

the printing buttons. Because you just added the Page Setup and Print Preview buttons,

you have to add program code to enable those two printing buttons as well.

11. Scroll to the bottom of the event procedure, just before the fi nal Catch code block, and

locate the following program statement:

btnPrint.Enabled = True

12. Below that statement, add the following lines of code:

btnSetup.Enabled = True

btnPreview.Enabled = True

Now your program will enable the print buttons when there’s a document available

to print.

13. Click the Save All button on the toolbar to save your changes.

 Chapter 17 Working with Printers 431

Test the Page Setup and Print Preview features

Tip The complete Print Dialogs program is located in the c:\vb08sbs\chap17\print dialogs

folder.

1. Click the Start Debugging button on the toolbar.

The program opens, with only the fi rst button object enabled.

2. Click the Open button, and then open the longfi le.txt fi le in the c:\vb08sbs\chap17 folder.

The remaining three button objects are now enabled, as shown here:

3. Click the Page Setup button.

Your program displays the Page Setup dialog box, as shown here:

432 Part III Designing the User Interface

Page Setup provides numerous useful options, including the ability to change the paper

size and source, the orientation of the printing (Portrait or Landscape), and the page

margins (Left, Right, Top, and Bottom).

4. Change the Left margin to 2, and then click OK.

The left margin will now be 2 inches.

5. Click the Print Preview button.

Your program displays the Print Preview dialog box, as shown in the following

illustration:

One page
Two pages

Three pages

Four pages

Six pages

Print

Zoom

Page

Select

box

If you’ve used the Print Preview command in Microsoft Offi ce Word or Microsoft Offi ce

Excel, you will recognize several of the buttons and preview features in this Print Preview

dialog box. The Zoom, One Page, Two Pages, Three Pages, Four Pages, Six Pages, and

Page Select box controls all work automatically in the dialog box. No program code is

required to make them operate.

6. Click the Four Pages button to display your document four pages at a time.

 Chapter 17 Working with Printers 433

7. Click the Maximize button on the Print Preview title bar to make the window full size.

8. Click the Zoom arrow, and then click 150%.

Your screen looks like this:

9. Click the Zoom button and return the view to Auto.

10. Click the Three Pages button, and then click the Up arrow in the Page Select box to

view pages 2 through 4.

As you can see, this Print Preview window is quite impressive—and you incorporated it

into your program with just a few lines of code!

11. If you want to test printing the entire document again, click the Print button.

12. When you’re fi nished experimenting, click the Close button to close the Print Preview

dialog box, and then click the Close button to close the program.

You’re done working with printers for now.

434 Part III Designing the User Interface
Chapter 17 Quick Reference

To Do this

Make it easier to refer-

ence the printing classes

in your projects

Add the following Imports statement to the top of your form:

Imports System.Drawing.Printing

Create a printing event

handler

Double-click the PrintDocument1 object in the component tray

or

Use the AddHandler statement and the AddressOf operator. For example:

AddHandler PrintDocument1.PrintPage, _

 AddressOf Me.PrintGraphic

Create a PrintDocument

object in your project

Double-click the PrintDocument control on the Printing tab of the Toolbox.

or

Include the following variable declaration in your program code:

Dim PrintDoc As New PrintDocument

Print graphics from a

printing event handler

Use the Graphics.DrawImage method. For example:

ev.Graphics.DrawImage(Image.FromFile _

 (TextBox1.Text), ev.Graphics.VisibleClipBounds)

Print text from a

printing event handler

Use the Graphics.DrawString method in an event handler. For example:

ev.Graphics.DrawString(TextBox1.Text, _

 New Font("Arial", 11, FontStyle.Regular), _

 Brushes.Black, 120, 120)

Call a printing event

handler

Use the Print method of an object of type PrintDocument. For example:

PrintDoc.Print()

Print multipage text

documents

Write a handler for the PrintPage event, which receives an argument of the

type PrintPageEventArgs. Compute the rectangular area on the page for

the text, use the MeasureString method to determine how much text will

fi t on the current page, and use the DrawString method to print the text

on the page. If additional pages are needed, set the HasMorePages prop-

erty to True. When all text has been printed, set HasMorePages to False.

Open a text fi le by

using the FileStream

class, and load it into a

RichTextBox object

Create a variable of type FileStream, specifying the path and fi le mode,

load the stream into a RichTextBox, and then close the stream. For ex-

ample:

Imports System.IO 'at the top of the form

...

Dim MyFileStream As New FileStream(_

 FilePath, FileMode.Open)

RichTextBox1.LoadFile(MyFileStream, _

 RichTextBoxStreamType.PlainText)

MyFileStream.Close()

Display printing dialog

boxes in your programs

Use the PrintDialog, PrintPreviewDialog, and PageSetupDialog controls on

the Printing tab of the Toolbox.

To Do this

Microsoft Visual Basic 2008 Step by Step

Part IV

Database and Web Programming

In this part:

Chapter 18, Getting Started with ADO.NET . 437

Chapter 19, Data Presentation Using the DataGridView Control. 465

Chapter 20, Creating Web Sites and Web Pages by Using

Visual Web Developer and ASP.NET . 489

In Part IV, you’ll learn how to work with information stored in databases and Web sites.

First, you’ll learn about Microsoft ADO.NET, an important paradigm for working with

database information, and you’ll learn how to display, modify, and search for database

content by using a combination of program code and Windows Forms controls. Microsoft

Visual Studio 2008 was specifi cally designed to create applications that provide access

to a rich variety of data sources. These custom interfaces have traditionally been called

database front ends, meaning that through your Microsoft Visual Basic application, the

user is given a more useful window into database information than simply manipulating

raw database records. However, a more appropriate description in Visual Studio 2008 is

that you can build datacentric applications, meaning that through your application, the

user is invited to explore the full potential of any number of rich data source connections,

whether to local or remote locations, and that the application places this data at the center

of the user‘s computing experience.
 435

Chapter 18

Getting Started with ADO.NET

After completing this chapter, you will be able to:

Q Use the Data Source Confi guration Wizard to establish a connection to a database and

build a dataset.

Q Use the Dataset Designer and the Data Sources window to examine dataset members

and create bound objects on forms.

Q Create datacentric applications by using dataset and data navigator objects.

Q Use bound TextBox and MaskedTextBox controls to display database information on a

Windows form.

Q Write SQL statements to fi lter and sort dataset information by using the Visual Studio

Query Builder tool.

In this chapter, you’ll take your fi rst steps with ADO.NET and with datacentric applications.

You’ll use the Data Source Confi guration Wizard to establish a connection to a Microsoft Offi ce

Access database on your system, you’ll create a dataset that represents a subset of useful fi elds

and records from a database table, and you’ll use the Dataset Designer and Data Sources win-

dow to examine dataset members and create bound objects on your forms. You’ll also learn

how to use TextBox and MaskedTextBox controls to present database information to your user,

and you’ll learn to write SQL SELECT statements that fi lter datasets (and therefore what your

user sees and uses) in interesting ways.

Database Programming with ADO.NET

A database is an organized collection of information stored in a fi le. You can create powerful

databases by using any of a variety of database products, including Access, Microsoft SQL

Server, and Oracle. You can also store and transmit database information by using XML, a

fi le format designed for exchanging structured data over the Internet and in other settings.

Creating and maintaining databases has become an essential task for all major corporations,

government institutions, non-profi t agencies, and most small businesses. Rich data resources—

for example, customer addresses, manufacturing inventories, account balances, employee

records, donor lists, and order histories—have become the lifeblood of the business world.
 437

438 Part IV Database and Web Programming
You can use Visual Studio 2008 to create new databases, but Visual Studio 2008 is primarily

designed for displaying, analyzing, and manipulating the information in existing databases.

ADO.NET, fi rst introduced in Microsoft Visual Studio .NET 2002, is still the standard data

model for database programming in Visual Studio 2008. ADO.NET has been improved over

the years to work with a large number of data access scenarios, and it has been carefully

optimized for Internet use. For example, it uses the same basic method for accessing local,

client-server, and Internet-based data sources, and the internal data format of ADO.NET

is XML.

Fortunately, most of the database applications that programmers created using Visual

Basic 2005 and ADO.NET still function very well, and the basic techniques for accessing

a database are mostly the same in Visual Basic 2008. However, there are two new data-

base technologies in Visual Studio 2008 that will be of considerable use to experienced

database programmers. These technologies are Language-Integrated Query (LINQ) and

the ADO.NET Entity Framework.

LINQ is included with Visual Studio 2008 and offers the capability to write object-oriented

database queries directly within Visual Basic code. Some time after the initial release of

Visual Studio 2008, Microsoft also pledges to release the ADO.NET Entity Framework,

which introduces a new object model, powerful new features, and tools that will make

database applications even freer from hard-coded dependencies on a particular data

engine or logical model. As database technology and the Internet continue to advance,

ADO.NET will continue to evolve, and Visual Basic programmers should be well-positioned

to benefi t.

Database Terminology

An underlying theme in the preceding section is that database programmers are often faced

with new technologies to decode and master, a reorientation often initiated by the terms “new

paradigm” or “new database model”. Although continually learning new techniques can be a

source of frustration, the rapid pace of change can be explained partially by the relative new-

ness of distributed and multiple-tier database application programming in Windows, as well

as technical innovations, security needs, and Web programming challenges that are beyond

the control of the Visual Studio development team. In this chapter, however, we’ll be starting

at the beginning, and with database programming more than almost any other subject, you

really need to be exposed to topics step by step. Let’s start by understanding some basic

database terminology.

 Chapter 18 Getting Started with ADO.NET 439
A fi eld (also called a column) is a category of information stored in a database. Typical fi elds

in a customer database might contain customer names, addresses, phone numbers, and

comments. All the information about a particular customer or business is called a record

(less commonly called a row). When a database is created, information is entered in a table

 of fi elds and records. Records correspond to rows in the table, and fi elds correspond to

columns, as shown here:

A relational database can consist of multiple linked tables. In general, most of the databases

that you connect to from Visual Studio will probably be relational databases that contain

multiple tables of data organized around a particular theme.

In ADO.NET, various objects are used to retrieve and modify information in a database. The

following illustration shows an overview of the approach that will be covered in more detail

in this chapter:

Database

Connection Dataset

Table

adapter

Data

navigation

440 Part IV Database and Web Programming
First a connection is made, which specifi es connection information about the database and

creates something for other controls and components to bind to. Next the Data Sources

Confi guration Wizard creates a dataset, which is a representation of one or more database

tables you plan to work with in your program. (You don’t manipulate the actual data, but

rather a copy of it.) The Data Sources Confi guration Wizard also adds an XML schema fi le to

your project and associates a table adapter and data navigator with the dataset to handle

retrieving data from the database, posting changes, and moving from one record to the

next in the dataset. You can then bind information in the dataset to controls on a form by

using the Data Sources window or DataBindings property settings.

Working with an Access Database

In the following sections, you’ll learn how to use the ADO.NET data access technology in

Visual Basic 2008. You’ll get started by using the Data Source Confi guration Wizard to

establish a connection to a database named Students.mdb that I created in Access 2002/2003

format. (Of course, it also works with Access 2007, if you have the latest version of Microsoft’s

database software.) Students.mdb contains various tables of academic information that

would be useful for a teacher who is tracking student coursework or a school administrator

who is scheduling rooms, assigning classes, or building a time schedule. You’ll learn how to

create a dataset based on a table of information in the Students database, and you’ll display

this information on a Windows form. When you’ve fi nished, you’ll be able to put these skills

to work in your own database projects.

Tip Although the sample in this chapter uses an Access database, you don’t have to have

Access installed. Visual Studio and ADO.NET include the necessary support to understand

the Access fi le format, as well as other formats. If you decide to open the database in Access,

you’ll fi nd that Students.mdb is in Access 2002/2003 format. I have also included the fi le in

Access 2000 format (Students_2000format.mdb) so that you can experiment with the sample

database in Access even if you have an earlier version.

Establish a connection by using the Data Source Confi guration Wizard

 1. Start Visual Studio, and create a new Visual Basic Windows Forms Application project

named My ADO Form.

A new project opens in the IDE.

 2. On the Data menu, click the Add New Data Source command.

The Data Source Confi guration Wizard starts in the development environment, as

shown in the illustration on the following page.

 Chapter 18 Getting Started with ADO.NET 441

The Data Source Connection Wizard is a feature within the Visual Studio 2008 IDE

that automatically prepares your Visual Basic program to receive database information.

The wizard prompts you for the type of database that you will be connecting to (a local

or remote database, Web service, or custom data object that you have created), estab-

lishes a connection to the data, and then creates a dataset within the program to hold

specifi c database tables and fi elds. The end result is that the wizard opens the Data

Sources window and fi lls it with a visual representation of each database object that

you can use in your program.

3. Click the Database icon (if it is not already selected) in the Data Source Confi guration

Wizard, and then click Next.

The wizard displays a screen that helps you establish a connection to your database

by building a statement called a connection string. A connection string contains the

information that Visual Studio needs to open and extract information from a database

fi le. This includes a path name and fi le name, but also potentially sensitive data such

as a username and password. For this reason, the connection string is treated carefully

within the Data Source Connection Wizard, and you should take care to protect it from

unauthorized access as you copy your source fi les from place to place.

442 Part IV Database and Web Programming

4. Click the New Connection button.

The fi rst time that you click the New Connection button, the Choose Data Source

dialog box opens, prompting you to select the database format that you plan to

use. If you see the Add Connection dialog box instead of the Choose Data Source

dialog box, it simply means that your copy of Visual Studio has already been con-

fi gured to favor a particular database format. No problem; simply click the Change

button in the Add Connection dialog box, and you’ll see the same thing that fi rst-

time wizard users see, except that the title bar reads Change Data Source, as shown

in the following illustration:

The Change/Choose Data Source dialog box is the place where you select your pre-

ferred database format, which Visual Studio uses as the default format. In this chapter,

you’ll select the Access format, but note that you can change the database format to

one of the other choices at any time. You can also establish more than one database

connection—each to a different type of database—within a single project.

5. Click Microsoft Access Database File, and then click OK (or Continue).

The Add Connection dialog box opens, as shown in the illustration on the following

page.

 Chapter 18 Getting Started with ADO.NET 443

Now you’ll specify the location and connection settings for your database, so that

Visual Studio can build a valid connection string.

6. Click Browse.

The Select Microsoft Access Database File dialog box opens, which functions like an

Open dialog box.

7. Browse to the c:\vb08sbs\chap18 folder, click the Students database, and then

click Open.

You have selected the Access database in 2002/2003 format that I built to demonstrate

how database fi elds and records are displayed within a Visual Basic program. The Add

Connections dialog box opens again with the path name recorded. I don’t restrict access

to this fi le in any way, so a username and password are not necessary with Students.mdb.

However, if your database requires a username and/or password for use, you can specify

it now in the User Name and Password boxes. These values are then included in the

connection string.

8. Click the Test Connection button.

444 Part IV Database and Web Programming

Visual Studio attempts to open the specifi ed database fi le with the connection string

that the wizard has built for you. If the database is in a recognized format and the

username and password entries (if any) are correct, you see the following message:

9. Click OK to close the message box, and then click OK to close the Add Connection

dialog box.

Visual Studio displays the Data Source Confi guration Wizard again.

10. Click the plus sign (+) next to the Connection String item in the dialog box to display

your completed connection string.

Your wizard page looks similar to the following:

The connection string identifi es a provider (also called a managed provider) named

Microsoft.Jet.OLEDB.4.0, which is an underlying database component that understands

how to connect to a database and extract data from it. The two most popular providers

offered by Visual Studio are Microsoft Jet OLE DB and Microsoft SQL Server, but third-

party providers are available for many of the other popular database formats.

 Chapter 18 Getting Started with ADO.NET 445

11. Click the Next button.

The wizard displays an alert message indicating that a new local database has been

selected, and you are asked if the database should be copied to your project folders.

(This message appears only the fi rst time that you make a connection to a local data-

base fi le. If you are repeating this exercise, you probably won’t see the message.)

12. Click No to avoid making an extra copy of the database at this time.

You are not commercially distributing this project; it is only a sample program, and an

extra copy is not needed.

The Data Source Confi guration Wizard now asks you the following question: “Do you

want to save the connection string to the application confi guration fi le?” Saving the

connection string is the default selection, and in this example, the recommended string

name is “StudentsConnectionString”. You usually want to save this string within your

application’s default confi guration fi le, because then if the location of your database

changes, you can edit the string in your confi guration fi le (which is listed in Solution

Explorer), as opposed to tracking down the connection string within your program

code and recompiling the application.

13. Click Next to save the default connection string.

You are now prompted to select the subset of database objects that you want to use

for this particular project, as shown in the following dialog box:

446 Part IV Database and Web Programming

Note Visual Studio allows you to use just part of a database or to combine different

databases—useful features when you’re working to build datacentric applications.

The items you select in this dialog box are referred to within the project as database

objects. Database objects can include tables of fi elds and records, database views, stored

procedures, functions, and other items unique to your database. The collective term for all

the database objects that you select is a dataset. In this project, the dataset is assigned the

default name StudentsDataSet, which you can adjust in the DataSet Name box.

Tip Note that the dataset you create now only represents the data in your database—if

you add, delete, or modify database records in the dataset, you don’t actually modify the

underlying database tables until you issue a command that writes your changes back to

the original database. Database programmers call this kind of arrangement a disconnected

data source, meaning that there is a layer of abstraction between the actual database and

your dataset.

14. Click the plus sign (+) next to the Tables node to expand the list of the tables included

in the Students.mdb database.

The list of the tables that appears in the wizard includes Assignments, Classes, Departments,

and Instructors. Each table relates to some aspect of academic scheduling. The table we’ll

use in this example is Instructors.

15. Click the plus sign (+) next to the Instructors node, and then select the check boxes for

the Instructor and PhoneNumber fi elds.

You’ll add these two fi elds to the StudentsDataSet dataset. The wizard page looks

like the illustration shown on the following page.

 Chapter 18 Getting Started with ADO.NET 447

16. Click Finish to complete and close the Data Source Confi guration Wizard.

Visual Studio fi nishes the tasks of adding a database connection to your project and

confi guring the dataset with the selected database objects. (Depending on how the

Visual Studio IDE has been used and confi gured, you might or might not see a Data

Sources tab or window now.)

17. Click the Save All button on the Standard toolbar to save your changes. Specify the

c:\vb08sbs\chap18 folder as the location.

18. If Solution Explorer is not currently visible, open it now to display the major fi les and

components contained in the ADO Form project.

448 Part IV Database and Web Programming

Your screen looks like this:

In addition to the standard Solution Explorer entries for a project, you see a new

fi le named StudentsDataSet.xsd. This fi le is an XML schema that describes the tables,

fi elds, data types, and other elements in the dataset that you have just created. The

presence of the schema fi le means that you have added a typed dataset to your

project. (Typed datasets have a schema fi le associated with them, but un-typed

datasets don’t.) Typed datasets are advantageous because they enable the Microsoft

IntelliSense feature of the Visual Studio Code Editor, and they give you specifi c infor-

mation about the fi elds and tables you’re using.

19. Click the schema fi le in Solution Explorer, and then click the View Designer button.

You see a visual representation of the tables, fi elds, and data adapter commands

related to your new dataset in a visual tool called the Dataset Designer. The Dataset

Designer contains tools for creating components that communicate between your

database and your application—what database programmers call data access layer

components. You can create and modify table adapters, table adapter queries, data

tables, data columns, and data relationships with the Dataset Designer. You can also

use the Dataset Designer to review and set important properties related to objects

in a dataset, such as the length of database fi elds and the data types associated

with fi elds.

20. Click the Instructor fi eld, and then press F4 to highlight the Properties window.

21. Click the MaxLength property.

Your screen looks similar to the illustration on the following page.

 Chapter 18 Getting Started with ADO.NET 449
Here the Dataset Designer is shown with an active dataset named StudentsDataSet,

and the Properties window shows that the MaxLength property is set to allow for a

maximum of 50 characters in the Instructor fi eld. Although this length seems suffi cient,

you can adjust this property (and others, too) if you fi nd that the underlying database

settings are inadequate for your application.

Setting the Dataset Designer aside for a moment, let’s continue building the sample database

application in the Data Sources window.

The Data Sources Window

The Data Sources window is a useful and timesaving feature of the Visual Studio 2008 IDE.

Its purpose is to display a visual representation of the datasets that have been confi gured

for use within your project, and to help you bind these datasets to controls on the form.

Remember that a dataset is just a temporary representation of database information in your

program, and that each dataset contains only a subset of the tables and fi elds within your

entire database fi le; that is, only the items that you selected while using the Data Source

Confi guration Wizard. The dataset is displayed in a hierarchical (tree) view in the Data

Sources window, with a root node for each of the objects that you selected in the wizard.

Each time you run the wizard to create a new dataset, a new dataset tree is added to the

Data Sources window, giving you potential access to a wide range of data sources and

views within a single program.

450 Part IV Database and Web Programming
If you have been following the instructions for selecting fi elds in the Instructors table of

the Students database, you have something interesting to display in the Data Sources

window now. To prepare for the following exercises and display the Data Sources window,

display the form again (click the Form1.vb [Design] tab), and then click the Show Data

Sources command on the Data menu. (You can also click the Data Sources tab if it is

visible.) When the Data Sources window is open, expand the Instructors table so that

you can see the two fi elds that we selected. Your Data Sources window looks like this,

with the important features identifi ed:

Selected fields within

Instructors table (only

2 of 4 fields used in

this example)

Refresh dataset.

Add or remove dataset fields.

Edit selected dataset in Designer.

Add dataset to project.

Instructors table from

Students.mdb database

New StudentDataSet

dataset created using

Data Source Configuration

Wizard

The easiest way to display the information in a dataset on a form (and therefore for your

users) is to drag objects from the Data Sources window to the Windows Forms Designer.

(This is the Designer you used in earlier chapters, but I am calling it the Windows Forms

Designer here to distinguish it from the Dataset Designer.)

Chapter 19, “Data Presentation Using the DataGridView Control,” describes how you can

display entire tables of data on a form. In the remainder of this chapter, however, you’ll

experiment with dragging individual fi elds of data to the Windows Forms Designer to

bind controls to select fi elds in the Students database. Give it a try now.

 Chapter 18 Getting Started with ADO.NET 451

Use the Data Sources window to create database objects on a form

1. In the Data Sources window, click the plus sign (+) next to the Instructors node to display

the available fi elds in StudentsDataSet. (If you have not already done so.)

Your Data Sources window looks like the previous illustration. In Visual Studio 2008, you

can display individual fi elds or an entire table of data by simply dragging the desired

database objects onto your form.

2. Click the Instructor fi eld, which contains the name of each instructor in the Students

database. An arrow appears to the right of the Instructor fi eld in the Data Sources win-

dow. If the arrow does not appear, make sure that the Form1.vb [Design] tab is active in

the Designer window, and then click Instructor again.

3. Click the Instructor arrow.

Clicking this arrow displays a list of options related to how a database fi eld is displayed

on the form when you drag it, as shown in the following illustration.

Although I haven’t discussed it yet, most of the controls on the Common Controls tab

of the Toolbox have the built-in ability to display database information. In Visual Studio

terminology, these controls are called bound controls when they are connected to data-

ready fi elds in a dataset. The list of controls you see now is a group of popular options

for displaying string information from a database, but you can add additional controls

to the list (or remove items) by clicking the Customize command. In this case, however,

you’ll simply use the TextBox control, the default bound control for string data.

452 Part IV Database and Web Programming

4. Click TextBox in the list, and then drag the Instructor fi eld to the middle of the form in

the Windows Forms Designer.

As you drag the fi eld over the form, a plus sign below the pointer indicates that adding

this database object to a form is a valid operation. When you release the mouse button,

Visual Studio creates a data-ready text box object and places a professional-looking

navigation bar at the top of the form. The form looks something like this (your Data

Sources window might be in a different location):

Visual Studio has actually created two objects for this Instructor fi eld: a descriptive label

object containing the name of the fi eld, and a bound text box object that will display

the contents of the fi eld when you run the program. Below the form in the component

tray, Visual Studio has also created several objects to manage internal aspects of the

data access process. These objects include:

Q StudentsDataSet, the dataset you created with the Data Source Confi guration

Wizard to represent fi elds in the Students database

Q InstructorsBindingSource, an intermediary component that acts as a conduit

between the Instructors table and bound objects on the form

Q InstructorsTableAdapter, an intermediary component that moves data between

StudentsDataSet and tables in the underlying Students database

Q InstructorsBindingNavigator, which provides navigation services and properties

related to the navigation toolbar and the Instructors table

 Chapter 18 Getting Started with ADO.NET 453

Readers familiar with Visual Basic 2005 will recognize these components as the same

database connectivity features introduced in Visual Studio 2005. (In Visual Studio

2003, however, a data adapter object was required for each database table or query

used in a project.)

Now you’ll run the program to see how all of these objects work.

5. Click the Start Debugging button on the Standard toolbar.

The ADO Form program runs in the IDE. The text box object is loaded with the fi rst

Instructor record in the database (Delamarco, Stefan), and a navigation toolbar with

several buttons and controls appears at the top of the form, as shown in the following

illustration:

First Instructor record

in dataset

Save changes to database

Delete this record

Add New record

Move Last

Move Next

Position indicator (current record)

Move Previous

Move First

The navigation toolbar is a helpful feature in the Visual Studio 2008 database program-

ming tools. It contains Move First, Move Previous, Move Next, and Move Last buttons,

as well as a current position indicator and buttons that (when properly confi gured)

add new records to the dataset, delete unwanted records from the dataset, and save

a modifi ed dataset to disk. You can change or delete these toolbar buttons by setting

the Items property for the binding navigator object in the Properties window, which

displays a visual tool called the Items Collection Editor. You can also enable or disable

individual toolbar buttons.

454 Part IV Database and Web Programming

6. Click the Move Next button to scroll to the second instructor name in the dataset.

The McKay, Yvonne record appears.

7. Continue scrolling through the dataset one record at a time. As you scroll through the

list of names, notice that the position indicator keeps track of where you are in the list

of records.

8. Click the Move First and Move Last buttons to move to the fi rst and last records of the

dataset, respectively.

9. Delete the last record from the dataset (Halvorson, Kim) by clicking the Delete button.

The record is deleted from the dataset, and the position indicator shows that there

are now eight records remaining. (Halvorson, Michael has become the last and current

record.) Your form looks like this:

As I mentioned earlier, the dataset represents only the subset of tables from the

Students database that have been used in this project—the dataset is a disconnected

image of the database, not the database itself. Accordingly, the record that you deleted

has been deleted only from the dataset that is loaded in memory while the program is

running. However, to verify that the program is actually working with disconnected data

and is not modifying the original database, you’ll stop and restart the program now.

10. Click the Close button on the form to end the program.

The program terminates, and the IDE returns.

11. Click Start Debugging to run the program again.

When the program restarts and the form loads, the navigation toolbar shows that the

dataset contains nine records, as it did originally. In other words, it works as expected.

12. Click the Move Last button to view the last record in the dataset.

The record for Halvorson, Kim appears again. This fi nal instructor name was deleted

only from memory and has reappeared because the underlying database still con-

tains the name.

 Chapter 18 Getting Started with ADO.NET 455
 13. Click the Close button again to close the program.

Congratulations! Without writing any program code, you have built a functioning

database application that displays specifi c information from a database. Setting up

a dataset has taken many steps, but the dataset is now ready to be used in many

useful ways in the program. Although I selected only one table and two fi elds from the

Students database to reduce screen clutter and focus our attention, you will probably want

to select a much wider range of objects from your databases when you build datasets using

the Data Source Confi guration Wizard. As you can see, it

is not necessary to create bound objects for each dataset item on a form—you can decide

which database records you want to use and display.

Using Bound Controls to Display Database Information

As I mentioned earlier, Visual Studio can use a variety of the controls in the Visual Studio

Toolbox to display database information. You can bind controls to datasets by dragging fi elds

from the Data Sources window (the easiest method), and you can create controls separately on

your forms and bind them to dataset objects at a later time. This second option is an important

feature, because occasionally you will be adding data sources to a project after the basic user

interface has been created. The procedure I’ll demonstrate in this section handles that situation,

while giving you additional practice with binding data objects to controls within a Visual Basic

application. You’ll create a masked text box object on your form, confi gure the object to format

database information in a useful way, and then bind the PhoneNumber fi eld in StudentsDataSet

to the object.

Bind a masked text box control to a dataset object

 1. Display the form in the Windows Forms Designer, and then open the Toolbox, if it is not

already visible.

 2. Click the MaskedTextBox control on the Common Controls tab, and then create a

masked text box object on the form below the Instructor label and text box.

As you might recall from Chapter 6, “Using Decision Structures,” the MaskedTextBox

 control is similar to the TextBox control, but it gives you more ability to regulate or

limit the information entered by the user into a program. The input format for the

MaskedTextBox control is adjusted by setting the Mask property. In this exercise, you’ll

use Mask to prepare the masked text box object to display formatted phone numbers

from the PhoneNumber fi eld. (By default, phone numbers in the Students database are

stored without the spacing, parentheses, or dashes of North American phone numbers,

but you want to see this formatting in your program.)

 3. Click the shortcut arrow in the upper-right corner of the masked text box object, and

then click the Set Mask command.

456 Part IV Database and Web Programming

Visual Studio displays the Input Mask dialog box, which lists a number of pre-defi ned

formatting masks. Visual Studio uses these masks to format output in the masked text

box object, as well as input received from users.

4. Click the Phone Number input mask, and then click OK.

The masked text box object now appears with input formatting guidelines for the

country and language settings stored within Windows. (These settings might vary

from country to country, but for me it looks like a North American telephone number

with area code.)

5. Add a label object in front of the new masked text box object, and set its Text property

to “Phone:” (including the colon).

The fi rst descriptive label was added automatically by the Data Sources window, but we

need to add this one manually.

6. Adjust the spacing between the two labels and text boxes so that they are aligned

consistently. When you’re fi nished, your form looks similar to the following:

Now you’ll bind the PhoneNumber fi eld in StudentsDataSet to the new masked text box

object. In Visual Studio 2005 and 2008, the process is easier than it was in Visual Basic

6 or Visual Studio .NET 2003—you simply drag the PhoneNumber fi eld from the Data

Sources window onto the object that you want to bind to the data—in this case, the

MaskedTextBox1 object.

7. Display the Data Sources window if it is not visible, and then drag the PhoneNumber

fi eld onto the MaskedTextBox1 object.

 Chapter 18 Getting Started with ADO.NET 457

When you drag a dataset object onto an object that already exists on the form

(what we might call the target object), a new bound object is not created. Instead,

the DataBindings properties for the target object are set to match the dragged

dataset object in the Data Sources window.

After this drag-and-drop operation, the masked text box object is bound to the

PhoneNumber fi eld, and the masked text box object’s Text property contains a small

database icon in the Properties window (a sign that the object is bound to a dataset).

8. Verify that the MaskedTextBox1 object is selected on the form, and then press F4 to

highlight the Properties window.

9. Scroll to the DataBindings category within the Properties window, and then click the

plus sign (+) to expand it.

Visual Studio displays the properties typically associated with data access in a masked

text box object. Your Properties window looks similar to the following:

The noteworthy bound property here is the Text property, which has been set to

“InstructorsBindingSource – PhoneNumber” as a result of the drag-and-drop operation.

(Note that the tiny database icon does not appear here, but only in the Text property

at the bottom of the alphabetical list of properties.) In addition, if you click the arrow in

the Text property now, you’ll see a representation of the masked text box object. (This

useful visual display allows you to quickly change the data source that the control is

bound to, but don’t adjust that setting now.)

458 Part IV Database and Web Programming

10. Click the Start Debugging button to run the program.

Visual Studio runs the program in the IDE. After a moment, the two database fi elds

are loaded into the text box and masked text box objects, as shown in the following

illustration.

Note If you get a message box that indicates a “Property value is not valid”, click OK, click

Stop Debugging, and then click Start Debugging again.

Importantly, the masked text box object correctly formats the phone number information

so that it is in the expected format for North American phone numbers.

11. Click the Move Next button a few times.

Another important feature is also demonstrated here: The two dataset fi elds scroll

together, and the displayed instructor names match the corresponding phone

numbers recorded in the Students database. This synchronization is handled by the

InstructorsBindingNavigator object, which keeps track of the current record for each

bound object on the form.

12. Click the Close button to stop the program, and then click the Save All button to save

your changes.

You’ve learned to display multiple database fi elds on a form, use the navigation toolbar to

browse through a dataset, and format database information with a mask. Before you leave

this chapter and move on to the useful DataGridView control discussed in Chapter 19, take a

moment to see how you can further customize your dataset by using a few SQL statements.

 Chapter 18 Getting Started with ADO.NET 459
One Step Further: SQL Statements, LINQ, and
Filtering Data

You have used the Data Source Confi guration Wizard to extract just the tables and fi elds you

wanted from the Students database by creating a custom dataset named StudentsDataSet. In

addition to this fi ltering, however, you can further organize and fi ne-tune the data displayed

by bound controls by using SQL statements and the Visual Studio Query Builder. This section

introduces these tools.

For Visual Basic users who are familiar with Access or SQL Server, fi ltering data with SQL

statements is nothing new. But the rest of us need to learn that SQL statements are com-

mands that extract, or fi lter, information from one or more structured tables in a database.

The reason for this fi ltering is simple: Just as Web users are routinely confronted with a be-

wildering amount of data on the Internet (and use clever search keywords in their browsers

to locate just the information they need), database programmers are routinely confronted

with tables containing tens of thousands of records that need refi nement and organization

to accomplish a particular task. The SQL SELECT statement is one traditional mechanism

for organizing database information. By chaining together a group of these statements,

programmers can create complex search directives, or queries, that extract just the data

that is needed from a database.

Realizing the industry-wide acceptance of SQL statements, previous versions of the Visual Studio

and Visual Basic IDEs have included mechanisms for using SQL statements. Visual Studio 2008

features an exciting new technology called Language-Integrated Query (LINQ), which allows

experienced programmers to write SQL-styled database queries directly within Visual Basic code.

Although LINQ is new and exciting for many, it is not a technology that you can easily master

until you have had a little more experience with SQL statements. In the following exercise, I’ll

provide some of this background using a powerful Visual Studio 2008 featured called Query

Builder. Query Builder is a visual tool that helps programmers construct database queries, and

it is especially useful for programmers who have had relatively little exposure to SQL code. In

the following example, you’ll use Query Builder to further organize your Students dataset by

sorting it alphabetically.

460 Part IV Database and Web Programming

Create SQL statements with Query Builder

1. On the form, click the InstructorTextBox object (the fi rst bound object that you created

to display the names of instructors in the Students database).

2. Click the Add Query command on the Data menu.

The Add Query command is available when a bound object, such as InstructorTextBox,

is selected in the Designer. The Search Criteria Builder dialog box opens, as shown in

the following illustration:

This dialog box helps you organize and view your queries, which are created by the

Query Builder and consist of SQL statements. The table that your query will fi lter and

organize by default (StudentsDataSet.Instructors) is selected in the Select Data Source

Table box near the top of the dialog box. You’ll recognize the object hierarchy format

used by the table name, which is read as “the Instructors table within the StudentsDataSet

dataset.” If you had other tables to choose from, they would be listed in the list box dis-

played when you click the Select Data Source Table arrow.

 Chapter 18 Getting Started with ADO.NET 461

3. Type SortInstructors in the New Query Name box.

This text box assigns a name to your query, and forms the basis of toolbar buttons

added to the form. (For easy access, the default arrangement is that new queries are

assigned to toolbar buttons within the application you are building.)

4. Click the Query Builder button in the dialog box to open the Query Builder tool.

The Query Builder allows you to create SQL statements by typing them directly into a

large SQL statement text box or by clicking list boxes and other visual tools.

5. In the Instructor row representing the Instructor fi eld in your dataset, click the cell under

Sort Type, and then click the arrow to display the Sort Type list box.

Your screen looks like this:

Now you’ll try using the SQL ORDER BY statement, which sorts database records

based on a key fi eld and sort order number. You’ll sort records in the Instructor fi eld

in ascending order.

462 Part IV Database and Web Programming

6. Click Ascending in the Sort Type list box.

7. Click the SQL statement text box below the grid pane to update the Query Builder

window.

A new clause (ORDER BY Instructor) is added to the SQL statement box, and your

screen looks like this:

8. Click OK to complete your query.

Visual Studio closes the Query Builder and displays your new query in the Search

Criteria Builder dialog box. The name of the query (SortInstructors) is listed, as well as

the SQL statements that make up the sort.

9. Click OK to close the Search Criteria Builder dialog box and confi gure the

InstructorTextBox object to list names in ascending alphabetical order.

This particular SQL statement does not fi lter the data, but organizes dataset records in

a more useful order when the user clicks a SortInstructors button on a new toolbar at

the top of the form. The process has also created a SortInstructorsToolStrip object in the

component tray below the form. The Designer and component tray now look like the

illustration on the following page.

 Chapter 18 Getting Started with ADO.NET 463

New toolbar and

button from SQL

statement query

New toolstrip

object in

Properties

window

New toolstrip object for query

10. Click Start Debugging to run the program.

Visual Studio loads the form and displays the fi rst record for two dataset objects.

11. Click the SortInstructors button on the new toolbar.

Your new SQL statement sorts the Instructor records in the dataset and displays the

records in their new order. The fi rst record is now Barr, Adam, as shown in the following

illustration:

12. Scroll through the list of records, and verify that it is now in ascending alphabetical

order. (The last record should be Wilson, Dan.)

13. Click the Close button to end the program.

464 Part IV Database and Web Programming
You’re on your way with building custom queries by using SQL statements and Query Builder.

Database programming is a complex topic, but you have already learned much that will help

you build datacentric applications—highly personalized collections of data that benefi t the

user and his or her computing needs—in Visual Basic. You will continue exploring the theme

of rich data access in Chapter 19. And in Chapter 20, “Creating Web Sites and Web Pages by

Using Visual Web Developer and ASP.NET,” your fi nal project will be displaying database

records on a Web site.

Chapter 18 Quick Reference

To Do this

Establish a connection to

a database

Click the Add New Data Source command on the Data menu, and then

use the Data Source Confi guration Wizard to browse to the database for

you want to provide access by building a connection string.

Create a dataset Using the Data Source Confi guration Wizard, specify a name for the

dataset in the DataSet Name box, expand the Tables node in the tree

view of your database presented by the wizard, and then specify the

tables and fi elds that you want to include in your dataset. (A dataset

need not include all database tables and fi elds.)

Create bound objects

capable of displaying

data from a dataset on

a Windows form

After running the Data Source Confi guration Wizard, open the Data

Sources window, and drag tables and/or fi elds to the Windows form. To

control the type of bound control created by Visual Studio for a table or

fi eld, click its arrow and select a control from the list box before dragging

it. If you placed a control on the form before adding data sources to the

project, bind a database object to the control by the dragging the data-

base objects from the Data Sources window onto the control on the form.

Alternatively, set an object’s DataBinding properties to a valid fi eld (column)

in the dataset. (One of the most useful DataBinding properties is Text.)

Add navigation controls

to a Windows form

In Visual Studio 2005 and 2008, a navigation toolbar is added automati-

cally to Windows forms when a valid database object is dragged from the

Data Sources window to the form. To customize the buttons on this tool-

bar, right-click the InstructorBindingNavigator object in the component

tray, and then click Edit Items.

Format database infor-

mation on a form

Use a MaskedTextBox control to format the content of string data in the

dataset. The MaskedTextBox control offers many useful input masks and

the ability to create custom string formats.

Filter or sort database

information stored in a

dataset

Use SQL statements to create custom queries in the Visual Studio Query

Builder, and add these queries to a toolbar on a Windows form. After you

master Query Builder, you’ll be ready to experiment with LINQ.

To Do this

Chapter 19

Data Presentation Using the
DataGridView Control

After completing this chapter, you will be able to:

Q Create a data grid view object on a Windows form, and use it to display a database

table.

Q Sort database tables by column.

Q Change the format and color of cells in a data grid view object.

Q Add and remove columns and column headings.

Q Display multiple data tables and navigation bars on a form, and switch among them.

Q Permit changes in grid cells, and write updates to the underlying database.

In Chapter 18, “Getting Started with ADO.NET,” you learned how to use Microsoft ADO.NET

database programming techniques to establish a connection to a Microsoft Offi ce Access data-

base and display columns from the database in a Windows form. You also learned how to add

a navigation bar to a form and how to organize database information using SQL statements

and the Query Builder tool.

In this chapter, you’ll continue working with the database programming features of Microsoft

Visual Studio 2008 and the useful classes, objects, and design tools in ADO.NET. In particular,

you’ll learn how to use the DataGridView control, which allows you to present an entire table

of database information to the user.

Using DataGridView to Display Database Records

The DataGridView control presents information by establishing a grid of rows and columns

on a form to display data as you might see it in a program such as Microsoft Offi ce Excel or

Access. A DataGridView control can be used to display any type of tabular data: text, numbers,

dates, or the contents of an array.

The DataGridView control included with Visual Basic 2005 and 2008 is somewhat differ-

ent from the DataGrid control included with Microsoft Visual Studio .NET 2003, and quite

different from the DataGrid control included with Visual Basic 6. One important improve-

ment is that the Visual Basic 2008 DataGridView control doesn’t require data-specifi c

commands because the underlying data adapter and dataset objects handle all the

data access functionality.
 465

466 Part IV Database and Web Programming

In this chapter, you’ll focus on the ability of the DataGridView control to display the columns

(fi elds) and rows (records) of the Students.mdb database, the fi le of structured student infor-

mation that you started working with in Chapter 18. You’ll start by fi lling a simple data grid

view object with text records from the database, and then you’ll set a few formatting options.

Next you’ll move on to sorting records in grid objects and learning how to manage multiple

grids and navigation bars on a form. Finally, you’ll learn how to adjust DataGridView prop-

erties, including the ReadOnly property that allows or prevents a user from saving changes

back to the original database.

The DataGridView control is connected, or bound, to underlying data access components

through its BindingSource property. This property contains useful information only after

your program has established a connection to a valid data source by using the Data Source

Confi guration Wizard and the Data Sources window. (The steps involved in establishing this

connection will be reviewed quickly here but are described in greater detail in Chapter 18;

if you want more information, read the section “Working with an Access Database” in that

chapter.) After a data grid view object is bound to a valid data source, Visual Studio fi lls,

or populates, the grid automatically by using the Fill method when the form is loaded

into memory.

Establish a connection to a database table

1. Start Visual Studio, and create a new Visual Basic Windows Forms Application project

named My DataGridView Sample.

A new project appears in the IDE.

2. Click the Add New Data Source command on the Data menu.

The Data Source Confi guration Wizard opens in the development environment. You

used this tool in Chapter 18 to link the Students.mdb database to your project and fi ll

the Data Sources window with tables and columns from the database. This time you’ll

select a broader range of information from the sample Access database.

3. Click the Database icon, and then click Next.

The wizard prompts you to build a connection string, but if you completed the

exercises in Chapter 18, the Students.mdb database is automatically offered to you,

as shown in the screen on the following page.

 Chapter 19 Data Presentation Using the DataGridView Control 467

If you don’t see the Students database connection, click the New Connection button,

and browse to the Students.mdb fi le, located in the c:\vb08sbs\chap18 folder. (Detailed

steps for establishing this connection are given in Chapter 18, if you’d like additional

information.)

4. With the Students.mdb connection string highlighted, click Next.

The wizard asks whether you want to save your connection string.

5. Click Next to save the string in the default location (your project’s confi guration fi le).

You are now prompted to select the database objects you want to use for this particular

project. Remember that the Data Source Confi guration Wizard allows you to pick and

choose database tables and columns at this point—you can select all the objects in the

database or just a subset.

6. Expand the Tables node to see the names of the seven tables in the database and an

additional entry called Switchboard Items.

468 Part IV Database and Web Programming

7. Click the check mark next to the Tables node to select all eight items.

You’ll add a broader range of database information to this project, because the goal of

this chapter is to view large amounts of data by using the DataGridView control. Your

wizard page looks as shown in the following illustration.

8. Click Finish to close the Data Source Confi guration Wizard.

Visual Studio creates a dataset named StudentsDataSet to represent the eight

database objects you selected. Visual Studio also adds an XML schema fi le named

StudentsDataSet.xsd to your project and the Solution Explorer window. You have

now established a connection to the Students.mdb database that you can use for

the remainder of this chapter.

9. Click the Save All button on the Standard toolbar to save the project. Specify the

c:\vb08sbs\chap19 folder as the location.

10. Click the Data Source tab to open the Data Sources window. (If the Data Sources tab is

not visible, click the Show Data Sources command on the Data menu.)

The Data Sources window displays the objects in StudentsDataSet, as shown in the

 illustration on the following page.

 Chapter 19 Data Presentation Using the DataGridView Control 469

In Chapter 18, you dragged individual fi elds from the Data Sources window to a Windows

form to bind data objects to controls in the user interface. In the next exercise, you’ll follow

a similar procedure, but this time you’ll drag an entire table to the form, and you’ll bind the

table to a DataGridView control so that all the fi elds in the table can be displayed at once.

Create a data grid view object

1. Resize the form so that it covers most of the screen.

Before this chapter is complete, you’ll place two data grid view objects side by side

on the form, each with several columns and about ten rows of data. Remember that

the form can be larger than the room allotted for it within the IDE, and you can close

programming tools or use the scroll bars to see portions of the form that are hidden.

(However, you’ll want to keep the Data Sources window open for the next step.)

2. In the Data Sources window, click the Instructors table, and then click the arrow to its

right to display the list of controls that can be bound to the Instructors table on the form.

The Data Sources window looks like this:

470 Part IV Database and Web Programming

Because you have selected an entire table, you do not see individual bound controls in

this list box. Instead you see the following options:

Q DataGridView, the default selection, which displays a grid of columns and rows

representing the fi elds and records in the Instructors table.

Q Details, which confi gures Visual Basic to automatically create individual controls

(with associated labels) for each fi eld in a table that you drag to the form. Although

I won’t demonstrate Details now, it is a useful option if you want to present tabular

data in a slightly more approachable format.

Q None, which removes any association between the table and a user interface

element or control. (If you select None for a table, you will not be able to drag

the table from the Data Sources window to the form, and a Null icon will appear

next to the table name.)

Q Customize, which lets you select a different control that might be suitable for

displaying multiple database fi elds (such as the ListBox control).

3. Click the DataGridView option, and then drag the Instructors table to the left side of

your form.

Visual Studio creates a navigation bar at the top of the form, adds dataset, binding

source, table adapter, and binding navigator components to the component tray, and

creates a data grid view object named InstructorsDataGridView on the form. Your

screen looks similar to the following:

 Chapter 19 Data Presentation Using the DataGridView Control 471

As you can see, the grid does not contain any information at this point, and it is

probably not the right size either. (My data grid view object is not wide enough to

display all four columns, for example.) However, you can clearly see that Visual Studio

has organized the Instructors table in the grid so that its fi elds appear as columns and

its rows represent individual records. A blank row is reserved for the fi rst record in the

table, and additional rows will be added as soon as the program is run and the grid is

fi lled with data.

4. Move and resize the data grid view object so that all four of its columns are clearly

visible and there is ample room for at least ten rows of data.

5. Use the Properties window to set the form’s Text property to “The Instructors Table”.

Your form looks similar to the following:

You have completed the basic steps necessary to create a data grid view object on a form

and size it appropriately. Next you’ll preview the data and customize your table. The ability

to preview grid data and adjust basic settings is made easy by the new Visual Studio shortcut

arrow feature.

Preview the data bound to a data grid view object

1. Select the data grid view object on the form, and then click the shortcut arrow in the

upper-right corner of the object.

472 Part IV Database and Web Programming

Visual Studio displays DataGridView Tasks, a list of common property settings and

commands related to the data grid view object. The DataGridView Tasks list looks

like this:

You can use the settings and commands in this list to change the table that is bound

to the data grid view object and to enable or disable editing within the grid. (The

default setting is to give the user limited abilities to edit information in the table,

although you can still control whether the changes he or she makes are written to

the underlying database.) You can also adjust the columns shown, dock (attach) the

grid to the parent container (in this case, the form), fi lter records with a query (SQL

statement), and preview the data in the table.

2. Click Preview Data to open the Preview Data dialog box.

You display this dialog box when you want to examine the data in a table before you

actually run the program—a handy feature.

3. Click the Preview button.

Visual Studio loads the Instructors table from StudentsDataSet, as shown in the illustra-

tion on the following page.

 Chapter 19 Data Presentation Using the DataGridView Control 473

You should be familiar with some of this data from Chapter 18, but you now have

an opportunity to see all four columns in the table. Seeing all the columns at once

is interesting but also disconcerting—the Extension column contains no data at all,

something that might confuse or annoy your users. (This column was designed to

hold offi ce phone extensions, but no data has been entered in this column in the

database.) Visual Studio makes it easy to detect such a shortcoming and tailor

the grid’s output so that the unused column is not shown.

4. Click the Close button to close the Preview Data dialog box.

Now you’ll remove the empty Extension column from the grid.

474 Part IV Database and Web Programming

Remove a column from a data grid view object

1. Open the DataGridView Tasks list again and click the Edit Columns command.

You see the following dialog box:

You can use the Edit Columns dialog box to add or remove columns from those dis-

played by the data grid view object. (As you’ll learn later in the chapter, you also use

this dialog box to change the properties of the InstructorsDataGridView object.) Right

now you want to delete the unused Extension column.

Note Although you are removing the Extension column from the data grid, it still exists in

the underlying Students.mdb database.

2. Click the Extension column in the Selected Columns list box.

3. Click the Remove button.

Visual Studio removes the column from the list.

4. Click OK to confi rm your change.

The InstructorsDataGridView object appears again, but without the Extension column.

You now have more room on the form to display database information.

5. Resize the InstructorsDataGridView object so that it takes up less space.

Your form looks similar to the illustration on the following page.

 Chapter 19 Data Presentation Using the DataGridView Control 475

6. Click the Save All button to save your changes.

You’ve previewed and customized your table using database tools. Now you’ll run the

program to see what the grid looks like at run time. You’ll also learn how to sort records

in a data grid view object.

Manage a data grid view object at run time

1. Click the Start Debugging button.

Visual Studio runs your project in the IDE. The Instructors database table appears within

the data grid view object, just as you confi gured it. Your form looks something like this:

476 Part IV Database and Web Programming

The program statement in the Form1_Load event procedure that populated the grid

with information from the Instructors table looks like this:

Me.InstructorsTableAdapter.Fill(Me.StudentsDataSet.Instructors)

This line was added to your program by Visual Studio when you dragged the Instructors

table to the form from the Data Sources window.

Each row in the grid represents a record of data from the Instructors table in the data-

base. Scroll bars are provided so that you can view any records or columns that aren’t

immediately visible. This is a handy ease-of-use feature that comes automatically with

the DataGridView control.

2. Scroll down the list of records to view all nine rows, which represent instructor data for

a college or university.

3. Reduce the size of the InstructorID column by placing the pointer between the

InstructorID and Instructor column headings and dragging the column border

to the left.

When you place the pointer between the column headings, it changes to a resizing

handle. You can resize columns at run time because the data grid view object’s

AllowUserToResizeColumns property is by default set to True. If you want to prevent

resizing, you can set this property to False.

4. Return the InstructorID column to its original width.

When a data grid view object is fi lled with data, you can also take advantage of the

DataGridView control’s sorting feature.

5. Click the Instructor column heading.

The grid is sorted alphabetically by instructor name. (Barr, Adam is now fi rst.) Your form

looks something like the illustration shown on the next page.

 Chapter 19 Data Presentation Using the DataGridView Control 477

The Instructors

table sorted

alphabetically by

Instructor name

The arrow identifies the

current sort key (the Instructor

column) and indicates an

ascending order (A-Z) sort.

When database records are sorted, a sorting column, or key, is required—you establish

this key by clicking the heading of the column on which you want to base the sort. The

DataGridView control provides visual identifi cation for the current sort key—a tiny arrow

to the right of the column header. If the sort order is currently an ascending alphabetical

(A–Z) list, the arrow points up. Clicking the column heading will reverse the sort order

to create a descending alphabetical (Z–A) list. The arrow acts like a toggle, so you can

switch back and forth between sorting directions.

6. Click the Instructor column several times to see how the sort order can be switched

back and forth.

7. Click other column headings such as InstructorID and PhoneNumber to sort the data-

base based on those keys.

8. When you’re fi nished experimenting with the scrolling, resizing, and sorting features of

the DataGridView control, click the Close button on the form to stop the program.

The program closes, and the development environment returns.

478 Part IV Database and Web Programming
Formatting DataGridView Cells

To customize the appearance of your dataset on a form, you can control the look and orienta-

tion of several DataGridView characteristics by setting properties at design time. For example,

you can change the default width of cells in the grid, add or remove column headers, change

the grid or header background colors, and change the color of the gridlines. The following

exercise steps you through some of these useful property settings.

Set data grid view properties at design time

 1. Display the form, click the data grid view object (if it is not already selected), and then

highlight the Properties window.

 2. Click the Columns property, and then click the ellipsis (…) button to open the Columns

collection in the Edit Columns dialog box.

You used this dialog box earlier to delete the Extension column from the Instructors

table. (It is used to set property settings for individual columns.) Now you’ll use the Edit

Columns dialog box to change the default width of the InstructorID column.

Note Because InstructorID is currently selected (it is the highlighted column in the

Selected Columns list box), you don’t need to click it again. However, always remember

to select the desired column before you adjust a column property.

 3. Set the Width property to 70.

A width of 70 (measured in pixels) will provide plenty of room for the integer values in

the InstructorID column.

 4. Click OK to close the Edit Columns dialog box.

Now you’ll set properties that control the appearance of all the columns in the table.

Note You use the Edit Columns dialog box to confi gure individual columns. To modify

properties that apply to all the columns in a table, you adjust property settings for the

data grid view object in the Properties window.

 5. In the Properties window, set the ColumnHeadersVisible property to False.

Although the column names are somewhat useful in this particular database, sometimes

column names don’t clearly identify their contents or they contain abbreviations or words

that you want to hide from your users. Setting this property removes the column names

from the table.

 6. Click the AlternatingRowsDefaultCellStyle property, and then click the ellipsis button.

 Chapter 19 Data Presentation Using the DataGridView Control 479

The AlternatingRowsDefaultCellStyle property controls the color that appears in

the background of grid cells in alternating rows. Changing this setting produces

an alternating effect (white and the color you select) from row to row in the grid.

In my opinion, this effect makes it easy to read records in longer tables.

Visual Studio displays the CellStyle Builder dialog box, a tool used to set the properties

of column cells in data grid view tables.

7. Click the BackColor property, click its arrow, then click the Custom tab, and then click

the light yellow color.

Your dialog box looks like this:

8. Click OK to close the dialog box.

When you run the program, the rows in the grid will be displayed in alternating colors

of white and yellow.

Note The color that appears around the edges of the cell grid is controlled by the

BackgroundColor property. To change the color of all the cells in a grid, you can adjust

the DefaultCellStyle property. To change the background color used for the header cells

(if you display them), you can modify the ColumnHeadersDefaultCellStyle property.

480 Part IV Database and Web Programming

9. Click the GridColor property, click its arrow, click the Custom tab, and then click Navy

(the darkest blue color).

This property setting controls the color of the gridlines. If you change the background

color of the cells, you might also want to modify the gridline color.

Now you’ll run the program to see the effect of your formatting changes.

10. Click the Start Debugging button.

After a few moments, the grid appears with information from the Instructors table. Your

screen looks similar to the following illustration.

Notice that the column headers have been removed and that the fi rst column is a little

narrower. Notice also the alternating white and yellow row pattern and the blue grid-

lines (not too discernible in this book, alas, but on the screen).

11. Click the Close button on the form to stop the program.

You might want to scan the Properties window for additional property settings and

customizations. There are several possibilities if you look closely at the list of formatting

options. Remember, these property settings affect all the columns in a table, not just

individual columns.

 Chapter 19 Data Presentation Using the DataGridView Control 481
Datacentric Focus: Adding a Second Grid and
Navigation Control

To provide your users with a data-rich user interface containing multiple database tables,

you should consider adding a second data grid view object to your form. After you have

established a dataset in the Data Sources window, it is relatively straightforward to add an

additional DataGridView control bound to a second table within the dataset. The only tricky

part is learning how to add a second navigation bar and setting its BindingSource property

to the underlying binding source object. You’ll give it a try in the following exercise.

Bind a second DataGridView control to the Classes table

 1. Open the Data Sources window, if it is not currently visible.

 2. Drag the Classes table from the Data Sources window to the right side of the form.

Visual Studio creates a second data grid view object named ClassesDataGridView on

the form.

 3. Right-click the ClassesDataGridView object, and then click the Edit Columns command.

The Edit Columns dialog box opens.

 4. Select and remove the ClassID, SectionNumber, Term, Units, Year, Location, and Notes

columns.

The form is not large enough to display all the columns in the table, so for this example

I want you to pare down the list. When you’re fi nished, the ClassName, Department,

Prof, and DaysAndTimes columns are left, as shown in the following illustration:

482 Part IV Database and Web Programming

5. Click OK to close the Edit Columns dialog box.

6. Move and resize the ClassesDataGridView object on the form so that all four rows are

displayed at once. You might need to move and resize the form, and possibly also the

InstructorsDataGridView object, to be able to display all four rows.

Your form looks something like the following illustration. (Because I am running Visual

Studio at a screen resolution of 800 x 600, I needed to hide many of the Visual Studio

tool windows to show the form.)

Notice that Visual Studio has also added two new objects to the component tray: a

ClassesBindingSource object and a ClassesTableAdapter object (only one is visible in the

fi gure above). These two items are intermediary components that move data between

the ClassesDataGridView object, the StudentsDataSet dataset, and the Classes table in

the underlying Students database.

Now you’ll add a second navigation bar to the form to provide navigation services and prop-

erties related to the Classes table and the second grid. The second bar is necessary because

the fi rst (InstructorsBindingNavigator) is bound only to the InstructorsDataGridView object.

Link a BindingNavigator control to the ClassesDataGridView object

1. Double-click the BindingNavigator control on the Data tab of the Toolbox.

Visual Studio adds a binding navigator object named BindingNavigator1 to the

component tray, and adds a second navigation bar to the top of your form. You may

need to move the data grid view objects down slightly if the new navigation bar is

covering them.

 Chapter 19 Data Presentation Using the DataGridView Control 483

2. In the Properties window, change the Name property of the new BindingNavigator1

object to “ClassesBindingNavigator”.

Using this name will make it clearer which binding source and table adapter your new

navigation bar is linked to.

3. Change the BindingSource property of the ClassesBindingNavigator object to

“ClassesBindingSource”.

If you click the BindingSource arrow, the Properties window shows the names of the two

valid binding sources in the program, as shown in the following illustration:

Now that a link has been established between the second navigation bar and the

binding source object representing the Classes table, your program is ready to run.

4. Click the Save All button to save your changes.

5. Click the Start Debugging button on the toolbar.

Visual Studio runs the DataGridView Sample program in the IDE. You see two grids and

two navigation bars, as shown in the following illustration:

484 Part IV Database and Web Programming
 6. Click the Move Last button on the navigation bar that contains 15 records.

The last class name in the Classes table, Deviant Behavior (Psychology), is highlighted.

Your new navigation bar works, and you have complete access to the columns you

selected in the Classes table.

 7. Use both navigation bars in tandem to highlight different records in the two database

tables.

The two data grid view objects work independently, providing you access to exactly

the database records that you want to see. You can appreciate how useful this access

might be for a user who needs to compare longer tables containing sets of informa-

tion that are closely related. If the data is further fi ltered by SQL SELECT statements,

the application quickly becomes quite powerful.

 8. When you’re fi nished experimenting with the two tables and navigation bars, click the

Close button to close the DataGridView Sample application.

One Step Further: Updating the Original Database

As I mentioned earlier, the dataset object in your program is only a representation of the

data in your original database. This is also true of the information stored in the grids on your

form—if the user makes a change to this data, the change isn’t written back to the original

database unless you have set the data grid view object’s ReadOnly property to False and the

user clicks the Save Data button on the navigation bar. The designers of ADO.NET and Visual

Studio created this relationship to protect the original database and to allow your users to

manipulate data freely in your programs—whether you plan to save the changes or not.

In the following exercise, you’ll examine the fi rst data grid view object’s ReadOnly property,

which enables or disables changes in the InstructorsDataGridView object. You’ll also learn

how to use the Save Data button, which writes changes back to the original database tables

on disk.

Enable updates to the database

 1. Click the fi rst data grid view object on the form (InstructorsDataGridView), and then

highlight the Properties window.

 2. Scroll to the ReadOnly property, and examine its property setting.

If the ReadOnly property is set to False, the user is free to make changes to the informa-

tion in grid cells. If you want to allow your users to modify the information and write it

back to the database your program is connected to, you should keep this default setting.

If you want to disable editing, you should set the ReadOnly property to True.

 Chapter 19 Data Presentation Using the DataGridView Control 485

You’ll keep the default setting of False in this case—you want to test updating the

underlying Students.mdb database.

Tip The complete DataGridView Sample program is located in the c:\vb08sbs\chap19\

datagridview sample folder.

3. Click the Start Debugging button to test the fi rst grid’s ReadOnly property.

The two grids appear with data from the Instructors table and the Classes table of the

Students.mdb database.

4. In the fi rst grid, click the cell containing the phone number for Kim Halvorson, type

1234567890, and then press Enter.

As you make the change, a tiny pencil icon appears in the row header to the left,

indicating that a change is being made. Your screen looks similar to this:

This icon indicates an

edit is being made.

This record is being updated with

a new sample phone number.

The Save Data button allows the user to write updates

back to the original database if ReadOnly is set to False.

When you press Enter or click a different cell in the grid, the change is stored in the

StudentsDataSet dataset.

5. Click the Save Data button on the navigation bar.

Visual Studio uses the UpdateAll method in the grid’s table adapter object to write the

changed dataset to the underlying database. The program statement used to accom-

plish this save operation in the bindingNavigatorSaveItem_Click event procedure looks

like this:

Me.TableAdapterManager.UpdateAll(Me.StudentsDataSet)

486 Part IV Database and Web Programming

TableAdapterManager is a new component in Visual Studio 2008 that makes it easier

to control and manipulate more than one database table in a program. The UpdateAll

method saves changes in all of the open tables in a program, which means that it saves

changes not only in the Instructors table, but in the Classes table as well. You do not have

to accept the default saving behavior here. If you would like to save only the changes in

the Instructors table when your user clicks the Save Data button, replace the statement

above with the following line of code, which was the default behavior in Visual Basic 2005:

Me.InstructorsTableAdapter.Update(Me.StudentsDataSet.Instructors)

If you use the Update method for a named table adapter object, then just that table

adapter’s associated data will be saved. (And remember, you can also control user edits

within tables by using the ReadOnly property.)

6. Click the Close button to end the program.

The program closes and the Visual Studio IDE returns. Now you’ll run the program

again to see whether the Instructors table in the Students.mdb database has indeed

been modifi ed. (When you restart the program, it will load data from the database fi le.)

7. Click the Start Debugging button.

After a moment, the data grid view objects are loaded with data. As you can see, the

row in the Instructors table containing the name Kim Halvorson has been updated with

the changed telephone number. The program works!

8. Click the Close button to end the program.

If you want to continue experimenting with the ReadOnly property for one or both of the

grids, set ReadOnly to True now, and see what happens when you try to modify the database.

(You won’t be able to save any changes.) You might also experiment with adding new rows of

data to the database by using the built-in editing features and toolbar buttons associated with

the DataGridView and BindingNavigator controls. (Before you add new rows, set the ReadOnly

property back to False.)

Now take stock of your accomplishments. You’ve learned to display multiple tables and records

by using the DataGridView and BindingNavigator controls, and you’ve learned how to customize

the grid with property settings and how to write table updates from the grid back to the original

database. As you can begin to see, database programming with ADO.NET and Visual Studio is

straightforward but also somewhat involved. There are many tools, components, and program-

ming techniques related to viewing, manipulating, and updating database records, and we

haven’t even begun to talk seriously about important issues such as security and what happens

when you work with large databases that are being used by many users at the same time.

Although you’ve been able to accomplish a lot with little or no program code, there is still

much to learn if you plan to make extensive use of databases within Visual Basic applications.

For a list of books I recommend for you to continue your studies, see the Appendix, “Where

to Go for More Information.”

 Chapter 19 Data Presentation Using the DataGridView Control 487
Data Access in a Web Forms Environment

The data access techniques discussed in Chapter 18 and this chapter were designed for

use in the Windows Forms Designer—the Visual Studio environment you’ve used to build

most of the programs in this book. However, you can also use ADO.NET programming

techniques in a Web Forms environment, which allows you to share data resources over

the Internet and datacentric applications that are accessible through a Web browser such

as Windows Internet Explorer. I’ll show you how to do this near the end of the next chap-

ter, and you’ll learn how to use a few new tools there too, including the GridView control, a

version of the DataGridView control designed for displaying database tables on Web sites.

Chapter 19 Quick Reference

To Do this

Establish a connection to

database tables in a project

Use the Data Source Confi guration Wizard to link the project to a

database, create a dataset, and fi ll the Data Sources window with

a representation of the selected tables.

Create a data grid view

object on a form to display

an entire database table

Drag a table icon from the Data Sources window to the form. Then

resize the data grid view object so that each column is visible.

Preview data bound to a

data grid view object

Click the data grid view object’s shortcut arrow to display the

DataGridView Tasks list. Click the Preview Data command, and then

click the Preview button in the Preview Data dialog box.

Remove a column from a

data grid view object

Click the data grid view object’s shortcut arrow to display the

DataGridView Tasks list. Click the Edit Columns command, click the

column that you want to remove in the Selected Columns box, and

then click the Remove button.

Sort the records in a grid

at run time

Click the column header that you want to sort by. Visual Studio sorts

the grid alphabetically based on that column.

Reverse the direction of a

grid sort at run time

Click the column header a second time to reverse the direction of the

sort (from A–Z to Z–A).

Change the default column

width for a column in a data

grid view object

In the Properties window, click the Columns property, and then the

ellipsis button. In the Edit Columns dialog box, adjust the Width

property.

Hide column headers in a

data grid view object

Set the ColumnHeadersVisible property to False.

Create an alternating color

scheme for rows within a

data grid view object

Pick a color scheme for alternating rows by using the

AlternatingRowsDefaultCellStyle property. In the CellStyle Builder

dialog box, adjust the BackColor property. The color that you select

will alternate with white.

To Do this

488 Part IV Database and Web Programming
To Do this

Change the color of

gridlines in a grid

Adjust the GridColor property.

Add a second data grid view

object to a form

Drag a second table from the Data Sources window to the form. Resize

and customize the table, taking care to make the form large enough

to display all the database columns and records that your user will

want to see. If you want to add a second navigation bar to the form to

provide access to the table, create a second BindingNavigator control

on the form, and set its BindingSource property to the binding source

representing the new table you created.

Prevent the user from edit-

ing or changing the data in

a data grid view object

Set the grid’s ReadOnly property to True.

Write changes made in the

grid back to the underlying

database

Verify that the data grid view object’s ReadOnly property has

been set to False. Then at run time, use the Save Data button on

the navigation bar to save your changes and update the database.

Alternatively, you can use the table adapter’s Update method or the

Me.TableAdapterManager.UpdateAll method within program code.

To Do this

Chapter 20

Creating Web Sites and Web Pages
by Using Visual Web Developer
and ASP.NET

After completing this chapter, you will be able to:

Q Start Visual Web Developer and create a new Web site.

Q Use Visual Web Developer tools and windows, including the Web Page Designer.

Q Use the Visual Web Developer Toolbox to add server controls to Web pages.

Q Add text, formatting effects, and Visual Basic code to a Web page that calculates loan

payments for a car loan.

Q Create an HTML page that displays Help information.

Q Use the HyperLink control to link one Web page to another on a Web site.

Q Use the GridView control to display a table of database information on a Web page.

Q Set the DOCUMENT object’s Title property and assign a name to a Web page.

In this chapter, you’ll learn how to build Web sites and Web pages by using the new Visual

Web Developer tool included with Microsoft Visual Studio 2008. Visual Web Developer has

the look and feel of the Visual Studio IDE, but it is customized for Web programming and

Microsoft ASP.NET 3.5, the Microsoft .NET Framework component designed to provide state-

of-the-art Internet functionality. ASP.NET was introduced with Microsoft Visual Studio .NET

2002 and is a replacement for WebClasses and the DHTML Page Designer in Microsoft Visual

Basic 6. Although a complete description of Web programming and ASP.NET isn’t possible

here, there’s enough in common between Web programming and Windows programming

to allow you to do some useful experimentation—even if you have little or no experience

with HTML. Invest a few hours in this chapter, and you’ll see how quickly you can build a

Web site that calculates loan payments for car loans, create an HTML page with Help

information, and display loan prospects from a Microsoft Offi ce Access database by

using the GridView control.
 489

490 Part IV Database and Web Programming
Inside ASP.NET

ASP.NET 3.5 is Microsoft’s latest Web development platform, and it has been enhanced in this

release by improvements to the AJAX (Asynchronous JavaScript and XML) programming model,

new server controls, authentication and profi le services, and the LinqDataSource control, which

allows the use of Language-Integrated Query (LINQ) in Web development contexts. Although

ASP.NET has some similarities with an earlier Web programming technology named Active

Server Pages (ASP), ASP.NET has been signifi cantly enhanced since its fi rst release in the Visual

Studio .NET 2002 software, and continues to evolve as new features are added to the .NET

Framework and Visual Studio software. Visual Web Developer is the tool you use to create and

manage ASP.NET user interfaces, commonly called Web pages or (in a more comprehensive

sense) Web sites.

Tip In programming books, you’ll sometimes see Web pages referred to as Web forms and Web

sites referred to as Web applications, but those terms are less prevalent in the Visual Studio 2008

documentation.

By using Visual Web Developer, you can create a Web site that displays a user interface,

processes data, and provides many of the commands and features that a standard applica-

tion for Windows might offer. However, the Web site you create is viewed in a Web browser,

such as Windows Internet Explorer, Mozilla Firefox, Apple Safari, or Netscape Navigator, and

it is typically stored on one or more Web servers, which use Microsoft Internet Information

Services (IIS) to display the correct Web pages and handle most of the computing tasks re-

quired by your Web site. (In Visual Studio 2005 and 2008, Web sites can also be located and

run on a local computer that does not require IIS, giving you more options for development

and deployment.) This distributed strategy allows your Web sites to potentially run on a wide

range of Internet-based or stand-alone computers—wherever your users and their rich data

sources are located.

To create a Web site in Visual Studio 2008, you click the New Web Site command on the File

menu, and then use the Visual Web Developer to build one or more Web pages that will

collectively represent your Web site. Each Web page consists of two pieces:

Q A Web Forms page, which contains HTML and controls to create the user interface.

Q A code-behind fi le, which is a code module that contains program code that “stands

behind” the Web Forms page.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 491
This division is conceptually much like the Windows Forms you’ve been creating in Visual

Basic—there’s a user interface component and a code module component. The code for

both of these components can be stored in a single .aspx fi le, but typically the Web Forms

page code is stored in an .aspx fi le, and the code-behind fi le is stored in an .aspx.vb fi le. The

following illustration shows a conceptual view of how an ASP.NET Web site stored on a server

is displayed in a Web browser:

In addition to Web pages, Web sites can contain code modules (.vb fi les), HTML pages (.htm

fi les), confi guration information (a Web.confi g fi le), global Web application information (a

Global.asax fi le), and other components. You can use the Web Page Designer and Solution

Explorer to switch back and forth between these components quickly and effi ciently.

Web Pages vs. Windows Forms

What are the important differences between Web pages and Windows Forms? To begin

with, Web pages offer a slightly different programming paradigm than Windows Forms.

Whereas Windows Forms use a Windows application window as the primary user interface

for a program, a Web site presents information to the user through one or more Web pages

with supporting program code. These pages are viewed through a Web browser, and you

can create them by using the Web Page Designer.

Like a Windows Form, a Web page can include text, graphic images, buttons, list boxes, and

other objects that are used to provide information, process input, or display output. However,

the basic set of controls you use to create a Web page is not the set on the Common Controls

tab of the Toolbox. Instead, ASP.NET Web sites must use controls on one of the tabs in the

Visual Web Developer Toolbox, including Standard, Data, HTML, and many others. Each of

the Visual Web Developer controls has its own unique methods, properties, and events, and

although there are many similarities between these controls and Windows Forms controls,

there are also several important differences. For example, Visual Studio DataGridView control

is called GridView in Visual Web Developer and has different properties and methods.

492 Part IV Database and Web Programming
Many Web page controls are server controls, meaning that they run on the Web server.

Server controls have an “asp” prefi x in their tag. HTML controls (located in the HTML tab of

the Visual Web Developer Toolbox) are client controls by default, meaning that they run only

within the end user’s browser. For now, however, you simply need to know that you can use

server controls, HTML controls, or a combination of both in your Web site projects. As you

gain experience in Web programming, you may want to investigate AJAX programming in

Visual Studio, which can enhance the effi ciency of your Web applications and add advanced

user-interface elements for users.

Server Controls

Server controls are more capable than HTML controls and function in many ways like the

Windows Forms controls. Indeed, many of the server controls have the same names as

the Windows Forms controls and offer many of the same properties, methods, and events.

In addition to simple controls such as Button, TextBox, and Label, more sophisticated controls

such as FileUpload, LoginView, and RequiredFieldValidator are provided on a number of tabs

in the Toolbox (Visual Studio 2008 has added to the list of controls signifi cantly). The follow-

ing illustration shows most of the server controls in the Visual Web Developer Toolbox:

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 493
HTML Controls

The HTML controls are a set of older user interface controls that are supported by all Web

browsers and conform closely to the early HTML standards developed for managing user

interface elements on a typical Web page. They include Button, Text, and Checkbox—useful

basic controls for managing information on a Web page that can be represented entirely with

HTML code. Indeed, you might recognize these controls if you’ve coded in HTML before

or if you’ve had some experience with the Visual Basic 6 DHTML Page Designer. However,

although they’re easy to use and have the advantage of being a “common denominator”

for Web browsers, they’re limited by the fact that they have no ability to maintain their own

state. (In other words, the data that they contain will be lost between views of a Web page.)

The following illustration shows the HTML controls offered on the HTML tab of the Toolbox

in Visual Web Developer:

494 Part IV Database and Web Programming
Building a Web Site by Using Visual Web Developer

The best way to learn about Visual Web Developer and ASP.NET is to get some hands-on

practice. In the exercises in this chapter, you’ll create a simple car loan calculator that de-

termines monthly payments and displays an HTML page containing Help text. Later in the

chapter, you’ll use the GridView control to display a table of data on a Web page in the

same Web site. You’ll begin by verifying that Visual Studio is properly confi gured for ASP.

NET programming, and then you’ll create a new Web site project. Next you’ll use the Web

Page Designer to create a Web page with text and links on it, and you’ll use controls in the

Visual Web Developer Toolbox to add controls to the Web page.

Considering Software Requirements for ASP.NET
Programming

Before you can create your fi rst ASP.NET Web site, you need to make sure your computer is

set up properly. To perform ASP.NET programming, you need to have Visual Web Developer

installed. Visual Web Developer is a component of Visual Studio 2008 Standard Edition, Visual

Studio 2008 Professional Edition, and Visual Studio Team System 2008 Team Suite. Visual Studio

2008 includes its own local Web server, so setting up and confi guring a Web server with IIS and

the .NET Framework is not required. Having a local Web server makes it easy to create and test

your ASP.NET Web sites.

A useful improvement in Visual Studio 2008 is that you no longer need to develop your Web

site on a computer that is fully confi gured to act as a Web server. In Visual Studio .NET 2002

and 2003, your development system needed to host or have access to a Web server running

Windows XP Professional, Windows Server 2003, or Windows 2000 that also contained an

installation of IIS, the Microsoft FrontPage 2000 Server Extensions, and the .NET Framework.

This meant that if you were running Windows XP Home Edition, you were potentially out of

luck, because Windows XP Home Edition does not include or support IIS. (The only work-

around was to access a properly confi gured remote Web server.)

In Visual Studio2005 and 2008, you can create and run your Web site in one of three

locations:

Q Your own computer (the local fi le system)

Q An HTTP server that contains IIS and related components

Q An FTP site (a remote fi le server)

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 495
The fi rst location is the option we’ll use in this book, because it requires no additional hard-

ware or software. In addition, when you develop your Web site on the local fi le system, all

the Web site fi les are stored in one location. When you’re fi nished testing the application,

you can deploy the fi les to a Web server of your choosing.

Note If you want to develop your Web site on a Web server, make sure IIS and related compo-

nents are installed on your system. (On Windows XP, open Add Or Remove Programs in Control

Panel, click Add/Remove Windows Components, and then browse for IIS. On Windows Vista,

open Programs And Features in Control Panel, click Turn Windows Features On Or Off, and then

browse for the IIS and ASP.NET features) Traditionally, Microsoft has required that you install

these Web server components before the .NET Framework and Visual Studio because the .NET

Framework registers extensions with IIS. If you install IIS after Visual Studio and run into prob-

lems, this could be the reason.

Create a new Web site

 1. Start Visual Studio, and click the New Web Site command on the File menu.

Note If you don’t see the New Web Site command on the File menu then you don’t have

Visual Web Developer installed.

Although you might have seen the New Web Site command before, we haven’t used it

yet in this book. This command starts Visual Web Developer and prepares Visual Studio

to build a Web site. You see a New Web Site dialog box similar to the following:

496 Part IV Database and Web Programming

In this dialog box you can select the Web site or application template, the location for the

Web site (local fi le system, HTTP server, or FTP site), and the programming language that

you want to use (Visual Basic or Visual C#). You can also identify the version of the .NET

Framework you want to target with your Web application. (Version 3.5 offers the most

features, but there are times that you may need to design specifi cally for platforms with

an earlier version of the .NET Framework.)

2. In the New Web Site dialog box, verify that ASP.NET Web Site is the selected template,

and that Visual Basic is the selected language.

3. Click File System in the Location box.

4. Click Browse, create a new folder named “mychap20” in c:\vb08sbs, make sure the

selected folder is set to c:\vb08sbs\mychap20 and then click Open.

You’ll notice that the Choose Location dialog box is a little different than the Project

Location dialog box you’ve been using so far. And although you have been specifying

the folder location for projects after you have built the projects in this book, in Visual

Web Developer projects are saved up front. The “my” prefi x in the pathname will avoid

a confl ict with the solution Web site in the practice fi les (c:\vb08sbs\chap20) that I’ve

built for you.

5. Click OK in the New Web Site dialog box to fi nalize your changes.

Visual Studio loads Visual Web Developer and creates a Web page (Default.aspx) to

contain the user interface and a code-behind fi le (Default.aspx.vb) that will store the

code for your Web page. (If you don’t see the Web Page Designer, double-click Default.

aspx in Solution Explorer now.) Your screen looks something like the one shown in the

following illustration:

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 497

U

Unlike the Windows Forms Designer, the Web Page Designer displays the Web page in

three possible views in the IDE, and three tabs at the bottom of the Designer (Design,

Split, and Source) allow you to change your view of the Web page. Depending on how

your system has been confi gured and used, you might see either the Design tab, the

Split tab, or the Source tab now. (The illustration shows the Design tab.)

On the Source tab, you can view and edit the HTML code that’s used to display the

Web page in a Web browser. If you’ve used Microsoft Visual InterDev or Microsoft

Offi ce FrontPage, you’ll be familiar with these two ways of displaying a Web page and

perhaps with some of the HTML formatting tags that control how Web pages are actu-

ally displayed.

The Design tab shows you approximately how your Web page will look when a Web

browser displays it. When the Design tab is selected, a white page appears in the

Designer with the result of source-code formatting, and you can add controls to your

Web page and adjust how objects on the page are arranged. The Split tab offers a

composite view of the Source and Design tabs.

A few additional changes in Visual Web Developer are worth noting at this point.

The Toolbox now contains several collections of controls used exclusively for Web

programming. Solution Explorer also contains a different list of project fi les for the

Web site you’re building. In particular, notice the Default.aspx fi le in Solution Explorer;

this fi le contains the user interface code for the active Web page. Nested under the

Default.aspx fi le, you’ll fi nd a fi le named Default.aspx.vb. A confi guration fi le named

Web.confi g is also listed.

Now you’re ready to add some text to the Web page by using the Web Page Designer.

sing the Web Page Designer

Unlike a Windows Form, a Web page can have text added directly to it when it is in the Web

Page Designer. In Source view, the text appears within HTML tags somewhat like the Visual

Studio Code Editor. In Design view, the text appears in top-to-bottom fashion as it does in a

word processor such as Microsoft Offi ce Word, and you’ll see no HTML. In this section, you’ll

type text in Design view, edit it, and then make formatting changes by using buttons on the

Formatting toolbar. Manipulating text in this way is usually much faster than adding a Label

control to the Web page to contain the text. You’ll practice entering the text for your car loan

calculator in the following exercise.

498 Part IV Database and Web Programming

Add text in Design view

1. Click the Design tab, if it is not currently selected, to view the Web Page Designer in

Design view.

A faint rectangle appears at the top of the Web page.

2. Position your insertion point within this rectangle.

A blinking I-beam appears at the top of the Web page.

3. Type Car Loan Calculator, and then press Enter.

Visual Studio displays the title of your Web page exactly as it will appear when you

open the Web site in your browser.

4. Type the following sentence below the title:

Enter the required information and click Calculate!

Now you’ll use the Formatting toolbar to format the title with bold formatting and a

larger point size.

5. Right-click the Standard toolbar in Visual Web Developer to display the list of toolbars

available in the IDE.

6. If you do not see a check mark next to Formatting in this list, click Formatting to add

the Formatting toolbar.

The Formatting toolbar now appears in the IDE. Notice that it contains a few features

not usually found on a text formatting toolbar.

7. Select the text “Car Loan Calculator”.

Before you can format text in Visual Web Developer, you must select it.

8. Click the Bold button on the Formatting toolbar, and set the font size to x-large

24 point.

Your screen looks like this:

Now you’ll examine the HTML code for the text and formatting you entered.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 499

View the HTML for a Web page

1. Click the Source tab at the bottom of the Designer.

The Source tab displays the actual HTML code for your Web page. To see more of the

code, you might want to temporarily resize a few programming tools. The HTML code

looks like the following illustration. Your HTML code might have some differences.

A Web page is made up of fi le and document information, formatting codes called HTML

tags that are enclosed in angle brackets, and the text and objects to be displayed by

your Web page. This Web page is still rather short—it contains a header with information

about the language you selected when creating the Web application, the name of any

code-behind fi le, and any inherited forms.

HTML tags typically appear in pairs so that you can see clearly where a section

begins and ends. For example, the <body> tag identifi es the beginning of the docu-

ment and the </body> tag identifi es the end. Notice that the “Car Loan Calculator”

text appears below a block of HTML style code that formats the text as bold with a

font size of x-large (24 points). Below the “Car Loan Calculator” text the second line

of text you entered is displayed.

Tip Remember that the Source tab is an actual editor, so you can change the text you

entered by using standard text editing techniques. If you know something about HTML,

you can add additional formatting tags and content as well.

2. Click the Design tab to display your Web page in Design view, and open the Toolbox if

it is not visible.

500 Part IV Database and Web Programming
Adding Server Controls to a Web Site

Now you’ll add TextBox, Label, and Button controls to the car loan calculator. Although

these controls are located in the Visual Web Developer Toolbox, they’re very similar to the

Windows Forms controls of the same name that you’ve used throughout this book. (I’ll cover

a few of the important differences as they come up.) The most important thing to remember

is that in the Web Page Designer, controls are inserted at the insertion point if you double-

click the control name in the Toolbox. After you add the controls to the Web page, you’ll set

property settings for the controls.

Use TextBox, Label, and Button controls

 1. Display the Standard tab of the Toolbox, if it isn’t already visible.

 2. Position the insertion point to the end of the second line of text on the Web page, and

then press the Enter key three times to create a little blank space below the text for the

controls.

Because controls are placed at the insertion point, you need to use the text editing

keys to position the insertion point appropriately before double-clicking a control in

the Toolbox.

Note By default, the Web Page Designer positions controls relative to other controls.

This is an important difference between the Web Page Designer and the Windows Forms

Designer. The Windows Forms Designer allows you to position controls wherever you

like on a form. You can change the Web Page Designer so that you can position controls

wherever you like on a Web page (called absolute positioning); however, you might get

different behavior in different Web browsers.

 3. Double-click the TextBox control on the Standard tab of the Toolbox to create a text

box object at the insertion point on the Web page.

Notice the asp:textbox#TextBox1 text that appears above the text box object. The “asp”

prefi x indicates that this object is an ASP.NET server control. (This text disappears when

you run the program.)

 4. Click the right side of the text box object to place the insertion point at the outside

edge, and then press Enter twice.

 5. Double-click the TextBox control again to add a second text box object to the

Web page.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 501

6. Repeat steps 4 and 5 to create a third text box object below the second text box.

Now you’ll use the Label control to insert labels that identify the purpose of the

text boxes.

7. Click to the right of the fi rst text box object to place the insertion point at the right

edge of the text box.

8. Press Spacebar twice to add two blank spaces, and then double-click the Label control

in the Toolbox to add a label object to the Web page.

9. Repeat steps 7 and 8 to add label objects to the right of the second and third text

boxes.

10. Click to the right of the third label object to place the insertion point to the right of the

label, and then press Enter twice.

11. Double-click the Button control to create a button object at the bottom of the

Web page.

The Button control, like the TextBox and Label controls, is very similar to its Windows

Forms counterpart. Your screen looks like this:

Now you’ll set a few properties for the seven new controls you have created on the Web

page. Open the Properties window if it is not visible (press F4). As you set the properties,

you’ll notice one important difference between Web pages and Windows Forms—the

familiar Name property has been changed to ID in Visual Web Developer. Despite their

different names, the two properties perform the same function.

502 Part IV Database and Web Programming

12. Set the following properties for the objects on the form:

Object Property Setting

TextBox1 ID txtAmount

TextBox2 ID txtInterest

TextBox3 ID txtPayment

Label1 ID

Text

lblAmount

“Loan Amount”

Label2 ID

Text

lblInterest

“Interest Rate (for example, 0.09)”

Label3 ID

Text

lblPayment

“Monthly Payment”

Button1 ID

Text

btnCalculate

“Calculate”

Your Web page looks like this:

Object Property Setting

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 503

Writing Event Procedures for Web Page Controls

You write default event procedures (or event handlers) for controls on a Web page by

double-clicking the objects on the Web page and typing the necessary program code in

the Code Editor. Although the user will see the controls on the Web page in his or her own

Web browser, the actual code that’s executed will be located on the local test machine or

a Web server, depending on how you confi gured your project for development and how it

is eventually deployed. For example, when the user clicks a button on a Web page that is

hosted by a Web server, the browser sends the button click event back to the server, which

processes the event and sends a new Web page back to the browser. Although the process

seems similar to that of Windows Forms, there’s actually a lot going on behind the scenes

when a control is used on an ASP.NET Web page!

In the following exercise, you’ll practice creating the default event procedure for the

btnCalculate object on the Web page.

Create the btnCalculate_Click event procedure

1. Double-click the Calculate button on the Web page.

The code-behind fi le (Default.aspx.vb) opens in the Code Editor, and the btnCalculate_

Click event procedure appears.

2. Type the following program code:

Dim LoanPayment As Double

'Use Pmt function to determine payment for 36 month loan

LoanPayment = Pmt(CDbl(txtInterest.Text) / 12, 36, CDbl(txtAmount.Text))

txtPayment.Text = Format(Abs(LoanPayment), "$0.00")

This event procedure uses the Pmt function, a fi nancial function that’s part of the Visual

Basic language, to determine what the monthly payment for a car loan would be by

using the specifi ed interest rate (txtInterest.Text), a three-year (36-month) loan period, and

the specifi ed principal amount (txtAmount.Text). The result is stored in the LoanPayment

double-precision variable, and then it is formatted with appropriate monetary formatting

and displayed by using the txtPayment text box object on the Web page.

504 Part IV Database and Web Programming

The two Text properties are converted from string format to double-precision format

by using the CDbl function. The Abs (absolute value) function is used to make the

loan payment a positive number. (Abs currently has a jagged underline in the Code

Editor because it relies on the System.Math class, which you’ll specify next.) Why

make the loan payment appear as a positive number? The Pmt function returns a

negative number by default (refl ecting money that’s owed), but I think negative

formatting looks strange when it isn’t part of a balance sheet, so I’m converting

it to positive.

Notice that the program statements in the code-behind fi le are just regular Visual Basic

code—the same stuff you’ve been using throughout this book. Basically, the process

feels similar to creating a Windows application.

3. Scroll to the top of the Code Editor, and enter the following program statement as the

fi rst line of the fi le:

Imports System.Math

As you learned in Chapter 5, “Visual Basic Variables and Formulas, and the .NET

Framework,” the Abs function isn’t included in Visual Basic by default, but it’s part of

the System.Math class in the .NET Framework and can be more easily referenced in

your project by the Imports statement. Web applications can make use of the .NET

Framework class libraries just as Windows applications can.

The Code Editor looks like this:

4. Click the Save All button on the Standard toolbar.

That’s it! You’ve entered the program code necessary to run the car loan calculator and make

your Web page interactive. Now you’ll build and run the project and see how it works. You’ll

also learn a little bit about security settings within Internet Explorer, a topic closely related to

Web development.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 505

Build and view the Web site

1. Click the Start Debugging button on the Standard toolbar.

Visual Studio displays the following message about debugging:

This potentially confusing dialog box is not a major concern. It just indicates that the

Web.confi g fi le in your project does not currently allow debugging (a standard security

feature). Although you can bypass this dialog box each time you test the application

within Visual Studio by clicking the Run Without Debugging button, I recommend that

you modify the Web.confi g fi le now.

Security Tip Before you widely distribute or deploy a real Web site, be sure to disable

debugging in Web.confi g to keep your application safe from unauthorized tampering.

2. Click OK to modify the Web.confi g fi le.

Visual Studio modifi es the fi le, builds your Web site, and displays the opening Web

page in Internet Explorer.

Security Tip If Internet Explorer displays the message “Script Debugging Disabled,” click

Yes to continue. You can adjust a security setting within Internet Explorer so that this mes-

sage does not appear in the future. (We won’t be debugging right now.) You can modify

the Internet Explorer Disable Script Debugging setting by clicking the Internet Options

command on the Tools menu, clicking the Advanced tab, and clicking to clear the Disable

Script Debugging option.

506 Part IV Database and Web Programming
The car loan calculator looks like the following illustration. If Internet Explorer does not

appear, you might need to select it on the Windows taskbar.

When you first run your Web

application in Internet Explorer,

you may see a security warning.

Security Tip You might see the Information Bar at the top of Internet Explorer indicat-

ing that intranet settings are turned off by default. (This Information Bar is shown in the

previous illustration.) An intranet warning is again related to Internet Explorer’s desire to

protect you from rogue programs or unauthorized access. An intranet is a local network

(typically a home network or small workgroup network), and because Visual Studio uses

intranet-style addressing when you test Web sites built on your own computer, you’re likely

to see the warning message. To temporarily suppress the warning, click the Information

Bar and then click Don’t Show Me This Again. To remove intranet warnings more perma-

nently, click the Internet Options command on the Internet Explorer Tools menu, click the

Security tab, and then click Local Intranet. Click the Sites button, and clear the check mark

from Automatically Detect Intranet Network in the Local Intranet dialog box. However,

exercise caution whenever you disable security warnings, as they are meant to protect you.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 507

Tip When you started this Web site, you might have noticed a balloon pop up in the

notifi cation area of the Windows taskbar. This balloon indicates that the local Web server

has started to run this Web site. If you right-click the ASP.NET Development Server icon in

the notifi cation area, you can get more information about the Web server.

Now let’s get back to testing our Web page.

3. Type 18000 in the Loan Amount text box, and then type 0.09 in the Interest Rate

text box.

You’ll compute the monthly loan payment for an $18,000 loan at 9 percent interest for

36 months.

4. Click the Calculate button.

Visual Basic calculates the payment amount and displays $572.40 in the Monthly

Payment text box. Your screen looks like this:

508 Part IV Database and Web Programming
 5. Close Internet Explorer.

You’re fi nished testing your Web site for now. When Internet Explorer closes, your pro-

gram is effectively ended. As you can see, building and viewing a Web site is basically

the same as building and running a Windows application, except that the Web site is

executed in the browser. You can even set break points and debug your application

just as you can in a Windows application.

Curious about installing a Web site like this on an actual Web server? The basic procedure

for deploying Web sites is to copy the .aspx fi les and any necessary support fi les for the

project to a properly confi gured virtual directory on a Web server running IIS and the .NET

Framework. There are a couple of ways to perform deployment in Visual Web Developer.

To get started, click Copy Web Site on the Web site menu, or click Publish Web Site on the

Build menu. For more information, see “ASP.NET Deployment Overview” in the Visual Studio

documentation.

Validating Input Fields on a Web Page

Although this Web page is useful, it runs into problems if the user forgets to enter a

principal amount or an interest rate or specifi es data in the wrong format. To make

Web sites like this more robust, I usually add one or more validator controls that force

users to enter input in the proper format. The validator controls are located on the

Validation tab of the Visual Web Developer Toolbox and include controls that re-

quire data entry in a fi eld (RequiredFieldValidator), require entry in the proper range

(RangeValidator), and so on. For information on the validator controls, search the Visual

Studio documentation. They are straight forward to use.

Adding Additional Web Pages and Resources to a
Web Site

Now the fun begins! Only very simple Web sites consist of just one Web page. Using Visual

Web Developer, you can quickly expand your Web site to include additional information and

resources, including HTML pages, XML pages, text fi les, database records, Web services, site

maps, and more. If you want to add an HTML page (a standard Web page containing text

and HTML client-side controls), you have two options.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 509

Q You can create a new HTML page by using the Add New Item command on the

Website menu. After you create the HTML page, you add text and HTML objects to the

page by using the Web Page Designer.

Q You can add an HTML page that you have already created by using the Add Existing

Item command on the Web site menu, and then customize the page in the Web Page

Designer. You use this method if you want to include one or more Web pages that you

have already created in a tool such as Microsoft Expression Web. (If possible, add pages

that don’t rely on external style sheets and resources, or you’ll need to add those items

to the project as well.)

To link pages together, Visual Web Developer provides the HyperLink control, which creates

a hyperlink label object that the user clicks to jump from the current Web page to a new one.

When you use a HyperLink control, you set the text that will be displayed on the page by using

the Text property, and you specify the desired resource to jump to (either a URL or a local path)

by using the NavigateUrl property.

In the following exercise, you’ll create a second Web page by using the Add New Item com-

mand, and you’ll save it in HTML format along with your other project fi les. The new page will

be a Help fi le that users of your Web site can access to get operating instructions for the loan

calculator. After you create the new page, you’ll add a HyperLink control to the fi rst page and

set the HyperLink control’s NavigateUrl property to the new HTML page.

Create an HTML page

1. Click the Add New Item command on the Web site menu.

The Add New Item dialog box opens, allowing you to add a number of different

Internet resources to your Web site.

2. Click the HTML Page template.

You’ll insert a blank HTML page into the project, which you can use to display formatted

text and HTML controls. (You cannot add server controls to this page, because simple

HTML pages are controlled by the client’s browser, not a Web server.)

3. Type WebCalculatorHelp.htm in the Name text box.

510 Part IV Database and Web Programming

Your screen looks like this:

4. Click Add.

The WebCalculatorHelp.htm fi le is added to Solution Explorer and is opened in the

Web Page Designer in Design view.

Notice that only HTML controls are displayed in the Toolbox. Because this is an HTML

page, the server controls aren’t supported.

5. If necessary, click the Design tab to display the HTML page in Design view.

The I-beam insertion point blinks on the page, ready for your input.

6. Type the following text:

Car Loan Calculator

The Car Loan Calculator Web site was developed for the book Microsoft Visual

Basic 2008 Step by Step, by Michael Halvorson (Microsoft Press, 2008). The Web

site is best viewed using Microsoft Internet Explorer version 6.0 or later. To learn

more about how this ADO.NET application was created, read Chapter 20 in the

book.

Operating Instructions:

Type a loan amount, without dollar sign or commas, into the Loan Amount box.

Type an interest rate in decimal format into the Interest Rate text box. Do not

include the “%” sign. For example, to specify a 9% interest rate, type “0.09”.

Note that this loan calculator assumes a three-year, 36-month payment period.

Click the Calculate button to compute the basic monthly loan payment that does

not include taxes or other fees.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 511

7. Using buttons on the Formatting toolbar, add bold and italic formatting, as shown here:

8. Click the Save All button on the Standard toolbar to save your changes.

Now you’ll use the HyperLink control to create a hyperlink on the fi rst Web page that opens

the WebCalculatorHelp.htm fi le.

Use the HyperLink control

1. Display the Car Loan Calculator Web page (Default.aspx) in Design view.

2. Place the insertion point to the right of the button object on the Web page, and then

press Enter twice.

3. Double-click the HyperLink control on the Standard tab of the Toolbox to create a

hyperlink object at the insertion point.

4. Set the Text property of the hyperlink object to “Get Help”.

The Text property contains the text that will appear as the underlined hyperlink on the

Web page. You want to use words here that will make it obvious that there’s a Web

page available containing Help text.

5. Set the ID property of the hyperlink object to “lnkHelp”.

Naming this object makes it consistent with the other objects in the Web site.

6. Click the NavigateUrl property, and then click the ellipsis (…) button in the second

column.

Visual Studio opens the Select URL dialog box, which prompts you for the location of

the Web page to which you want to link.

512 Part IV Database and Web Programming

7. Click the WebCalculatorHelp.htm fi le in the Contents Of Folder list box.

The URL text box displays the name of the fi le you want to use as the hyperlink. Your

dialog box looks like this:

8. Click OK to set the NavigateUrl property.

Your Web page looks like this:

New hyperlink object

Your link is fi nished, and you’re ready to view the Web site in your browser again.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 513

9. Click the Save All button.

10. Click the Start Debugging button.

Visual Studio builds the Web site and displays it in Internet Explorer.

11. Compute another loan payment to experiment further with the loan calculator.

If you want to test another set of numbers, try entering 20000 for the loan amount and

0.075 for the interest rate. The result should be $622.12.

12. Now click the Get Help hyperlink to see how the HyperLink control works.

Internet Explorer displays your new HTML page on the screen. Your HTML page looks

something like this:

13. Read the text, and then click the Back button in Internet Explorer.

Just like any Web site, this one lets you click the Back and Forward buttons to jump

from one Web page to the next.

14. Close Internet Explorer to close the Web site.

You’ve added a simple HTML page to your Web site, and you have experimented with

using the HyperLink control to link together Web pages. Pretty cool. Now try something

more sophisticated that shows how far you can take your Web site if you choose to in-

clude information from a database.

514 Part IV Database and Web Programming
Displaying Database Records on a Web Page

For many users, one of the most exciting aspects of the World Wide Web is the ability to

access large amounts of information rapidly through a Web browser. Often, of course, the

quantity of information that needs to be displayed on a commercial Web site far exceeds

what a developer can realistically prepare using simple text documents. In these cases, Web

programmers add database objects to their Web sites to display tables, fi elds, and records

of database information on Web pages, and they connect the objects to a secure database

residing on the Web server or another location.

Visual Studio 2008 makes it easy to display simple database tables on a Web site, so as

your computing needs grow, you can use Visual Studio to process orders, handle security,

manage complex customer information profi les, and create new database records—all

from the Web. Importantly, Visual Web Developer delivers this power very effectively.

For example, by using the GridView control, you can display a database table containing

dozens or thousands of records on a Web page without any program code. You’ll see how

this works by completing the following exercise, which adds a Web page containing loan

contact data to the Car Loan Calculator project. If you completed the database program-

ming exercises in Chapter 18, “Getting Started with ADO.NET,” and Chapter 19, “Data

Presentation Using the DataGridView Control,” be sure to notice the similarities (and a few

differences) between database programming in a Windows environment and database

programming on the Web.

Add a new Web page for database information

 1. Click the Add New Item command on the Web site menu.

Visual Web Developer displays a list of components that you can add to your Web site.

 2. Click the Web Form template, type InstructorLoans.aspx in the Name text box, and

then click Add.

Visual Web Developer adds a new Web page to your Web site. Unlike the HTML page

you added earlier, this Web page component is capable of displaying server controls.

 3. If necessary, click the Design tab to switch to Design view.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 515

4. Enter the following text at the top of the Web page:

The following grid shows instructors who want loans and their contact phone

numbers:

5. Press Enter twice to add two blank lines below the text.

Remember that Web page controls are added to Web pages at the insertion point, so it

is always important to create a few blank lines when you are preparing to add a control.

Next you’ll display two fi elds from the Instructors table of the Students.mdb database by

adding a GridView control to the Web page. GridView is similar to the DataGridView control

you used in Chapter 19, but GridView has been optimized for use on the Web. (There are

also a few other differences, which you can explore by using the Properties window and

Visual Studio documentation.) Note that I’m using the same Access database table I

used in Chapters 18 and 19, so you can see how similar database programming is in

Visual Web Developer. Many programmers also use SQL databases on their Web sites,

and Visual Web Developer also handles that format very well.

Add a GridView control

1. With the new Web page open and the insertion point in the desired location, double-

click the GridView control on the Data tab of the Visual Web Developer Toolbox.

Visual Web Developer adds a grid view object named GridView1 to the Web page. The

grid view object currently contains placeholder information.

2. If the Common GridView Tasks list is not already displayed, click the GridView1 object’s

shortcut arrow to display the list.

Click the Choose Data Source arrow, and then click the <New Data Source> option.

3. Visual Web Developer displays the Data Source Confi guration Wizard, a tool that you

used in Chapters 18 and 19 to establish a connection to a database and select the

tables and fi elds that will make up a dataset.

516 Part IV Database and Web Programming

Your screen looks like this:

4. Click the Access Database icon, type Students in the Specify An ID For The Data Source

box, and then click OK.

You are now prompted to specify the location of the Access database on your system.

(This dialog box is slightly different than the one you used in Chapter 18.)

5. Type c:\vb08sbs\chap18\students.mdb, and then click Next.

You are now asked to confi gure your data source; that is, to select the table and

fi elds that you want to display on your Web page. Here you’ll use two fi elds from the

Instructors table. (Remember that in Visual Studio, database fi elds are often referred to

as columns, so you’ll see the word “columns” used in the IDE and the instructions below.)

6. Click the Name arrow, and then click Instructors in the list box.

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 517

7. Select the Instructor and PhoneNumber check boxes in the Columns list box.

Your screen looks like this:

Through your actions here, you are creating an SQL SELECT statement that confi gures a

dataset representing a portion of the Students.mdb database. You can see the SELECT

statement at the bottom of this dialog box.

8. Click Next to see the Test Query screen.

9. Click the Test Query button to see a preview of your data.

You’ll see a preview of actual Instructor and PhoneNumber fi elds from the database.

This data looks as expected, although if we were preparing this Web site for wider

distribution, we would take the extra step of formatting the PhoneNumber column

so that it contains standard spacing and phone number formatting.

518 Part IV Database and Web Programming

10. Click Finish.

Visual Web Developer closes the wizard and adjusts the number of columns and

column headers in the grid view object to match the selections that you have made.

However, it continues to display placeholder information (“abc”) in the grid cells.

11. With the Common GridView Tasks list still open, click the Auto Format command.

12. Click the Professional scheme.

The Auto Format dialog box looks like this:

The ability to quickly format, adjust, and preview formatting options is a great feature

of the GridView control.

13. Click OK and then close the Common GridView Tasks list.

The InstructorLoans.aspx Web page is complete now, and looks like the following

illustration. (My GridView control is within a <p> tag, but yours might be within a

<div> tag.)

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 519

Now you’ll add a hyperlink on the fi rst Web page (or home page) that will display this Web

page when the user wants to see the database table. You’ll create the hyperlink with the

HyperLink control.

Add a hyperlink to the home page

1. Click the Default.aspx tab at the top of the Designer.

The home page for your Web site opens in the Designer.

2. Click to the right of the Get Help (lnkHelp) object to place the insertion point after that

object.

3. Press Enter twice to create space for a second hyperlink.

4. Double-click the HyperLink control on the Standard tab of the Toolbox to create a

hyperlink object at the insertion point.

5. Set the Text property of the hyperlink object to “Display Loan Prospects”.

We’ll pretend that your users are bank loan offi cers (or well-informed car salespeople)

looking to sell auto loans to university professors. Display Loan Prospects will be the

link they click to view the selected database records.

6. Set the ID property of the hyperlink object to “lnkProspects”.

7. Click the NavigateUrl property, and then click the ellipsis button.

Visual Studio opens the Select URL dialog box.

8. Click the InstructorLoans.aspx fi le in the Contents Of Folder list box, and then click OK.

Your link is fi nished, and you’re ready to test the Web site and GridView control in your

browser.

Test the fi nal Car Loan Calculator Web site

Tip The complete Car Loan Calculator Web site is located in the c:\vb08sbs\chap20\chap20

folder. Use the Open Web Site command on the File menu to open an existing Web site.

1. Click the Start Debugging button.

Visual Studio builds the Web site and displays it in Internet Explorer.

2. Enter 8000 for the loan amount and 0.08 for the interest rate, and then click Calculate.

The result is $250.69. Whenever you add to a project, it is always good to go back and

test the original features to verify that they have not been modifi ed inadvertently. Your

screen looks like the illustration shown on the following page.

520 Part IV Database and Web Programming

The new hyperlink (Display Loan Prospects) is visible at the bottom of the Web page.

3. Click Display Loan Prospects to load the database table.

Internet Explorer loads the Instructor and PhoneNumber fi elds from the Students.mdb

database into the grid view object. Your Web page looks something like this:

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 521
The information is nicely formatted and appears useful. By default, you’ll fi nd that the

data in this table cannot be sorted, but you can change this option by selecting the

Enable Sorting check box in Common GridView Tasks. If your database contains many

rows (records) of information, you can select the Enable Paging check box in Common

GridView Tasks to display a list of page numbers at the bottom of the Web page (like

a list you might see in Microsoft Document Explorer or a search engine that displays

many pages of “hits” for your search).

 4. Click the Back and Forward buttons in Internet Explorer.

As you learned earlier, you can jump back and forth between Web pages in your Web

site, just as you would in any professional Web site.

 5. When you’re fi nished experimenting, close Internet Explorer to close the Web site.

You’ve added a table of custom database information without adding any program code!

One Step Further: Setting the Web Site Title in
Internet Explorer

Haven’t had enough yet? Here’s one last Web programming tip to enhance your Web site

and send you off on your own explorations.

You might have noticed while testing the Car Loan Calculator Web site that Internet Explorer

displayed “Untitled Page” in the title bar and window tab when displaying your Web site. In

other words, your screen looked like this:

You can customize what Internet Explorer and other browsers display in the title bar by setting

the Title property of the DOCUMENT object for your Web page. Give it a try now.

Set the Title property

 1. With the Default.aspx Web page open in Design view, click the DOCUMENT object in

the Object list box at the top of the Properties window.

522 Part IV Database and Web Programming

Each Web page in a Web site contains a DOCUMENT object that holds important

general settings for the Web page. However, the DOCUMENT object is not selected

by default in the Designer, so you might not have noticed it. One of the important

properties for the DOCUMENT object is Title, which sets the title of the current Web

page in the browser.

2. Set the Title property to “Car Loan Calculator”.

The change does not appear on the screen, but Visual Web Developer records it internally.

3. Click the Start Debugging button.

Visual Studio opens Internet Explorer and loads the Web site. Now a more useful title

bar appears, as shown in the following illustration:

Now that looks better.

4. Close Internet Explorer, and update the Title properties for the other Web pages in your

Web site.

5. When you’re fi nished experimenting with the Car Loan Calculator, save your changes,

and close Visual Studio.

Congratulations on completing the entire Microsoft Visual Basic 2008 Step by Step program-

ming course! Take a few moments to fl ip back through this book and see all that you have

learned. Now you’re ready for more sophisticated Visual Basic challenges and programming

techniques. Check out the resource list in the Appendix, “Where to Go For More Information,”

for a few ideas about continuing your learning. But take a break fi rst—you’ve earned it!

 Chapter 20 Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET 523
Chapter 20 Quick Reference

To Do this

Create a new ASP.NET

Web site

Click the New Web Site command on the File menu, click the ASP.

NET Web Site template, specify a folder location in the Location list

box, and then click OK.

Switch between Design view

and Source view in the Web

Page Designer

Click the Source or Design tabs in the Web Page Designer. For a

mixed view, click the Split tab.

Enter text on a Web page Click the Design tab, and then type the text you want to add.

Format text on a Web page On the page, select the text that you want to format, and then click a

button or control on the Formatting toolbar.

View the HTML code in your

Web page

Click the Source tab in the Web Page Designer.

Add controls to a Web page Display the Web page in Design view, open the Toolbox (which au-

tomatically contains Visual Web Developer controls), position the

insertion point where you want to place the control on the page, and

then double-click the control in the Toolbox.

Change the name of an

object on a Web page

Use the Properties window to change the object’s ID property to a

new name.

Write the default event

procedure for an object

on a Web page

Double-click the object to display the code-behind fi le, and write the

event procedure code for the object in the Code Editor.

Verify the format of the data

entered by the user into a

control on a Web page

Use one or more validator controls from the Validation tab of the

Toolbox to test the data entered in an input control.

Run and test a Web site in

Visual Studio

Click the Start Debugging button on the Standard toolbar. Visual

Studio builds the project and loads the Web site in Internet Explorer.

Create an HTML page for

a project

Click the Add New Item command on the Web site menu, and then

add the new HTML Page template to the project. Create and format

the HTML page by using the Web Page Designer.

Create a link to other Web

pages on your Web site

Add a HyperLink control to your Web page, and then set the con-

trol’s NavigateUrl property to the address of the linked Web page.

Display database records

on a Web page

Add a GridView control to a Web page in the Web Page Designer.

Establish a connection to the database and format the data by using

commands in the Common GridView Tasks list. (The Choose Data

Source command starts the Data Source Confi guration Wizard.)

Set the title displayed for

Web pages on the Internet

Explorer title bar

For each Web page, use the Properties window to set the

DOCUMENT object’s Title property.

To Do this

Appendix

Where to Go for More Information

This book has presented beginning, intermediate, and advanced Microsoft Visual Basic 2008

programming techniques with the aim of making you a confi dent software developer and

Windows programmer. Now that you’ve experimented with many of the tools and features

in Visual Basic 2008, you’re ready for more advanced topics and the full breadth of the

Microsoft Visual Studio 2008 development suite.

If you have your sights set on a career in Visual Basic programming, you might also want

to test your profi ciency by preparing for a certifi ed exam in Visual Basic 2008 development.

In this appendix, you’ll learn about additional resources for Visual Basic programming,

including helpful Web sites, a source for certifi cation information, and books that you

can use to expand your Visual Basic programming skills.

Visual Basic Web Sites

The Web is a boon to programmers and is defi nitely the fastest mechanism for gathering infor-

mation about Visual Basic 2008 and related technologies. In this section, I list several of the Web

sites that I use to learn about new products and services related to Visual Basic. As you use this

list, note that the Internet address and contents of each site change from time to time, so the

sites might not appear exactly as I’ve described them. Considering the constant ebb and fl ow of

the Internet, it’s also a good idea to search for “Visual Basic”, “Visual Studio 2008”, and “VB.NET”

occasionally to see what new information is available. (For the most specifi c hits, include the

quotes around each search item as shown.) You might also fi nd some useful information if you

search for the product’s early code names such as “Orcas” and “Visual Basic 9”.

msdn2.microsoft.com/en-us/vbasic/

The Microsoft Visual Basic Developer Center home page is the best overall site for documen-

tation, breaking news, conference information, and product support for Visual Basic 2008. (If

you’re not interested in the U.S. English language site, browse to msdn2.microsoft.com and

select Visual Basic 2008, paying special attention to any localized content that you see.) The

Developer Center gives you up-to-date information about the entire Visual Basic product line

and lets you know how new operating systems, applications, and programming tools affect

Visual Basic development. A newer feature that I like here are the blogs by Visual Basic team

members, and access to recent webcasts.
 525

526 Appendix
Tip Remember that you can also access MSDN resources quickly from the Visual Studio Start

Page within the Visual Studio IDE. The Start Page loads updated articles and news content each

time you start Visual Studio, so its contents are always changing.

www.devx.com

DevX is a commercial Web site devoted to numerous Windows development topics and

issues, including Visual Studio and Visual Basic programming. Discussion groups of profes-

sional Visual Basic programmers provide peer-to-peer interaction and feedback for many

development issues. In addition, DevX vendor partners offer books, controls, and third-party

software for sale. A standard feature for many years now has been a programmer’s poll that

gathers opinions about industry tools and news, and frank discussions about competing

programming tools such as Java and .NET.

www.microsoft.com/learning/books/

The Microsoft Learning Web site offers the newest books on Visual Studio programming

from Microsoft Press authors. Check here for new books about Microsoft Visual Basic,

Microsoft Visual C#, Microsoft Visual C++, and supporting database and Web programming

technologies. You can also download freebies and send mail to Microsoft Press.

www.microsoft.com/learning/training/

This is the Microsoft Learning Web site for software training and services, including testing,

certifi cation, and distance learning. Over the past several years, many Visual Basic programmers

have found that they can better demonstrate their development skills to potential employers if

they pass one or more certifi cation examinations and earn a Microsoft certifi ed credential, such

as the Microsoft Certifi ed Professional (MCP), the Microsoft Certifi ed Technology Specialist

(MCTS), Microsoft Certifi ed Professional Developer (MCPD), Microsoft Certifi ed Application

Developer (MCAD), and Microsoft Certifi ed Solution Developer (MCSD) certifi cations. Visit

the Web site to learn more about current certifi cation options.

www.microsoft.com/communities/

This site of technical communities for many Microsoft software products and technologies

offers opportunities to interact with Microsoft employees and your software development

peers. Through this Web site you can access blogs, newsgroups, webcasts, technical chats,

user groups, and other resources related to Visual Studio development. Visual Studio news-

group topics are currently listed in the Products and Technologies category.

 Where to Go for More Information 527
Books About Visual Basic and Visual Studio
Programming

Printed books about Visual Basic and Visual Studio programming provide in-depth sources

of information and self-paced training that Web sites can supplement but not replace. As

you seek to expand your Visual Basic and Visual Studio programming skills, I recommend

that you consult the following sources of printed information (listed here by category).

Note that this isn’t a complete bibliography of Visual Studio titles, but it is a list that’s rep-

resentative of the books available in English at the time of the initial release of Visual Studio

2008. I also list books related to database programming, Web programming, Visual Basic

for Applications (VBA) programming, and general books about software development and

computer science.

Visual Basic Programming

Q Microsoft Visual Basic 2008 Express Edition: Build a Program Now!, by Patrice Pelland

(Microsoft Press, ISBN 978-0-7356-2541-9).

Q Programming Microsoft Visual Basic 2005: The Language, by Francesco Balena (Microsoft

Press, ISBN 978-0-7356-2183-1). This book covers Visual Basic 2005 but is still very useful

because many of the language features remain the same between versions.

Q Practical Guidelines and Best Practices for Microsoft Visual Basic and Visual C# Developers,

by Francesco Balena and Giuseppe Dimauro (Microsoft Press, ISBN 978-0-7356-2172-5).

Q Programming Windows Services with Microsoft Visual Basic 2008, by Michael Gernaey

(Microsoft Press, ISBN 978-0-7356-2433-7).

Microsoft .NET Framework

Q Microsoft Windows Presentation Foundation: A Scenario-Based Approach, by Billy Hollis

(Microsoft Press, ISBN 978-0-7356-2418-4).

Q Microsoft Windows Communication Foundation Step by Step, by John Sharp (Microsoft

Press, ISBN 978-0-7356-2336-1).

Q Microsoft Windows Workfl ow Foundation Step by Step, by Kenn Scribner (Microsoft

Press, ISBN 978-0-7356-2335-4).

Q Debugging Microsoft .NET Framework 2.0 Applications, by John Robbins (Microsoft

Press, ISBN 978-0-7356-2202-9).

528 Appendix
Database Programming with ADO.NET

Q Microsoft ADO.NET 2.0 Step by Step, by Rebecca Riordan (Microsoft Press, ISBN

978-0-7356-2164-0).

Q Programming Microsoft ADO.NET 2.0 Core Reference, by David Sceppa (Microsoft Press,

ISBN 978-0-7356-2206-7).

Q Programming Microsoft ADO.NET 2.0 Applications: Advanced Topics, by Glenn Johnson

(Microsoft Press, ISBN 978-0-7356-2141-1).

Q Programming the Microsoft ADO.NET Entity Framework, by David Sceppa (Microsoft

Press, ISBN 978-0-7356-2529-7).

Books about ADO.NET 2.0 remain current for Visual Studio 2008.

Web Programming with ASP.NET

Q Microsoft Visual Web Developer 2005 Express Edition: Build a Web Page Now!, by Jim

Buyens (Microsoft Press, ISBN 978-0-7356-2212-8). Still useful, although there have

been some changes to Visual Web Developer in Visual Studio 2008.

Q Microsoft ASP.NET 3.5 Programming Step by Step, by George Shepherd (Microsoft Press,

ISBN 978-0-7356-2426-9). ASP.NET 3.5 is the version included with Visual Studio 2008.

Q Programming Microsoft ASP.NET 3.5, by Dino Esposito (Microsoft Press, ISBN

978-0-7356-2527-3).

Q Programming ASP.NET 2.0 Applications: Advanced Topics, by Dino Esposito (Microsoft

Press, ISBN 978-0-7356-2177-0). ASP.NET 2.0 was the version included with Visual

Studio 2005, but still useful.

Q Programming Microsoft LINQ, by Paolo Pialorsi and Marco Russo (Microsoft Press,

ISBN 978-0-7356-2400-9). This is a source of in-depth information about the new

LINQ technology included with Visual Studio 2008.

Visual Basic for Applications Programming

Q Microsoft Offi ce Excel 2003 Programming Inside Out, by Curtis Frye, Wayne S. Freeze,

and Felicia K. Buckingham (Microsoft Press, ISBN 0-7356-1985-9).

Q Programming Microsoft Offi ce Access 2003 (Core Reference), by Rick Dobson (Microsoft

Press, ISBN 0-7356-1942-5).

 Where to Go for More Information 529
These two books are still useful for writing VBA macros in Microsoft Offi ce applications,

but Microsoft is moving in the direction of a new paradigm for Offi ce 2007 program-

ming (Visual Studio Tools for Offi ce), which should become more popular as time goes

on. As of early 2008, however, there are few, if any, books available describing this

technology.

General Books about Programming and Computer Science

Q Code Complete, Second Edition, by Steve McConnell (Microsoft Press, ISBN 978-0-7356-

1967-8). I list this book fi rst because it is perhaps the single-most important book on

this list for self-taught programmers.

Q Code, by Charles Petzold (Microsoft Press, ISBN 978-0-7356-1131-3).

Q Writing Secure Code, Second Edition, by Michael Howard, David LeBlanc (Microsoft

Press, ISBN 978-0-7356-1722-3).

Q Software Project Survival Guide, by Steve McConnell (Microsoft Press, ISBN

978-1-57231-621-8).

Q Data Structures and Algorithms Using Visual Basic .NET, by Michael McMillan

(Cambridge University Press, ISBN 978-0-521-54765-9).

Q The Art of Computer Programming, Volumes 1-3, by Donald Knuth (Addison-Wesley

Professional, ISBN 978-0-201-48541-7). I was given the third-edition three-volume set

(published in 1997-1998) as a gift and it made my day! If you can afford only one, get

Volume 1.

Q Data Structures and Algorithms, by Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft

(Addison-Wesley, ISBN 978-0-201-00023-8).

It is especially important that self-taught programmers over time acquire a library of

general programming books that can help them with more theoretical (and non-language

dependent) topics such as fundamental algorithms, data structures, sorting, searching,

compression, random numbers, advanced mathematics, networking, compilers, and so on.

The books above are only the beginning, and many can be found in used book stores.

 531

Index

Symbols
& (string concatenation operator),

76, 188

* (multiplication operator), 146, 150

/ (division operator), 146, 150

+ (addition operator), 146, 150

- (subtraction operator), 146, 150

= (assignment or equal to

operator), 164, 336

>cmd command, using to switch to

Command Window, 225

< (less than operator), 164, 336

<= (less than or equal to operator),

164, 336

> (greater than operator), 164, 336

>= (greater than or equal to

operator), 164, 336

<> (not equal to operator), 164,

336

^ (exponential operator), 146, 150

_ (line continuation character),

77, 191

A
Abs(n) method, 155

access keys, adding, 101, 102

to menu commands, 100

to menu items, 121

Add Controls program

creating new Label and Button

controls, 363, 364

folder location, 364

Add New Item dialog box, 255

Add ToolStrip Button button, 109

addition operator (+), 146, 150

ADO.NET, 438

ADO.NET Entity Framework, 438

Advanced Math program, 150

AllowFullOpen property,

meaning, 115

Alphabetical button (Properties

window), 15

Always Show Solution check box,

7, 32

Anchor and Dock program

anchoring and docking objects at

run time, 365, 368

folder location, 367

anchoring objects

from edges of forms, 371

on forms at run time (Anchor

and Dock program example),

365, 368

And (logical operator), 170

AndAlso operator, 173

animating objects, 389

by using properties, 379

on forms (Sun icon example),

381, 383

AnyColor property, meaning, 115

applications, deploying, 64, 67. See

also console applications

arguments

ByRef vs. ByVal, 277, 278, 279

defined, 264

arithmetic (or mathematical)

operators, 146, 150

Array class, overview, 295

Array method, 296

arrays

assigning values to, 302

creating, 282, 302

dynamic, creating, 302. See also

dynamic arrays

fixed-size, 283. See also fixed-size

arrays

information included in declara-

tion statement, table, 282

overview, 281

processing elements in, 302

public, creating, 302

redimensioning, preserving data

in, 302

reordering contents of, 302

setting aside memory for, 284

working with, 285

ASCII codes

characters, sorting and, 335

converting to text characters.

See text characters

viewing table of in character

set, 335

working with, 336, 337

ASP.NET, 490

software requirements for, 494

Web sites, creating, 523

assemblies, 12, 64

assigning shortcut keys to menus

(Clock menu example), 119

assignment or equal to operator

(=), 164, 336

Atan(n) method, 155

Auto Hide command (Windows

menu), 21

auto hiding windows, 17, 21, 35

Autos window

described, 220

overview, 221

using, 229

AutoSize property (Layout

category), 48

B
base classes

creating, 397, 398, 409

inheriting, 406, 409

inheriting in new classes, 410

Basic Math program, 147-49

binding controls to datasets, 455

masked text box controls to

dataset objects, 455, 458

second DataGridView control to

tables, 481, 482

BindingNavigator control, linking

to data grid view objects, 482

Birthday program

building, 75, 77

folder location, 78

running, 78, 79

books, recommended for

Visual Basic, Visual Studio

programming, 527

Boolean data type, 139

Boolean properties, 53

BorderStyle property (Alignment

category), 48

bound objects, creating with

capability to display dataset

data on forms, 464

break mode. See debugging mode

breakpoints

removing, 229

removing (Debug Test program

example), 228

setting, 217, 221, 222, 229

building Web sites, 505

z02i625372.indd 531 12/14/2007 4:34:20 PM

Button control (Toolbox), 72

creating new (Add Controls

program example), 363, 364

using with Web pages, 501

button objects

adding to forms, 41, 42

names of, 42

Button1_Click procedure, overview,

58, 60

buttons. See also specific buttons

creating, 95

ellipsis, 15

forms, adding more than one

to, 43

overview, 72

ByRef keyword

passing arguments with, 279

when to use, 278

Byte data type, 139

ByVal keyword

passing arguments with, 279

when to use, 278

C
calculations

performing with functions,

266, 268

visual feedback during, 302

Car Loan Calculator project, 514,

519, 522

carriage return

characters, 188

formatting text strings with, 302

case sensitivity in code, 197

Catch code blocks, exiting, 251

Categorized button (Property

window), 15

cells, changing colors of, 479

Celsius Conversion program

folder location, 199

using Do loops, 197, 199

Char data type, 139

characters

ASCII, 335

carriage return, 188

extracting from middle of

strings, 344

check boxes

creating, 95

defined, 87

examing code (Input Controls

program example), 88, 90

CheckBox control (Toolbox),

experimenting with, 82, 84

CheckBox program

creating, 82, 84

folder location, 84

property settings table, 83

running, 84

class libraries. See namespaces

class variables, declaring, 401

classes. See also specific classes

adding new to projects, 399

base, creating, 397, 398, 409

base, inheriting, 406, 409

creating (Person Class program

example), 399, 403

declaring object variables to

use, 410

defined, 81

FileStream, opening text files

with, 434

inheriting base classes in, 410

methods, creating in, 410

objects, basing on, 404, 405

overview, 399

properties, creating in, 409

client controls. See HTML controls

closing

files, 343

programs, 13

Visual Studio, 34

windows, 17

>cmd command, using to switch to

Command Window, 225

code

case sensitivity in, 197

comments in, 95

for displaying Print dialog box

and print files, 423, 425

executing one line of, 229

opening hidden forms with, 370

Try or Catch blocks, exiting, 251

viewing HTML in Web pages, 523

writing, 56-57, 67

Code Editor, 54-55

character length, 77

examining expressions,

properties, variables in, 229

executing one line, of code

in, 229

identifying mistakes in, 56

opening, 67

program statements in, 54

code snippets

inserting, 207, 210, 212

reorganizing, 211-12

Code Snippets Manager

command, 211

Code Snippets Manager dialog

box, 211

collections. See also Controls

collection

creating, 310

declaring new, 310

overview, 303

referencing objects in, 304

tracking Internet addresses with,

311, 313

Color button, writing event

procedures, 114

Color dialog box

customizing color settings, 115

displaying, 121

color in Visual Basic code,

identifying elements with, 56

color of cells, changing, 479

ColorDialog control

properties of, 115

purpose, 111

columns in data grid view objects

changing width, 487

hiding headers, 487

removing, 474, 487

combo boxes, 87

Command window

overview, 227

running commands in IDE

from, 229

running File.SaveAll, 227

switching to Immediate window,

225, 229

commands. See also specific

commands

access keys, adding to

menus, 100

Auto Hide (Windows menu), 21

>cmd., 225

running in IDE from Command

window, 229

commas, displaying with Format

function, 140

comments

defined, 89

using in code, 95

comparison (or relational)

operators, 164, 336

compiler errors. See syntax errors

compiler settings, checking, 32-33

compiling programs, 35

complex For...Next loops,

creating, 190

component tray, displaying in the

IDE, 99

components, switching between, 8

532 Button control (Toolbox)

z02i625372.indd 532 12/14/2007 4:34:21 PM

conditional expressions, 164

connecting

to database tables, 487

to databases, 464, 466, 468

connection string, 441

connections, 440

console applications

creating for non-display of user

interfaces, 371

writing without displaying user

interfaces. See user interfaces

constants, 144

continuing lines with _ character,

77, 191

controls. See also specific controls

adding to forms at run time,

362, 371

adding to programs, 111

adding to Web pages, 523

binding to datasets, 455

defined, 80

masked text box, binding to

dataset objects, 455, 458

moving with For Each...Next

loops (Controls Collection

program example), 307

organization of, 41

organizing on forms, 365

overview, 69

server, adding to Web pages,

500, 502

server vs. client, 492

verifying data format on Web

pages, 523

writing event procedures for Web

pages, 503, 504

Controls collection, 303. See also

collections

object experimentation

procedure (Controls Collection

program example), 305, 307

using Name property for special

treatment of objects in, 309

Controls Collection program

moving controls with For Each...

Next loops, 307

Name property for special

treatment of objects in, 309

using For Each...Next loops

to change Text properties,

305, 307

coordinate system, 374

Cos(n) method, 155

counters

global(For Loop Icons program

example), 194-95

opening files with, 193

crashes, program, 232

customizing

Help, 25, 35

IDE settings, 35

inherited forms, 409

D
database objects

creating by using Data Sources

window, 451, 455

defined, 446

databases, 437. See also datasets;

relational databases

establishing connection to, 464,

466, 468

filtering and sorting information

stored in datasets, 464

formatting data on forms, 464

Students.mdb sample, 440

tables, connecting to, 487

updating, 484, 486, 488

Web display (Car Loan Calculator

example), 514, 523

data grid view objects. See also

DataGridView control; grids;

objects

adding second to forms, 488

changing column width, 487

creating, 469, 471

creating color scheme for

rows, 487

creating to display database

tables, 487

hiding column headers in, 487

preventing editing or changing

of data, 488

previewing data bound to,

471, 487

removing columns from, 474, 487

setting properties, 478, 480

sorting data in, 476

DataBindings property,

overview, 457

DataGrid control, 465. See also

data grid view objects

DataGridView control

DataGrid control vs., 465

overview, 465, 466

scrolling, resizing, and sorting

with, 475, 477

DataGridView Tasks list, 472

Dataset Designer, 448

dataset objects, binding to masked

text box controls, 455, 458

datasets, 449

binding controls to, 455

creating, 464

defined, 440

displaying information on

forms, 450

information, displaying during

debugging sessions, 229

as representations, 446

typed, 448

visualizers, 223

Data Source Configuration Wizard,

establishing connection

with (Students.mdb sample

database), 440, 449

Data Sources window

creating database objects on

forms with, 451, 455

overview, 449

data types, 138

Data Types program, 140

Date data type, 139

date time picker object, 76, 79

DateString property, descrip-

tion, 107

DateTimePicker control,

overview, 75

DayOfYear property, 77

debug build, executable file type in

Visual Studio, 62

Debug menu, Start Debugging

command, 60

Debug Test program, 217, 221

Debug toolbar, displaying, 229

debugging, 217, 221

folder location, 222

opening text visualizers in

debugger, 224

removing breakpoints, 228

using Immediate window to

modify variables, 225

debugging mode

starting, 219

using, 216

visualizer appearance, 225

debugging sessions

displaying HTML, XML, dataset

information during, 229

stopping, 229

Decimal data type, 139

decision structures. See If…Then

decision structures; Select Case

decision structures

declaration statements, array infor-

mation included in, table, 282

declared variables, hiding in

classes, 409

declared variables, hiding in classes 533

z02i625372.indd 533 12/14/2007 4:34:21 PM

declaring variables

object, to use classes, 410

public, in modules (Lucky Seven

program example), 258, 262

requiring, 33

while assigning values, 211

defensive programming

techniques, 248

delayed save, 32

deleting

breakpoints, 229

menu items, 102

objects, 43, 67

toolbar buttons, 110

deploying

applications, 67

Visual Basic applications, 64

descriptive label properties,

setting, 49, 50

Design mode, 42

adding text in, 498

grid, displaying, 42

Source mode, switching

between, 523

Designer

Design mode vs. Source mode,

switching between, 523

displaying, 10

scroll bars in, 40

Source tab, 499

switching to, 11

Desktop Bounds program

folder location, 360

setting DesktopBounds property,

359, 361

DesktopBounds property

positioning forms with, 357

setting (Desktop Bounds

program example), 359, 361

detecting mouse events, 181

development environment.

See IDE

dialog boxes

Add New Item, 255

adding nonstandard, 118

adding Print Preview and Page

Setup, 427, 430

Code Snippets Manager. See Code

Snippets Manager dialog box

displaying after creation, 112

displaying printing in

programs, 434

Edit Columns, 474

Inheritance Picker, 394

Input Mask, 167, 456

New Project, 39

Open. See Open dialog box

Open Project, 5

Options, 32

Page Setup, 427, 430

Project Location. See Project

Location dialog box

Select Resource, 51

standard, using in programs, 121

Tools/Options. See Tools/Options

dialog box

DialogResult property, using in the

calling form, 356

Digital Clock program

folder location, 203

settings for, 202

Timer control in, 201, 203

Dim statement, 126

Disc Drive Error program, 234

disc drive errors

experimenting with (Disc Drive

Error program example),

234, 237

writing handlers (Disc Drive Error

program example), 237, 239

Disc Drive Handler program

folder location, 246

tracking run-time errors with

variables, 245, 247

Discard button, closing without

saving, 258

disconnected data sources, 446

disks, creating new text files

on, 328

division operator (/), 146, 150

Do loops

avoiding endless, 211

converting temperatures by

using (Celsius Conversion

program example), 197, 199

described, 196

Until keyword in, 200

writing, 196

docking

objects on forms at run time

(Anchor and Dock program

example), 365, 368

objects to edges of forms, 371

windows, 9, 20, 35

docking guides, 18, 20

document types, text file, 319

documents

multipage, printing, 434

tabbed. See tabbed documents

double-clicking

to create standard-sized

objects, 187

names of properties, 53

Double data type, 138

Draw Shapes program

creating lines, rectangles, and

ellipse shapes, 376, 378

folder location, 377

DrawLine method, example, 376

drop-down list boxes, creating, 95

Dynamic Array program example,

recording temperatures with

dynamic arrays, 291, 293

dynamic arrays, 28. See also arrays

creating, 290, 302

recording temperatures with

(Dynamic Array program

example), 291, 293

E
Edit Columns dialog box, 474

editing

event procedures (Open button

example), 113, 114

menu even procedures, 104, 106

ellipsis buttons, 15

Else statement, 165

End button, 54-55

EOF function, checking for end of

files. See files

equal to or assignment operator

(=), 164, 336

Err object, overview, 241

Error Handler, testing, 238

error handlers. See also errors

nested Try...Catch code blocks

in, 248

overview, 232

specifying retry periods, 245

structured, defined, 215

structured, function of, 231

Try...Catch, writing nested, 251

when to use, 232

errors. See also error handlers

creating in programs, 251

generating for testing

purposes, 245

indicators for, 215

logic, 214

path, disc drive (Disc Drive Error

program example), 234, 237

potential problems addressed by

handlers, table, 233

run-time, 214

run-time, detecting and

processing, 250

run-time, table of, 241

syntax, 214

testing for specific in event

handlers, 251

534 declaring variables

z02i625372.indd 534 12/14/2007 4:34:21 PM

event-driven programming, 162

event handlers

calling printing, 434

creating printing, 434

testing for specific conditions

in, 251

event procedures

defined, 81

described, 254

displaying additional forms by

using, 353

editing (Open button example),

113, 114

menu, editing, 104, 106

writing (Color button

example), 114

writing, for objects on Web

pages, 523

writing, for Web page controls,

503, 504

events, mouse, 181

exception handlers, structured. See

error handlers

exceptions, 231

executable file types (.exe)

creating, 63, 64, 67

in Visual Studio. See debug build

release build

executing

one line of code, 229

statements specific number of

times, 211

statements until conditions

met, 211

Exit command (File menu), 34

Exit For statement, 195

Exit Try statement, 249

exiting Visual Studio, 34, 35

expanding objects at run

time, 389

Explorer Form template, 349

Exp(n) method, 155

exponential operator (̂), 146, 150

expressions

adding to Watch window, 229

examining in Code Editor, 229

extracting characters from middle

of strings, 344

F
F11, alternative to Step Into

button, 223

Favorites list in Help, 27-28

feedback, visual during

calculations, 302

fields, 439

File menu, Save All command, 57

FileOpen function, syntax, 320

files

checking for end of. See EOF

function

closing, 343

forms, saving, 67

saving text to, 344

File.SaveAll command, 227

FileStream class, opening text files

with, 434

Filter list, adding items to, 113

filtering

data, by writing SQL statements,

460, 463

database information stored in

datasets, 464

Finally clause

displaying message boxes

with, 240

with Try...Catch code blocks, 239

Fixed Array program

folder location, 289

using fixed-size arrays, 286, 289

fixed-size arrays. See also arrays

declaring, syntax items, 283

recording temperatures with, 286

using (Fixed Array program

example), 286, 289

floating windows, 19, 21

FolderBrowserDialog control,

purpose, 111

folders, Projects. See Projects

folder

Font button (Properties

window), 15

Font property (Alignment

category), 48

FontDialog control, purpose, 111

formulas, 125

For Each...Next loops

changing Text properties with

(Controls Collection program

example), 305, 307

moving controls with (Controls

Collection program

example), 307

Name property in, 308

overview, 304

For Loop Icons program

folder location, 194

using global counters, 194, 195

For Loop program

displaying information by using

For...Next loop, 187, 189

folder location, 188

For...Next loops

complex, 190

described, 186

displaying information by using

(For Loop program example),

187, 189

exiting, 211

Fixed Array program

example, 288

opening files by using, 191, 193

syntax, 186

writing, 186

ForeColor property (Properties

window), 50

form variables, public vs., 262

Form_Load procedure, 65

Format property, date time picker

object and, 79

formatting database data on

forms, 464

forms

adding (Lucky Seven Help

program example), 349, 353

adding second grid, navigation

control, 481, 484

adding to programs, 347, 370

anchoring, docking objects on

at run time (Anchor and Dock

program example), 365, 368

anchoring objects from edges

of, 371

background colors and

images, 389

buttons, adding multiple, 43

changing transparency of, 387

controls, adding at run time,

362, 371

creating bound objects capable

of displaying dataset data

on, 464

creating lines, shapes on, 389

creating new with code, setting

properties, 371

customizing inherited, 409

displaying additional using event

procedures, 353

displaying dataset information

on, 450

files, saving, 67

formatting database information

on, 464

inherited, customizing, 395, 397

inheriting interfaces,

functionalities, 409

minimizing, maximizing, and

restoring, 361

forms 535

z02i625372.indd 535 12/14/2007 4:34:21 PM

forms (continued)

minimizing, maximizing, and

restoring at run time, 371

objects. See objects

opening, 11

organizing controls on, 365

positioning on Windows desktop,

356, 357

properties. See properties

property settings. See property

settings

resizing, 40

specifying startup, 368, 370

startup, 371

switching between, opening

hidden, 370

transparency, changing, 389

uses for, 348

Windows, adding navigation

controls to, 464

Framework. See .NET Framework

FullOpen property, meaning, 115

Function procedures

calling, 266, 279

defined, 262

overview, 264

functions. See also specific

functions

InputBox, 133

LBound, UBound, 286

performing calculations with (win

rate example), 266, 268

public, creating, 279

syntax items, using, 264, 265

G
GDI+ graphics services,

changing form transparency

(Transparent Form program

example), 387

general-purpose procedures, 263

global counters, using (For Loop

Icons program example),

194, 195

global variables. See public

variables

Graphics.DrawString method, using

to print text, 417, 419

graphics, printing from printing

event handlers, 434

greater than operator (>), 164, 336

greater than or equal to operator

(>=), 164, 336

grids. See also data grid view objects

adding second, 481, 482

aligning objects to, 42

cell color, changing, 479

displaying for design mode, 42

gridline color, changing, 488

hidden by default, 42

reversing direction of sort, 487

snapline, 42

sorting records in, 487

GridView control, adding to Web

pages (Car Loan Calculator

example), 515

group boxes, creating, 87

H
Height property, 385, 386

Hello World program

creating, 70, 73

folder location, 73

overview, 69

Help

commands in, 29

customizing, 25, 35

Favorites list, 27-28

local files, 24

online, 24

opening system, 25

renaming saved searches, 28

searching, 27

sorting articles in, 27

starting system, 35

hidden forms, opening by using

program code, 370

hiding

declared variables in classes, 409

shortcut key combinations, 119

windows, 21

Hour (date) function, descrip-

tion, 107

HTML

adding pages to Web sites, 508

controls described, 492

controls overview, 493

creating pages for projects, 523

creating Web pages in, 509, 511

displaying during debugging

sessions, 229

tags, 499

viewing for Web pages, 499, 523

visualizers, 223

HyperLink control

function of, 509

using, 511, 513

hyperlinks, adding to Web

pages (Car Loan Calculator

example), 519

I
icons, My Projects, 6

IDE

component tray, 99

customizing settings, 35

resetting options, 30

running commands from

Command Window in, 229

running Visual Basic from, 60

setting for Visual Basic

development, 30

toolbars available in, 8

If...Then decision structures, 84, 88,

113, 165, 215

images as form backgrounds, 389

immed command, using to switch

to Immediate window, 225

Immediate window

opening, 229

modifying variables with (Debug

Test program example), 225

switching to Command window,

225, 229

implicit declaration of variables,

126, 127

Import and Export Settings

command (Tools menu), 30

Inheritance Picker dialog box, 394

inherited forms, customizing, 395,

397, 409

inheriting, 81, 392

base classes in new classes, 410

dialog boxes, by using

Inheritance Picker, 392, 395

forms’ interfaces and

functionalities, 409

Inherits keyword, creating base

class with, 406, 409

Inherits statement, 406

Input Controls program

examining check box and list box

code in, 88, 90

folder location, 86

form contents, 86

running, 85, 88

Input Mask dialog box, 167, 456

InputBox function, 133

Insert Snippet command, 207–208

Insert Standard Items button, 109

inserting code snippets, 207,

210-12

installing practice files, xxiv, xxv

Integer data type, 138

interface elements. See objects

Internet addresses, tracking by

using new collections, 311, 313

536 Framework

z02i625372.indd 536 12/14/2007 4:34:22 PM

Internet Explorer

modifying Disable Script

Debugging setting, 505

setting Web site title in title

bar, 521

title bar, displaying Web page

titles, 523

intranet security settings, 506

K
keywords

defined, 80

methods and, processing strings

with, 333, 334

L
Label control

creating new (Add Controls

program example), 363–64

using with Web pages, 501

labels

adding, 43, 44

defined, 43

descriptive properties, setting,

49, 50

number properties, setting,

48, 49

objects, adding to forms, 103

Language-Integrated Query (LINQ),

438, 459

LBound function, 286

Left property, 379

less than operator (<), 164, 336

less than or equal to operator (<=),

164, 336

line continuation character (_),

77, 191

LineInput function

displaying text files with, 343

with text files. See text files

lines, creating on forms, 389

linking to other pages of Web

sites, 523

LinkLabel control (Toolbox), using

to create Web links, 91, 94

list boxes

adding items to, 95

creating, 95

defined, 87

drop-down, creating, 95

examining code (Input Controls

program example), 88, 90

local Help files, 24

Location property

described, 379

overview, 380

Location text box, 40

logic errors

defined, 214

finding and correcting, 217, 221

identifying, 215

logical operators, 170

Long data type, 138

looping, 212

loops

avoiding endless, 197

Do. See Do loops

For...Next. See For...Next loops

lower and upper bounds,

specifying in public arrays, 302

Lucky Seven Help program

adding additional forms, 349, 353

displaying additional forms, 353

running, 354

Lucky Seven program, 37

declaring public variables in

modules, 258, 262

programming process

summary, 38

properties in tables, reading, 50

reloading, 65, 66

running, 60, 61

user interface contents, 38

M
magnifying glass icons. See

visualizers

MaskedTextBox control, 455

mathematical (or arithmetic)

operators, 146, 150

maximizing forms at run time, 371

menu bar, 8

menu items. See also menus

adding access keys to, 121

assigning shortcut keys to, 121

changing order of, 102, 121

creating, 121

deleting, 102

guidelines for, 100

Menu program

menus and dialog boxes in,

115, 118

folder location, 106

running, 106

menus. See also menu items

adding access keys to

commands, 100

creating, 98, 100

event procedures, editing,

104, 106

Other Windows. See Other

Windows menu

shortcut keys, assigning (Clock

menu example), 119

Visual Studio File. See Visual

Studio File menu

MenuStrip control (Toolbox)

overview, 98

shortcut keys, assigning, 118

methods

Abs(n), 155

Array. See Array method

Atan(n), 155

Cos(n), 155

creating, 402

creating in classes, 410

defined, 77, 82

Exp(n), 155

Graphics.DrawString, 417, 419

keywords and, processing strings

with, 333, 334

Print, 414

Process.Start. See Process.Start

method

SetBounds. See SetBounds

method

ShowDialog, 114

Sign(n), 155

Sin(n), 155

Sqrt(n), 155

Tan(n), 155

ToString. See ToString method

Microsoft Document Explorer, 25

Microsoft Visual Studio 2005

Documentation, 24

Microsoft Visual Studio Integrated

Development Environment.

See IDE

minimizing forms at run time, 371

Minute (date) function, descrip-

tion, 107

mistakes, identifying by jagged

lines, 56

Mod (remainder division operator),

146, 158

modules

adding, 259, 262

creating, 279

existing, adding to projects, 279

overview, 254

removing from programs, 279

removing from projects, 257

renaming, 254

saving, 254, 257

saving with new name, 279

modules 537

z02i625372.indd 537 12/14/2007 4:34:22 PM

Month (date) function, descrip-

tion, 107

mouse events, detecting, 181

moving. See also animating

objects, 42, 67

objects on forms, 379

toolbar buttons, 110

windows, 17, 19, 35

Moving Icon program

folder location, 383

running, 383, 384

MsgBox function, 76

multiline text boxes, size limit, 189

Multiple Documents view,

switching to and from, 11

multiplication operator (*), 146, 150

My object

displaying text files with, 344

overview, 326, 328

My Projects icon, 6

MyLucky7 project folder loca-

tion, 62

N
Name property, using in For Each...

Next loops, 308

namespaces, 81

navigation controls, adding to

Windows forms, 464

navigation toolbar, overview, 453

.NET Code Wise Community, 24

.NET Framework, 125

Array class, 295

identifying version of, 496

My namespace, 326

specifying as prerequisite, 65

specifying version of, 39

StreamReader class, 325

String class, 333

System.Collections name-

space, 303

System.Drawing namespace, 374

System.IO namespace, 248

New Connection button, 442

New Project dialog box, 39-40

New Web Site command, 495

nonstandard dialog boxes,

adding, 118

not equal to operator (<>),

164, 336

Not (logical operator), 170

Now property, description, 107

number label properties, setting,

48, 49

O
Object data type, 139

object libraries. See namespaces

object-oriented programming

(OOP), 391

object variables

declaring to use classes, 410

setting properties for, 410

objects

aligning to grid, 42

anchoring and docking at run

time, 365, 368

anchoring from edges of

forms, 371

animating, 389

bound, creating with capability

to display dataset data on

forms, 464

creating based on new classes,

404, 405

creating standard-sized by

double-clicking, 187

data grid view. See data grid view

objects

date time picker, displaying date

with, 76

defined, 80

deleting, 43, 67

docking to edges of forms, 371

exanding, shrinking at run

time, 389

labels. See labels

moving, 67

moving on forms, 389

multiline text box, size limits

of, 189

property settings. See property

settings

qualities, 14

referencing in collections, 304

renaming on Web pages, 523

resizing, 42, 67

selecting, 14

specifying startup, 368, 370

Timer. See Timer object

writing event procedures for on

Web pages, 523

Office applications, using Visual

Basic for Applications

collections in, 315

online Help, 24

Opacity property, 387, 389

Open button, editing event

procedures, 113, 114

Open dialog box

displaying, 121, 344

file types displayed by picture

box objects, 113

Open Project dialog box, 5

OpenFileDialog control

managing print requests with,

421, 423

purpose, 111

opening

Code Editor, 67

files by using For...Next loops,

191, 193

forms, 11

Help system, 25

Immediate window, 229

projects, 5, 35

projects, troubleshooting, 7

Projects folder, 6

Watch windows, 222, 223

Web browser, in Visual Studio, 23

operators

arithmetic (or mathematical),

146, 150

comparison (or relational),

164, 336

logical, 170

order of precedence, 158

shortcut, 150

Option Explicit setting, 33

Option Strict setting, 33

Options command (Microsoft

Document Explorer menu

bar), 25

Options dialog box, displaying, 32

Or (logical operator), 170

OrElse operator, 173

order of precedence, 158

Other Windows menu, 9

Other Windows submenu, 23

P
Page Setup, testing, 431, 433

Page Setup dialog box, adding

with PageSetupDialog control,

427, 430

PageSetupDialog control

adding, 428, 430

purpose, 111

Paint event procedure, creating

shapes with (Draw Shapes

program example), 376, 378

parentheses, including in Sub

procedures, 270

538 Month (date) function, description

z02i625372.indd 538 12/14/2007 4:34:22 PM

passwords, setting time limit for

(Timed Password program), 204

Person Class program

creating classes, 399

folder location, 407

picture box objects

adding to programs, 112

file types displayed by, 113

picture boxes

defined, 45

properties, setting, 51, 53

pictures, adding, 45

pixels. coordinate system, 357

Pmt function, overview, 503

positioning startup forms on

Windows desktop, 371

practice files

installing, xxiv, xxv

loading items from when using

different folder structure, 86

system requirements for

completing, xxiii

uninstalling, xxix

using, xxv, xxix

previewing data bound to data grid

view objects, 471, 487

Print Dialogs program

folder location, 431

testing Page Setup and Print

Preview features, 431, 433

Print File program, 425

Print Graphics program

folder location, 415

running, 415, 416

Print method, 414

Print Preview, testing, 431, 433

Print Preview dialog box, adding

with PrintPreviewDialog

control, 427

Print Text program

folder location, 419

running, 419

PrintDialog control

managing print requests with,

421, 423

purpose, 111

PrintDocument class

incorporating in projects, 434

using, 411

PrintDocument control, using,

412, 415

PrintDocument object,

creating, 434

printing

adding code to display Print

dialog box, 423, 425

creating event handler, 434

displaying dialog boxes, 434

event handlers, calling, 434

graphics from printing event

handlers, 434

managing requests with

controls, 421

multipage documents, 434

multipage text files, 420

preparing projects for, 434

text from printing event

handlers, 434

text from text box objects,

416, 419

text using Graphics.DrawString

method, 417, 419

PrintPreviewDialog control

adding, 428, 430

purpose, 111

procedures

Button1_Click. See Button1_Click

procedure

creating, 262

defined, 54

event, defined, 81

Form_Load. See Form_Load

procedure

Function, calling, 266, 279

Function, defined, 262

general-purpose, 263

public Sub, creating, 279

sharing, 254

and Sub procedures. See Sub

procedures

Process.Start method, feature of, 93

processing elements in arrays, 302

program code

comments in, 95

executing one line of, 229

identifying elements by color, 56

opening hidden forms with, 370

writing, 67

program crashes, 232

program statements

and procedures, 54

defined, 53, 55, 80

executing, 211

sequencing numbers by

using, 211

programming

defensive techniques, 248

event-driven, 162

programming environment

settings, 22

programming languages available

in Visual Studio, 39

programming tools. See menu bar;

Standard toolbar

programs

Add Controls. See Add Controls

program

adding controls to, 111

adding new forms to, 370

adding toolbars to, 121

Advanced Math program, 150

Anchor and Dock. See Anchor

and Dock program

Basic Math program. 147

Birthday. See Birthday program

Celsius Conversion. See Celsius

Conversion program

CheckBox. See CheckBox

program

closing, 13

compiling, 35

Controls Collection. See Controls

Collection program

Data Types, 140

Debug Test. See Debug Test

program

Desktop Bounds. See Desktop

Bounds program

Digital Clock. See Digital Clock

program

Disc Drive Error. See Disc Drive

Error program

Disc Drive Handler. See Disc

Drive Handler program

Draw Shapes. See Draw Shapes

program

Dynamic Array. See Dynamic

Array program

errors in, creating, 251

Fixed Array. See Fixed Array

program

For Loop. See For Loop program

Hello World. See Hello World

program

Input Controls. See Input

Controls program

Lucky Seven. See Lucky Seven

program

Menu. See Menu program

Moving Icon. See Moving Icon

program

Person Class. See Person Class

program

Print Dialogs. See Print Dialogs

program

Print File. See Print File program

Print Graphics. See Print Graphics

program

Print Text. See Print Text

program,

properties. See properties

programs 539

z02i625372.indd 539 12/14/2007 4:34:22 PM

programs (continued)

Quick Note. See Quick Note

program

removing modules from, 279

running (TrackWins program

example), 269

saving, 67

Sort Text. See Sort Text program

Text Box Sub. See Text Box Sub

program

Text Browser. See Text Browser

program

Timed Password. See Timed

Password program

TrackWin. See TrackWin program

Transparent Form. See

Transparent Form program

under development. See projects

solutions

using standard dialog boxes

in, 121

Visual Basic, creating with no

user interface, 371

WebLink. See WebLink program

progress bar, 296-97, 302

Project link, 38

Project Location dialog box, 74

projects. See also solutions

Car Loan Calculator. See Car

Loan Calculator project

creating, 38, 40

files, information in, 7

opening, 5, 35

opening, troubleshooting, 7

reloading, 67

Projects folder, opening, 6

properties. See also specific

properties

adding to Watch window, 229

animating objects by using, 379

Boolean, 53

changing at run time, 95

changing settings for a

group, 48

creating, 401

creating in classes, 409

defined, 13, 81

descriptive label, setting, 49, 50

names of, double-clicking, 53

number label, setting, 48, 49

picture box, setting, 51, 53

reading in tables, 50

setting (button example), 47

setting at design time, 13

setting for data grid view objects,

478, 480

setting for forms, 371

setting for object variables, 410

Visual Studio, displaying list of

text box object, 73

Properties window

components of, 14

customizing color settings

with, 115

displaying, 14

Object list, 14

organization of categories in, 46

Properties Window button

(Standard toolbar), 14

property settings, 14

Property window

alphabetizing categories in, 15

categories in, 14

organizing into logical

categories, 15

public arrays, 302. See also arrays

public functions, creating, 279

public Sub procedures, creating,

279. See also Sub procedures

public variables. See also variables

creating, 279

declaring in modules (Lucky

Seven program example),

258, 262

Q
Query Builder, creating SQL

statements with, 460, 463

Quick Note program

examing code in, 331, 332

folder location, 328

running, 328, 331

R
radio buttons

creating, 95

defined, 87

Randomize statement, using to

reload programs (Lucky Seven

example), 65, 66

Recent Projects pane

records

database, displaying on Web

pages, 523

defined, 439

sorting in grids, 487

redimensioning arrays, 302

ReDim Preserve statement,

preserving array content by

using, 293, 294

ReDim statement, dimensioning

with variables, 290

release build

creating, 63, 64

executable file type in Visual

Studio, 62

relational (or comparison)

operators, 164, 336

relational databases, 439

reloading projects, 67

removing

breakpoints, 229

breakpoints (Debug Test program

example), 228

columns from data grid view

objects, 487

renaming saved Help searches, 28

reordering arrays, contents of, 302

resetting options, in IDE, 30

resizing

forms, 40

objects, 42, 67

windows, 35

restoring

forms at run time, 371

windows, 18

Return statement, overview, 265

RichTextBox control, managing

print requests with, 421, 423

RichTextBox control (Toolbox),

spacing and formatting

options of, 189

RichTextBox object, loading text

files into, 434

rows, 439, 487. See also records

run-time errors

defensive programming

techniques, 248

defined, 214

detecting, processing, 250

solving, 215

table of, 241

testing for multiple conditions,

243, 244

variables to track (Disc Drive

Handler program), 245, 247

running

programs, 12

Visual Basic from IDE, 60

WebLink program, 94

Windows applications with

Windows Explorer, 64

S
Save All button (Standard

toolbar), 74

Save All command (File menu), 57

Save As dialog box, displaying, 344

540 progress bar

z02i625372.indd 540 12/14/2007 4:34:23 PM

Save Data button, function of, 484

Save New Projects When Created

check box, 32

Save Search button (Document

Explorer toolbar), 27

SaveFileDialog control, purpose, 111

saving

delayed, 32

form files, 67

programming environment

settings, 22

programs, 67

SByte data type, 139

scroll bars in the Designer, 40

scrolling faster, 405

searching Help, 27

Second (date) function, 107

Select Case decision structures, 88,

143, 175, 181

Select Resource dialog box, 51

selecting objects, 14

server controls

adding to Web pages, 500, 502

described, 492

overview, 492

SetBounds method, 379

setting breakpoints, 229

shapes

creating by using the Paint event

procedure (Draw Shapes

program example), 376, 378

creating on forms, 389

sharing variables, procedures, 254

Short data type, 138

shortcut arrow, 52

shortcut icons, creating, 64

shortcut keys

assigning to menu items, 121

assigning to menus (Clock menu

example), 119

defined, 118

hiding combinations, 119

ShortcutKeys property, 118

ShowDialog method, 114

ShowHelp property, meaning, 115

shrinking objects at run time, 389

Sign(n) method, 155

Sin(n) method, 155

Single data type, 138

SizeMode property (Behavior

category), 51

sizing startup forms on desktop

using code, 371

snapline grids, 42

snippets. See code snippets

SolidColorOnly property,

meaning, 115

Solution Explorer

displaying, 10

renaming, 350

Solution Name text box, 40

solutions. See also projects

files, information in, 7

opening when only one

project, 86

showing always, 7

Sort Array button, 298

Sort Text program

examing code in, 340, 343

folder location, 338

running, 338

sorting

data in data grid view

objects, 476

database information stored in

datasets, 464

Help articles, 27

records in grids, 487

reversing direction of, 487

strings, 332

strings in text boxes, 337, 338

text, 335

Source mode, Design mode,

switching between, 523

Spin button (example), writing code

for, 56, 57

SQL statements

creating with Query Builder, 460,

463

overview, 459

Sqrt(n) method, 155

Standard toolbar

defined, 8

Start Debugging command, 60

Start Debugging command (Debug

menu, Standard toolbar), 60

Start Page

displaying, 11

opening projects from, 5

Recent Projects pane. See Recent

Projects pane

starting Visual Studio, 4, 35

StartPosition property, positioning

forms with, 357, 359

statements

executing, 211

Exit For. See Exit For statement

Randomize. See Randomize

statement

sequencing numbers by

using, 211

Step Into button, 219, 223

Stop Debugging (Debug toolbar),

closing program with, 74

StreamReader class

displaying text files with, 343

overview, 325

string concatenation operator

(&), 76

function of, 188

String data type, 139

strings

extracting characters from

middle, 344

processing using methods and

keywords, 333, 334

sorting, 332

structured error handlers, 215.

See also error handlers

Students.mdb sample data-

base, 440

Sub procedures

calling, 271, 279

defined, 262

including parentheses in, 270

managing input with (Text

Box Sub program example),

272, 275

overview, 270

and procedures. See procedures

public, creating, 279

syntax items, using, 270, 271

subroutines. See Sub procedures

subtraction operator (-), 146, 150

Sun icon animation example,

381, 383

switching between components, 8

switching between forms, 370

syntax errors

identifying by jagged line, 74

overview, 214

solving, 214

System.Drawing namespace, 374

System.Math class, 155

System.Drawing.Graphics class

overview, 376

shapes and methods used in,

table, 375

system requirements for

completing practice files, xxiii

T
tab characters, formatting text

strings with, 302

tabbed documents

switching to dockable or floating

windows, 21

tools as, 9

Tabbed Documents view, switching

to and from, 11

Tabbed Documents view, switching to and from 541

z02i625372.indd 541 12/14/2007 4:34:23 PM

TableAdapterManager com-

ponent, 486

tables

binding second DataGridView

control to, 481, 482

controlling multiple, 486

database, connecting to, 487

database, displaying by creating

data grid view objects, 487

defined, 439

dragging, binding, sizing, 469, 471

Tan(n) method, 155

taskbar. See Windows taskbar

templates

in Add New Item dialog box, 255

Explorer Form. See Explorer Form

template

Windows Application. See

Windows Application template

testing

Error Handler, 238

event handlers, specific errors

in, 251

text

entering on Web pages, 523

formatting on Web pages, 523

pasting from Windows

Clipboard, 330

printing from printing event

handlers, 434

printing from text box objects,

416, 419

sorting, 335

text boxes

creating, 95

Location, Solution Name, 40

objects, displaying text files by

using. See text files

overview, 71

sorting strings in, 337, 338

Text Box Sub program

folder location, 276

managing input with Sub

procedures, 272, 275

running, 276, 277

Text Browser program

examining code in, 323, 325

folder location, 322

running, 321

text characters, converting to

ASCII characters. See ASCII

characters

text files

creating, 344

creating new on disk, 328

defined, 319

displaying, 343-44

displaying with text box objects.

See text boxes

getting lines of input from.

See LineInput function

loading into RichTextBox

object, 434

multipage, printing, 420

opening, 343

opening with FileStream

class, 434

overview, 320

saving, 344

Text properties, changing with For

Each...Next loops (Controls

Collection program example),

305, 307

text strings, formatting with

carriage returns, tab

characters, 302

text visualizers, 223-24

TextBox control (Toolbox), no

default Text property, 72

TextBox control

displaying counter variables

in, 187

using with Web pages, 500

Timed Password program

folder location, 206

setting password time limits, 204

settings for, table, 204

testing, 206

Timer control

described, 200

using (Digital Clock program

example), 201, 203

Timer object

creating animation by using, 380

function of, 204

TimeString property, 104, 107

toggles, 20

toolbar buttons

adding, 108

moving and deleting, 110

toolbars

adding to programs, 121

creating with ToolStrip control,

108, 110

Debug, displaying, 229

navigation, overview, 453

Standard. See Standard toolbar

viewing list of available, 8

Toolbox command, 41

Toolbox, controls in, 41

tools

Designer. See Designer

as tabbed documents, 9

viewing, 9

Tools/Options dialog box, 40

ToolStrip control, creating toolbars

with, 108, 110

tool windows. See windows

Top property, 379

ToString method, 77

TrackWins program, 258, 269

transparency, changing for

forms, 389

Transparent Form program

folder location, 388

using Opacity property, 387

troubleshooting opening

projects, 7

Try code blocks, exiting, 251

Try...Catch code blocks

function of, 241

nested in error handlers, 248

trapping errors with (Disc Drive

Error program example),

238, 239

using Finally clause with, 239

Try...Catch error handlers, writing

nested, 251

Try...Catch statement, error

handling with, 233

Type Here tag, 99

typed datasets, 448

U
UBound function, 286

uninstalling practice files, xxix

Until keyword, using in Do

loops, 200

updating databases, 484, 486, 488

upgrading from Visual Basic 6, xx

upper and lower bounds,

specifying in public arrays, 302

URL Collection program,

running, 314

user interface elements, properties.

See properties

user interfaces, 42, 67. See also

console applications

UInteger data type, 138

ULong data type, 138

UShort data type, 138

V
variables

adding to Watch window, 229

Autos window to view, 229

declared, hiding in classes, 409

declaring class, 401

declaring, requiring, 33

542 TableAdapterManager component

z02i625372.indd 542 12/14/2007 4:34:23 PM

Web pages 543

defined, 80

described, 254

examining in Code Editor, 229

modifying with the Immediate

window (Debug Test program

example), 225

object, declaring to use

classes, 410

public. See public variables

sharing, 254

tracking run-time errors with

(Disc Drive Handler program),

245, 247

View Designer button, using to

display Code Editor, 56

View menu

Properties Window command.

See Properties Window

command (View menu)

Toolbox command. See Toolbox

viewing Web sites, 505

views. See Multiple Documents

view; Tabbed Documents view

Visible property (Behavior

category), 51

Visual Basic. See also Visual Studio

adding code automatically, 56

applications, deploying, 64

compiler, defined, 55

error messages, 56

identifying elements by color, 56

programs, creating with no user

interface, 371

recommended programming

books, 527

running from IDE, 60

running programs from Web

server, 91

Web site information, 525, 526

Visual Basic .NET, version

information, xx

Visual Basic 6, xx

Visual Basic 6 vs. Visual Basic 2008

AndAlso statement, 173

applications, setting up, 64

array redimensioning, 293

binding to data, 456

character limit for variable

names, 132

CommonDialog control, 111

DataGrid control, 465

declaring/assigning

simultaneously, 194

design mode grid, 42

DHTML Page Designer, 489, 493

Dim statement, 134

division by zero, 174

error handlers, 231

forms, opening/manipulating

directly, 354

Form Layout window, 357

Frame control, 87

function return types, 264

implicit variable declaration, 126

modal forms, 348

modeless forms, 348

Move method, 379

non-modal forms, 348

object-oriented program-

ming, 391

objects on forms, 99

opening/manipulating forms

directly, 354

Option Base statement, 284

option buttons, 87

OrElse statement, 173

parentheses, use in Sub

procedure calls, 270

printing, 411

project group files, 7

redimensioning arrays, 293

Return statement, 265

saving, 32

setting up applications, 64

Show method, 113

simultaneous declaring/

assigning, 194

standard modules (.bas

extension), 251

Sub procedure calls, parentheses

in, 270

TWIPs, 307

use of parentheses in Sub

procedure calls, 270

variable declaration, implicit, 126

variable name character limit, 132

Watch windows, 221

WebClasses, 489

Visual Basic 2005

overview, xix

software support Web sites, xxxi

Visual Basic for Applications, using

in Office applications, 315

visual feedback during calcula-

tions, 302

Visual Studio. See also Visual Basic

configuring for Visual Basic

development, 35

default settings, 30

deployment overview, 64

development environment.

See IDE

displaying list of text box object

properties, 73

executable file types, creating,

63, 64

executable file types. See debug

build release build

exiting, 34, 35

IDE. See IDE

programming languages

available in, 39

recommended programming

books, 527

running programs in, 12

starting, 4, 35

Web browser, opening, 23

Web sites, running and

testing, 523

Visual Studio 2005, locations for

creating and running Web

sites, 494

Visual Studio File menu New

Project command, 38

Visual Web Designer, using to

display database tables, 514

Visual Web Developer

changes in, 497

creating Web sites by using, 490

visualizers

appearance in debugging

mode, 225

types of, overview, 223

displaying information with, 229

W
Watch window

adding variables, properties,

expressions to, 222, 229

displaying, 229

opening, 222, 223

overview, 221

Web Browser command (Other

Windows submenu), 23

Web browser, opening, in Visual

Studio, 23

Web Page Designer

controls and, 500

described, 497

Web pages. See also Web sites

adding text in Web Page

Designer, 497

changing names of objects

on, 523

components, 499

controls, adding, 523

displaying, 95

displaying database records

on, 523

z02i625372.indd 543 12/14/2007 4:34:23 PM

544 Web server, running Visual Basic programs

Web pages (continued)

displaying title on Internet

Explorer title bar, 523

entering text on, 523

formatting text on, 523

Gridview control, adding (Car

Loan Calculator example), 515

hyperlinks, adding (Car Loan

Calculator example), 519

linking to other pages, 523

server controls, adding, 500, 502

validating input fields, 508

verifying data format entered

into controls, 523

viewing HTML code in, 523

viewing HTML for, 499

Windows forms vs., 491

writing event procedures for

controls, 503, 504

writing event procedures for

objects, 523

Web server, running Visual Basic

programs, 91

Web sites. See also Web pages

adding HTML pages to, 508

adding pages for database

information (Car Loan

Calculator example), 514

ASP.NET, creating, 523

building, viewing, 505

components, 491

creating, 497

creating with Visual Web

Developer, 490

developing on Web servers,

Control Panel and, 495

information for Visual Basic,

525, 526

locations for creating and running

in Visual Studio 2005, 494

setting title in Internet Explorer

title bar, 521

testing (Car Loan Calculator

example), 519

Visual Basic 2005 software

support, xxxi

in Visual Studio, running and

testing, 523

WebLink program

creating, 91, 94

running, 94

Weekday (date) function, 107

Width property, expanding,

shrinking picture box at run

time, 385, 386

win rate function, creating, 266, 268

windows. See also specific windows

auto hiding, 17, 21, 35

closing, 17

docking, 9, 20, 35

docking guides. See docking

guides

floating, 19

hiding, 21

minimizing, maximizing,

restoring, 361

moving, 17, 19, 35

resizing, 35

restoring, 18

switching between tabbed

document, floating, and

docked styles, 21

Windows applications, running

with Windows Explorer, 64

Windows Clipboard, pasting text

from, 330

Windows Explorer, running

Windows applications with, 64

Windows forms

adding navigation controls

to, 464

creating bound objects capable

of displaying dataset data

on, 464

Web pages vs., 491

Windows taskbar, 8

Word macros, compatibility

between versions, 317

writing

event procedures (Color button

example), 114

program code, 67

X
XCOPY, 64

XML

displaying during debugging

sessions, 229

visualizers, 223

Xor (logical operator), 170

Y
Year (date) function, 107

z02i625372.indd 544 12/14/2007 4:34:24 PM

About the Author

Michael Halvorson is the author or co-author of

more than 30 books, including Microsoft Visual Basic

2005 Step by Step, Microsoft Offi ce XP Inside Out, and

Microsoft Visual Basic 6.0 Professional Step By Step.

Michael earned a bachelor’s degree in Computer

Science from Pacifi c Lutheran University in Tacoma,

Washington, and master’s and doctoral degrees in

History from the University of Washington in Seattle.

He was employed at Microsoft Corporation from

1985 to 1993, and he has been an advocate for Visual

Basic programming since the product’s original debut at Windows World in 1991. Michael

is currently an assistant professor of History at Pacifi c Lutheran University, where he teaches

courses in the history of early modern Europe. In addition to his technical books, he is the co-

editor of a forthcoming essay collection titled Defi ning Community in Early Modern Europe

(Ashgate Publishing). His cover band, American Standard, plays music regularly

in the Seattle area.

	Dedication
	Acknowledgments
	Table of Contents
	Introduction
	What Is Visual Basic 2008?
	Visual Basic .NET Versions
	Upgrading from Microsoft Visual Basic 6.0

	Finding Your Best Starting Point in This Book
	Visual Studio 2008 System Requirements
	Prerelease Software
	Installing and Using the Practice Files
	Installing the Practice Files
	Using the Practice Files

	Uninstalling the Practice Files
	Conventions and Features in This Book
	Conventions
	Other Features

	Helpful Support Links
	Visual Studio 2008 Software Support
	Microsoft Press Web Site
	Support for This Book

	Part I: Getting Started with Microsoft Visual Basic 2008
	Chapter 1: Exploring the Visual Studio Integrated Development Environment
	The Visual Studio Development Environment
	Sidebar: Projects and Solutions

	The Visual Studio Tools
	The Designer
	Running a Visual Basic Program
	Sidebar: Thinking About Properties

	The Properties Window
	Moving and Resizing the Programming Tools
	Moving and Resizing Tool Windows
	Docking Tool Windows
	Hiding Tool Windows

	Switching Among Open Files and Tools by Using the IDE Navigator
	Opening a Web Browser Within Visual Studio
	Getting Help
	Two Sources for Help: Local Help Files and Online Content
	Summary of Help Commands

	Customizing IDE Settings to Match Step-by-Step Exercises
	Setting the IDE for Visual Basic Development
	Checking Project and Compiler Settings

	One Step Further: Exiting Visual Studio
	Chapter 1 Quick Reference

	Chapter 2: Writing Your First Program
	Lucky Seven: Your First Visual Basic Program
	Programming Steps
	Creating the User Interface
	Setting the Properties
	Sidebar: Reading Properties in Tables

	The Picture Box Properties
	Writing the Code
	A Look at the Button1_Click Procedure
	Running Visual Basic Applications
	Sample Projects on Disk
	Building an Executable File
	Deploying Your Application
	One Step Further: Adding to a Program
	Chapter 2 Quick Reference

	Chapter 3: Working with Toolbox Controls
	The Basic Use of Controls: The Hello World Program
	Using the DateTimePicker Control
	The Birthday Program
	A Word About Terminology

	Controls for Gathering Input
	The Input Controls Demo
	Looking at the Input Controls Program Code

	One Step Further: Using the LinkLabel Control
	Chapter 3 Quick Reference

	Chapter 4: Working with Menus, Toolbars, and Dialog Boxes
	Adding Menus by Using the MenuStrip Control
	Adding Access Keys to Menu Commands
	Sidebar: Menu Conventions

	Processing Menu Choices
	Sidebar: System Clock Properties and Functions

	Adding Toolbars with the ToolStrip Control
	Using Dialog Box Controls
	Event Procedures That Manage Common Dialog Boxes
	Sidebar: Controlling Color Choices by Setting Color Dialog Box Properties
	Sidebar: Adding Nonstandard Dialog Boxes to Programs

	One Step Further: Assigning Shortcut Keys to Menus
	Chapter 4 Quick Reference

	Part II: Programming Fundamentals
	Chapter 5: Visual Basic Variables and Formulas, and the .NET Framework
	The Anatomy of a Visual Basic Program Statement
	Using Variables to Store Information
	Setting Aside Space for Variables: The Dim Statement
	Implicit Variable Declaration

	Using Variables in a Program
	Sidebar: Variable Naming Conventions

	Using a Variable to Store Input
	Sidebar: What Is a Function?

	Using a Variable for Output
	Working with Specific Data Types
	Sidebar: User-Defined Data Types
	Constants: Variables That Don’t Change

	Working with Visual Basic Operators
	Basic Math: The +, –, *, and / Operators
	Sidebar: Shortcut Operators
	Using Advanced Operators: \, Mod, ^, and &

	Working with Methods in the Microsoft .NET Framework
	Sidebar: What’s New in Microsoft .NET Framework 3.5?

	One Step Further: Establishing Order of Precedence
	Using Parentheses in a Formula

	Chapter 5 Quick Reference

	Chapter 6: Using Decision Structures
	Event-Driven Programming
	Sidebar: Events Supported by Visual Basic Objects

	Using Conditional Expressions
	If...Then Decision Structures
	Testing Several Conditions in an If...Then Decision Structure
	Using Logical Operators in Conditional Expressions
	Short-Circuiting by Using AndAlso and OrElse

	Select Case Decision Structures
	Using Comparison Operators with a Select Case Structure

	One Step Further: Detecting Mouse Events
	Chapter 6 Quick Reference

	Chapter 7: Using Loops and Timers
	Writing For...Next Loops
	Displaying a Counter Variable in a TextBox Control
	Creating Complex For...Next Loops
	Using a Counter That Has Greater Scope
	Sidebar: The Exit For Statement

	Writing Do Loops
	Avoiding an Endless Loop
	Sidebar: Using the Until Keyword in Do Loops

	The Timer Control
	Creating a Digital Clock by Using a Timer Control
	Using a Timer Object to Set a Time Limit
	One Step Further: Inserting Code Snippets
	Chapter 7 Quick Reference

	Chapter 8: Debugging Visual Basic Programs
	Finding and Correcting Errors
	Three Types of Errors
	Identifying Logic Errors
	Debugging 101: Using Debugging Mode
	Tracking Variables by Using a Watch Window
	Visualizers: Debugging Tools That Display Data
	Using the Immediate and Command Windows
	Switching to the Command Window
	One Step Further: Removing Breakpoints
	Chapter 8 Quick Reference

	Chapter 9: Trapping Errors by Using Structured Error Handling
	Processing Errors by Using the Try...Catch Statement
	When to Use Error Handlers
	Setting the Trap: The Try...Catch Code Block
	Path and Disc Drive Errors

	Writing a Disc Drive Error Handler
	Using the Finally Clause to Perform Cleanup Tasks
	More Complex Try...Catch Error Handlers
	The Err Object
	Sidebar: Raising Your Own Errors
	Specifying a Retry Period
	Using Nested Try...Catch Blocks

	Comparing Error Handlers with Defensive Programming Techniques
	One Step Further: The Exit Try Statement
	Chapter 9 Quick Reference

	Chapter 10: Creating Modules and Procedures
	Working with Modules
	Creating a Module

	Working with Public Variables
	Sidebar: Public Variables vs. Form Variables

	Creating Procedures
	Sidebar: Advantages of General-Purpose Procedures

	Writing Function Procedures
	Function Syntax
	Calling a Function Procedure
	Using a Function to Perform a Calculation

	Writing Sub Procedures
	Sub Procedure Syntax
	Calling a Sub Procedure
	Using a Sub Procedure to Manage Input

	One Step Further: Passing Arguments by Value and by Reference
	Chapter 10 Quick Reference

	Chapter 11: Using Arrays to Manage Numeric and String Data
	Working with Arrays of Variables
	Creating an Array
	Declaring a Fixed-Size Array
	Setting Aside Memory
	Working with Array Elements
	Creating a Fixed-Size Array to Hold Temperatures
	Sidebar: The UBound and LBound Functions
	Creating a Dynamic Array

	Preserving Array Contents by Using ReDim Preserve
	Three-Dimensional Arrays

	One Step Further: Processing Large Arrays by Using Methods in the Array Class
	The Array Class

	Chapter 11 Quick Reference

	Chapter 12: Working with Collections and the System.Collections Namespace
	Working with Object Collections
	Referencing Objects in a Collection
	Writing For Each...Next Loops
	Experimenting with Objects in the Controls Collection
	Using the Name Property in a For Each...Next Loop

	Creating Your Own Collections
	Declaring New Collections

	One Step Further: VBA Collections
	Entering the Word Macro

	Chapter 12 Quick Reference

	Chapter 13: Exploring Text Files and String Processing
	Displaying Text Files by Using a Text Box Object
	Opening a Text File for Input
	The FileOpen Function

	Using the StreamReader Class and My.Computer.FileSystem to Open Text Files
	The StreamReader Class
	The My Namespace

	Creating a New Text File on Disk
	Processing Text Strings with Program Code
	The String Class and Useful Methods and Keywords
	Sorting Text
	Working with ASCII Codes
	Sorting Strings in a Text Box

	One Step Further: Examining the Sort Text Program Code
	Chapter 13 Quick Reference

	Part III: Designing the User Interface
	Chapter 14: Managing Windows Forms and Controls at Run Time
	Adding New Forms to a Program
	How Forms Are Used
	Working with Multiple Forms
	Sidebar: Using the DialogResult Property in the Calling Form

	Positioning Forms on the Windows Desktop
	Minimizing, Maximizing, and Restoring Windows

	Adding Controls to a Form at Run Time
	Organizing Controls on a Form
	One Step Further: Specifying the Startup Object
	Sidebar: Console Applications

	Chapter 14 Quick Reference

	Chapter 15: Adding Graphics and Animation Effects
	Adding Artwork by Using the System.Drawing Namespace
	Using a Form’s Coordinate System
	The System.Drawing.Graphics Class
	Using the Form’s Paint Event

	Adding Animation to Your Programs
	Moving Objects on the Form
	The Location Property
	Creating Animation by Using a Timer Object

	Expanding and Shrinking Objects While a Program Is Running
	One Step Further: Changing Form Transparency
	Chapter 15 Quick Reference

	Chapter 16: Inheriting Forms and Creating Base Classes
	Inheriting a Form by Using the Inheritance Picker
	Creating Your Own Base Classes
	Sidebar: Nerd Alert
	Adding a New Class to Your Project

	One Step Further: Inheriting a Base Class
	Sidebar: Further Experiments with Object-Oriented Programming

	Chapter 16 Quick Reference

	Chapter 17: Working with Printers
	Using the PrintDocument Class
	Printing Text from a Text Box Object

	Printing Multipage Text Files
	One Step Further: Adding Print Preview and Page Setup Dialog Boxes
	Chapter 17 Quick Reference

	Part IV: Database and Web Programming
	Chapter 18: Getting Started with ADO.NET
	Database Programming with ADO.NET
	Database Terminology
	Working with an Access Database
	The Data Sources Window

	Using Bound Controls to Display Database Information
	One Step Further: SQL Statements, LINQ, and Filtering Data
	Chapter 18 Quick Reference

	Chapter 19: Data Presentation Using the DataGridView Control
	Using DataGridView to Display Database Records
	Formatting DataGridView Cells
	Datacentric Focus: Adding a Second Grid and Navigation Control
	One Step Further: Updating the Original Database
	Sidebar: Data Access in a Web Forms Environment

	Chapter 19 Quick Reference

	Chapter 20: Creating Web Sites and Web Pages by Using Visual Web Developer and ASP. NET
	Inside ASP.NET
	Web Pages vs. Windows Forms
	Server Controls
	HTML Controls

	Building a Web Site by Using Visual Web Developer
	Considering Software Requirements for ASP.NET Programming

	Using the Web Page Designer
	Adding Server Controls to a Web Site
	Writing Event Procedures for Web Page Controls
	Sidebar: Validating Input Fields on a Web Page

	Adding Additional Web Pages and Resources to a Web Site
	Displaying Database Records on a Web Page
	One Step Further: Setting the Web Site Title in Internet Explorer
	Chapter 20 Quick Reference

	Appendix: Where to Go for More Information
	Visual Basic Web Sites
	Books About Visual Basic and Visual Studio Programming
	Visual Basic Programming
	Microsoft .NET Framework
	Database Programming with ADO.NET
	Web Programming with ASP.NET
	Visual Basic for Applications Programming
	General Books about Programming and Computer Science

	Index
	About the Author

